分光光度法
分光光度法
基于物质对光的选择性吸收而建立起来的分析方法,称为吸光光度法。包括:比色法、可见及紫外吸光光度法和红外光谱法。本章重点介绍:可见吸光光度法。在选定波长下,被测溶液对光的吸收程度与溶液中的吸光物质的浓度有简单的定量关系。吸收光波范围是紫外,可见和红外光区。它所测量的是物质的物理性质-物质对光的吸收,测量所需的仪器是特殊的光学电子学仪器,所以光度法不属于传统的化学分析法,而属于近代的仪器分析,这里只是按照我国现行教学习惯把可见光的光度法作为化学分析部分的一章。
(一)朗伯一比耳定律的推导
当一束平行单色光通过任何均匀、非散射的固体、液体或气体介质时,光的一部分被吸收,一部分透过溶液,一部分被器皿表面反射。设入射的单色光强度为I0,反射光强度为Ir,吸收光强度为Ia,透过光强度为It,则它们之间的关系为:
I0=Ir+Ia+It
因为λ射光常垂直于介质表面射λ,Ir很小(约为λ射光强度的4%)又由于进行光度分析时都采用同样质料,同厚度的吸收池盛装试液及参比溶液,反射光的强度是不变的。因此,由反射所引起的误差可校正,抵消。故上式可简化为:
ΔE=hc/λ
这里,ΔE=E2-E1,表示某一能吸级差的能量。由于不同物质的分子其组成与结构不同,它们所具有的特征能级不同,能级差也不同,所以不同物质对不同波长的光的吸收就具有选择性,有的能吸收,有的不能吸收。在电子能级发生变化时,不可避免地也伴随着分子的振动和转动能级的变化.分子光谱又成为带状光谱.
2、溶液有色的原因。
具有单一波长的光称为单色光,在可见光中,通常所说的白光是由许多不同波长的可见光组成的复合光。由红、橙、黄、绿、青、蓝、紫这些不同波长的可见光按照一定的比例混合得到白光。进一步的研究又表明,只需要把两种特定颜色的光按一定比例混合,就可以得到白光,如绿光和紫光混合,黄光和蓝光混合,都可以得到白光。
分光光度法
原子发射光谱法 (atomic emission photometry) 分子发光分析法
II. 可见-紫外分光光度法
一、概述
1、定义:
利用物质的分子或离子对某一波长范围 的光的吸收作用,对物质进行定性、定量 及结构分析的方法
3、所用仪器: 分光光度计(spectrophotometer)
(1)主要部件:
信
光 源
单
吸
检
色
收
测
器
池
器
号 显 示 系
统
(2)使用: 1.开电源开关,打开箱盖,预热10min
2.将空白管、对照管、测定管分别装入 比色皿(3/4vol),并用吸水纸擦干光面外壁
3.选定波长
4.打开箱盖(光路开关自动关闭),用空 白管调T=0
5. 盖上箱盖(光路开关自动打开),再用空 白管调T=100%(若调不到,则可调节灵敏 度开关)
6.将选择开关旋至A,此时显示数值应为0, 否则调节“消光零”旋钮调至0
7.逐步拉出试样架拉手,读取各管吸光度 值A
8.全部测定结束后,取出比色皿(洗净), 关闭开关
4、比色法的定量方法:
①标准曲线法: 将一系列浓度不同的标准溶液按照一定
选择吸收
----组成物质的分子仅吸收与其内能变化 (基态与激发态能量差)相对应的波长或 频率的光,所得到的光谱称为吸收光谱
能量释放
----处于较高能态的分子(激发态分子)不稳 定,当其返回基态时,以热或发射光谱的 形式将能量释放出来。所发射出的相应光 谱,称分子发射光谱
激发态 发 射 光 谱
E1 吸 收 光 谱
13 第十三章(分光光度法)
有一浓度为1.0 µg · mL - 1 Fe2+的溶液,以邻二氮菲 的溶液, 例 有一浓度为 显色后, 显色后,在比色皿厚度为 2 cm、波长 、波长510nm处测得吸光度为 处测得吸光度为 0.380,计算 透光率 ;(2) 吸光系数 ;(3) 摩尔吸光系数ε 。 透光率T; 吸光系数a; ,计算(1)透光率
动性、粒子性。 动性、粒子性。
E = h ⋅ν = h
c
λ
常数: (Planck常数:h=6.63× 10 -34 J · S ) 常数 ×
上式表明光的波长越短, 上式表明光的波长越短,或者说频率越 大,光的能量越高。 光的能量越高。
具有同一波长的光称为单色光 单色光。 ● 具有同一波长的光称为单色光。 (由具有相同能量的光子组成 由具有相同能量的光子组成) 由具有相同能量的光子组成 ● 不同波长组成的光称为复合光。 不同波长组成的光称为复合光。 复合光 ● 日常生活中肉眼所见到的 白光 , 如 日 日常生活中肉眼所见到的白光 白光, 等是由红、 光 等是由红 、 橙 、 黄 、 绿 、 青 、 蓝 、 紫等光按 适当的强度比例混合而成的, 是在400~750nm 适当的强度比例混合而成的 , 是在 范围的一种复合光。 范围的一种复合光。
I0 1 A = lg = lg = − lg T It T
若光全部透过溶液, 若光全部透过溶液,Io= It , A = 0 若全部被吸收, It = 0 , A = ∞ 若全部被吸收, 吸光度A是用来衡量溶液中 吸光度 是用来衡量溶液中 吸光物质对单色光 λ 的吸收程度 值越大, ,A值越大,其吸收程度越大; 值越大 其吸收程度越大; 反之亦然。 反之亦然。
UV-Vis主要用于分子的定量分析,但紫外光谱(UV) UV- 主要用于分子的定量分析, 和红外光谱( 为四大波谱之一, 和红外光谱(IR)为四大波谱之一,是鉴定许多化合
第十章 分光光度法
注:溶液的透光率T反映了物质对光的吸收程度, T越大表示它对光的吸收越弱;反之,T越小,表 示对光的吸收越强。
T 取值为0.0 % ~ 100.0 %
T
全部吸收
T = 0.0 %
全部透射 T = 100.0 %
2.吸光度: 为透光率的负 A lg I0 lg 1 = lgT
(四)吸光系数 1.定义(物理意义)
一定条件下,吸光物质在单位浓度及单位液层 厚度时的吸光度,叫这个物质的吸光系数。
2.两种表示方法
(1) 摩尔吸光系数( ε ):表示一定波长下,吸光物质的溶液
浓度为1mol/L,液层厚度为1cm时,溶液的吸光度。
(2)百分吸光系数(
E1% 1cm
):表示一定波长下,吸光物质的溶
黄 橙
红
/nm 颜色 400-450 紫
450-480 蓝 480-490 青蓝 490-500 青 500-560 绿 580-610 黄 610-650 橙 650-760 红
互补光 绿
黄 橙 红 紫 蓝 青蓝 青
物质的颜色与光的关系:
完全吸收
光谱示意 复合光
表观现象示意
完全透过
吸收黄色光
二.物质对光的选择性吸收
A. A~λ曲线
B. A~c曲线
C. A~V曲线
D. E~V曲线
4、紫外分光光度法中,为了使测定结果有较高 的灵敏度和准确度,入射光的波长应( )
A.最大吸收波长
B.最小吸收波长
检测器 作用:将光信号转换为电信号,并放大 光电管,光电倍增管
信号输出 表头、记录仪、屏幕、数字显示
第十章
1 光源
在紫外可见分光光度计中,常用的光源 有两类:热辐射光源和气体放电光源 热辐射光源适用350nm-800nm,用于可见 光区,如钨灯和卤钨灯;气体放电光源适 用150nm-400nm,用于紫外光区,如氢灯 和氘灯。
分光光度法的基本原理
分光光度法的基本原理
分光光度法是一种常用于分析、确定物质浓度的方法。
其基本原理是将待测物质溶液通过一束光束,然后通过光学系统使光束分成两部分,分别通过样品液和对照液,最终两束光束再重合形成一个荧光强度差。
待测物质会对入射光束进行吸收,导致出射光束的强度减弱,而对照液不会对光束产生吸收作用,出射光束强度不变。
通过测量两束光的强度差异,可以推断待测物质的浓度。
分光光度法使用光栅或棱镜使入射光束通过色散,然后通过滤光片选择特定波长的光,再通过样品液和对照液后,出射光会被光电池或光电二极管接收,转化为电信号。
根据输出的电信号强度,可以计算出待测物质的浓度。
分光光度法的优点是测量精度高、灵敏度高、操作简便。
它可以在高浓度样品中进行测量,可以使用各种波长的光来进行分析。
然而,它也存在一些限制,例如对色散(波长漂移)的影响比较大,需要定期校准光谱仪器。
此外,分光光度法对于有色物质的测量更准确,对于无色物质的测量精度较低。
分光光度法
三、测量条件的选择
1、入射光波长的选择
一般应该选择λmax为入射光波长。
如果 λmax 附近有干 扰存在,选择灵敏度 稍低但能避免干扰的 入射光波长(曲线较 平坦处)
2、参比溶液的选择
❖ 选择参比溶液的原因
由于入射光的反射,以及溶剂、试剂等对光的 吸收会造成透射光通量的减弱。为了使光通量 的减弱仅与溶液中待测物质的浓度有关,需要 选择合适的溶液作参比溶液。
单色光和互补光
➢ 单色光:具有同一波长的光。 ➢ 复合光:含有多种波长的光。如:日光,白炽灯光。
➢ 可见光:400~760 nm
➢互补色光:适当颜色的两种色光按一定强度 比例可以混合成为白光,这两种色光叫做互 补色光。
一、物质的颜色
物质的颜色是由于物质对不同波长 的光具有选择性吸收而产生的。
物质的颜色显示其吸收光的互补色。
(2)不同浓度的高锰酸钾溶液,其吸收曲线的 形状相似,最大吸收波长λmax一样。在同一波 长下吸光度A有差异。物质定量分析的依据。
(3)不同物质其吸收曲线形状和λmax各不 相同,因此吸收曲线可以提供物质的结构信 息,物质定性分析的依据之一。
§3 光吸收的基本定律
一、朗伯-比耳定律 朗伯-比耳定律的数学表达式为:
3.工作曲线不过原点 存在系统误差:吸收池不完全一样;参比溶液选择 不当等。
第三节 紫外-可见分光光度计
一、仪器的基本组成部件
光源
单色器
吸收池
检测器 信号显示系统
1、光源
在使用波长范围内提供连续的光谱,光强应 足够大,有良好的稳定性,使用寿命长。
➢ 可见光光源:钨灯,辐射 波长范围325~2500nm。
有机显色剂:种类繁多
三元配合物显色体系:一种金属离子同时与两种不同 的配位体或一种配位体与两种不同的金属离子形成的 配合物
分光光度法的定义
分光光度法的定义嘿,朋友们!今天咱来聊聊分光光度法呀!分光光度法呢,就好比是一个超级厉害的“颜色侦探”!你可以想象一下,它能把那些我们肉眼几乎看不到的细微颜色变化给揪出来,是不是很神奇呀!咱平常生活中看到的各种颜色,其实都是不同波长的光组合在一起呈现出来的。
分光光度法呢,就是专门来研究这些光的。
它就像是有一双特别敏锐的眼睛,能把光分成不同的部分,然后仔细分析。
比如说,在化学实验里,我们想知道某种溶液里有多少特定的物质。
这时候分光光度法就派上大用场啦!它能通过测量光被溶液吸收的程度,来告诉我们里面物质的含量。
这就好像是通过观察一个人吃了多少食物,就能知道他有多饿一样。
它的原理其实也不难理解。
不同的物质对光的吸收是不一样的,就像每个人的口味不同一样。
分光光度法就是利用这个特点,找到和特定物质对应的光吸收特征,从而确定物质的存在和数量。
而且哦,分光光度法的应用那可太广泛啦!在医学上,可以用它来检测各种生物指标;在环境监测中,能帮我们看看水和空气有没有被污染;在食品行业呢,能检测食品中的营养成分和有害物质。
这多重要呀,关系到我们每个人的健康呢!你说它是不是很厉害?就像一个默默工作的小卫士,在各个领域守护着我们。
它不需要我们太多的关注和照顾,却总是能给出准确可靠的结果。
想想看,如果没有分光光度法,很多科学研究和实际应用都会变得困难重重。
它就像是一把神奇的钥匙,打开了无数知识和技术的大门。
所以呀,分光光度法可真是个了不起的东西!它虽然不声不响,却在我们的生活中发挥着巨大的作用。
我们应该好好感谢它,让我们能更深入地了解这个丰富多彩的世界呀!这就是分光光度法,一个神奇而又重要的存在!原创不易,请尊重原创,谢谢!。
分光光度法
某一波长下的吸光度。
若溶液的组成用质量浓度表示。LambertBeer 定律可表示为: A = a ·b · :质量浓度(g ·L-1) b:为液层厚度(cm) a:质量吸光系数(L · g-1 · cm-1) a 和 的换算关系为: =aM 吸光度A与透光率T: A =-lgT = ·b ·c T = 10 - bc
CuSO4溶液:之所以呈蓝色,是因为吸收了白光中的 黄光,透过其黄光的互补光蓝光。
又例如: KMnO4溶液,吸收了白光
中的绿光,透过的为其互补光紫色,故其 溶液呈紫色。
再例如:NaCl、KNO3溶液,对其射
入的可见光全不吸收,光全透过,因此溶 液为无色。
物质对光的吸收曲线
某一溶液对何种波长的光吸收?吸收的程度如 何?
这可通过使不同波长的光通过某一固定浓度 的有色溶液,分别测量每一波长下对应的光的 吸收程度[吸光度, A], 作A-λ曲线,即吸收光谱曲线。
• 图中Ⅰ、Ⅱ、 Ⅲ三条曲线, 代表同一被测 物质含量由低 到高的吸收曲 线。
邻二氮杂菲亚铁溶液的吸收曲线
(1)同一种物质对不同波长光的吸光度不同。吸光
物质的颜色:
•
•
在可见光区(400~760nm)不同波长的光具有不同的颜色。
溶液呈现一定的颜色是对光选择性吸收的结果。当一束白光 通过一有色溶液时,某些波长的光被溶液吸收,另一些波长的 光则透过,溶液的颜色由透过光决定。
• 透射光与吸收光又可组成白光,这两种光称为互补色光。
溶液的颜色 ⑴溶液为什么会有颜色? 溶液之所以呈现不同的颜色,是由于溶液中 的质点选择性地吸收某种颜色的光所引起的。 ⑵ 吸收光与溶液颜色的关系: 当白光通过某一均匀溶液时: ①如溶液对其全不吸收,光全透过,溶液为无色; ②如溶液对其全部吸收,无光透过,溶液呈黑色; ③如溶液对其部分吸收,其余光透过,溶液 呈透过光的颜色。
大学化学 分光光度法
A4 A3 A2 A1 用于溶液中多组分测定
上一页
下一页
18
本章目录
三、对朗伯-比尔定律的偏离
根据朗伯-比尔定律,以A对c作图,应为一通 过原点的直线,通常称为工作曲线(或标准曲线)。 有时会在工作曲线的高浓度端发生偏离的情况,这种 现象称为对朗伯-比尔定律的偏离。
引起这种偏离的因素(两大类): (1)物理性因素:单色光纯度不够; (2)化学性因素:溶液中化学反应
图中查出未知液的浓度。
A
Ax
c1 c2 c3 c4 c5 cx A1 A2 A3 A4 A5 Ax
cx
标准曲线图
上一页
下一页
c
31
本章目录
例:Fe2+含量的测定
原理: Fe2+离子在pH=3~9的水溶液中与邻菲罗啉生
成稳定的橙红色的[Fe(C12H8N2)3]2+,本实验就是利用 该反应来测定溶液中的铁的含量。
上一页
下一页
3
本章目录
一、 光的基本性质
光具有波粒二象性,即波动性、粒子性。
Ehh c
根据波长的不同,可分为: 紫外光区:200nm ~ 400nm 可见光区:400nm ~ 750nm 红外光区:750nm ~ 250μm
上一页
下一页
4
本章目录
二、 物质对光的选择性吸收
1.光的互补
具有同一波长的光称为单色光。 不同波长组成的光称为复合光。
下一页
21
本章目录
仪器
紫外-可见分光光度计
上一页
下一页
22
本章目录
§11.4 显色反应和显色条件的选择
显色反应和显色剂
在分光光度分析中,常利用显色反应把待测组分X 转变为有色化合物,然后再进行测定。
分光光度法
吸收 外观有颜色的药物在可见光区有特征吸收 都可用紫外-可见分光光度法进行分析。
仪器
可见分光光度计
721型分光光度计
仪器
紫外-可见分光光度计
一、基本组成
光源
单色器
样品室
检测器
显示器
1. 光源
在整个紫外光区或可见光谱区可以发射连续光
把分子吸收能量随波长变化的情况记录下来所得 的图谱为吸收光谱。
利用物质的吸收光谱进行定性、定量及结构分析 的方法称为吸收光谱法, 简称光谱法。
三、光的吸收定律
(一)百分透光率(T)和吸收度(A) 入射光 I0 → 吸收Ia → 透射It
I0 = Ia + It 透光率(描述入射光透过溶液的程度)
一、光的性质与波长范围
光的性质
光是一种电磁波,具有波粒二象性,即波动性和 粒子性。
光在传播时表现了光的波动性
一定的光波具有一定的波长 、频率 、光速c等 参数来描述:
c=
续前:
波长: 相邻两波峰或波谷之间的距离,波长的单位 可用纳米(nm),微米(um)表示:
1nm=10-3um=10-6mm=10-7cm=10-9m 频率( ): 是每秒内光波的振动次数,单位是
A=-lgT=ECL 朗伯-比尔定律适用于无色溶液、有色溶液及气
体和固体的非散射均匀体系。
(三)吸收系数
吸光物质在单位浓度、单位液层厚度时的吸收度。 A
E= CL
当溶液的浓度C的单位不同时,吸收系数的意义和表 示方法也不同,常用的表示方法有两种:
1、摩尔吸收系数:是指在一定波长下,溶液浓度为 1mol/L,液层厚度为1cm时的吸收度,用ε表示。
分光光度法公式
分光光度法公式分光光度法相关公式如下:一、朗伯 - 比尔定律(Lambert - Beer law)1. 基本表达式。
- A = lg(I_0)/(I)= varepsilon bc- A:吸光度(Absorbance),表示物质对光的吸收程度,无单位。
- I_0:入射光强度(Intensity of incident light)。
- I:透射光强度(Intensity of transmitted light)。
- varepsilon:摩尔吸光系数(Molar absorptivity),单位为L· mol^-1·cm^-1,它反映了吸光物质对光的吸收能力,与吸光物质的性质、入射光波长、温度等因素有关。
- b:光程长度(Path length),即溶液厚度,单位为cm。
- c:吸光物质的浓度(Concentration),单位为mol/L。
2. 从吸光度计算浓度。
- 根据朗伯 - 比尔定律c=(A)/(varepsilon b),如果已知某物质的摩尔吸光系数varepsilon、光程长度b和测得的吸光度A,就可以计算出该物质的浓度c。
二、多组分体系的分光光度法。
1. 吸光度的加和性。
- 对于含有n种吸光组分的溶液,在某一波长下的总吸光度等于各组分吸光度之和,即A = A_1+A_2+·s+A_n=∑_i = 1^nvarepsilon_ibc_i。
- 例如,对于两种组分1和2的混合溶液,A=varepsilon_1bc_1+varepsilon_2bc_2。
如果能在两个不同波长λ_1和λ_2下测量吸光度,就可以得到联立方程:- 在λ_1下:A_λ_1=varepsilon_1,λ_1bc_1+varepsilon_2,λ_1bc_2- 在λ_2下:A_λ_2=varepsilon_1,λ_2bc_1+varepsilon_2,λ_2bc_2- 解这个联立方程就可以求出两种组分c_1和c_2的浓度。
第七章分光光度法
第七章分光光度法【基本要求】1.1 掌握分光光度法基本原理—Lambert-Beer定律,能熟练运用Lambert-Beer 公式进行有关计算。
1.1 掌握吸光度、透光率、吸光系数、摩尔吸光系数的概念。
1.2 明确溶液颜色与光吸收的关系。
1.3 了解物质对光的选择性吸收及吸收光谱。
1.4 了解分光光度计的基本构造;提高测量灵敏度和准确度的方法。
1.5 了解紫外分光光度法进行物质定性分析和定量测定的基本原理。
【重点难点】2.1 重点分光光度法原理-Lambert-Beer定律。
紫外分光光度计的使用2.2 难点提高测量灵敏度和准确度的方法。
【讲授学时】4学时4.1 第一节概述一、比色分析法比色分析法:利用比较溶液颜色深浅的方法来确定溶液中有色物质的含量。
有色物质溶液颜色越深,浓度越大;颜色越浅,浓度越小。
二、比色分析法测定步骤①选择适当显色剂,使被测组分转变成有色物质,称为显色阶段。
测定无色溶液时要进行显色阶段。
②选择最佳条件测定溶液的深浅度,称为比色阶段。
三、发展过程:目视比色法→光电比色法→分光光度计(吸光光度法)四、比色与分光光度法的特点比色和分光光度法主要用于测定微量组分。
1、灵敏度高:测定试样中微量组分(1~0.001%)常用方法,甚至可测定10-4 ~ 10-5%的痕量组分。
2、准确度高:一般比色法相对误差为5~10%,分光光度法为2~5%,其准确度虽比重量法和滴定法低,但对微量组分的测定已完全满足要求。
如采用精密蓝450-480紫400-450红650-750青蓝480-490青490-500绿500-580黄580-600橙600-650白光分光度计,误差将减少至1~2%。
3、应用广泛:几乎所有的无机离子和许多有机化合物都可以直接或间接地用比色法和分光光度法进行测定。
4、操作简便、快速,仪器设备也不复杂。
例如:试样中含Cu 量为0.001%,即在100mg 试样中含Cu 0.001mg ,用比色法可以测出。
分光光度法(金)
3)应用
①标准曲线法 ②标准管法
①标准曲线法
特点:方便、快捷,适用于大批量样品处理
方法: a.标准曲线绘制
配制一系列与待测样品溶质相同的,浓 度由小到大的标准溶液,分别测OD值。
D
0
C
b. 未知样品浓度测定
D Dx
0
Cx
C
②标准管法
特点:相对准确,适用于少量样品处理
方法:设标准溶液,浓度已知,分别测样品和标准
溶液的OD值。
D测 = K L C测 D标准 = K L C标准
D测 C测 = D标准 ×C标准
4)分光光度法的优点
灵敏:能测定出溶液中含量极少的物质浓度 准确:误差小,与真实值非常接近 快速:操作步骤简单,较少时间内得出结果 简便:无需从溶液中分离待测样品
5)分光光度法所使用的仪器 ——分光光度计
③以酪蛋白含量为横坐标,OD值为纵坐标, 绘制标准曲线;
2. 未知样品浓度测定:
取5号管, 吸取1ml (1:10稀释)血清待测样, 用水补足至2ml,加入双缩脲试剂4ml,混匀后与 以上4管同时比色,从标准曲线查出其蛋白质浓度 ,按稀释倍数求出血清原液浓度。
3. 标准管法:
C测 =
D测 D标
×
实验一 用分光光度法 测定血清蛋白含量
【实验目的】
1.掌握标准曲线的制备方法和标准管法 的计算方法;
2. 掌握双缩脲法测定血清蛋白的原理和 方法。
【实验原理】
呈色反应 茚三酮反应
双缩脲反应 √
尿素被加热至 180℃左右时,两分子尿素缩合 放出一分子氨而形成双缩脲。双缩脲在碱性条 件下可与Cu2+结合生成复杂的紫红色化合物。 此反应称为双缩脲反应。
分光光度法 科普
分光光度法科普
分光光度法是一种通过测定被测物质在特定波长处或一定波长范围内光的吸收度,对该物质进行定性和定量分析的方法。
它具有灵敏度高、操作简便、快速等优点,是生物化学实验中最常用的实验方法之一。
分光光度法的原理是基于Lambert-Beer定律,即当一束单色光通过一溶液时,由于溶液吸收一部分光能,使光的强度减弱。
若溶液的浓度不变,则溶液的厚度愈大,光强度的减弱也愈显著。
这一关系就是郎伯定律。
分光光度法的应用范围非常广泛,可以用于测定多种物质,如蛋白质、核酸、糖类、酚类、芳香族化合物等。
在临床医学、环境科学、生物工程、制药等领域都有广泛的应用。
需要注意的是,分光光度法在使用过程中需要注意一些问题,如选择合适的波长和光源,避免干扰物质的影响,以及正确处理数据等。
此外,分光光度计也需要定期进行校准和维护,以保证测量的准确性和可靠性。
总之,分光光度法是一种简单、快速、灵敏的分析方法,在各个领域都有广泛的应用。
通过了解其原理和方法,可以更好地应用于实际工作中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
*
(校准曲线)
cx 0 1.0 2.0 3.0 4.0 ρ(mg/mL)
29
c单位mol/L
单位 g/L 、mg/L、 g/L
朗伯-比尔定律的适用条件
1. 单色光
应选用max处或肩峰处测定。
2. 吸光质点形式不变
离解、络合、缔合会破坏线性关系, 应控制条件(酸度、浓度、介质等)。
3. 稀溶液
特点
– 灵敏度高:测定下限可达10-5~10 -6mol· L-1, 10-4 %~10-5 % – 准确度能够满足微量组分的测定要求: 相对误差2~5% (1~2%) – 操作简便快速 – 应用广泛 5
I0
It
测量光强 度的减弱
分光光度法 的应用:定 量测定与定 性分析
光强的减弱与物 质浓度的关系? —朗伯-比尔定律 物质对光有选择性 吸收 — 准备知识
浓度增大,分子之间作用增强。
30
二、偏离朗伯—比耳定律的原因
标准曲线法测定 未知溶液的浓度时发 现:标准曲线常发生 弯曲(尤其当溶液浓 度较高时),这种现 象称为对朗伯-比耳定 律的偏离。
A
c
31
引起这种偏离的因素(两大类):
(一)物理因素 (1)单色光不纯所引起的偏离 严格地讲,朗伯 - 比耳定律只对一定波长的单色 光才成立。但在实际工作中,目前用各种方法得到 的入射光并非纯的单色光,而是具有一定波长范围 的单色光。那么,在这种情况下,吸光度与浓度并 不完全成直线关系,因而导致了对朗伯—比耳定律的 偏离。 (2)非平行入射光引起的偏离 非平行入射光将导致光束的平均光程b’大于吸收 池的厚度b,实际测得的吸光度将大于理论值。
变换单位: bcmcmol/L=bcM106 g/1000cm2
S= 0.001 103 M
=
M
( g/cm 2 )
S小灵敏度高;
相同的物质, M小则灵敏度高.
28
朗伯-比尔定律的分析应用
溶液浓度的测定
A= b c A=a b ρ
工作曲线法
A
0.80 Ax 0.60 0.40 0.20 0.00
旋光光谱法 圆偏光二向性 法 8
利用相互作用 的分析方法
电子射线 分析
光学光谱区
远紫外
(真空紫外)
近紫外 可见
近红外
中红外
远红外
10nm~200nm
200nm ~380nm
ቤተ መጻሕፍቲ ባይዱ
380nm ~ 780nm
780 nm ~ 2.5 m
2.5 m ~ 50 m
50 m ~300 m
人眼所能看见的有颜色的光叫做可见光,其波长范围大约在 400-760nm之间。如果让一束白光通过三棱镜,就分解为红、 橙、黄、绿、青、蓝、紫七种颜色的光,这种现象称为光的 色散。每种颜色的光具有一定的波长范围。只具有一种颜色 9 的光,叫做单色光; 白光叫做复合光。
13
光吸收曲线 如果将不同波长的单色光依次通过一定浓 度的某一溶液,测量该溶液对各种单色光 的吸收程度,以波长为横坐标,以吸光度 A为纵坐标,绘制曲线,描述物质对不同 波长光的吸收能力。这条曲线叫做吸收光 谱曲线或光吸收曲线。它清楚地描述了溶 液对不同波长的光的吸收情况。
A~ (nm)
光吸收曲线
摩尔吸光系数ε(L· mol-1· cm-1)在数值上等于 吸光物质浓度为 1mol· L-1 、液层厚度为 1cm 时 该溶液在某一波长下的吸光度。
25
ε与a的关系为:
ε = aM
( M为物质的摩尔质量)
摩尔吸光系数ε 的讨论:
⑴.摩尔吸光系数ε在数值上等于浓度为1mol· L-1、 液层厚度为1cm时该溶液在某一波长下的吸光度。 ε是吸收物质在一定波长和溶剂条件下的特征 常数,不随浓度c 和光程长度b 的改变而改变。 在温度和波长等条件一定时,ε仅与吸收物质 本身的性质有关。
光强的 测量 —分光 光度计
6
光的波粒二象性 真空中:E h
c
E h
结论:一定波长的光具有一定的能量,波长越 长(频率越低),光量子的能量越低。 单色光:具有相同能量(相同波长)的光。 复合光:具有不同能量(不同波长)的光复合在 一起。例如白光。
7
电磁波谱及分析方法
电磁波长 (cm) 10-8~10-13 10-6~10-9 10-4~10-6 10-4 10-1~10-4 10-1~10-2 102
16
max=510 nm
吸 收 曲 线
19
吸收曲线的讨论:
同一种物质对不同波长光的吸光度不同。 吸光度最大处对应的波长称为最大吸收波长 λmax 。一般选择在λmax处测定,最灵敏。
吸收曲线是定量分析中选择入射光波长的重要依据。
不同物质吸收光谱的形状以及max 不同 ——定性分析的基础 同一物质,浓度不同时,吸收光谱的形 状相同,Amax 不同 ——定量分析的基础
原子光谱法 AAS,AES, AFS
(以光的吸收、发射等作用而建立的分析方法,通过 检测光谱的波长和强度来进行定性和定量的方法)
2.电化学分析法: 依据物质的电化学性质及其变化 3.色谱法: 气相色谱, 液相色谱 4.质谱法、热分析法、放射化学法等
4
15.1 吸光光度法的基本原理
分光光度法是基于被测物质的分子对光具 有选择性吸收的特性而建立起来的分析方法。
短波 10-6~10-3
未成对电 子的偶极 矩
顺磁共振
中波 ~10-6
原子核的 偶极矩
核磁共振
利用吸收的分 析方法
γ射线吸收 法
X射线吸 收法
原子吸收法 紫外吸收法
可见光分光光 度法
利用发射的分 析方法
活化分析
X射线 荧光 发射X 射线
X射线 衍射分析
原子荧光分析 火焰光度分析 发射光谱分析
比浊法
荧光分析 磷光分析 拉曼分析
21
朗伯-比尔定律
A=lg(I0/It)=kbc
物理意义: 当一束平行单色光通过均匀、非散 射的吸光介质时,其吸光度与吸光质 点的浓度和吸收层厚度的乘积成正比.
吸光度A具有加合性: A总= A1+ A2 A1、A2分别为两种吸光物质的吸光度。
22
透光率(透射比)T(Transmittance)
T= It I0
26
⑵.可作为定性鉴定的参数。 ⑶.同一吸收物质在不同波长下的ε值是不同的。在最 大吸收波长λmax处的摩尔吸光系数,常以εmax表示。 εmax表明了该吸收物质最大限度的吸光能力,也反 映了光度法测定该物质可能达到的最大灵敏度。 εmax越大表明该物质的吸光能力越强,用光度法测 定该物质的灵敏度越高。
I0 入射光 It 透过光
吸光度A (Absorbance) A = lg(I0/It) = lg(1/T) = lgT = Kbc
—
T = 10
- Kbc
= 10
-A
23
吸光度A、透射比T与浓度c 的关系
1.0 100
0.8
T = 10
-kbc
80
A
0.6 0.4 0.2
A=kbc
60 40 20
0.38 2 1.8 10
-5
4 = 1.1 10( L mol -1 cm-1)
S=M/ =55.85/1.1×104=0.0051 (g/cm2)
36
1 有色配位化合物的摩尔吸光系数(ε)与下列哪种因 C 素有关? ( ) A、比色皿厚度 B、有色配位化合物的浓度 C、入射光的波长 D、有色配位化合物的吸光度
T (%)
c
A~ c 呈正比
24
k 吸光系数 Absorptivity
当c的单位用g· L-1表示时,用a 表示,
A=a b c
a 的单位: L· g-1· cm-1
当c的单位用mol· L-1表示时,用 表示.
-摩尔吸光系数 Molar Absorptivity
A= b c
的单位: L· mol-1· cm-1
20
15.1.3 光吸收基本定律:朗伯-比尔定律
朗伯定律:(1760)
A=lg(I0/It)=k1b
当入射光的 ,吸光物质的c 一定时,溶 液的吸光度A与液层厚度b成正比. 比尔定律(1852)
A=lg(I0/It)=k2c
当入射光的 ,液层厚度b 一定时,溶液
的吸光度A与吸光物质的c成正比.
越大, 灵敏度越高: <104 为低灵敏度;
104~105 为中等灵敏度;
>105为高灵敏度.
27
Sandell(桑德尔)灵敏度 (S)
定义:截面积为1cm2的液层在一定波长或波段处, 测得吸光度为0.001时所含物质的量。 用S表示,单位:g· cm-2 A= bc=0.001 bc =0.001/
34
3.工作曲线不过原点
存在系统误 差: 吸收池不完 全一样; 参比溶液选 择不当等。
35
例1 邻二氮菲光度法测铁(Fe)=1.0mg/L, b=2cm , A=0.38 计算 、S 解: c(Fe)=1.0 mg/L=1.0×10-3/55.85 =1.8×10-5(mol· L-1)
=
32
(3)介质不均匀性引起的偏离 朗伯-比耳定律是建立在均匀、非散射基础 上的一般规律、如果介质不均匀,呈胶体、 乳浊、悬浮状态存在,则入射光除了被吸收 之外、还会有反射、散射作用。在这种情况 下,物质的吸光度比实际的吸光度大得多, 必然要导致对朗伯-比耳定律的偏离。
33
(二)化学因素 (1)溶液浓度过高引起的偏离 朗伯 - 比耳定律是建立在吸光质点之间没有相 互作用的前提下。但当溶液浓度较高时,吸光物 质的分子或离子间的平均距离减小,从而改变物 质对光的吸收能力,即改变物质的摩尔吸收系数。 浓度增加,相互作用增强,导致在高浓度范围内 摩尔吸收系数不恒定而使吸光度与浓度之间的线 性关系被破坏。 (2) 化学变化所引起的偏离 溶液中吸光物质常因解离、缔合、形成新的 化合物或在光照射下发生互变异构等,从而破坏 了平衡浓度与分析浓度之间的正比关系,也就破 坏了吸光度 A 与分析浓度之间的线性关系。产生 对朗伯-比耳定律的偏离。