2016年_全国III卷理科数学(原卷+答案)
2016年高考全国卷3理科数学试卷及答案解析word版
2016年普通高等学校招生全国统一考试全国卷3理科数学试卷及答案为大家公布还给大家带来了方便浏览的word版下载下面给大家分享有趣的数学题在封闭的直三棱柱abca1b1c1内有一个体积为v的球若abbcab6bc8aa13则v的最大值是多少呢你知道答案了吗快点击这里核对答案下吧
2016年高考全国卷3理科数学试卷及答案解析word版
2016年高考真题:理科数学试题(全国III卷word文档含答案)
2016年普通高等学校招生全国统一考试理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合S ={}{}(x 2)(x 3)0,T 0S x x x =--≥=I >P ,则S I T =(A) [2,3] (B)(-∞ ,2]U [3,+∞)(C) [3,+∞) (D)(0,2]U [3,+∞)(2)若z=1+2i ,则41i zz =-(A)1 (B) -1 (C) i (D)-i(3)已知向量1(,22BA =uu v ,1(),22BC =uu u v 则∠ABC= (A)300 (B) 450 (C) 600 (D)1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。
图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为50C 。
下面叙述不正确的是学.科.网(A) 各月的平均最低气温都在00C 以上(B) 七月的平均温差比一月的平均温差大(C) 三月和十一月的平均最高气温基本相同(D) 平均气温高于200C 的月份有5个(5)若3tan 4α= ,则2cos 2sin 2αα+= (A)6425 (B) 4825 (C) 1 (D)1625(6)已知432a =,344b =,1325c =,则(A )b a c << (B )a b c <<(C )b c a <<(D )c a b <<(7)执行下图的程序框图,如果输入的a =4,b =6,那么输出的n =(A )3(B )4(C )5(D )6(8)在ABC △中,π4B =,BC 边上的高等于13BC ,则cos A =(A (B (C )- (D )- (9)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,学.科.网则该多面体的表面积为(A )18+(B )54+(C )90(D )81(10) 在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是(A )4π (B )92π (C )6π (D )323π (11)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为(A )13 (B )12 (C )23(D )34 (12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,k a a a 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有(A )18个 (B )16个 (C )14个 (D )12个第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)若x ,y 满足约束条件错误!未找到引用源。
2016全国高考理科数学试题与答案-全国卷3
绝密★启封并使用完毕前试题类型:2016年普通高等学校招生全国统一考试理科数学注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效.4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合S ={}{}(x 2)(x 3)0,T 0S x x x =--≥=I > ,则ST =(A) [2,3] (B)(-∞ ,2] [3,+∞) (C) [3,+∞) (D)(0,2] [3,+∞)(2)若z=1+2i ,则41izz =- (A)1 (B) -1 (C) i (D)-i(3)已知向量1(2BA = ,31(),2BC = 则∠ABC= (A)300 (B) 450 (C) 600 (D)1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。
图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为50C 。
下面叙述不正确的是(A) 各月的平均最低气温都在00C 以上(B) 七月的平均温差比一月的平均温差大 (C) 三月和十一月的平均最高气温基本相同 (D) 平均气温高于200C 的月份有5个 (5)若3tan 4α=,则2cos 2sin 2αα+= (A)6425 (B) 4825 (C) 1 (D)1625(6)已知432a =,344b =,1325c =,则(A )b a c << (B )a b c <<(C )b c a <<(D )c a b << (7)执行下图的程序框图,如果输入的a =4,b =6,那么输出的n =(A )3 (B )4 (C )5 (D )6(8)在ABC △中,π4B,BC 边上的高等于13BC ,则cos A(A )310 (B )10(C )10(D )310(9)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A )185+(B )54185+ (C )90 (D )81 (10)在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是 (A )4π (B )92π(C )6π (D )323π(11)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为 (A )13(B )12(C )23(D )34(12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,k a a a 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有(A )18个(B )16个(C )14个(D )12个第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共3小题,每小题5分(13)若x ,y 满足约束条件 则z=x+y 的最大值为_____________.(14)函数的图像可由函数的图像至少向右平移_____________个单位长度得到。
2016全国三卷理科数学高考真题及答案(可编辑修改word版)
2 3 2016 年普通高等学校招生全国统一考试理科数学一. 选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合 S = S = {x P (x - 2)(x - 3) ≥ 0}, T = {x I x > 0} (A) [2,3] (B)(- ∞ ,则 S I ,2] U T =[3,+ ∞ ) (C) [3,+ ∞ ) (D)(0,2] U 4i [3,+ ∞ )(2)若 z=1+2i ,则=zz -1(A)1(B) -1(C) i(D)-iu u v 1 u u u v 1 (3) 已知向量 BA = ( , ) 2 2, BC = ( , ), 2 2 则∠ ABC=(A)300 (B) 450 (C) 600 (D)1200(4) 某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。
图中 A 点表示十月的平均最高气温约为 150C ,B 点表示四月的平均最低气温约为 50C 。
下面叙述不正确的是(A) 各月的平均最低气温都在 00C 以上 (B) 七月的平均温差比一月的平均温差大 (C) 三月和十一月的平均最高气温基本相同 (D) 平均气温高于 200C 的月份有 5 个(5) 若tan= 4,则cos 2+ 2 sin 2=(A)64254(B)48 2531(C) 1(D)16 25(6)已知 a = 23 , b = 44 , c = 253 ,则(A ) b < a < c (B ) a < b < c (C ) b < c < a (D ) c < a < b(7) 执行下图的程序框图,如果输入的 a =4,b =6,那么输出的 n =(A )3 (B )4 (C )5 (D )63x ‒ 2y ≪ 0 x + 2y ‒ 2 ≪ 0则 z=x+y 的最大值为.(8) 在△ABC 中, B =π,BC 边上的高等于 1BC ,则cos A =(A )3 10 10 43(B ) 10 10 (C )- 10 10(D )-3 10 10 (9) 如图,网格纸上小正方形的边长为 1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A )18 + 36(B ) 54 +18 (C )90 (D )81(10) 在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球,若AB⊥ BC ,AB =6,BC =8,AA 1=3,则 V 的最大值是9( A ) 4π ( B )( C ) 6π2(D )323x 2 + y 2=> >(11) 已知 O 为坐标原点,F是椭圆 C : a 2b 21(a b0) 的左焦点,A ,B 分别为 C 的左,右顶点.P 为 C上一点,且 PF ⊥x 轴.过点 A 的直线 l 与线段 PF 交于点 M ,与 y 轴交于点 E .若直线 BM 经过 OE 的中点,则 C 的离心率为 1 1 2 3 (A )(B ) (C )(D )3234(12) 定义“规范 01 数列”{a n }如下:{a n }共有 2m 项,其中 m 项为 0,m 项为 1,且对任意 k ≤ 2m , a 1 , a 2 , , a k中 0 的个数不少于 1 的个数.若 m =4,则不同的“规范 01 数列”共有 (A )18 个 (B )16 个 (C )14 个 (D )12 个二、填空题:本大题共 3 小题,每小题 5 分{x ‒ y + 1 ≥ 0(14)函数y = sin x ‒ 3cos x 的图像可由函数度得到。
2016年高考理科数学全国卷3(含答案解析)
绝密★启用前2016年普通高等学校招生全国统一考试(全国新课标卷3)理科数学使用地区:广西、云南、贵州注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共6页.2. 答题前,考生务必在答题卡上用直径0.5毫米的黑色字迹签字笔将自己的姓名、准考证号填写清楚.再贴好条形码,请认真核准条形码上的准考证号、姓名和科目.3. 答第Ⅰ卷时,选出每题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.答在本试卷上无效.4. 答第Ⅱ卷时,请用直径0.5毫米的黑色字迹签字笔在答题卡上各题的答题区域内作答.答在本试卷上无效.5. 第22、23、24小题为选考题,请按题目要求任选其中一题作答.要用2B 铅笔在答题卡上把所选题目题号后的方框涂黑.6. 考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合{|(2)(3)0}S x x x =--≥,{}0Tx x =>,则S T = ( )A. []2,3B. (,2][3,)-∞+∞C. [3,)+∞D. (0,2][3,)+∞2.若12i z =+,则4i1zz =- ( )A. 1B. 1-C. iD. i -3.已知向量1331()()2222BA BC ==,,,,则ABC ∠=( )A. 30°B. 45°C. 60°D. 120°4. 某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15℃,B 点表示四月的平均最低气温约为5℃.下面叙述不正确的是( )----平均最低气温——平均最高气温A. 各月的平均最低气温都在0℃以上B. 七月的平均温差比一月的平均温差大C. 三月和十一月的平均最高气温基本相同D. 平均最高气温高于20℃的月份有5个5. 若3tan 4α=,则2cos 2sin 2αα+=( )A. 6425B.4825 C. 1D. 16256. 已知432a =,254b =,1325c =,则( )A. b a c <<B. a b c <<C. b c a <<D. c a b <<7. 执行如图的程序框图,如果输入的4a =,6b =,那么输出的n =( )A. 3B. 4C. 5D. 68. 在ABC △中,4B π=,BC 边上的高等于13BC ,则cos A = ( )A. 10310B.1010C. 1010-D. 31010-9. 如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )A. 18365+B. 54185+C. 90D. 8110. 在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球.若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是( )A. 4πB.92π C. 6πD. 323π11. 已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左、右顶点,P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )A. 13 B.12 C. 23D. 3412. 定义“规范01数列”{}n a 如下:{}n a 共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,123,,......k a a a a 中0的个数不少于1的个数.若4m =,则不同的“规范01数列”共有( )A. 18个B. 16个--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无----------------效----------------姓名________________ 准考证号_____________C. 14个D. 12个第Ⅱ卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答. 二、填空题:本题共4小题,每小题5分.13. 若x ,y 满足约束条件10,20,220,x y x y x y -+⎧⎪-⎨⎪+-⎩≥≤≤则z x y =+的最大值为______.14. 函数sin y x x =的图象可由函数sin y x x =的图象至少向右平移______个单位长度得到.15. 已知()f x 为偶函数,当0x <时,()ln()3f x x x =-+,则曲线()y f x =在点(1,3)-处的切线方程式是______. 16. 已知直线30l mx y m ++=:与圆2212x y +=交于,A B 两点,过,A B 分别作l的垂线与x 轴交于,C D两点,若||AB =,则||CD =______. 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知数列{}n a 前n 项和1n n S a λ=+,其中0λ≠. (Ⅰ)证明{}n a 是等比数列,并求其通项公式; (Ⅱ)若53132S =,求λ.18.(本小题满分12分)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.注:年份代码1~7分别对应年份2008—2014.(Ⅰ)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (Ⅱ)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化 处理量.附注:参考数据:719.32i i y ==∑,7140.17i i i t y ==∑0.552.646≈.参考公式:相关系数1()()nii i tt y y r =--=∑ 回归方程y a bt =+中斜率和截距的最小二乘估计公式分别为b =121()()()nii i nii tt y y tt ==---∑∑,a y bt =-.19.(本小题满分12分)如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,AD BC ∥,3AB AD AC ===,4PA BC ==,M 为线段AD 上一点,2AM MD =,N 为PC 的中点. (Ⅰ)证明:MN ∥平面PAB ;(Ⅱ)求直线AN 与平面PMN 所成角的正弦值.20.(本小题满分12分)已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于,A B 两点,交C 的准线于P Q ,两点.(Ⅰ)若F 在线段AB 上,R 是PQ 的中点,证明AR FQ ∥; (Ⅱ)若PQF △的面积是ABF △的面积的两倍,求AB 中点的轨迹方程.21.(本小题满分12分)设函数()cos2(1)(cos 1)f x x x αα=+-+,其中0α>,记|()|f x 的最大值为A . (Ⅰ)求()f x ';(Ⅱ)求A ; (Ⅲ)证明:()2f x A '≤.请考生在第22、23、24题中任选一题作答,作答时用2B 铅笔在答题卡上把所选题目题号后的方框涂黑.如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4—1:几何证明选讲如图,O 中AB 的中点为P ,弦PC PD ,分别交AB 于E F ,两点. (Ⅰ)若2PFB PCD ∠=∠,求PCD ∠的大小;(Ⅱ)若EC 的垂直平分线与FD 的垂直平分线交于点G ,证明:OG CD ⊥.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为,sin ,x y αα⎧⎪⎨=⎪⎩(α为参数),以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为sin()4ρθπ+= (Ⅰ)写出1C 的普通方程和2C 的直角坐标方程;(Ⅱ)设点P 在1C 上,点Q 在2C 上,求||PQ 的最小值及此时P 的直角坐标.24.(本小题满分10分)选修4—5:不等式选讲 已知函数()|2|f x x a a =-+. (Ⅰ)当2a=时,求不等式()6f x ≤的解集;(Ⅱ)设函数()|21|g x x =-.当x ∈R 时,()()3f x g x +≥,求a 的取值范围.2016年普通高等学校招生全国统一考试(全国新课标卷3)理科数学答案解析第Ⅰ卷一、选择题 1.【答案】D【解析】易得(][),23,S =-∞+∞,(][)0,23,S T ∴=+∞.【考点】解一元二次不等式,交集 2.【答案】C【解析】易知12i z =-,故14zz -=,4ii 1zz ∴=-. 【考点】共轭复数,复数运算 3.【答案】A【解析一】32cos 11BA BC ABC BA BC ∠===⨯,30ABC ∴∠=.【解析二】可以B 点为坐标原点建立如图所示直角坐标系,易知60ABx ∠=,30CBx ∠=,30ABC ∴∠=.【考点】向量夹角的坐标运算4.【答案】D【解析】从图像中可以看出平均最高气温高于20C 的月份有七月、八月,六月为20C 左右,故最多3个. 【考点】统计图的识别 5.【答案】A【解析】22222cos 4sin cos 14tan 64cos 2sin 2cos sin 1tan 25ααααααααα+++===++. 【考点】二倍角公式,弦切互化,同角三角函数公式6.【答案】A【解析】423324a ==,233b =,1233255c ==,故c a b >>. 【考点】指数运算,幂函数性质 7.【答案】B【考点】程序框图 8.【答案】C【解析】如图所示,可设1BD AD ==,则AB =2DC =,AC ∴=知,cos A =.【考点】解三角形9.【答案】B【解析】由三视图可知该几何体是一个平行六面体,上下底面为俯视图的一半,各个侧面平行四边形,故表面积为2332362354⨯⨯+⨯⨯+⨯+. 【考点】三视图,多面体的表面积 10.【答案】B【解析】由题意知,当球为直三棱柱的内接球时,体积最大,选取过球心且平行于直三棱柱底面的截面,如图所示,则由切线长定理可知,内接圆的半径为2,又1322AA =<⨯,所以内接球的半径为32,即V 的最大值为349ππ32R =. 【考点】内接球半径的求法11.【答案】A【解析】易得ON OB aMF BF a c==+,2MF MF AF a c OE ON AO a -===,12a a c a c a c a a c --∴==++,13c e a ∴==.【考点】椭圆的性质,相似12.【答案】C【解析】011110111010111101001110011110110011101010111001111011001110101⎧⎧→⎧⎪⎪⎪→⎧⎪⎪⎪⎨⎪⎪⎪→⎧⎨⎪⎪⎪⎨⎪⎪→⎪⎪⎩⎩⎩⎪⎪⎧→⎪⎨⎧⎪⎪⎪⎪→⎧⎨⎪⎪⎪⎨⎪⎪⎪⎪→⎨⎩⎪⎩⎪⎨⎪→⎪⎧⎪⎪→⎨⎪⎪⎪→⎩⎩⎩⎪⎪⎧→⎧⎪⎪⎪→⎪⎧⎨⎪⎨⎪⎪⎪→→⎨⎩⎩⎪⎪⎪→⎧⎪⎪→⎨⎪→⎪⎩⎩⎩【考点】数列,树状图第Ⅱ卷二、填空题 13.【答案】32【解析】三条直线的交点分别为(2,1)--,11,2⎛⎫⎪⎝⎭,(0,1),代入目标函数可得3-,32,1,故最大值为32. 【考点】线性规划14.【答案】2π3【解析】sin 2sin 3y x x x π⎛⎫==- ⎪⎝⎭,sin 2sin 3y x x x π⎛⎫=+=+ ⎪⎝⎭,故可前者的图像可由后者向右平移2π3个单位长度得到.【考点】三角恒等变换,图像平移15.【答案】210x y ++=【解析一】11()33f x x x-'=+=+-,(1)2f '∴-=,(1)2f '∴=-,故切线方程为210x y ++=.【解析二】当0x >时,()()ln 3f x f x x x =-=-,1()3f x x'∴=-,(1)2f '∴=-,故切线方程为210x y ++=.【考点】奇偶性,导数,切线方程 16.【答案】3【解析】如图所示,作AE BD ⊥于E ,作OF AB ⊥于F,AB =OA =,3OF ∴=,即3=,m ∴=,∴直线l 的倾斜角为30,3CD AE ∴===.【考点】直线和圆,弦长公式 三、解答题17.【答案】(Ⅰ)1n n S a λ=+,0λ≠,0n a ∴≠,当2n ≥时,11111n n n n n n n a S S a a a a λλλλ---=-=+--=-,即1(1)n n a a λλ--=,0λ≠,0n a ≠,10λ∴-≠,即1λ≠,即11n n a a λλ-=-,(2)n ≥,{}n a ∴是等比数列,公比1q λλ=-,当1n =时,1111S a a λ=+=,即111a λ=-,1111n n a λλλ-⎛⎫∴= ⎪--⎝⎭;(Ⅱ)若53132S =,则555111131113211S λλλλλλλ⎡⎤⎛⎫-⎢⎥ ⎪--⎝⎭⎢⎥⎛⎫⎣⎦==-= ⎪-⎝⎭--,1λ∴=-. 【考点】等比数列的证明,由n S 求通项,等比数列的性质18.【答案】(Ⅰ)由题意得123456747t ++++++==,71 1.3317i i y y ==≈∑,7()()0.99nii i itt y y t ynt yr ---===≈∑∑,因为y与t 的相关系数近似为0.99,说明y 与t 的线性相关程度相当高,从而可以用线性回归方程来拟合y 与t 的关系; (Ⅱ)121()()2.890.10328()nii i ni i tt y y b t t ==--==≈-∑∑, 1.330.10340.92a y bt =-=-⨯≈,所以y 关于t 的线性回归方程为0.920.10y a bt t =+=+,将9t =代入回归方程可得, 1.82y =,预测2016年我国生活垃圾无害化处理量将约为1.82亿吨.【考点】相关性分析,线性回归 19.【答案】(Ⅰ)由已知得223AM AD ==,取BP 的中点T ,连接AT ,TN ,由N 为PC 中点知TN BC ∥,122TN BC ==,又AD BC ∥,故TN 平行且等于AM ,四边形AMNT 为平行四边形,于是MN AT ∥,因为AT ⊂平面PAB ,MN ⊄平面PAB ,所以MN ∥平面PAB ;(Ⅱ)取BC 中点E ,连接AE ,则易知AE AD ⊥,又PA ⊥面ABCD ,故可以A 为坐标原点,以AE 为x 轴,以AD 为y 轴,以AP 为z 轴建立空间直角坐标系,则(0,0,0)A 、(0,0,4)P 、C 、N ⎫⎪⎪⎝⎭()0,2,0M,52AN ⎛⎫∴= ⎪ ⎪⎝⎭,(0,2,4)PM =-,22PN N ⎛⎫=-⎪ ⎪⎝⎭,故平面PMN 的法向量(0,2,1)n =,4cos ,52AN n ∴<>==,∴直线AN 与平面PMN 所成角的正弦值为25.【考点】线面平行证明,线面角的计算20.【答案】(Ⅰ)由题设1,02F ⎛⎫⎪⎝⎭,设1:l y a =,2:l y b =,则0ab ≠,且2,2a A a ⎛⎫ ⎪⎝⎭,2,2b B b ⎛⎫ ⎪⎝⎭,1,2P a ⎛⎫- ⎪⎝⎭,1,2Q b ⎛⎫- ⎪⎝⎭,1,22a b R +⎛⎫- ⎪⎝⎭,记过A ,B 两点的直线为l ,则l 的方程为2()0x a b y ab -++=,由于F 在线段AB 上,故10ab +=,记AR 的斜率为1k ,FQ 的斜率为2k ,则122211a b a b abk b k a a ab a a---=====-=+-,所以AR FQ ∥; (Ⅱ)设l 与x 轴的交点为1(,0)D x ,则1111222ABF S b a FD b a x ∆=-=--,2PQF a bS ∆-=,由题设可得111222a b b a x ---=,所以10x =(舍去),11x =,设满足条件的AB 的中点为(,)E x y ,当AB 与x 轴不垂直时,由AB DE k k =可得2(1)1y x a b x =≠+-,而2a by +=,所以21(1)y x x =-≠,当AB 与x 轴垂直时,E 与D 重合,所以,所求轨迹方程为21y x =-. 【考点】抛物线,轨迹方程21.【答案】(Ⅰ)()2sin 2(1)sin f x a x a x '=---;(Ⅱ)当1a ≥时,|()||cos2(1)(cos 1)|2(1)32(0)f x a x a x a a a f =+-+≤+-=-=,因此,32A a =-,当01a <<时,将()f x 变形为2()2cos (1)cos 1f x a x a x =+--,令2()2(1)1g t at a t =+--,则A 是|()|g t 在[1,1]-上的最大值,(1)g a -=,(1)32g a =-,且当14a t a -=时,()g t 取得极小值,极小值为221(1)611488a a a a g a a a --++⎛⎫=--=- ⎪⎝⎭,令1114a a --<<,解得13a <-(舍去),15a >. ①当105a <≤时,()g t 在(1,1)-内无极值点,|(1)|g a -=,|(1)|23g a =-,|(1)||(1)|g g -<,所以23A a =-; ②当115a <<时,由(1)(1)2(1)0g g a --=->,知1(1)(1)()4ag g g a-->>; 又1(1)(17)|(1)|048a a a g g a a --+⎛⎫--=> ⎪⎝⎭,所以216148a a a A g a a -++⎛⎫==⎪⎝⎭, 综上,2123,05611,18532,1a a a a A a a a a ⎧-<≤⎪⎪++⎪=<<⎨⎪-≥⎪⎪⎩(Ⅲ)由(Ⅰ)得|()||2sin 2(1)sin |2|1|f x a x a x a a '=---≤+-,当105a <≤时,|()|1242(23)2f x a a a A '≤+≤-<-=,当115a <<时,131884a A a =++≥, 所以|()|12f x a A '≤+<,当1a ≥时,|()|31642f x a a A '≤-≤-=,所以|()|2f x A '≤. 【考点】导函数讨论单调性,不等式证明22.【答案】(Ⅰ)连结PB ,BC ,则BFD PBA BPD ∠=∠+∠,PCD PCB BCD ∠=∠+∠,因为AP BP =,所以PBA PCB ∠=∠,又BPD BCD ∠=∠,所以BFD PCD ∠=∠,又180PFD BFD ∠+∠=,2PFB PCD ∠=∠,所以3180PCD ∠=,因此60PCD ∠=;(Ⅱ)因为PCD BFD ∠=∠,所以180PCD EFD ∠+∠=,由此知C ,D ,F ,E 四点共圆,其圆心既在CE 的垂直平分线上,又在DF 的垂直平分线上,故G 就是过C ,D ,F ,E 四点的圆的圆心,所以G 在CD 的垂直平分线上,因此OG CD ⊥. 【考点】几何证明23.【答案】(Ⅰ)1C 的普通方程为2213x y +=,2C 的直角坐标方程为40x y +-=;(Ⅱ)由题意,可设点P 的直角坐标为,sin )αα,因为2C 是直线,所以||PQ 的最小值,即为P 到2C 的距离()d α的最小值,()sin()2|3d παα==+-,当且仅当π2π()6k k Z α=+∈时,()d α,此时P 的直角坐标为31,22⎛⎫⎪⎝⎭.【考点】坐标系与参数方程24.【答案】(Ⅰ)当2a =时,()|22|2f x x =-+,解不等式|22|26x -+≤,得13x -≤≤,因此,()6f x ≤的解集为{|13}x x -≤≤;(Ⅱ)当x R ∈时,()()|2||12||212||1|f x g x x a a x x a x a a a +=-++-≥-+-+=-+,当12x =时等号成立,所以当x R ∈时,()()3f x g x +≥等价于|1|3a a -+≥①. 当1a ≤时,①等价于13a a -+≥,无解;当1a >时,①等价于13a a -+≥,解得2a ≥; 所以a 的取值范围是[2,)+∞. 【考点】不等式。
2016年高考理科数学试题(全国卷III)(高清图形)
2016年普通高等学校招生全国统一考试理科数学注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设集合{}{}|(2)(3)0,|0S x x x T x x =--≥=> ,则S I T =(A)[2,3] (B)(,2][3,)-∞+∞ (C)[3,)+∞ (D)(0,2][3,)+∞(2)若z=1+2i ,则41izz =- (A)1 (B) -1 (C) i (D)-i(3)已知向量12(,)22BA =uu v ,31(,),22BC =uu u v 则∠ABC=(A)30° (B) 45° (C) 60° (D)120° (4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。
图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为50C 。
下面叙述不正确的是学.科.网(A) 各月的平均最低气温都在00C 以上(B) 七月的平均温差比一月的平均温差大(C) 三月和十一月的平均最高气温基本相同 (D) 平均气温高于200C 的月份有5个(5)若3tan 4α= ,则2cos 2sin 2αα+= (A)6425 (B) 4825 (C) 1 (D)1625(6)已知432a =,344b =,1325c =,则(A )b a c << (B )a b c <<(C )b c a <<(D )c a b <<平均最高气温平均最低气温20°C15°C10°C5°C 十二月十一月十月九月八月七月六月五月四月三月二月一月O BA(7)执行下图的程序框图,如果输入的a =4,b =6,那么输出的n =(A )3 (B )4 (C )5 (D )6(8)在ABC △中,π4B =,BC 边上的高等于13BC ,则cos A = (A )31010 (B )1010 (C )1010- (D )31010-(9)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A )18365+ (B )54185+ (C )90 (D )81(10) 在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是(A )4π (B )92π (C )6π (D )323π(11)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b +=>>的左焦点,A ,B 分别为C 的左,右顶点P 为C 上一点,且PF ⊥x 轴过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E ,若直线BM 经过OE 的中点,则C 的离心率为(A )13 (B )12 (C )23 (D )34(12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,k a a a 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有 (A )18个(B )16个(C )14个 (D )12个第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答,第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共3小题,每小题5分(13)若x ,y 满足约束条件1020220x y x y x y -+≥⎧⎪-≤⎨⎪+-≤⎩,则z x y =+的最大值为_____________.(14)函数s i n 3c o s y x x =-图像可由函数s i n 3c o sy x x =+的图像至少向右平移_____________个单位长度得到。
2016年全国卷3理科数学试题及参考标准答案(WORD版)
AB
2 , DC 2 , AC
5 ,由余弦定理知, cos A
259 2 2 5
10 10
【考点】解三角形 (9)如图,网格纸上小正方形的边长为 1,粗实线画出的是某多面体的三视图, 则该多面体的表面积为
A. 18 36 5 B. 54 18 5 C. 90 D. 81 【答案】B 【解析】由三视图可知该几何体是一个平行六面体,上下底面为俯视图的一 半,各个侧面平行四边形,故表面积为
2 3 3 2 3 6 2 3 9 36 54 18 5
【考点】三视图、多面体的表面积
(10)在封闭的直三棱柱 ABC-A1B1C1 内有一个体积为 V 的球.若 AB⊥BC,AB=6,BC=8,AA1=3,则 V 的最大
值是
A.
4π
B.
9π 2
C. 6π
D.
32π 3
10
【答案】B 6
(5)若
tan
3 4
,则 cos2
2sin 2
A.
64 25
B.
48 25
C. 1
16
D.
25
【答案】A
【解析】 cos2
2sin 2
cos2 4sin cos cos2 sin2
1 1
4 tan tan2
64 25
【考点】二倍角公式、弦切互化、同角三角函数公式
4
2
1
(6)已知 a 23 , b 33 , c 253 ,则
A. 各月的平均最低气温都在 0 C 以上 B. 七月的平均温差比一月的平均温差大 C. 三月和十一月的平均最高气温基本相同 D. 平均最高气温高于 20 C 的月份有5个 【答案】D 【解析】从图像中可以看出平均最高气温高于 20 C 的月份有七月、八
2016年全国高考理科数学试题与答案_全国卷3
(D)
(2)若 z=1+2i ,则 4i zz 1
(A)1
(B) -1
(C) i
(D)-i
( - ,2] U [3,+ ) ( 0, 2] U [3,+ )
uuv (3)已知向量 BA
1 (,
2) ,
uuuv BC
(
31 , ),
则
ABC=
22
22
(A)30 0
(B) 45
0
(C) 60
0
(D)120
(A)4π
( B) 9 2
x2 (11)已知 O 为坐标原点, F 是椭圆 C: a2
( C)6π
( D) 32 3
y2 b2 1(a b 0) 的左焦点, A, B 分别为 C
的左, 右顶点 . P为 C上一点, 且 PF⊥ x 轴. 过点 A的直线 l 与线段 PF交于点 M,与 y 轴交于
点 E. 若直线 BM经过 OE的中点,则 C的离心率为
理量。
(19)(本小题满分 12 分) 如图,四棱锥 P-ABCD中, PA⊥地面 ABCD,AD∥BC,AB=AD=A=C3, PA=BC=4, M为线段 AD上 一点, AM=2MD, N为 PC的中点 . (I )证明 MN∥平面 PAB; (II )求直线 AN与平面 PMN所成角的正弦值 .
绝密★启封并使用完毕前
试题类型:
2016 年普通高等学校招生全国统一考试
理科数学
注意事项:
1. 本试卷分第Ⅰ卷 ( 选择题 ) 和第Ⅱ卷 ( 非选择题 ) 两部分 . 第Ⅰ卷 1 至 3 页,第Ⅱ卷 3 至
5 页.
2. 答题前,考生务必将自己的、准考证号填写在本试题相应的位置
最新2016年全国3卷理科数学试题及答案解析
(I)证明 平面 ;
(II)求直线 与平面 所成角的正弦值.
【答案】(Ⅰ)见解析;(Ⅱ) .
【解析】
试题分析:(Ⅰ)取 的中点 ,然后结合条件中的数据证明四边形 为平行四边形,从而得到 ,由此结合线面平行的判断定理可证;(Ⅱ)以 为坐标原点,以 所在直线分别为 轴建立空间直角坐标系,然后通过求直线 的方向向量与平面 法向量的夹角来处理 与平面 所成角.
(A) (B) (C)90(D)81
【答案】B
(10) 在封闭的直三棱柱 内有一个体积为 的球,若 , , , ,则 的最大值是( )
(A)4π (B) (C)6π (D)
【答案】B
【解析】
试题分析:要使球的体积 最大,必须球的半径 最大.由题意知球的与直三棱柱的上下底面都相切时,球的半径取得最大值 ,此时球的体积为 ,故选B.
解得 .
(18)(本小题满分12分)
下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图
( )由折线图看出,可用线性回归模型拟合 与 的关系,请用相关系数加以说明;
( )建立 关于 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.
附注:
参考数据: , , , ≈2.646.
【答案】
(15)已知 为偶函数,当 时, ,则曲线 在点 处的切线方程是_______________.
【答案】
【解析】
试题分析:当 时, ,则 .又因为 为偶函数,所以 ,所以 ,则切线斜率为 ,所以切线方程为 ,即 .
(16)已知直线 : 与圆 交于 两点,过 分别做 的垂线与 轴交于 两点,若 ,则 __________________.
2016年高考理科数学全国3卷(附答案)
学校:____________________ _______年_______班 姓名:____________________ 学号:________- - - - — - - - 密封线 - — — - — — - — — 密封线 — - - - - - —绝密★启用前2016年普通高等学校招生全国统一考试理科数学 全国III 卷(全卷共10页)(适用地区:广西、云南、四川)注意事项:1.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
2.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
3.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答案卡一并交回。
第I 卷一、 选择题:本题共12小题,每小题5分.在每个小题给出的四个选项中, 只有一项是符合题目要求的。
(1)设集合{}{}(x 2)(x 3)0,T 0Sx x x =--≥=I > ,则ST = (A ) [2,3] (B )(-∞,2] [3,+∞)(C) [3,+∞) (D)(0,2] [3,+∞)(2)若z=1+2i ,则41izz =- (A)1 (B) -1 (C ) i (D ) -i(3)已知向量13(,)22BA = ,31(,),22BC = 则∠ABC=(A)300 (B) 450 (C) 600 (D )1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。
图中A 点表示十月的平均最高气温约为150C,B 点表示四月的平均最低气温约为50C 。
下面叙述不正确的是(A) 各月的平均最低气温都在00C 以上 (B) 七月的平均温差比一月的平均温差大 (C) 三月和十一月的平均最高气温基本相同 (D) 平均气温高于200C 的月份有5个(5)若3tan 4α= ,则2cos 2sin 2αα+=(A )6425 (B) 4825 (C) 1 (D)1625(6)已知432a =,254b =,1325c =,则(A ) b a c << (B) a b c << (C )b c a << (D )c a b <<(7)执行下图的程序框图,如果输入的46a b ==,,那么输出的n =(A )3 (B )4 (C )5 (D )6(8)在ABC △中,π4B,BC 边上的高等于13BC ,则cos A(A )31010 (B )1010 (C )1010(D )31010(9) 如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A )18365+ (B )54185+(C )90 (D )81(10) 在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是(A )4π (B )92π (C )6π (D )323π(11) 已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为 (A )13(B )12(C )23(D )34(12) 定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,k a a a 中0的个数不少于1的个数.若m =4,则不同的“规范01数列"共有 第Ⅱ卷本卷包括必考题和选考题两部分.第(13)~(21)题为必考题,每个试题都必须作答。
2016全国三卷理科数学高考真题及答案
2016年普通高等学校招生全国统一考试理科数学一. 选择题:本大题共12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合S= S x P(x 2)(x 3) 0 ,T x x 0 ,则S I T=(A) [2 ,3] (B) (- ,2] U [3,+ )(C) [3,+ )(D) (0,2] U [3,+ )(2)若z=1+2i ,则 4izz1(A)1 (B) -1 (C) i (D)-i(3)已知向量u uvBA1 2( , )2 2,u u u vBC3 1( , ),2 2则ABC=(A)30 0(B) 450 (C) 600 (D)1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。
图中A 点表示十月的平均最高气温约为150C,B 点表示四月的平均最低气温约为50C。
下面叙述不正确的是(A) 各月的平均最低气温都在00C 以上(B) 七月的平均温差比一月的平均温差大(C) 三月和十一月的平均最高气温基本相同(D) 平均气温高于200C 的月份有 5 个(5)若tan 34,则 2cos 2sin 2(A) 6425(B)4825(C) 1 (D)16254 3 1(6)已知 3a 2 ,4b 4 ,3c 25 ,则(A )b a c (B)a b c(C)b c a(D)c a b(7)执行下图的程序框图,如果输入的a=4,b=6,那么输出的n=(A )3(B)4(C)5(D)61(8)在△ABC 中,πB = ,BC 边上的高等于4 13BC ,则cos A =(A)31010(B)1010(C)10- (D)10-3 1010(9) 如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A )18 36 5(B)54 18 5(C)90(D)81(10) 在封闭的直三棱柱ABC -A1B1C1 内有一个体积为V 的球,若AB BC,AB=6,BC=8,AA 1=3,则V 的最大值是(A )4π(B)92 ( C )6π(D)32 3(11)已知O 为坐标原点, F 是椭圆C:2 2x y2 2 1(a b 0)a b的左焦点,A,B 分别为 C 的左,右顶点.P 为C 上一点,且PF⊥x 轴.过点A 的直线l 与线段PF 交于点M,与y 轴交于点 E.若直线BM 经过OE 的中点,则C 的离心率为(A )13(B)12(C)23(D)34(12)定义“规范01 数列”{a n} 如下:{a n} 共有2m 项,其中m 项为0,m 项为1,且对任意k 2m,a a a 1, 2, , k中0 的个数不少于 1 的个数.若m=4,则不同的“规范01 数列”共有(A )18 个(B)16 个(C)14 个(D)12 个二、填空题:本大题共 3 小题,每小题 5 分(13)若x,y 满足约束条件错误!未找到引用源。
2016年高考理科数学全国卷3(含详细答案)
绝密★启用前2016年普通高等学校招生全国统一考试(全国新课标卷3)理科数学使用地区:广西、云南、贵州注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共6页.2. 答题前,考生务必在答题卡上用直径0.5毫米的黑色字迹签字笔将自己的姓名、准考证号填写清楚.再贴好条形码,请认真核准条形码上的准考证号、姓名和科目.3. 答第Ⅰ卷时,选出每题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.答在本试卷上无效.4. 答第Ⅱ卷时,请用直径0.5毫米的黑色字迹签字笔在答题卡上各题的答题区域内作答.答在本试卷上无效.5. 第22、23、24小题为选考题,请按题目要求任选其中一题作答.要用2B 铅笔在答题卡上把所选题目题号后的方框涂黑.6. 考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合{|(2)(3)0}S x x x =--≥,{}0Tx x =>,则S T = ( )A. []2,3B. (,2][3,)-∞+∞C. [3,)+∞D. (0,2][3,)+∞2.若12i z =+,则4i1zz =- ( )A. 1B. 1-C. iD. i -3.已知向量1331()()2222BA BC ==,,,,则ABC ∠=( )A. 30°B. 45°C. 60°D. 120°4. 某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15℃,B 点表示四月的平均最低气温约为5℃.下面叙述不正确的是( )----平均最低气温——平均最高气温A. 各月的平均最低气温都在0℃以上B. 七月的平均温差比一月的平均温差大C. 三月和十一月的平均最高气温基本相同D. 平均最高气温高于20℃的月份有5个5. 若3tan 4α=,则2cos 2sin 2αα+=( )A. 6425B.4825 C. 1D. 16256. 已知432a =,254b =,1325c =,则( )A. b a c <<B. a b c <<C. b c a <<D. c a b <<7. 执行如图的程序框图,如果输入的4a =,6b =,那么输出的n =( )A. 3B. 4C. 5D. 68. 在ABC △中,4B π=,BC 边上的高等于13BC ,则cos A = ( )A. 10310B. 1010C. 1010-D. 31010-9. 如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )A. 18365+B. 54185+C. 90D. 8110. 在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球.若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是( )A. 4πB.92π C. 6πD. 323π11. 已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左、右顶点,P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )A. 13 B.12 C. 23D. 3412. 定义“规范01数列”{}n a 如下:{}n a 共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,123,,......k a a a a 中0的个数不少于1的个数.若4m =,则不同的“规范01数列”共有( )A. 18个B. 16个--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无----------------效----------------姓名________________ 准考证号_____________C. 14个D. 12个第Ⅱ卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答. 二、填空题:本题共4小题,每小题5分.13. 若x ,y 满足约束条件10,20,220,x y x y x y -+⎧⎪-⎨⎪+-⎩≥≤≤则z x y =+的最大值为______.14. 函数sin y x x =-的图象可由函数sin y x x =+的图象至少向右平移______个单位长度得到.15. 已知()f x 为偶函数,当0x <时,()ln()3f x x x =-+,则曲线()y f x =在点(1,3)-处的切线方程式是______. 16. 已知直线30l mx y m ++:与圆2212x y +=交于,A B 两点,过,A B 分别作l的垂线与x 轴交于,C D两点,若||AB =||CD =______. 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知数列{}n a 前n 项和1n n S a λ=+,其中0λ≠. (Ⅰ)证明{}n a 是等比数列,并求其通项公式; (Ⅱ)若53132S =,求λ.18.(本小题满分12分)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.注:年份代码1~7分别对应年份2008—2014.(Ⅰ)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (Ⅱ)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化 处理量.附注:参考数据:719.32i i y ==∑,7140.17i i i t y ==∑0.55=2.646≈.参考公式:相关系数()()nii tt y y r --=∑ 回归方程y a bt =+中斜率和截距的最小二乘估计公式分别为b =121()()()nii i nii tt y y tt ==---∑∑,a y bt =-.19.(本小题满分12分)如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,AD BC ∥,3AB AD AC ===,4PA BC ==,M 为线段AD 上一点,2AM MD =,N 为PC 的中点. (Ⅰ)证明:MN ∥平面PAB ;(Ⅱ)求直线AN 与平面PMN 所成角的正弦值.20.(本小题满分12分)已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于,A B 两点,交C 的准线于P Q ,两点.(Ⅰ)若F 在线段AB 上,R 是PQ 的中点,证明AR FQ ∥;(Ⅱ)若PQF △的面积是ABF △的面积的两倍,求AB 中点的轨迹方程.21.(本小题满分12分)设函数()cos2(1)(cos 1)f x x x αα=+-+,其中0α>,记|()|f x 的最大值为A . (Ⅰ)求()f x ';(Ⅱ)求A ; (Ⅲ)证明:()2f x A '≤.请考生在第22、23、24题中任选一题作答,作答时用2B 铅笔在答题卡上把所选题目题号后的方框涂黑.如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4—1:几何证明选讲如图,O 中AB 的中点为P ,弦PC PD ,分别交AB 于E F ,两点. (Ⅰ)若2PFB PCD ∠=∠,求PCD ∠的大小;(Ⅱ)若EC 的垂直平分线与FD 的垂直平分线交于点G ,证明:OG CD ⊥.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为,sin ,x y αα⎧⎪⎨=⎪⎩(α为参数),以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为sin()4ρθπ+=(Ⅰ)写出1C 的普通方程和2C 的直角坐标方程;(Ⅱ)设点P 在1C 上,点Q 在2C 上,求||PQ 的最小值及此时P 的直角坐标.24.(本小题满分10分)选修4—5:不等式选讲 已知函数()|2|f x x a a =-+.(Ⅰ)当2a =时,求不等式()6f x ≤的解集;(Ⅱ)设函数()|21|g x x =-.当x ∈R 时,()()3f x g x +≥,求a的取值范围.][)3,+∞,(][)0,23,S T=+∞.【考点】解一元二次不等式,交集,故1zz-=4ii1zz∴=-.3211BA BC BA BC =⨯30.点为坐标原点建立如图所示直角坐标系,易知60ABx∠,30CBx∠,30.【考点】向量夹角的坐标运算从图像中可以看出平均最高气温高于20C的月份有七月、20C左右,数学试卷第10页(共27页)数学试卷第11页(共27页)a c a c a a --=+【解析】sin y x =者向右平移2π3个单位长度得到.【考点】三角恒等变换,图像平移【答案】2x y ++【解析一】()f x '=,2AB =数学试卷第16页(共27页)数学试卷第17页(共27页) 30,CD ∴Ⅰ)1n S λ=+1n a -,0λ≠,a ,当1n =时,1S 11n λλλ-⎛⎫⎪-⎝⎭,则11S -=1-.(Ⅱ)11((ii ni tb ==-=∑∑ 1.33bt -=-0.92y a bt =+=+代入回归方程可得,y 处理量将约为1.82亿吨.【考点】相关性分析,线性回归(Ⅰ)由已知得平面PAB ;,又PA ⊥面52AN ⎛∴= ⎝,(0,2,PM =,PN N ⎛= ⎝的法向量(0,2,1)n =,4,552AN n <>=⨯AN 与平面PMN 所成角的正弦值为25【考点】线面平行证明,线面角的计算21.【答案】(Ⅰ)()2sin 2(1)sin f x a x a x '=---;(Ⅱ)当1a ≥时,|()||cos2(1)(cos 1)|2(1)32(0)f x a x a x a a a f =+-+≤+-=-=,因此,32A a =-,当数学试卷第22页(共27页)数学试卷第23页(共27页)180,2PFB PCD ∠=∠,所以3180PCD ∠=,因此60PCD ∠=;(Ⅱ)因为PCD BFD ∠=∠,所以180PCD EFD ∠+∠=,由此知C ,D ,F ,E 四点共圆,其圆心既在G 就是过。
2016年高考理科数学全国卷3-答案
量将约为 1.82 亿吨. 【考点】相关性分析,线性回归 19.【答案】(Ⅰ)由已知得 AM 2 AD 2 ,取 BP 的中点T ,连接 AT ,TN ,由 N 为 PC 中点知TN∥BC ,
3 TN 1 BC 2 ,又 AD∥BC ,故 TN 平行且等于 AM ,四边形 AMNT 为平行四边形,于是 MN∥AT ,因
【考点】奇偶性,导数,切线方程
16.【答案】3
【解析】如图所示,作 AE BD 于 E ,作 OF AB于 F , AB 2 3 , OA 2 3 ,OF 3 ,即
3/7
3m
3 3 ,m
3 ,直线 l 的倾斜角为 30 , CD AE 2 3
3 3.
m2 1
3
2
【考点】直线和圆,弦长公式
0
0 11 1 01
【考点】数列,树状图
第Ⅱ卷
二、填空题
13.【答案】 3 2
【解析】三条直线的交点分别为
(2,1)
,
1,
1 2
,
(0,1)
,代入目标函数可得 3
,
3 2
,1 ,故最大值为
3 2
.
【考点】线性规划
14.【答案】 2π 3
【解析】
y sin x
3
cos
x
2sin
x
3
,y
1/7
a 4 2 6 -2 4 2 6 -2 4
b6 4
6
4
6
s0
6
10
16
20
n0
1
2
3
4
【考点】程序框图
8.【答案】C
【 解 析 】 如 图 所 示 , 可 设 B D A D1 , 则 AB 2 , DC 2 , AC 5 , 由 余 弦 定 理 知 ,
2016全国三卷理科数学高考真题及答案,推荐文档
2016年普通高等学校招生全国统一考试理科数学一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合S = ,则S T ={}{}(x 2)(x 3)0,T 0S x x x =--≥=I >P I (A) [2,3] (B)(- ,2] [3,+)∞U ∞(C) [3,+) (D)(0,2] [3,+)∞U ∞(2)若z=1+2i ,则41izz =-(A)1(B) -1(C) i(D)-i(3)已知向量 , 则ABC=1(2BA =u u v 1),2BC =u u u v ∠(A)300 (B) 450 (C) 600 (D)1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。
图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为50C 。
下面叙述不正确的是(A) 各月的平均最低气温都在00C 以上(B) 七月的平均温差比一月的平均温差大 (C) 三月和十一月的平均最高气温基本相同 (D) 平均气温高于200C 的月份有5个(5)若 ,则 3tan 4α=2cos 2sin 2αα+=(A) (B) (C) 1(D)642548251625(6)已知,,,则432a =344b =1325c =(A ) (B )(C )(D )b a c <<a b c <<b c a <<c a b <<(7)执行下图的程序框图,如果输入的a =4,b =6,那么输出的n =(A )3(B )4(C )5(D )6(8)在中,,BC 边上的高等于,则 ABC △π4B =13BC cos A =(A (B(C )(D )-- (9)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A)18+(B ) 54+(C )90(D )81(10) 在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球,若AB BC ,AB =6,BC =8,AA 1=3,则V 的最大值是⊥(A )4π (B )(C )6π92π(D )323π(11)已知O 为坐标原点,F 是椭圆C :的左焦点,A ,B 分别为C 的左,右顶点.P22221(0)x y a b a b+=>>为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为(A )(B )(C )(D )13122334(12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意,2k m ≤中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有12,,,k a a a (A )18个(B )16个(C )14个(D )12个二、填空题:本大题共3小题,每小题5分(13)若x ,y 满足约束条件 则z=x+y 的最大值为_____________.{x ‒y +1≥0x ‒2y ≪0x +2y ‒2≪0(14)函数的图像可由函数的图像至少向右平移_____________个单位长y =sin x ‒3cos x y =sin x +3cos x 度得到。
2016年高考全国卷III理科数学试题及答案
(A)1(B)-1(C)i(D)-i
3.已知向量已知向量 =( , ), =( , ),则∠ABC=
(A)300(B)450(C)600(D)1200
4.某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。图中A点表示十月的平均最高气温约为150C,B点表示四月的平均最低气温约为50C。下面叙述不正确的是
参考数据: , , , ≈2.646.
参考公式:相关系数
回归方程 中斜率和截距的最小二乘估计公式分别为:
19.(本小题满分12分)
如图,四棱锥 中, 地面 , , , , 为线段 上一点, , 为 的中点.
(Ⅰ)证明 平面 ;
(Ⅱ)求直线 与平面 所成角的正弦值.
20.(本小题满分12分)
已知抛物线 : 的焦点为 ,平行于 轴的两条直线 分别交 于 两点,交 的准线于 两点.
(Ⅰ)证明 是等比数列,并求其通项公式;
(Ⅱ)若 ,求 .
18.(本小题满分12分)
下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图
(Ⅰ)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明;
(Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量。
(Ⅰ)写出 的普通方程和 的直角坐标方程;
(Ⅱ)设点P在 上,点Q在 上,求|PQ|的最小值及此时P的直角坐标.
24.(本小题满分10分)选修4-5:不等式选讲
已知函数
(Ⅰ)当a=2时,求不等式 的解集;
(Ⅱ)设函数 当 时, ,求 的取值范围.
【答案】
第I卷(选择题)
1、D 2、C 3、A 4、D 5、A 6、A 7、B 8、C 9、B 10、B 11、A 12、C
2016全国三卷理科数学高考真题及答案(最新整理)
2016年普通高等学校招生全国统一考试理科数学一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合S = ,则S T ={}{}(x 2)(x 3)0,T 0S x x x =--≥=I >P I (A) [2,3] (B)(- ,2] [3,+)∞U ∞(C) [3,+) (D)(0,2] [3,+)∞U ∞(2)若z=1+2i ,则41izz =-(A)1(B) -1(C) i(D)-i(3)已知向量 , 则ABC=1(2BA =u u v 1),2BC =u u u v ∠(A)300 (B) 450 (C) 600 (D)1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。
图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为50C 。
下面叙述不正确的是(A) 各月的平均最低气温都在00C 以上(B) 七月的平均温差比一月的平均温差大 (C) 三月和十一月的平均最高气温基本相同 (D) 平均气温高于200C 的月份有5个(5)若 ,则 3tan 4α=2cos 2sin 2αα+=(A) (B) (C) 1(D)642548251625(6)已知,,,则432a =344b =1325c =(A ) (B )(C )(D )b a c <<a b c <<b c a <<c a b <<(7)执行下图的程序框图,如果输入的a =4,b =6,那么输出的n =(A )3(B )4(C )5(D )6(8)在中,,BC 边上的高等于,则 ABC △π4B =13BC cos A =(A (B(C ) (D )-- (9)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A )18+(B ) 54+(C )90(D )81(10) 在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球,若AB BC ,AB =6,BC =8,AA 1=3,则V 的最大值是⊥(A )4π (B ) (C )6π92π(D )323π(11)已知O 为坐标原点,F 是椭圆C :的左焦点,A ,B 分别为C 的左,右顶点.P 为C22221(0)x y a b a b+=>>上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C的离心率为(A )(B )(C )(D )13122334(12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意,2k m ≤12,,,k a a a 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有(A )18个 (B )16个 (C )14个 (D )12个二、填空题:本大题共3小题,每小题5分(13)若x ,y 满足约束条件 则z=x+y 的最大值为_____________.{x ‒y +1≥0x ‒2y ≪0x +2y ‒2≪0(14)函数的图像可由函数的图像至少向右平移_____________个单位长y =sin x ‒3cos x y =sin x +3cos x 度得到。
(最新整理)2016年全国卷3理科数学试题及参考答案(WORD版)
2016年全国卷3理科数学试题及参考答案(WORD版)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2016年全国卷3理科数学试题及参考答案(WORD版))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2016年全国卷3理科数学试题及参考答案(WORD版)的全部内容。
绝密★启封并使用完毕前试题类型:新课标Ⅲ2016年普通高等学校招生全国统一考试理科数学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共24题,共150分,共4页。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0。
5毫米黑字迹的签字笔书写,字体工整,笔迹清楚。
3。
请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效.4。
作图可先用铅笔画出,确定后必须用黑色字迹的签字笔描黑.5.保持卡面清洁,不要折叠、不要弄破,不准使用涂改液、修正液、刮纸刀。
第I 卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合 ,则S T ={}{}|(2)(3)0,|0S x x x T x x =--≥=>I A. B. C. D 。
[]2,3(][),23,-∞+∞ [)3,+∞(][)0,23,+∞ 【答案】D【解析】易得,,选D (][),23,S =-∞+∞ (][)0,23,S T ∴=+∞ 【考点】解一元二次不等式、交集y t,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年高考理科数学全国新课标3卷一、选择题(本大题共12小题)1.设集合 ,则( ){}{}|(2)(3)0,|0S x x x T x x =--≥=>S T =I A . [2,3]B .(- ,2] [3,+)∞U ∞C . [3,+)∞D .(0, 2] [3,+)U ∞2.若,则( )i 12z =+4i1zz =-A .1B . -1C .D . ii-3.已知向量 , ,则( )1(2BA =u u u v 1)2BC =u u u v ABC ∠=A .B .C .D .30︒45︒60︒120︒4.某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图.图中点表示十月的平均最高气温约为,点表示四月的平均最低气温约A 15C ︒B 为.下面叙述不正确的是( )5C ︒A .各月的平均最低气温都在以上0C ︒B .七月的平均温差比一月的平均温差大C .三月和十一月的平均最高气温基本相同D .平均气温高于的月份有5个20C ︒5.若 ,则( )3tan 4α=2cos 2sin 2αα+=A .B . C . 1D .6425482516256.已知,,,则( )432a =254b =1325c =A .B .C .D .b a c<<a b c<<b c a<<c a b<<7.执行下图的程序框图,如果输入的,那么输出的( )46a b ==,n =A .3B .4C .5D .68.在中,,边上的高等于,则( )ABC △π4B =BC 13BC cos A =A B C .D .9.如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为( )A .B .C .90D .8118+54+10.在封闭的直三棱柱内有一个体积为的球,若,,111ABC A B C -V AB BC ⊥6AB =,,则的最大值是( )8BC =13AA =V A .4πB .C .6πD .92π323π11.已知为坐标原点,是椭圆:O F C的左焦点,分别为的左,右顶点.为上一点,且22221(0)x y a b a b +=>>,A B C P C 轴.过点的直线与线段交于点,与轴交于点.若直线经过PF x ⊥A l PF M y E BM 的中点,则的离心率为( )OE C A .B .C .D .1312233412.定义“规范01数列”如下:共有项,其中项为0,项为1,且对任意{}n a {}n a 2m m m ,中0的个数不少于1的个数.若,则不同的“规范01数列”2k m ≤12,,,k a a a L 4m =共有( )A .18个B .16个C .14个D .12个二、填空题(本大题共4小题)13.若满足约束条件 则的最大值为_____________.,x y 1020220x y x y x y -+≥⎧⎪-≤⎨⎪+-≤⎩z x y=+14.函数的图像可由函数的图像至少向右平移siny x x =sin y x x =_____________个单位长度得到.15.已知为偶函数,当时,,则曲线在点处的()f x 0x <()ln()3f x x x =-+()y f x =(1,3)-切线方程是_______________.16.已知直线:与圆交于两点,过分别做的垂l 30mx y m ++=2212x y +=,A B ,A B l 线与轴交于两点,若,则__________________.x ,C D AB =||CD =三、解答题(本大题共8小题)17.已知数列的前n 项和,其中.{}n a 1n n S a λ=+0λ≠(I )证明是等比数列,并求其通项公式; {}n a (II )若 ,求.53132S =λ18.下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图(I )由折线图看出,可用线性回归模型拟合与的关系,请用相关系数加以说明;y t (II )建立关于的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处y t 理量.附注:参考数据:,≈2.646.7140.17i ii t y==∑0.55=参考公式:相关系数 r =回归方程 中斜率和截距的最小二乘估计公式分别为:$$y a b =+$,.$ay bt =-$$a y bt =-$19.如图,四棱锥中,地面,,,P ABC -PA ⊥ABCD AD BC P 3AB AD AC ===,为线段上一点,,为的中点.4PA BC ==M AD 2AM MD =N PC(I )证明平面;MN P PAB (II )求直线与平面所成角的正弦值.AN PMN 20.已知抛物线:的焦点为,平行于轴的两条直线分别交于两点,C 22y x =F x 12,l l C ,A B 交的准线于两点.C P Q ,(I )若在线段上,是的中点,证明;F AB R PQ ARFQ P (II )若的面积是的面积的两倍,求中点的轨迹方程.PQF ∆ABF ∆AB21.设函数,其中,记的最大值为.()cos 2(1)(cos 1)f x a x a x =+-+0a >|()|f x A (Ⅰ)求;()f x '(Ⅱ)求;A (Ⅲ)证明.|()|2f x A '≤22.选修4-1:几何证明选讲如图,中的中点为,弦分别交于两点.O e »AB P PC PD ,AB E F ,(I )若,求的大小;2PFB PCD ∠=∠PCD ∠(II )若的垂直平分线与的垂直平分线交于点,证明.EC FD G OG CD ⊥23.选修4-4:坐标系与参数方程在直角坐标系中,曲线的参数方程为,以坐标原点为极xOy 1C ()sin x y ααα⎧=⎪⎨=⎪⎩为参数点,以轴的正半轴为极轴,,建立极坐标系,曲线的极坐标方程为x 2C.sin()4ρθπ+=(I )写出的普通方程和的直角坐标方程;1C 2C (II )设点在上,点在上,求的最小值及此时的直角坐标.P 1C Q 2C PQ P 24.选修4-5:不等式选讲已知函数.()|2|f x x a a =-+(I )当时,求不等式的解集;2a =()6f x ≤(II )设函数.当时,,求的取值范围.()|21|g x x =-x ∈R ()()3f x g x +≥a2016年高考理科数学全国新课标3卷一、选择题(本大题共12小题)1.设集合 ,则( ){}{}|(2)(3)0,|0S x x x T x x =--≥=>S T =I A . [2,3]B .(- ,2] [3,+)∞U ∞C . [3,+)∞D .(0, 2] [3,+)U ∞2.若,则( )i 12z =+4i1zz =-A .1B . -1C .D . ii-3.已知向量 , ,则( )1(2BA =u u u v 1)2BC =u u u v ABC ∠=A .B .C .D .30︒45︒60︒120︒4.某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图.图中点表示十月的平均最高气温约为,点表示四月的平均最低气温约A 15C ︒B 为.下面叙述不正确的是( )5C ︒A .各月的平均最低气温都在以上0C ︒B .七月的平均温差比一月的平均温差大C .三月和十一月的平均最高气温基本相同D .平均气温高于的月份有5个20C ︒5.若 ,则( )3tan 4α=2cos 2sin 2αα+=A .B . C . 1D .6425482516256.已知,,,则( )432a =254b =1325c =A .B .C .D .b a c<<a b c<<b c a<<c a b<<7.执行下图的程序框图,如果输入的,那么输出的( )46a b ==,n =A .3B .4C .5D .68.在中,,边上的高等于,则( )ABC △π4B =BC 13BC cos A =A B C .D .9.如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为( )A .B .C .90D .8118+54+10.在封闭的直三棱柱内有一个体积为的球,若,,111ABC A B C -V AB BC ⊥6AB =,,则的最大值是( )8BC =13AA =V A .4πB .C .6πD .92π323π11.已知为坐标原点,是椭圆:O F C的左焦点,分别为的左,右顶点.为上一点,且22221(0)x y a b a b +=>>,A B C P C 轴.过点的直线与线段交于点,与轴交于点.若直线经过PF x ⊥A l PF M y E BM 的中点,则的离心率为( )OE C A .B .C .D .1312233412.定义“规范01数列”如下:共有项,其中项为0,项为1,且对任意{}n a {}n a 2m m m ,中0的个数不少于1的个数.若,则不同的“规范01数列”2k m ≤12,,,k a a a L 4m =共有( )A .18个B .16个C .14个D .12个二、填空题(本大题共4小题)13.若满足约束条件 则的最大值为_____________.,x y 1020220x y x y x y -+≥⎧⎪-≤⎨⎪+-≤⎩z x y =+14.函数的图像可由函数的图像至少向右平移siny x x =sin y x x =_____________个单位长度得到.15.已知为偶函数,当时,,则曲线在点处的()f x 0x <()ln()3f x x x =-+()y f x =(1,3)-切线方程是_______________.16.已知直线:与圆交于两点,过分别做的垂l 30mx y m ++=2212x y +=,A B ,A B l 线与轴交于两点,若,则__________________.x ,C D AB =||CD =三、解答题(本大题共8小题)17.已知数列的前n 项和,其中.{}n a 1n n S a λ=+0λ≠(I )证明是等比数列,并求其通项公式; {}n a (II )若 ,求.53132S =λ18.下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图(I )由折线图看出,可用线性回归模型拟合与的关系,请用相关系数加以说明;y t (II )建立关于的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处y t 理量.附注:参考数据:,≈2.646.7140.17i ii t y==∑0.55=参考公式:相关系数 r =回归方程 中斜率和截距的最小二乘估计公式分别为:$$y a b =+$,.$ay bt =-$$a y bt =-$19.如图,四棱锥中,地面,,,P ABC -PA ⊥ABCD AD BC P 3AB AD AC ===,为线段上一点,,为的中点.4PA BC ==M AD 2AM MD =N PC (I )证明平面;MN P PAB (II )求直线与平面所成角的正弦值.AN PMN 20.已知抛物线:的焦点为,平行于轴的两条直线分别交于两点,C 22y x =F x 12,l l C ,A B 交的准线于两点.C P Q ,(I )若在线段上,是的中点,证明;F AB R PQ AR FQ P (II )若的面积是的面积的两倍,求中点的轨迹方程.PQF ∆ABF ∆AB 21.设函数,其中,记的最大值为.()cos 2(1)(cos 1)f x a x a x =+-+0a >|()|f x A (Ⅰ)求;()f x '(Ⅱ)求;A (Ⅲ)证明.|()|2f x A '≤22.选修4-1:几何证明选讲如图,中的中点为,弦分别交于两点.O e »AB P PC PD ,AB E F ,(I )若,求的大小;2PFB PCD ∠=∠PCD ∠(II )若的垂直平分线与的垂直平分线交于点,证明.EC FD G OG CD ⊥23.选修4-4:坐标系与参数方程在直角坐标系中,曲线的参数方程为,以坐标原点为极xOy 1C ()sin x y ααα⎧=⎪⎨=⎪⎩为参数点,以轴的正半轴为极轴,,建立极坐标系,曲线的极坐标方程为x 2C.sin()4ρθπ+=(I )写出的普通方程和的直角坐标方程;1C 2C (II )设点在上,点在上,求的最小值及此时的直角坐标.P 1C Q 2C PQ P 24.选修4-5:不等式选讲已知函数.()|2|f x x a a =-+(I )当时,求不等式的解集;2a =()6f x ≤(II )设函数.当时,,求的取值范围.()|21|g x x =-x ∈R ()()3f x g x +≥a2016年高考理科数学全国新课标3卷答案解析一、选择题1.【答案】D【解析】由解得或,所以或 ,3)0(2)(x x -≥-3x ≥2x ≤|2{S x x =≤3}x ≥所以或,故选D.{|02T x S x ⋂=<≤3}x ≥考点:1、不等式的解法;2、集合的交集运算.【技巧点拨】研究集合的关系,处理集合的交、并、补的运算问题,常用韦恩图、数轴等几何工具辅助解题.一般地,对离散的数集、抽象的集合间的关系及运算,可借助韦恩图,而对连续的集合间的运算及关系,可借助数轴的直观性,进行合理转化.2.【答案】C【解析】试题分析:,故选C .4i 4ii (12i)(12i)11zz ==+---考点:1、复数的运算;2、共轭复数.【举一反三】复数的加、减法运算中,可以从形式上理解为关于虚数单位“”的多项式i 合并同类项,复数的乘法与多项式的乘法相类似,只是在结果中把换成-1.复数除法可2i 类比实数运算的分母有理化.复数加、减法的几何意义可依平面向量的加、减法的几何意义进行理解.3.【答案】A【解析】由题意得,cos ||||BC BA ABC BC BA ⋅∠===u u u r u u u r uu u r u u u r 所以 ,故选A .30ABC ∠=︒考点:向量夹角公式.【思维拓展】(1)平面向量与的数量积为,其中是与的夹角,a rb r ·cos a b a b θr r r r=θa r b r 要注意夹角的定义和它的取值范围:;(2)由向量的数量积的性质有0180θ︒≤≤︒,,因此,利用平面向量的数量积可以解决与|a r ·cos a ba bθ=r r r r ·0a b a b ⇔⊥r r r r =长度、角度、垂直等有关的问题.4.【答案】D【解析】由图可知0°C 均在虚线框内,所以各月的平均最低气温都在0°C 以上,A 正确;由图可在七月的平均气温差大于7.5°C ,而一月的平均温差小于7.5°C ,所以七月的平均温差比一月的平均温差大,B 正确;由图可知三月和十一月的平均最高气温都大约在5°C ,基本相同,C 正确;由图可知平均最高气温高于20°C 的月份有3个或2个,所以不正确,故选D.考点:1、平均数;2、统计图.【易错警示】解答本题时易错可能有两种:(1)对图形中的线条认识不明确,不知所措,只觉得是两把雨伞重叠在一起,找不到解决问题的方法;(2)估计平均温差时易出现错误,错选B .5.【答案】A【解析】试题分析:由,得或,所以3tan 4α=34sin ,cos 55αα==34sin ,cos 55αα=-=-,故选A .2161264cos 2sin 24252525αα+=+⨯=考点:1、同角三角函数间的基本关系;2、倍角公式.【方法点拨】三角函数求值:①“给角求值”将非特殊角向特殊角转化,通过相消或相约消去非特殊角,进而求出三角函数值;②“给值求值”关键是目标明确,建立已知和所求之间的联系.6.【答案】A【解析】试题分析:因为,,所以,故选422335244a b ==>=1223332554c a ==>=b a c <<A .考点:幂函数的图象与性质.【技巧点拨】比较指数的大小常常根据三个数的结构联系相关的指数函数与对数函数、幂函数的单调性来判断,如果两个数指数相同,底数不同,则考虑幂函数的单调性;如果指数不同,底数相同,则考虑指数函数的单调性;如果涉及到对数,则联系对数的单调性来解决.7.【答案】B【解析】第1次循环,得a =2,b =4,a =6,s =6,n =1;第2次循环,得a =-2,b =6,a=4,s=10,n =2第3次循环,得a =2,b =4,=6,s=16,n =3第4次循环,得a =-2,b =6,a =4,a =20>16,n =4退出循环,输出n =4,故选B.考点:程序框图.【注意提示】解决此类型时要注意:第一,要明确是当型循环结构,还是直到型循环结构.根据各自的特点执行循环体;第二,要明确图中的累计变量,明确每一次执行循环体前和执行循环体后,变量的值发生的变化;第三,要明确循环体终止的条件是什么,会判断什么时候终止循环体.8.【答案】C【解析】试题分析:设边上的高线为,则,所以BC AD 3BC AD =,.由余弦定理,知AC ==AB =,故选C .222cos 2AB AC BC A AB AC +-===⋅考点:余弦定理.【方法点拨】在平面几何图形中求相关的几何量时,需寻找各个三角形之间的联系,交叉使用公共条件,常常将所涉及到已知几何量与所求几何集中到某一个三角形,然后选用正弦定理与余弦定理求解.9.【答案】B【解析】由三视图知几何体是以侧视图为底面的斜四棱柱,所以该几何体的表面积为故选B.3623323542s ⋅⋅+⋅⋅+⋅⋅=+=考点:空间几何体的三视图及表面积.【技巧点拨】求解多面体的表面积及体积问题,关键是找到其中的特征图形,如棱柱中的矩形,棱锥中的直角三角形,棱台中的直角梯形等,通过这些图形,找到几何元素间的关系,建立未知量与已知量间的关系,进行求解.10.【答案】B【解析】试题分析:要使球的体积最大,必须球的半径最大.由题意知球的与直三棱柱的上下V R 底面都相切时,球的半径取得最大值,此时球的体积为,故选32334439()3322R πππ==B .考点:1、三棱柱的内切球;2、球的体积.【思维拓展】立体几何是的最值问题通常有三种思考方向:(1)根据几何体的结构特征,变动态为静态,直观判断在什么情况下取得最值;(2)将几何体平面化,如利用展开图,在平面几何图中直观求解;(3)建立函数,通过求函数的最值来求解.11.【答案】A【解析】由题意设直线l 的方程为y =k (x +a ),分别令与得,x c =-0x =||=()FM k a c -由,得,即,得,所以椭圆的~OBE CBM ∆∆||||1|2|||O OE B FM BC =2()ka a k a c a c =-+13c a =离心率,故选A .13e =考点:椭圆方程与几何性质.【思路点拨】求解椭圆的离心率问题主要有三种方法:(1)直接求得的值,进而求,a c 得的值;(2)建立的齐次等式,求得或转化为关于的等式求解;(3)通过特e ,,a b c bae 殊值或特殊位置,求出.e 12.【答案】C【解析】试题分析:由题意,得必有,,则具体的排法列表如下:10a =81a =01110110101110011*********1101001111011100111考点:计数原理的应用.【方法点拨】求解计数问题时,如果遇到情况较为复杂,即分类较多,标准也较多,同时所求计数的结果不太大时,往往利用表格法、树枝法将其所有可能一一列举出来,常常会达到岀奇制胜的效果.二、填空题13.【答案】32【解析】试题分析:作出不等式组满足的平面区域,如图所示,由图知,当目标函数经过z x y =+点时取得最大值,即.1(1,)2A max 13122z =+=考点:简单的线性规划问题.【技巧点拨】利用图解法解决线性规划问题的一般步骤:(1)作出可行域.将约束条件中的每一个不等式当作等式,作出相应的直线,并确定原不等式的区域,然后求出所有区域的交集;(2)作出目标函数的等值线(等值线是指目标函数过原点的直线);(3)求出最终结果.14.【答案】32π【解析】因为 ,2s ()3in in s x y x x π=++=2s (3in in s x y x x π=--=2sin[)(233x ππ=+-所以的图像可以由函数的图像至少向右平移s sin o y x x =sin y x x =+个单位长度得到.23π考点:1、三角函数图象的平移变换;2、两角和与差的正弦函数.【误区警示】在进行三角函数图象变换时,提倡“先平移,后伸缩”,但“先伸缩,后平移”也经常出现在题目中,所以也必须熟练掌握,无论是哪种变形,切记每一个变换总是对字母而言,即图象变换要看“变量”起多大变化,而不是“角”变化多少.x15.【答案】21y x =--【解析】试题分析:当时,,则.又因为为偶函数,所以0x >0x -<()ln 3f x x x -=-()f x ,所以,则切线斜率为,所以切线方()()ln 3f x f x x x =-=-1()3f x x'=-(1)2f '=-程为,即.32(1)y x +=--21y x =--考点:1、函数的奇偶性与解析式;2、导数的几何意义.【知识拓展】本题题型可归纳为“已知当时,函数,则当时,求函0x >()y f x =0x <数的解析式”.有如下结论:若函数为偶函数,则当时,函数的解析式为()f x 0x <;若为奇函数,则函数的解析式为.()y f x =-()f x ()y f x =--16.【答案】4【解析】因,且圆的半径为,所以圆心到直线||AB=(0,0),解得30mx y m ++-=3=3=l 的方程,得,所以直线l 的倾斜角为,在梯m =y x =+30︒形ABCD 中,.||co ||s304AB CD ==︒考点:直线与圆的位置关系.【技巧点拨】解决直线与圆的综合问题时,一方面,要注意运用解析几何的基本思想方法(即几何问题代数化),把它转化为代数问题;另一方面,由于直线与圆和平面几何联系得非常紧密,因此,准确地作出图形,并充分挖掘几何图形中所隐含的条件,利用几何知识使问题较为简捷地得到解决.三、解答题17.【答案】(Ⅰ);(Ⅱ).11(11n n a λλλ-=--1λ=-【解析】(I)当n =1时,,故,111a a λ=+11,0a λ≠≠由,得,所以.10a ≠0λ≠0n a ≠11n n a a λλ+=-因此是首项为,公比为的等比数列,于是.{}n a 11λ-1λλ-11()11n n a λλλ-=--(Ⅱ)由(Ⅰ)得,由得,即1()1n n S λλ=--5531311()(132132λλλλ-=-=--113232,解得.1λ=-考点:1、数列通项与前项和为关系;2、等比数列的定义与通项及前项和n a n n S n 为.n S 【方法总结】等比数列的证明通常有两种方法:(1)定义法,即证明(常数);1n na q a +=(2)中项法,即证明.根据数列的递推关系求通项常常要将递推关系变形,212n n n a a a ++=转化为等比数列或等差数列来求解.18.【答案】(Ⅰ)理由见解析;(Ⅱ)1.82亿吨.试题解析:(Ⅰ)由折线图这数据和附注中参考数据得,,721()28ii tt =-=∑0.55=,40.1749.32 2.89==-⨯=.2.890.990.552 2.646r ≈≈⨯⨯因为与的相关系数近似为0.99,说明与的线性相关相当高,从而可以用线性回归tt tt 模型拟合与的关系.tt (II )由及(I )得,1.33176.32y =≈71721)( 2.89()ˆ0.10328()iii i i t y b t t y t ==--≈-==∑∑ˆˆ 1.3310.10340.92ay bt =-≈-⨯≈所以,y 关于t 的回归方程为: ˆ0.920.10yt =+将2016年对应的t =9代入回归方程得:ˆ0.920.109 1.82y=+⨯≈所以预测2016年我国生活垃圾无害化处理量将约为1.82亿吨.考点:线性相关与线性回归方程的求法与应用.【方法点拨】(1)判断两个变量是否线性相关及相关程度通常有两种方法:(1)利用散点图直观判断;(2)将相关数据代入相关系数公式求出,然后根据的大小进行判r r r 断.求线性回归方程时在严格按照公式求解时,一定要注意计算的准确性.19.【答案】.【解析】试题分析:(Ⅰ)取的中点,然后结合条件中的数据证明四边形为平行四PB T AMNT边形,从而得到,由此结合线面平行的判断定理可证;(Ⅱ)以为坐标原点,MN AT P A 以所在直线分别为轴建立空间直角坐标系,然后通过求直线的方向向量,AD AP ,y z AN 与平面法向量的夹角来处理与平面所成角.PMN AN PMN 试题解析:(Ⅰ)由已知得,取的中点,连接,由为223AM AD ==BP T ,AT TN 中点知,.PCPC112222TN BC TN BC ====又,故,四边形为平行四边形,于是.//AD BC TN AM P AMNT //MN AT 因为平面,平面,所以平面.AT ⊂MN MN ⊄⊄PAB //MN PAB 设为平面的法向量,则,即(,,)(,,)n x y z n x y z ==r r PMN 00n PM n PN ⎧⋅=⎪⎨⋅=⎪⎩r u u u u rr u u u r,可取,24020x z x y z -=⎧+-=(0,2,1)n =r 于是|||cos ,|||||n AN n AN n AN ⋅<>==r u u u rr u u u r r u u ur 考点:1、空间直线与平面间的平行与垂直关系;2、棱锥的体积.【技巧点拨】(1)证明立体几何中的平行关系,常常是通过线线平行来实现,而线线平行常常利用三角形的中位线、平行四边形与梯形的平行关系来推证;(2)求解空间中的角和距离常常可通过建立空间直角坐标系,利用空间向量中的夹角与距离来处理.20.【答案】(Ⅰ)见解析;(Ⅱ).21y x =-试题解析:由题设.设,则,且1(,0)2F 12:,:l y a l y b ==0ab ≠.22111(,0),(,),(,),(,),(,)222222a b a b A B b P a Q b R +---记过两点的直线为,则的方程为. .....3分,A B l l 2()0x a b y ab -++=(Ⅰ)由于在线段上,故.F AB 10ab +=记的斜率为,的斜率为,则,AR 1k FQ 2k 122211a b a b abk b k a a ab a a---=====-=+-所以. ......5分ARFQ P (Ⅱ)设与轴的交点为,l x 1(,0)D x 则.1111,2222ABF PQF a b S b a FD b a x S ∆∆-=-=--=由题设可得,所以(舍去),.111222a bb a x ---=10x =11x =设满足条件的的中点为.AB (,)E x y 当与轴不垂直时,由可得.AB x AB DE k k =2(1)1yx a b x =≠+-而,所以.2a by +=21(1)y x x =-≠当与轴垂直时,与重合,所以,所求轨迹方程为. ....12分AB x E D 21y x =-考点:1、抛物线定义与几何性质;2、直线与抛物线位置关系;3、轨迹求法.【方法归纳】(1)解析几何中平行问题的证明主要是通过证明两条直线的斜率相等或转化为利用向量证明;(2)求轨迹的方法在高考中最常考的是直接法与代入法(相关点法),利用代入法求解时必须找准主动点与从动点.21.【答案】(Ⅰ);(Ⅱ);'()2sin 2(1)sin f x a x a x =---2123,05611,18532,1a a a a A a a a a ⎧-<≤⎪⎪++⎪=<<⎨⎪-≥⎪⎪⎩(Ⅲ)见解析.试题解析:(Ⅰ).'()2sin 2(1)sin f x a x a x =---(Ⅱ)当时,1a ≥'|()||sin 2(1)(cos 1)|f x a x a x =+-+2(1)a a ≤+-32a =-(0)f =因此,. ………4分32A a =-当时,将变形为.01a <<()f x 2()2cos (1)cos 1f x a x a x =+--令,则是在上的最大值,,2()2(1)1g t at a t =+--A |()|g t [1,1]-(1)g a -=,且当时,取得极小值,极小值为(1)32g a =-14at a-=()g t 221(1)61a a a a --++.令,解得(舍去),.1114a a --<<13a <-15a >(ⅰ)当时,在内无极值点,,,105a <≤()g t (1,1)-|(1)|g a -=|(1)|23g a =-,所以.|(1)||(1)|g g -<23A a =-(ii )当时,由,知151a <<(1)(1)2(1)0g g a --=->1(1)(1)(4a g g g a-->>又1|()||(1)|(1)(17)048a a a g g a a ---=->+所以,故有2161|()|48a a a A g a a-++==21611,1823,532,105a A a a a a a a a ⎧≤⎪⎪++⎪=<=<<⎨⎪-≥⎪⎪⎩(Ⅲ)由(Ⅰ)得.'|()||2sin 2(1)sin |2|1|f x a x a x a a =---≤+-当时,.105a <≤'|()|1242(23)2f x a a a A ≤+≤-<-=当时,,所以.115a <<131884a A a =++≥'|()|12f x a A ≤+<当时,,所以.1a ≥'|()|31642f x a a A ≤-≤-='|()|2f x A ≤考点:1、三角恒等变换;2、导数的计算;3、三角函数的有界性.【归纳总结】求三角函数的最值通常分为两步:(1)利用两角和与差的三角公式、二倍角公式、诱导公式将解析式化为形如的形式;(2)结合自变量sin()y A x B ωϕ=++的取值范围,结合正弦曲线与余弦曲线进行求解.x 请考生在[22]、[23]、[24]题中任选一题作答。