解一元二次方程分解法
因式分解法解一元二次方程的步骤
因式分解法解一元二次方程的步骤因式分解法是解一元二次方程的一种常用方法。
它的基本思路是将二次方程转化成两个一次方程相乘的形式,然后通过求解这两个一次方程得到方程的解。
下面我们来详细介绍因式分解法的步骤。
步骤1:确定一元二次方程的形式首先,我们要确定一元二次方程的形式,即确认方程为a*x^2 +b*x + c = 0,其中a、b和c是实数,且a ≠ 0。
确保方程满足这个条件后,我们才能使用因式分解法进行求解。
步骤2:计算二次项系数a将已知的一元二次方程写成标准形式,我们可以直接从方程中读取二次项系数a的值。
这一步很重要,因为我们后续的计算都会用到a 的值。
步骤3:计算常数项c同理,我们从方程中读取常数项c的值。
这一步同样很关键,因为我们在解方程时,需要用到常数项的值。
步骤4:根据二次项系数a和常数项c的符号确定因式的形式根据二次项系数a的符号,一元二次方程的因式形式分为两种情况:当a > 0时,我们可以使用“差平方”的形式进行因式分解;当a < 0时,我们可以使用“和平方”的形式进行因式分解。
步骤5:根据因式的形式进行因式分解对于“差平方”的形式,我们可以将一元二次方程写成(a*x +m)*(a*x - n) = 0的形式,其中m和n是实数,且m ≠ n。
将原方程的右侧展开并整理,得到二次项、一次项和常数项的关系式,然后通过求解m和n的值,可以得到方程的解。
对于“和平方”的形式,我们可以将一元二次方程写成(a*x +m)*(a*x + n) = 0的形式,其中m和n是实数,且m ≠ -n。
也是通过展开右侧等式并整理得到二次项、一次项和常数项的关系式,然后求解m和n的值,得到方程的解。
步骤6:求解方程通过步骤5的因式分解,我们得到了一元二次方程的两个一次因式,接下来,我们可以将每个因式设置为零,分别求解得到方程的解。
步骤7:检验解的有效性最后,我们还需要检验求得的解是否满足原方程。
将解代入原方程中,如果方程两侧相等,那么我们的解就是有效的,否则需要重新检查求解过程。
一元二次方程的解法—因式分解法
一元二次方程的解法——因式分解法1.因式分解法:将一元二次方程先因式分解为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次。
这种解法叫做因式分解。
2.因式分解法的一般步骤:(1)将方程的右边化为0;(2)将方程的左边化成两个一次因式的积;(3)令每个因式都等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解。
同步练习用因式分解法解下列方程:(1)x2+12x=0;(2)4x2-1=0;(3)x2=7x; (4)x2-4x-21=0;(5)(x-1)(x+3)=12;(6)3x2+2x-1=0;(7)10x2-x-3=0;(8)(x-1)2-4(x-1)-21=0.1.选择题(1)方程(x -16)(x +8)=0的根是( )A .x 1=-16,x 2=8B .x 1=16,x 2=-8C .x 1=16,x 2=8D .x 1=-16,x 2=-8 (2)下列方程4x 2-3x -1=0,5x 2-7x +2=0,13x 2-15x +2=0中,有一个公共解是( )A .x =21 B .x =2 C .x =1 D .x =-1 (3)方程5x (x +3)=3(x +3)解为( ) A .x 1=53,x 2=3 B .x =53 C .x 1=-53,x 2=-3 D .x 1=53,x 2=-3 (4)方程(y -5)(y +2)=1的根为( )A .y 1=5,y 2=-2B .y =5C .y =-2D .以上答案都不对 (5)方程(x -1)2-4(x +2)2=0的根为( )A .x 1=1,x 2=-5B .x 1=-1,x 2=-5C .x 1=1,x 2=5D .x 1=-1,x 2=5 (6)一元二次方程x 2+5x =0的较大的一个根设为m ,x 2-3x +2=0较小的根设为n ,则m +n的值为( )A .1B .2C .-4D .4 (7)已知三角形两边长为4和7,第三边的长是方程x 2-16x +55=0的一个根,则第三边长是( )A .5B .5或11C .6D .11 (8)方程x 2-3|x -1|=1的不同解的个数是( )A .0B .1C .2D .32.填空题(1)方程t (t +3)=28的解为_______.(2)方程(2x +1)2+3(2x +1)=0的解为__________.(3)方程(2y +1)2+3(2y +1)+2=0的解为__________.(4)关于x 的方程x 2+(m +n )x +mn =0的解为__________.(5)方程x (x -5)=5 -x 的解为__________.。
一元二次方程怎样用因式分解
一元二次方程怎样用因式分解
因式分解法解一元二次方程的口诀:一移,二分,三转化,四再求根容易得。
步骤:将方程右边化为0;将方程左边分解为两个一次式的积;令这两个一次式分别为0,得到两个一元一次方程;解这两个一元一次方程,它们的解就是原方程的解。
提取公因式法:am+bm+cm=m(a+b+c).
公式法:a2-b2=(a+b)(a-b),a2±2ab+b2=(a±b)。
十字相乘法:1ax2+(a+b)x+ab=(x+a)(x+b).扩展资料:
分解一般步骤
1、如果多项式的首项为负,应先提取负号;
这里的“负”,指“负号”。
如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的。
2、如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;
要注意:多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1;提公因式要一次性提干净,并使每一个括号内的多项式都不能再分解。
3、如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;
4、如果用上述方法不能分解,再尝试用分组、拆项、补项法来分解。
口诀:先提首项负号,再看有无公因式,后看能否套公式,十字
相乘试一试,分组分解要合适。
一元二次方程四种解法
一元二次方程解法【知识梳理】1. 对一元二次方程的概念及根的考察;2. 一元二次方程的求解;一元二次方程的解法一元二次方程的求解的最根本的思路是“降次”.(1)直接开方法:()m x m m x ±=⇒≥=,02(2)配方法:02=++c bx ax 222442a ac b a b x -=⎪⎭⎫ ⎝⎛+⇒ (3)求根公式法:条件()04,02≥-≠ac b a 且 aac b b x 242-±-= (4)因式分解法:()()021=--x x x x一元二次方程的求解直接开方法:由应用直接开平方法解形如x 2=p (p ≥0),那么x=±p 转化为应用直接开平方法解形如(mx+n )2=p (p ≥0),那么mx+n=±p ,达到降次转化之目的.若p <0则方程无解。
(注:两边同时开平方的时候记得不要忘记加上±号,两根相等时记得要写成x 1=x 2=…;而不是x= ) 例1:直接开方解方程:2x 2-8=0 3592=-x ()0962=-+x配方法:1)现将已知方程化为一般形式;2)化二次项系数为1;3)常数项移到右边;4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;5)变形为(x+p)2=q 的形式,如果q ≥0,方程的根是x=-p ±q ;如果q <0,方程无实根. 例1:配方法解方程0462=++x x 03422=-+x x 0142=++x x例2. 试说明:无论x 取何值,代数式542+-x x 的值总大于0,再求出当x 取何值时,代数式542+-x x 的值最小?最小值是多少?公式法(用公式法解一元二次方程是记得要先把方程化成一般式)要点:找出a,b,c 判断:ac b 42-=∆ 应用:aac b b x 242-±-= 例1、用公式法解下列方程(1)解方程x 2-2x-1=0 (2)解方程:-x 2+3x-2=0;变式:用公式法解下列方程(1)3x 2+2x-5=0 (2) x 222-x+1=0.不解方程说明方程根的情况(1) x 2+x-3=0 (2)x (x+8)=16.因式分解的方法:提公因式法、公式法和十字相乘法.1.乘法公式:(1)平方差公式:22()()a b a b a b +-=-;(2)完全平方公式:222()2a b a ab b +=++;222()2a b a ab b -=-+.2.十字相乘法:(1)二次项系数为1的二次三项式2x px q ++中,如果能把常数项q 分解成两个因式b a ,的积,并且b a +等于一次项系数中p ,那么它就可以分解成:()()()b x a x ab x b a x q px x ++=+++=++22. 题型一:因式分解【例1】(1))()(3x 3x x +=+; (2) 016x 2=— (3)09a 1242=++a ;题型二:十字相乘法分解因式【例1】(1)232x x ++=0; (2)212x x --=0; (3)2215x x +-=0.题型三:解一元二次方程【例1】用适当的方法解下列方程:(1)2410x x ++=; (2)210x x +-=; (3)22310x x -+=.【变式练习1】解下列一元二次方程:(1)21304x x ++=; (2)2420x x -+=;(3)2200x x --=; (4)24920x x -+=.【作业布置】(时间:20分;总分:60)用合适的方法解下列方程.(1)3y 2-6y=0 (2)x 2+2x-3=0.(3)x 2+35=12x (4)(x-3)2+9(x-3)=0(5)220x x -=; (6)2430x x +-=;(7) 22)3(4)23(-=+x x (8) )2(5)2(3+=+x x x。
一元二次方程因式分解法的四种方法
一元二次方程因式分解法的四种方法【实用版3篇】目录(篇1)一、引言二、一元二次方程的概述三、因式分解法概述四、四种因式分解方法1.提取公因式法2.完全平方公式法3.平方差公式法4.完全平方公式与平方差公式的结合法五、每种方法的例题解析六、总结正文(篇1)一、引言在解决一元二次方程时,因式分解法是一种常用的方法,它可以帮助我们快速找到方程的解。
本文将为大家介绍四种因式分解的方法,以帮助大家更好地理解和运用这一方法。
二、一元二次方程的概述一元二次方程是指形如 ax+bx+c=0 的方程,其中 a、b、c 为常数,且 a≠0。
在这个方程中,a、b、c 分别称为二次项系数、一次项系数和常数项。
三、因式分解法概述因式分解法是将一元二次方程的左边化为两个一次因式的积的形式,从而得到方程的解。
通过因式分解,我们可以将一元二次方程转化为两个一元一次方程来求解,从而简化了解题过程。
四、四种因式分解方法1.提取公因式法提取公因式法是指在方程的两边同时提取公因式,以达到简化方程的目的。
这种方法适用于当方程的一次项系数 b 为零的情况。
2.完全平方公式法完全平方公式法是指利用完全平方公式 (a+b)=a+2ab+b将方程进行因式分解。
这种方法适用于当方程的二次项系数 a 为 1 的情况。
3.平方差公式法平方差公式法是指利用平方差公式 (a+b)(a-b)=a-b将方程进行因式分解。
这种方法适用于当方程的一次项系数 b 不等于零且二次项系数 a 不等于 1 的情况。
4.完全平方公式与平方差公式的结合法当方程的二次项系数 a 不为 1,一次项系数 b 不为 0 时,我们可以将完全平方公式和平方差公式结合使用,以达到因式分解的目的。
五、每种方法的例题解析这里我们分别对四种因式分解方法进行例题解析,以便大家更好地理解和掌握这些方法。
六、总结因式分解法是一种解决一元二次方程的有效方法,掌握四种因式分解方法有助于我们在解题过程中更加灵活地选择合适的方法。
因式分解法解一元二次方程
因式分解法解一元二次方程一元二次方程是形如 $ax^2 + bx + c = 0$ 的方程,其中 $a \neq 0$。
为了解二次方程,我们可以使用因式分解法。
下面我们来详细讲解因式分解法的步骤。
Step 1: 化简方程首先,我们需要将二次方程化简为标准的一元二次方程形式,即$ax^2 + bx + c = 0$,其中 $a \neq 0$。
如果方程中含有分式,我们可以通过消去分母的方式将方程化为整系数的二次方程。
Step 2: 因式分解我们假设可以将二次方程因式分解为 $(px + q)(rx + s) = 0$,其中 $p, q, r, s$ 是实数。
展开上式得到 $prx^2 + (ps + qr) x + qs = 0$。
我们可以发现,当 $pr = a$,$ps + qr = b$,$qs = c$ 时,上式与原方程相等。
因此,我们需要寻找满足这些条件的 $p, q, r, s$。
Step 3: 解方程令括号中的两个一次方程分别为零,我们可以得到:$px + q = 0$$rx + s = 0$解这两个方程可以得到两个根:$x_1 = -\frac{q}{p}$$x_2 = -\frac{s}{r}$这两个根即为原二次方程的解。
需要注意的是,如果方程无法因式分解或者方程的根不是实数,那么我们不能使用因式分解法来解方程。
下面我们通过一个具体的例子来演示因式分解法的应用:例题:解方程$x^2-5x+6=0$Step 1: 化简方程方程已经是标准的一元二次方程形式,无需化简。
Step 2: 因式分解假设方程可以表示为 $(px + q)(rx + s) = 0$。
展开得到 $prx^2 + (ps + qr) x + qs = 0$。
与原方程相比较可得:$p=1$$q=-2$$r=1$$s=-3$因此,我们可以将方程表示为$(x-2)(x-3)=0$。
Step 3: 解方程令括号中的两个一次方程分别为零,我们可以得到:$x-2=0$$x-3=0$解这两个方程可以得到两个根:$x_1=2$$x_2=3$因此,原方程的解为$x=2$和$x=3$。
一元二次方程的解法总结
一元二次方程的解法(直接开平方法、配方法、公式法和分解法)一元二次方程定义:只含有一个未知数,并且未知数的最高次数为2的整式方程叫做一元二次方程。
一般形式:ax²+bx+c=0(a,b,c为常数,x为未知数,且a≠0).顶点式: y=a(x—h)²+k(a≠0,a、h、k为常数)交点式:y=a(x—x₁)(x—x₂)(a≠0)[有交点A(x₁,0)和B(x₂,0)的抛物线,即b²-4ac≥0] .直接开平方法:直接开平方法就是用直接开平方求解一元二次方程的方法。
用直接开平方法解形如(x—m)²=n(n≥0)的方程,其解为x=m±配方法:1.将此一元二次方程化为ax²+bx+c=0的形式(此一元二次方程满足有实根)2.将二次项系数化为13.将常数项移到等号右侧4。
等号左右两边同时加上一次项系数一半的平方5.将等号左边的代数式写成完全平方形式6。
左右同时开平方7.整理即可得到原方程的根公式法:1。
化方程为一般式:ax²+bx+c=0 (a≠0)2。
确定判别式,计算Δ(=b²—4ac);3。
若Δ〉0,该方程在实数域内有两个不相等的实数根:x=若Δ=0,该方程在实数域内有两个相等的实数根:x₁=x₂=若Δ〈0,该方程在实数域内无实数根因式分解法:因式分解法又分“提公因式法”;而“公式法”(又分“平方差公式”和“完全平方公式”两种),另外还有“十字相乘法”,因式分解法是通过将方程左边因式分解所得,因式分解的内容在八年级上学期学完。
用因式分解法解一元二次方程的步骤1. 将方程右边化为0;2. 将方程左边分解为两个一次式的积;3. 令这两个一次式分别为0,得到两个一元一次方程;4. 解这两个一元一次方程,它们的解就是原方程的解。
用待定系数法求二次函数的解析式(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:y=ax²+bx+c(a≠0).(2)当题给条件为已知图象的顶点坐标或对称轴或极大(小)值时,可设解析式为顶点式:y=a(x-h)²+k(a≠0)。
(完整版)-解一元二次方程因式分解法
(3)利用十字相乘法:
x2+(a+b)x+ab=(x+a)(x+b). 解:(x 1)(x 7) 0
1 1
x 1 0或x 7 0
1 7
x1 1, x2 7
1.解下列方程
(1)x2 x 0
解: x(x 1) 0. x1 0, x2 1.
(3)3x2 6x 3
解: x2 2x1 0 (x 1)2 0.
(3)十字相乘法:
1 a
x2+(a+b)x+ab= (x+a)(x+b). 1 b
学习是件很愉快的事
淘金者
• 你能用分解因式法解下列方程吗?
1. x2-4=0;
2. (x+1)2-25=0.
解: (x+2)(x-2)=0,
解: [(x+1)+5][(x+1)-5]=0,
∴x+2=0,或x-2=0.
∴x+6=0,或x-4=0.
∴x1=-2, x2=2.
∴x1=-6, x2=4.
这种解法是不是解这两个方程的最好方法?
解题步骤演示
例 (x+3)(x-1)=5 解:原方程可变形为:
方程x2右+2边x-化8为=零0 左边分(解x-成两2)个(x一+次4)因=0式 的乘积 至少有一个x一-次2因=式0或为零x得+4到=两0个一元一次方程
两个一元∴一x次1=方2程,x的2解=-就4 是原方程的解
例题欣赏 ☞
(1)x(x-2)+x-2=0;
解:x(x 2) x 2 0,
例3 解下列方程:
(2)5x2 2x 1 x2 2x 3 ,
一元二次方程分解因式的方法
一元二次方程分解因式的方法一元二次方程是一个非常重要的数学概念,它在数学领域中被广泛使用,同时也是学习数学的基础之一。
解决一元二次方程的问题,通常需要将其分解因式,这样才能更好地理解和计算方程。
在本文中,我们将讨论一元二次方程分解因式的方法,并提供一些技巧和例子,帮助学生和数学爱好者更好地掌握这一概念。
一、什么是一元二次方程?一元二次方程是指形如ax^2 + bx + c = 0的二次方程,其中a、b、c为实数,同时a不为0。
这是一种古老的数学问题,它最早由古希腊数学家欧几里得提出,至今仍然是数学教育的中心概念之一。
二、一元二次方程分解因式的方法在对一元二次方程进行分解因式时,有几种常用的方法:1.公式法一元二次方程ax^2 + bx + c = 0可以使用以下公式来求解:x = (-b ± √(b^2 - 4ac)) / 2a这个公式可以帮助我们解决一元二次方程的求根问题。
但是这个公式的应用有时会比较复杂,尤其是在计算较大的系数时,计算负荷会很大。
因此,在一些情况下,使用公式法并不是最优的选择。
2.配方法配方法是另一种常用的分解因式方法。
它通常用于解决一些比较复杂的一元二次方程问题。
我们通过一个实例来演示这个方法:假设我们要解决以下方程:x^2 + 2x - 15 = 0首先,我们需要找到两个数p和q,使得它们的和等于2,且它们的乘积等于-15。
我们可以将-15分解为3和-5的乘积,因此,p和q为3和-5。
然后,我们将2x写成px + qx形式:x^2 + px + qx - 15 = 0现在,我们需要将x^2 + px + qx - 15进行配方法:(x+p/2)^2 - (p/2)^2 + qx - 15 = 0然后,我们需要使用配方法将上述方程化简:(x+p/2)^2 +(q-p^2/4)- 15 = 0现在,我们将方程化为标准形式:(x+p/2)^2 - (p^2/4 - 15 - q) = 0最终,通过一些计算,我们可以得到二次项系数a、一次项系数b和自由项系数c:a = 1b= pc = -(p^2/4 - 15 - q)通过配方法,我们可以将一个复杂的一元二次方程简化为一个更易于计算的问题。
因式分解法解一元二次方程式
注意事项
因式分解法的应用需根据具体问题选 择合适的因式分解方法,并注意化简 过程中的符号和运算的准确性。
04
因式分解法解一元二次方程式的步骤
识别方程式的形式
识别一元二次方程的一般形式
ax^2 + bx + c = 0,其中a、b、c为常数,且a≠0。
04
2. 尝试因式分解:根据二次项和一次项系数的特点,尝 试将方程写成两个一次式的乘积。
05
3. 求解一元一次方程:将因式分解后的方程转化为两个 一元一次方程,分别求解。
06
4. 检验解的合理性:根据题目要求和实际意义,检验解 的合理性。
06
总结与展望
因式分解法解一元二次方程式的优势与不足
优势
因式分解法是一种直观、易理解的方法 ,能够直接将一元二次方程转化为两个 一次方程进行求解,简化了解题过程。
形式为 ax^2 + bx + c = 0,其中 a、 b、c 为常数,且 a ≠ 0。
一元二次方程式的形式
标准形式
ax^2 + bx + c = 0,其中 a、b、 c 为常数,且 a ≠ 0。
转化形式
通过移项和配方,将方程转化为 标准形式。
一元二次方程式的解的概念
解是指满足方程的未知数的值。 对于一元二次方程 ax^2 + bx + c = 0,其解为 x = (-b ± √(b^2 - 4ac)) / 2a。
判断方程是否适合因式分解法
因式分解法适用于能够通过因式分解找到解的一元二次方程。
提取公因式
寻找两个一次项的公因式:如果两个 一次项存在公因式,则将其提取出来。
一元二次方程(因式分解法)
一元二次方程(因式分解法)【知识要点】1、 分解因式法解一元二次方程:当一元二次方程的一边为0,而另一边易于分解成两个一次因式的积时,可用解两个一元一次方程的方法来求得一元二次方程的解,这种解一元二次方程的方法称为分解因式法。
2、分解因式法的理论依据是:若0=⋅b a ,则0=a 或0=b3、用分解因式法解一元二次方程的一般步骤: ①将方程的右边化为零;②将方程的左边分解为两个一次因式的乘积; ③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,他们的解就是一元一次方程的解。
【典型例题】例1、(1)方程)2(2)2)(1(+=+-x x x 的根是__________ (2)方程0)3)(2)(1(=-+-x x x 的根是__________ 例2、 用分解因式法解下列方程(1)0632=-x x (2))5(2)5(32x x -=-(3) 0122=+-x x (4)4842-=+x x(5) 0)3()23(22=+-+x x (6)22)6(16)3(49+=-x x(7)0625412=-+x x (8)(x -1)2-4(x -1)-21=0.例3、2-3是方程x 2+bx -1=0的一个根,则b =_________,另一个根是_________. 例4、已知a 2-5ab +6b 2=0,则abb a +等于 ( ) 21331D.2 31321C.2 31B.3 21A.2或或例5、解关于x 的方程:(a 2-b 2)x 2+4abx =a 2-b 2.例6、x 为何值时,等式0232222=--+--x x x x【经典练习】填空题1、用因式分解法解方程9=x 2-2x+1 (1)移项得 ;(2)方程左边化为两个数的平方差,右边为0得 ; (3)将方程左边分解成两个一次因式之积得 ; (4)分别解这两个一次方程得x 1 = , x 2= 。
2、(1)方程t (t +3)=28的解为_______.(2)方程(2x +1)2+3(2x +1)=0的解为__________.3、(1)用因式分解法解方程5(x+3)-2x (x+3)=0,可把其化为两个一元一次方程和 求解。
一元二次方程的解法
一元二次方程的解法一元二次方程是形如ax^2 + bx + c = 0的方程,其中a、b和c分别代表不为零的实数常数。
解一元二次方程的方法有多种,包括因式分解法、配方法、求根公式法等。
下面将逐一介绍这些解法。
一、因式分解法当一元二次方程的因式分解形式为(x + m)(x + n) = 0时,方程的解即为x = -m和x = -n。
通过因式分解法求解一元二次方程的具体步骤如下:1. 将方程移项,将其化为形如ax^2 + bx + c = 0的标准形式。
2. 如果方程可以因式分解为两个一次式的乘积,即可直接得到方程的解。
3. 如果方程无法因式分解,可以通过配方法或求根公式等其他方法求解。
二、配方法对于一元二次方程ax^2 + bx + c = 0,通过配方法将其变形为(a'x + p)(b'x + q) = 0的形式,从而得到方程的解。
具体步骤如下:1. 将方程移项,将其化为形如ax^2 + bx + c = 0的标准形式。
2. 根据配方法的原则,首先将方程中二次项的系数a拆分为两个数m和n,使得a = m * n,并保证m + n等于一次项的系数b。
3. 将方程进行变形,得到(ax^2 + mx + nx + c = 0)。
4. 对方程进行因式分组,将前两项和后两项分组并提取公因式,得到((ax^2 + mx) + (nx + c) = 0)。
5. 分别对括号中的项进行因式分解,得到(x(a + m) + (n + c) = 0)。
6. 化简方程,继续合并同类项,得到(x(a + m) + (n + c) = 0)。
7. 根据方程(x(a + m) + (n + c) = 0),可得到方程的解。
三、求根公式法求根公式法是一种比较常用的解一元二次方程的方法,通过求解一元二次方程ax^2 + bx + c = 0来得到方程的解。
求根公式法的具体步骤如下:1. 将方程移项,将其化为形如ax^2 + bx + c = 0的标准形式。
一元二次方程(分解因式法)
一元二次方程(分解因式法)
能用分解因式法来解一元二次方程的结构特点:方程的一边是0,另一边可以分解成两个一次因式的积;
用分解因式法解一元二次方程的理论依据:两个因式的积为0,那么这两个因式中至少有一个等于0;
用分解因式法解一元二次方程的注意点:①必须将方程的右边化为0;②方程两边不能同时除以含有未知数的代数式。
因式分解主要有十字相乘法,待定系数法,双十字相乘法,对称多项式,轮换对称多项式法,余式定理法等方法,求根公因式分解没有普遍适用的方法,初中数学教材中主要介绍了提公因式法、运用公式法、分组分解法。
而在竞赛上,又有拆项和添减项法式法,换元法,长除法,短除法,除法等。
用因式分解法解一元二次方程详细
用因式分解法解一元二次方程【主体知识概括】1.因式分解法 若一元二次方程的一边是 0,而另一边易于分解成两个一次因式时,比如,x 2- 9=0,这个方程可变形为 ( + 3)( - 3) = 0,要 ( x + 3)( x -3) 等于 0,一定并且只需 ( x + 3) 等于 0 或( x - 3) 等于 0,x x所以,解方程 ( x + 3)( x - 3) = 0 就相当于解方程 x + 3= 0 或 x -3= 0 了,经过解这两个一次方程便可获得 原方程的解.这类解一元二次方程的方法叫做因式分解法.2.因式分解法其解法的重点是将一元二次方程分解降次为一元一次方程.其理论依据是:若A ·B =0 A = 0 或B = 0.【基础知识解说】1.只有当方程的一边能够分解成两个一次因式,而另一边是0 的时候, 才能应用因式分解法解一元二 次方程.分解因式时,要依据状况灵巧运用学过的因式分解的几种方法.2.在一元二次方程的四种解法中,公式法是主要的,公式法能够说是通法,即能解任何一个一元二次 方程.但对某些特别形式的一元二次方程,有的用直接开平方法简易,有的用因式分解法简易.所以,在碰到一道题时, 应选择适合的方法去解. 配方法解一元二次方程是比较麻烦的,在实质解一元二次方程时, 一般不用配方法.而在此后的学习中,会经常用到因式分解法,所以要掌握这个重要的数学方法.【例题精讲】例 1:用因式分解法解以下方程:(1)y 2+7 + 6= 0; (2)t (2 t - 1) = 3(2 t - 1) ;(3)(2 x -1)( x - 1) = 1.y解:(1) 方程可变形为 ( y + 1)( y + 6) = 0, y + 1= 0 或 y + 6= 0,∴ y 1=- 1, y 2=- 6. (2) 方程可变形为 t (2 t -1)-3(2 t -1)=0,(2 t -1)( t -3)=0,2t -1=0或 t -3=0,∴ t 1=1, t 22= 3.(3) 方程可变形为 2x 2- 3x =0.x (2 x - 3) = 0,x = 0 或 2x - 3= 0. ∴ x 1=0, x 2=3.2说明: (1) 在用因式分解法解一元二次方程时,一般地要把方程整理为一般式,假如左侧的代数式能够 分解为两个一次因式的乘积,而右侧为零时,则可令每一个一次因式为零,获得两个一元一次方程,解出这两个一元一次方程的解就是原方程的两个解了.(2)应用因式分解法解形如 ( x-a)( x-b) =c的方程,其左侧是两个一次因式之积,但右侧不是零,所以应转变为形如( x-e)( x-f ) =0 的形式,这时才有x1= e, x2= f ,不然会产生错误,如(3) 可能产生以下的错解:原方程变形为:2x- 1=1 或x- 1= 1.∴x1= 1,x2= 2.(3) 在方程 (2) 中,为何方程两边不可以同除以(2 t-1) ,请同学们思虑?例 2:用适合方法解以下方程:(1) 3 (1- x)2= 27 ;(2) x2-6x-19=0;(3)3 x2=4x+1;(4) y2-15=2y;(5)5 x( x-3)-( x-3)( x+1) = 0;(6)4(3 x+ 1) 2= 25( x- 2) 2.解析:方程 (1) 用直接开平方法,方程(2) 用配方法,方程(3) 用公式法,方程(4) 化成一般式后用因式分解法,而方程(5) 、 (6) 不用化成一般式,而直接用因式分解法就能够了.2 =9 ,( x-1) 2 = 3,x- 1=±3 ,∴ x =1+ 3 , x =1- 3 .解: (1)(1 - x)1 2(2) 移项,得x 2- 6 = 19,配方,得x2- 6x+ ( - 3) 2= 19+( - 3) 2, ( - 3) 2= 28,- 3=± 27,x x x∴ x1=3+2 7 , x2=3-2 7 .(3)移项,得 3x2-4x- 1=0,∵ a=3, b=-4, c=-1,∴ x=( 4)( 4)2 43 ( 1) 2 7 ,2 3 3∴ x1=2 7,x2=27 .3 3(4) 移项,得y2- 2y- 15=0,把方程左侧因式分解,得( y- 5)( y+ 3) = 0;∴ y-5=0或 y+3=0,∴ y1=5, y2=-3.(5)将方程左侧因式分解,得 ( x- 3) [ 5x-( x+ 1) ]= 0, ( x- 3)(4 x- 1) = 0,∴ x-3=0或4x-1=0,∴x1=3, x2=1.4(6)移项,得 4(3 x+ 1) 2- 25( x- 2) 2= 0,[ 2(3 x+ 1) ]2-[ 5( x- 2) ]2= 0,[2(3 x+ 1) + 5( x- 2) ]·[ 2(3 x+ 1) - 5( x-2) ]= 0,(11 x-8)( x+ 12) = 0,∴11x- 8= 0 或x+ 12= 0,∴x1=8,x2=- 12.11说明: (1) 对于无理系数的一元二次方程解法同有理数同样,只可是要注意二次根式的化简.(2) 直接因式分解就能转变成两个一次因式乘积等于零的形式,对于这类形式的方程就不用要整理成一般式了.例 3: 解对于x的方程: ( a2-b2) x2- 4abx=a2-b2.解: (1) 当a2-b2=0,即|a|=|b|时,方程为-4abx= 0.当 a=b=0时, x 为随意实数.当|a|=| b|≠0时, x=0.(2)当 a2- b2≠0,即 a+ b≠0且 a- b≠0时,方程为一元二次方程.分解因式,得[ ( a+b) x+ ( a-b) ][ ( a-b) x- ( a+b) ]= 0,∵ a+ b≠0且 a- b≠0,∴ x1=b a, x2=ab .a b a b说明:解字母系数的方程,要注意二次项系数等于零和不等于零的不一样状况分别求解.此题其实是分三种状况,即①a= b=0;②| a|=| b|≠0;③| a|≠| b|.2 2x 2 2xy 5 y 2例 4: 已知x-xy- 2y= 0,且x≠ 0,y≠ 0,求代数式x 2 2xy 5 y 2 的值.解析:要求代数式的值,只需求出 x、y 的值即可,但从已知条件中明显不可以求出,要求代数式的分子、分母是对于 x、 y 的二次齐次式,所以知道x 与 y 的比值也可.由已知x2- xy-2y2=0因式分解即可得 x 与 y 的比值.解:由 x2- xy-2y2=0,得( x-2y)( x+y)=0,∴ x-2y=0或 x+y=0,∴ x=2y 或 x=- y.当 x=2y 时,x22xy 5y 2 (2y) 2 2 2y y 5y 2 5y 2 5 .x 2 2xy 5y 2 (2y ) 2 2 2y y 5y 2 13y 2 13当 x=- y 时,x 2 2xy 5y 2 ( y) 2 2 ( y ) y 5y 2 2y 2 1.x 2 2xy 5y 2 ( y) 2 2 ( y ) y 5y 4y 2 2说明:因式分解法表现了“降次”“化归”的数学思想方法,它不单可用来解一元二次方程,并且在解一元高次方程、二元二次方程组及相关代数式的计算、证明中也有着宽泛的应用.【同步达纲练习】 1.选择题(1) 方程 ( x - 16)(x +8)=0的根是 ()A .x 1=- 16,x 2= 8B .x 1= 16,x 2=- 8C .x 1=16,x 2= 8D .x 1=- 16,x 2=- 8(2) 以下方程 4x 2-3x - 1=0, 5x 2- 7x + 2= 0,13x 2- 15x +2= 0 中,有一个公共解是 ( )A .. x =1B . x = 2C . x = 1D .x =- 12(3) 方程 5 x ( x +3) = 3( x + 3) 解为 ( )1= 3 2B . x = 3A . x 5 , x = 35C . x 1=- 3, x 2=- 3D . x 1= 3, x 2=- 355(4) 方程 ( y - 5)( y + 2) =1 的根为 ( )A . y 1=5, y 2=- 2B . y = 5C . y =- 2D .以上答案都不对(5) 方程 ( x - 1) 2-4( x + 2) 2= 0 的根为 ( )A . x 1=1, x 2=- 5B . x 1=- 1, x 2=- 5C . x 1= 1, x 2= 5D . x 1=- 1, x 2= 5(6) 一元二次方程 x 2+ 5x = 0 的较大的一个根设为 m , x 2- 3x + 2= 0 较小的根设为 n ,则 m + n 的值为( )A . 1B . 2C .- 4D . 4(7) 已知三角形两边长为4 和 7,第三边的长是方程x 2- 16x + 55= 0 的一个根,则第三边长是( ) A . 5 B . 5 或 11 C . 6D . 11(8) 方程 x 2-3| x -1|=1的不一样解的个数是( ) A . 0B . 1C . 2D . 3 2.填空题(1) 方程 t ( t +3)=28的解为_______.(2) 方程 (2 x + 1) 2+ 3(2 x +1) = 0 的解为 __________ . (3) 方程 (2 y + 1) 2+ 3(2 y +1) + 2= 0 的解为 __________.(4)对于 x 的方程 x2+( m+n) x+ mn=0的解为__________.(5)方程 x( x- 5 )= 5 - x 的解为__________.3.用因式分解法解以下方程:(1) x2+12x= 0;(2)4 x2- 1= 0;(3) x2= 7x;(4) x2-4x- 21=0;(5)(x-1)( x+3)=12;(6)3 x2+ 2x- 1= 0;(7)10 x2-x- 3=0;(8)(x-1)2-4( x-1)-21=0.4.用适合方法解以下方程:(1) x2-4x+ 3= 0;(2)(x-2)2=256;(3) x2- 3x+ 1=0;(4) x2-2x- 3= 0;(5)(2 t+ 3) 2= 3(2 t+ 3) ;(6)(3 -y) 2+y2= 9;(7)(1 +2 ) x2-(1-2 ) x=0;(8) 5 x2- (5 2+ 1) x+10 =0;(9)2 x2-8x= 7( 精准到 0.01) ; (10)( x+ 5) 2-2( x+ 5) - 8= 0.5.解对于x 的方程:(1) x 2-4ax +3a 2=1-2a ;(2) x 2+5x +k 2=2kx +5k +6;2222(3) x -2mx - 8m = 0; (4) x + (2 m + 1) x + m + m =0. 6.已知x 2+ 3xy -4y 2= 0( y ≠ 0) ,试求x y的值.x y7.已知 ( x 2+y 2)( x 2- 1+y 2) - 12= 0.求x 2+y 2的值. 8.请你用三种方法解方程:x ( x +12)=864.9.已知x 2+ 3x + 5 的值为 9,试求 3x 2+ 9x - 2 的值.10.一跳水运动员从 10 米高台上跳水,他跳下的高度h (单位:米)与所用的时间t (单位:秒)的关系 式 h =-5( t -2)( t +1).求运动员起跳到入水所用的时间.11.为解方程 ( x 2- 1) 2- 5( x 2-1) + 4=0,我们能够将 x 2-1 视为一个整体,而后设x 2- 1= y ,则 y 2=( x 2- 1) 2,原方程化为2- 5 + 4=0,解此方程,得y 1= 1, y 2= 4.y y当 y =1时, x 2-1=1, x 2=2,∴ x =±2 .当 y=4时, x2-1=4, x2=5,∴ x=± 5 .∴原方程的解为 x1=- 2 , x2= 2 , x3=- 5 , x4= 5 .以上方法就叫换元法,达到了降次的目的,表现了转变的思想.(1)运用上述方法解方程: x4-3x2-4=0.(2)既然能够将 x2-1看作一个整体,你能直接运用因式分解法解这个方程吗参照答案【同步达纲练习】1. (1)B (2)C (3)D (4)D (5)B (6)A (7)A (8)D2. (1) t 1=- 7,t 2= 4(2) x 1=-1 2, 2=-2(3) y 1=-1, y 2=-3 (4) x 1=- , 2=- n (5) x 1= 5 , 2=-1 x 2m x x3.(1) x 1=0,x 2=- 12;(2) x 1=-1,x 2=1;(3) x 1=0,x 2= 7;(4) x 1= 7,x 2=- 3;(5) x 1=- 5,x 2=3;(6) x 1=- 1,22x 2=1;3(7) x 1=3,x 2=-1;(8) x 1=8, x 2=-2.524. (1) x 1= 1, x 2= 3; (2) x 1= 18, x 2=- 14; (3) x 1=35, x 2 =35; (4) x 1 =3, x 2=- 1;22(5) t 1=0, t 2=-3; (6) y 1= 0,y 2 = 3; (7) x 1= 0,x 2= 22 - 3;2(8) x1=5 x2= 10; (9) x 1≈, x 2=-; (10)xx=- 7. ,1=- 1,255. (1) x 2- 4ax +4a 2=a 2-2a +1,( x - 2a ) 2= ( a - 1) 2, ∴ x -2a =±( a -1),∴ x 1=3a -1, x 2= a +1.(2) x 2+(5-2k ) x + k 2-5k -6=0, x 2+(5-2k ) x +( k +1)( k -6)=0, [ x -( k +1)][ x -( k -6)]=0, ∴ x 1= k +1,x 2=( k -6).(3) x 2-2 + 2= 9 2 ,( x - ) 2= (3 ) 2mx m m m m ∴ x 1=4m , x 2=-2m(4) x 2+(2 m +1) x +m ( m + 1) = 0, ( x +m ) [x + ( m + 1) ]= 0,∴ x 1=- m ,x 2=- m -16. ( x + 4y )( x -y ) = 0,x =-4y 或 x =y当 x=-4y 时,xy = 4 y y 5 ;x y 4 y y 3当 x= y 时,xy = yy= 0.x y y y7. ( x2+y2)( x2+y2- 1) - 12= 0,( x2+y2 ) 2- ( x2+y2) -12=0,( x2+y2- 4)( x2+y2+ 3) = 0,∴ x2+ y2=4或 x2+ y2=-3(舍去)8.x1=- 36,x2= 249.∵x2+ 3x+ 5=9,∴x2+ 3x= 4,∴3x2+9x-2= 3( x2+ 3x) - 2= 3×4- 2= 10 10. 10=- 5( t- 2)(t +1),∴ t =1( t =0舍去) 11. (1)x1=-2,x2=2(2)(x2-2)( x2-5)=0,( x+2 )(x- 2 )(x+ 5 )(x-5 )=0。
一元二次方程怎么因式分解
一元二次方程怎么因式分解
因式分解法解一元二次方程的口诀:一移,二分,三转化,四再求根容易得。
步骤:将方程右边化为0;将方程左边分解为两个一次式的积;令这两个一次式分别为0,得到两个一元一次方程;解这两个一元一次方程,它们的解就是原方程的解。
在使用因式分解法解一元二次方程时:
①因式分解法解一元二次方程时,等式右边必须为0。
②方程中如果有括号不要急于去掉括号,要先观察方程是否可采用因式分解法求解。
③因式分解法有提公因式法,公式法,分组分解法等(十字相乘法最常用)。
④利用因式分解法解一元二次方程时,注意不能将方程两边同时约去相同的因式或未知数。
一元二次方程的五种解法
一元二次方程的五种解法一元二次方程是数学中常见的方程类型,解一元二次方程有多种方法。
下面将介绍五种解一元二次方程的方法。
一、因式分解法通过因式分解的方法,将一元二次方程化简为两个一次方程,进而求解方程的解。
例如,对于方程x^2 + 5x + 6 = 0,我们可以通过因式分解得到(x + 2)(x + 3) = 0,进而得到x = -2或x = -3。
二、配方法通过配方法,将一元二次方程转化为一个完全平方的形式,然后求解方程的解。
例如,对于方程x^2 + 6x + 9 = 0,我们可以通过配方法将其转化为(x + 3)^2 = 0,进而得到x = -3。
三、求根公式法一元二次方程的求根公式为x = (-b ± √(b^2 - 4ac)) / (2a),其中a、b、c分别为方程ax^2 + bx + c = 0中的系数。
通过代入系数,计算出方程的解。
例如,对于方程x^2 + 2x - 3 = 0,我们可以代入a = 1,b = 2,c = -3,然后利用求根公式计算出x的值。
四、完成平方法通过将一元二次方程的两边进行平方,化简为一个完全平方的形式,然后求解方程的解。
例如,对于方程x^2 + 4x + 4 = 0,我们可以通过将其两边进行平方得到(x + 2)^2 = 0,进而得到x = -2。
五、图像法通过绘制一元二次方程的图像,观察图像与x轴的交点来求解方程的解。
例如,对于方程x^2 - 4 = 0,我们可以绘制出抛物线的图像,观察到抛物线与x轴的交点为x = 2和x = -2,因此方程的解为x = 2和x = -2。
解一元二次方程有多种方法,包括因式分解法、配方法、求根公式法、完成平方法和图像法。
不同的方法适用于不同的方程,选择合适的解法可以更快地求解一元二次方程的解。
在实际应用中,根据方程的形式和已知条件,选择合适的解法可以简化计算,提高效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. 将方程左边因式分解;
分解因式法解一元二次方程的步骤是:
3. 根据“至少有一个因式为零”,转化为两个一元一次方程. 4. 分别解两个一元一次方程,它们的根就是原方程的根.
书P14, 练习:1、2.
1.解下列方程
(1) x x ቤተ መጻሕፍቲ ባይዱ0
2
(2) x 2 3x 0
2
解 : x( x 1) 0. x1 0, x2 1.
解 : x ( x 2 3 ) 0. x1 0, x2 2 3.
1.书P17第6题(1)、(3) 2.基础训练
提公因式法解一元二次方程的步骤是:
1. 将方程左边因式分解,右边等于0; 2. 根据“至少有一个因式为零”,转化为两个 一元一次方程. 3. 分别解两个一元一次方程,它们的根就 是原方程的根.
例题讲解
2
☞
用提公因式解方程:
(1)5x2=4x; (2)x-2=x(x-2);
(1)解 : 5 x 4 x 0,
x 5 x 4 0.
x 0, 或5 x 4 0.
4 x1 0; x2 . 5
1.化方程为一般形式;
2解:x 2 xx 2 0, x 2 1 x 0.
初中数学
人教2011版
九年级上册
铜陵市义安区新桥初级中学
徐建设
九年级数学上册人教版 义安区新桥初级中学 徐建设
回顾与复习 1
我们已经学过了几种解一元二次方程的方法?
(1)直接开平方法: x2=a (a≥0) (2)配方法:
(x+h)2=k (k≥0)
2
b b 4 ac 2 (3)公式法: x . b 4ac 0 . 2a
小亮做得对吗?
我思
我进步
分解因式法
把一个多项式分解成几个整式乘积的形式叫 做分解因式.
当一元二次方程的一边是0,而另一边易于分解 成两个一次因式的乘积时,我们就可以用分解因 式的方法求解.这种用分解因式解一元二次方程 的方法称为分解因式法. 提示: 1.用分解因式法的条件是:方程左边易于分解,而右 边等于零; 2.关键是熟练掌握因式分解的知识; 3.理论依旧是“如果两个因式的积等于零,那么至 少有一个因式等于零.”
问题导入
你能解决这个问题吗
一个数的平方与这个数的3倍有可能相等吗?如果相 等,这个数是几?你是怎样求出来的? 小颖,小明,小亮都设这个数为x,根据题意得 x 2 3 x.
小颖是这样解的 :
( 3) 2 4 1 0 9.
3 9 . 2 这个数是 0或 3 . x
下课了!
结束寄语
• 配方法和公式法是解一元二次方程 重要方法,要作为一种基本技能来 掌握.而某些方程可以用提公因式 法简便快捷地求解.
小明是这样解的 :
解 : 方程x 2 3 x两 边都同时约去x, 得. x 3.
这个数是 3 .
小颖做得对吗?
小明做得对吗?
心动
不如行动
你能解决这个问题吗
一个数的平方与这个数的3倍有可能相等吗?如果相 等,这个数是几?你是怎样求出来的? 小颖,小明,小亮都设这个数为x,根据题意得 x 2 3 x.
小亮是这样想的 :
如果a b 0,
那么a 0或b 0 或 a b 0. 即, 如果两个因式的积等于 0, 那么这两个数至少有一 个为0.
小亮是这样解的 : 解 :由方程 x 2 3 x, 得 x 2 3 x 0. x x 3 0. x 0, 或x 3 0. x1 0, x2 3. 这个数是 0或 3 .