北师版七年级数学有理数的乘方1
有理数的乘方北师大版数学初一上册教案
有理数的乘方北师大版数学初一上册教案一、教学目标1.知识与技能理解有理数的乘方的概念。
掌握有理数乘方的运算法则。
能够运用有理数乘方解决实际问题。
2.过程与方法通过实例引入,培养学生的观察能力和抽象思维能力。
通过小组讨论,培养学生的合作能力和交流能力。
通过练习,巩固有理数乘方的运算技能。
3.情感态度与价值观激发学生对数学的兴趣,培养学生积极探究的精神。
培养学生独立思考、勇于尝试的良好学习习惯。
二、教学重点与难点1.教学重点有理数乘方的概念和运算法则。
有理数乘方在实际问题中的应用。
2.教学难点有理数乘方的概念理解。
负数乘方的运算。
三、教学过程第一课时:有理数乘方的概念1.导入新课教师通过讲解生活中的例子,如细胞的分裂、物品的折扣等,引导学生感受乘方的意义。
2.概念讲解教师用简洁明了的语言讲解有理数乘方的定义:a^n表示n个a 相乘。
教师通过板书,展示几个有理数乘方的例子,如2^3、(-3)^2等。
3.小组讨论学生分成小组,讨论如何用乘方的语言表达生活中的现象。
4.练习巩固学生完成教材上的练习题,教师巡视指导。
5.课堂小结第二课时:有理数乘方的运算法则1.导入新课教师通过复习上节课的内容,引导学生学习有理数乘方的运算法则。
2.法则讲解教师讲解同底数幂的乘法法则、幂的乘方法则、积的乘方法则等。
教师通过板书,展示法则的推导过程。
3.小组讨论学生分成小组,讨论如何运用运算法则解决实际问题。
4.练习巩固学生完成教材上的练习题,教师巡视指导。
5.课堂小结第三课时:有理数乘方在实际问题中的应用1.导入新课教师通过讲解生活中的实际问题,引导学生学习有理数乘方的应用。
2.实例分析教师展示几个有理数乘方在实际问题中的应用实例,如物品的折扣、银行利率等。
学生分析实例,理解有理数乘方的应用。
3.小组讨论学生分成小组,讨论如何运用有理数乘方解决实际问题。
4.练习巩固学生完成教材上的练习题,教师巡视指导。
5.课堂小结第四课时:单元测试1.测试内容教师根据本节课所学内容,设计一份单元测试卷。
2017-2018学年七年级北师大版数学上册课件:2.9有理数的乘方(1) (共35张PPT)
(5)如果一个有理数的任何正整数次幂都
1或 0 等于它的绝对值,那么这个数是_______,
(6)如果一个有理数的任何正整数次幂都
1 等于它的倒数,那么这个数是_________,
19
练习八
计算 (1) 2×1/2= 1 , (2)22×(1/2)2=_________________, 2×2×1/2×1/2=1 (3)23×(1/2)3=___, 1 (4)24×(1/2)4=___, 1 …… (4)2n×(1/2)n=___, 1 探索问题3:观察练习九的结果,你发 现有什么规律? 互为倒数的相同次数的幂仍互为倒数, 它们的积为1 20
5 (0.5×10)小时后分裂成 _______________________________________. 2×2×2×2×2×2×2×2×2×2=1024(个)
4
半天(0.5×24小时)后分裂成 _________________________________, 2×2×· · · ×2×2(24个2)=16777216(个) 一天(0.5×48小时)后分裂成 _________________________________________. 2 ×2×· · · ×2×2(48个2)=281,474,976,710,656(个) 这个数字究竟有多大? 这大约相当于全地球60亿人口的46912倍; 这大约相当于中国13亿人口的216519倍.
棋盘上的学问国际象棋棋盘.swf
印度有一个古老的传说:在某个王国里有一位聪明的 大臣叫西萨· 班· 达依尔,他发明了国际象棋,献给了国王 — —舍罕王,国王从此迷上了下棋.为了对聪明的大臣表示感 谢,国王打算奖赏他.国王问他想要什么,他对国王说:“陛下, 请您在这张棋盘上赏一些大米吧.在第1个小格里放1粒,在 第2个小格里放2粒,第3 小格放4粒,以后每一小格都比前一 小格加一倍,直到摆满棋盘上的所有64格.请您把这些大米, 都赏给您的仆人吧!”国王哈哈大笑“你真傻!就要这么一 点大米,这个要求太容易满足了,就命令给他这些大米.”当 人们把一袋一袋的大米搬来开始记数时,国王才发现:就是 把全印度甚至全世界的大米都拿来,也满足不了那位大臣 的要求.那么大臣要求得到的大米到底有多少呢? 用计算器不难求得其总数是:18446744073709551615(粒) 28
北师大版数学七年级上册2.9《有理数的乘方》说课稿1
北师大版数学七年级上册2.9《有理数的乘方》说课稿1一. 教材分析《有理数的乘方》是北师大版数学七年级上册第2.9节的内容,本节课是在学生已经掌握了有理数的乘法、加法、减法、除法的基础上进行学习的,是对有理数运算的进一步拓展。
有理数的乘方是指一个有理数自乘若干次,例如(a2)表示(a)乘以(a),(a3)表示(a)乘以(a)再乘以(a)。
有理数的乘方在实际生活中有着广泛的应用,如计算利息、折现等。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于有理数的四则运算有一定的了解。
但是,学生可能对于有理数乘方的概念和意义理解不够深入,对于乘方的计算法则和应用可能还不够熟练。
因此,在教学过程中,需要引导学生从实际问题中抽象出有理数乘方的概念,并通过大量的练习来熟练计算法则。
三. 说教学目标1.理解有理数乘方的概念和意义,掌握有理数乘方的计算法则。
2.能够运用有理数乘方解决实际问题,提高解决问题的能力。
3.培养学生的逻辑思维能力和创新能力,提高学生对数学的兴趣。
四. 说教学重难点1.教学重点:有理数乘方的概念、计算法则和应用。
2.教学难点:有理数乘方的计算法则的推导和理解,有理数乘方在实际问题中的应用。
五. 说教学方法与手段1.采用问题驱动的教学方法,引导学生从实际问题中抽象出有理数乘方的概念。
2.使用多媒体课件和板书相结合的方式,直观地展示有理数乘方的过程和规律。
3.通过大量的练习和小组讨论,让学生熟练掌握有理数乘方的计算法则。
4.采用激励评价和过程性评价相结合的方式,鼓励学生积极参与课堂活动,提高学生的学习积极性。
六. 说教学过程1.导入:通过一个实际问题,如计算利息,引入有理数乘方的概念。
2.新课导入:讲解有理数乘方的定义和计算法则,引导学生通过观察和思考,发现乘方的规律。
3.案例分析:通过几个具体的例子,让学生理解和掌握有理数乘方的计算法则。
4.练习环节:布置一些练习题,让学生独立完成,巩固所学内容。
北师大版数学七年级上册《乘方的意义》教案1
北师大版数学七年级上册《乘方的意义》教案1一. 教材分析《乘方的意义》是北师大版数学七年级上册第三章“字母表示数”的一部分。
本节课主要让学生理解乘方的概念,掌握有理数的乘方运算法则,并能运用乘方解决实际问题。
通过本节课的学习,学生能够更深入地理解有理数的运算,为后续学习指数函数、对数函数等概念打下基础。
二. 学情分析学生在进入七年级之前,已经学习了有理数的加减乘除运算,对运算规律有一定的了解。
但乘方运算与有理数运算在本质上有所不同,需要学生转换思维方式。
此外,乘方运算在实际生活中的应用也需要学生进行一定的探索。
三. 教学目标1.理解乘方的概念,掌握有理数的乘方运算法则。
2.能够运用乘方解决实际问题。
3.培养学生的逻辑思维能力和探索精神。
四. 教学重难点1.乘方的概念。
2.有理数的乘方运算法则。
3.乘方在实际生活中的应用。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置问题,引导学生自主探索;通过案例分析,让学生理解乘方的实际意义;通过小组合作,培养学生的团队协作能力。
六. 教学准备1.PPT课件。
2.相关案例资料。
3.小组合作学习任务单。
七. 教学过程1. 导入(5分钟)通过一个实际问题导入:加热时间与温度的关系。
假设把牛奶加热到60℃需要5分钟,那么加热到120℃需要几分钟?引导学生思考温度与时间的关系,引出乘方的概念。
2. 呈现(10分钟)讲解乘方的定义:乘方表示一个数自乘若干次。
例如,2的3次方表示2乘以自己3次,即2×2×2=8。
通过PPT展示乘方的图形表示,让学生直观地理解乘方的意义。
3. 操练(10分钟)让学生进行乘方运算练习,巩固乘方的概念。
练习题包括有理数的乘方、负数的乘方、零的乘方等。
教师巡回指导,解答学生的疑问。
4. 巩固(10分钟)通过案例分析,让学生理解乘方在实际生活中的应用。
例如,计算细胞分裂、放射性衰变等问题,引导学生运用乘方解决实际问题。
有理数的乘方北师大版数学初一上册教案
有理数的乘方北师大版数学初一上册教案教案如下:教学目标:1. 理解有理数的乘方的概念。
2. 掌握有理数的乘方的运算规则。
3. 能够计算简单的有理数的乘方。
教学重点:1. 理解有理数的乘方的概念。
2. 掌握有理数的乘方的运算规则。
教学难点:1. 计算涉及有理数的乘方的运算。
教学准备:1. 教师准备教材《北师大版数学初一上册》。
2. 学生准备教材、作业本和课堂笔记。
教学过程:Step 1: 引入新知识1. 教师通过简单的实例引入有理数的乘方的概念。
2. 教师解释有理数的乘方的定义和运算规则。
Step 2: 讲解和练习运算规则1. 教师通过教材的相关内容,逐步讲解有理数的乘方的运算规则。
2. 教师通过练习题让学生熟练掌握有理数的乘方的运算规则。
Step 3: 拓展练习1. 教师提供一些涉及有理数的乘方的计算题目,让学生进行拓展练习。
2. 教师引导学生分析、解决问题,并给予适当指导。
Step 4: 总结和归纳1. 教师和学生共同总结有理数的乘方的运算规则。
2. 学生进行复习和整理,将学到的知识进行总结和归纳。
Step 5: 课堂小结1. 教师进行课堂小结,强调有理数的乘方的重点和难点。
2. 学生进行自我评价,发现自己的不足之处。
教学反思:1. 教师在讲解有理数的乘方的概念时,要注重提供简单易懂的实例,加深学生对该概念的理解。
2. 教师在讲解有理数的乘方的运算规则时,要通过练习题帮助学生熟练掌握该规则并能够灵活运用。
3. 教师要根据学生的实际情况,进行灵活性的调整,确保每个学生都能够理解和掌握有理数的乘方的知识。
2.4有理数的乘方(教案)北师大版(2024)数学七年级上册
2.4有理数的乘方第1课时乘方的意义1.理解有理数乘方的意义;2.掌握有理数乘方的运算方法,并能熟练地进行有理数的乘方运算.重点理解有理数乘方的概念,掌握计算方法.难点运用乘方的意义进行正确的计算.一、导入新课问题1:在小学我们已经学习过a·a,记作a2,读作a的平方(或a的二次方);a·a·a记作a3,读作a的立方(或a的三次方);那么,a·a·a·a呢?问题2:在小学对于字母a我们只能取正数.进入中学后,我们学习了有理数,那么a还可以取哪些数呢?请举例说明.学生思考后回答,教师点评.二、探究新知1.有理数乘方的相关概念课件出示教材第58页细胞分裂示意图,提出问题:某种细胞每过30 min便由1个分裂成2个.经过5 h,这种细胞由1个能分裂成多少个?引导学生分析题意得出:5 h后要分裂10次,分裂成=1024(个).教师进一步讲解:为了简便,可将记为210.一般地,n个相同的因数a相乘,记作a n,即=a n.这种求n个相同因数a的积的运算叫作乘方,乘方的结果叫作幂,a叫作底数,n叫作指数,a n读作“a的n次幂”.(或“a的n次方”) 强调:①一般地,在a n中,a取任意有理数,n取正整数.②乘方是一种运算,幂是乘方运算的结果.当a n看作a的n次方的结果时,也可以读作a的n次幂.2.有理数乘方的计算教师:我们知道,乘方和加、减、乘、除一样,也是一种运算,a n就是表示n个a相乘,所以可以利用有理数的乘法运算来进行有理数乘方的运算.课件出示:(1)52=________;53=________;54=________;55=________;(2)(-5)2=________;(-5)3=________;(-5)4=________;(-5)5=________;(3)01=________;02=________;03=________.引导学生观察、比较、分析这几道计算题中,底数、指数和幂之间有什么关系?学生独立完成,教师点评,并进一步讲解:(1)正数的任何次幂都是正数;负数的奇次幂是负数,偶次幂是正数;零的任何次幂都是零.(2)互为相反数的两个数的奇次幂仍互为相反数,偶次幂相等.(3)任何一个数的偶次幂都是非负数.引导学生把上述的结论用数学符号语言表示:当a >0时,a n >0(n 是正整数);当a =0时,a n =0(n 是正整数);当a <0时,⎩⎪⎨⎪⎧a n >0(n 为偶数),a n <0(n 为奇数).a 2n =(-a )2n (n 是正整数);a 2n -1=-(-a )2n -1(n 是正整数);a 2n ≥0(a 是有理数,n 是正整数).3.有理数乘方的应用有一张厚度是0.1 mm 的纸,将它对折1次后,厚度为2×0.1 mm.(1)将这张纸对折2次后,厚度为多少毫米?(2)假设可以将这张纸对折20次,那么对折20次后厚度为多少毫米?三、课堂练习1.教材第59页“随堂练习”第1、2题.2.平方得9的数有几个?是什么?有没有平方得-9的有理数?为什么?【答案】2.2个 ±3 没有 任何数的平方都大于或等于零四、课堂小结1.通过本节课的学习,你有什么收获?2.在学习乘方的概念时应注意什么?五、课后作业教材第61页习题2.4第1,2题.本节课通过自主学习与合作交流,多数学生能够掌握乘方和幂的意义,但在负数的乘方时,对于理解加括号和不加括号的区别,部分学生会有困难.而在后续的拓展中,利用乘方的意义解决问题,大部分学生可能存在困难,应用意识不够强.针对这一问题,采取策略是:师生共同对每一个算式先分析幂的意义,再计算,对易混淆的形式,举例辨析.第2课时科学记数法1.理解科学记数法的意义,学会用科学记数法表示大数;2.对用科学记数法表示的数进行简单的运算.重点用科学记数法表示大数,把用科学记数法表示的数还原成原数.难点归纳出科学记数法中指数与整数位数之间的关系.一、导入新课问题1:什么叫作乘方?103,-103,(-10)3,a n的底数、指数、幂分别是什么?问题2:计算:101,102,103,104,105,106,1010.学生完成后举手回答,教师进一步讲解问题2:左边用10的n 次幂表示简洁明了,且不易出错,右边有许多零,很容易出现写错的情况,读的时候也是左易右难,这就使我们想到用10的n次幂表示较大的数,比如一亿、一百亿等.又如像太阳的半径大约是696000千米、光速大约是300000000米/秒,中国人口大约是13亿等.教师:我们如何能简单明了地表示大数呢?这就是本节课我们要学习的内容——科学记数法.二、探究新知教师:同学们,请观察第2题:101=10,102=100,103=1000,104=10000,…,1010=10000000000.10n中的n表示n个10相乘,它与运算结果中0的个数有什么关系?与运算结果的数位有什么关系?学生:10n=100…0(n个0),n恰巧是1后面0的个数.n比运算结果的位数少1.课件出示:(1)把下面各数写成10的幂的形式:1000,100000000,100000000000.(2)指出下列各数是几位数:103,105,1012,10100.学生完成后举手回答,教师点评,引导学生总结科学记数法的定义:把大于10的数记成a×10n的形式,其中1≤a<10,n是正整数,这种记数方法叫作科学记数法.教师进一步讲解:现在我们只学习大于10的数的科学记数法,以后我们还要学习其他一些数的科学记数法.说它科学,因为它简单明了,易读易记易判断大小,在自然科学中经常运用.例(课件出示教材第60页例2)要求学生独自完成后汇报答案,教师讲评.三、课堂练习教材第61页“随堂练习”第1,2题.四、课堂小结1.什么是科学记数法?2.10的幂指数与原数整数位位数有什么关系?五、课后作业教材第61页习题2.4第3,4题.本节课的内容是科学记数法.在教学过程中,通过复习乘方的知识,进而引入本课内容.教师引导学生自主探究科学记数法的概念,知道怎样用科学记数法表示大于10的数.理清10的幂指数与原数整数位位数的关系.教学由浅入深,循序渐进,学生探究的问题愈来愈有挑战性,教师适当点拨和学生充分讨论形成共识,教师利用对科学记数法的认识,设置由浅入深的练习题,加深对概念的理解与掌握.通过例题的学习、习题的训练,学生对科学记数法有了一定的认识和掌握.。
有理数的乘方 北师大版数学七年级上册
知识点1 科学记数法
还记得底数为10的幂有什么规律吗?算一算,想一想. 101=__1_0_ , 102=_1_0_0_ ,103=_1_0_0_0_ , 104=_1_0_0_0_0_, 106=_1_0_0_0__0_0_0_, 1010 =_1_0_0_0_0__0_0_0_0_0_0__, … 指数与运算结果的位数有什么关系?
地球半径约为 6 400 000 m.
生活中常常会遇到比100万还大的数,比如:
光在真空中的传播速度约为 300 000 000米/秒
有使这些大数易 写易读的方法吗?
这些大数书写起来非 常不便,也容易写错.
知识点1 科学记数法
还记得底数为10的幂有什么规律吗?算一算,想一想.
101=__1_0_ , 102=_1_0_0_ ,103=_1_0_0_0_ , 104=_1_0_0_0_0_, 106=_1_0_0_0__0_0_0_, 1010 =_1_0_0_0_0__0_0_0_0_0_0__, … 指数与运算结果中的0的个数有什么关系? 10的指数等于1后面0的个数;
有一张厚度为0.1 mm的纸,将它对折1次后,厚度为2×0.1 mm.
(2) 假设对折20次,厚度为多少毫米?
对折1次: 21层 对折2次: 22层
220×0.1=104 857.6(mm) =104.857 6 m
对折3次: 23层
104.857 6 ÷3≈35
… …
对折20次: 220层 这张纸对折20次后大约有35层楼高.
知识点1 底数是2的幂
对折1次
对折2次
对折3次 ……
对折20次
21层
22层
23层 …… 220层
22 ×0.1=0.4(mm) 220×0.1=104 857.6(mm)
北师大版七年级上册有理数的乘方课件16张PPT
2
2 2 2 -3 读作 3 的相反数,而 (-3)
读作-3的 平方 所以
(-3) =9
-3 =-9
2 2
例1 计算:
(1)
解:
(1)
(2) (3)
(4)
3
3
(2)
(2)
4 (3) (
2 3 ) 3
(4) (4) (4) (4) 64 (2) (2) (2) (2) (2) 16
2 =-9; (-3)2=9 -3 (3) = (X) (4) 24 (2) (2) (2) (2) ; ( X )
-24=-2×2×2×2=-16 2 2 22 2 2 2 2 4 22 2 2 4 (5) ( ) .( X) ( ) ; 3 3 3 9 3 3 3 3 3
填表:
底数 指数
幂
-1 3
2 5
-4 3
(-4)3
0.3 4
0.34
10 4
(-1)3
25
104
判断:(对的画“√”,错的画“×”.) (1) 32 = 3×2 = 6; ( (2) (-2)3 = (-3)2; -32 (-3)2; (
X
) 32 = 3×3=9
3 =-8; (-3)2=9 ) (-2) X
2 2 5 5 3 指数是____; (4)在 ( ) 中,底数是____,
3
注意:(1)负数的乘方,在书写时一 定要把整个负数(连同符号),用小括号 括起来.这也是辨认底数的方法。 (2)分数的乘方,在书写的时一定 要把整个分数用小括号括起来。
( 如:
1) 2
3
、(-3)
2
议一议 !
北师大版七年级上册数学有理数乘方的运算精品课件PPT
2 (1) ( 2 ) 3 ;(2) 4 ;(3) 3 2
4
解 : ( 1 ) 、 ( 2 ) 3 [ ( 2 ) ( 2 ) ( 2 ) ] ( 8 ) 8 (2 )、 2 4 (2 2 2 2 ) 1 6 (3)、 32 339 4 44
北师大版七年级上册数学 2.9.2有理数乘方的运算 课件
想一想
珠穆朗玛峰是
世界最高峰,它的 海拔高度是8848米。
≈
把一张足够大
的厚度为0.1毫米的
纸,连续对折30次
的厚度能超过珠穆
朗玛峰?
北师大版七年级上册数学 2.9.2有理数乘方的运算 课件
北师大版七年级上册数学 2.9.2有理数乘方的运算 课件
折纸与楼高
纸的厚度为0.1mm ,对折一次后,厚度为2×0.1mm (1) 对折两次后,厚度为多少毫米? (2)假设对折20次后,厚度为多少毫米? (3)若每层楼高度为3米,这张纸对折20次后约有多
北师大版七年级上册数学 2.9.2有理数乘方的运算 课件
通过上述练习,想一想乘方运算的符号 如何确定?
我们可以把有理数乘方运算的符号 法则总结如下 :
正数的任何次方都是正数, 负数的偶数次的幂是正数, 负数的奇数次的幂是负数.
0的任何正整数次幂都是0.
北师大版七年级上册数学 2.9.2有理数乘方的运算 课件
北师大版七年级上册数学 2.9.2有理数乘方的运算 课件
北师大版七年级上册数学 2.9.2有理数乘方的运算 课件
把下列各式写成乘方的形式: 3
(1)6×6×6 = 6
(2)2.1×2.1= 2.12
(3)(-3) ×(-3) ×(-3) ×(-3)=(-3)4
(4) 1 × 1 × 1×
北师大版七年级数学上册2.9《有理数的乘方》教学设计
-正数的任何次幂都是正数。
-负数的奇数次幂是负数,偶数次幂是正数。
-零的任何正数次幂都是零。
3.乘方的运算法则:
-同底数幂相乘,底数不变,指数相加。
-同底数幂相除,底数不变,指数相减。
-幂的乘方,底数不变,指数相乘。
(三)学生小组讨论
在学生小组讨论环节,我将设计以下问题,引导学生进行合作交流:
1.抽象思维能力较弱:乘方作为一项抽象的数学概念,学生可能难以从具体实例中提炼出乘方的规律,需要通过直观演示、形象比喻等方法帮助学生逐步培养抽象思维能力。
2.理解乘方符号含义:乘方符号对于学生来说是一个新的运算符号,理解其含义可能存在困难。教师需要耐心引导,通过实例让学生理解乘方符号所表示的数学意义。
-鼓励学生在小组讨论中分享自己的解题思路和方法,促进知识的交流和团队合作能力的提升。
5.自我反思题:
-让学生撰写学习心得,反思自己在乘方学习过程中的收获和遇到的困难,以及如何克服这些困难。
-要求学生根据反思结果,制定个性化的学习计划,以便在下一节课中进一步提高。
作业布置时,我会强调以下几点:
-作业的完成应注重质量而非数量,鼓励学生认真思考,确保理解每个问题。
4.拓展延伸,培养创新:
-结合学生的实际水平,设计具有一定难度的拓展题,培养学生的创新思维和解决问题的能力。
-鼓励学生提出不同的解题思路,分享解题心得,提高学生的数学素养。
5.课堂小结,反思提升:
-通过课堂小结,让学生回顾本节课所学内容,巩固乘方知识。
-鼓励学生进行自我反思,总结学习过程中的优点和不足,为下一节课的学习做好准备。
2.能够运用乘方的性质,简化计算过程,提高解题效率。
-学生能够运用乘方的性质,如负数的偶数次幂等于正数,奇数次幂等于负数;零的任何正数次幂等于零等。
新北师大版数学七年级上册《有理数的乘方》精品课件
You made my day!
我们,还在路上……
再见
不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面 上的话,另一眼睛看到纸的背面。2022年4月12日星期二下午7时57分12秒19:57:1222.4.12
书籍是屹立在时间的汪洋大海中的灯塔。2022年4月下午7时57分22.4.1219:57April 12, 2022 正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022年4月12日星期二7时57分12秒19:57:1212 April 2022 书籍是屹立在时间的汪洋大海中的灯塔。
19:57:12
练习P 111,2
乘方运算的符号规则: (1)正数的任何数次幂是正数. (2)负数的偶次幂是正数; 负数的奇数次幂是负数。 (3)0的任何次幂是0;1的任何次
(1)2×32和(2×3)2有什么区别? 各等于什么?
(2)32和23有什么区别?各等于什 么
有理数的乘方
19:57:12
2、几个不等于零的有理数相 时,积的符号是如何确定的?
答:(1) 同号得正(正正得正,负负得正); (2) 异号得负; (3) 有零因子得零.
19:57:12
(2)正方形的边长为2,则面积是多少?若边 长为 a 呢?其面 积为多少?如果正方体每条边 长为a,那正方体的体积怎么计算呢?
我们把a • a记作a2,a • a • a记作a3. 同样,把(-2)×(-2)×(-2)×(-2) ×(-2)记作(-2)5.
一般地,我们有:n个相同的因数a 相乘,即a • a • … • a,记作an.反过来,也 有 (+0.2)4=(+0.2)×(+0.2)×(+0.2)×(+0.2) , (-a)n=(-a) (-a) (-a)… (-a).
北师大版数学七年级上册2.9《有理数的乘方》(第1课时)教案
北师大版数学七年级上册2.9《有理数的乘方》(第1课时)教案一. 教材分析《有理数的乘方》是北师大版数学七年级上册第2.9节的内容,本节主要让学生掌握有理数的乘方运算,理解乘方的意义,并能熟练运用乘方运算解决实际问题。
教材通过引入实际例子,引导学生探究有理数乘方的规律,从而达到理解乘方概念的目的。
二. 学情分析学生在学习本节内容前,已经掌握了有理数的加减乘除运算,对数学运算有一定的基础。
但乘方运算与普通运算有所不同,需要学生理解并掌握乘方的意义和运算规律。
同时,学生可能对乘方运算感到抽象和困难,需要通过具体的例子和实际操作来帮助他们理解。
三. 教学目标1.让学生理解有理数的乘方概念,掌握有理数乘方的运算方法。
2.培养学生运用乘方运算解决实际问题的能力。
3.培养学生的数学思维能力和逻辑推理能力。
四. 教学重难点1.乘方概念的理解。
2.乘方运算的规律。
3.运用乘方运算解决实际问题。
五. 教学方法1.实例引入:通过具体的例子,引导学生探究有理数乘方的规律。
2.小组讨论:让学生分组讨论,培养学生的合作能力和交流能力。
3.练习巩固:通过大量的练习题,让学生巩固乘方运算的方法。
4.应用拓展:让学生运用乘方运算解决实际问题,培养学生的应用能力。
六. 教学准备1.准备相关的实例和练习题。
2.准备多媒体教学设备,如投影仪等。
七. 教学过程导入(5分钟)教师通过展示一个实际例子,如计算砖墙的体积,引出乘方运算的必要性。
引导学生思考如何用乘法来表示砖墙的体积,从而引入乘方概念。
呈现(10分钟)教师通过讲解和展示,呈现乘方的定义和运算规律。
引导学生理解乘方的意义,并通过具体的例子来说明乘方的运算方法。
操练(10分钟)学生分组进行练习,运用乘方运算计算给定的数值。
教师巡回指导,解答学生的疑问,并给予反馈。
巩固(10分钟)教师给出一些应用题,让学生运用乘方运算解决实际问题。
学生独立完成题目,教师选取部分学生的作业进行讲解和分析。
2.4 有理数的乘方 第1课时 有理数的乘方(课件)北师大版(2024)数学七年级上册
1
1
个 相乘,读作 的
2
2
1
次幂,其中 叫作 底数
2
6__ 次方,也读作
,6叫作 指数 。
温馨提示
幂的底数是分数或负数时,底数
应该添上括号!
思考
探究新知
练一练:(-2)4,-24,它们一样吗?说说它们的意义与读法。
(-2)4 =(-2)×(-2)×(-2)×(-2)=16,表示4个(-2)相
乘,读作 “负2的4次方” 。
是零吗?
解:一个数的平方为16,这个数可能是4或-4.
0的平方是零.
课堂总结
有理数
的乘方
求n个相同因数的积的运算叫做
定义
乘方,乘方的结果叫做幂。
1.正数的任何正整数次幂
都是正数;
负数的奇次幂是负数,负
数的偶次幂是正数。
乘方的符
号 法 则
2. 1的任何次幂是1;
0的任何正整数次幂都是0。
新知小结
根据有理数的乘法法则可以得出:
负数的奇次幂是负数,负数的偶次幂是正数。
正数的任何正整数次幂都是正数,0的任何正
整数次幂都是0。
针对练习
(1)13
(2)12018
(3)(-1)8
(4)(-1)2018
(5)(-1)7
(6)(-1)2017
(1)1的任何次幂都为1;
(2)-1的幂很有规律:
-1的奇次幂是-1, -1的偶次幂是1.
因数
因数的个数
读法:“a的n次幂”
或“a的n次方”
(1次方可省略不写,2次方又叫平方,3次方又叫立方)
针对练习
2表示2个
1. (-5)2的底数是_____,指数是_____,(-5)
北师大版数学七年级上册2.9《有理数的乘方》教案1
北师大版数学七年级上册2.9《有理数的乘方》教案1一. 教材分析《有理数的乘方》是北师大版数学七年级上册第二章第九节的内容。
本节内容是在学生已经掌握了有理数的加减乘除、乘方概念的基础上进行讲解的,旨在让学生进一步理解有理数的乘方运算规则,提高他们的数学运算能力。
教材通过例题和练习题的形式,使学生掌握有理数的乘方运算方法,并能灵活运用到实际问题中。
二. 学情分析学生在学习本节内容时,已经有了一定的数学基础,对于有理数的加减乘除运算规则已经有了初步的了解。
但是,对于有理数的乘方运算,学生可能还存在一定的困惑,比如不理解乘方运算的实质,对于负数的乘方、零的乘方等特殊情况掌握不牢固。
因此,在教学过程中,需要注重引导学生理解乘方运算的实质,并通过大量的练习让学生熟悉和掌握有理数的乘方运算规则。
三. 教学目标1.知识与技能:使学生掌握有理数的乘方运算方法,能熟练进行有理数的乘方运算。
2.过程与方法:通过自主学习、合作交流的方式,培养学生的数学思维能力和问题解决能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养他们积极思考、勇于探索的精神。
四. 教学重难点1.教学重点:有理数的乘方运算方法。
2.教学难点:负数的乘方、零的乘方等特殊情况的处理。
五. 教学方法采用自主学习、合作交流、教师讲解相结合的教学方法。
在教学过程中,鼓励学生主动探究,发现问题,解决问题,培养他们的数学思维能力和问题解决能力。
六. 教学准备1.教师准备:备好相关教学材料,设计好教学过程,准备好PPT等辅助教学工具。
2.学生准备:预习本节内容,了解有理数的乘方概念。
七. 教学过程1.导入(5分钟)利用PPT展示一些实际问题,引导学生思考如何用数学方法解决这些问题。
例如,计算某个物品的体积、计算利息等。
通过这些问题,激发学生的学习兴趣,引出本节课的主题——有理数的乘方。
2.呈现(10分钟)教师通过PPT或者黑板,展示有理数的乘方运算规则,引导学生理解乘方运算的实质。
七年级数学上册第2章【例题与讲解】有理数的乘方(北师大版)
2.9 有理数的乘方1.有理数乘方的概念 (1)乘方的意义:一般地,n 个相同的因数a 相乘:,记作a n ,即=a n ,这种求几个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在a n 中,a 叫做底数,n 叫做指数,a n 读作a 的n 次方(或a 的n 次幂).(2)乘方的表示方法(3)学习乘方的意义,需要注意的几个方面: ①注意乘方的双重含义乘方指的是求几个相同因数的积的运算,其结果叫做幂.由此不难发现,乘方具有双重含义:一是乘方表示一种运算;二是乘方表示一种特殊的乘法运算的结果.如25中,25可以看成一种运算,表示有5个2相乘,即25=2×2×2×2×2,这时,25应读作2的五次方;另一方面,25又可看成5个2相乘的结果,即2×2×2×2×2=25,这时25却读作2的5次幂;②注意乘方底数的书写格式乘方的书写一定要规范,不然会引起误会.当底数是负数或分数时,一定要记住添上括号,以体现底数是负数或分数的整体性.如(-3)×(-3)×(-3)×(-3)应记作(-3)4,不能记作-34.(-3)4与-34表示的意义和结果完全不同.前者表示4个-3相乘,结果为81;后者为4个3相乘的积的相反数,结果为-81.再如54×54×54×54×54×54应记作⎝ ⎛⎭⎪⎫546,不能记作564;③一个数可以看成这个数本身的一次方,如3就是31,a 就是a 1,只是指数1通常省略不写;④a n 与-a n 的区别:ⅰ.a n 表示n 个a 相乘,底数是a ,指数是n ,读作:a 的n 次方.ⅱ.-a n 表示n 个a 乘积的相反数,底数是a ,指数是n ,读作:a 的n 次方的相反数.如:(-3)3底数是-3,指数是3,读作-3的3次方,表示3个-3相乘,(-3)3=(-3)×(-3)×(-3)=-27.-33底数是3,指数是3,读作3的3次方的相反数.-33=-(3×3×3)=-27.所以(-3)3与-33的结果虽然都是-27,但表示的含义并不同.⑤注意乘方运算的转化.计算乘方运算的结果时,应将乘方运算转化为乘法运算来完成.如计算(-5)3时,应将它转化为计算(-5)×(-5)×(-5)的积;再如计算⎝ ⎛⎭⎪⎫124时,应将它转化为计算12×12×12×12的积.【例1】 把下列各式写成乘方的形式,并指出底数,指数各是什么? (1)(-8.3)× (-8.3)×(-8.3)×(-8.3)×(-8.3); (2)25×25×25×25; (3)a ×a ×a ×…×a (2 011个a ).分析:以上三题都是相同因数相乘,可用乘方的形式表示,相同因数为底数,相同因数的个数为指数,指数写在右上角.解:(1)(-8.3)×(-8.3)×(-8.3)×(-8.3)×(-8.3)=(-8.3)5; (2)25×25×25×25=⎝ ⎛⎭⎪⎫254;(3)a ×a ×a ×…×a (2 011个a )=a 2 011.警误区 书写乘方的注意事项 当底数是负数或分数时,写成乘方的形式时,底数一定要加上括号,如(1),(2)两题.2.乘方运算的符号法则(1)有理数乘方的符号法则:①正数的任何次幂是正数;②负数的偶次幂是正数,奇次幂是负数;③0的任何次幂等于0;1的任何次幂等于1.(2)根据乘方的符号法则和乘方运算的转化,关于乘方有如下几个性质:①0的任何正整数次幂都是0;互为相反数的两个数的偶次幂相等,奇次幂互为相反数.如0n =0(n 是正整数);(-4)6=46;(-4)3=-43.②进行乘方运算时与其他运算一样,先要确定符号,再计算出绝对值,同时还应注意(-a )2n =a 2n ,(-a )2n +1=-a 2n +1(n 是正整数),由乘方的法则我们还知道:a 2n ≥0,即任何有理数的偶次幂是非负数.谈重点 决定乘方结果的符号的因素 有理数乘方结果的符号取决于:一底数的符号,二指数的奇偶.【例2】 利用有理数乘方运算的符号法则计算: (1)(-3)2;(2)1.53;(3)⎝ ⎛⎭⎪⎫-434;(4)(-1)11;(5)(-1)2;(6)(-1)2n ;(7)(-1)2n -1.分析:根据有理数乘方的符号法则:(2)正数的任何次幂都是正数,(1)(3)(5)(6)是负数的偶次幂,结果为正;(4)(7)是负数的奇次幂,结果为负.解:(1)(-3)2=3×3=9; (2)1.53=1.5×1.5×1.5=3.375; (3)⎝ ⎛⎭⎪⎫-434=43×43×43×43=25681; (4)(-1)11=-1; (5)(-1)2=1; (6)(-1)2n =1; (7)(-1)2n -1=-1.3.有理数乘方的运算有理数乘方运算的思路:确定幂的符号;确定幂的绝对值.有理数的乘方是一种特殊的乘法运算——因数相同的乘法运算,幂是乘方运算的结果.因此有理数的乘方运算可以转化为乘法来运算,先根据有理数乘方的符号法则确定幂的符号,再根据乘方的意义把乘方转化为乘法,来运算幂的绝对值,最后得出幂的结果.例如计算(-5)3,先确定幂的符号为“-”号,再计算53=125,即(-5)3=-125;再如,计算(-2)×32时,先算32=9,再算(-2)×9=-18.正确理解有理数乘方的意义是进行乘方运算的前提,千万不能把底数与指数直接相乘.在进行有理数的乘方运算时要辨别清楚底数和指数,以及符号问题,避免出错.【例3-1】计算:(1)-33;(2)(-2)2;(3)(-3×2)3;(4)-(-2)3.分析:运算时,先确定符号,再计算乘方.(1)负号在幂的前面,结果是负数;(2)负数的偶次幂,结果是正数;(3)先计算底数-3×2=-6,再计算(-6)3;(4)先计算(-2)3,其结果是负数,再加上前面的负号,最后结果是正数.解:(1)-33=-(3×3×3)=-27;(2)(-2)2=4;(3)(-3×2)3=(-6)3=-216;(4)-(-2)3=-(-8)=8.警误区勿把底数乘指数在进行乘方运算时,一定要避免出现把底数与指数直接相乘的运算错误.如-33=-(3×3)=-9,这是由于没有理解乘方的意义导致的.【例3-2】计算(-0.25) 10×412的值.分析:直接求(-0.25)10和412比较麻烦,但仔细观察可以发现(-0.25)10=0.2510,表示10个0.25相乘,而412表示12个4相乘,这就提醒我们利用乘法的交换律和结合律,比较容易求出结果.解:(-0.25)10×412=(0.25)10×412=[(0.25)10×410]×42=(0.25×4)10×42=1×16=16.4.有理数乘方运算的应用有理数的乘方运算在现实生活中有广泛的应用,给生活中经常出现的大数的读写带来了极大的方便.现代高科技技术离不开数学技术,数学也是一门神奇的艺术,它那神奇的力量常常让人感到意外和惊奇!比如,一层楼高约3米,一张纸的厚度只有0.1毫米,0.1毫米与3米相比几乎可以忽略不计,如果我们将纸对折、再对折,如此这样对折20次后,其厚度将比30层楼房还要高,这就是有理数乘方的神奇魔力,在现实生活中有着很广泛的应用.数学是一门规律性很强的学科,只要掌握了它的规律,很多问题都可以迎刃而解了,乘方的规律也不例外.同学们要认真思考,仔细观察找到有理数乘方应用的规律.【例4】“兰州拉面”在学校门口开了一个连锁店,今天开张,做拉面的张师傅站在门口进行广告宣传,当众拉起了拉面.他精湛的拉面技术赢得了围观顾客的阵阵喝彩,吃面的人更是络绎不绝.张师傅先是用一根直径约13厘米的粗面条,把两头捏起来拉长,然后再把两头捏起来拉长,不断地这样,张师傅共拉了10次,在他手里出现了一根根直径约0.1毫米的细面条.算一算:张师傅拉10次共拉出了多少根细面条?若拉n次呢?(请把探索的结果填入下表中)8根,所以第n次拉出2n根.解:拉面的根数与拉面的次数n有关系,拉面的根数=2n.5.与乘方相关的探究题探究题是近几年中考中的亮点,渗透多个知识点,形式多样.解题时,一般遵循从特殊到一般的探究思路,先准确计算几个特例的结果,再通过对这些结果的分析、归纳得到一个较一般的结论,最后再应用这个结论解决问题.由于乘方是一种新运算,它是一种特殊的乘法,特殊在因数相同,是同学们新接触的运算,所以解决问题时要注意,当底数是分数或负数时,写成幂时底数要加括号.与有理数的乘方有关的探究题主要有以下几种:(1)个位数字是几,在中考中经常涉及到,例如3n的个位数字是3,9,7,1,3,9,7,1,…依次循环;(2)拉面的条数、折纸的张数、握手的次数、绳子的长度、细胞分裂的个数等,都利用2n 或⎝ ⎛⎭⎪⎫12n求解.【例5-1】 有一张厚度是0.1毫米的纸,将它对折1次后,厚度为2×0.1毫米.(1)对折2次后,厚度为多少毫米? (2)对折20次后,厚度为多少毫米?分析:此题的关键是将纸的层数化为幂的形式,找出对应关系.根据问题容易得到当对折两次后厚度为4×0.1=22×0.1毫米,对折3次后厚度变为8×0.1=23×0.1毫米,对折4次是16×0.1=24×0.1毫米,对折5次是32×0.1=25×0.1毫米,……,从中探寻规律,解答问题.解:(1)0.1×22=0.4(毫米). (2)(220×0.1)毫米.【例5-2】 1米长的小棒,第1次截去一半,第2次截去剩下的一半,如此截下去,第7次后剩下的小棒有多少米长?分析:此题的关键是找出每次截完后,剩下的小棒占整根棒的比例与所截次数之间的关系.解:第7次后剩下的小棒有⎝ ⎛⎭⎪⎫127×1=1128(米).。
北师大版七年级数学上册教案:2.10有理数的乘方
(2)有理数乘方的运算规则:掌握正整数、负整数、零的乘方运算规则。
举例:正整数乘方:2³ = 2 × 2 × 2;负整数乘方:(-2)³ = -2 × -2 × -2;零的乘方:0ⁿ = 0(n为正整数)。
(3)乘方运算的性质:理解并掌握乘方运算的交换律、结合律等。
北师大版七年级数学上册教案:2.10有理数的乘方
一、教学内容
本节课选自北师大版七年级数学上册教材第二章第十节,主题为“有理数的乘方”。教学内容主要包括以下两个方面:
1.有理数的乘方概念:介绍乘方的定义,即相同因数的乘积,并引导学生理解有理数乘方的意义。
2.有理数乘方的运算规则:教授正整数、负整数、零的乘方运算规则,以及乘方运算的性质,如交换律、结合律等。
五、教学反思
在今天的课堂上,我们探讨了有理数的乘方,这不仅是数学运算的一个重要部分,也是培养学生抽象思维和解决问题能力的好机会。通过这节课的教学,我发现了一些值得注意的地方。
首先,学生对有理数乘方的概念接受度较高,能够较快地理解乘方的定义。然而,当涉及到负整数乘方的运算规则时,部分学生表现出了一定的困惑。这让我意识到,在讲解这一部分时,需要通过更多的实例和直观的演示来帮助学生理解负整数乘方的本质。
举例:aⁿ × aᵐ = a^(n+m)(结合律);aⁿ = a^(n)(交换律)。
2.教学难点
(1)负整数乘方的理解:学生容易混淆负整数乘方的概念,需要通过实例和图示等方式帮助学生理解。
举例:解释(-2)²和(-2)³的意义,(-2)²表示两个-2相乘,结果为正数;而(-2)³表示三个-2相乘,结果为负数。
(2)乘方运算性质的运用:学生在运用乘方运算性质时,可能会出现错误,需要教师引导学生通过实际计算来加深理解。
《有理数的乘法(一)》课件 2022年北师大版数学课件
第四天 第三天 第二天 第一天
第一天 第二天 第三天 第四天
甲水库的水位每天升高3厘米,乙水库 的水位每天下降3厘米,4天后甲,乙水 库的水位的总变化量各是多少?
如果用正号表示水位上升,用负号表示水 位下降,那么四天后,甲水库水位的变化量为
3+3+3+3=3×4=12〔厘米〕;
〔5〕7的平方根是
;〔 〕
×
〔6〕-16的平方根是-4 . 〔 〕
×
7
√
×
例3 求满足以下各式的未知数x.
(1) x2=9;
(2) 4x2=9;
(3) (x-1)2=25;
(4) 4(2x-1)2=25.
解 : (1 ) x 9 , x 3.
2 x 2 9 ,
4 x 3.
2
3 x 1 2 25 ,
乙水库水位变化量为
〔-3〕+〔-3〕+〔-3〕+〔-3〕= 〔-3〕×4=-12〔厘米〕
运用上面的运算方法,进行以 下计算: 〔-3〕×3=_____
〔-3〕×2=_____
〔-3〕×1=_____
〔-3〕×0=_____
观察以上算式,你能发现什么规律?
以上算式,第一个因数不变,当第二个因 数减少1时,积增大3.
x 1 5.
x 1 5,
x1 6,x2 4 . ( 4 ) ( 2 x 1 ) 2 25 ,4Leabharlann 2 x 1 25 5 . 42
2x 1 5. 2
x1
7 4
, x2
3. 4
想一想
(1) 52等 于 多 少?( (5)2等 于 多 少?
(2)
49
2
等 于 多 少?
只有一个负号,积为负; 积为负;
北师大版七年级数学上册有理数的乘方教学设计
北师大版七年级数学上册有理数的乘方教学设计一、教材分析:《有理数的乘方》是北京师范大学出版社七年级上册第二章第九节的内容。
教材的地位与作用:有理数乘方是有理数的一种基本运算,从教材编排的结构上看,共需2个课时,本课为第一课时,是在学生学习加、减、乘、除运算的基础上来学习的,它既是有理数乘法的推广与延续,又是后面继续学习有理数混合运算、科学记数法和开方的基础,起到承前启后、铺路架桥的作用。
二、学情分析:学生的知识技能基础:在知识掌握方面,由于学生在小学已经学习过非负有理数的乘方运算,并且知道a乘以a记作a²,读作a的平方或a的二次方,前几节课,学生刚学完有理数的加、减、乘、除运算,已掌握了有理数的乘法法则,具备了进一步学习有理数的乘法运算的知识技能基础,但对许多概念、法则的理解不一定很深刻,容易造成知识的遗忘与混淆。
所以在本节课的学习中应全面系统的加以讲述。
在知识障碍方面,学生对有理数乘方中相关概念的理解及其符号规律的推导、应用方面可能会有模糊现象。
所以在本节课的教学中应予以简单明白,深入浅出的分析。
在学生特征方面,由于七年级学生具有好动、好问、好奇的心理特征。
所以在教学中应抓住学生这一特征,一方面要运用直观生动的故事,引发学生的兴趣,使他们的注意力始终在课堂上;另一方面要创造条件与机会,让学生发表见解,发挥学生学习的主动性。
学生的活动经验基础:在以往的学习过程中,学生经历了不同类型的数学活动,积累了较为丰富的经验,合作学习的能力和探究学习的意识都有明显的进步,尤其是语言表达能力的提高,为本节课的学习奠定了重要的基础。
三、教学目标:根据新课标的要求及七年级学生的认知水平,我将制定本节课的教学目标如下:(1)知识与技能:让学生理解并掌握有理数的乘方,幂,底数,指数的概念及意义;能够正确进行有理数的乘方运算。
(2)过程与方法:在生动的情景中让学生获得有理数乘方的初步体验:培养学生观察、分析、归纳、概括的能力;经历从乘法到乘方的推导过程,从中感受转化的数学思想。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数的乘方(二)
一、教学目标
1、进一步理解乘方的意义,并利用乘方的意义进行乘方的运算
2、进一步体会,当指数不断增加时,底数为2的幂的增长速度很快
3、初步感受当底数小于1时,乘方运算的结果(幂)减小得很快
4、培养学生猜测、估算、验证等思想
二、教学重点
乘方运算及当底数不同-指数不断增加时-幂的变化情况
三、教学难点
理解当底数不同-指数不断增加时-幂的变化情况
四、教学过程
1、例3计算①-(-3)2;②-(-2)3;③)32(--3;④— ;
2、随堂练习P75页,学生当堂练习,四位学生板演,教师巡视纠错
3、做一做
有一张厚度是0.1毫米的纸,将它对折1次后,厚度为2×0.1毫米。
⑴对折2次后,厚度为多少毫米?3次?4次?5次?10次?
⑵对折20次后,厚度为多少毫米?大概有多少层楼高?(设每层楼高为3米) (此题目的是使学生进一步体会,当指数不断增加时,底数为2的幂的增长速度是很快的。
当1张纸对折20次后,其厚度比30层楼还要高。
)
先让学生猜测这一结果,再实际进行计算,以使学生加深对乘方意义的理解。
4、读一读P76页
进一步使学生体会当指数不断增加时,底数为2的幂的增长速度是很快的。
你认为国王的国库里有这么多米吗?此问题科学课中有关于1KG 米的米粒数问题,在此基础上鼓励学生粗略估算18,446,744,073,709,551,615粒米大概有多少重量?
5、面积为1米2的长方形纸片,第1次裁去一半,第2次裁去剩下的一半,如此下去,第8次后剩下纸片的面积是多少? 引导学生根据题意列出乘方的算式21×21×21×21×21×21×21×21=)21(8=256
1由此学生可以感受当底数小于1时,乘方运算的结果(幂)减少得较快。
6、试一试
一个数的平方与它的绝对值相比较,能够确定它们之间的大小关系吗?让学生充分思考、探索、讨论,然后各自发表观点,并说明探索过程。
最后师生共同形成正确意见:
Ⅰ、当这个数的绝对值大于1时,这个数的绝对值小于它的平方
Ⅱ、当这个数的绝对值小于1时,这个数的绝对值大于它的平方
Ⅲ、当这个数的绝对值等于1时。
这个数的绝对值等于它的平方
引导学生不要背诵此结论,提倡举例归纳验证:分别用2、1、0.5、0、-0.5、-1、-2来举例归纳;初步得出结论后,再进行充分验证。
再归纳,再验证,如此直到得到结论。
7、小结
五、作业 作业本
32
4。