第10章 相关与回归分析
第10章 线性相关与回归
直线回归方程的用途 1.两变量间存在直线关系时,直 线方程可定量地描述两变量间的线性 依存关系。 2.根据直线回归方程由已知变量 值估计未知变量值:如统计预测。
应用直线回归方程时应注意的问题 1.求出样本资料的直线回归方程 后应进行假设检验。 2.应用直线回归方程时,要注意 方程只适用于自变量X的样本数据波动 范围,不能任意外延其应用范围。
在进行假设检验时,无效假设H0 为:ρ=0,即两变量间无直线相关关系; 备择假设H1为:ρ≠0,两变量间有直 线相关关系。常用的假设检验方法是t 检验,检验统计量t值的计算公式如下:
r0 tr Sr
r 1 r n2
2
,v n2
例9-2 就例9-1资料,问某地4岁 儿童体重与体表面积间是否有直线关系?
反双曲正切变换:
z tanh r
或
1
1 1 r z ln 2 1 r
z u
Z的1-α可信区间计算公式:
2
n 3 , z u 2
n3
缩写
z u
a2
n3
ρ的1-α可信区间计算公式:
tanh z u 2
缩写
n 3 , z u 2
XY (3) 58.113 62.5282 64.296 65.0916 73.3862 82.3918 83.952 90.9198 92.34 102.576 ∑XY=775.5946
X
2
Y
2
(4) 121.00 139.24 144.00 151.29 171.61 187.69 207.36 222.01 231.04 256.00 2 ∑X =1831.24
5.4 5.2
第十章 直线回归与相关分析
115 125 128 143 132 121 129 112 120 130 125.5
135 137 128 127 155 132 148 117 134 132 134.5
图10-2 NaCl含量对单位叶面积干物重影响的散点图
Y . X X
含义是:对于变量X的每一个值,都有一个Y 的分布,这个分布的平均数就是该线性函数。
ˆ a bX Y
回归截距 与x值相对应的依变量y的点估计值
此方程称为Y对X的直线回归方程(linear regression equation),画出的直线称为回归线 ( regression line)。
ˆ Y a bx
ˆi ) 2 L ( yi y
i 1 n
Y
最小
编号 1 2 3 4 5 血球体积x /mm3 45 52 56 48 42 红血球数y /106 6.53 6.30 9.52 7.50 6.99 6 7 8 9 10 编号 血球体积x /mm3 35 58 40 39 50 红血球数y /106 5.90 9.49 6.20 6.55 8.72
n n
整理后得:
an b xi yi i1 i1 n n n a xi b xi2 xi yi i1 i1 i1
解正规方程得:
x y ( x )( y ) / n b x ( x ) / n ( x x)( y y) = S S ( x x)
第二节:一元线性回归 1 散点图的绘制
2 一元正态线性回归模型 3 直线回归方程的参数估计和回归方 程的建立 4 直线回归的假设检验
5 直线回归的方差分析
6 直线回归的意义( 自学)
回归分析与相关分析
回归分析与相关分析回归分析是通过建立一个数学模型来研究自变量对因变量的影响程度。
回归分析的基本思想是假设自变量和因变量之间存在一种函数关系,通过拟合数据来确定函数的参数。
回归分析可以分为线性回归和非线性回归两种。
线性回归是指自变量和因变量之间存在线性关系,非线性回归是指自变量和因变量之间存在非线性关系。
回归分析可用于预测、解释和控制因变量。
回归分析的应用非常广泛。
例如,在经济学中,回归分析可以用于研究收入与消费之间的关系;在医学研究中,回归分析可以用于研究生活方式与健康之间的关系。
回归分析的步骤包括确定自变量和因变量、选择合适的回归模型、拟合数据、检验模型的显著性和解释模型。
相关分析是一种用来衡量变量之间相关性的方法。
相关分析通过计算相关系数来度量变量之间的关系的强度和方向。
常用的相关系数有Pearson相关系数、Spearman相关系数和判定系数。
Pearson相关系数适用于连续变量,Spearman相关系数适用于顺序变量,判定系数用于解释变量之间的关系。
相关分析通常用于确定两个变量之间是否相关,以及它们之间的相关性强度和方向。
相关分析的应用也非常广泛。
例如,在市场研究中,相关分析可以用于研究产品价格与销量之间的关系;在心理学研究中,相关分析可以用于研究学习成绩与学习时间之间的关系。
相关分析的步骤包括确定变量、计算相关系数、检验相关系数的显著性和解释相关系数。
回归分析与相关分析的主要区别在于它们研究的对象不同。
回归分析研究自变量与因变量之间的关系,关注的是因变量的预测和解释;相关分析研究变量之间的关系,关注的是变量之间的相关性。
此外,回归分析通常是为了解释因变量的变化,而相关分析通常是为了量化变量之间的相关性。
综上所述,回归分析和相关分析是统计学中常用的两种数据分析方法。
回归分析用于确定自变量与因变量之间的关系,相关分析用于测量变量之间的相关性。
回归分析和相关分析在实践中有广泛的应用,并且它们的步骤和原理较为相似。
回归分析
回归分析的模型
按是否线性分:线性回归模型和非线性回归模型 按自变量个数分:简单的一元回归,多元回归 基本的步骤:利用SPSS得到模型关系式,是否 是我们所要的,要看回归方程的显著性检验(F 检验)和回归系数b的显著性检验(T检验),还要 看拟合程度R2 (相关系数的平方,一元回归用R Square,多元回归用Adjusted R Square)
(Prob(event) <0.5 预测事件将不会发生, > 0.5 预测事件将会发生)
补充:回归分析
以下的讲义是吴喜之教授有 关回归分析的讲义,很简单, 但很实用
定量变量的线性回归分析
对例1(highschoo.sav)的两个变量的数据进行线性回归, 就是要找到一条直线来最好地代表散点图中的那些点。
b0为常数项 b1、b2、…、称为y对应于x1、x2、…、xn的偏回归系数 用Adjusted R2调整判定系数判定一个多元线性回归方程的拟合程度:
用来说明用自变量解释因变量变异的程度(所占比例)
一元线性回归模型的确定:一般先做散点图(Graphs ->Scatter>Simple),以便进行简单地观测(如:Salary与Salbegin的关系) 若散点图的趋势大概呈线性关系,可以建立线性方程,若不呈线 性分布,可建立其它方程模型,并比较R2 (-->1)来确定一种最佳 方程式(曲线估计)
关系是否有线性特点
Graphs ->Scatter->Simple X Axis: Salbegin Y Axis: Salary
2. 若散点图的趋势大概呈线性关系,可以建立线性回归模型
Analyze->Regression->Linear Dependent: Salary Independents: Salbegin,prevexp,jobtime,jobcat,edcu等变量 Method: Stepwise
第十章-回归分析
x
2
i1
)b1
n
(
i 1
xi1 xip )bp
n i 1
xi1 yi
n
( i1
xip )b0
n
(
i 1
xip xi1 )b1
n
(
i 1
x
2
ip
)bp
n i 1
xip yi
正规方程
上一页 下一页 返回
引入矩阵
1
X
1
x11 x21
x12 x22
x1p x2p
,Y
y1
x,y的相关关系可表示为 yab x ,~N (0 ,2)
或y~N (ab, x2)
其中a, b, 2为不依赖于x的未知参数,上式称为一元
线性回归模型,简称一元线性模型。当y与x间满足这 种关系时,y与x间有线性相关关系。 上一页 下一页 返回
用最小二乘法确定未知参数a及b。考虑试验点关于回
归直线的偏差平方和
上一页 下一页 返回
一元回归分析与最小二乘法
取定x时随机变量y的数学期望E(y|x)作为x时随机变量 y的估计值,即
yE(yx)
显然,当x变化时E(Y|X=x)是x的函数,记作
(x)E(yx)
可以用一个确定的函数关系式
y (x)
大致地描述y与x之间的相关关系。
函数 (x)称为y关于x的回归函数,简称回归;
第十章 回归分析
爱情 的诗词 是美好 的文字 ,那是 墨香的 爱意。 关于美 好的爱 情诗词 有哪些 呢? 下 面 是 美 文 网小编 为你整 理了爱 情古代 诗词美 好作品 篇,欢 迎大家 阅读! 爱
情 古 代 诗 词 美好作 品篇1: 绮怀 朝 代 : 清代 作 者 : 黄 景仁 原 文 :
计量经济学名词解释和简答题
计量经济学 第一部分:名词解释第一章1、模型:对现实的描述和模拟。
2、广义计量经济学:利用经济理论、统计学和数学定量研究经济现象的经济计量方法的统称,包括回归分析方法、投入产出分析方法、时间序列分析方法等。
3、狭义计量经济学:以揭示经济现象中的因果关系为目的,在数学上主要应用回归分析方法。
第二章1、总体回归函数:指在给定Xi 下Y 分布的总体均值与Xi 所形成的函数关系(或者说总体被解释变量的条件期望表示为解释变量的某种函数)。
2、样本回归函数:指从总体中抽出的关于Y ,X 的若干组值形成的样本所建立的回归函数。
3、随机的总体回归函数:含有随机干扰项的总体回归函数(是相对于条件期望形式而言的)。
4、线性回归模型:既指对变量是线性的,也指对参数β为线性的,即解释变量与参数β只以他们的1次方出现。
5、随机干扰项:即随机误差项,是一个随机变量,是针对总体回归函数而言的。
6、残差项:是一随机变量,是针对样本回归函数而言的。
7、条件期望:即条件均值,指X 取特定值Xi 时Y 的期望值。
8、回归系数:回归模型中βo ,β1等未知但却是固定的参数。
9、回归系数的估计量:指用01,ββ等表示的用已知样本提供的信息所估计出来总体未知参数的结果。
10、最小二乘法:又称最小平方法,指根据使估计的剩余平方和最小的原则确定样本回归函数的方法。
11、最大似然法:又称最大或然法,指用生产该样本概率最大的原则去确定样本回归函数的方法。
12、估计量的标准差:度量一个变量变化大小的测量值。
13、总离差平方和:用TSS 表示,用以度量被解释变量的总变动。
14、回归平方和:用ESS 表示:度量由解释变量变化引起的被解释变量的变化部分。
15、残差平方和:用RSS 表示:度量实际值与拟合值之间的差异,是由除解释变量以外的其他因素引起的被解释变量变化的部分。
16、协方差:用Cov (X ,Y )表示,度量X,Y 两个变量关联程度的统计量。
17、拟合优度检验:检验模型对样本观测值的拟合程度,用2R 表示,该值越接近1,模型对样本观测值拟合得越好。
第十章_logit回归
第十章 logitic 回归本章导读:Logitic 回归模型是离散选择模型之一,属于多重变数分析范畴,是社会学、生物统计学、临床、数量心理学、市场营销、会计与财务等实证分析的常用方法。
10.1 logit 模型和原理Logistic 回归分析是对因变量为定性变量的回归分析。
它是一种非线性模型。
其基本特点是:因变量必须是二分类变量,若令因变量为y ,则常用y=1表示“yes ”,y=0表示“no ”。
[在发放股利与不发放股利的研究中,分别表示发放和不发放股利的公司]。
自变量可以为虚拟变量也可以为连续变量。
从模型的角度出发,不妨把事件发生的情况定义为y=1,事件未发生的情况定义为0,这样取值为0、1的因变量可以写作:⎩⎨⎧===事情未发生事情发生01y 我们可以采用多种方法对取值为0、1的因变量进行分析。
通常以P 表示事件发生的概率(事件未发生的概率为1-P ),并把P 看作自变量x 的线性函数。
由于y 是0-1型Bernoulli 分布,因此有如下分布:P=P (y=1|x ):自变量为x 时y=1的概率,即发放现金股利公司的概率1-P=P (y=0|x ):自变量为x 时y=0的概率,即不发放现金股利公司的概率 事件发生和不发生的概率比成为发生比,即相对风险,表现为PP odds -=1.因为是以 对数形式出现的,故该发生比为对数发生比(log odds ),表现为)1ln(P P odds -=。
对数发生比也是事件发生概率P 的一个特定函数,通过logistic 转换,该函数可以写成logistic 回归的logit 模型:)1(log )(log PP P it e -= Logit 一方面表达出它是事件发生概率P 的转换单位;另一方面,它作为回归的因变量就可以自己与自变量之间的依存关系保持传统回归模式。
根据离散型随即变量期望值的定义,可得:E(y)=1(P)+0(1-P)=P进而得到x P y E 10)(ββ+==因此,从以上分析可以看出,当因变量的取值为0、1时,均值x y E 10)(ββ+=总是代表给定自变量时y=1的概率。
(DLu)第10章两变量间相关与回归分析PPT课件
2.34
YY
3.26
XY
blXY 3.26 0.1698 lXX 19.20
a Y b X 0 .9 9 4 8 0 .1 6 9 8 4 .0 4 8 0 .3 0 7 5
3、绘制回归直线
Y0.30750.1698X
二、直线回归中的统计推断
样本回归系数b是总体回归系数
是否有 0
b X x (Y y ) X YX Yn lXY
(X x )2
X 2 ( X )2n lXX
aybx
实例求解回归方程
例10.1 计算甘油三酯(Y)对血清胆固醇(X)的 直线回归方程 。
1、绘制散点图 2、计算
XX85.014.048
n 21
YY20.890.9948 n 21
l l l 19.20 XX
简单相关系数(simple correlation coefficient)等;
符号r表示样本相关系数,ρ表示总体相关系数。
它说明具有直线关系的两个变量,相关关系的密 切程度与相关方向的指标。其值为-1≤r≤1。
条件:双变量正态分布
二、计算公式
r XxYy lX Y Xx2 Yy2 lX X lY Y
Yˆ abX
a称为截距, b称之为斜率或回归系数, 表示当自变量X每改变一个单位,因变量Y平 均变动的单位数。
I型回归 II型回归 直线回归(linear regression) 或简单线性回归(simple linear regression)
总体和
YX X
a称为常数项, b称为样本回归系数
FSS回回=MS回=0.55361=5.888
SS剩
b与=0
(一)方差分析
1、回归系数的假设检验——方差分析
回归分析与相关分析
相关分析与回归分析
第11页
根据回归函数的意义,当X取xi时,Y的期望值 应为f(xi),由于随机误差,观察值yi与f(xi)之间有
一定的差距,即:
yi f (xi ) i
i是第i次试验的误差。 对于Y ( y1, y2 , , yn) , X (x1, x2 , , xn )和 (1, 2 , , n ) 有
27 May 2020
相关分析与回归分析
第22页
三、回归方程的检验
1.随机误差 2 的估计
由一元线性回归方程的模型:
yi a bxi i i ~ N (0 , 2 )
Y ~ N (a bx , 2 )
以D剩为基础作为 2的估计是合理的,其估计为
n
n
D剩
2 i
( yi (aˆ bˆxi ))2
27 May 2020
相关分析与回归分析
第8页
第二节 回归分析
一、确定回归函数的思想
要全面地考察两个变量 X、Y 之间的关系,我们就要研究Y 的
条件分布 F (y | X=x ) 随 X 取值 x 的变化情况. 很自然我们会 想到用 F ( y | X=x ) 的数学期望(平均值)来代替它,这样就可 以通过研究 x 与 Y 的条件期望值之间的关系来代表 X 与 Y 之 间的关系. 即:
显著. n个y值的总差异记为D总
n
D总= ( yi y) 2 l yy
程进行预测和控制.
27 May 2020
相关分析与回归分析
第6页
“回归” 一词的历史渊源
“回归”一词最早由Francis Galton引入。英国著
名人类学家Franics Galton(1822-1911)于1885年在
生物统计学:第10章 多元线性回归分析及一元非线性回归分析
H0 : 1 2 k 0 H A : 至少有一个i 0
拒绝H0意味着至少有一个自变量对因变量是有影 响的。
检验的程序与一元的情况基本相同,即用方差
胸围X2 186.0 186.0 193.0 193.0 172.0 188.0 187.0 175.0 175.0 185.0
体重Y 462.0 496.0 458.0 463.0 388.0 485.0 455.0 392.0 398.0 437.0
序号 体长X1 胸围X2 体重Y 11 138.0 172.0 378.0 12 142.5 192.0 446.0 13 141.5 180.0 396.0 14 149.0 183.0 426.0 15 154.2 193.0 506.0 16 152.0 187.0 457.0 17 158.0 190.0 506.0 18 146.8 189.0 455.0 19 147.3 183.0 478.0 20 151.3 191.0 454.0
R r Y•1,2,,k
yp yˆ p
,
p 1,2,, n
对复相关系数的显著性检验,相当于对整个回 归的方差分析。在做过方差分析之后,就不必再检 验复相关系数的显著性,也可以不做方差分析。
例10.1的RY·1,2为:
RY •1,2
24327 .8 0.9088 29457 .2
从附表(相关系数检验表)中查出,当独立
表示。同样在多元回归问题中,可以用复相关系数表 示。对于一个多元回归问题,Y与X1,X2,… ,Xk 的线性关系密切程度,可以用多元回归平方和与总平 方和的比来表示。因此复相关系数由下式给出,
伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解-第10章 时间序列数据的基本回归分析【圣才出
第10章时间序列数据的基本回归分析10.1复习笔记一、时间序列数据的性质时间序列数据与横截面数据的区别:(1)时间序列数据集是按照时间顺序排列。
(2)时间序列数据与横截面数据被视为随机结果的原因不同。
①横截面数据应该被视为随机结果,因为从总体中抽取不同的样本,通常会得到自变量和因变量的不同取值。
因此,通过不同的随机样本计算出来的OLS估计值通常也有所不同,这就是OLS统计量是随机变量的原因。
②经济时间序列满足作为随机变量是因为其结果无法事先预知,因此可以被视为随机变量。
一个标有时间脚标的随机变量序列被称为一个随机过程或时间序列过程。
搜集到一个时间序列数据集时,便得到该随机过程的一个可能结果或实现。
因为不能让时间倒转重新开始这个过程,所以只能看到一个实现。
如果特定历史条件有所不同,通常会得到这个随机过程的另一种不同的实现,这正是时间序列数据被看成随机变量之结果的原因。
(3)一个时间序列过程的所有可能的实现集,便相当于横截面分析中的总体。
时间序列数据集的样本容量就是所观察变量的时期数。
二、时间序列回归模型的例子1.静态模型假使有两个变量的时间序列数据,并对y t和z t标注相同的时期。
把y和z联系起来的一个静态模型(staticmodel)为:10 1 2 t t t y z u t nββ=++=⋯,,,,“静态模型”的名称来源于正在模型化y 和z 同期关系的事实。
若认为z 在时间t 的一个变化对y 有影响,即1t t y z β∆=∆,那么可以将y 和z 设定为一个静态模型。
一个静态模型的例子是静态菲利普斯曲线。
在一个静态回归模型中也可以有几个解释变量。
2.有限分布滞后模型(1)有限分布滞后模型有限分布滞后模型(finitedistributedlagmodel,FDL)是指一个或多个变量对y 的影响有一定时滞的模型。
考察如下模型:001122t t t t ty z z z u αδδδ--=++++它是一个二阶FDL。
应用回归分析 第十章
第10章 含定性变量的回归模型10.1 一个学生使用含有季节定性自变量的回归模型,对春夏秋冬四个季节引入4个0-1型自变量,用SPSS 软件计算的结果中总是自动删除了其中的一个自变量,他为此感到困惑不解。
出现这种情况的原因是什么? 答:假如这个含有季节定性自变量的回归模型为:其中含有k 个定量变量,记为x i 。
对春夏秋冬四个季节引入4个0-1型自变量,记为D i ,只取了6个观测值,其中春季与夏季取了两次,秋、冬各取到一次观测值,则样本设计矩阵为:显然,(X,D)中的第1列可表示成后4列的线性组合,从而(X,D)不满秩,参数无法唯一求出。
这就是所谓的“虚拟变量陷井”,应避免。
当某自变量x j 对其余p-1个自变量的复判定系数2j R 超过一定界限时,SPSS 软件将拒绝这个自变量x j 进入回归模型。
称Tol j =1-2j R 为自变量x j 的容忍度(Tolerance ),SPSS 软件的默认容忍度为0.0001。
也就是说,当2j R >0.9999时,自变量x j 将被自动拒绝在回归方程之外,除非我们修改容忍度的默认值。
而在这个模型中出现了完全共线性,所以SPSS 软件计算的结果中总是自动删除了其中的一个定性自变量。
10.2对自变量中含有定性变量的问题,为什么不对同一属性分别建立回归模型,而采取设虚拟变量的方法建立回归模型?答:原因有两个,以例10.1说明。
一是因为模型假设对每类家庭具有相同的斜率和误差方差,把两类家庭放在一起可以对公共斜率做出最佳估计;二是对于其tt t t kt k t t D D D X X Y μαααβββ++++++=332211110 ⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=000110010110001010010010100011)(616515414313212111k k k k k k X X X X X X X X X X X XD X,⎪⎪⎪⎪⎪⎭⎫⎝⎛=k βββ 10β⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=4321ααααα他统计推断,用一个带有虚拟变量的回归模型来进行也会更加准确,这是均方误差的自由度更多。
第十章双变量回归与相关
(9-3) (9-4)
式中 lXY 为 X 与 Y 的离均差积和:
l
XY
(X
X
)(Y
Y
)
XY
(
X
)( n
Y
)
(9 5)
除了图中所示两变量呈直线关系外,一 般还假定每个 X 对应Y 的总体为正态分布, 各个正态分布的总体方差相等且各次观测 相互独立。这样,公式(9-1)中的 Yˆ 实际上 是 X 所对应 Y 的总体均数 Y|X 的一个样本估 计值,称为回归方程的预测值(predicted value), 而 a 、 b 分别为 和 的样本估计。
(Y Y ) 2 (Yˆ Y ) 2 (Y Yˆ ) 2
数理统计可证明:
å (Yˆ - Y )(Y - Yˆ ) = 0
上式用符号表示为
SS总 SS回 SS残
(9-6)
式中
SS总 即 (Y Y)2 , 为 Y 的 离 均 差 平 方
和,表示未考虑 X 与Y 的回归关系时Y 的 总变异。
离 Y Yˆ 。
➢ 求解a、b实际上就是“合理 地”找到一条能最好地代表
数据点分布趋势的直线。
最小二乘法(least sum of squares)原则:即保证各实 测点至直线的纵向距离的 平方和最小。
(X,Y)
b lXY lXX
( X X )(Y Y ) (X X )2
a Y bX
5.列出回归方程(回归直线绘制见图 9-1)
Yˆ 1.6617 0.1392X
此直线必然通过点( , )X且与Y 纵坐标轴相交于 截距 a 。如果散点图没有过坐标系原点,可在 自变量实测范围内远端取易于读数的 X 值代入 回归方程得到一个点的坐标,连接此点与点 ( , )也可X绘Y出回归直线。
第十章 简单回归分析
在医学研究中,经常需要研究两个变量之间 的相互关系和相互依存关系,如血糖与胰岛 素水平、年龄与血压等,把这种统计分析方 法叫做双变量关系的统计。
相关 ---- 变量间在数量上的相互关系 回归 ---- 变量间在数量上的依存关系
第一节 线性回归
一、基本概念 1.直线回归(linear regression) :当一变量随 另一变量有规律的依存变化时,此依存变化 的数量关系称为直线回归关系。 直线回归是回归分析中最基本、最简单的 一种,故又称为简单回归或简单线性回归。
表10-1 21例肝癌病人血清胆固醇与甘油三脂相关性研究
病人序号
血清胆固醇
甘油三脂
1
3.89
1.71
2
3.41
1.01
3
5.70
0.97
4
6.84
1.78
5
2.93
1.25
6
3.98
0.70
7ห้องสมุดไป่ตู้
4.23
1.33
8
4.43
0.72
9
2.58
0.34
10
4.40
1.24
11
3.77
1.00
12
3.42
0.79
n 21
3. 计算 lXX 、lYY 及 lXY
lXX
X 2 ( X )2 363 .33 85.012 / 21 19.20 n
lYY 23.12 20.892 / 21 2.34
lXY
87.82
85.01 20.89 21
3.26
4. 求回归系数和截距a值:
b lXY 3.26 0.1698 lXX 19.20
第10章 回归分析
7
解: 依题意,实验次数n=5,y~x为一元线性关系y=a+bx。根据最小二乘 法原理,有:
i 1 2 3 4 5
xi 2 4 5 8 9 28
yi 2.01 2.98 3.50 5.02 5.07 18.58
x i2 4 16 25 64 81 190
yi2 4.04 8.88 12.25 25.20 25.70 76.07
xiyi 4.02 11.92 17.50 40.16 45.63 119.23
解得a=1.155,b=0.4573。 因此关系式为:y=1.155+0.4573x。
如果用简化算法,则有:
故关系式为:y=1.155+0.4573x,即两种计算方法结果是一致的。 可见,根据实验数据建立回归方程,可采用最小二乘法,基本步骤为: ① 根据实验数据画出散点图; ② 确定经验公式的函数类型; ③ 通过最小二乘法得到正规方程组; ④ 求解正规方程组,得到回归方程的表达式。 其实①②两点正是第9章建立数学模型的过程,所以建立数学模型是回 归分析的前提。
13
[例10-2] 试用相关系数检验法对例10-l中得到的经验公式进行显著性检验 (α=0.05)。 解:
当α=0.05,n=5时,查得相关系数临界值 r0.05,3=0.8783。所以r>r, f, 所得的经验公式有意义。
14
应当指出的是,相关系数r有一个明显的缺点:即它接近于1的程度与实 验数据组数n有关。当n较小时,|r|容易接近于1;当n较大时,|r| 容易偏小。特别是当n=2时,因两点确定一条直线,|r|总等于1。所 以,只有当实验次数n较多时,才能得出真正有实际意义的回归方程。
2
回归分析的主要内容: 确定回归方程,检验回归方程的可信性 10.2 一元线性回归分析 10.2.1 一元线性回归方程的建立 一元线性回归分析又称直线拟合,是处理两个变量x和y之间关系的方法。 所谓一元是指只有一个自变量x,因变量y在某种程度上是随x变化的。 设有一组实验数据,实验值为 (xi, yi) (i=1,2,…,n)。若x,y符合线性关 系,或已知经验公式为直线形式,就可拟合为直线方程,即:
第10章相关分析及回归分析
第八章相关与回归分析一、本章重点1.相关系数的概念及相关系数的种类。
事物之间的依存关系,能够分为函数关系和相关关系。
相关关系又有单向因果关系和互为因果关系;单相关和复相关;线性相关和非线性相关;不相关、不完全相关和完全相关;正相关和负相关等类型。
2.相关分析,着重掌握如何画相关表、相关图,如何测定相关系数、测定系数和进行相关系数的推断。
相关表和相关图是变量间相关关系的生动表示,对于未分组资料和分组资料计算相关系数的方式是不同的,一元线性回归中相关系数和测定系数有着紧密的关系,取得样本相关系数后还要对整体相关系数进行科学推断。
3.回归分析,着重掌握一元回归的大体原理方式,一元回归是线性回归的基础,多元线性回归和非线性回归都是以此为基础的。
用最小平方式估量回归参数,回归参数的性质和显著性査验,随机项方差的估量,回归方程的显菁性査验, 利用回归方程进行预测是回归分析的主要内容。
4.应用相关与回归分析应注意的问题。
相关与回归分析都有它们的应用范围,必需明白在什么情形下能用,什么情形下不能用。
相关分析和回归分析必需以定性分析为前提,不然可能会闹岀笑话,在进行预测时选取的样本要尽可能分散,以减少预测误差,在进行预测时只有在现有条件不变的情形下才能进行,若是条件发生了转变,原来的方程也就失去了效用。
二、难点释疑本章难点在于计算公式多,不容易记忆,所以更要注重计算的练习。
为了辜握大体计算的内容,最少应认真理解书上的例题,做完本指导书上的全数计算题。
初学者可能会感到本章公式多且复杂,难于记忆,其实只要抓住Lxx、Lxy. Lyy 这三个记号,记住它们的展开式,几个主要的公式就不难记忆了。
若是能自己把这些公式推证一下,弄清其关系,那就更易记住了。
三、练习题(一)填空题1事物之间的依存关系,按照其彼此依存和制约的程度不同,能够分为()和()两种。
2.相关关系按相关关系的情形可分为()和();按自变量的多少分()和();按相关的表现形式分()和();按相关关系的紧密程度分()、()和();按相关关系的方向分()。
第10章 直线回归与相关分析
回归方程的基本条件(性质): 回归方程的基本条件(性质): 性质1 性质1 性质2 性质2 性质3 性质3
ˆ 最小; Q = ∑( y − y)2 = 最小;
ˆ ∑( y − y) = 0
; 。
回 归 直 线 通 过 点 (x, y)
2
ˆ Q = ∑( yi − yi ) = ∑[ yi − (a + bxi )]
二、直线回归的显著性检验
回归关系的假设测验: 回归关系的假设测验: 对于样本的回归方程,必须测定其来自无 对于样本的回归方程,必须测定其来自无 直线回归关系总体的概率大小。只有当这种概 直线回归关系总体的概率大小。 率小于0.05或0.01时,我们才能冒较小的危 或 率小于 时 险确认其所代表的总体存在着直线回归关系。 险确认其所代表的总体存在着直线回归关系。 这就是回归关系的假设测验 。 回归关系的假设测验有两种方法: 测验或F 回归关系的假设测验有两种方法:t测验或F测验
由于x变数的实测区间为[31.7,44.2], 由于x变数的实测区间为[31.7,44.2], [31.7 在应用=48.5-1.1x于预测时,需限定x 在应用=48.5-1.1x于预测时,需限定x的区间 =48.5 于预测时 为[31.7,44.2];如要在x<31.7或>44.2的 [31.7,44.2];如要在x 31.7或 44.2的 区间外延,则必须有新的依据。 区间外延,则必须有新的依据。
整理后可得: 整理后可得:
na + ( ∑ xi )b = ∑ yi ( ∑ xi ) a + ( ∑ x i ) b = ∑ x i y i
2
上式叫做a与b的正规方程组 正规方程组。 正规方程组
简单线性回归分析思考与练习参考答案
简单线性回归分析思考与练习参考答案第10章简单线性回归分析思考与练习参考答案⼀、最佳选择题1.如果两样本的相关系数21r r =,样本量21n n =,那么( D )。
A. 回归系数21b b = B .回归系数12b b < C. 回归系数21b b > D .t 统计量11r b t t = E. 以上均错2.如果相关系数r =1,则⼀定有( C )。
A .总SS =残差SSB .残差SS =回归SSC .总SS =回归SSD .总SS >回归SS E.回归MS =残差MS3.记ρ为总体相关系数,r 为样本相关系数,b 为样本回归系数,下列( D )正确。
A .ρ=0时,r =0B .|r |>0时,b >0C .r >0时,b <0D .r <0时,b <0 E. |r |=1时,b =14.如果相关系数r =0,则⼀定有( D )。
A .简单线性回归的截距等于0B .简单线性回归的截距等于Y 或XC .简单线性回归的残差SS 等于0D .简单线性回归的残差SS 等于SS 总E .简单线性回归的总SS 等于05.⽤最⼩⼆乘法确定直线回归⽅程的含义是( B )。
A .各观测点距直线的纵向距离相等B .各观测点距直线的纵向距离平⽅和最⼩C .各观测点距直线的垂直距离相等D .各观测点距直线的垂直距离平⽅和最⼩E .各观测点距直线的纵向距离等于零⼆、思考题1.简述简单线性回归分析的基本步骤。
答:①绘制散点图,考察是否有线性趋势及可疑的异常点;②估计回归系数;③对总体回归系数或回归⽅程进⾏假设检验;④列出回归⽅程,绘制回归直线;⑤统计应⽤。
2.简述线性回归分析与线性相关的区别与联系。
答:区别:(1)资料要求上,进⾏直线回归分析的两变量,若X 为可精确测量和严格控制的变量,则对应于每个X 的Y 值要求服从正态分布;若X 、Y 都是随机变量,则要求X 、Y 服从双变量正态分布。
直线相关分析只适⽤于双变量正态分布资料。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
完全正相关
+0. 8
-1.0
-0.5
0
+0.5
正相关程度增加
+1.0
r
负相关程度增加
2012-12-21 26
相关系数的经验解释
•
• •
统计学
STATISTICS
|r|0.8时,可视为两个变量之间高度相关
0.5|r|<0.8时,可视为中度相关 0.3|r|<0.5时,视为低度相关
•
•
840 950 960 1176 1568 1612 1998 2360 2542 2560 3055 3400 3381 3621 3456 4408 28 37887
统计学
STATISTICS
解:已知
n 16 , x 916 , y 625 ,
2
r
xy 37887 , x
2012-12-21 9
统计学
STATISTICS
函数关系的例子
某种商品的销售额(y)与销售量(x)之间 的关系可表示为 y = px (p 为单价)
圆的面积(S)与半径之间的关系可表示 为S=R2 企业的原材料消耗额(y)与产量(x1) 、 单位产量消耗(x2) 、原材料价格(x3)之 间的关系可表示为y = x1 x2 x3
负线性相关
不相关
21
正线性相关
2012-12-21
相关系数
• •
统计学
STATISTICS
度量变量之间线性相关关系密切程度的指标 反映两变量间线性相关关系的统计指标称为 简单相关系数;反映多元线性相关关系的统 计指标称为复相关系数。
•
•Hale Waihona Puke 若相关系数是根据总体全部数据计算的,称 为总体相关系数,记为
55086 , y
2
26175
n xy n x
2
x
n y
y
2
x
916
2
( y )
2
0 . 9757
16 37887 16 55086
2
916 625 16 26175 625
2
结论:工业总产值与能源消耗量之间存在高度的正相关关系。 2012-12-21 29
若是根据样本数据计算的,则称为样本相关 系数,记为 r
22
2012-12-21
统计学
STATISTICS
●总体相关系数
反映总体两个变量X和Y的线性相关程度的 统计指标。其计算公式为:
Cov ( X , Y ) Var ( X )Var ( Y )
特点:对于特定的总体来说,X和Y的数值是 既定的,总体相关系数是客观存在的特定数 值,但通常是无法计算的。
STATISTICS xy
1225 1444 1600 1764 2401 2704 2916 3481 3844 4096 4225 4624 4761 5041 5184 5776 55086
576 625 576 784 1024 961 1369 1600 1681 1600 2209 2500 2401 2601 2304 3364 26175
2012-12-21 31
统计学
STATISTICS
3.相关关系的统计检验
根据样本计算的相关系数是一 个随机变量,在一定的置信度水平下, 总体的相关系数将在什么范围内?计 算相关系数的样本,是否来自并无相 关的总体?对这些的问题的研究,就 是我们所要回答的相关系数的统计推 断问题。
2012-12-21 5
一、简单线性相关分析
(一)变量间的关系
统计学
STATISTICS
(二)相关关系的描述与测度
2012-12-21
6
相关分析及其假定
• 相关分析要解决的问题
– – – –
统计学
STATISTICS
变量之间是否存在关系? 如果存在关系,它们之间是什么样的关系? 变量之间的关系强度如何? 样本所反映的变量之间的关系能否代表总体变量之 间的关系?
11
统计学
STATISTICS
相关关系的例子
父亲身高(y)与子女身高(x)之间的关系
收入水平(y)与受教育程度(x)之间的关系
粮食亩产量(y)与施肥量(x1) 、降雨量(x2) 、 温度(x3)之间的关系
商品的消费量(y)与居民收入(x)之间的关系 商品销售额(y)与广告费支出(x)之间的关系
2012-12-21 12
相关关系与函数关系的区别和联系 STATISTICS
区别: •函数关系是变量值之间一种确定性的对应关 系,而相关关系则是一种非确定性的依存关系
联系:
统计学
•具有函数关系的某些现象也会因观察测量 的误差,而使得到的数据表现为非确定性 的相关关系 •对相关关系作进一步的观察,不难发现它 们也是有规律可循的,可以借助函数关系 的数学表达式来近似地描述
第10章 相关与回归分析
2012-12-21
1
实例
统计学
STATISTICS
西方国家餐饮等服务行业有一条不成文的规定,即 发生餐饮等服务项目消费时,必须给服务员一定数额小 费,许多人都听说小费,但消费者应该留下多少小费? 有人说应该是账单的16%左右,是否真的如此呢? 某机构经过调查搜集到以下数据,通过对这几组数据的 分析与观察,他们发现了两者之间的数量关系。
P 、居民收入 I
b2
8
函数关系
统计学
STATISTICS
1. 是一一对应的确定关系 2. 设有两个变量 x 和 y ,变量 y 随变量 x 一起变化,并完 y 全依赖于 x ,当变量 x 取某 个数值时, y 依确定的关系 取相应的值,则称 y 是 x 的函数,记为 y = f (x),其 中 x 称为自变量, y 称为因 变量 x 3. 各观测点落在一条线上
2012-12-21
3
第10章 相关与回归分析
一、简单线性相关分析
二、简单线性回归分析
统计学
STATISTICS
三、Excel在简单线性相关与回归 分析中的应用
2012-12-21
4
本章学习目标
统计学
STATISTICS
1.熟悉相关关系的概念、特点、种类和度量
2.掌握简单线性回归方程的建立方法
3.理解简单线性回归方程的统计检验——拟 合优度检验、变量显著性检验和方程显著性 检验 4.掌握利用回归方程进行预测的方法 5.利用 Excel 进行相关与回归分析
25 20 15 10 5
11.2 11 10.8 10.6 10.4 10.2 10
2012-12-21 0
0 2 4 6 8 10 12
15
0 2 4 6 8 10
统计学
STATISTICS
2.相关关系的描述与测度方法
是依据研究者的理论知识和实践经验, 定性分析法 对客观现象之间是否存在相关关系,以 及何种关系作出判断 在定性分析的基础上,通过编制相关表、 绘制相关图、计算相关系数与判定系数 定量分析法 等方法,来判断现象之间相关的方向、 形态及密切程度
统计学
STATISTICS
• 用Excel计算相关系数
2012-12-21
30
使用相关系数的注意事项
统计学
STATISTICS
▲X和Y 都是相互对称的随机变量,所以
▲相关系数只反映变量间的线性相关程 度,不能说明非线性相关关系。
▲相关系数不能确定变量的因果关系, 也不能说明相关关系具体接近于哪条 直线。 ▲不要在相关关系据以成立的数据范围 以外,推论这种相关关系仍然保持。
2012-12-21 10
相关关系
统计学
STATISTICS
1. 变量间关系不能用函数关 系精确表达 y 2. 一个变量的取值不能由另 一个变量唯一确定 3. 当变量 x 取某个值时, 变量 y 的取值可能有几 个 x 4. 各观测点分布在直线周围
2012-12-21
月均销售额(万元)
年广告投入(万元)
2012-12-21 19
统计学
STATISTICS
2012-12-21
20
常见的散点图
统计学
STATISTICS
非线性相关
完全正线性相关
完全负线性相关
2012-12-21 13
(二)相关关系的描述与测度
1.相关关系的类型 • 从变量相关的程度看
完全相关(B) 不完全相关(A) 不相关(C)
25 20
统计学
STATISTICS
A
15 10 5 0 0 2 4 6 8 10 12
25 20
•从变量相关关系变化的方向看
正相关——变量同方向变化 同增同减 (A) 负相关——变量反方向变化 一增一减(B)
|r|<0.3时,说明两个变量之间的相关程度 极弱,可视为不相关
上述解释必须建立在对相关系数的显著性 进行检验的基础之上
2012-12-21
27
【例】计算工业总产值与能源消耗量之间的相关系数 统计学
序号 能源消耗量 工业总产值 (十万吨)x (亿元)y 1 35 24 2 38 25 3 40 24 4 42 28 5 49 32 6 52 31 7 54 37 8 59 40 9 62 41 10 64 40 11 65 47 12 68 50 13 69 49 14 71 51 15 72 48 16 2012-12-21 76 58 合计 916 625 x2 y2