信号地和模拟地的区别

合集下载

地线分类

地线分类

关于接地:数字地、模拟地、信号地、交流地、直流地、屏蔽地、浮地模拟地和数字地单点接地只要是地,最终都要接到一起,然后入大地。

如果不接在一起就是"浮地",存在压差,容易积累电荷,造成静电。

地是参考0电位,所有电压都是参考地得出的,地的标准要一致,故各种地应短接在一起。

人们认为大地能够吸收所有电荷,始终维持稳定,是最终的地参考点。

虽然有些板子没有接大地,但发电厂是接大地的,板子上的电源最终还是会返回发电厂入地。

如果把模拟地和数字地大面积直接相连,会导致互相干扰。

不短接又不妥,理由如上有四种方法解决此问题:1、用磁珠连接;2、用电容连接;3、用电感连接;4、用0欧姆电阻连接。

磁珠的等效电路相当于带阻限波器,只对某个频点的噪声有显著抑制作用,使用时需要预先估计噪点频率,以便选用适当型号。

对于频率不确定或无法预知的情况,磁珠不合。

电容隔直通交,造成浮地。

电感体积大,杂散参数多,不稳定。

0欧电阻相当于很窄的电流通路,能够有效地限制环路电流,使噪声得到抑制。

电阻在所有频带上都有衰减作用(0欧电阻也有阻抗),这点比磁珠强。

*跨接时用于电流回路*当分割电地平面后,造成信号最短回流路径断裂,此时,信号回路不得不绕道,形成很大的环路面积,电场和磁场的影响就变强了,容易干扰/被干扰。

在分割区上跨接0欧电阻,可以提供较短的回流路径,减小干扰。

*配置电路*一般,产品上不要出现跳线和拨码开关。

有时用户会乱动设置,易引起误会,为了减少维护费用,应用0欧电阻代替跳线等焊在板子上。

空置跳线在高频时相当于天线,用贴片电阻效果好。

*其他用途* 布线时跨线调试/测试用临时取代其他贴片器件作为温度补偿器件更多时候是出于EMC对策的需要。

另外,0欧姆电阻比过孔的寄生电感小,而且过孔还会影响地平面(因为要挖孔)。

大尺寸的0欧电阻还可当跳线,中间可以走线还有就是不同尺寸0欧电阻允许通过电流不同,一般0603的1A,0805的2A,所以不同电流会选用不同尺寸的还有就是为磁珠、电感等预留位置时,得根据磁珠、电感的大小还做封装,所以0603、0805等不同尺寸的都有了;-----------------------------------------0欧姆电阻一般用在混合信号的电路中,在这种电路中为了减小数字部分和模拟部分的相互干扰,他们的电源地线都是分开布的,但在电源的入口点又需要连在一起,一般是通过0欧姆电阻连接的,这样既达到了数字地和模拟地间无电压差,又利用了0欧姆电阻的寄生电感滤除了数字部分对模拟部分的干扰.模拟地和数字地1、模拟地和数字地单点接地只要是地,最终都要接到一起,然后入大地。

接地数字地模拟地信号地区别与接法

接地数字地模拟地信号地区别与接法

接地数字地模拟地信号地区别与接法Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】接地:数字地,模拟地,信号地区别与接法除了正确进行接地设计、安装,还要正确进行各种不同信号的接地处理。

控制系统中,大致有以下几种地线:(1)数字地:也叫逻辑地,是各种开关量(数字量)信号的零电位。

(2)模拟地:是各种模拟量信号的零电位。

(3)信号地:通常为传感器的地。

(4)交流地:交流供电电源的地线,这种地通常是产生噪声的地。

(5)直流地:直流供电电源的地。

(6)屏蔽地:也叫机壳地,为防止静电感应和磁场感应而设。

以上这些地线处理是系统设计、安装、调试中的一个重要问题。

下面就接地问题提出一些看法:(1)控制系统宜采用一点接地。

一般情况下,高频电路应就近多点接地,低频电路应一点接地。

在低频电路中,布线和元件间的电感并不是什么大问题,然而接地形成的环路的干扰影响很大,因此,常以一点作为接地点;但一点接地不适用于高频,因为高频时,地线上具有电感因而增加了地线阻抗,同时各地线之间又产生电感耦合。

一般来说,频率在1MHz以下,可用一点接地;高于10MHz时,采用多点接地;在1~10MHz之间可用一点接地,也可用多点接地。

(2)交流地与信号地不能共用。

由于在一段电源地线的两点间会有数mV甚至几V 电压,对低电平信号电路来说,这是一个非常重要的干扰,因此必须加以隔离和防止。

(3)浮地与接地的比较。

全机浮空即系统各个部分与大地浮置起来,这种方法简单,但整个系统与大地绝缘电阻不能小于50MΩ。

这种方法具有一定的抗干扰能力,但一旦绝缘下降就会带来干扰。

还有一种方法,就是将机壳接地,其余部分浮空。

这种方法抗干扰能力强,安全可靠,但实现起来比较复杂。

(4)模拟地。

模拟地的接法十分重要。

为了提高抗共模干扰能力,对于模拟信号可采用屏蔽浮技术。

对于具体模拟量信号的接地处理要严格按照操作手册上的要求设计。

电路中的各种“地”

电路中的各种“地”

电路中的各种“地”导读:工程师在设计电路时,为防止各种电路在电路正常工作中产生互相干扰,使之能相互兼容地有效工作。

根据电路的性质,将电路中“零电位”---“地”分为不同的种类。

首先我们来认识几种“地”: “热地”是指和交流电网直接或间接相连接的区域;“冷地”则是指没有和电网连接在一起的区域;信号“地”又称参考“地”,就是零电位的参考点,它是构成电路信号回路的公共端;保护“地”是在Ⅰ类电器设备(不能仅仅依靠绝缘来防护的设备)中为了保护人员安全而设置的一种电源接线方式,它的一端接用电器的外壳,另一端与大地作可靠连接。

一、信号“地”信号“地”又称参考“地”,就是零电位的参考点,也是构成电路信号回路的公共段,图形符号“⊥”.1)直流地:直流电路“地”,零电位参考点。

2)交流地:交流电的零线。

应与地线区别开。

3)功率地:大电流网络器件、功放器件的零电位参考点。

4)模拟地:放大器、采样保持器、A/D转换器和比较器的零电位参考点。

5)数字地:也叫逻辑地,是数字电路的零电位参考点。

6)“热地”:开关电源无需使用变压器,其开关电路的“地”和市电电网有关,既所谓的“热地”,它是带电的。

7)“冷地”:由于开关电源的高频变压器将输入、输出端隔离;又由于其反馈电路常用光电耦合、既能传送反馈信号又将双方的“地”隔离;所以输出端的地称之为“冷地”,它不带电。

图形符号为“⊥”.二、音响中的“地”1)屏蔽线接地:音响系统为防止干扰,其金属机壳用导线与信号“地”相接,这叫屏蔽接地。

2)音频专用“地”:专业音响为了防止干扰,除了屏蔽“地”之外,还需与音频专用“地”相连。

此接地装置应专门埋设,并且应与隔离变压器、屏蔽式稳压电源的相应接地端相连后作为音控室中的专用音频接地点。

三、区别一下“热地”和“冷地”在输入的交流电中,我们一般称一根为“火”线(相线),一根为“零”线(中心线),经过桥堆(或二极管)整理后得到直流电。

一般以滤波电容的负端为参考电为,即“热地”. 此时滤波电容的正端为+300V. 此时,若以大地为参考“地”电位,来测量“热地”, “热地”上实际是220V的交流电波形。

电路中的各种地

电路中的各种地

转载日志——电路中的地转至电子发烧友一、地的分类工程师在设计电路时,为防止各种电路在电路正常工作中产生互相干扰,使之能相互兼容地有效工作。

根据电路的性质,将电路中“零电位”———“地”分为不同的种类,比如按交直流分为直流地、交流地,按参考信号分为数字地(逻辑地)、模拟地,按功率分为信号地、功率地、电源地等,按与大地的连接方式分为系统地、机壳地(屏蔽地)、浮地。

不同的接地方式在电路中应用、设计和考虑也不相同,应根据具体电路分别进行设置。

1、信号地信号地(SG)是各种物理量的传感器和信号源零电位以及电路中信号的公共基准地线(相对零电位)。

此处信号一般指模拟信号或者能量较弱的数字信号,易受电源波动或者外界因素的干扰,导致信号的信噪比(SNR)下降。

特别是模拟信号,信号地的漂移,会导致信噪比下降;信号的测量值产生误差或者错误,可能导致系统设计的失败。

因此对信号地的要求较高,也需要在系统中特殊处理,避免和大功率的电源地、数字地以及易产生干扰地线直接连接。

尤其是微小信号的测量,信号地通常需要采取隔离技术。

2、模拟地模拟地(AG)是系统中模拟电路零电位的公共基准地线。

由于模拟电路既承担小信号的处理,又承担大信号的功率处理;既有低频的处理,又有高频处理;模拟量从能量、频率、时间等都很大的差别,因此模拟电路既易接受干扰,又可能产生干扰。

所以对模拟地的接地点选择和接地线的敷设更要充分考虑。

减小地线的导线电阻,将电路中的模拟和数字部分开,在PCB布线的时候,模拟地和数字地应尽量分开,最后通过电感滤波和隔离,汇接到一起。

如图1所示。

模拟地和数字地3、数字地数字地(DG)是系统中数字电路零电位的公共基准地线。

由于数字电路工作在脉冲状态,特别是脉冲的前后沿较陡或频率较高时,会在电源系统中产生比较大的毛刺,易对模拟电路产生干扰。

所以对数字地的接地点选择和接地线的敷设也要充分考虑。

尽量将电路中的模拟和数字部分分开,在PCB布线的时候,模拟地和数字地应尽量分开,最后通过电感,汇接到一起。

接地数字地,模拟地,信号地区别与接法

接地数字地,模拟地,信号地区别与接法

接地:数字地,模拟地,信号地区别与接法除了正确进行接地设计、安装,还要正确进行各种不同信号的接地处理。

控制系统中,大致有以下几种地线:(1)数字地:也叫逻辑地,是各种开关量(数字量)信号的零电位。

(2)模拟地:是各种模拟量信号的零电位。

(3)信号地:通常为传感器的地。

(4)交流地:交流供电电源的地线,这种地通常是产生噪声的地。

(5)直流地:直流供电电源的地。

(6)屏蔽地:也叫机壳地,为防止静电感应和磁场感应而设。

以上这些地线处理是系统设计、安装、调试中的一个重要问题。

下面就接地问题提出一些看法:(1)控制系统宜采用一点接地。

一般情况下,高频电路应就近多点接地,低频电路应一点接地。

在低频电路中,布线和元件间的电感并不是什么大问题,然而接地形成的环路的干扰影响很大,因此,常以一点作为接地点;但一点接地不适用于高频,因为高频时,地线上具有电感因而增加了地线阻抗,同时各地线之间又产生电感耦合。

一般来说,频率在1MHz以下,可用一点接地;高于10MHz时,采用多点接地;在1~10MHz之间可用一点接地,也可用多点接地。

(2)交流地与信号地不能共用。

由于在一段电源地线的两点间会有数mV 甚至几V电压,对低电平信号电路来说,这是一个非常重要的干扰,因此必须加以隔离和防止。

(3)浮地与接地的比较。

全机浮空即系统各个部分与大地浮置起来,这种方法简单,但整个系统与大地绝缘电阻不能小于50MΩ。

这种方法具有一定的抗干扰能力,但一旦绝缘下降就会带来干扰。

还有一种方法,就是将机壳接地,其余部分浮空。

这种方法抗干扰能力强,安全可靠,但实现起来比较复杂。

(4)模拟地。

模拟地的接法十分重要。

为了提高抗共模干扰能力,对于模拟信号可采用屏蔽浮技术。

对于具体模拟量信号的接地处理要严格按照操作手册上的要求设计。

(5)屏蔽地。

在控制系统中为了减少信号中电容耦合噪声、准确检测和控制,对信号采用屏蔽措施是十分必要的。

根据屏蔽目的不同,屏蔽地的接法也不一样。

各种地线的分类和作用

各种地线的分类和作用
地的分类与作用
1.信号"地";
信号"地"又称参考"地",就是零电位的参考点,也是构成电路信号回路的公共段,图形符号"地"
1>直流地:直流电路"地",零电位参考点.
2>交流地:交流电的零线.应与地线区别开.
3>功率地:大电流网络器件,功放器件的零电位参考点.
4>模拟地:放大器,采样保持器,A/D转换器和比较器的零电位参考点.
2.保护"地";
保护地是为了保护人员安全而设置的一种接线方式.保护地线一端接用电器,另一端与大地作可靠连接.
3.音响中的"地"
1>屏蔽线接地:音响系统为防止干扰,其金属机壳用导线与信号"地"相接,这叫屏蔽接地.
2>音频专用"地":专业音响为了防止干扰,除了屏蔽"地"之外,还需与音频专用"地"相连.此接地装置应专门埋设,并且应与隔离变压器,屏蔽式稳压电源的相应接地端相连后作为音控室中的专用音频接地点.
---不同地线的处理方法\
1,数字地和模拟地应分开
在高要求电路中数字地与模拟地必需分开.即使是对于A/D,D/A转换器同一芯片上两种"地"最好也要分开,仅在系统一点上把两种"地"连接起来.
2.浮地与接地:
系统浮地,是将系统电路的各部分的地线浮置起来,不与大地相连.这种接法,有一定抗干扰能力,但系统与地的绝缘电阻不能小于50兆欧,一旦绝缘性能下降,就会带来干扰.通常采用系统浮地,机壳接地,可使抗干扰能力增强,安全可靠.
3.一点接地

电气中“地”的概念

电气中“地”的概念

“地”是电子技术中一个很重要的概念。

由于“地”的分类与作用有多种,容易混淆,故总结一下“地”的概念。

“接地”有设备内部的信号接地和设备接大地,两者概念不同,目的也不同。

“地”的经典定义是“作为电路或系统基准的等电位点或平面”。

一:信号“地”又称参考“地”,就是零电位的参考点,也是构成电路信号回路的公共端。

(1) 直流地:直流电路“地”,零电位参考点。

(2) 交流地:交流电的零线。

应与地线区别开。

(3) 功率地:大电流网络器件、功放器件的零电位参考点。

(4) 模拟地:放大器、采样保持器、A/D转换器和比较器的零电位参考点。

(5) 数字地:也叫逻辑地,是数字电路的零电位参考点。

(6) “热地”:开关电源无需使用工频变压器,其开关电路的“地”和市电电网有关,即所谓的“热地”,它是带电的。

(7) “冷地”:由于开关电源的高频变压器将输入、输出端隔离;又由于其反馈电路常用光电耦合器,既能传送反馈信号,又将双方的“地”隔离;所以输出端的地称之为“冷地”,它不带电。

信号接地设备的信号接地,可能是以设备中的一点或一块金属来作为信号的接地参考点,它为设备中的所有信号提供了一个公共参考电位。

有单点接地,多点接地,浮地和混合接地。

(这里主要介绍浮地)单点接地是指整个电路系统中只有一个物理点被定义为接地参考点,其他各个需要接地的点都直接接到这一点上。

在低频电路中,布线和元件之间不会产生太大影响。

通常频率小于1MHz的电路,采用一点接地。

多点接地是指电子设备中各个接地点都直接接到距它最近的接地平面上(即设备的金属底板)。

在高频电路中,寄生电容和电感的影响较大。

通常频率大于10MHz的电路,常采用多点接地。

浮地,即该电路的地与大地无导体连接。

『虚地:没有接地,却和地等电位的点。

』其优点是该电路不受大地电性能的影响。

浮地可使功率地(强电地)和信号地(弱电地)之间的隔离电阻很大,所以能阻止共地阻抗电路性耦合产生的电磁干扰。

其缺点是该电路易受寄生电容的影响,而使该电路的地电位变动和增加了对模拟电路的感应干扰。

了解下开关电源中的各种“地”

了解下开关电源中的各种“地”

了解下开关电源中的各种“地”“地”是电子技术中一个非常重要的概念,在PCB设计过程中,我们会遇到各种各样的地,比如数字地、模拟地、信号地等。

本文,我们不妨就来了解下开关电源中的各种“地”。

“地”的概念“地”的经典定义是“作为电路或系统基准的等电位点或平面”。

“地”的符号理想中,地线应是一个零电位、零阻抗的物理实体。

而实际的布线中,地线在PCB上,本身会有阻抗成分,又有分布电容、电感构成的电抗成分。

此外,地线根源(电源、信号源)构成回路,此回路的电场会感应出外部电磁场的RF电流,即常说的“噪声”,从而引起EMI问题。

开关电源实际布线过程中关于“地”的考虑【总则】根据实际应用,先分清楚地线的种类,然后选择不同的接地方式。

不论何种接地方式,都须遵守“低阻抗,低噪声”的原则。

开关电源中“地”的分类1、直流地直流电路“地”,零电位参考点。

2、交流地交流电的零线,这种地通常是产生噪声的地,应与大地区别开。

3、模拟地各种模拟量信号的零电位。

4、数字地也叫逻辑地,是数字电路各种开关量(数字量)信号的零电位。

5、热地开关电源无需使用工频变压器,其开关电路的“地”和市电电网有关,即所谓的“热地”,它是带电的。

6、冷地由于开关电源的高频变压器将输入、输出端隔离;又由于其反馈电路常用光电耦合器,既能传送反馈信号,又将双方的“地”隔离;所以输出端的地称之为“冷地”,它不带电。

7、功率地大电流网络器件、功率电子与磁性器件的零电位参考点。

8、信号地一般指传感变化信号的地线。

9、安全地提供大地接地点的回路,可防止触电危险。

10、屏蔽地为互联的电缆与主要机架提供0V参考或电磁屏蔽,防止静电感应和磁场感应。

11、系统地整个系统模拟、数字信号公共参考点。

12、浮地将电路中某条支路作为0V参考而不接地。

接“地”的方式1、单点接地指所有电路的地线接到公共地线的同一点,以减少地回路之间的相互干扰。

可以防止不同子系统中的电流与RF电流,经过同样的返回路径,从而避免造成相互之间的共模噪声耦合。

各种接地概念、方法

各种接地概念、方法

一、地的分类工程师在设计电路时,为防止各种电路在电路正常工作中产生互相干扰,使之能相互兼容地有效工作。

根据电路的性质,将电路中“零电位”———“地”分为不同的种类,比如按交直流分为直流地、交流地,按参考信号分为数字地(逻辑地)、模拟地,按功率分为信号地、功率地、电源地等,按与大地的连接方式分为系统地、机壳地(屏蔽地)、浮地。

不同的接地方式在电路中应用、设计和考虑也不相同,应根据具体电路分别进行设置。

1 信号地信号地(SG)是各种物理量的传感器和信号源零电位以及电路中信号的公共基准地线(相对零电位)。

此处信号一般指模拟信号或者能量较弱的数字信号,易受电源波动或者外界因素的干扰,导致信号的信噪比(SNR)下降。

特别是模拟信号,信号地的漂移,会导致信噪比下降;信号的测量值产生误差或者错误,可能导致系统设计的失败。

因此对信号地的要求较高,也需要在系统中特殊处理,避免和大功率的电源地、数字地以及易产生干扰地线直接连接。

尤其是微小信号的测量,信号地通常需要采取隔离技术。

2 模拟地模拟地(AG)是系统中模拟电路零电位的公共基准地线。

由于模拟电路既承担小信号的处理,又承担大信号的功率处理;既有低频的处理,又有高频处理;模拟量从能量、频率、时间等都很大的差别,因此模拟电路既易接受干扰,又可能产生干扰。

所以对模拟地的接地点选择和接地线的敷设更要充分考虑。

减小地线的导线电阻,将电路中的模拟和数字部分开,在PCB布线的时候,模拟地和数字地应尽量分开,最后通过电感滤波和隔离,汇接到一起。

如图4-1所示。

3 数字地数字地(DG)是系统中数字电路零电位的公共基准地线。

由于数字电路工作在脉冲状态,特别是脉冲的前后沿较陡或频率较高时,会在电源系统中产生比较大的毛刺,易对模拟电路产生干扰。

所以对数字地的接地点选择和接地线的敷设也要充分考虑。

尽量将电路中的模拟和数字部分分开,在PCB布线的时候,模拟地和数字地应尽量分开,最后通过电感,汇接到一起.4 悬浮地悬浮地(FG)是系统中部分电路的地与整个系统的地不直接连接,而是通过变压器耦合或者直接不连接,处于悬浮状态。

接地数字地模拟地信号地区别与接法

接地数字地模拟地信号地区别与接法

接地数字地模拟地信号地区别与接法文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]接地:数字地,模拟地,信号地区别与接法除了正确进行接地设计、安装,还要正确进行各种不同信号的接地处理。

控制系统中,大致有以下几种地线:(1)数字地:也叫逻辑地,是各种开关量(数字量)信号的零电位。

(2)模拟地:是各种模拟量信号的零电位。

(3)信号地:通常为传感器的地。

(4)交流地:交流供电电源的地线,这种地通常是产生噪声的地。

(5)直流地:直流供电电源的地。

(6)屏蔽地:也叫机壳地,为防止静电感应和磁场感应而设。

以上这些地线处理是系统设计、安装、调试中的一个重要问题。

下面就接地问题提出一些看法:(1)控制系统宜采用一点接地。

一般情况下,高频电路应就近多点接地,低频电路应一点接地。

在低频电路中,布线和元件间的电感并不是什么大问题,然而接地形成的环路的干扰影响很大,因此,常以一点作为接地点;但一点接地不适用于高频,因为高频时,地线上具有电感因而增加了地线阻抗,同时各地线之间又产生电感耦合。

一般来说,频率在1MHz以下,可用一点接地;高于10MHz时,采用多点接地;在1~10MHz之间可用一点接地,也可用多点接地。

(2)交流地与信号地不能共用。

由于在一段电源地线的两点间会有数mV甚至几V 电压,对低电平信号电路来说,这是一个非常重要的干扰,因此必须加以隔离和防止。

(3)浮地与接地的比较。

全机浮空即系统各个部分与大地浮置起来,这种方法简单,但整个系统与大地绝缘电阻不能小于50MΩ。

这种方法具有一定的抗干扰能力,但一旦绝缘下降就会带来干扰。

还有一种方法,就是将机壳接地,其余部分浮空。

这种方法抗干扰能力强,安全可靠,但实现起来比较复杂。

(4)模拟地。

模拟地的接法十分重要。

为了提高抗共模干扰能力,对于模拟信号可采用屏蔽浮技术。

对于具体模拟量信号的接地处理要严格按照操作手册上的要求设计。

(5)屏蔽地。

在控制系统中为了减少信号中电容耦合噪声、准确检测和控制,对信号采用屏蔽措施是十分必要的。

数字地、模拟地、电源地

数字地、模拟地、电源地

除了正确进行接地设计、安装,还要正确进行各种不同信号的接地处理。

控制系统中,大致有以下几种地线:(1)数字地:也叫逻辑地,是各种开关量(数字量)信号的零电位。

(2)模拟地:是各种模拟量信号的零电位。

(3)信号地:通常为传感器的地。

(4)交流地:交流供电电源的地线,这种地通常是产生噪声的地。

(5)直流地:直流供电电源的地。

(6)屏蔽地:也叫机壳地,为防止静电感应和磁场感应而设。

以上这些地线处理是系统设计、安装、调试中的一个重要问题。

下面就接地问题提出一些看法:(1)控制系统宜采用一点接地。

一般情况下,高频电路应就近多点接地,低频电路应一点接地。

在低频电路中,布线和元件间的电感并不是什么大问题,然而接地形成的环路的干扰影响很大,因此,常以一点作为接地点;但一点接地不适用于高频,因为高频时,地线上具有电感因而增加了地线阻抗,同时各地线之间又产生电感耦合。

一般来说,频率在1MHz以下,可用一点接地;高于10MHz时,采用多点接地;在1~10MHz之间可用一点接地,也可用多点接地。

(2)交流地与信号地不能共用。

由于在一段电源地线的两点间会有数mV甚至几V电压,对低电平信号电路来说,这是一个非常重要的干扰,因此必须加以隔离和防止。

(3)浮地与接地的比较。

全机浮空即系统各个部分与大地浮置起来,这种方法简单,但整个系统与大地绝缘电阻不能小于50MΩ。

这种方法具有一定的抗干扰能力,但一旦绝缘下降就会带来干扰。

还有一种方法,就是将机壳接地,其余部分浮空。

这种方法抗干扰能力强,安全可靠,但实现起来比较复杂。

(4)模拟地。

模拟地的接法十分重要。

为了提高抗共模干扰能力,对于模拟信号可采用屏蔽浮技术。

对于具体模拟量信号的接地处理要严格按照操作手册上的要求设计。

(5)屏蔽地。

在控制系统中为了减少信号中电容耦合噪声、准确检测和控制,对信号采用屏蔽措施是十分必要的。

根据屏蔽目的不同,屏蔽地的接法也不一样。

电场屏蔽解决分布电容问题,一般接大地;电磁场屏蔽主要避免雷达、电台等高频电磁场辐射干扰。

关于接地:数字地、模拟地、信号地、交流地、直流地、屏蔽地、浮地

关于接地:数字地、模拟地、信号地、交流地、直流地、屏蔽地、浮地

关于接地:数字地、模拟地、信号地、交流地、直流地、屏蔽地、浮地[转贴2009-03-01 18:23:09]2010-05-07 19:52:32| 分类:EMC | 标签:|字号大中小订阅除了正确进行接地设计、安装,还要正确进行各种不同信号的接地处理。

控制系统中,大致有以下几种地(1)数字地:也叫逻辑地,是各种开关量(数字量)信号的零电位。

(2)模拟地:是各种模拟量信号的零电位。

(3)信号地:通常为传感器的地。

(4)交流地:交流供电电源的地线,这种地通常是产生噪声的地。

(5)直流地:直流供电电源的地。

(6)屏蔽地:也叫机壳地,为防止静电感应和磁场感应而设。

以上这些地线处理是系统设计、安装、调试中的一个重要问题。

下面就接地问题提出一些看法:(1)控制系统宜采用一点接地。

一般情况下,高频电路应就近多点接地,低频电路应一点接地。

在低频电路中,布线和元件间的电感并不是什么大问题,然而接地形成的环路的干扰影响很大,因此,常以一点作为接地点;但一点接地不适用于高频,因为高频时,地线上具有电感因而增加了地线阻抗,同时各地线之间又产生电感耦合。

一般来说,频率在1MHz以下,可用一点接地;高于10MHz时,采用多点接地;在1~10MHz之间可用一点接地,也可用多点接地。

(2)交流地与信号地不能共用。

由于在一段电源地线的两点间会有数mV甚至几V电压,对低电平信号电路来说,这是一个非常重要的干扰,因此必须加以隔离和防止。

(3)浮地与接地的比较。

全机浮空即系统各个部分与大地浮置起来,这种方法简单,但整个系统与大地绝缘电阻不能小于50MΩ。

这种方法具有一定的抗干扰能力,但一旦绝缘下降就会带来干扰。

还有一种方法,就是将机壳接地,其余部分浮空。

这种方法抗干扰能力强,安全可靠,但实现起来比较复杂。

(4)模拟地。

模拟地的接法十分重要。

为了提高抗共模干扰能力,对于模拟信号可采用屏蔽浮技术。

对于具体模拟量信号的接地处理要严格按照操作手册上的要求设计。

电源地信号地模拟地数字地

电源地信号地模拟地数字地

从参考电平‎的角度看,都是同一个‎地,最终都要接‎到一起获得‎相同的参考‎电位。

对于地的分‎开,主要是从布‎线的角度看‎的。

减少不同电‎路之间地的‎干扰。

电源的地不‎能看成模拟‎地,信号地也不‎能看成数字‎地。

因为电源有‎给模拟电路‎供电的,有给数字电‎路供电的。

信号有数字‎信号和模拟‎信号。

主要是根据‎电路的性能‎来分割地,对于数字信‎号3.3v电路,2。

5V电路和‎5V电路的‎地也可能有‎分开的需要‎。

即使是同一‎个供电的数‎字电路,有时候也有‎布线的要求‎,例如大电流‎的IO部分‎的地,可能需要单‎独处理。

大地一般指‎机壳,这个部分有‎E SD和屏‎蔽的需要的‎。

有些时候电‎路地通过一‎个1M电阻‎同外壳相连‎,有时候直接‎连接。

要根据应用‎和ESD的‎要求来处理‎。

总之,地的逻辑连‎接特性和P‎C B上的物‎理特性是要‎区分来看的‎。

理论上讲地‎是0电压的‎,但是在实际‎P CBA 上‎地是有很多‎噪声和反弹‎的。

关于接地:数字地、模拟地、信号地、交流地、直流地、屏蔽地、浮地除了正确进‎行接地设计‎、安装,还要正确进‎行各种不同‎信号的接地‎处理。

控制系统中‎,大致有以下‎几种地线:(1)数字地:也叫逻辑地‎,是各种开关‎量(数字量)信号的零电‎位。

(2)模拟地:是各种模拟‎量信号的零‎电位。

(3)信号地:通常为传感‎器的地。

(4)交流地:交流供电电‎源的地线,这种地通常‎是产生噪声‎的地。

(5)直流地:直流供电电‎源的地。

(6)屏蔽地:也叫机壳地‎,为防止静电‎感应和磁场‎感应而设。

以上这些地‎线处理是系‎统设计、安装、调试中的一‎个重要问题‎。

下面就接地‎问题提出一‎些看法:(1)控制系统宜‎采用一点接‎地。

一般情况下‎,高频电路应‎就近多点接‎地,低频电路应‎一点接地。

在低频电路‎中,布线和元件‎间的电感并‎不是什么大‎问题,然而接地形‎成的环路的‎干扰影响很‎大,因此,常以一点作‎为接地点;但一点接地‎不适用于高‎频,因为高频时‎,地线上具有‎电感因而增‎加了地线阻‎抗,同时各地线‎之间又产生‎电感耦合。

模拟地与信号地的区别

模拟地与信号地的区别

模拟地与信号地的区别2009/09/07 10:28很多人分不清模拟地与信号地的区别,有时候也就不区分数字地与模拟地,但这样就使得电路质量下降,影响了电路的性能:模拟电路涉及弱小信号,但是数字电路门限电平较高,对电源的要求就比模拟电路低些。

既有数字电路又有模拟电路的系统中,数字电路产生的噪声会影响模拟电路,使模拟电路的小信号指标变差,克服的办法是分开模拟地和数字地。

对于低频模拟电路,除了加粗和缩短地线之外,电路各部分采用一点接地是抑制地线干扰的最佳选择,主要可以防止由于地线公共阻抗而导致的部件之间的互相干扰。

而对于高频电路和数字电路,由于这时地线的电感效应影响会更大,一点接地会导致实际地线加长而带来不利影响,这时应采取分开接地和一点接地相结合的方式。

另外对于高频电路还要考虑如何抑制高频辐射噪声,方法是:尽量加粗地线,以降低噪声对地阻抗;满接地,即除传输信号的印制线以外,其他部分全作为地线。

不要有无用的大面积铜箔。

地线应构成环路,以防止产生高频辐射噪声,但环路所包围面积不可过大,以免仪器处于强磁场中时,产生感应电流。

但如果只是低频电路,则应避免地线环路。

数字电源和模拟电源最好隔离,地线分开布置,如果有A/D,则只在此处单点共地。

低频中没有多大影响,但建议模拟和数字一点接地。

高频时,可通过磁珠把模拟和数字地一点共地。

如果把模拟地和数字地大面积直接相连,会导致互相干扰。

不短接又不妥,理由如上有四种方法解决此问题∶1、用磁珠连接;2、用电容连接;3、用电感连接;4、用0欧姆电阻连接。

磁珠的等效电路相当于带阻限波器,只对某个频点的噪声有显着抑制作用,使用时需要预先估计噪点频率,以便选用适当型号。

对于频率不确定或无法预知的情况,磁珠不合。

电容隔直通交,造成浮地。

电感体积大,杂散参数多,不稳定。

0欧电阻相当于很窄的电流通路,能够有效地限制环路电流,使噪声得到抑制。

电阻在所有频带上都有衰减作用(0欧电阻也有阻抗),这点比磁珠强。

电源地,信号地,数字地,模拟地的处理方式

电源地,信号地,数字地,模拟地的处理方式

一般在我们的AD系统里面,都有非常明确的模拟电源/模拟地;数字电源数字地,这些的处理相对比较重要.通常的系统中==1,我们常用10~20欧姆电阻来做个模拟电源和数字电源的隔离,可以从下图中看出,当然,使用分组的隔离电源是最好的选择,但是成本相对较高2,处理模拟地数字地时,最终使用1点接连的办法,这个连接点要选在PCB上的电荷平衡点,以防止出现电压差,这个需要PCB和模拟设计良好的基础及经验3,使用PSRR高的LDO,尽量避免使用DCDC和纹波超过300UV的电源温压器件,当然,我们可以通过差分输入来减少来自电源的干扰4,良好的屏蔽罩同样可以减少外部空间电磁辐射对AD系统的影响,诸如雷达,手机辐射,紫外线等电源地主要是针对电源回路电流所走的路径而言的,一般来说电源地流过的电流较大,而信号地主要是针对两块芯片或者模块之间的通信信号的回流所流过的路径,一般来说信号地流过的电流很小,其实两者都是GND,之所以分开来说,是想让大家明白在布PCB板时要清楚地了解电源及信号回流各自所流过的路径,然后在布板时考虑如何避免电源及信号共用回流路径,如果共用的话,有可能会导致电源地上大的电流会在信号地上产生一个电压差(可以解释为:导线是有阻抗的,只是很小的阻值,但如果所流过的电流较大时,也会在此导线上产生电位差,这也叫共阻抗干扰),使信号地的真实电位高于0V,如果信号地的电位较大时,有可能会使信号本来是高电平的,但却误判为低电平。

当然电源地本来就很不干净,这样做也避免由于干扰使信号误判。

所以将两者地在布线时稍微注意一下,就可以。

一般来说即使在一起也不会产生大的问题,因为数字电路的门限较高。

除了正确进行接地设计、安装,还要正确进行各种不同信号的接地处理。

控制系统中,大致有以下几种地线:(1)数字地:也叫逻辑地,是各种开关量(数字量)信号的零电位。

(2)模拟地:是各种模拟量信号的零电位。

(3)信号地:通常为传感器的地。

(4)交流地:交流供电电源的地线,这种地通常是产生噪声的地。

一些常见的电源地 信号地 数字地和模拟地的处理方式总结

一些常见的电源地 信号地 数字地和模拟地的处理方式总结

一些常见的电源地信号地数字地和模拟地的处理方式总结一般在我们的AD系统里面,都有非常明确的模拟电源/模拟地和数字电源/数字地,这些的处理相对比较重要。

通常的系统中:1、我们常用10~20欧姆电阻来做模拟电源和数字电源的隔离。

当然,使用分组的隔离电源是最好的选择,但是成本相对较高。

2、处理模拟地和数字地时,最终使用1点接连的办法,这个连接点要选在PCB上的电荷平衡点,以防止出现电压差,这需要良好的PCB和模拟设计基础及经验。

3、使用PSRR较高的LDO,尽量避免使用DCDC 和纹波超过300UV的电源稳压器件。

当然,我们可以通过差分输入来减少来自电源的干扰。

4、良好的屏蔽罩同样可以减少外部空间电磁辐射对AD系统的影响,诸如雷达、手机辐射、紫外线等。

电源地主要是针对电源回路电流所走的路径而言的,一般来说电源地流过的电流较大,而信号地主要是针对两块芯片或者模块之间的通信信号的回流所流过的路径,一般来说信号地流过的电流很小,其实两者都是GND,之所以分开来说,是想让大家明白在布PCB板时要清楚地了解电源及信号回流各自所流过的路径,然后在布板时考虑如何避免电源及信号共用回流路径,如果共用的话,有可能会导致电源地上的大电流在信号地产生一个电压差(可以解释为:导线是有阻抗的,只是阻值很小,但如果所流过的电流较大时,也会在此导线上产生电位差,这也叫共阻抗干扰),使信号地的真实电位高于0V。

信号地的电位较大时,有可能会使本来是高电平的信号被误判为低电平。

当然电源地本来就很不干净,这样做也可以避免由于干扰使信号误判。

所以将电源地和信号地在布线时稍微注意一下,就可以。

一般来说即使在一起也不会产生大的问题,因为数字电路的门限较高。

除了正确进行接地设计、安装,还要正确进行各种不同信号的接地处理。

控制系统中,大致有以下几种地线:(1)数字地:也叫逻辑地,是各种开关量(数字量)信号的零电位。

(2)模拟地:是各种模拟量信号的零电位。

数字地和模拟地

数字地和模拟地

将所有数字地连到一块,加0欧电阻再接模拟地。

(1)数字地:也叫逻辑地,是各种开关量(数字量)信号的零电位。

(2)模拟地:是各种模拟量信号的零电位。

(3)信号地:通常为传感器的地。

(4)交流地:交流供电电源的地线,这种地通常是产生噪声的地。

(5)直流地:直流供电电源的地。

(6)屏蔽地:也叫机壳地,为防止静电感应和磁场感应而设。

深圳市中太数据通信有限公司招聘关于模拟地和数字地的认识在电子系统设计中,为了少走弯路和节省时间,应充分考虑并满足抗干扰性的要求,避免在设计完成后再去进行抗干扰的补救措施。

形成干扰的基本要素有三个:(1)干扰源,指产生干扰的元件、设备或信号,用数学语言描述如下:du/dt,di/dt大的地方就是干扰源。

如:雷电、继电器、可控硅、电机、高频时钟等都可能成为干扰源。

(2)传播路径,指干扰从干扰源传播到敏感器件的通路或媒介。

典型的干扰传播路径是通过导线的传导和空间的辐射。

(3)敏感器件,指容易被干扰的对象。

如:A/D、D/A变换器,单片机,数字IC,弱信号放大器等。

抗干扰设计的基本原则是:抑制干扰源,切断干扰传播路径,提高敏感器件的抗干扰性能。

(类似于传染病的预防)1 抑制干扰源抑制干扰源就是尽可能的减小干扰源的du/dt,di/dt。

这是抗干扰设计中最优先考虑和最重要的原则,常常会起到事半功倍的效果。

减小干扰源的du/dt主要是通过在干扰源两端并联电容来实现。

减小干扰源的di/dt则是在干扰源回路串联电感或电阻以及增加续流二极管来实现。

抑制干扰源的常用措施如下:(1)继电器线圈增加续流二极管,消除断开线圈时产生的反电动势干扰。

仅加续流二极管会使继电器的断开时间滞后,增加稳压二极管后继电器在单位时间内可动作更多的次数。

(2)在继电器接点两端并接火花抑制电路(一般是RC串联电路,电阻一般选几K 到几十K,电容选0.01uF),减小电火花影响。

(3)给电机加滤波电路,注意电容、电感引线要尽量短。

模拟地与信号地的区别

模拟地与信号地的区别

模拟地与信号地的区别
很多人分不清模拟地与信号地的区别,有时候也就不区分数字地与模拟地,但这样就使得电路质量下降,影响了电路的性能:
模拟电路涉及弱小信号,但是数字电路门限电平较高,对电源的要求就比模拟电路低些。

既有数字电路又有模拟电路的系统中,数字电路产生的噪声会影响模拟电路,使模拟电路的小信号指标变差,克服的办法是分开模拟地和数字地。

对于低频模拟电路,除了加粗和缩短地线之外,电路各部分采用一点接地是抑制地线干扰的最佳选择,主要可以防止由于地线公共阻抗而导致的部件之间的互相干扰。

而对于高频电路和数字电路,由于这时地线的电感效应影响会更大,一点接地会导致实际地线加长而带来不利影响,这时应采取分开接地和一点接地相结合的方式。

另外对于高频电路还要考虑如何抑制高频辐射噪声,方法是:尽量加。

6种常用的底线设置

6种常用的底线设置

最常用的六种地线设计工程师在设计电路时,为防止各种电路在电路正常工作中产生互相干扰,使之能相互兼容地有效工作。

根据电路的性质,将电路中“零电位”———“地”分为不同的种类,比如按交直流分为直流地、交流地,按参考信号分为数字地(逻辑地)、模拟地,按功率分为信号地、功率地、电源地等,按与大地的连接方式分为系统地、机壳地(屏蔽地)、浮地。

不同的接地方式在电路中应用、设计和考虑也不相同,应根据具体电路分别进行设置。

1 信号地信号地(SG)是各种物理量的传感器和信号源零电位以及电路中信号的公共基准地线(相对零电位)。

此处信号一般指模拟信号或者能量较弱的数字信号,易受电源波动或者外界因素的干扰,导致信号的信噪比(SNR)下降。

特别是模拟信号,信号地的漂移,会导致信噪比下降;信号的测量值产生误差或者错误,可能导致系统设计的失败。

因此对信号地的要求较高,也需要在系统中特殊处理,避免和大功率的电源地、数字地以及易产生干扰地线直接连接。

尤其是微小信号的测量,信号地通常需要采取隔离技术。

2 数字地数字地(DG)是系统中数字电路零电位的公共基准地线。

由于数字电路工作在脉冲状态,特别是脉冲的前后沿较陡或频率较高时,会在电源系统中产生比较大的毛刺,易对模拟电路产生干扰。

所以对数字地的接地点选择和接地线的敷设也要充分考虑。

尽量将电路中的模拟和数字部分分开,在PCB布线的时候,模拟地和数字地应尽量分开,最后通过电感,汇接到一起.3 模拟地模拟地(AG)是系统中模拟电路零电位的公共基准地线。

由于模拟电路既承担小信号的处理,又承担大信号的功率处理;既有低频的处理,又有高频处理;模拟量从能量、频率、时间等都很大的差别,因此模拟电路既易接受干扰,又可能产生干扰。

所以对模拟地的接地点选择和接地线的敷设更要充分考虑。

减小地线的导线电阻,将电路中的模拟和数字部分开,在PCB布线的时候,模拟地和数字地应尽量分开,最后通过电感滤波和隔离,汇接到一起。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

信号地和模拟地的区别
很多人分不清模拟地与信号地的区别,有时候也就不区分数字地与模拟地,但这样就使得电路质量下降,影响了电路的性能:
模拟电路涉及弱小信号,但是数字电路门限电平较高,对电源的要求就比模拟电路低些。

既有数字电路又有模拟电路的系统中,数字电路产生的噪声会影响模拟电路,使模拟电路的小信号指标变差,克服的办法是分开模拟地和数字地。

对于低频模拟电路,除了加粗和缩短地线之外,电路各部分采用一点接地是抑制地线干扰的最佳选择,主要可以防止由于地线公共阻抗而导致的部件之间的互相干扰。

而对于高频电路和数字电路,由于这时地线的电感效应影响会更大,一点接地会导致实际地线加长而带来不利影响,这时应采取分开接地和一点接地相结合的方式。

另外对于高频电路还要考虑如何抑制高频辐射噪声,方法是:尽量加粗地线,以降低噪声对地阻抗;满接地,即除传输信号的印制线以外,其他部分全作为地线。

不要有无用的大面积铜箔。

地线应构成环路,以防止产生高频辐射噪声,但环路所包围面积不可过大,以免仪器处于强磁场中时,产生感应电流。

但如果只是低频电路,则应避免地线环路。

数字电源和模拟电源最好隔离,地线分开布置,如果有A/D,则只在此处单点共地。

低频中没有多大影响,但建议模拟和数字一点接地。

高频时,可通过磁珠把模拟和数字地一点共地。

如果把模拟地和数字地大面积直接相连,会导致互相干扰。

不短接又不妥,理由如上有四种方法解决此问题∶
1、用磁珠连接;
2、用电容连接;
3、用电感连接;
4、用0欧姆电阻连接。

磁珠的等效电路相当于带阻限波器,只对某个频点的噪声有显着抑制作用,使用时需要预先估计噪点频率,以便选用适当型号。

对于频率不确定或无法预知的情况,磁珠不合。

电容隔直通交,造成浮地。

电感体积大,杂散参数多,不稳定。

0欧电阻相当于很窄的电流通路,能够有效地限制环路电流,使噪声得到抑制。

电阻在所有频带上都有衰减作用(0欧电阻也有阻抗),这点比磁珠强。

在具体的电路PCB设计中,必须了解电磁兼容(EMC)的两个基本原则:第一个原则是尽可能减小电流环路的面积;第二个原则是系统只采用一个参考面。

相反,如果系统存在两个参考面,就可能形成一个偶极天线(注:小型偶极天线的辐射大小与线的长度、流过的电流大小以及频率成正比);而如果信号不能通过尽可能小的环路返回,就可能形成一个大的环状天线(注:小型环状天线的辐射大小与环路面积、流过环路的电流大小以及频率的平方成正比)。

在设计中要尽可能避免这两种情况。

复杂混合信号PCB设计是一个复杂的过程,设计过程要注意以下几点:
1. 将PCB分区为独立的模拟部分和数字部分。

2.合适的元器件布局。

3.A/D转换器跨分区放置。

4.不要对地进行分割。

在电路板的模拟部分和数字部分下面敷设统一地。

5.在电路板的所有层中,数字信号只能在电路板的数字部分布线。

6.在电路板的所有层中,模拟信号只能在电路板的模拟部分布线。

7.实现模拟和数字电源分割。

8.布线不能跨越分割电源面之间的间隙。

9.必须跨越分割电源之间间隙的信号线要位于紧邻大面积地的布线层上。

10.分析返回地电流实际流过的路径和方式。

11.采用正确的布线规则。

相关文档
最新文档