微分方程模型
微分方程模型(全)
第四步:了解问题中所涉及的原则或物理定律。
第五步:依据 第二、第三、第四步 建立微分 方程。 还有已知的对应某个 t 的 y 的值(可 能还有 y 的导数的值)就是求解微分方程所 需要的初始值。
第六步:求微分方程的解并给出问题的答案。 下面我们从易到难给出微分方程模型之应 用案例
例1 火车启动
例 1:火车启动
y ce .
kt
(2)
y( 24) 400.
初始值:
y(0) 100,
代入(2)求得: 因此:
c 100, k (ln 4) / 24.
t ln 4 / 24
y 100e
.
我们要求的是:
y(12) 100e
(12 / 24) ln 溶液浓度
如果有一个实际问题,要找一个量 y , 与另一个量 t(时间或其他变量)的关系, 这种关系涉及量 y 在每个 t 时的瞬时变化率, 而且这个瞬时变化率与量 y 与 t 的关系可以 确定,那么这样的问题通常可以通过微分 方程来解决。 利用微分方程解决这样的问题的一般 步骤如下: (分为六步)
第一步:
题目:一列火车从静止开始启动,均匀地加速,
五分钟时速度达到 300 千米。问:这段时间内 该火车行进了多少路程?
例1 火车启动
解 这个问题相对比较简单,问题与“加速”、 “速度”有关,所以与导数有关; 涉及的量为: “时间”(小时),“路程”(千米),“速 度”(千米/小时),“加速度”(常数 a );
例2 细菌增长
解 这个问题也比较简单。 问题与“增长率”有关,所以与导数有关;
涉及的量为: “时间”(小时),“细菌总数”(个), “速度”(个/小时); 有(待定)函数关系的两个量定为: 细菌总数 y ,时间 t ; 涉及的原则或物理定律: 导数=增长率.
微分方程(组)模型
③
(2) 方程③是一阶线性微分方程,通解为②当n>0时,有特解y=0.
求微分方程(组)的解析解命令: dsolve(‘方程1’, ‘方程2’,…‘方程n’, ‘初始条件’, ‘自 变量’) 符号说明:在表达微分方程时,用字母D表示求微分, D2、D3等表示求2阶、3阶等微分。任何D后所跟的 字母为因变量,自变量可以指定或由系统规则选定为 确省。 d2y
方法:
• 规律分析法:根据相关学科的定理或定律、规律(这些涉及 到某些函数变化率)建立微分方程模型,如曲线的切线性质. • 微元分析法:应用一些已知规律和定律寻求微元之间的关系式. • 近似模拟法:在社会科学、生物学、医学、经济学等学科的 实际问题中,许多现象的规律性不清楚,常常用近似模拟的 方法建立微分方程模型.
4.符号说明
• • • • • • • a---某人每天在食物中摄取的热量 b---某人每天用于新陈代谢(及自动消耗)的热量 α ---某人每天从事工作、生活每千克体重必需消耗的热量 β---某人每天从事体育锻炼每千克体重消耗的热量 w---体重(单位:千克) w0---体重的初始值 t---时间(单位:天)
若Q(x)≡0,则称为一阶线性齐次方程,一阶线性微分方程通解为 P ( x ) dx P ( x ) dx ② y ( x) e ( Q( x)e dx C )
从而可得
dz (1 n) P ( x) z (1 n)Q ( x) dx
dz dy (1 n) y n dx dx
一、微分方程模型 二、微分方程的数学形式 三、微分方程(组)的MATLAB解法 四、减肥的数学模型 五、人口增长数学模型 六、兰彻斯特(Lanchester)作战模型 七、硫磺岛战役案例
微分方程模型
微分模型课程安排一、微分模型简介二、微分静态模型1、血管分支模型2、最正确存贮模型三、微分动态模型1、水流出的时间2、CO2的吸收3、浓度变化问题4、服药问题5、人口模型四、香烟过滤嘴问题一、微分模型简介微分模型是数学模型中的最主要模型,也是应用最为广泛的数学模型。
通常微分模型可分为两类,静态模型与动态模型。
微分静态模型主要出现在解决一些简单的优化问题中。
此类问题通常可将所要解决的实际问题化简为一个一元或多元的目标函数的最值问题,只要对目标函数求导数或偏导数就可求得驻点,从而讨论问题的最优解决方案。
这种解决实际问题的方法在《高数》书中就有一定的讨论只不过当时不是学习的重点而已。
而微分动态模型,从名称上看我们就知到此方法是用来解决动态变化问题的。
当我们从实际问题中得到的目标量是一个随时间或空间在改变的量时,直接建立此目标量的动态变化方程是很困难的,通常可以先找到此问题的动态变化函数〔一般是一个微分方程或方程组〕,然后通过解方程的方法来求解出我们所需要的目标量所满足的方程。
同样在《高数》书中提到的微元法就是此方法的讨论,它是任何一项研究都必须要首先考虑和掌握的基本方法。
下边举几个例子看一下我们该怎样使用这两种方法.===================================================================== 二、微分静态模型微分静态模型的关键就是建立一个包含各个影响因素在内的目标函数。
具体分析步骤:〔1〕首先明确我们的优化目标;〔2〕明确影响这个目标的各个因素;〔3〕建立目标函数与各指标的代数关系;〔4〕对各指标变量求导数〔或偏导〕找极值点;〔5〕讨论目标的极值。
问题1血液在动物的血管中一刻不停地流动,为了维持血液循环动物的机体要提供能量。
能量的一部分用于供应血管壁以营养。
另一部分用来克服血液流动受到的阻力,消耗的总能量显然与血管系统的几何形状有关。
在长期的生物进化过程中,高级动物血管系统的几何形状应该已经到达消耗能量最小原则下的优化标准了。
微分方程模型方法
物理现象模型
总结词
物理现象模型是利用微分方程来描述物理现象的动态变化过程,如力学、电磁学、光学 等。
详细描述
物理现象模型可以帮助科学家深入理解物理现象的本质和规律,预测新现象和新技术的 发展。例如,通过建立微分方程来描述电磁波的传播过程,可以研究电磁波的传播规律
和特性。
05 微分方程模型的发展趋势 与挑战
人口动态模型
总结词
人口动态模型是利用微分方程来描述人 口数量随时间变化的规律,预测未来人 口规模和结构。
VS
详细描述
人口动态模型可以用来研究人口增长、出 生率、死亡率、迁移率等指标的变化趋势 ,为政策制定者提供依据,以制定合理的 计划生育政策。例如,Logistic模型是一 种常用的人口动态模型,通过建立微分方 程来描述人口数量的增长规律。
THANKS FOR WATCHING
感谢您的观看
数学软件
选择适合的数学软件,如MATLAB、 Python等,以便进行模型建立和求解。
建立微分方程模型
模型类型
根据问题类型和目标,选择合适的微分方程模型类型,如常微分方程、偏微分方 程等。
参数估计
根据收集到的数据和信息,估计模型中的参数,使模型能够更好地描述实际问题 。
03 微分方程模型的求解方法
确定研究范围
根据问题与目标,确定研究的范围和 边界条件,为建立模型提供基础。
收集数据与信息
数据来源
根据研究问题,确定合适的数据来源,如实验数据、观测数据、历史数据等。
数据处理
对收集到的数据进行预处理,包括数据清洗、缺失值处理、异常值剔除等,以 确保数据质量。
选择合适的数学工具
数学基础
根据问题类型和目标,选择合适的数 学基础,如线性代数、微积分、常微 分方程等。
数学建模第三章微分方程模型
3-7 香烟过滤嘴的作用机理(2)
精选ppt课件
51
3-7 香烟过滤嘴的作用机理(3)
精选ppt课件
52
3-7 香烟过滤嘴的作用机理(4)
精选ppt课件
53
3-7 香烟过滤嘴的作用机理(5)
精选ppt课件
54
3-7 香烟过滤嘴的作用机理(6)
精选ppt课件
55
3-7 香烟过滤嘴的作用机理(7)
精选ppt课件
39
3-6 疾病传播的机理分析模型(2)
精选ppt课件
40
3-6 疾病传播的机理分析模型(3)
精选ppt课件
41
3-6 疾病传播的机理分析模型(4)
精选ppt课件
42
3-6 疾病传播的机理分析模型(5)
精选ppt课件
43
3-6 疾病传播的机理分析模型(6)
精选ppt课件
44
3-6 疾病传播的机理分析模型(7)
精选ppt课件
45
3-6 疾病传播的机理分析模型(8)
精选ppt课件
46
3-6 疾病传播的机理分析模型(9)
精选ppt课件
47
3-6 疾病传播的机理分析模型(10)
精选ppt课件
48
3-6 疾病传播的机理分析模型(11)
精选ppt课件
49
3-7 香烟过滤嘴的作用机理(1)
精选ppt课件
50
69
3-10 赤道上空通讯卫星颗数的确定(1)
精选ppt课件
70
3-10 赤道上空通讯卫星颗数的确定(2)
精选ppt课件
71
3-10 赤道上空通讯卫星颗数的确定(3)
精选ppt课件
微分方程(模型)
dx 2 或 x 0.03 dt 100 t 这是一阶线性非齐次方程,且有初值条件 x(0) 10,;利用8.3节的公式(5),可得此 C 方程的通解:x (t ) 0.01(100 t ) (100 t ) 2 有初值条件可得C 9 10 4,所以容器内含盐 量x随时间t的变化规律为 9 10 4 x 0.01(100 t ) 2 (100 t )
微分方程模型
重庆邮电大学
数理学院
引言
微分方程模型
当我们描述实际对象的某些特性随时间(空 间)而演变的过程、分析它的变化规律、预测它 的未来形态、研究它的控制手段时。通常要建立 对象的动态模型。
在研究某些实际问题时,经常无法直接得 到各变量之间的联系,问题的特性往往会给出关 于变化率的一些关系。利用这些关系,我们可以 建立相应的微分方程模型。在自然界以及工程技 术领域中,微分方程模型是大量存在的。它甚至 可以渗透到人口问题以及商业预测等领域中去, 其影响是广泛的。
四. 悬链线方程问题
将一均匀柔软的绳索两端固定,使之仅受重力的作 用而下垂,求该绳索在平衡状态下的曲线方程(铁塔 之间悬挂的高压电缆的形状就是这样的曲线)。 解 以绳索所在的平面为xoy 平面,设绳索最低点 为y轴上的P点,如图8-1所示。考察绳索上从点p到 l 另一点Q(x,y)的一段弧 PQ ,该段弧长为 ,绳索线密 度为 l ,则这段绳索所受重力为gl 。由于绳索是软 的,
y x 2 2.
微分方程的几个应用实例
许多实际问题的解决归结为寻找变量间的函数关 系。但在很多情况下,函数关系不能直接找到,而只 能间接的得到这些量及其导数之间的关系,从而使得 微分方程在众多领域都有非常重要的应用。本节只举 几个实例来说明微分方程的应用。进一步的介绍见第 十章。 一. 嫌疑犯问题
微分方程模型介绍
微分方程模型介绍在研究实际问题时,常常会联系到某些变量的变化率或导数,这样所得到变量之间的关系式就是微分方模型。
微分方程模型反映的是变量之间的间接关系,因此,要得到直接关系,就得求微分方程。
求解微分方程有三种方法:1)求解析解;2)求数值解(近似解);3)定性理论方法。
建立微分方程模型的方法:1)利用数学、力学、物理、化学等学科中的定理或经过实验检验的规律等来建立微分方程模型。
2)微元分析法利用已知的定理与规律寻找微元之间的关系式,与第一种方法不同的是对微元而不是直接对函数及其导数应用规律3)模拟近似法在生物、经济等学科的实际问题中,许多现象的规律性不很清楚,即使有所了解也是极其复杂的,建模时在不同的假设下去模拟实际的现象,建立能近似反映问题的微分方程,然后从数学上求解或分析所建方程及其解的性质,再去同实际情况对比,检验此模型能否刻画、模拟某些实际现象。
下面我们以生态学模型为例介绍微分方程模型的建立过程: 一. 单种群模型1. 马尔萨斯(Malthus)模型假定只有一个种群,()N t 表示t 时刻生物总数,r 表示出生率,0t 表示初始时刻,则生物总数增长的数学模型为()()()00d ,d (1)t t N t rN t t N t N =⎧=⎪⎨⎪=⎩不难得到其解为()0()0r t t N t N e-=.2. 密度制约模型由马尔萨斯模型知,种群总数将以几何级数增长,显然与实际不符,因为种群密度增大时,由于食物有限,生物将产生竞争,或因为传染病不再按照增长率r 增长,因而有必要修改,在(1)式右端增加一项竞争项。
()()()d (1)(2)d N t N t rN t tK=-其中K 为最大容纳量,可以看出当()N t K =时,种群的规模不再增大。
这个模型就是著名的Logistic 模型,可以给出如下解释:由于资源最多仅能维持K 个个体,故每个个体平均需要的资源为总资源的1K,在t 时刻个体共消耗了总资源的()N t K此时资源剩余()1N t K-,因此Logistic 模型表明:种群规模的相对增长率与当时所剩余的资源份量成正比,这种种群密度对种群规模增长的抑制作用。
微分方程的经典模型
模型分析
问题中并未出现“变化率”、“导数”这样的关键词,但要寻找的是体重 (记为W)关于时间t的函数。如果我们把体重W看作是时间t的连续可微函数, 我们就能找到一个含有的
dW 微分方程。 dt
模型假设
W0 ; 1.W ( t ) 表示 t 时刻某人的体重,并设一天开始时人的体重为 2. W ( t ) 关于 t 连续而且充分光滑;
模型建立
游击作战模型的形式:
,
(t) f (x, y) x (t) g(x, y) y x(0) x , y(0) y 0 0
, 由假设2、3,甲乙双方的战斗减员率分别为
f(x ,y ) c x y
g (x ,y )dxy
结合以上两表达式,并代入 c、d 的值,可得游击作战的数学模型
或被歼灭)的一方为败。因此,如果 K K0 ,则乙的兵力减少到
甲方兵力降为“零”,从而乙方获胜。同理可知, K0
K0 胜。而当
a
时
时,甲方获
时,双方战平。
2 2 bx ay 0 甲方获胜的充要条件为 0 0
代入a 、b 的表达式,进一步可得甲方获胜的充要条件为
2 2 r p x r p y x x 0 y y 0
模型建立 根据假设得到一般的战争模型
x ( t) f( x ,y ) x u ( t) y ( t) g ( x ,y ) y v ( t) x ( 0 )x , y ( 0 )y 0 0
正规作战模型
模型假设
1.不考虑增援,并忽略非战斗减员;
得:
其解为:
i(t) i0e
k0t
模型分析与解释
这个结果与传染病初期比较吻合,但它表明病人人数将按指数规律 无限增加,显然与实际不符
第六讲 微分方程模型(人口模型.传染病模型.战争模型)
问题分析
不同类型传染病的传播过程有不同的特点。 故不从医学的角度对各种传染病的传播过程一 一进行分析,而是按一般的传播机理建立模型. 由于传染病在传播的过程涉及因素较多, 在分析问题的过程中,不可能通过一次假设建 立完善的数学模型. 思路是:先做出最简单的假设,对得出的 结果进行分析,针对结果中的不合理之处,逐 步修改假设,最终得出较好的模型。
模型的建立
假设2、3得:
ቤተ መጻሕፍቲ ባይዱi N k Ns(t )i (t ) Ni(t ) dt i (0) i0
将假设1代入,可得模型:
di k i(1 i ) i dt i (0) i0
模型的解:
k k 1 ( k )t 1 ( ) ] k [e i0 k k i (t ) (k t 1 ) 1 k i0
方程的解:
I (t ) n n knt 1 1e I 0
对模型作进一步分析
传染病人数与时间t关系
传染病人数的变化率与时间t 的关系 增长速度由低增至最高后 降落下来
染病人数由开始到高峰并 逐渐达到稳定
n ln( 1) 疾病的传染高峰期 2 I0 d I 此时 计算高峰期得: t0 0 2 dt kn 意义: 1、当传染系数k或n增大时,t0随之减少,表示传 染高峰随着传染系数与总人数的增加而更快 的来临,这与实际情况比较符合。 2、令λ=kn,表示每个病人每天有效接触的平均 人数,称日接触率。t0与 λ成反比。 λ表示该 地区的卫生水平, λ越小卫生水平越高。故 改善卫生水平可推迟传染病高潮的来临。
模型的建立
di dt k si i ds k si dt i (0) i0 s (0) s0
常见的微分方程模型
常见的微分方程模型引言微分方程是数学中的一个重要分支,用于描述自然界中的各种现象和规律。
微分方程模型是一类特定形式的微分方程,常用于解决实际问题。
本文将介绍几个常见的微分方程模型,并讨论它们在不同领域中的应用。
1. 简单增长模型简单增长模型描述了一个系统中某个物质或某个群体数量随时间变化的规律。
它可以用以下形式表示:dNdt=rN其中,N表示物质或群体的数量,t表示时间,r表示增长率。
这个模型可以应用于人口增长、细菌繁殖等问题。
例如,在人口学中,我们可以使用简单增长模型来预测未来人口数量的变化趋势。
2. 指数衰减模型指数衰减模型描述了一个系统中某个物质或某个群体数量随时间指数衰减的规律。
它可以用以下形式表示:dNdt=−rN其中,N表示物质或群体的数量,t表示时间,r表示衰减率。
这个模型可以应用于放射性元素的衰变、药物的消失等问题。
例如,在医学中,我们可以使用指数衰减模型来预测药物在人体内的浓度随时间的变化。
3. 指数增长模型指数增长模型描述了一个系统中某个物质或某个群体数量随时间指数增长的规律。
它可以用以下形式表示:dN dt =rN(1−NK)其中,N表示物质或群体的数量,t表示时间,r表示增长率,K表示系统的容量。
这个模型可以应用于生态学中研究种群数量随时间变化的问题。
例如,在生态学中,我们可以使用指数增长模型来研究某种生物在特定环境下的种群动态。
4. 鱼类生长模型鱼类生长模型描述了鱼类体重随时间变化的规律。
它可以用以下形式表示:dW dt =rW(1−WK)其中,W表示鱼类的体重,t表示时间,r表示生长速率,K表示饱和重量。
这个模型可以应用于渔业学中研究鱼类养殖和捕捞的问题。
例如,在渔业学中,我们可以使用鱼类生长模型来预测鱼类的生长轨迹和最优捕捞量。
5. 热传导方程热传导方程描述了物体内部温度随时间和空间变化的规律。
它可以用以下形式表示:∂u ∂t =α∂2u∂x2其中,u(x,t)表示物体在位置x处、时间t时的温度,α表示热扩散系数。
常见的微分方程模型
常见的微分方程模型微分方程是数学的一个重要分支,广泛应用于自然科学和工程领域。
它描述了物理现象、社会问题和自然现象的变化规律,能够帮助我们理解和预测各种现象的发展趋势。
下面将介绍一些常见的微分方程模型。
1. 一阶线性微分方程一阶线性微分方程是最简单且常见的微分方程之一。
它可以描述许多实际问题,比如放射性衰变、人口模型等。
一阶线性微分方程的一般形式可以写为dy/dt = f(t) * y + g(t),其中f(t)和g(t)是已知函数,y是未知函数。
2. 指数衰减模型指数衰减模型是描述某种变化过程的常见微分方程。
它可以用来描述放射性物质的衰变、人口增长的趋势等。
指数衰减模型的一般形式是dy/dt = -ky,其中k是常数。
这个方程表示y的变化速率与y本身成比例,且反向。
3. 扩散方程扩散方程是描述物质或能量传递过程的微分方程。
它可以用来研究热传导、扩散现象等。
扩散方程的一般形式是∂u/∂t = D ∇²u,其中u是未知函数,D是扩散系数,∇²是Laplace算子。
这个方程表示u 的变化率与u的二阶导数成正比。
4. 多体问题多体问题是描述多个物体之间相互作用的微分方程模型。
它可以用来研究天体运动、分子碰撞等问题。
多体问题的方程通常包括牛顿第二定律和对应的初始条件,如F = ma和相关的速度、位置初值条件。
5. 随机微分方程随机微分方程是考虑了随机因素的微分方程模型。
它可以用来研究金融市场的波动、生态系统的不确定性等。
随机微分方程的方程形式通常会引入一个随机项,如dy/dt = f(t, y) dt + g(t, y) dW,其中dW是布朗运动,表示随机项。
以上介绍的是一些常见的微分方程模型,它们在理论和实际应用中都具有重要的地位。
通过研究这些模型,我们可以深入理解各种现象背后的数学规律,并且为实际问题提供解决方案。
微分方程模型不仅有助于推动数学的发展,还在科学研究、工程设计和技术创新等领域中发挥着重要作用。
微分方程模型
房室具有以下特征:它由考察对象均匀分 布而成,房室中考察对象的数量或浓度(密 度)的变化率与外部环境有关,这种关系被 称为“交换”且交换满足着总量守衡。在本 节中,我们将用房室系统的方法来研究药物 在体内的分布。在下一节中,我们将用多房 室系统的方法来研究另一问题。
单房室系统
交换 环境
内部
均匀分布
,i(t)单 s0 增。但在i(t)增加的同时,伴随地有s(t)单减。当 s(t)减少到小于等于 时, i(t)开始减小,直 至此疾病在该地区消失。
(2)如果
则: s(t ) s
r (t )
1
o
e
di ,则开始时 dt 0
五.稳定性问题
在研究许多实际问题时,人们最为关心的也许并 非系统与时间有关的变化状态,而是系统最终的发展 趋势。例如,在研究某频危种群时,虽然我们也想了 解它当前或今后的数量,但我们更为关心的却是它最 终是否会绝灭,用什么办法可以拯救这一种群,使之 免于绝种等等问题。要解决这类问题,需要用到微分 方程或微分方程组的稳定性理论。在下两节,我们将 研究几个与稳定性有关的问题。
容器损失的水量为:
[ R ( R r ) ]dh
2 2
由质量守恒
[ R ( R r ) ]dh sv(t )dt
2 2
其中
v(t ) 0.6 2gh(t)
从而建立方程:
0.6s 2 gh dh 2 2 dt [R (R r) ]
解得
0.6s 2 gh 14 R T dh 2 2 R [R (R r) ] 9s 2 g
微分方程 模型
• 微分方程建模
对于某种现象或提出的问题,通过建立微分方程 来解释或解决.通常可分为两大类:
微分方程模型
r0
r0
x(t ) x0
x(t ) 0
人口将始终保持不变! 人口将按指数规律减少直 至绝灭!
2 T ln r
人口倍增时间
Malthus模型预测美国人口
Malthus模型预测美国人口
Malthus模型预测的优缺点
优点 缺点 原因 短期预报比较 准确 不适合中长期预报 预报时假设人口增长率 r 为常数。没有考虑环 境对人口增长的制约作用。
机动
目录
上页
下页
返回
结束
医学(流行病,传染病问题)模型,经济(商业销 售,财富分布,资本主义经济周期性危机)模 型,战争(正规战,游击战)模型等。 下面,我们给出如何利用方程知识建立 数学模型的几种方法。
机动
目录
上页
下页
返回
结束
1.利用题目本身给出的或隐含的等量 关系建立微分方程模型。这就需要我们仔 细分析题目,明确题意,找出其中的等量关 系,建立数学模型。 2.从一些已知的基本定律或基本公式出 发建立微分方程模型.我们要熟悉一些常用 的基本定律,基本公式.例如力学中的牛顿第 二运动定律,电学中的基尔霍夫定律等.从 这些知识出发我们可以建立相应的微分方 程模型。
到t t时刻, 除去死亡的人外 , 活着的都变成了
r dr1 , r dr dr1 区间内的人, t t时刻年龄在
即p(r dr 1 , t dt) dr.这里dr 1 dt.
而在这段时间內死去的 人数为 r , t pr , t drdt, 它们之间的关系为 : pr , t dr pr dr 1 , t dt dr r , t p r , t drdt r , t pr , t drdt
几种重要的微分方程应用模型
生态竞争模型的解可以表现出多种动态行为,如周期振荡和混沌运动等, 取决于物种之间的竞争参数。
斐波那契序列模型
01
斐波那契序列是一个经典的数学序列,每个数字是前两个数字 的和。
02
斐波那契序列模型可以用于描述许多自然现象,如植物生长、
模型等。
02 线性微分方程模型
线性微分方程的解法
分离变量法
通过将方程中的未知函数和其导数分 离到等式的两边,从而将微分方程转 化为代数方程。
变量代换法
通过引入新的变量来简化微分方程, 例如使用积分因子或积分因子法。
参数法
当微分方程中包含参数时,可以通过 令参数等于某个特定的值来求解微分 方程。
幂级数法
拉普拉斯变换法
将高阶微分方程转化为代数方 程,适用于初值问题和具有特
定边界条件的问题。
阻尼振动模型
1 2
线性阻尼
阻尼力与速度成正比,导致振动逐渐减小并趋于 静止。
非线性阻尼
阻尼力与速度的幂函数相关,如速度的二次方、 三次方等,导致振动表现出不同的非线性行为。
3
阻尼振动应用
描述机械系统、电磁振荡器等物理系统的振动现 象,用于预测系统的稳定性和动态响应。
热传导方程的一般形式为:$frac{partial u}{partial t} = alpha nabla^2 u$,其中 $u$ 表示温度分布,$alpha$ 是热扩散系数,$nabla^2$ 表示拉普拉斯算子。
波动方程模型
01
波动方程是描述波动现象的偏微分方程,如声波、光波和水 波等。
02
它的一般形式为:$frac{partial^2 u}{partial t^2} = c^2 nabla^2 u$,其中 $u$ 表示波动场,$c$ 是波速。
数学建模公选课:第五讲-微分方程模型
详细描述
龙格-库塔方法具有较高的精度和稳定性,适用于求解各种复杂的一阶和二阶常微分方程。
04
微分方程模型的应用实例
人口增长模型
总结词
描述人口随时间变化的规律
详细描述
人口增长模型通常使用微分方程来描述人口随时间变化的规律。该模型基于假设,如人口增长率与当 前人口数量成正比,来建立微分方程。通过求解该微分方程,可以预测未来人口数量。
模型建立
如何根据实际问题建立合适的微分方 程模型是一个挑战。
02
高维问题
对于高维微分方程,如何求解是一个 难题。
01
03
非线性问题
非线性微分方程的求解更加复杂和困 难。
未来展望
随着科学技术的发展,微分方程模型 的应用领域将更加广泛,求解技术也 将更加成熟和多样化。
05
04
多尺度问题
如何处理不同时间尺度的微分方程是 一个挑战。
数学建模公选课:第五讲 -微分方程模型
• 微分方程模型简介 • 微分方程模型的建立 • 微分方程模型的求解方法 • 微分方程模型的应用实例 • 微分方程模型的发展趋势与展望
01
微分方程模型简介
微分方程的基本概念
微分方程是描述数学模型中变量随时间变化的数学表达式,通常表示为包含未知函 数及其导数的等式。
05
微分方程模型的发展趋势与展望
微分方程模型在各领域的应用前景
物理领域
描述物体的运动规律,如牛顿 第二定律、波动方程等。
经济领域
分析市场供需关系和预测经济 趋势。
工程领域
预测和控制系统的动态行为, 如电路、机械系统等。
生物医学领域
微分方程模型案例库
微分方程模型案例库一、经济学模型人口增长模型:人口增长可以用微分方程描述,最简单的模型是人口增长速率与人口数量成正比,即dP/dt=kP。
其中,P是人口数量,t是时间,k是一个常数。
这个模型可以体现人口增长速度与人口数量的关系,可以用来预测未来的人口增长趋势。
供求模型:供求模型是经济学中常用的模型,可以用微分方程描述。
设商品的需求函数为Qd=f(p)(商品需求量与价格的关系),供给函数为Qs=g(p)(商品供给量与价格的关系)。
则供求平衡点满足p和Qs、Qd的交点,即f(p)=g(p)。
通过求解这个方程组,可以得到经济体中的均衡价格和交易量。
二、物理学模型自由落体模型:自由落体是一个常见的物理现象,可以用微分方程描述。
设物体下落的速度为v,物体的质量为m,重力加速度为g,则质量与速度之间的关系为m(dv/dt)=mg。
通过求解这个微分方程,可以得到物体下落的速度随时间的变化。
阻尼振动模型:阻尼振动是另一个常见的物理现象,可以用微分方程描述。
设物体的位移为x,阻尼系数为b,弹簧常数为k,则质量、阻尼和弹簧之间的关系为m(d^2x/dt^2)+b(dx/dt)+kx=0。
通过求解这个微分方程,可以得到物体振动的特性,包括振幅、周期等。
三、生物学模型物种竞争模型:物种竞争是生物学中一个重要的研究问题,也可以用微分方程模型来描述。
设两个物种的数量分别为x和y,它们的增长速率分别为dx/dt和dy/dt,竞争系数为a和b,资源可持续利用的速率为r,则物种数量的变化满足dx/dt=a*x*(1-(x+y)/r)-b*x*y和dy/dt=b*x*y-a*y*(1-(x+y)/r)。
通过求解这个方程组,可以得到两个物种数量随时间的变化,从而研究它们之间的竞争关系。
病毒传播模型:病毒传播是流行病学中的重要问题,也可以用微分方程模型来描述。
设感染者的数量为I,易感者的数量为S,恢复者的数量为R,感染率为β,康复率为γ,则感染者、易感者和恢复者的变化满足dS/dt=-β*S*I,dI/dt=β*S*I-γ*I,dR/dt=γ*I。
微积分的应用-微分方程模型
t* 0.54 1 540(s) 9(min) 0.001
例3 追线问题
我缉私舰雷达发现距 c km处有一艘走私船正 以匀速 a 沿直线行驶。缉私舰立即以最大的 速度 b 追赶,若用雷达进行跟踪,保持舰的 瞬时速度方向始终指向走私船,试求缉私舰 追逐路线和追上的时间。
1.模型假设:
为
,求在任一时刻的水面高度(设
v 2gh
开始时水池水的高度为 )和将水放空的时
间.
h0
等量关系:
t 时间的
水池减少的水量 = 出水量 。
A[h(t t) h(t)] BS
A[h(t t) h(t)] B S
t
t
A dh Bv A dh B 2gh
dt
dt
初始条件
h(0) h0
1
dx
c
y
y
2
dy
1
令
y c
y
2
tant
从而,y c sin2 t ,dy 2c sin t cos tdt
故 dx tantdy 2c sin2 tdt c1 cos 2tdt
积分后得到
x
c 2
2t
sin
2t
c1
这曲线过原点,故由上面第一式得,t 0 时,x y 0
于是,c1 0。这样
dx
0
2gy
这是泛函的极值问题,令
f y, y 1 y2
2gy
由变分法理论知,上面极小值的积分方程的解所满足
的欧拉方程为:
f y
y
f
c1
即
y2
y 1 y2
1 y2
y
c1
这可化简为
微分方程模型
微分方程模型引言微分方程是描述自然界中很多现象和问题的数学模型。
通过建立微分方程模型,我们可以定量地描述和预测各种物理、化学、生物和工程问题的演化和变化。
本文将介绍微分方程模型的基本概念、常见类型和求解方法,并给出一些应用实例。
基本概念微分方程是含有未知函数及其导数的方程。
通常用符号形式表示如下:F(x, y, y', y'', ..., y^(n)) = 0其中,y是未知函数,x是自变量,n是方程中最高阶导数的阶数。
微分方程模型是以微分方程为基础,结合具体物理、化学、生物和工程问题的特点所建立的数学模型。
通过对问题的建模,我们可以将真实世界中复杂的问题简化为数学形式,从而利用微分方程的性质和解析方法求解或近似解。
常见类型微分方程可以分为多种类型,常见的包括:•一阶常微分方程:包含一个未知函数的一阶导数的方程,形式如下:y' = f(x, y)•高阶常微分方程:包含一个未知函数的高阶导数的方程,形式如下:F(x, y, y', y'', ..., y^(n)) = 0•偏微分方程:包含多个未知函数及其偏导数的方程,形式如下:F(x, y, z, ∂u/∂x, ∂u/∂y, ∂u/∂z, ∂^2u/∂x^2, ∂^2u/∂y^2, ∂^2u/∂z^2, ..., ∂^nu/∂x^n, ∂^nu/∂y^n, ∂^nu/∂z^n) = 0求解方法求解微分方程模型的方法包括解析解和数值解。
解析解对于一些简单的微分方程模型,可以通过解析方法求得解析解。
解析解是指能够用数学公式精确表示的解。
解析解求解的基本思路是尝试找到满足微分方程的函数形式,并通过代入求导的方式得到方程中的常数。
一些经典的微分方程模型如线性微分方程、齐次线性微分方程、可分离变量的微分方程等可以通过解析方法求解。
数值解对于一些复杂的微分方程模型,无法找到解析解或解析解难以求得,我们可以采用数值解法进行近似求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微分方程模型一、 一阶常微分方程模型在很多实际问题的研究中,经常要涉及各变量的变化率问题。
这些问题的解决通常要建立相应的微分方程模型。
微分方程模型在自然科学中的应用主要以物理,力学等客观规律为基础建立起来,而在经济学,人口预测等社会科学方面的应用则是在类比,假设等措施下建立起来。
(一)人口模型人口数量以及和次类似的动植物种群 的个体数量都是离散变量,不具有连续可微性。
但由于短时间内改变的是少数个体,与整体数量相比,这种变化是很微小的。
基于此原因,为了成功应用数学工具,我们通常假定大规模种群的个体数量是时间的连续可微函数。
此假设条件在非自然科学的问题中常常用到。
1、指数增长模型(Malthus 人口模型)美国人口学家Malthus(1766-1834)于1798年根据百余年人口统计资料提出了著名的人口指数增长模型。
模型假设:在人口的自然增长过程中,单位时间内人口增量与人口总数成比。
模型建立:设)(t N 为t 时刻的人口述,考察时间区间t t ∆+上的人口变动。
t t rN t N t t N ∆=-∆+)()()(令0→∆t 可以得到微分方程模型⎪⎩⎪⎨⎧=>=00)(0,N r N r rN dt dN 可以解得此方程的解为)(00)(t t r e N t N -=模型分析和应用:(1)当0>r 时,人口将随着时间的增加无限的增长,这是一个不合理的模型,因为一个环境的资源不可能容纳无限增长的人口,从生态环境的角度分析也可以看出其中的不合理性。
一般说来,就一个种群的发展规律看,在种群的发展初期种群数的变化是和指数增长模型大致吻合的(甚至可能出现年增长率递增的现象),但是随着人口数的增加,人口的年增长率将呈现逐年递减的现象。
再考虑到环境适应程度的制约,想象人口的增长不可能超过某个度。
(2)对于其中常数增长率r 的估计可以使用拟合或者参数估计的方法得到。
(3)在实际情况下,可以使用离散的近似表达式t r N t N )1()(0+=作为人口的预测表达式。
(4)从实际的人口检验情况看,指数增长模型对于时间间隔比较短,并且背景情况改变不大的情况适用。
对于长时间的人口数模型不合适。
2、阻滞增长模型( Logistic 模型)和指数增长模型相比较,阻滞增长模型考虑到自然资源和环境条件等其他因素对人口的增长的阻滞作用,而且随着人口的增加,这种阻滞作用将越来越大。
模型假设:(1)人口的增长率r 是当前人口数的减函数0)()('<=N r N r r 。
(2)sN r N r -=)(,其中r 是人口的固有增长率,而s 决定了所能容纳的最大人口量m N 。
当m N N =时,人口的增长速度将降为0,从而可以得到m N r s /=。
这样可以得到)/1()(m N N r N r -=模型建立:相同的微元法研究可以得到下面的微分方程00)(,)1(N t N N N N r dt dN m=-= 利用变量分离的方法得到该方程的解为)(00)1(1)(t t r m m e N N N t N ---+= 模型分析和讨论:(1)在微分方程表达式中,rN 体现人口自身的增长趋势,因子)/1(m N N - 反映自然环境尚能容纳的比例,人口的变化是这两个因素共同作用的结果。
可以发现N 越大,两个因素的作用是相反的,并且当N 越大,自然环境和资源的阻滞作用越大。
(2)注意到0>dtdN ,并且从最终的人口方程可以看到,m N t N ≤)(,以及m t N t N =+∞→)(lim ,这说明人口随着时间的增加递增地趋于m N 。
(3)0)/21(22=-=m N N r dtN d 表明当2m N N =时人口的增长速度最快,从而可以得到人口曲线上的一个拐点。
(4)模型中所涉及到的两个参数r ,m N 的估计可以通过mN r s sN r N dt dN =-=,/ 进行线性拟合。
其中t N dt dN ∆∆≈//。
而模型的检验也可以通过这两个参数的估计量与一个实际的人口数量之间进行比较加以检验。
(5)阻滞增长模型不仅能够大体上描述人口及许多物种的变化规律,而且在社会经济领域中有广泛的应用,如耐用消费品的销售量也可以用此模型来描述。
(二)新技术推广模型一项新技术如何在有关企业中推广,是人们最为关心的问题,也就是说,一旦一家企业采用了一项新技术,那么行业中的其他企业将以怎样的速度采用该技术?哪些因素将影响到技术的推广?下面我们在适当的条件下讨论此问题。
记)(t p 为t 时刻采用该技术的企业数。
并设)(t p 连续可微。
假设未采用该技术者之所以决定采用该技术,是因为其已知有的企业采用了该技术并具有成效。
即是以“眼见为实”作为决策依据的,亦即“示范效应”在起作用。
假设0=t 时,有一项新技术被引进到共有N 个企业的行业中,其中有一个企业采用该技术。
用)()(t p t t p -∆+表示t 到t t ∆+时间内采用该技术的企业数的增加量,假设该增加量与已采用该技术的企业数)(t p 成正比,与还未采用该技术的企业数)(t p N -成正比,则有t t p N t rp t p t t p ∆-=-∆+))()(()()(令0→∆t ,得)(p N rp dtdp -= 于是得模型⎪⎩⎪⎨⎧=-=1)0()(p p N rp dt dp 解得rNt eN N t p --+=)1(1)( 显然,0)(>t p ,且+∞→t 时,N t p →)(,并对任何t ,N t p <)(。
还有,当2N p =时,dtdp 最大。
以上模型的建立,是基于示范效应的。
但随着通讯能力的提高和大众媒介的普及,广告的作用愈来愈明显。
即一个企业采用该技术还可能是因为广告效应的作用,从而在考虑单位时间内使用该技术的企业数的增量时,应把示范效应与广告效应一起考虑。
而广告效应只能对没采用该技术的企业起作用。
假设其引起的增量与)(t p N -成正比。
则有如下模型⎪⎩⎪⎨⎧=>---=0)0(0,),()(11p r r p N r p N rp dt dp 解得t rN r t rN r er rN e Nr t p )(1)(111)1()(+++-= (三)哈罗德-多马经济增长模型计Y ,C ,I ,A 分别为总收入,总消费,引致投资和自发支出(自发消费与自发投资之和),则由总供给等于总需求,得A I C Y ++=设消费函数为10,<<=c cY C引致投资为0,>=υυdtdY I 从而得到模型⎪⎪⎩⎪⎪⎨⎧==++=dt dYI cYC A I C Y υ即有(1))0()(0⎪⎩⎪⎨⎧=-=Y Y s A Y dt dY ρ 其中υρs=,01>-=c s 当A 为常数时,其解为)2()()(0te s A Y s A t Y ρ-+= 上式由两项组成,其第一项sA 是经济 学中乘数效应的结果(即边际消费c 的作用),而第二项是加速效应υ与c 的共同作用,当sA Y >0时,υ与c 的共同作用导致一个常数增长率出现。
次现象在经济学上称为加速发展原理,是增长经济学的重要内容,但由于此时t e sA Y dt dY t I ρυρυ)()(0-== 亦有常数增长率ρ,所以到一定程度,必须进行经济政策调整,以防经济过热在式)1(中,设)0,(00>=r A e A A rt即自发支出有一个常数增长率r ,则式)2(的解为t t e r A Y e r A t Y ρρυρυρ⎥⎦⎤⎢⎣⎡--+-=)()()(000 由此可见: (1)当r >ρ时,若υρ)(00r A Y ->,则)(t Y 有常数增长率ρ; (2))(t Y 第一项是与A 对应的与其有同样增长率项;(3)当r <ρ,+∞→t 时,-∞→)(t Y 。
即自发支出增长过快,挤掉了生产性投资,使总产量锐减。
所以自发支出不宜增长过快。
(4)当r =ρ时,t e Y A t A t Y ρυυ)()(000--= 当+∞→t 时,-∞→)(t Y ,造成生产萎缩。
二、高阶常微分方程和方程组模型(一)、饿狼追兔问题现有一只兔子,一只狼,兔子位于狼的正西100米处。
假设兔子与狼同时发现对方并一起起跑,兔子往正北60米处的巢穴跑,而狼在追兔子,已知兔子、狼是匀速跑且狼的速度是兔子的两倍。
问题是兔子能否安全回到巢穴?yh A(100,0)O解 首先建立坐标系,兔子在O 处,狼在A 处。
由于狼要盯着兔子追,所以狼行走的是一条曲线,且在同一时刻,曲线上狼的位置与兔子的位置的连线为曲线上该点处的切线。
设狼的行走轨迹是)(x f y =,则有1000x y ='= 1000x y ==又因狼的速度是兔子的两倍,所以在相同时间内狼走的距离为兔子走的距离的两倍。
假设在某一时刻,兔子跑到(0,h)处,而狼在(x,y)处,则有()02x h y f x x h -⎧'=⎪-⎨⎪=⎩⎰整理得到下述模型2()(100)0,(100)0xf x f f ⎧''=⎪⎨'==⎪⎩这属于可降阶的二阶微分方程,解得狼的行走轨迹31221200()10303f x x x =-+ 因200(0)603f =>,所以狼追不上兔子。
某些类型的导弹对目标追击的数学模型与此数学模型相识。
(二)传染病模型尽管现在卫生设施在不断改善,医疗水平也在不断提高,但在世界的某些地区,仍时有传染病流行的情况发生。
长期以来,建立传染病的数学模型来描述传染病的传播过程,分析得病人数的变化规律等,一直是人们重视的问题。
用数学方法研究传染病,不是从医学的角度具体分析每种传染病的传播,而只是按照一般的传播机制来建立模型。
现将人分为两类,一是传染病患者,一是传染病易感者,设)(t x ,)(t y 分别为t 时刻传染病人数和易感者人数。
假设易感者因与传染者接触而得病,且传染病人数因病死而减少。
进一步假设单位时间传染病人数的增量为xy α,减少人数为x β,则有如下模型⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=>-=00)0(,)0(0,,y y x x xy dx dy x xy dy dx αβαβα 由方程可得ydy dx 11αβ+-= 从而有00ln )(y y y y x y x ρ+-+= 其中0>=αβρ 此模型没有考虑到防疫,治疗,免疫等机制,所以有很大的局限性,也为此模型的进一步完善留有广阔的空间。
三、差分方程模型(一)Leslie 模型上面考虑的是人口群体变化的规律问题,该模型没有考虑种群的年龄结构,种群的数量主要由总量的固有增长率决定。