北师大版八年级数学下册解题技巧专题:勾股定理与面积问题 勾股定理中的思想方法
初二下学期数学勾股定理知识点总结
初二下学期数学勾股定理知识点总结
1. 勾股定理的表述:直角三角形的斜边的平方等于两直角边的平方和。
2. 勾股定理的符号表示:设直角三角形的两直角边分别为a、b,斜边为c,则勾股定理可以表示为 c² = a² + b²。
3. 斜边、直角边的关系:斜边是直角三角形的最长边,而直角边分为两个,其中一条是斜边对应的直角边,另一条是与斜边相邻的直角边。
4. 勾股数:满足勾股定理的自然数称为勾股数。
例如,3、4、5是一个勾股数组。
5. 勾股数的性质: a、b、c是勾股数,则它们之间必定存在等比关系,即 b/a、c/a、c/b是分数(不含整数的部分)。
6. 勾股定理的应用:勾股定理可以用于求解直角三角形的边长、判断三角形是否为直角三角形、证明三角形相似等。
7. 勾股定理的证明:勾股定理有多种证明方法,常用的有几何证明、代数证明和三角函数证明。
8. 勾股定理的拓展:勾股定理可以推广到多维空间的直角坐标系中,即 n维空间的勾股定理。
9. 勾股定理的应用举例:例如,可以用勾股定理计算一个直角三角形的斜边长,可以用勾股定理证明两个三角形相似,还可以用勾股定理解决一些几何问题。
总之,勾股定理是初中数学中重要的几何定理之一,了解和掌握勾股定理的相关知识点对于解决直角三角形相关的问题和理解几何性质有重要意义。
北师大版八年级数学勾股定理
第一章 勾股定理第一节探索勾股定理教学目标:1、 经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推力意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。
2、 探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单的推理的意识及能力。
重点难点:重点:了结勾股定理的由来,并能用它来解决一些简单的问题。
难点:勾股定理的发现 教学过程掌握勾股定理的内容,能利用勾股定理进行计算与证明。
勾股定理:直角三角形两直角边的平方和等于斜边的平方。
即:c 2=a 2+b 2(c 为斜边)。
它反映了直角三角形三边之间的数量关系,是解决直角三角形中计算问题以及解直角三角形的主要依据之一。
一、问题的提出:小明放学回家要经过一块长方形的麦地。
如图:1、 小明本来应走大路从A 经B 到C 可是他却直接从A 到C ,为什么?2、 为什么近、近多少?3、用数学知识如何解答? 二、量一量,算一算:1、直角三角形的两条直角边的长度分别为3㎝,4㎝和5㎝,12㎝请你量出斜边的长度。
2、进行有关的计算。
3、得出结论: 三、证明结论:利用拼合三角形的方法,如下:(1)b a a bca c cb a a a b a bc b c b b c aa b a b (1) (2)由(1)S ab c ab c 正=⨯+=+412222 ABCD由(2)S a b ab 正=++222 ∴+=++22222ab c a b ab ∴+=a b c 222 (2)如图:S c S S S a b b a a b b a a b a b c a b 正正小正==+=⨯+-=++-=+∴=+222222222441222∆() 练习: 1、判断:(1)已知a 、b 、c 是三角形的三边,则∴+=a b c 222( ) (2)在直角三角形中两边的平方和等于第三边的平方。
( )(3)在Rt ABC ∆90=∠B ∴+=a b c 222 ( )2、填空:在Rt ABC ∆中,∠=C 90(1)如果a=3,b=4,则c=(2)如果a=6,b=8,则c= (3)如果a=5,b=12,则c= (4) 如果a=15,b=20,则c= 3、 解决新课开始提出的问题第2节 能得到直角三角形吗教学目标:1. 经历运用试验的方法说明勾股定理逆定理是正确的过程,在数学活动中发展学生的探究意识和合作交流的习惯。
解题技巧专题:勾股定理与面积问题、方程思想压轴题七种模型全攻略(解析版)
解题技巧专题:勾股定理与面积问题、方程思想压轴题七种模型全攻略【考点导航】目录【典型例题】【类型一三角形中,利用面积求斜边上的高】【考点二结合乘法公式巧求面积或长度】【考点三巧妙割补求面积】【考点四“勾股树”及其拓展类型求面积】【考点五几何图形中的方程思想-折叠问题(利用等边建立方程)】【考点六几何图形中的方程思想-公边问题(利用公边建立方程)】【考点七实际问题中的方程思想】【典型例题】【类型一三角形中,利用面积求斜边上的高】1(2023春·新疆阿克苏·八年级校联考阶段练习)若一个直角三角形的两条直角边长分别是5cm 和12cm ,则斜边上的高为多少()A.8013B.13C.6D.6013【答案】D【分析】设斜边上的高为hcm ,利用勾股定理可求出斜边的长,利用面积法即可求出h 的值,可得答案.【详解】∵直角三角形的两条直角边分别为5cm ,12cm ,∴斜边长为122+52=13cm ,∴直角三角形的面积为12×12×5=12×13·h ,解得:h =6013cm ,故选:D .【点睛】本题考查勾股定理,直角三角形两直角边边长的平方和等于斜边边长的平方;灵活运用三角形的面积的两种不同的表示方法得到等量关系是解题关键.【变式训练】1(2023春·内蒙古鄂尔多斯·八年级统考期末)如图,在2×2的方格中,小正方形的边长是1,点A 、B 、C 都在格点上,则AC 边上的高为()A.5B.322 C.355D.32【答案】C【分析】根据图形,可以求出△ABC的面积,然后即可求出AC边上的高.【详解】解:△ABC的面积:2×2-12×1×2-12×1×1-12×1×2=32,AC=22+12=5,设AC边上的高为x,由题意得:1 2×5⋅x=32,x=355,故选:C.【点睛】本题考查了勾股定理、正方形面积、三角形面积,解答本题的关键是明确题意,利用数形结合思想解答.2(2023春·辽宁朝阳·八年级校考期中)如果一个等腰三角形的腰长为13,底边长为24,那么它底边上的高为()A.12B.24C.6D.5【答案】D【分析】根据题意画出图形,如图,根据等腰三角形的性质求出BD,再用勾股定理求解即可.【详解】解:如图所示根据题意得,AB=AC=13,BC=24,AD⊥BC.∴BD=12BC=12,在Rt△ADB中,根据勾股定理得,AD2+BD2=AB2,∴AD=AB2-BD2=132-122=5,即:底边上的高为5,故选:D.【点睛】此题主要考查了勾股定理,等腰三角形的性质,正确作出图形、熟练掌握等腰三角形的性质是关键.3(2022·全国·八年级课时练习)如图,在网格中,每个小正方形的边长均为1.点A、B,C都在格点上,若BD是△ABC的高,则BD的长为.【答案】455##455【解析】【分析】根据勾股定理计算AC 的长,利用面积差可得三角形ABC 的面积,由三角形的面积公式即可得到结论.【详解】解:由勾股定理得:AC =22+42=25,∵S △ABC =3×4-12×1×2-12×3×2-12×2×4=4,∴12AC •BD =4,∴12×25BD =4,∴BD =455,故答案为:455.【点睛】本题考查了勾股定理,三角形的面积的计算,掌握勾股定理是解题的关键.4(2023春·安徽合肥·八年级校考期末)如图所示,在边长为单位1的网格中,△ABC 是格点图形,求△ABC 中AB 边上的高.【答案】△ABC 中AB 边上的高为95【分析】如图所述,过点A 作AD ⊥BC 的延长于点D ,过点C 作CE ⊥AB 于点E ,可得AD ,BC ,BD 的长,在Rt △ABD 中,可求出AB 的长,根据S △ABC =12BC ·AD =12AB ·CE ,即三角形的等面积法即可求解.【详解】解:如图所述,过点A 作AD ⊥BC 的延长于点D ,过点C 作CE ⊥AB 于点E ,∵△ABC是格点图形,每个小正方形的边长为单位1,∴AD=3,BC=3,BD=4,∴在Rt△ABD中,AB=AD2+BD2=32+42=5,∵S△ABC=12BC·AD=12AB·CE,∴CE=BC·ADAB =3×35=95,∴△ABC中AB边上的高为95.【点睛】本题主要考查格点三角形,勾股定理,等面积法求高等知识的综合,掌握以上知识是解题的关键.5如图,在Rt△ABC中,∠C=90°,AC=8,在△ABE中,DE是AB边上的高,DE=12,S△ABE=60.(1)求BC的长.(2)求斜边AB边上的高.【答案】(1)BC=6(2)斜边AB边上的高是4.8【分析】(1)根据在△ABE中,DE是AB边上的高,DE=12,S△ABE=60,可以计算出AB的长,然后根据勾股定理即可得到AB的长;(2)根据等面积法,可以求得斜边AB边上的高.【详解】(1)解:(1)∵在△ABE中,DE是AB边上的高,DE=12,S△ABE=60,∴AB⋅DE2=60,即AB×122=60,解得AB=10,∵在Rt△ABC中,∠C=90°,AC=8,∴BC=AB2-AC2=102-82=6;(2)解:作CF⊥AB于点F,∵AB=10,AC=8,BC=6,AC∙CB2=AB∙CF2,∴8×62=10×CF2,解得CF=4.8,即斜边AB边上的高是4.8.【点睛】本题考查勾股定理,三角形的面积,解答本题的关键是明确题意,利用数形结合的思想解答.6(2023秋·全国·八年级专题练习)在△ABC中,∠C=90°,AC=3,CB=4,CD是斜边AB上高.(1)求△ABC的面积;(2)求斜边AB;(3)求高CD .【答案】(1)△ABC 的面积为6(2)斜边AB 为5(3)高CD 的长为125【分析】(1)根据三角面积公式底乘高除以2求出即可.(2)根据勾股定理求出AB .(3)根据等面积法求出高CD .【详解】(1)△ABC 的面积=12×AC ×BC =12×3×4=6.故△ABC 的面积是6;(2)在Rt △ABC 中,∠C =90°,AC =3,CB =4,∴AB =32+42=5;(3)∵12×AC ×BC =12×CD ×AB ,∴12×3×4=12×5×CD ,解得CD =125.故高CD 的长为125.【点睛】此题考查了求三角形面积、勾股定理,解题的关键是熟悉三角形面积公式、勾股定理.【类型二结合乘法公式巧求面积或长度】1已知在Rt △ABC 中,∠C =90°,∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,若a +b =10cm ,c =8cm ,则Rt △ABC 的面积为()A.9cm 2B.18cm 2C.24cm 2D.36cm 2【答案】A【分析】根据题意可知,Rt △ABC 的面积为ab ,结合已知条件,根据完全平方公式变形求值即可【详解】解:∵Rt △ABC 中,∠C =90°,∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,∴a 2+b 2=c 2∵a +b =10cm ,c =8cm∴2ab =a +b 2-a 2+b 2 =a +b 2-c 2=100-64=36∴S △ABC =12ab =9cm 2故选:A .【点睛】本题考查了勾股定理,完全平方公式变形求值,解题的关键是完全平方公式的变形.【变式训练】1在△ABC 中,AD 是BC 边上的高,AD =4,AB =410,AC =5,则△ABC 的面积为()A.18B.24C.18或24D.18或30【答案】D【解析】【分析】由勾股定理分别求出BD和CD,分AD在三角形的内部和AD在三角形的外部两种情况,由三角形面积公式计算即可.【详解】解:在Rt△ABD中,由勾股定理得:BD=AB2-AD2=12,在Rt△ACD中,由勾股定理得:CD=AC2-AD2=52-42=3,分两种情况:①如图1,当AD在△ABC的内部时,BC=12+3=15,则△ABC的面积=12BC×AD=12×15×4=30;②如图2,当AD在△ABC的外部时,BC=12-3=9,则△ABC的面积=12BC×AD=12×9×4=18;综上所述,△ABC的面积为30或18,故选:D.【点睛】本题考查的是勾股定理、三角形面积以及分类讨论等知识,熟练掌握勾股定理,进行分类讨论是解题的关键.2直角△ABC三边长分别是x,x+1和5,则△ABC的面积为.【答案】6或30【解析】【分析】根据ΔABC是直角三角形,则在ΔABC中分类讨论,运用勾股定理即可求出答案.【详解】解:ΔABC是直角三角形,则在ΔABC中即可运用勾股定理,不确定x+1与5哪一个大,所以讨论:(1)若x+1<5,则存在x2+x+12=52,解得x=3,SΔABC=12×3×4=6;(2)若x+1>5,则x+12-x2=52,解得x=12SΔABC=12×5×12=30.ΔABC的面积为6或30.故答案为:6或30.【点睛】本题主要考查直角三角形中勾股定理的应用,本题中讨论x+1与5的大小是解题的关键.【类型三巧妙割补求面积】1(2023春·河南许昌·八年级校考期中)如图,在四边形ABCD中,已知∠B=90°,∠ACB=30°,AB=6,AD=13,CD=5.(1)求证:△ACD是直角三角形;(2)求四边形ABCD的面积.【答案】(1)见解析(2)183+30【分析】(1)根据30°角的直角三角形的性质得到AC=2AB=12,再根据跟勾股定理的逆定理即可得证;(2)根据勾股定理得到BC=63,再利用三角形的面积公式即可得到结论.【详解】(1)证明:∵∠B=90°,∠ACB=30°,AB=6,∴AC=2AB=12,在△ACD中,AC=12,AD=13,CD=5,∵52+122=132,即AC2+CD2=AD2,∴△ACD是直角三角形;(2)解:∵在△ABC中,∠B=90°,AB=6,AC=12,∴BC=AC2-AB2=122-62=63,∴S△ABC=12BC⋅AB=12×63×6=183,又∵S△ACD=12AC⋅CD=12×5×12=30,∴S四边形ABCD=S△ABC+S△ACD=183+30.∴四边形ABCD为183+30.【点睛】本题考查勾股定理,勾股定理的逆定理,30°角的直角三角形的性质,三角形的面积.熟练掌握勾股定理的逆定理是解题的关键.【变式训练】1(2023春·内蒙古呼伦贝尔·八年级校考期中)如图所示,是一块地的平面图,其中AD=4米,CD=3米,AB=13米,BC=12米,∠ADC=90°,求这块地的面积.【答案】24平方米【分析】连接AC,根据勾股定理求出AC=AD2+CD2=5米,根据AC2+BC2=AB2,∠ACB=90°,根据直角三角形的面积公式求出结果即可.【详解】解:如图,连接AC,如图所示:∵∠ADC=90°,AD=4米,CD=3米,∴AC=AD2+CD2=5米,∵AB=13米,BC=12米,∴AC2+BC2=AB2,∴∠ACB=90°,∴这块地的面积为:S△ABC-S△ACD=12AC⋅BC-12AD⋅CD=12×5×12-12×3×4=24(平方米).【点睛】本题主要考查了勾股定理和逆定理的应用,解题的关键是熟练掌握勾股定理,在一个直角三角形中,两条直角边分别为a、b,斜边为c,那么a2+b2=c2.如果一个三角形的三条边a、b、c满足a2+b2=c2,那么这个三角形为直角三角形.2(2023春·安徽马鞍山·八年级校考期末)已知a,b,c是△ABC的三边,且a=23,b=36,c= 66.(1)试判断△ABC的形状,并说明理由;(2)求△ABC的面积.【答案】(1)△ABC是直角三角形,理由见解析(2)92【分析】(1)根据勾股定理的逆定理进行计算即可求解;(2)根据三角形的面积公式进行计算即可求解.【详解】(1)解:△ABC是直角三角形.理由:∵a2=232=12,b2=362=54,c2=662=66,∴a2+b2=c2,∴△ABC是直角三角形,且∠C是直角;(2)解:△ABC的面积=12×23×36=92.【点睛】本题考查了勾股定理的逆定理,熟练掌握勾股定理的逆定理是解题的关键.3(2023春·山东菏泽·八年级校考阶段练习)四边形草地ABCD中,已知AB=3m,BC=4m,CD=12m,DA=13m,且∠ABC为直角.(1)求这个四边形草地的面积;(2)如果清理草地杂草,每平方米需要人工费20元,清理完这块草地杂草需要多少钱?【答案】(1)36m2(2)清理完这块草地杂草需要720元钱【分析】(1)连接AC,根据勾股定理求出AC,再根据勾股定理逆定理得出∠ACD=90°,最后根据S四边形ABCD=S△ABC+S△ACD即可求解;(2)根据每平方米需要人工费20元,即可解答.【详解】(1)解:连接AC,∵AB=3m,BC=4m,∠ABC为直角,∴AC=AB2+BC2=32+42=5m,∵CD=12m,DA=13m,∴AC2+CD2=52+122=169=AD2,∴∠ACD=90°,∴S四边形ABCD =S△ABC+S△ACD=12AB⋅BC+12AC⋅CD=12×3×4+12×5×12=36m2.(2)解:20×36=720(元),答:清理完这块草地杂草需要720元钱.【点睛】本题主要考查了勾股定理,勾股定理的逆定理,解题的关键是掌握直角三角形两直角边的平方和等于斜边平方,两边平方和等于第三边平方的三角形是直角三角形.4(2022春·重庆綦江·八年级校考阶段练习)计算:如图,每个小正方形的边长都为1.(1)求线段CD与BC的长;(2)求四边形ABCD的面积;(3)求证:∠BCD=90°.【答案】(1)BC=25,CD=5(2)292(3)见解析【分析】(1)根据勾股定理解答即可;(2)运用分割法解答即可;(3)连接BD,根据勾股定理的逆定理解答即可.【详解】(1)∵每个小正方形的边长都为1,∴BC=22+42=25,CD=22+12=5(2)S四边形ABCD =5×5-12×1×5-12×1×4-1×1-12×1×2-12×2×4=25-52-2-1-1-4=292(3)连接BD,∴BD=32+42=5,∵BC2+CD2=252+52=25,BD2=52=25,∴BC2+CD2=BD2,∴△BCD是直角三角形,且BD为斜边,∴∠BCD=90°.【点睛】此题考查勾股定理和勾股定理的逆定理,关键是根据勾股定理得出各边的长解答.【类型四“勾股树”及其拓展类型求面积】1(2023秋·重庆渝中·八年级重庆巴蜀中学校考期末)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别是6、10、4、6,则最大正方形E的面积是()A.20B.26C.30D.52【答案】B【分析】根据正方形的面积公式并结合勾股定理,能够导出正方形A,B,C,D的面积和即为最大正方形的面积即可.【详解】解:如图:根据勾股定理的几何意义,可得:S E=S F+S G=S A+S B+S C+S D=6+10+4+6=26故选B.【点睛】本题考查勾股定理,熟悉勾股定理的几何意义是解题的关键.【变式训练】1(2023·广西柳州·校考一模)如图,∠BDE=90°,正方形BEGC和正方形AFED的面积分别是289和225,则以BD为直径的半圆的面积是()A.16πB.8πC.4πD.2π【答案】B【分析】利用勾股定理求出BD,再求半圆的面积即可.【详解】解:∵正方形BEGC和正方形AFED的面积分别是289和225,∴BE2=289,DE2=225,∵∠BDE=90°,∴BD=BE2-DE2=289-225=8,∴以BD为直径的半圆的面积为:12×822×π=8π;故选B.【点睛】本题考查勾股定理.熟练掌握勾股定理,是解题的关键.2(2023春·全国·八年级专题练习)如图,以Rt△ABC的三边向外作正方形,其面积分别为S1,S2,S3且S1=4,S2=8,则S3=;以Rt△ABC的三边向外作等边三角形,其面积分别为S1,S2,S3,则S1,S2,S3三者之间的关系为.【答案】12;s1+s2=s3【分析】首先根据正方形面积公式得到三个正方形的面积与Rt△ABC的三边关系,然后根据勾股定理找到Rt△ABC的三边之间的关系,并由此得到三个正方形的面积关系,最后算出S3的值;第二空同理根据正三角形面积公式与勾股定理,得到S1,S2,S3三者之间的关系,完成解答.【详解】解:∵AC、BC、AB都是正方形的边长,∴S1=AC2,S2=BC2,S3=AB2,又∵△ABC是直角三角形,∴AC2+BC2=AB2,∴S3=4+8=12,又∵Rt△ABC三边向外作等边三角形,其面积为S1,S2,S3,∴S1=12×AC×AC×32=34×AC2,同理可得:S2=34×BC2,S3=34×AB2,∵△ABC是直角三角形,∴AC2+BC2=AB2,∴S1+S2=S3.故答案是:12,S1+S2=S3.【点睛】本题考查勾股定理和正方形、正三角形的计算,解题的关键在于灵活运用勾股定理.3(2023春·八年级课时练习)已知:在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别记作a、b、c.如图1,分别以△ABC的三条边为边长向外作正方形,其正方形的面积由小到大分别记作S1、S2、S3,则有S1+S2=S3,(1)如图2,分别以△ABC的三条边为直径向外作半圆,其半圆的面积由小到大分S1、S2、S3,请问S1+S2与S3有怎样的数量关系,并证明你的结论;(2)分别以直角三角形的三条边为直径作半圆,如图3所示,其面积由小到大分别记作S1、S2Sa,根据(2)中的探索,直接回答S1+S2与S3有怎样的数量关系;(3)若Rt△ABC中,AC=6,BC=8,求出图4中阴影部分的面积.【答案】(1)S1+S2=S3,证明见解析(2)S1+S2=S3(3)24【分析】(1)由扇形的面积公式可知S1=18πAC2,S2=18πBC2,S3=18πAB2,在Rt△ABC中,由勾股定理得AC2+BC2=AB2,即S1+S2=S3;(2)根据(1)中的求解即可得出答案;(3)利用(2)中的结论进行求解.【详解】(1)解:①∵S1+S2=18πa2+18πb2,S3=18πc2根据勾股定理可知:a2+b2=c2,∴S1+S2=S3;(2)解:由(1)知,同理根据根据勾股定理:a2+b2=c2,从而可得S1+S2=S3;(3)解:由(2)知S阴影=S1+S2-S3-S△ABC=S△ABC=12×6×8=24.【点睛】本题考查勾股定理的应用,解题关键是对勾股定理的熟练掌握及灵活运用.4(2023春·江西南昌·八年级南昌市第三中学校考期中)勾股定理是人类最伟大的十个科学发现之一,西方国家称之为毕达哥拉斯定理.在我国古书《周髀算经》中就有“若勾三,股四,则弦五”的记载,我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”(如图1),后人称之为“赵爽弦图”,流传至今.(1)①如图2,3,4,以直角三角形的三边为边或直径,分别向外部作正方形、半圆、等边三角形,面积分别为S 1,S 2,S 3,利用勾股定理,判断这3个图形中面积关系满足S 1+S 2=S 3的有个.②如图5,分别以直角三角形三边为直径作半圆,设图中两个月牙形图案(图中阴影部分)的面积分别为S 1,S 2,直角三角形面积为S 3,也满足S 1+S 2=S 3吗?若满足,请证明;若不满足,请求出S 1,S 2,S 3的数量关系.(2)如果以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程就可以得到如图6所示的“勾股树”.在如图7所示的“勾股树”的某部分图形中,设大正方形M 的边长为定值m ,四个小正方形A ,B ,C ,D 的边长分别为a ,b ,c ,d ,则a 2+b 2+c 2+d 2=.【答案】(1)①3;②满足,证明见解析(2)m 2【分析】(1)设两直角边分别为x ,y ,斜边为z ,用x ,y ,z 分别表示正方形、圆、等边三角形的面积,根据x 2+y 2=z 2,求解S 1,S 2,S 3之间的关系,进而可得结果;②根据a 2+b 2=c 2,S 1+S 2=πa2 22+πb 222+ab2-πc 222=ab 2,S 3=ab 2,可得S 1+S 2=S 3;(2)由题意知,S A =a 2,S B =b 2,S C =c 2,S D =d 2,S A +S B +S C +S D =S M =m 2,代入求解即可.【详解】(1)①解:设两直角边分别为x ,y ,斜边为z ,则图2中,S 1=x 2,S 2=y 2,S 3=z 2,∵x 2+y 2=z 2,∴S 1+S 2=S 3,故图2符合题意;图3中,S 1=πx2 22=πx28,S 2=πy2 22=πy 28,S 3=πz 2 22=πz 28,∵πx 28+πy 28=πx 2+y 2 8=πz 28,∴S 1+S 2=S 3,故图3符合题意;图4中,S 1=12x ⋅x ⋅sin60°=3x 24,S 2=12y ⋅y ⋅sin60°=3y 24,S 3=12z ⋅z ⋅sin60°=3z 24,∵3x 24+3y 24=3x 2+y 2 4=3z 24,∴S 1+S 2=S 3,故图4符合题意;∴这3个图形中面积关系满足S 1+S 2=S 3的有3个,故答案为:3;②解:满足,证明如下:由题意知a 2+b 2=c 2,S 1+S 2=πa 2 22+πb 222+ab2-πc 222=ab 2,S 3=ab2,∴S 1+S 2=S 3;(2)解:由题意知,S A =a 2,S B =b 2,S C =c 2,S D =d 2,S A +S B +S C +S D =S M =m 2,∴a 2+b 2+c 2+d 2=m 2,故答案为:m 2.【点睛】本题考查了勾股定理,勾股树.解题的关键在于正确的表示各部分的面积.【类型五几何图形中的方程思想-折叠问题(利用等边建立方程)】1(2023春·河南许昌·八年级统考期中)已知直角三角形纸片ABC 的两直角边长分别为6,8,现将△ABC 按如图所示的方式折叠,使点A 与点B 重合,则CE 的长是()A.54B.74C.154D.254【答案】B【分析】根据图形翻折变换的性质可知,AE =BE ,设AE =x ,则BE =x ,CE =8-x ,再Rt △BCE 中利用勾股定理即可求出CE 的长度.【详解】解:∵△ADE 翻折后与△BDE 完全重合,∴AE =BE ,设AE =x ,则BE =x ,CE =8-x ,∵在Rt △BCE 中,CE 2=BE 2-BC 2,即8-x 2=x 2-62,解得,x =74,∴CE =74.故选:B【点睛】本题考查了图形的翻折变换,解题中应注意折叠是一种对称变换,属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.【变式训练】1(2023春·湖北咸宁·八年级校考阶段练习)如图,有一块直角三角形纸片,∠C =90°,AC =4,BC =3,将斜边AB 翻折,使点B 落在直角边AC 的延长线上的点E 处,折痕为AD ,则BD 的长为()A.34B.1.5C.53D.3【答案】C【分析】利用勾股定理求得AB =5,由折叠的性质可得AB =AE =5,DB =DE ,求得CE =1,设DB =DE =x ,则CD =3-x ,根据勾股定理可得12+3-x 2=x 2,进而求解即可.【详解】解:∵∠C =90°,AC =4,BC =3,∴AB =32+42=5,由折叠的性质得,AB =AE =5,DB =DE ,∴CE =1,设DB =DE =x ,则CD =3-x ,在Rt △CED 中,12+3-x 2=x 2,解得x =53,故选:C .【点睛】本题考查勾股定理、折叠的性质,熟练掌握勾股定理是解题的关键.2(2023春·山东菏泽·八年级统考期中)如图,Rt △ABC 中,∠B =90°,AB =4,BC =6,将△ABC 折叠,使点C 与AB 的中点D 重合,折痕交AC 于点M ,交BC 于点N ,则线段CN 的长为.【答案】103/313【分析】由折叠的性质可得DN =CN ,根据勾股定理可求DN 的长,即可求CN 的长.【详解】解:∵D 是AB 中点,AB =4,∴AD =BD =2,∵将△ABC 折叠,使点C 与AB 的中点D 重合,∴DN =CN ,∴BN =BC -CN =6-DN ,在Rt △DBN 中,DN 2=BN 2+DB 2,∴CN 2=(6-CN )2+22,∴CN =103,故答案为:103.【点睛】本题考查了翻折变换(折叠问题),折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强.3(2023·辽宁葫芦岛·统考二模)如图,在Rt △ABC 中,∠C =90°,∠A =30°,BC =2,点D 是AC 的中点,点E 是斜边AB 上一动点,沿DE 所在直线把△ADE 翻折到△A DE 的位置,A D 交AB 于点F .若△BA F 为直角三角形,则AE 的长为.【答案】1或65【分析】分∠BFA =90°和∠BA F =90°两种情形分类讨论,当∠BFA =90°时,根据∠C =90°,∠A =30°,BC =2,点D 是AC 的中点,算出AD =CD =3,根据∠BFA =90°以及翻折性质得出EA =ED ,∠DEA =120°,即可解答;当∠BA F =90°时,作EH ⊥BA 交AB 的延长线于H ,设AE =x ,在Rt △EHA 和Rt △BEH 中用勾股定理即可解答.【详解】解:如图,当∠BFA =90°时,在Rt △ABC 中,∵∠A =30°,BC =2∴AB =2BC =4,AC =23,∵AD =CD ,∴AD =CD =3,∵∠AFD =90°,∴∠ADF =60°,∴∠EDA =∠EDF =30°,∴∠A =∠EDA =30°,∴EA =ED ,∠DEA =120°,AE =AD 3=33=1.如图,当∠BA F =90°时,作EH ⊥BA交AB 的延长线于H ,设AE =x ,∵∠DA E =30°,∴∠EA H =60°,在Rt △EHA 中,A H =12A E =12x ,EH =3A H =32x ,BE =4-x ,在Rt △BEH 中,∵EH 2+BH 2=BE 2,∴32x 2+2+12x 2=(4-x )2,解得x =65,综上所述,满足条件的AE 的值为1或65,故答案为:1或65.【点睛】本题考查翻折变换、勾股定理、特殊直角三角形、全等三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想解决问题,属于中考常考题型.4(2022秋·河北张家口·八年级统考期中)在△ABC 中,∠C =90°,点D 、E 分别在AC 、AB 边上(不与端点重合).将△ADE 沿DE 折叠,点A 落在A 的位置.(1)如图①,当A 与点B 重合且BC =3,AB =5.①直接写出AC 的长;②求△BCD 的面积.(2)当∠A =37°.①A 与点E 在直线AC 的异侧时.如图②,直接写出∠A EB -∠A DC 的大小;②A 与点E 在直线AC 的同侧时,且△A DE 的一边与BC 平行,直接写出∠ADE 的度数.【答案】(1)①4;②2116(2)①74°;②∠ADE 的度数分别为45°,26.5°【分析】(1)①直接根据勾股定理即可求出AC 的长;②设CD =x ,则AD =BD =4-x ,根据勾股定理求出x 的值,再根据三角形面积公式即可求解;(2)①根据三角形的外角定理可得∠A EB =∠A +∠AFE ,∠AFE =∠A +∠A DF ,即可求解;②根据题意进行分类讨论:当A D ∥BC 时,当A E ∥BC 时,即可进行解答.【详解】(1)解:①在Rt △ABC 中,由勾股定理得,AC =AB 2-BC 2=52-32=4,②设CD =x ,则AD =4-x ,∵将△ADE 沿DE 折叠,点A 落在A 的位置,∴AD =BD =4-x ,在Rt △BCD 中,由勾股定理得,32+x 2=4-x 2,解得:x =78∴S △BCD =12×3×78=2116.(2)解:①∵将△ADE 沿DE 折叠,点A 落在A 的位置,∠A =37°,∴∠A =37°,∴∠A EB =∠A +∠AFE =37°+∠AFE ,∵∠AFE =∠A +∠A DF =37°+∠A DF ,∴∠A EB =37°+∠AFE =37°+37°+∠A DF =74°+∠A DF ,∴∠A EB -∠A DC =74°;②当A D∥BC时,如图:∵A D∥BC,∠C=90°,∴∠ADA =90°,∵△ADE由△A DE折叠所得,∴∠ADE=1∠ADA =45°;2当A E∥BC时,如图:∵∠A=37°,∠C=90°,∴∠B=90°-37°=53°,∵△ADE由△A DE折叠所得,∴∠A=∠A =37°,∵AE ∥BC,∴∠B=∠A EB=53°,∴∠AMA =180°-∠A -∠A EB=90°,即AB⊥A D,∴∠ADA =90°-∠A=53°,∠ADA =26.5°.∴∠ADE=12综上:∠ADE的度数分别为45°,26.5°.【点睛】本题主要考查了勾股定理,三角形那个的内角和定理,折叠的性质,平行线的性质,解题的关键是掌握勾股定理内容,根据勾股定理建立方程求边的长度;掌握三角形是内角和为180°,三角形的外角等于与它不相邻的两个内角之和,平行线的性质.【类型六几何图形中的方程思想-公边问题(利用公边建立方程)】1如图,在△ABC中,AB=10,BC=9,AC=17,则BC边上的高为.【答案】8【解析】【分析】作AD⊥BC交BC的延长于点D,在Rt△ADB中,AD2+DB2=AB2,在Rt△ADC中,AD2+DC2=AC2,根据AB2-DB2=AC2-DC2列出方程即可求解.【详解】如图,作AD⊥BC交BC的延长于点D,则AD即为BC边上的高,在Rt△ADB中,AD2+DB2=AB2,在Rt△ADC中,AD2+DC2=AC2,∴AB2-DB2=AC2-DC2,∵AB=10,BC=9,AC=17,∴102-DB2=172-DB+92,解得DB=6,∴AD=AB2-DB2=102-62=8故答案为:8.【点睛】本题考查了勾股定理,掌握三角形的高,直角三角形是解题的关键.【变式训练】1已知:如图,在△ABC中,∠C=90°,AD是△ABC的角平分线,CD=3,BD=5,则AC=.【答案】6【分析】作DE⊥AB,如图,根据角平分线的性质可得DE=CD=3,勾股定理求出BE,证明Rt△ACD≅Rt△AED HL,推出AC=AE,设AC=AE=x,根据勾股定理列出方程即可求出AC.【详解】解:作DE⊥AB于点E,如图,∵在△ABC中,∠C=90°,AD是△ABC的角平分线,CD=3,∴DE=CD=3,∴BE=52-32=4,∵DC=DE,AD=AD,∴Rt△ACD≅Rt△AED HL,∴AC=AE,设AC=AE=x,则AB=4+x,BC=3+5=8,在直角三角形ABC中,根据勾股定理可得:AC2+BC2=AB2,即x2+82=x+42,解得:x=6,即AC=6;故答案为:6.【点睛】本题考查了角平分线的性质、全等三角形的判定和性质以及勾股定理等知识,属于常见题型,熟练掌握上述知识,利用勾股定理得出方程是解题的关键.2如图,在Rt△ABC和Rt△ADE中,∠B=∠D=90°,AC=AE,BC=DE,延长BC,DE交于点M.(1)求证:点A在∠M的平分线上;(2)若AC ∥DM ,AB =12,BM =18,求BC 的长.【答案】(1)见解析(2)5【分析】(1)连接AM ,证明Rt △ABC ≅Rt △ADE (HL ),可得AB =AD ,根据角平分线的判定即可解决问题;(2)证明CM =AC ,设BC =x ,所以CM =AC =18-x ,根据勾股定理即可解决问题.【详解】(1)证明:如图,连接AM ,在Rt △ABC 和Rt △ADE 中,∵∠B =∠D =90°,AC =AE ,BC =DE ,∴Rt △ABC ≅Rt △ADE (HL ),∴AB =AD ,∵AB ⊥BM ,AD ⊥DM ,∴MA 平分∠BMD ,∴点A 在∠BMD 的平分线上;(2)解:∵AC ∥DM ,∴∠CAM =∠AMD ,∴∠AMB =∠CAM ,∴CM =AC ,设BC =x ,∴CM =AC =18-x ,在Rt △ABC 中,AB 2+BC 2=AC 2,∴122+x 2=(18-x )2,∴x =5.∴BC =5.【点睛】本题考查了全等三角形的判定与性质,角平分线的判定,勾股定理,解决本题的关键是得到Rt △ABC ≅Rt △ADE (HL ).【类型七实际问题中的方程思想】1(2022·全国·八年级)明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地,送行二步恰竿齐,五尺板高离地⋯⋯”翻译成现代文为:如图,秋千绳索OA 悬挂于O 点,静止时竖直下垂,A 点为踏板位置,踏板离地高度为一尺(AC =1尺).将它往前推进两步(EB ⊥OC 于点E ,且EB =10尺),踏板升高到点B 位置,此时踏板离地五尺(BD =CE =5尺),则秋千绳索(OA 或OB )长尺.【答案】292【解析】【分析】设OB =OA =x (尺),在Rt △OBE 中利用勾股定理构建方程即可解决问题.【详解】解:设OB =OA =x (尺),在Rt △OBE 中,OB =x ,OE =x -4,BE =10,∴x 2=102+(x -4)2,∴x =292,∴OA 或OB 的长度为292(尺).故答案为:292.【点睛】本题考查勾股定理的应用,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.【变式训练】1(2022·全国·八年级课时练习)如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD 的距离为2寸,点C 和点D 距离门槛AB 都为1尺(1尺=10寸),则AB 的长是()A.50.5寸B.52寸C.101寸D.104寸【答案】C 【解析】【分析】取AB 的中点O ,过D 作DE ⊥AB 于E ,根据勾股定理解答即可得到结论.【详解】解:取AB 的中点O ,过D 作DE ⊥AB 于E ,如图2所示:由题意得:OA =OB =AD =BC ,设OA =OB =AD =BC =r 寸,则AB =2r (寸),DE =10寸,OE =12CD =1寸,∴AE =(r -1)寸,在Rt △ADE 中,AE 2+DE 2=AD 2,即(r -1)2+102=r 2,解得:r =50.5,∴2r =101(寸),∴AB =101寸,故选:C .【点睛】本题考查了勾股定理的应用,弄懂题意,构建直角三角形是解题的关键.2(2022·河南·金明中小学八年级期中)《九章算术》是我国古代数学名著,有题译文如下:今有门,不知其高宽;有竿,不知其长短.横放,竿比门宽长出4尺;竖放,竿比门高短2尺;斜放,门对角线长恰好是竿长的2倍.问门高、门宽各为多少?【答案】门高为7尺,门宽为1尺.【解析】【分析】设竿的长度为x 尺,则门高为(x +2)尺,门宽为(x -4)尺,利用勾股定理,即可得出关于x 的方程,解之即可得出x 的值即可得出结论.【详解】解:设竿的长度为x 尺,则门高为(x +2)尺,门宽为(x -4)尺,依题意得:2x 2=x +2 2+x -42化简得:4x =20,解得:x =5.∴x +2=7,x -4=1,答:门高为7尺,门宽为1尺.【点睛】本题考查了一元一次方程的应用以及勾股定理,找准等量关系,正确列出一元一次方程是解题的关键.3(2022·重庆市求精中学校八年级期中)在一条东西走向的河的一侧有一村庄C ,河边原有两个取水点A ,B ,其中AB =AC ,由于某种原由C 到A 的路现在已经不通,某村为方便村民取水决定在河边新建一个取水点H (A 、H 、B 在一条直线上),并新修一条路CH ,测得CB =1.5千米,CH =1.2千米,HB =0.9千米.(1)问CH 是否为从村庄C 到河边的最近路?请通过计算加以说明.(2)求原来的路线AC 的长.【答案】(1)CH 是从村庄C 到河边的最近路;理由见解析;(2)原来的路线AC 的长为1.25千米.【解析】【分析】(1)根据勾股定理的逆定理证明△CHB 是直角三角形即可;(2)设AC =x 千米,在Rt △ACH 中,由已知得AC =x ,AH =x -0.9,CH =1.2,再根据勾股定理解答即可.(1)解:是,理由是:在△CHB 中,∵CH 2+BH 2=1.22+0.92=2.25,BC 2=2.25,∴CH2+BH2=BC2,∴△CHB是直角三角形,∴CH是从村庄C到河边的最近路;(2)设AC=x千米,在Rt△ACH中,由已知得AC=x,AH=x-0.9,CH=1.2,由勾股定理得:AC2=AH2+CH2∴x2=(x-0.9)2+1.22,解这个方程,得x=1.25,答:原来的路线AC的长为1.25千米.【点睛】本题考查勾股定理的应用,关键是根据勾股定理的逆定理和定理解答.4(2022·浙江·浦江县实验中学八年级期中)图1是一张可以折叠的小床展开后支撑起来放在地面的示意图,此时点A、B、C在同一直线上,且∠ACD=90°,图2是小床支撑脚CD折叠的示意图,在折叠过程中,△ACD变形为四边形ABC'D',最后折叠形成一条线段BD .某家装厂设计的折叠床是AB=4cm,BC=8cm,(1)此时CD为 cm;(2)折叠时,当AB⊥BC′时,四边形ABC′D′的面积为cm2.【答案】 16 1619+16【解析】【分析】(1)根据题意表示出各线段的长,进而利用勾股定理计算出DC的长即可;(2)根据题意作出示意图,连接AC',过点A作AM⊥C'D'于M,由勾股定理求得AC',设D'M=x,通过勾股定理列出方程,求得x,进而求结果.【详解】解:(1)∵AB=4cm,BC=8cm,设DC=y,则C″D″=y,由图形可得:BC″=BC=8cm,则AC″=8-4=4,AD=AD″=4+y,又AC2+DC2=AD2,即(12)2+y2=(4+y)2,解得:y=16,∴CD=16cm,故答案为:16;(2)根据题意作出示意图如下,连接AC',过点A作AM⊥C'D'于M,∵∠ABC'=90°,∴AC=AB2+C′B2=42+82=45,由(1)知,AD'=AD=20,C'D'=CD=16,设C'M=x,则202-(16+x )2=AM 2=(45)2-x 2,解得,x =2,∴AM =(45)2-22=219,∴S 四边形ABC D =S ΔABC +S ΔAD C=12AB ∙BC +12D C ∙AM=12×4×8+12×16×219=1619+16(cm 2)故答案为.1619+16.【点睛】本题主要考查了勾股定理,关键是构造直角三角形,列出方程.。
八年级下册勾股定理知识点归纳
一、基础知识点: 1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是①图形通过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ∆+=正方形正方形ABCD ,,化简可证.方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则22c a b =+,22b c a =-,22a c b =-②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;否则,就不是直角三角形。
北师大初中数学中考总复习:勾股定理及其逆定理--知识讲解(基础)-精品
中考总复习:勾股定理及其逆定理(基础)【考纲要求】1.了解勾股定理的历史,掌握勾股定理的证明方法;2.理解并掌握勾股定理及逆定理的内容;3.能应用勾股定理及逆定理解决有关的实际问题;4.加强知识间的内在联系,用方程思想解决几何问题.以体现代数与几何之间的内在联系. 【知识网络】【考点梳理】 考点一、勾股定理 1.勾股定理:直角三角形两直角边a b 、的平方和等于斜边c 的平方.(即:222a b c +=)【要点诠释】勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方. 2.勾股定理的证明:勾股定理的证明方法很多,常见的是拼图的方法. 用拼图的方法验证勾股定理的思路是:①图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变; ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理. 3.勾股定理的应用勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用是: ①已知直角三角形的任意两边长,求第三边,在ABC ∆中,90C ∠=︒,则22c a b =+,22b c a =-,22a c b =-;②知道直角三角形一边,可得另外两边之间的数量关系; ③可运用勾股定理解决一些实际问题. 考点二、勾股定理的逆定理1.原命题与逆命题如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题.如果把其中一个叫做原命题,那么另一个叫做它的逆命题.2.勾股定理的逆定理勾股定理的逆定理:如果三角形的三边长a b c 、、,满足222a b c +=,那么这个三角形是直角三角形. 【要点诠释】①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边;③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形.3.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数;②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等; ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数) 2222,2,m n mn m n -+(,m n >m ,n 为正整数).考点三、勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,两者互为逆定理,都与直角三角形有关. 【典型例题】类型一、勾股定理及其逆定理的综合应用1.(2014春•河西区期末)在正方形ABCD 中,E 是BC 的中点,F 为CD 上一点,且,试判断△AEF 是否是直角三角形?试说明理由.【思路点拨】首先设正方形的边长为4a ,则CF=a ,DF=3a ,CE=BE=2a .根据勾股定理可求出AF ,AE 和EF 的长度.如果它们三个的长度满足勾股定理,△AEF 为直角三角形,否则不是直角三角形. 【答案与解析】解:设正方形的边长为4a , ∵E 是BC 的中点,,∴CF=a,DF=3a ,CE=BE=2a .由勾股定理得:AF2=AD2+DF2=16a2+9a2=25a2,EF2=CE2+CF2=4a2+a2=5a2,AE2=AB2+BE2=16a2+4a2=20a2,∴AF2=EF2+AE2,∴△AEF为直角三角形.【总结升华】勾股定理的应用.在解答此类题时有一个小窍门,题干中各边长都没有给出确定的值,我们已知各边长的比值,这时我们可以将边长设成具体的值.这样解题时用到的都是数字,表达方便.举一反三:【变式】如图,矩形ABCD的对角线AC=10,BC=8,则图中五个小矩形的周长之和为().A.14B.16C.20D.28【答案】D.根据题意可知五个小矩形的周长之和正好能平移到大矩形的四周,故即可得出答案:∵AC=10,BC=8,∴A B=6,图中五个小矩形的周长之和为:6+8+6+8=28.2.如图所示,四边形ABCD中,DC∥AB,BC=1,AB=AC=AD=2.则BD的长为().A.14B.15C. 223 D. 3【思路点拨】以A为圆心,AB长为半径作圆,延长BA交⊙A于F,连接DF.在△BDF中,由勾股定理即可求出BD的长.【答案与解析】以A为圆心,AB长为半径作圆,延长BA交⊙A于F,连接DF.可证∠FDB=90°,∠F=∠CBF,∴DF=CB=1,BF=2+2=4,∴BD=2215-=.故选B.BF DF【总结升华】本题考查了勾股定理,解题的关键是作出以A为圆心,AB长为半径的圆,构建直角三角形从而求解.举一反三:【变式】(2015•黄冈模拟)如图,圆柱的底面周长为6cm,AC是底面圆的直径,高BC=6cm,点P是母线BC上一点且PC=BC.一只蚂蚁从A点出发沿着圆柱体的表面爬行到点P的最短距离是()A.(4+)cm B.5cm C.2cm D.7cm【答案】B.【解析】解:侧面展开图如图所示:∵圆柱的底面周长为6cm,∴AC′=3cm.∵PC′=BC′,∴PC′=×6=4cm.在Rt△ACP中,AP2=AC′2+CP2,∴AP==5.故选:B.类型二、勾股定理及其逆定理与其他知识的结合应用3.如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将Rt△ABC绕A点逆时针旋转30°后得到R t△ADE,点B经过的路径为弧BD,则图中阴影部分的面积是________________.【思路点拨】先根据勾股定理得到AB=2,再根据扇形的面积公式计算出S扇形ABD,由旋转的性质得到Rt△ADE≌Rt△ACB,于是S阴影部分=S△ADE+S扇形ABD-S△ABC=S扇形ABD【答案与解析】∵∠ACB=90°,AC=BC=1,∴AB=2,∴S 扇形ABD =6360)2(302ππ=⋅, 又∴Rt△ABC 绕A 点逆时针旋转30°后得到Rt△ADE, ∴Rt△ADE≌Rt△ACB,∴S 阴影部分=S △ADE +S 扇形ABD -S △ABC =S 扇形ABD =6π. 【总结升华】本题考查了扇形的面积公式:3602R n S π=.也考查了勾股定理以及旋转的性质.考点涉及到扇形面积的计算;勾股定理;旋转的性质.4. 如图,矩形纸片ABCD 中,已知AD=8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处, 折痕为AE ,且EF=3,则AB 的长为( ). A. 3 B. 4 C. 5 D. 6【思路点拨】先根据矩形的特点求出BC 的长,再由翻折变换的性质得出△CEF 是直角三角形,利用勾股定理即可求出CF 的长,再在△ABC 中利用勾股定理即可求出AB 的长. 【答案与解析】∵四边形ABCD 是矩形,AD=8, ∴BC=8,∵△AEF 是△AEB 翻折而成,∴BE=EF=3,AB=AF ,△CEF 是直角三角形, ∴CE=8-3=5,在Rt△CEF 中,CF=2222534CE EF -=-= , 设AB=x ,在Rt△ABC 中,AC 2=AB 2+BC 2,即(x+4)2=x 2+82,解得x=6, 故选D .【总结升华】本题考查的是翻折变换及勾股定理,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键. 举一反三:【变式】(2011台湾)如图为梯形纸片ABCD ,E 点在BC 上,且∠AEC=∠C=∠D=90°,AD =3,BC =9,CD =8.若以AE 为折线,将C 折至BE 上,使得CD 与AB 交于F 点,则BF 长度为何( ).A .4.5B .5C .5.5D .6【答案】B .5.一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形DEFH 的边长为2米,坡角∠A=30°,∠B=90°,BC =6米.当正方形DEFH 运动到什么位置,即当AE = 米时,有DC 2=AE 2+BC 2.【思路点拨】根据已知得出假设AE =x ,可得EC =12-x ,利用勾股定理得出DC 2=DE 2+EC 2=4+(12-x )2,AE 2+BC 2=x 2+36,即可求出x 的值. 【答案与解析】假设AE =x ,可得EC =12-x ,∵坡角∠A=30°,∠B=90°,BC =6米, ∴AC=12米,∵正方形DEFH 的边长为2米,即DE =2米, ∴DC 2=DE 2+EC 2=4+(12-x )2, AE 2+BC 2=x 2+36, ∵DC 2=AE 2+BC 2,∴4+(12-x )2=x 2+36, 解得:x =314. 故答案为:314.【总结升华】此题主要考查了勾股定理的应用以及一元二次方程的应用,根据已知表示出CE ,AE 的长度是解决问题的关键.6 . 某园艺公司对一块直角三角形的花圃进行改造.测得两直角边长为6m 、8m .现要将其扩建成等腰三角形,且扩充部分是以8m 为直角边的直角三角形...........求扩建后的等腰三角形花圃的周长. 【思路点拨】原题并没有给出图形,要根据题意画出符合题意的图形,画出图形后,可知本题实际上应三类情况讨论:一是将△ABC 沿直线AC 翻折180°后,得等腰三角形ABD ,如图1;二是延长BC 至点D ,使CD =4,则BD =AB =10,得等腰三角形ABD ,如图2;三是作斜边AB 的中垂线交BC 的延长线于点D ,则DA =DB ,得等腰三角形ABD ,如图3.先作出符合条件的图形后,再根据勾股定理进行求解即可. 【答案与解析】分三类情况讨论如下:(1)如图1所示,原来的花圃为Rt△ABC,其中BC =6m ,AC =8m ,∠ACB=90°.由勾股定理易知AB =10m ,将△ABC 沿直线AC 翻折180°后,得等腰三角形ABD ,此时,AD =10m ,CD =6m .故扩建后的等腰三角形花圃的周长为12+10+10=32(m ). (2)如图2,因为BC =6m ,CD =4m ,所以BD =AB =10m ,在Rt△ACD 中,由勾股定理得AD =2284 =45,此时,扩建后的等腰三角形花圃的周长为45+10+10=20+45.(3)如图3,设△ABD 中DA =DB ,再设CD =xm ,则DA =(x +6)m ,在Rt△ACD 中,由勾股定理得x 2+82=(x +6)2,解得x =37∴扩建后等腰三角形花圃的周长=10+2(x +6)=380(m ). 图1668DC BA图2486BC AD图3x +6x 68BC DA【总结升华】对于无附图几何问题,往往需要根据题意画出图形,结合已知条件及图形分析求解,这样便于寻找解题思路.举一反三:【变式】“希望中学”有一块三角形形状的花圃ABC ,现可直接测量到∠A=30°,AC=40m ,BC=25m ,请求出这块花圃的面积. 【答案】作CD ⊥AB . ∵∠A=30°, ∴CD=12AC=12×40=20(m ), AD=22203AC CD -=(m ), BD=22BC CD -=15(m ).(1)当∠ACB 为钝角时,AB=AD+BD=203+15,∴S △ABC =12AB •CD=12(203+15)×20=(2003+150)(m 2). (2)当∠ACB 为锐角时,AB=AD-BD=203-15.∴S △ABC =12AB •CD=12AB •CD=12(203-15)×20=(2003-150)(m 2).。
北师版八年级数学第一章.勾股定理知识点与常见题型总结及练习讲课稿
A、40
B、80
C、 40 或 360
D、80 或 360
7、如图,在 Rt△ ABC中,∠ C=90°, D为 AC上一点,且 DA=DB=,5 又△ DAB的面积为 10,那
么 DC的长是( )
A、4
B、3
C、5
D、4.5 A
D
C D
A E
B C
C
A
B
第 7 题图
D
第 8 题图
A′
D′
B
B′ 第 9 题图
BC方向以 15km/h 的速度向 D移动,已知城市 A 到 BC的距离 AD=100km,那么台风中心经过多
长时间从 B 点移到 D 点?如果在距台风中心 30km的圆形区域内都将有受到台风的破坏的危
险,正在 D点休闲的游人在接到台风警报后的几小时内撤离才可脱离危险?
C A
D
第 1 题图
2、数组 3、 4、 5; 5、 12、13;7、24、25;9、40、B 41;……都是勾股数,若奇数 n 为直角
5 , b 1, c
2
4
3
解:① Q a 2 b2 1.52 22 6.25 , c2 2.52 6.25
ABC 是直角三角形且 C 90
②
Q
2
b
2
c
13
,
2
a
25 , b 2
2cLeabharlann 2a916
ABC 不是直角三角形
例 7.三边长为 a , b , c 满足 a b 10 , ab 18 , c 8的三角形是什么形状?
形是直角三角形
6 .勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即
八年级勾股定理知识点归纳
八年级勾股定理知识点归纳在数学学习中,八年级是勾股定理的重要阶段。
勾股定理是一条历史悠久的定理,是数学中的重要基础知识之一。
下面我们来对八年级勾股定理的知识点进行归纳总结。
一、勾股定理的定义
勾股定理是指直角三角形的斜边平方等于它的两个直角边平方和。
即a²+b²=c²(其中a,b为直角边,c为斜边)
二、勾股定理的证明
勾股定理是由古希腊数学家毕达哥拉斯发现的。
他利用象形数学的思想,找到了一种简单的证明方法。
他考虑在直角三角形中内接一个正方形,然后证明这个正方形的面积等于直角边的平方和。
三、勾股定理的应用
勾股定理作为数学中的基础知识,在常见的数学问题中具有广泛的应用。
下面列举了一些常见的应用:
1. 判断三角形是否为直角三角形
给定一个三角形的三边长,如果能够用勾股定理证明这个三角形为直角三角形,那么我们就能够判断这个三角形是否为直角三角形。
2. 求直角三角形的周长
知道直角三角形的两个直角边的长度,就可以用勾股定理求出斜边的长度,从而计算出周长。
3. 求直角三角形的面积
知道直角三角形的两个直角边的长度,就可以用勾股定理求出斜边的长度,从而计算出面积。
4. 求出一个三角形的某个角度
在一个直角三角形中,可以用反正切公式求出另外两个角度。
综上所述,勾股定理是一条非常重要的定理,对于我们的数学学习和生活中的应用具有十分重要的意义。
通过对勾股定理的归纳总结和应用,我们可以更好地掌握这一基础知识,并在做题和日常生活中灵活运用它。
探索勾股定理(2种题型)-2023年新八年级数学核心知识点与常见题型(北师大版)(解析版)
探索勾股定理(2种题型)【知识梳理】一、勾股定理直角三角形两直角边的平方和等于斜边的平方.如果直角三角形的两直角边长分别为,a b ,斜边长为c ,那么+=a b c 222.要点诠释:(1)勾股定理揭示了一个直角三角形三边之间的数量关系.(2)利用勾股定理,当设定一条直角边长为未知数后,根据题目已知的线段长可以建立方程求解,这样就将数与形有机地结合起来,达到了解决问题的目的.(3)理解勾股定理的一些变式:=−a c b 222,=−b c a 222, =+−c a b ab 222)(.二、勾股定理的证明方法一:将四个全等的直角三角形拼成如图(1)所示的正方形.图(1)中,所以.方法二:将四个全等的直角三角形拼成如图(2)所示的正方形.图(2)中,所以.方法三:如图(3)所示,将两个直角三角形拼成直角梯形.,所以.三、勾股定理的作用1. 已知直角三角形的任意两条边长,求第三边;2. 用于解决带有平方关系的证明问题;3. 利用勾股定理,作出长为的线段.【考点剖析】题型一、勾股定理的应用例1、在△ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c .(1)若a =5,b =12,求c ;(2)若c =26,b =24,求a .【答案与解析】解:(1)因为△ABC 中,∠C =90°,+=a b c 222,a =5,b =12,所以=+=+=+=c a b 5122514416922222.所以c =13. (2)因为△ABC 中,∠C =90°,+=a b c 222,c =26,b =24,所以=−=−=−=a c b 262467657610022222.所以a =10.【总结升华】已知直角三角形的两边长,求第三边长,关键是先弄清楚所求边是直角边还是斜边,再决定用勾股原式还是变式.例2.如图所示,在多边形ABCD AB =2,CD =1,∠A =45°,∠B =∠D =90°,求多边形ABCD 的面积.【答案与解析】解:延长AD 、BC 相交于点E∵ ∠B =90°,∠A =45°∴ ∠E =45°,∴ AB =BE =2∵ ∠ADC =90°,∴ ∠DCE =45°,∴ CD =DE =1∴ ,. △=⨯⨯=S ABE 22221△=⨯⨯=S DCE 221111∴ .【总结升华】求不规则图形的面积,关键是将其转化为规则的图形(如直角三角形、正方形、等腰三角形等),转化的方法主要是割补法,然后运用勾股定理求出相应的线段,解决面积问题.【变式】已知:如图,在△ABC,BC=2,S △ABC =3,∠ABC=135°,求AC 、AB 的长.【答案】解:如图,过点A 作AD ⊥BC 交CB 的延长线于D ,在△ABC 中,∵S △ABC=3,BC=2,∴AD===3,∵∠ABC=135°,∴∠ABD=180°﹣135°=45°,∴AB=AD=3,BD=AD=3,在Rt △ADC 中,CD=2+3=5,由勾股定理得,AC===.例3、长方形纸片ABCD 中,AD=4cm ,AB=10cm ,按如图方式折叠,使点B 与点D 重合,折痕为EF ,求DE 的长.13222ABE DCE ABCD S S S =−=−=△△四边形【思路点拨】在折叠的过程中,BE=DE .从而设BE 即可表示AE .在直角三角形ADE 中,根据勾股定理列方程即可求解.【答案与解析】解:设DE=xcm ,则BE=DE=x ,AE=AB ﹣BE=10﹣x ,△ADE 中,DE2=AE2+AD2,即x2=(10﹣x )2+16.∴x=(cm ).答:DE 的长为cm. 【总结升华】注意此类题中,要能够发现折叠的对应线段相等.题型二、勾股定理的证明例4、如图所示,在Rt △ABC 中,∠C =90°,AM 是中线,MN ⊥AB ,垂足为N ,试说明222AN BN AC −=.【答案与解析】解:因为MN ⊥AB ,所以222AN MN AM +=,222BN MN MB +=,所以2222AN BN AM BM −=−.因为AM 是中线,所以MC =MB .又因为∠C =90°,所以在Rt △AMC 中,222AM MC AC −=,所以222AN BN AC −=.【总结升华】证明带有平方的问题,主要思想是找到直角三角形,利用勾股定理进行转化.若没有直角三角形,常常通过作垂线构造直角三角形,再用勾股定理证明.例5.请用两种方法证明:△ABC 中,若∠C =90°,则a 2+b 2=c 2【分析】方法一:用四个大小相同的直角三角形拼成正方形,其中每个直角三角形的直角边长分别为a 、b ,斜边长为c,通过证明可得中间也是一个正方形,大正方形的面积可表示为(a+b)2,也可表示为c2+2ab,利用面积相等即可证明;方法二:两个大小相同的直角三角形,每个直角三角形的直角边长分别为a、b,斜边长为c,连接BE,构造直角梯形BCDE,利用梯形面积公式可得梯形面积为ab+(a2+b2),也可表示为ab+c2,利用面积相等即可证明.【解答】证明:方法一:如图,用四个大小相同的直角三角形拼成正方形,每个直角三角形直角边长分别为a、b,斜边长为c,∵∠A=∠B=∠C=∠D=90°,AB=BC=CD=AD=a+b,∴四边形ABCD为正方形,∵∠AFE+∠AEF=90°,∠AFE=∠DEH,∴∠DEH+∠AEF=90°,∴∠FEH=90°,同理可得:∠EFG=∠FGH=∠EHG=90°,∵EF=FG=GH=EH=c,∴四边形EFGH为正方形,∴S▱ABCD=AB2=(a+b)2,S▱ABCD=S▱EFGH+4S△AEF=c2+4×ab=c2+2ab,∴(a+b)2=c2+2ab,∴a2+b2+2ab=c2+2ab,∴a2+b2=c2;方法二:如图,放置两个大小相同的直角三角形,每个直角三角形的直角边长分别为a、b,斜边长为c,连接BE,构造直角梯形BCDE,∵∠C=∠D=90°,∴梯形BCDE为直角梯形,∴S梯形BCDE=(a+b)(b+a)=ab+(a2+b2),∵∠BAC=∠AED,∠DAE+∠AED=90°,∴∠BAC+∠DAE=90°,∴∠BAE=90°,∴S梯形BCDE=S△ABC+S△ABE+SADE=ab+c2+ab=ab+c2,∴ab+(a2+b2)=ab+c2,∴a2+b2=c2.【点评】本题考查勾股定理的证明,解题的关键是熟练掌握勾股定理的证明方法,一般采用拼图的方法,然后再利用面积相等证明.例6.图中大正方形是由4a,b,斜边为c,你能通过此图验证得到勾股定理吗?请说说你的理由.【分析】根据四个全等的直角三角形的面积+阴影部分小正方形的面积=大正方形的面积即可证明.【解答】证明:由图得,×ab×4+c2=(a+b)×(a+b),整理得,2ab+c2=a2+b2+2ab,即a2+b2=c2.【点评】本题考查了用数形结合以及等面积法来证明勾股定理,锻炼了同学们的数形结合的思想方法.例7.做8个全等的直角三角形,设它们的两条直线边分别为a,b,斜边为c,再做3个边长分别为a,b,c的正方形,把它们按图4,图5所示的方式拼成两个正方形.利用两个正方形的面积相等来证明勾股定理:a2+b2=c2.【分析】通过两个组合正方形的面积之间相等的关系即可证明勾股定理.【解答】解:由图可知大正方形的边长为:a+b,则面积为(a+b)2,图中把大正方形的面积分为了四部分,分别是:边长为a的正方形,边长为b的正方形,还有两个长为b,宽为a的长方形,根据面积相等得:(a+b)2=a2+b2+4×ab,由右图可得(a+b)2=c2+4×ab.所以a2+b2=c2.【点评】本题考查利用图形面积的关系证明勾股定理,解题关键是利用三角形和正方形边长的关系进行组合图形.例8.如图,已知∠C=∠D=90°,D,E,C三点共线,各边长如图所示,请利用面积法证明勾股定理.【分析】先利用“边角边”证明△ADE和△EBC全等,根据全等三角形对应角相等可得∠AED=∠CBE,再求出∠AEB=90°,然后根据梯形的面积公式和梯形的面积等于三个直角三角形的面积列出方程整理即可得证.【解答】证明:在△ADE和△EBC中,,∴△ADE≌△EBC(SAS),∴∠AED=∠CBE,∵∠CBE+∠BEC=90°,∴∠AED+∠BEC=90°,∴∠AEB=90°,∴梯形的面积=(a+b)(a+b)=2×ab+c2,整理得,a2+b2=c2.【点评】本题考查了勾股定理的证明,全等三角形的判定与性质,求出∠AEB=90°是解题的关键,难点在于利用梯形的面积列出方程.【过关检测】一.选择题1.(2022春•西华县期中)如图,这是用面积为18的四个全等的直角三角形拼成的“赵爽弦图”.如果大正方形的边长为9,那么小正方形的边长为()A.1B.2C.3D.4【分析】根据正方形EFGH的面积=正方形ABCD的面积﹣4S△ABE=9,求9的算术平方根即可得到结论.【解答】解:∵正方形EFGH的面积=正方形ABCD的面积﹣4S△ABE=92﹣4×18=9,∴正方形EFGH的边长=3,故小正方形的边长为3,故选:C.【点评】本题考查了正方形的面积,三角形的面积,正确的识别图形是解题的关键.2.(2022春•高安市期中)勾股定理被誉为“几何明珠”,如图是我国古代著名的“赵爽弦图”,它由4个全等的直角三角形拼成,已知大正方形面积为25,小正方形面积为1,若用a、b表示直角三角形的两直角边(a>b),则下列说法:①a2+b2=25,②a﹣b=1,③ab=12,④a+b=7.正确的是()A.①②B.①②③C.①②④D.①②③④【分析】根据勾股定理和大正方形面积为25,可以判断①;根据小正方形面积为1,可以判断②;根据大正方形面积为25,小正方形面积为1,可以得到四个直角三角形的面积,从而可以得到ab的值,即可判断③;根据完全平方公式可以判断④.【解答】解:由图可得,a2+b2=c2=25,故①正确;∵小正方形面积为1,∴小正方形的边长为1,∴a﹣b=1,故②正确;∵大正方形面积为251,∴ab=(25﹣1)÷4,解得ab=12,故③正确;∵a2+b2=25,ab=12,∴(a+b)2=a2+2ab+b2=49,∴a+b=7,故④正确;故选:D.【点评】本题考查勾股定理的证明、正方形的性质、直角三角形的面积,利用数形结合的思想解答是解答本题的关键.二.填空题3.用四个全等的直角三角形拼成如图一个大正方形ABCD和一个小正方形EFGH,这就是著名的“赵爽弦图”,若AB=15,AF=12,则小正方形EFGH的面积为【分析】利用勾股定理求出BF,从而求出小正方形EFGH的边长,即可求解.【解答】解:在Rt△ABF中,AF2+BF2=AB2,∵AB=15,AF=12,∴BF=9,∵四个直角三角形全等,∴BG=AF=12,∴FG=BG﹣BF=3,∴S▱EFGH=FG2=32=9,故答案为:9.【点评】本题考查勾股定理的证明,解题的关键是利用勾股定理求出BF的长.4.(2022春•台江区期中)在△ABC中,∠C=90°,若AB=,则AB2+BC2+AC2=.【分析】根据勾股定理可以求得AC2+BC2=AB2=2的值,然后即可计算出AB2+BC2+AC2的值.【解答】解:∵∠C=90°,AB=,∴AC2+BC2=AB2=2,∴AB2+BC2+AC2=(BC2+AC2)+AB2=2+2=4,故答案为:4.【点评】本题考查勾股定理,解答本题的关键是求出AB2的值.5.(2022春•长垣市期中)如图是一株美丽的勾股树,所有四边形都是正方形,所有三角形是直角三角形,若正方形A、B、C面积为2、8、5,则正方形D的面积为.【分析】根据勾股定理和正方形的性质即可得到结论.【解答】解:由勾股定理得,正方形D的面积=正方形A的面积+正方形B的面积+正方形C面积=2+8+5=15,故答案为:15.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.6.1876年美国总统加菲尔德利用图验证了一个十分著名的定理,这个定理称为,该定理的结论其数学表达式为.【分析】根据勾股定理的内容即可得到结论.【解答】解:1876理的结论其数学表达式为a2+b2=c2.故答案为:勾股定理,a2+b2=c2.【点评】本题考查了勾股定理的证明,掌握的识别图形是解题的关键.7.(2022春•新邵县期中)如图所示,在Rt△ABC中,∠B=90°,AD平分∠BAC,交BC于点D,DE⊥AC,垂足为点E,若BD=3,则DE的长为.【分析】直接根据角平分线的性质求解.【解答】解:∵AD平分∠BAC交BC于点D,DE⊥AC,DB⊥AB,∴DE=DB=3.故答案为:3.【点评】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.三.解答题8.(2022春•巢湖市校级期中)学习勾股定理之后,同学们发现证明勾股定理有很多方法.某同学提出了一种证明勾股定理的方法:如图1点B是正方形ACDE边CD上一点,连接AB,得到直角三角形ACB,三边分别为a,b,c,将△ACB裁剪拼接至△AEF位置,如图2所示,该同学用图1、图2的面积不变证明了勾股定理.请你写出该方法证明勾股定理的过程.【分析】连接BF,由图1可得正方形ACDE的面积为b2,由图2可得四边形ABDF的面积为三角形ABF与三角形BDF面积之和,再利用正方形ACDE的面积与四边形ABDF的面积相等即可证明.【解答】证明:如图,连接BF,∵AC=b,∴正方形ACDE的面积为b2,∵CD=DE=AC=b,BC=a,EF=BC=a,∴BD=CD﹣BC=b﹣a,DF=DE+EF=a+b,∵∠CAE=90°,∴∠BAC+∠BAE=90°,∵∠BAC=∠EAF,∴∠EAF+∠BAE=90°,∴△BAE为等腰直角三角形,∴四边形ABDF的面积为:c2+(b﹣a)(a+b)=c2+(b2﹣a2),∵正方形ACDE的面积与四边形ABDF的面积相等,∴b2=c2+(b2﹣a2),∴b2=c2+b2﹣a2,∴a2+b2=c2,∴a2+b2=c2.【点评】本题考查勾股定理的证明,解题的关键是熟练掌握勾股定理的证明方法,一般利用拼图的方法,再利用面积相等证明.9.如图所示是用硬纸板做成的四个完全相同的直角三角形和一个边长为c的正方形,直角三角形两条直角边的长分别是a,b,斜边的长为c,请你将它们拼成一个能推导勾股定理的图形.(1)画出拼成的这个图形的示意图;(2)推导勾股定理.【分析】四个全等的直角三角形直角边的首尾相接可构成;然后利用总面积相等分别进行证明.【解答】解:(1)(答案不唯一)如图;(2)验证:∵大正方形的面积可表示为(a+b)2,大正方形的面积也可表示为:c2+4×ab,∴(a+b)2=c2+4×ab,即a2+b2+2ab=c2+2ab,∴a2+b2=c2,即直角三角形两直角边的平方和等于斜边的平方.【点评】本题考查了勾股定理的证明,解题的关键是拼出熟知的勾股图.10.【阅读理解】我国古人运用各种方法证明勾股定理,如图①,用四个直角三角形拼成正方形,通过证明可得中间也是一个正方形.其中四个直角三角形直角边长分别为a、b,斜边长为c.图中大正方形的面积可表示为(a+b)2,也可表示为c2+4×ab,即(a+b)2=c2+4×ab,所以a2+b2=c2.【尝试探究】美国第二十任总统伽菲尔德的“总统证法”如图②所示,用两个全等的直角三角形拼成一个直角梯形BCDE,其中△BCA≌△ADE,∠C=∠D=90°,根据拼图证明勾股定理.【定理应用】在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边长分别为a、b、c.求证:a2c2+a2b2=c4﹣b4.【分析】【尝试探究】根据阅读内容,图中梯形的面积分别可以表示为ab+(a2+b2)=ab+c2,即可证得a2+b2=c2;【定理应用】分解因式,根据勾股定理即可得到结论.【解答】证明:【尝试探究】梯形的面积为S=(a+b)(b+a)=ab+(a2+b2),利用分割法,梯形的面积为S=△ABC+S△ABE+SADE=ab+c2+ab=ab+c2,∴ab+(a2+b2)=ab+c2,∴a2+b2=c2;【定理应用】∵a2c2+a2b2=a2(c2+b2),c4﹣b4=(c2+b2)(c2﹣b2)=(c2+b2)a2,∴a2c2+a2b2=c4﹣b4.【点评】本题主要考查勾股定理的验证,解题关键是利用面积相等建立等量关系,判定勾股定理成立.。
八下数学勾股定律
有关“数学”的勾股定理
有关“数学”的勾股定理如下:
勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。
中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。
勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
在中国,周朝时期的商高提出了“勾三股四弦五”的勾股定理的特例。
在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派。
勾股定理的公式为a²+b²=c²,其中a、b代表两条直角边,c代表斜边。
这个定理的证明方法有很多种,其中最有代表性的是几何证明。
此外,还有代数证明、三角函数证明等多种证明方法。
勾股定理不仅在数学中有着广泛的应用,它在日常生活中也有着很多用途。
比如,可以用勾股定理测量房屋的面积、修建水平线等等。
此外,勾股定理也是其他学科的基础,比如实验物理中的力学、声学等等。
专题11 解题技巧专题:勾股定理与面积问题、方程思想压轴题七种模型全攻略(解析版)
专题11解题技巧专题:勾股定理与面积问题、方程思想压轴题七种模型全攻略【考点导航】目录【典型例题】 (1)【类型一三角形中,利用面积求斜边上的高】 (1)【考点二结合乘法公式巧求面积或长度】 (6)【考点三巧妙割补求面积】 (9)【考点四“勾股树”及其拓展类型求面积】 (13)【考点五几何图形中的方程思想—折叠问题(利用等边建立方程)】 (19)【考点六几何图形中的方程思想—公边问题(利用公边建立方程)】 (25)【考点七实际问题中的方程思想】 (28)【典型例题】【类型一三角形中,利用面积求斜边上的高】A.8013B.【答案】D【变式训练】A.5【答案】C【分析】根据图形,可以求出根据题意得,13AB AC BC ==,∴1122BD BC ==,在Rt ADB 中,根据勾股定理得,∴22221312AD AB BD =-=-3.(2022·全国·八年级课时练习)如图,在网格中,每个小正方形的边长均为1.点A 、B ,C 都在格点上,若BD 是△ABC 的高,则BD 的长为__________.【答案】ABC 中AB 【分析】如图所述,过点在Rt △ABD 中,可求出【详解】解:如图所述,过点∵ABC 是格点图形,每个小正方形的边长为单位∴3AD =,3BC =,BD ∴在Rt △ABD 中,AB =∵11·22ABC S BC AD == ∴·335BC AD CE AB ⨯===(1)求BC的长.(2)求斜边AB边上的高.BC【答案】(1)=6(2)斜边AB边上的高是【点睛】本题考查勾股定理,三角形的面积,解答本题的关键是明确题意,利用数形结合的思想解答.6.(2023秋·全国·八年级专题练习)在【类型二结合乘法公式巧求面积或长度】例题:已知在Rt ABC 中,90,,C A B C ∠=︒∠∠∠,所对的边分别为a ,b ,c ,若10cm,8cm a b c +==,则Rt ABC 的面积为()A .29cm B .218cm C .224cm D .236cm 【答案】A【解析】【变式训练】1.在ABC 中,AD 是BC 边上的高,4,5AD AB AC ===,则ABC 的面积为()A .18B .24C .18或24D .18或303.直角ABC 三边长分别是x ,1x +和5,则ABC 的面积为__________.【类型三巧妙割补求面积】是直角三角形;(1)求证:ACD(2)求四边形ABCD的面积.【答案】(1)见解析【变式训练】【答案】24平方米【分析】连接AC,根据勾股定理求出据直角三角形的面积公式求出结果即可.∠=︒,4=ADC90AD米,CD=225∴=+=米,AC AD CD(1)求这个四边形草地的面积;(2)如果清理草地杂草,每平方米需要人工费36m【答案】(1)2(2)清理完这块草地杂草需要(2)解:2036720⨯=(元)答:清理完这块草地杂草需要【点睛】本题主要考查了勾股定理,勾股定理的逆定理,解题的关键是掌握直角三角形两直角边的平方和等于斜边平方,两边平方和等于第三边平方的三角形是直角三角形.(1)求线段CD 与BC 的长;(2)求四边形ABCD 的面积;(3)求证:90BCD ∠=︒.【答案】(1)25BC =,(2)292(3)见解析∴22345BD =+=,∵()22225BC CD +=+∴222BC CD BD +=,∴BCD △是直角三角形,且∴90BCD ∠=︒.【点睛】此题考查勾股定理和勾股定理的逆定理,关键是根据勾股定理得出各边的长解答.【类型四“勾股树”及其拓展类型求面积】例题:(2023秋·重庆渝中·八年级重庆巴蜀中学校考期末)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A 、B 、C 、D 的面积分别是6、10、4、6,则最大正方形E 的面积是()A .20B .26C .30D .52【答案】B 【分析】根据正方形的面积公式并结合勾股定理,能够导出正方形A ,B ,C ,D 的面积和即为最大正方形的面积即可.【详解】解:如图:根据勾股定理的几何意义,可得:E F GS S S =+=A B C DS S S S +++=61046+++=26故选B .【点睛】本题考查勾股定理,熟悉勾股定理的几何意义是解题的关键.【变式训练】1.(2023·广西柳州·校考一模)如图,90BDE ∠=︒,正方形BEGC 和正方形AFED 的面积分别是289和225,则以BD 为直径的半圆的面积是()A .16πB .8πC .4πD .2π【答案】B【答案】12;s1+s2=s3(1)如图2,分别以ABC 的三条边为直径向外作半圆,其半圆的面积由小到大分1S 、2S 、3S 3S 有怎样的数量关系,并证明你的结论;(2)分别以直角三角形的三条边为直径作半圆,如图3所示,其面积由小到大分别记作S 1、S 中的探索,直接回答12S S +与3S 有怎样的数量关系;(1)①如图2,3,4,以直角三角形的三边为边或直径,分别向外部作正方形、半圆、等边三角形,面积分别为1S ,2S ,3S ,利用勾股定理,判断这3个图形中面积关系满足123S S S +=的有________②如图5,分别以直角三角形三边为直径作半圆,设图中两个月牙形图案(图中阴影部分)的面积分别为2S ,直角三角形面积为3S ,也满足123S S S +=吗?若满足,请证明;若不满足,请求出1S ,关系.(2)如果以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这【点睛】本题考查了勾股定理,勾股树.解题的关键在于正确的表示各部分的面积.【类型五几何图形中的方程思想—折叠问题(利用等边建立方程)】A .54B .74C .15【答案】B【分析】根据图形翻折变换的性质可知,AE BE =【变式训练】1.(2023春·湖北咸宁·八年级校考阶段练习)如图,有一块直角三角形纸片,9043C AC BC ∠=︒==,,,将斜边AB 翻折,使点B 落在直角边AC 的延长线上的点E 处,折痕为AD ,则BD 的长为()A .34【答案】C【分析】利用勾股定理求得则3CD x =-,根据勾股定理可得【答案】103/133【分析】由折叠的性质可得【详解】解:D 是AB 中点,【答案】1或65【分析】分90BFA '∠=︒和90,30,C A BC ∠=︒∠=︒=30,DA E '∠=︒ 60,EA H '∴∠=︒在Rt EHA ' 中,12A H '=在Rt BEH 中,(1)如图①,当A '与点B 重合且3,5BC AB ==.①直接写出AC 的长;②求BCD △的面积.(2)当37A ∠=︒.①A '与点E 在直线AC 的异侧时.如图②,直接写出A EB ∠-∠'②当∥A D BC '时,如图:∵∥A D BC ',90C ∠=︒,∴90ADA '∠=︒,∵ADE V 由A DE ' 折叠所得,∴1452ADE ADA '∠=∠=︒;当A E BC '∥时,如图:∵37A ∠=︒,90C ∠=∴903753B ∠=︒-︒=︒∵ADE V 由A DE ' 折叠所得,∴37A A '∠=∠=︒,综上:ADE ∠的度数分别为【点睛】本题主要考查了勾股定理,三角形那个的内角和定理,折叠的性质,平行线的性质,解题的关键是掌握勾股定理内容,根据勾股定理建立方程求边的长度;掌握三角形是内角和为于与它不相邻的两个内角之和,平行线的性质.【类型六几何图形中的方程思想—公边问题(利用公边建立方程)】例题:如图,在△ABC 中,AB =10,BC =9,AC =17,则BC 边上的高为_______.【答案】8【解析】【分析】作AD BC ⊥交BC 的延长于点D ,在Rt ADB 中,222AD DB AB +=,在Rt ADC 中,222AD DC AC +=,根据2222AB DB AC DC -=-列出方程即可求解.【详解】如图,作AD BC ⊥交BC 的延长于点D ,【变式训练】1.已知:如图,在ABC 中,90C AD ∠=︒,是ABC 的角平分线,35CD BD ==,,则AC =____.【答案】6【分析】作DE AB ⊥,如图,根据角平分线的性质可得3DE CD ==,勾股定理求出BE ,证明()Rt Rt HL ACD AED ≅ ,推出AC AE =,设AC AE x ==,根据勾股定理列出方程即可求出AC .【详解】解:作DE AB ⊥于点E ,如图,∵在ABC 中,90C AD ∠=︒,是ABC 的角平分线,3CD =,∴3DE CD ==,【点睛】本题考查了角平分线的性质、全等三角形的判定和性质以及勾股定理等知识,属于常见题型,熟练掌握上述知识,利用勾股定理得出方程是解题的关键.△和Rt2.如图,在Rt ABC(1)求证:点A在M∠∥,AB(2)若AC DM【答案】(1)见解析(2)5【分析】(1)连接AM在Rt ABC △和Rt ADE △中,∵90B D ∠=∠=︒,AC AE =,BC DE =,Rt Rt (HL)ABC ADE ∴≅ ,AB AD ∴=,AB BM ⊥ ,AD DM ⊥,MA ∴平分BMD ∠,∴点A 在BMD ∠的平分线上;(2)解:AC DM ∥ ,CAM AMD ∴∠=∠,AMB CAM ∴∠=∠,CM AC ∴=,设BC x =,18CM AC x ∴==-,在Rt ABC △中,222AB BC AC +=,22212(18)x x ∴+=-,5x ∴=.5BC ∴=.【点睛】本题考查了全等三角形的判定与性质,角平分线的判定,勾股定理,解决本题的关键是得到Rt Rt (HL)ABC ADE ≅ .【类型七实际问题中的方程思想】例题:(2022·全国·八年级)明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地,送行二步恰竿齐,五尺板高离地……”翻译成现代文为:如图,秋千绳索OA 悬挂于O 点,静止时竖直下垂,A 点为踏板位置,踏板离地高度为一尺(AC =1尺).将它往前推进两步(EB⊥OC于点E,且EB=10尺),踏板升高到点B位置,此时踏板离地五尺(BD=CE=5尺),则秋千绳索(OA或OB)长______尺.【变式训练】1.(2022·全国·八年级课时练习)如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD的距离为2寸,点C和点D距离门槛AB都为1尺(1尺=10寸),则AB的长是()A.50.5寸B.52寸C.101寸D.104寸【答案】C【解析】【分析】取AB的中点O,过D作DE⊥AB于E,根据勾股定理解答即可得到结论.【详解】解:取AB的中点O,过D作DE⊥AB于E,如图2所示:由题意得:OA=OB=AD=BC,设OA=OB=AD=BC=r寸,则AB=2r(寸),DE=10寸,OE=12CD=1寸,∴AE=(r﹣1)寸,在Rt△ADE中,AE2+DE2=AD2,即(r﹣1)2+102=r2,解得:r=50.5,∴2r=101(寸),∴AB=101寸,故选:C.【点睛】本题考查了勾股定理的应用,弄懂题意,构建直角三角形是解题的关键.2.(2022·河南·金明中小学八年级期中)《九章算术》是我国古代数学名著,有题译文如下:今有门,不知其高宽;有竿,不知其长短.横放,竿比门宽长出4尺;竖放,竿比门高短2尺;斜放,门对角线长恰好倍.问门高、门宽各为多少?3.(2022·重庆市求精中学校八年级期中)在一条东西走向的河的一侧有一村庄C ,河边原有两个取水点A ,B ,其中AB AC =,由于某种原由C 到A 的路现在已经不通,某村为方便村民取水决定在河边新建一个取水点H (A 、H 、B 在一条直线上),并新修一条路CH ,测得 1.5CB =千米, 1.2CH =千米,0.9HB =千米.(1)问CH 是否为从村庄C 到河边的最近路?请通过计算加以说明.(2)求原来的路线AC 的长.【答案】(1)CH 是从村庄C 到河边的最近路;理由见解析;(2)原来的路线AC的长为1.25千米.【解析】【分析】(1)根据勾股定理的逆定理证明△CHB是直角三角形即可;(2)设AC=x千米,在Rt△ACH中,由已知得AC=x,AH=x-0.9,CH=1.2,再根据勾股定理解答即可.(1)解:是,理由是:在△CHB中,∵CH2+BH2=1.22+0.92=2.25,BC2=2.25,∴CH2+BH2=BC2,∴△CHB是直角三角形,∴CH是从村庄C到河边的最近路;(2)设AC=x千米,在Rt△ACH中,由已知得AC=x,AH=x-0.9,CH=1.2,由勾股定理得:AC2=AH2+CH2∴x2=(x-0.9)2+1.22,解这个方程,得x=1.25,答:原来的路线AC的长为1.25千米.【点睛】本题考查勾股定理的应用,关键是根据勾股定理的逆定理和定理解答.4.(2022·浙江·浦江县实验中学八年级期中)图1是一张可以折叠的小床展开后支撑起来放在地面的示意图,此时点A、B、C在同一直线上,且∠ACD=90°,图2是小床支撑脚CD折叠的示意图,在折叠过程中,△ACD变形为四边形ABC'D',最后折叠形成一条线段BD''.某家装厂设计的折叠床是AB=4cm,BC=8cm,(1)此时CD为_________cm;(2)折叠时,当AB⊥BC′时,四边形ABC′D′的面积为_______cm2.【点睛】。
北师大版八年级数学下册解题技巧专题:勾股定理与面积问题 勾股定理中的思想方法
解题技巧专题:勾股定理与面积问题——全方位求面积,一网搜罗类型一三角形中利用面积法求高1.直角三角形的两条直角边的长分别为5,12,则斜边上的高线的长为()B.132.(2019·乐山中考)点A、B、C在格点图中的位置如图所示,格点小正方形的边长为1,则点C到线段所在直线的距离是.类型二结合乘法公式巧求面积或长度3.已知△中,∠C=90°,若a+b=12,c=10,则△的面积是()A.482B.242C.162D.1124.若一个直角三角形的面积为62,斜边长为5,则该直角三角形的周长是()A.7 B.10C.(5+) D.125.(2019·襄阳中考)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若(a+b)2=21,大正方形的面积为13,则小正方形的面积为()A.3 B.4 C.5 D.6类型三巧妙利用割补法求面积6.如图,已知=5,=12,=13,=10,⊥,求四边形的面积.7.如图,∠B=∠D=90°,∠A=60°,=4,=2,求四边形的面积.【方法6】类型四利用“勾股树”或“勾股弦图”求面积8.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为9,则正方形A,B,C,D的面积之和为2.参考答案与解析1.D2.解析:如图,连接,,设点C到线段所在直线的距离是h.∵S△=3×3-×2×1-×2×1-×3×3-1=9-1-1--1=,==,∴×h=,∴h=.故答案为.3.D4 56.解:连接,过点C作⊥交于点E.∵⊥,∴∠=90°.在△中,由勾股定理得===13.∵=13,∴=.∵⊥,∴==×10=5.在△中,由勾股定理得===12.∴S四边形=S△+S△=·+·=×5×12+×10×12=90.7.解:延长,交于点E.∵∠B=90°,∠A=60°,∴∠E=30°.∴=2=8.在△中,由勾股定理得===4.∵∠=90°,∴∠=90°,∴=2=4.在△中,由勾股定理得===2.∴S四边形=S△-S△=·-·=×4×4-×2×2=6.8.81思想方法专题:勾股定理中的思想方法类型一分类讨论思想一、直角边与斜边不明需分类讨论1.一直角三角形的三边长分别为2,3,x,那么以x为边长的正方形的面积为【易错3】()A.13 B.5C.13或5 D.42.直角三角形的两边长是6和8,则这个三角形的面积是.二、锐角或钝角三角形形状不明需分类讨论3.★(2019·东营中考)在△中,=10,=2,边上的高=6,则的长为【易错4】() A.10 B.8C.6或10 D.8或104.在等腰△中,已知==5,△的面积为10,则=.【易错4】类型二方程思想一、实际问题中结合勾股定理列方程求线段长5.如图,小华将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,则旗杆的高度为.二、折叠问题中结合勾股定理列方程求线段长6.如图,将长方形沿折叠,使顶点C恰好落在边的中点C′上.若=6,=9,求的长.【方法4】三、利用公共边相等结合勾股定理列方程求线段长7.(2019·益阳中考)如图,在△中,=15,=14,=13,求△的面积.类型三利用转化思想求最值8.(2019·涪陵区期末)一只蚂蚁从棱长为4的正方体纸箱的A点沿纸箱外表面爬到B 点,那么它的最短路线的长是.【方法5】9.如图,A,B两个村在河的同侧,且=,A,B两村到河的距离分别为=1,=3.现要在河边上建一水厂分别向A,B两村输送自来水,铺设水管的工程费每千米需3000元.请你在河岸上选择水厂位置O,使铺设水管的费用最省,并求出铺设水管的总费用W(元).【方法5】参考答案与解析1.C 2.24或63.C解析:根据题意画出图形,如图所示,图①中,=10,=2,=6.在△和△中,根据勾股定理得===8,===2,此时=+=8+2=10;图②中,同理可得=8,=2,此时=-=8-2=6.综上所述,的长为6或10.故选C.4.2或4解析:如图①,△为锐角三角形,过点C作⊥,交于点D.∵S△=10,=5,∴·=10,解得=4.在△中,由勾股定理得===3,∴=-=5-3=2.在△中,由勾股定理得===2;如图②,△为钝角三角形,过点C作⊥,交的延长线于点D.同上可得=4.在△中,=5,由勾股定理得===3.∴=+=5+3=8.在△中,由勾股定理得===4.综上所述,的长度为2或4.5.17m6.解:∵折叠前后两个图形的对应线段相等,∴=C′F.设=x.∵=9,∴C′F==-=9-x.∵C′是的中点,=6,∴′==3.在△C′中,由勾股定理得C′F2=2+C′B2,即(9-x)2=x2+32,解得x=4,即的长为4.7.解:过A作⊥交于点D.在△中,=15,=14,=13,设=x,则=-=14-x.在△和△中,由勾股定理得2=2-2=152-x2,2=2-2=132-(14-x)2,即152-x2=132-(14-x)2,解得x=9.在△中,由勾股定理得===12.∴S△=·=×14×12=84.8.49.解:如图,作点A关于的对称点A′,连接′交于O,点O即为水厂的位置.过点A′作A′E∥交的延长线于点E,过点A作⊥于点F,则=A′E,==1,=A′C=1.∴=-=3-1=2().在△中,2=2-2=13-22=9,∴=3.∴A′E=3.在△A′中,=+=4,由勾股定理得A′B ===5().∴W=3000×5=15000(元).故铺设水管的总费用为15000元.核心素养专题:古代问题中的勾股定理类型一勾股定理应用中的实际问题1.【“引葭赴岸”问题】如图,在水池的正中央有一根芦苇,池底长10尺,它高出水面1尺.如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面,则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺第1题图第2题图2.(2019·西城区期末)《九章算术》卷九“勾股”中记载:今有户不知高广,竿不知长短,横之不出四尺,纵之不出二尺,斜之适出,问户斜几何.注:横放,竿比门宽长出四尺;竖放,竿比门高长出二尺,斜放恰好能出去.解决下列问题:(1)示意图中,线段的长为尺,线段的长为尺;(2)设户斜长x,则可列方程为.3.《算法统宗》是中国古代数学名著,作者是我国明代数学家程大位.在《算法统宗》中有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几?”译文:“有一架秋千,当它静止时,踏板离地1尺,将它往前推送10尺(水平距离)时,秋千的踏板就和人一样高,这个人的身高为5尺,秋千的绳索始终拉得很直,试问绳索有多长?”根据题意,可得秋千的绳索长为尺.4.(2019·东营中考)我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度为尺.类型二勾股定理的证明问题5.(2019·丽水中考)我国三国时期数学家赵爽为了证明勾股定理,创造了一幅“弦图”,后人称其为“赵爽弦图”,如图①所示.在图②中,若正方形的边长为14,正方形的边长为2,且∥,则正方形的边长为.6.中国古代对勾股定理有深刻的认识.(1)三国时代吴国数学家赵爽第一次对勾股定理加以证明:用四个全等的图①所示的直角三角形拼成一个如图②所示的大正方形,中间空白部分是一个小正方形.如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边分别为a,b,求(a+b)2的值;(2)清朝的康熙皇帝对勾股定理也很有研究,他著有《积求勾股法》,用现代的数学语言描述就是:若直角三角形的三边长分别为3,4,5的整数倍,设其面积为S,则求其边长的方法:第一步=m;第二步:=k;第三步:分别用3,4,5乘以k,得三边长.当面积S=150时,请用“积求勾股法”求出这个直角三角形的三边长.参考答案与解析1.D 2.(1)42(2)(x-4)2+(x-2)2=x2 3.14.54.25解析:将圆柱侧面展开,如图,=3尺,==4(尺),∴==5(尺),∴葛藤的最短长度为5×5=25(尺).5.106.解:(1)根据勾股定理可得a2+b2=13,四个直角三角形的面积是×4=13-1=12,即2=12,则(a+b)2=a2+2+b2=13+12=25,即(a+b)2=25.(2)当S=150时,k=====5,所以三边长分别为:3×5=15,4×5=20,5×5=25,所以这个直角三角形的三边长为15,20,25.。
八年级数学 勾股定理的应用 北师大版
初二数学勾股定理的应用北师大版【本讲教育信息】一、教学内容:勾股定理的应用1、圆柱侧面上两点间的距离2、两线段是否垂直3、勾股定理与方程思想、数形结合思想的应用。
二、教学目标1、掌握利用勾股定理解决圆柱侧面上两点间的距离的方法。
2、能利用勾股定理的逆定理判断两条线段是否垂直。
3、会把勾股定理与方程思想结合起来解决相应的实际问题。
4、掌握利用勾股定理及数形结合思想解决物品安置问题。
三、知识要点分析1、圆柱侧面上两点间的距离问题(这是重点)平面内两点之间,线段最短,即两点之间的所有连线中,最短路线是两点之间的线段。
但对于立体图形如圆柱体来说,两点之间的连线绝大部分是曲线,而解决圆柱侧面上两点间的距离时,需将圆柱的侧面展开成一个长方形,构造直角三角形,利用勾股定理来求。
2、两线段是否垂直(这是重难点)判断两条线段是否垂直的方法较多,本节重点是利用直角三角形的判别条件来判断,即以已知两线段为边构造一个三角形。
根据三边的长度,利用勾股定理的逆定理解题,解题时注意将实际问题转化为数学问题,将其中的数量关系归纳为直角三角形中各元素之间的关系。
3、勾股定理与方程思想、数形结合思想的应用勾股定理与方程思想、数形结合思想相结合的实际问题比较多,例如航海问题、折叠问题、物品安置问题、测量问题等等,都需要把勾股定理运用到方程思想、数形结合思想中。
【典型例题】考点一:圆柱侧面上两点间的距离例1:请阅读下列材料:问题:如图,一圆柱的底面半径及高AB均为5dm,BC是底面直径,求一只蚂蚁从A 点出发沿圆柱表面爬行到点C的最短路线。
小明设计了两条路线:路线1:侧面展开图中的两端AC。
如下图(2)所示:设路线1的长度为1l ,则222222215(5)2525l AC AB BC ππ==+=+=+路线2:高线AB + 底面直径BC 。
如上图(1)所示:设路线2的长度为2l ,则225)105()(2222=+=+=AC AB l 222212252522525200l l ππ-=+-=-225(8)0π=->∴2221l l > ∴21l l >所以选择路线2较短。
勾股定理动点问题解题技巧
勾股定理动点问题的解题技巧包括以下几种:
配方法。
将一个二次式通过配方转化为几个完全平方式,再利用平方式的非负性进行计算。
等面积法。
把同一个图形的面积用不同的方法表示出来,最后再利用同一个图形的面积不变,得到等式。
这种方法在几何中,通常用于求垂线段的长度以及证明垂线段之间的关系。
分类讨论思路。
在运用勾股定理时,当斜边或直角未定时,需要分类讨论。
例如,在解决有关高线的问题中,当三角形的形状未定时,需要注意分类讨论,一般分为锐角三角形(高在三角形内部)和钝角三角形(高在三角形外部)两种情况,分别画图计算即可。
在一些几何综合探究题和存在性问题中也经常需要应用分类讨论思路。
整体转化思路。
在解题中,当需要的数据或关系式不能直接得出时,可以考虑整体替换思路。
方程思想。
当题目中的未知量较多或给定的条件不能直接利用,如已知两线段之间的和、差、倍、分、比关系,但两线段长度均未知时,可以考虑利用方程来解题。
在直角三角形中,由于“知二可推一”,可以设其中一条未知线段长度为x,再用含有x的代数式表示出相关线段的长度,再利用勾股定理列写等式方程,将求解边长转化为解方程。
初二下学期数学勾股定理知识点整理知识点总结
初二下学期数学勾股定理知识点整理知识点总结
初中频道为您整理了初二下学期数学勾股定理知识点整理,希望帮助您提供多想法。
和小编一起期待学期的学习吧,加油哦!
勾股定理
在任何一个直角三角形(Rt△)中(等腰直角三角形也算在内),两条直角边的长度的平方和等于斜边长度的平方,这就叫做勾股定理。
即勾的长度的平方加股的长度的平方等于弦的长度的平方。
[1]如果用a,b,c分别表示直角三角形的两条直角边和斜边,那么a2+b2=c2.
简介
勾股定理是余弦定理的一个特例。
这个定理在中国又称为“商高定理”(相传大禹治水2+b =c 。
勾股定理内容
直角三角形(等腰直角三角形也算在内)两直角边(即“勾”“股”短的为勾,长的为股)边长平方和等于斜边(即“弦”)边长的平方。
也就是说设直角三角形两直角边为a和b,斜边为c,那么a的平方+b的平方=c 的平方a2+b2=c2。
勾股定理现发现约有500种证明方法,是数学定理中证明方法最多的定理之一。
中国古代著名数学家商高说:“若勾三,股四,则弦五。
”它被记录在了《九章算术》中。
推广
1、如果将直角三角形的斜边看作二维平面上的向量,将两直角边看作在平面直角坐标系坐标轴上的投影,则可以从另一个角度考察勾股定理的意义。
即,向量长度的平方等于它在其所在空间一组正交基上投影长度的平方之和。
2.勾股定理是余弦定理的特殊情况。
八年级勾股知识点
八年级勾股知识点勾股定理是中学数学中最基础的知识点之一,是几何学中一个重要的定理。
它是中国古代较早发现的数学定理之一,大约在公元前500年左右的春秋战国时期,由我国古代著名数学家、哲学家、政治家、军事家组成的墨家学派的代表人物墨子发现。
由于墨子是勾工作的头儿,所以这个定理叫做勾股定理。
勾股定理的内容非常简单:在直角三角形中,直角边的平方等于另外两边平方的和。
用公式表示就是:a^2 + b^2 = c^2,其中a,b分别表示直角三角形的两个直角边,c表示斜边。
勾股定理的应用非常广泛,可以解决很多实际问题。
例如,我们可以用勾股定理来计算一个三角形的面积。
计算公式为:三角形的面积 = 1/2 ×直角边a ×直角边b。
当已知直角边a,b时,通过勾股定理可以求出斜边c,再代入公式计算三角形的面积。
勾股定理还可以应用在三维几何中。
例如,我们可以用勾股定理来计算一个长方体的对角线长度。
计算公式为:长方体的对角线长度= √(长的平方 + 宽的平方 + 高的平方)。
同样,我们可以通过将长方体拆分为三角形,应用勾股定理来证明这个公式。
除此之外,勾股定理还有很多有趣的用途。
例如,在国际象棋中,马能够跳出“日”字形。
这是因为马走的路线其实就是一个勾股三角形的两条直角边。
又如,在音乐中,勾股定理还可以帮助我们计算音乐的节奏,从而掌握音乐的节奏感。
在学习勾股定理过程中,我们还需要注意一些常见的问题和注意事项。
例如,勾股定理只适用于直角三角形,不能用于非直角三角形。
又如,在应用勾股定理时,需要注意保留有效数字和正确使用单位,避免出现计算错误。
总之,勾股定理是中学数学中最基础的知识点之一,但它的应用却非常广泛。
在学习中,我们应该重视它并掌握它,以便将来能在实际生活和工作中应用到这个定理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解题技巧专题:勾股定理与面积问题——全方位求面积,一网搜罗◆类型一 三角形中利用面积法求高1.直角三角形的两条直角边的长分别为5cm ,12cm ,则斜边上的高线的长为( ) A.8013cm B .13cm C.132cm D.6013cm 2.(2019·乐山中考)点A 、B 、C 在格点图中的位置如图所示,格点小正方形的边长为1,则点C 到线段AB 所在直线的距离是________.◆类型二 结合乘法公式巧求面积或长度3.已知Rt △ABC 中,∠C =90°,若a +b =12cm ,c =10cm ,则Rt △ABC 的面积是( )A .48cm 2B .24cm 2C .16cm 2D .11cm 24.若一个直角三角形的面积为6cm 2,斜边长为5cm ,则该直角三角形的周长是( )A .7cmB .10cmC .(5+37)cmD .12cm5.(2019·襄阳中考)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,若(a +b)2=21,大正方形的面积为13,则小正方形的面积为( )A .3B .4C .5D .6◆类型三 巧妙利用割补法求面积6.如图,已知AB =5,BC =12,CD =13,DA =10,AB ⊥BC ,求四边形ABCD 的面积.7.如图,∠B =∠D =90°,∠A =60°,AB =4,CD =2,求四边形ABCD 的面积.【方法6】◆类型四 利用“勾股树”或“勾股弦图”求面积8.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为9cm ,则正方形A ,B ,C ,D 的面积之和为________cm 2.参考答案与解析1.D2. 355 解析:如图,连接AC ,BC ,设点C 到线段AB 所在直线的距离是h .∵S △ABC =3×3-12×2×1-12×2×1-12×3×3-1=9-1-1-92-1=32,AB =12+22=5,∴12×5h =32,∴h =355.故答案为355. 3.D 4.D 5.C6.解:连接AC ,过点C 作CE ⊥AD 交AD 于点E .∵AB ⊥BC ,∴∠CBA =90°.在Rt △ABC 中,由勾股定理得AC =AB 2+BC 2=52+122=13.∵CD =13,∴AC =CD .∵CE ⊥AD ,∴AE =12AD =12×10=5.在Rt △ACE 中,由勾股定理得CE =AC 2-AE 2=132-52=12.∴S 四边形ABCD =S △ABC +S △CAD =12AB ·BC +12AD ·CE =12×5×12+12×10×12=90.7.解:延长AD,BC交于点E.∵∠B=90°,∠A=60°,∴∠E=30°.∴AE=2AB=8.在Rt△ABE中,由勾股定理得BE=AE2-AB2=82-42=4 3.∵∠ADC=90°,∴∠CDE=90°,∴CE=2CD=4.在Rt△CDE中,由勾股定理得DE=CE2-DC2=42-22=2 3.∴S四边形ABCD =S△ABE-S△CDE=12AB·BE-12CD·DE=12×4×43-12×2×23=6 3.8.81思想方法专题:勾股定理中的思想方法◆类型一分类讨论思想一、直角边与斜边不明需分类讨论1.一直角三角形的三边长分别为2,3,x,那么以x为边长的正方形的面积为【易错3】()A.13 B.5C.13或5 D.42.直角三角形的两边长是6和8,则这个三角形的面积是____________.二、锐角或钝角三角形形状不明需分类讨论3.★(2019·东营中考)在△ABC中,AB=10,AC=210,BC边上的高AD=6,则BC 的长为【易错4】()A.10 B.8C.6或10 D.8或104.在等腰△ABC中,已知AB=AC=5,△ABC的面积为10,则BC=____________.【易错4】◆类型二方程思想一、实际问题中结合勾股定理列方程求线段长5.如图,小华将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,则旗杆的高度为________.二、折叠问题中结合勾股定理列方程求线段长6.如图,将长方形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上.若AB =6,BC=9,求BF的长.【方法4】三、利用公共边相等结合勾股定理列方程求线段长7.(2019·益阳中考)如图,在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.◆类型三利用转化思想求最值8.(2019·涪陵区期末)一只蚂蚁从棱长为4cm的正方体纸箱的A点沿纸箱外表面爬到B 点,那么它的最短路线的长是________cm.【方法5】9.如图,A,B两个村在河CD的同侧,且AB=13km,A,B两村到河的距离分别为AC=1km,BD=3km.现要在河边CD上建一水厂分别向A,B两村输送自来水,铺设水管的工程费每千米需3000元.请你在河岸CD上选择水厂位置O,使铺设水管的费用最省,并求出铺设水管的总费用W(元).【方法5】参考答案与解析1.C 2.24或673.C解析:根据题意画出图形,如图所示,图①中,AB=10,AC=210,AD=6.在Rt△ABD和Rt△ACD中,根据勾股定理得BD=AB2-AD2=102-62=8,CD=AC 2-AD 2=(210)2-62=2,此时BC =BD +CD =8+2=10;图②中,同理可得BD =8,CD =2,此时BC =BD -CD =8-2=6.综上所述,BC 的长为6或10.故选C. 4.25或45 解析:如图①,△ABC 为锐角三角形,过点C 作CD ⊥AB ,交AB 于点D .∵S △ABC =10,AB =5,∴12AB ·CD =10,解得CD =4.在Rt △ACD 中,由勾股定理得AD =AC 2-CD 2=52-42=3,∴BD =AB -AD =5-3=2.在Rt △CBD 中,由勾股定理得BC =BD 2+CD 2=22+42=25;如图②,△ABC 为钝角三角形,过点C 作CD ⊥AB ,交BA 的延长线于点D .同上可得CD =4.在Rt △ACD 中,AC =5,由勾股定理得AD =AC 2-CD 2=52-42=3.∴BD =BA +AD =5+3=8.在Rt △BDC 中,由勾股定理得BC =BD 2+CD 2=82+42=4 5.综上所述,BC 的长度为25或4 5.5.17m6.解:∵折叠前后两个图形的对应线段相等,∴CF =C ′F .设BF =x .∵BC =9,∴C ′F=CF =BC -BF =9-x .∵C ′是AB 的中点,AB =6,∴BC ′=12AB =3.在Rt △C ′BF 中,由勾股定理得C ′F 2=BF 2+C ′B 2,即(9-x )2=x 2+32,解得x =4,即BF 的长为4.7.解:过A 作AD ⊥BC 交BC 于点D .在△ABC 中,AB =15,BC =14,AC =13,设BD =x ,则CD =BC -BD =14-x .在Rt △ABD 和Rt △ACD 中,由勾股定理得AD 2=AB 2-BD 2=152-x 2,AD 2=AC 2-CD 2=132-(14-x )2,即152-x 2=132-(14-x )2,解得x =9.在Rt △ABD 中,由勾股定理得AD =AB 2-BD 2=152-92=12.∴S △ABC =12BC ·AD =12×14×12=84.8.4 59.解:如图,作点A 关于CD 的对称点A ′,连接BA ′交CD 于O ,点O 即为水厂的位置.过点A ′作A ′E ∥CD 交BD 的延长线于点E ,过点A 作AF ⊥BD 于点F ,则AF =A ′E ,DF =AC =1km ,DE =A ′C =1km.∴BF =BD -FD =3-1=2(km).在Rt △ABF 中,AF 2=AB 2-BF 2=13-22=9,∴AF =3km.∴A ′E =3km.在Rt △A ′BE 中,BE =BD +DE =4km ,由勾股定理得A ′B =A ′E 2+BE 2=32+42=5(km).∴W =3000×5=15000(元).故铺设水管的总费用为15000元.核心素养专题:古代问题中的勾股定理◆类型一 勾股定理应用中的实际问题1.【“引葭赴岸”问题】如图,在水池的正中央有一根芦苇,池底长10尺,它高出水面1尺.如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面,则这根芦苇的长度是( )A .10尺B .11尺C .12尺D .13尺第1题图 第2题图2.(2019·西城区期末)《九章算术》卷九“勾股”中记载:今有户不知高广,竿不知长短,横之不出四尺,纵之不出二尺,斜之适出,问户斜几何.注:横放,竿比门宽长出四尺;竖放,竿比门高长出二尺,斜放恰好能出去.解决下列问题:(1)示意图中,线段CE 的长为________尺,线段DF 的长为________尺;(2)设户斜长x ,则可列方程为________________.3.《算法统宗》是中国古代数学名著,作者是我国明代数学家程大位.在《算法统宗》中有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几?”译文:“有一架秋千,当它静止时,踏板离地1尺,将它往前推送10尺(水平距离)时,秋千的踏板就和人一样高,这个人的身高为5尺,秋千的绳索始终拉得很直,试问绳索有多长?”根据题意,可得秋千的绳索长为________尺.4.(2019·东营中考)我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A 处缠绕而上,绕五周后其末端恰好到达点B 处,则问题中葛藤的最短长度为________尺.◆类型二 勾股定理的证明问题5.(2019·丽水中考)我国三国时期数学家赵爽为了证明勾股定理,创造了一幅“弦图”,后人称其为“赵爽弦图”,如图①所示.在图②中,若正方形ABCD 的边长为14,正方形IJKL 的边长为2,且IJ ∥AB ,则正方形EFGH 的边长为________.6.中国古代对勾股定理有深刻的认识.(1)三国时代吴国数学家赵爽第一次对勾股定理加以证明:用四个全等的图①所示的直角三角形拼成一个如图②所示的大正方形,中间空白部分是一个小正方形.如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边分别为a ,b ,求(a +b)2的值;(2)清朝的康熙皇帝对勾股定理也很有研究,他著有《积求勾股法》,用现代的数学语言描述就是:若直角三角形的三边长分别为3,4,5的整数倍,设其面积为S ,则求其边长的方法:第一步S 6=m ;第二步:m =k ;第三步:分别用3,4,5乘以k ,得三边长.当面积S =150时,请用“积求勾股法”求出这个直角三角形的三边长.参考答案与解析1.D 2.(1)4 2 (2)(x -4)2+(x -2)2=x 2 3.14.54.25 解析:将圆柱侧面展开,如图,AC =3尺,CD =205=4(尺),∴AD =32+42=5(尺),∴葛藤的最短长度为5×5=25(尺).5.106.解:(1)根据勾股定理可得a 2+b 2=13,四个直角三角形的面积是12ab ×4=13-1=12,即2ab =12,则(a +b )2=a 2+2ab +b 2=13+12=25,即(a +b )2=25.(2)当S =150时,k =m =S 6=1506=25=5,所以三边长分别为:3×5=15,4×5=20,5×5=25,所以这个直角三角形的三边长为15,20,25.。