Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant
蓝莓花色苷提取纯化及生理功能研究
蓝莓花色苷提取纯化及生理功能研究一、本文概述《蓝莓花色苷提取纯化及生理功能研究》这篇文章主要围绕蓝莓花色苷的提取纯化过程及其生理功能展开深入的研究和探讨。
蓝莓作为一种营养丰富的水果,其含有的花色苷成分具有显著的抗氧化、抗炎、抗疲劳等多种生物活性,因此备受研究者的关注。
本文首先概述了蓝莓花色苷的提取纯化方法,包括溶剂提取、超声波辅助提取、微波辅助提取等,并对各种方法的优缺点进行了比较分析。
接着,文章重点探讨了蓝莓花色苷的生理功能,如抗氧化作用、对心血管疾病的预防作用、对神经系统的保护作用等,并通过实验数据验证了其生理功能的科学性和有效性。
本文还展望了蓝莓花色苷在食品、保健品、化妆品等领域的潜在应用前景,为蓝莓花色苷的进一步研究和开发利用提供了理论支持和实践指导。
通过本文的研究,我们期望能够为蓝莓花色苷的深入研究和应用推广提供有益的参考和借鉴。
二、蓝莓花色苷的提取方法蓝莓花色苷作为一种天然色素和生物活性成分,具有广阔的应用前景和重要的研究价值。
为了有效地提取蓝莓中的花色苷,研究者们已经开发出了多种提取方法。
溶剂提取法是最常用的提取蓝莓花色苷的方法之一。
这种方法利用有机溶剂如甲醇、乙醇、丙酮等对花色苷的溶解性,将蓝莓中的花色苷溶解在溶剂中,然后通过蒸发溶剂得到花色苷提取物。
这种方法操作简便,提取效率高,但可能涉及到有机溶剂的残留问题。
超声波辅助提取法是一种新型的提取技术,它通过超声波产生的空化效应和机械效应,加速溶剂对蓝莓中花色苷的渗透和溶解,从而提高提取效率。
这种方法具有提取时间短、提取温度低、提取效率高等优点,但设备成本较高。
微波辅助提取法利用微波产生的热效应和非热效应,使蓝莓中的花色苷快速溶解在溶剂中。
这种方法提取时间短,提取效率高,且能够较好地保持花色苷的生物活性。
但微波辐射可能对花色苷的结构产生一定影响。
超临界流体萃取法是一种利用超临界流体(如二氧化碳)作为萃取剂,从蓝莓中提取花色苷的方法。
天然低共熔溶剂萃取酚类物质研究进
基金项目:国家自然科学基金(编号:21575122)作者简介:张艺欣,女,烟台大学生命科学学院在读硕士研究生.通信作者:邬旭然(1965 ),男,烟台大学教授,硕士生导师.E Gm a i l :yt d x w x r @126.c o m 收稿日期:2022G04G15㊀㊀改回日期:2022G10G21D O I :10.13652/j .s p jx .1003.5788.2022.80216[文章编号]1003G5788(2022)11G0212G05天然低共熔溶剂萃取酚类物质研究进展R e s e a r c h p r o g r e s s o ne x t r a c t i o no f ph e n o l sw i t h n a t u r a l d e e p eu t e c t i c s o l v e n t 张艺欣Z HA N GY i Gx i n ㊀邬旭然WU X u Gr a n ㊀何若菡H ER u o Gh a n ㊀冯㊀硕F E N GS h u o ㊀杨丰旗Y A N GF e n g Gqi (烟台大学生命科学学院,山东烟台㊀264005)(C o l l e g e o f L i f eS c i e n c e s ,Y a n t a iU n i v e r s i t y ,Y a n t a i ,S h a n d o n g 264005,C h i n a )摘要:文章综述了天然低共熔溶剂(N A D E S )对酚类物质提取分离研究现状,总结了影响提取效率的主要因素,并对未来发展方向作出了展望.关键词:天然低共熔溶剂;酚类化合物;氯化胆碱;提取分离;产物回收A b s t r a c t :T h i s r e v i e ws u mm a r i z e d t h e r e s e a r c h s t a t u s o fN A D E So n t h e e x t r a c t i o na n ds e p a r a t i o no f p h e n o l s ,d i s c u s s e dt h e m a i n f a c t o r s a f f e c t i n g t h e e x t r a c t i o ne f f i c i e n c y ,a n d p r o s p e c t e d t h e f u Gt u r e d e v e l o pm e n t d i r e c t i o n .K e yw o r d s :N A D E S ;p h e n o l i cc o m p o u n d s ;c h o l i n ec h l o r i d e ;e x Gt r a c t i o na n d s e p a r a t i o n ;p r o d u c t r e c o v e r y天然低共熔溶剂(N A D E S)是由糖类㊁有机酸㊁氨基酸和胆碱衍生物等天然化合物按一定摩尔比组合后在一定条件下形成的低熔点液态混合物,其形成原理为氢键供体(H B D )与氢键受体(H B A )之间形成的氢键使电荷离域,导致混合物熔点降低,最终在室温下呈现液态的共晶体系[1].C h o i 等[2]提出除水和脂质外,细胞内存在第三液相,即由糖㊁醇㊁氨基酸㊁胆碱衍生物相互作用形成的N A D E S .生物体内N A D E S 的存在可以解释多种生物现象,如在细胞水环境中有难溶于水的代谢物的合成;一些植物可在极端条件下生存等.某些植物汁液如花蜜和枫糖浆,也被认为是天然存在的N A D E S [3].N A D E S 具有制备简单㊁易降解㊁毒性低[4]等优点,因而通常作为催化剂和萃取溶剂被应用于分析化学和生物化学领域,尤其是活性物质的提取和分离研究.酚类物质是一类重要的植物次生代谢物.常用于萃取酚类物质的溶剂为甲醇或乙醇,此类有机溶剂毒性高㊁易燃,而且提取过程中试剂消耗较多,易造成环境污染.N A D E S 具有生物相容性㊁可调性㊁环境友好等优势,被认为是取代传统有机溶剂的最佳替代品[4].N A D E S 超分子结构上的羟基或羧基可与酚类化合物形成氢键,增加提取产量,同时氢键的形成可提高酚类物质的稳定性[5].一项研究[6]表明N A D E S 中的许多酚类物质可以保持稳定长达60d .文章拟对N A D E S 用于酚类物质提取的相关研究进行综述,并总结影响提取效率的主要因素和产物回收的方法,以期为开发天然的酚类萃取溶剂提供参考.1㊀N A D E S 在酚类物质提取中的应用N A D E S 可以分为5类:由酸和碱合成的离子液体型;糖类或糖和多元醇合成的中性型;糖或多元醇与有机酸合成的中性酸型;糖或多元醇与有机碱合成的中性碱型;氨基酸和糖或有机酸合成的氨基酸型[7].氯化胆碱(C h C l )属于B 族维生素之一,是最经济的胆碱合成形式,可作为大宗化学品大规模生产.C h C l 的生物相容性较高,是目前常用的H B A [8].根据酚类物质的化学结构可分为几个亚组,包括黄酮类和酚酸类,以及姜黄素㊁木质素等其他多酚.近年来,众多研究人员以不同基质材料为研究对象,应用N A D E S 探究酚类物质的高效绿色提取方法.1.1㊀黄酮类化合物芦丁是一种常见的膳食糖基类黄酮,F a g ga i n 等[9]报道,由谷氨酸/脯氨酸(摩尔质量比为2ʒ1)和脯氨酸/C h C l (摩尔质量比为1ʒ1)组成的N ADE S 能有效溶解芦丁.H u a n g 等[10]研究表明,超声波与N A D E S 萃取相结合的方法可高效地从苦荞壳中提取芦丁;芦丁在13种氯化胆碱和甘油基N A D E S 中的溶解度比在水中的提高了660~1577倍,当C h C l /G l y 含水量为20%时,提取率最高为9.5m g /g ,提取率为95%.此外,该研究还对F O O D &MA C H I N E R Y 第38卷第11期总第253期|2022年11月|N A D E S的毒性和生物降解性进行了评价,发现N A D E S 溶剂毒性极低,28d后生物降解率为70%,可被归类为易生物降解溶剂.花青素属于黄酮类化合物,是一种强效的自由基清除剂.研究[11]表明,花青素可抗氧化损伤,预防动脉粥样硬化㊁阿尔兹海默症等疾病.D aS i l v a等[12]建立了一种环保㊁低成本的蓝莓花青素提取方法,以C h C l/甘油/柠檬酸(摩尔比0.5ʒ2ʒ0.5)的三元N A D E S作溶剂,提取率约为76%.该研究小组[13]制备了总酚质量浓度为1.1m g/m L的蓝莓提取物GN A D E S溶液进行大鼠喂养试验,代谢动力学分析显示C EGN A D E S通过延缓胃糜中和,提高了体内消化过程中酚类化合物的稳定性. P o p o v i c等[4]研究发现花青素在酸性介质中稳定性较高,在以C h C l为H B A,苹果酸㊁尿素㊁果糖为H B D的3种溶剂体系中,40ħ加热搅拌,C h C l/苹果酸体系的樱桃果渣提取物中花青素的含量较高,而微波辅助方法提取速度快,时间小于5m i n.但基于苹果酸的N A D E S体系p H 值过低,提取物的抗自由基活性较差.O o m e n等[14]研究发现4种含有柠檬酸的亲水性N A D E S均能提取黄岑中的黄酮化合物,采用高效液相色谱法和高效薄层色谱法对提取物的化学成分进行定量分析,发现N A D E S中黄岑素类苷元含量是甲醇水溶液的3~5倍,相应糖苷含量为甲醇水溶液的1.5~1.8倍.熊苏慧等[15]使用N A D E S提取玉竹中的总黄酮,得到的最大提取率达18.79m g/g,经大孔树脂吸附后N A D E S可被二次使用,回收利用率为94.56%.1.2㊀酚酸及其他多酚酚酸是一类常见的非类黄酮植物多酚,具有良好的抗氧化㊁抗菌活性,主要来源于水果㊁蔬菜㊁种子㊁芳香植物等.J u r i c等[16]评价了6种C h C l基N A D E S对薄荷叶多酚的提取效率,发现山梨醇/C h C l体系提取物中羟基肉桂酸含量较高,以有机酸为H B D的两种N A D E S对酚酸的萃取能力优于其他N A D E S.此外,体外抗氧化试验结果表明,6种N A D E S提取液的D P P H自由基清除能力均优于70%乙醇,这可能是由于体系中的氢键提高了酚类化合物的稳定性.郁峰等[17]研究发现从杜仲叶中提取绿原酸的较优溶剂体系为甜菜碱/LG乳酸/水(物质的量比为1ʒ1ʒ4),萃取条件优化后的绿原酸得率为31.46m g/g,提取物对D P P H ㊁A B T S 和 OH均有较强的清除能力.A l s a u d等[18]提出了一种疏水型低共熔溶剂,将薄荷醇与乳酸按摩尔比1ʒ2混合得到的溶剂可从麦卢卡叶片中同时提取两种极性差异较大的活性物质:半萜烯类和酚类,提取物总酚含量低于传统溶剂乙醇,但其抑菌效果优于传统溶剂.D o l d o l o v a等[19]制备了以C h C l㊁乳酸㊁果糖和蔗糖为溶剂原料的5种二元组合N A D E S,利用微波辅助(MA E)从姜黄中提取姜黄素,采用响应面法对MA E参数进行优化,发现温度是影响姜黄素提取的最重要因素.优化萃取条件后,采用铜离子还原能力法(C UGP R A C)对提取物最大总抗氧化能力(T A C)进行测定,除果糖/C h C l外,其余N A D E S提取物T A C均高于80%甲醇.综上,基质材料所含酚类化合物类型各不相同,选择合适的N A D E S种类,调节氢键供体与受体比例,并优化萃取条件,可取得较好的提取效果.更多应用举例总结于表1.2㊀N A D E S提取酚类物质的影响因素2.1㊀N A D E S组成及摩尔比例N A D E S组分和组分之间的摩尔比例决定了共晶体系的液态稳定性.氢键受体与供体基团数量㊁空间结构和键的位置均对N A D E S的形成有显著影响.若组分中有额外的羟基和羧基存在,则分子间可以形成更多氢键,易形成稳定性较高的共晶体系.如琥珀酸不能与胆碱形成液体,但含羧基较多的柠檬酸和苹果酸可以.若组分之间的摩尔比例不当,N A D E S会出现固体结晶.高黏度是N A D E S的重要特征,但黏度过高不利于传质,不仅会降低提取效率,还会影响酚类提取物的分离纯化.分子大小和组分之间的相互作用力是影响共晶体系黏度的主要因素,如含有一个羧基的乳酸基N A D E S,黏度低于含3个羧基的柠檬酸基N A D E S;小分子的多元醇基溶剂黏度低于糖或有机酸基溶剂[30].短小结构或多羧酸结构的H B D更容易与多酚靶标化合物相互作用,使提取产量增加.H B A与H B D的性质决定了N A D E S的极性及p H 值.溶剂极性是影响萃取效率的最重要因素,N A D E S极性越接近目标物,提取可能性越高.N A D E S极性范围广泛[2],有机酸基N A D E S表现出与水相近的高极性,氨基酸和醇基N A D E S次之[31].N A D E S的p H值是影响提取效率的另一因素,当溶剂p H值略低于酚类物质的p K a,酚类化合物在溶剂中处于中性状态时更容易被提取.酸基N A D E S对花青素㊁儿茶素和绿原酸表现出较高的提取亲和力[7,16].受体与供体比例也会影响酚类物质与溶剂组分之间形成氢键.N A D E S乳酸百分比为35%时,提取物呈现出最高的T P C,乳酸比例升高至75%时,提取量下降.相比乳酸阴离子,酚类物质更容易与氢受体键中胆碱季阳离子形成氢键,系统中添加过多乳酸,会削弱目标物与胆碱之间的氢键作用,乳酸相对于胆碱含量越多,酚类物质的提取量就越少[26].2.2㊀N A D E S水分含量N A D E S的含水量会通过影响共晶系统的黏度从而|V o l.38,N o.11张艺欣等:天然低共熔溶剂萃取酚类物质研究进展表1㊀N A D E S 用于酚类物质提取T a b l e 1㊀L i t e r a t u r e r e v i e wo fN A D E S s f o r e x t r a c t i o no f p h e n o l s样品基质目标化合物最优组合辅助方法主要成果红花[5]羟基红花黄色素A 红花黄色素红花红色素蔗糖/C h C l ;乳酸/葡萄糖两种N A D E S 分别对极性不同的红花色素提取效率优于80%乙醇初榨橄榄油[20]油芹素㊁油酸C h C l /木糖醇提取率比常规溶剂80%甲醇增加了33%和68%鹰嘴豆[21]黄酮类化合物C h C l /柠檬酸微波辅助鹰嘴豆黄酮得率为2.49m g /g ,总还原力高于V C 马黛茶[22]绿原酸㊁阿魏酸㊁咖啡因㊁芦丁㊁可可碱乳酸/甘油;乳酸/甘氨酸超声辅助N A D E S 能够提取基质中30%以上多酚成分,且长时间保持稳定螺旋藻花序[23]绿原酸㊁柚皮素㊁鸟苷㊁芹菜素等C h C l/乳酸超声辅助类黄酮提取率(15.34ʃ0.10)m g /g,酚酸提取率(5.10ʃ0.12)m g /g,与甲醇相当无花果叶[24]咖啡酰基苹果酸㊁半乳香酸G葡萄糖苷㊁芦丁甘油/木糖醇/D (G)G果糖微波辅助3种目标物提取率分别为6.482,16.340,5.207m g /g ,与甲醇相比提取率增强山茶花[25]4种儿茶素C h C l /甘油超声辅助T P C 值最高为2437m g /g 茶多酚提取物具有较好的抗氧化活性石榴皮渣[26]石榴皮多酚C h C l /乳酸超声辅助m N A D E S ʒm 石榴皮渣=20ʒ1,45ħ提取25m i n ,T P C 相比传统溶剂乙醇增加了84.2%接骨木果[27]芦丁㊁二对香豆酰基酸㊁绿原酸乳酸/甘氨酸超声辅助总多酚的提取率为(121.24ʃ8.77)m g /g 黑莓果实[28]绿原酸㊁原儿茶酸㊁咖啡酸C h C l /果糖超声辅助T P C36.15m g /g 相比传统溶剂提高了33%茜草果实[29]总黄酮C h C l/乳酸超声辅助总黄酮类化合物产量分别为49.91,55.15m g /g,D P P H ㊁A B T S 和F R A P 测定显示出优异的抗氧化活性影响提取效率.在N A D E S 制备过程中加水或制备后提取前用水稀释N A D E S 可降低体系黏度,有利于萃取过程中更好地传质.水分含量还会影响N A D E S 的极性,通过添加特定量的水使N A D E S 溶剂极性与目标提取物相似,就可以实现最佳的萃取效率.过量的水会削弱N A D E S分子间的氢键结构,通常加水量为20%~50%[31].每一种提取方法的变量不同,因此需要根据实际组分与基质材料的性质确定最优含水量.2.3㊀其他因素2.3.1㊀萃取温度㊀通常N A D E S 黏度随温度升高而降低,当温度升高时,分子自由运动,N A D E S 组分间的氢键作用和范德华力减弱,体系黏度下降.适当提高萃取温度可促进生物质细胞的渗透以及溶剂与目标化合物之间的相互作用,能够使目标物更快地扩散到溶剂中.酚类物质多为热敏性的,理想萃取温度为25~60ħ.2.3.2㊀辅助提取方法㊀目前常用的辅助方法有超声辅助(U A E )㊁微波辅助(MA E )㊁加热搅拌(H&S )等.U A E 是通过空化作用,增加溶剂穿透力,加速提取过程,提高提取量[32];MA E 具有提取时间及短,溶剂消耗少等优势.U A E 和MA E 的设备功率㊁提取时间等都是影响提取效率的重要因素.2.3.3㊀液固比㊀液固比是容易对提取率产生负效应值的一个变量,过量的溶剂会增加介质中的溶氧量,增加酚类物质的氧化;液固比过低时,过量的固体导致溶剂饱和,不利于传质[26].3㊀酚类物质的回收及溶剂的重复利用N A D E S 作为合成溶剂,成本相对较高,溶剂的回收是十分必要的.反溶剂法㊁大孔树脂吸附和固相萃取是近几年常用的从提取液中分离目标物的方法.反溶剂法操作相对简单,在提取液中添加反溶剂,稀释的N A D E S 与目标化合物间的氢键网络断裂,离心后酚类物质形成沉淀与溶剂分离;上层富溶剂相可通过减压蒸馏等方法实现再生.H u a n g 等[10]研究发现,水是测试溶剂中最有效的抗溶剂,芦丁回收率为95.1%,回收后C h C l /G l y 的3次再萃取效率分别为原溶剂的92%,87%,81%.20倍的水作为反溶剂,可分离提取液中的姜黄素[2].M a m i l l a等[33]选用丙酮作为反溶剂,从提取液中分离木质素㊁木纤维素,D E S 以固体状态被回收.研究进展A D V A N C E S 总第253期|2022年11月|T i a n等[34]提出了一种从低共熔溶剂(D E S)中回收黄酮类化合物的新策略,向体系中加水稀释到10%,然后加入一种铬金属有机框架M I LG100(C r),使目标化合物吸附在M I L上实现目标物与溶剂的分离.树脂吸附法是一种简单有效的活性物质回收方法,利用大孔树脂吸附酚类物质,N A D E S极性成分用水洗脱.Z h a n g等[35]研究发现A BG8树脂具有较高的吸附/解吸性能,刺五加总黄酮类化合物的回收率高达(71.56ʃ0.256)%,D E S溶剂可以有效地重复使用两次.研究人员结合N A D E S特性,尝试合成对目标物选择性更高的新型固相吸附材料.F u等[36]采用热水聚合法合成C h C lGP hD E S改性吸附剂作为S P E填料,相比传统C18色谱柱,它可以从棕榈样品中分离出更大量酚类化合物,并且经5次循环使用后仍表现良好的可逆性.G a o等[37]采用环保型深共熔溶剂和C O F(共价有机框架)成功制备了高结晶度的C O FGD E S,基于C O FGD E S的S P E色谱柱在实际样品中对黄酮类化合物具有更好的吸附和选择性能.此外,N A D E S可以作为酚类物质的配方载体,绕开溶剂的回收过程,直接应用于食品㊁化妆品及制药领域.例如K y r i a k i d o u等[38]向壳聚糖基可食性薄膜中加入C h C l/G l y石榴皮提取物,作为助剂改善膜的性能. N A D E S米糠提取物作为脂质抗氧化剂加入O/W纳米乳液中表现良好的抗氧化活性,i C A L B生物转化提取物似可促进这种抗氧化效率.4㊀总结与展望天然低共熔溶剂具有低毒性㊁可调性㊁极性范围广㊁环保等特点,可作为不同基质中酚类物质绿色萃取溶剂,相比传统有机溶剂,天然低共熔溶剂组分可以与酚类物质形成氢键从而获得更高提取量,并且可保持酚类物质的稳定性.天然低共熔溶剂组分及摩尔比㊁加水量㊁温度等因素都会影响提取效率.天然低共熔溶剂对酚类物质的提取效率虽优于传统溶剂,但其具有黏度高㊁蒸气压低㊁成本高的缺点,另外,酚类物质与天然低共熔溶剂组分间存在的氢键网络使得提取后溶质的分离纯化过程存在一定困难.因此,酚类物质提取后的纯化和溶剂回收可作为未来研究的优选课题.高黏度是限制天然低共熔溶剂作为萃取溶剂应用的主要缺点,可以通过提高温度或向体系中加水来降低其黏度,后续研究可探索更多天然产物组合设计低黏度天然低共熔溶剂.目前评价其提取效率的指标集中在总酚㊁总黄酮含量及抗氧化活性,从分子结构㊁作用机制等微观层面探究溶剂对某种酚类物质的选择性可作为进一步研究方向.此外,天然低共熔溶剂在提高酚类化合物的生物利用度方面也表现出优越性,其成分为天然代谢物,可作为目标物的载体直接应用于生产,而不需要进一步分离.关于天然低共熔溶剂安全性评价,目前多数研究采用体外细胞毒性测试的方法,天然低共熔溶剂对活性物质体内代谢的影响以及体内安全性需进一步阐明.随着未来研究的不断深入,天然低共熔溶剂有望成为新型绿色多功能溶剂,在天然活性产物提取及应用领域,实现多种用途.参考文献[1]宣婧婧,武喜营,戚建平,等.天然低共熔溶剂在药剂学中的应用[J].药学学报,2021,56(1):146G157.XU J J,WU X Y,QI J P,et al.Application of natural eutectic solGvent in pharmacy[J].Chinese Journal of Pharmacy,2021,56(1): 146G157.[2]CHOI Y H,VAN SPRONSEN J,DAI Y,et al.Are natural deep euGtectic solvents the missing link in understanding cellular metabolism and physiology?[J].Plant Physiol,2011,156(4): 1701G1705.[3]DAI Y,VAN SPRONSEN J,WITKAMP G J,et al.Natural deep euGtectic solvents as new potential media for green technology[J].Anal Chim Acta,2013,766:61G68.[4]POPOVIC B M,MICIC N,POTKONJAK A,et al.Novel extractionof polyphenols from sour cherry pomace using natural deep eutectic solventsGUltrafast microwaveGassisted NADES preparation and exGtraction[J].Food Chem,2022,366:130562.[5]DAI Y,WITKAMP G J,VERPOORTE R,et al.Natural deepeutectic solvents as a new extraction media for phenolic metabolites in Carthamus tinctorius L.[J].Analytical Chemistry,2013,85(13): 6272G6278.[6]MARIA D L A F,ESPINO M,GOMEZ F,et al.Novel approaches mediated by tailorGmade green solvents for the extraction of phenolic compounds from agroGfood industrial byGproducts[J].Food Chemistry,2018,239:671G678.[7]BENVENUTTI L,ZIELINSKI A A F,FERREIRA S R S.Which isthe best food emerging solvent:IL,DES or NADES?[J].Trends in Food Science&Technology,2019,90:133G146.[8]ALAM M A,MUHAMMAD G,KHAN M N,et al.Choline chlorideGbased deep eutectic solvents as green extractants for the isolation of phenolic compounds from biomass[J].Journal of Cleaner Production,2021,309:127445.[9]FAGGIAN M,SUT S,PERISSUTTI B,et al.Natural Deep Eutectic Solvents(NADES)as a tool for bioavailability improvement:PharGmacokinetics of rutin dissolved in proline/glycine after oral adminGistration in rats:Possible application in nutraceuticals[J].Molecules, 2016,21(11):1531.[10]HUANG Y,FENG F,JIANG J,et al.Green and efficient extractionof rutin from tartary buckwheat hull by using natural deep eutectic|V o l.38,N o.11张艺欣等:天然低共熔溶剂萃取酚类物质研究进展solvents[J].Food Chem,2017,221:1400G1405.[11]LIN L,JIN L I,YONGGJIE L I,et al.Protective effects of Lycium ruthenicum anthocyanins on the vascular endothelial cells with oxGidative injury by oxidized lowGdensity lipoprotein in vitro[J].ChiGnese Pharmaceutical Journal,2013,48(8):606G611.[12]SILVA D T,PAULETTO R,CAVALHEIRO S D S,et al.Naturaldeep eutectic solvents as a biocompatible tool for the extraction of blueberry anthocyanins[J].Journal of Food Composition and AnalGysis,2020,89:103470.[13]DA SILVA D T,SMANIOTTO F A,COSTA I F,et al.Natural deep eutectic solvent(NADES):A strategy to improve the bioavailGability of blueberry phenolic compounds in a readyGtoGuse extract[J].Food Chem,2021,364:130370.[14]OOMEN W W,BEGINES P,MUSTAFA N R,et al.Natural deepeutectic solvent extraction of flavonoids of scutellaria baicalensis as a replacement for conventional organic solvents[J].Molecules, 2020,25(3):617.[15]熊苏慧,唐洁,李诗卉,等.一种新型天然低共熔溶剂用于玉竹总黄酮的绿色提取[J].中草药,2018,49(10):2378G2386. XIONG S H,TANG J,LI S H,et al.A novel natural eutectic solGvent for green extraction of total flavonoids from polygonatum[J]. Chinese Herbal Medicine,2018,49(10):2378G2386. [16]JURIC T,MICIC N,POTKONJAK A,et al.The evaluation of pheGnolic content,in vitro antioxidant and antibacterial activity of Mentha piperita extracts obtained by natural deep eutectic solvents[J].Food Chem,2021,362:130226.[17]郁峰,王志宏,张光耀,等.天然低共熔溶剂提取杜仲叶绿原酸及其抗氧化活性[J].林产化学与工业,2022,42(1):101G109.YU F,WANG Z H,ZHANG G Y,et al.Extraction and antioxidant activity of chlorogenic acid from eucommia ulmoides leaves by natural eutectic solvent[J].Chemistry and Industry of Forest ProdGucts,2022,42(1):101G109.[18]ALSAUD N,SHAHBAZ K,FARID M.Antioxidant and antibacteGrial evaluation of Manuka leaves(Leptospermum scoparium)exGtracted by hydrophobic deep eutectic solvent[J].Chemical EngiGneering Research and Design,2021,174:96G106.[19]DOLDOLOVA K,BENER M,LALIKOGLU M,et al.Optimization and modeling of microwaveGassisted extraction of curcumin and antioxidant compounds from turmeric by using natural deep eutectic solvents[J].Food Chem,2021,353:129337. [20]GARCIA A,RODRIGUEZGJUAN E,RODRIGUEZGGUTIERREZG,et al.Extraction of phenolic compounds from virgin olive oil by deep eutectic solvents(DESs)[J].Food Chem,2016,197(Pt A): 554G561.[21]孙悦.微波辅助低共熔溶剂提取鹰嘴豆中生物活性成分研究[D].石河子:石河子大学,2020:37G48.SUN Y.Microwave assisted extraction of bioactive ingredients from Chickpea[D].Shihezi:Shihezi University,2020:37G48.[22]REBOCHO S,MANO F,CASSEL E,et al.Fractionated extraction of polyphenols from mate tea leaves using a combination of hyGdrophobic/hydrophilic NADES[J].Current Research in Food SciGence,2022,5:571G580.[23]IVANOVIC M,ALBREHT A,KRAJNC P,et al.Sustainable ultraGsoundGassisted extraction of valuable phenolics from infloresGcences of Helichrysum arenarium ing natural deep eutectic solvents[J].Industrial Crops and Products,2021,160:113102. [24]WANG T,JIAO J,GAI Q Y,et al.Enhanced and green extractionpolyphenols and furanocoumarins from Fig(Ficus carica L.) leaves using deep eutectic solvents[J].J Pharm Biomed Anal,2017, 145:339G345.[25]LUO Q,ZHANG J R,LI H B,et al.Green extraction ofantioxidant polyphenols from green tea(Camellia sinensis)[J].Antioxidants(Basel),2020,9(9):785.[26]BERTOLO M,MARTINS V,PLEPIS A,et al.Utilization of pomeGgranate peel waste:Natural deep eutectic solvents as a green stratGegy to recover valuable phenolic compounds[J].Journal of Cleaner Production,2021,42(1):109G122.[27]KALTSA O,LAKKA A,GRIGORAKIS S,et al.A greenextraction process for polyphenols from elderberry(Sambucus nigra)flowers using deep eutectic solvent and ultrasoundGassisted pretreatment[J].Molecules,2020,25(4):921.[28]ISLAMCEVIC RAZBORSEK M,IVANOVIC M,KRAJNC P,et al.Choline chloride based natural deep eutectic solvents as extracGtion media for extracting phenolic compounds from chokeberry (Aronia Melanocarpa)[J].Molecules,2020,25(7):1619.[29]CHEN X Q,LI Z H,LIU L L,et al.Green extraction using deepeutectic solvents and antioxidant activities of flavonoids from two fruits of Rubia species[J].LWT,2021,148:111708.[30]SAVI L K,CARPINE D,WASZCZYNSKYJ N,et al.Influence of temperature,water content and type of organic acid on the formaGtion,stability and properties of functional natural deep eutectic solvents[J].Fluid Phase Equilibria,2019,488:40G47.[31]SKARPALEZOS D,DETSI A.Deep eutectic solvents as extractionmedia for valuable flavonoids from natural sources[J].Applied Sciences,2019,9(19):4169.[32]FU X,BELWAL T,CRAVOTTO G,et al.SonoGphysical and sonoGchemical effects of ultrasound:Primary applications in extraction and freezing operations and influence on food components[J].UlGtrason Sonochem,2020,60:104726.[33]MAMILLA J L K,NOVAK U,GRILC M,et al.Natural deep euGtectic solvents(DES)for fractionation of waste lignocellulosic biGomass and its cascade conversion to valueGadded bioGbased chemiGcals[J].Biomass and Bioenergy,2019,120:417G425.[34]TIAN H,WANG J,LI Y,et al.Recovery of natural products from deep eutectic solvents by mimicking denaturation[J].ACS SustainGable Chemistry&Engineering,2019,7(11):9976G9983.(下转第240页)Food and Fermentation Sciences&Technology,2020,56(2): 112G116.[23]韩爽,丁雨欣,冷秋雪,等.分子印迹电化学传感器在食品检测中的研究进展[J].食品与机械,2021,37(2):205G210. HAN S,DING Y X,LENG Q X,et al.Research progress of moGlecularly imprinted electrochemical sensors in the field of determiGnation in food safety[J].Food&Machinery,2021,37(2):205G210.[24]林亚楠,李诗言,崔益玮,等.分子印迹固相萃取/液 质谱联用法测定烟熏鲟鱼中苯并芘[J].中国食品学报,2020,20(3): 251G257.LIN Y N,LI S Y,CUI Y W,et al.Determination of benzo(α)pyGrene in smoked sturgeon(Acipenser sinensis)using molecularGimprinted solidGphase extraction liquid chromatography tandem mass spectrometry method[J].Journal of Chinese Institute of Food Science and Technology,2020,20(3):251G257.[25]蔡洁云,王惠平,刘巍,等.胶基型嚼烟中19种多环芳烃的气相色谱G串联质谱技术法测定[J].食品与机械,2020,36(5): 89G94.CAI J Y,WANG H P,LIU W,et al.Determination of polycyclic aromatic hydrocarbons in gumGbased chewing tobacco by GC MS/ MS[J].Food&Machinery,2020,36(5):89G94.[26]杨玲,张姝姝,林蔓.气质联用法和高效液相色谱法测定苯并芘的对比研究[J].湖北师范学院学报(自然科学版),2016,36 (4):11G13.YANG L,ZHANG S S,LIN M.Study on comparing of analytical technique for benzopyrene by GCGMS and HPLC[J].Journal of Hubei Normal University(Natural Science),2016,36(4):11G13.[27]王磊,樊蕊.凝胶色谱 气质联用测定花生油中苯并芘残留[J].食品工业,2019,40(5):322G324.WANG L,FAN R.Determination of benzopyrene in peanut oil by gel permeation chromatographyGgas chromatography/mass specGtrometry[J].The Food Industry,2019,40(5):322G324.[28]钱立.表面增强拉曼光谱法用于食用油中苯并芘的快速检测[D].扬州:扬州大学,2020:9G12.QIAN L.Surface enhanced Raman spectroscopy for rapid detection of benzo(α)pyrene in cooking oil[D].Yangzhou:YangGzhou University,2020:9G12.[29]ZHOU Z F,LU J L,WANG J Y,et al.Trace detection of polycyclic aromatic hydrocarbons in environmental waters by SERS[J].SpecGtrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2020,234(15):118250G118256.[30]邸志刚,杨健倓,王彪,等.基于表面增强拉曼散射的多环芳烃检测技术[J].激光杂志,2021,42(1):1G6.DI Z G,YANG J T,WANG B,et al.Detection technology of polyGcyclic aromatic hydrocarbons based on surface enhanced Raman scattering[J].Laser Journal,2021,42(1):1G6.[31]肖海波.利用新型核壳纳米粒子作为SERS基底检测苯并芘[D].厦门:集美大学,2012:13G40.XIAO H B.Detection of benzopyrene using novel coreGshell nanoGparticles as SERS substrate[D].Xiamen:Jimei University,2012: 13G40.[32]肖旺.基于表面增强拉曼光谱技术快速检测苯并芘的研究[D].广州:华南理工大学,2017:14G55.XIAO W.Rapid detection of benzo(α)pyrene based on surfaceGenGhanced Raman spectroscopy technique[D].Guangzhou:South China University of Technology,2017:14G55.[33]王珊.表面增强拉曼光谱技术(SERS)快速检测食用油苯并(α)芘的研究[D].广州:华南理工大学,2017:16G39. WANG S.Study on the Rapid determination of benzo[α]pyrene in edible oil by surface enhanced raman spectroscopy(SERS)[D]. Guangzhou:South China University of Technology,2017:16G39.[34]高玮,邓智辉.检测食品中苯并芘的方法研究[J].粮食科技与经济,2018(8):69G73.GAO W,DENG Z H.Study on test method of benzopyrene in food[J]. Grain Science and Technology and Economy,2018(8):69G73.[35]史巧巧.苯并芘的免疫学快速检测技术研究[D].郑州:河南工业大学,2014:5.SHI Q Q.Study of benzopyrene immunological rapid detection method[D].Zhengzhou:Henan University of Technology,2014:5.[36]邓安平.酶联免疫吸附分析法测定苯并(α)芘和多氯联苯[J].环境化学,2006,25(3):340G343.DENG A P.Enzyme linked immuno sorbent assay for the analysis of benzo(α)pyrene and polychlorobiphenyl[J].Environmental Chemistry,2006,25(3):340G343.[37]刘波,王宇,戚平,等.食用油中致癌物苯并芘的快速免疫检测胶体金层析试纸条研制[J].中国油脂,2016,41(7):68G72. LIU B,WANG Y,QI P,et al.Development of colloidal gold imGmunochromatographic strip for rapid detection of carcinogens benzo(α)pyrene in edible oil[J].China Oils and Fats,2016,41(7): 68G72.(上接第216页)[35]ZHANG X,SU J,CHU X,et al.A green method of extracting andrecovering flavonoids from acanthopanax senticosus using deep eutectic solvents[J].Molecules,2022,27(3):923. [36]FU N,LV R,GUO Z,et al.Environmentally friendly and nonGpolGluting solvent pretreatment of palm samples for polyphenol analysis using choline chloride deep eutectic solvents[J].J ChromGatogr A,2017,1492:1G11.[37]GAO M,WANG D,DENG L,et al.HighGcrystallinity covalent orGganic framework synthesized in deep eutectic solvent:potentially effective adsorbents alternative to macroporous resin for flavonoids[J].Chemistry of Materials,2021,33(20):8036G8051.[38]KYRIAKIDOU A,MAKRIS D P,LAZARIDOU A,et al.Physicalproperties of chitosan films containing pomegranate peel extracts obtained by deep eutectic solvents[J].Foods,2021,10(6):1362.。
石榴多酚类物质的分离鉴定和抗氧化活性研究
石榴多酚类物质的分离鉴定和抗氧化活性研究一、本文概述本文旨在深入研究和探讨石榴多酚类物质的分离鉴定以及其抗氧化活性。
石榴作为一种营养丰富、历史悠久的水果,近年来因其独特的营养价值和药用功能受到了广泛关注。
石榴多酚类物质作为石榴中的主要活性成分,具有显著的抗氧化、抗炎、抗癌等多种生物活性,对于预防和治疗多种慢性疾病具有潜在的应用价值。
因此,本文旨在通过科学的方法和技术手段,对石榴多酚类物质进行深入分离和鉴定,研究其抗氧化活性,并探索其在健康领域的潜在应用。
文章将首先概述石榴多酚类物质的研究背景和重要性,然后详细介绍石榴多酚类物质的提取和分离方法,包括常用的化学方法和现代生物技术手段。
随后,文章将阐述石榴多酚类物质的鉴定方法,如光谱分析、色谱分析等,以揭示其化学结构和组成。
在此基础上,本文将进一步研究石榴多酚类物质的抗氧化活性,通过体外实验和体内实验评估其抗氧化效果,并探讨其抗氧化机制。
文章将总结石榴多酚类物质的研究结果,并展望其在健康领域的潜在应用前景。
本文的研究结果将有助于进一步揭示石榴多酚类物质的生物活性机制,为开发新型天然抗氧化剂提供科学依据,同时也可为石榴深加工产品的开发提供技术支持,促进石榴产业的可持续发展。
二、材料与方法用于研究的石榴果实采自本地优质石榴园,挑选新鲜、成熟且无病斑的石榴果实。
采摘后立即送往实验室进行处理,以保证原材料的新鲜度。
实验所用的化学试剂包括乙醇、甲醇、丙酮等有机溶剂,以及抗氧化活性测定所需的试剂,如DPPH(1,1-二苯基-2-三硝基苯肼)、ABTS(2,2'-联氮-双-3-乙基苯并噻唑啉-6-磺酸)等,均为分析纯级别,购自国内知名试剂供应商。
实验所用仪器包括旋转蒸发仪、真空泵、色谱柱、高效液相色谱仪(HPLC)、紫外可见分光光度计等,均为实验室内常用设备。
石榴果实去籽后破碎成汁,加入适当比例的有机溶剂(如乙醇、甲醇等)进行浸泡提取。
提取液经过滤后,通过旋转蒸发仪去除溶剂,得到粗提物。
双水相萃取法提取地骨皮多酚及抗氧化活性研究
第50卷第4期2021年4月应用化工Applied Chemical IndustryVol. 50 No. 4Apr. 2021双水相萃取法提取地骨皮多酚及抗氧化活性研究臧慧静,刘学,孙亚娟,杨成(江南大学化学与材料工程学院,江苏无锡214122)摘要:采用超声辅助双水相萃取法提取地骨皮中多酚类物质,通过单因素实验和正交实验对地骨皮多酚提取工 艺进行优化,最佳提取工艺条件为:乙醇溶液质量分数为41 % ,硫酸钱与乙醇溶液质量比为13: 100 (g/g),地骨皮与乙醇溶液质量比1:20( g/g),超声时间为50 min,提取温度为55 °C ,在此条件下地骨皮多酚得率为17.88 mg/g o分别以DPPH 法、ABTS 法、ORAC 法、细胞内总谷胱甘肽含量和SOD 活性评价地骨皮多酚的抗氧化能力。
结果表 明,地骨皮多酚对DPPH -和ABTS •的IQ 。
分别为20. 00 mg/L 和59. 37 mg/L,对活性氧清除能力高于同浓度Trolox,对比02损伤的HSF 细胞内谷胱甘肽含量和SOD 活性均有显著的提升作用。
关键词:地骨皮多酚;双水相萃取;抗氧化;谷胱甘肽;SOD中图分类号:TQ 658;TQ461;O69 文献标识码:A 文章编号:1671 -3206(2021)04 - 0855 - 05Extraction of polyphenols from Lycii Cortex based on aqueous two-phase system and evaluation of its antioxidant capacityZANG Hui-jing , LIU Xue , SUN Ya-juan , YANG Cheng(School of Chemical & Material Engineering ,Jieingnan University ,Wuxi 214122,China)Abstract : The polyphenols were extracted from Lycii Cortex by ultrasonic assisted aqueous two-phase sys tem. The optimized conditions were as follows : the mass fraction of 41% ethanol solution ; ammonium sul fate to ethanol solution, 13: 100(g/g) ; ratio of Lyc 五 Cortex to liquid was 1 • 20(g/g ) ;ultrasonication at 55 兀 for 50 min. The yield of Lycii CorLex polyphenols ( LCPPs ) was 17. 88 mg/g under the optimumcondition. The antioxidant capacity of LCPPs were evaluated by assays of DPPH , ABTS , FRAP , ORAC , in tracellular GSH content and SOD activity ・ The results showed that the IC 50 of DPPH • and ABTS • byLCPPs were 20.00 mg/L and 59. 37 mg/L respectively ; the scavenging capability of reactive oxygen spe cies by LCPPs was higher than Trolox at the same concentration ; LCPPs can significantly increase the T- GSH content and SOD activity.Key words : Lycii Cortex polyphenols ; aqueous two-phase system ; antioxidant ; total glutathione ; SOD 地骨皮为茄科植物枸杞(Zyc 加ni chinense Mill.)或宁夏枸杞(AyEizm barbarum E.)干燥的根皮,可凉 血除蒸,清肺降火,用于阴虚潮热,骨蒸盗汗,肺热咳 嗽,内热消渴等⑷。
不同产地桑叶中功能成分的含量分析及桑叶体外生物活性的研究
不同产地桑叶中功能成分的含量分析及桑叶体外生物活性的研究桑叶是一种传统中药材,富含多酚类及生物碱类活性成分,具有优良的抗氧化活性、降血糖活性以及抗炎症、抗肿瘤、减肥美容等医疗及保健功能,在食品、药品以及保健品领域已获得部分应用且应用前景广阔。
本文以桑叶为实验材料,建立了新的液相色谱-质谱联用技术对其中的酚类活性成分和生物碱类活性成分进行定性和定量,优化了质谱条件,建立了新的方法,可同时鉴定出5种多酚类化合物;之后对不同产地桑叶中的活性成分含量以及抗氧化性能、糖苷酶抑制能力的影响进行了比对;最后对所有测定参数进行了主成分分析,进一步研究了不同参数间的内部联系,并筛选出适合用于保健品、药品业用的桑叶原料产地。
具体研究结果如下:1.对5中多酚类成分和DNJ、fagomine的ESI源下的质谱行为进行了分析,并对质谱条件进行了优化。
随后确立了新型的HPLC-ESI-MS 检测方法,可同时检测5种多酚类成分,使用氨基柱对DNJ和fagomine进行分离,建立了新的HILIC-MS/MS方法,避免了生物碱衍生化的不确定性和繁琐的程序,同时大大缩短了分离时间,可完成对DNJ和fagomine的检测,并验证了方法的稳定性与可行性。
2.利用建立的液质联用的方法对来自于全国8个主要蚕桑产区秋季桑叶中的活性成分进行定性及定量分析,测定了不同产区样品中总酚、总黄酮含量,并探究了不同产区对活性成分含量及总酚总黄酮含量的影响及可能造成影响的原因。
结果表明:在桑叶提取物中可分离出荞麦碱、DNJ、绿原酸、异槲皮苷、芦丁、槲皮素和山奈素7种成分,其中山奈素和槲皮素含量较低,在部分样品中存在。
桑叶中绿原酸含量较高,最高可达到10.050±0.143 mg/g,大部分含量分布在2-8mg/g。
DNJ、fagomine和酚类成分含量随地域变化均有显著差异,广东地区样品中的DNJ和fagomine整体含量较高,重庆涪陵地区样品的fagomine含量最高,因此这两个地区可作为秋天桑叶DNJ和fagomine的优势产区。
海参内脏酶解物和体壁溶出物的护肤功效评价
海参内脏酶解物和体壁溶出物的护肤功效评价米锐;周遵春;孟楠【期刊名称】《现代食品科技》【年(卷),期】2023(39)1【摘要】该研究以海参加工副产物为试验材料,将海参体壁酶解物作为对照,分别考察了海参内脏酶解物和体壁溶出物的保湿、防晒、抗氧化、美白及抗衰老功能,旨在对海参加工副产物的护肤功效进行评价。
试验数据表明,内脏酶解物和体壁溶出物在保湿、防晒、抗氧化、抗衰老功能上优于体壁酶解物。
其中内脏酶解物的吸湿保湿、抗衰老功能综合评价最佳:在81%RH的12 h吸湿率和保湿率分别为52.51%和95.04%,弹性蛋白酶抑制率达到26.34%;体壁溶出物在防晒、抗氧化功能上表现最佳:在UVC和UVB波段的紫外吸收率分别为94.52%和33.89%,DPPH自由基清除率的IC50为3.00 mg/mL,ABTS与FRAP法总抗氧化能力分别为4.48mmol/g和5.91 mmol/g。
美白功能方面,体壁溶出物及内脏酶解物对酪氨酸酶活性抑制率的IC50分别为49.43 mg/mL和40.00 mg/mL,美白功能低于体壁酶解物(IC50=16.82 mg/mL),但也能发挥很好的美白作用。
在应用中,可以有效利用两种副产物在护肤功效上的作用优势,将二者联合应用或者作为体壁酶解物的补充应用在护肤品上,实现海参加工副产物的高效开发利用。
【总页数】8页(P222-229)【作者】米锐;周遵春;孟楠【作者单位】辽宁省海洋水产科学研究院【正文语种】中文【中图分类】TS9【相关文献】1.黄海海燕体壁酶解物抗氧化活性研究2.水蛭不同工艺提取物抗凝与纤溶活性比较及酶解物组成分析3.海参内脏酶解制备海参肽工艺4.药品接触材料的析出物和溶出物评估——制药工艺流程需严格把控药品接触材料的析出物和溶出物5.黄颡鱼饲料中酶解鱼溶浆粉、酶解虾溶浆粉和酶解鱿鱼内脏溶浆粉替代鱼粉的研究因版权原因,仅展示原文概要,查看原文内容请购买。
抗氧化能力的体外测定方法研究进展
抗氧化能力的体外测定方法研究进展一、本文概述随着现代生活节奏的加快和环境污染的日益严重,人体面临的氧化应激压力不断增大,抗氧化能力的重要性日益凸显。
因此,抗氧化能力的体外测定方法研究进展成为了生物医学、营养学、食品科学等领域的研究热点。
本文旨在综述近年来抗氧化能力体外测定方法的研究进展,以期为相关领域的研究人员提供全面的信息参考和技术指导。
本文将首先对抗氧化能力的概念进行界定,明确其生理意义和重要性。
随后,将重点介绍几种常用的抗氧化能力体外测定方法,包括总抗氧化能力(TAC)测定、超氧化物歧化酶(SOD)活性测定、过氧化氢酶(CAT)活性测定、谷胱甘肽过氧化物酶(GSH-Px)活性测定等。
还将探讨这些方法的优缺点、适用范围以及在实际研究中的应用情况。
通过本文的综述,我们希望能够为相关领域的研究人员提供全面的抗氧化能力体外测定方法的知识体系和技术指导,为推动抗氧化能力研究的发展和应用提供有益的参考。
二、抗氧化能力的概念和机制抗氧化能力是指生物体系在面临氧化压力时,通过一系列复杂的生化反应来消除或抵抗活性氧(ROS)和活性氮(RNS)的能力。
这些活性物质是由正常细胞代谢或环境应激产生的,它们具有高度反应性,能够破坏细胞内的关键分子,如DNA、蛋白质和脂质,从而引发各种疾病,如癌症、心血管疾病和神经退行性疾病等。
抗氧化机制主要包括酶促和非酶促两大类。
酶促抗氧化系统包括超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和谷胱甘肽过氧化物酶(GPx)等,它们能够催化ROS和RNS的分解,从而防止其对细胞的损害。
非酶促抗氧化系统则主要包括各种抗氧化剂,如维生素C、维生素E、谷胱甘肽、尿酸、胆红素等,它们可以直接与ROS和RNS反应,从而消除其活性。
近年来,对抗氧化能力的研究已经从简单的抗氧化剂筛选发展到了对抗氧化机制的深入研究。
研究者们开始关注抗氧化剂之间的协同作用,以及抗氧化剂与细胞信号通路之间的关系。
对抗氧化能力的评估方法也从单一的化学测定发展到了细胞模型和动物模型的评估,使得对抗氧化能力的理解更加全面和深入。
DPPH、ABTS和FRAP微量法测定山奈酚的抗氧化能力
2. 1. 2 山奈酚对 DPPH·清除能力
称取适量山奈酚, 加入无水乙醇配制成浓度为 160 μmol / L
的溶液, 后用无 水 乙 醇 稀 释 成 浓 度 梯 度 为 160、 80、 40、 20、
10、 5、 2. 5 μmol / L 的溶液。 精密吸取梯度样品溶液 100 μL 和
to evaluate the scavenging ability of Kaempferol against DPPH free radical and ABTS free radical. The antioxidant activity
of Kaempferol was evaluated by measuring a micro - model of FRAP. The scavenges DPPH and ABTS free radicals of
∗
第 49 卷第 3 期
59
王荣, 等: DPPH、 ABTS 和 FRAP 微量法测定山奈酚的抗氧化能力
Hale Waihona Puke 2 方法与结果2. 1 DPPH·清除能力的测定
2. 1. 1 DPPH·标准曲线的绘制
避光称取 DPPH 粉末 82 mg, 无水乙醇定容于 50 mL 量瓶
中, 得 1. 64 mg / mL 的 DPPH 母液。 以无水乙醇为溶剂将上述母
Kaempferol increased with the increase of the concentration. IC50 of the scavenge DPPH and ABTS free radicals were
镇江香醋抗氧化性研究
镇江香醋抗氧化性研究一、本文概述镇江香醋,作为中国四大名醋之一,以其独特的口感和深厚的文化底蕴深受消费者喜爱。
然而,在食品工业中,抗氧化性一直是评价食品品质的重要指标之一。
本文旨在对镇江香醋的抗氧化性进行深入研究,以期为提升镇江香醋的品质和延长其保质期提供理论支持和实践指导。
本研究将首先介绍镇江香醋的历史渊源、生产工艺和主要成分,为后续的抗氧化性研究奠定基础。
接着,通过一系列实验方法,如DPPH自由基清除实验、ABTS自由基清除实验、羟基自由基清除实验等,来评估镇江香醋的抗氧化能力。
还将探讨镇江香醋中可能具有抗氧化活性的成分,如有机酸、酚类物质等。
本研究还将对镇江香醋的抗氧化性与其品质之间的关系进行探讨,以期为消费者提供更加安全、健康的食品选择。
通过本研究,我们期望能够为镇江香醋的生产企业提供科学依据,推动镇江香醋产业的持续发展和创新。
也为食品科学领域的研究者提供新的思路和方向,推动抗氧化性研究的深入发展。
二、文献综述镇江香醋,作为中国四大名醋之一,不仅以其独特的口感和风味赢得了广大消费者的喜爱,更因其潜在的营养价值和健康功能而备受关注。
近年来,随着人们对健康饮食的追求和对天然抗氧化剂的研究日益深入,镇江香醋的抗氧化性逐渐成为研究热点。
在国内外学者的研究中,镇江香醋的抗氧化成分主要包括有机酸、酚类化合物、黄酮类化合物等。
这些成分在清除自由基、抑制脂质过氧化等方面表现出显著的生物活性。
例如,有机酸可以中和体内的自由基,减少氧化应激反应;酚类化合物和黄酮类化合物则具有很强的抗氧化和抗炎作用,能够保护细胞免受氧化损伤。
镇江香醋的抗氧化性与其生产工艺密切相关。
传统的固态发酵工艺使得香醋中的微生物种类丰富,这些微生物在代谢过程中会产生大量的抗氧化物质。
因此,研究不同生产工艺对镇江香醋抗氧化性的影响,对于优化生产工艺、提高产品品质具有重要意义。
然而,目前对于镇江香醋抗氧化性的研究还存在一些不足。
一方面,尽管已经发现了一些具有抗氧化作用的成分,但对于这些成分在香醋中的含量、稳定性以及生物利用率等方面的研究还不够深入;另一方面,对于镇江香醋抗氧化性的评价方法和标准尚未形成统一的认识,导致研究结果的可比性较差。
海洋鱼蛋白低聚肽结构和抗氧化活性的体外消化稳定性
海洋鱼蛋白低聚肽结构和抗氧化活性的体外消化稳定性冯晓文1,赵晓涵1,潘骁琦2,王卓然3,谷瑞增1,刘文颖1(1.中国食品发酵工业研究院有限公司,北京市蛋白功能肽工程技术研究中心,北京 100015) (2.北京城市学院生物医药学部,北京 100094)(3.北京农学院食品科学与工程学院,北京 102206) 摘要:本研究通过体外模拟胃肠道消化海洋鱼蛋白低聚肽,运用高效凝胶过滤色谱、紫外全波长扫描、圆二色光谱表征其消化前后结构变化,测定其消化前后DPPH自由基清除率、ABTS自由基清除能力、铁离子还原能力(FRAP)及氧自由基吸收能力(ORAC)的变化,以探究模拟胃肠道消化对海洋鱼蛋白低聚肽结构及抗氧化活性的影响。
分子量分布数据揭示了海洋鱼蛋白低聚肽中分子量为150~1000 u的组分为其主要组成部分,所占比例最高可达88.39%;紫外全波长扫描、圆二色光谱扫描表明海洋鱼蛋白低聚肽对胃蛋白酶有很强的抗消化稳定性以及对胰蛋白酶有较好的抗消化稳定性。
在浓度1~15 mg/mL范围内,海洋鱼蛋白低聚肽的DPPH自由基清除率与其浓度成正相关,最高为67.86%;ABTS自由基清除能力、FRAP值及ORAC值三个抗氧化指标均显示海洋鱼蛋白低聚肽在消化后其抗氧化活性均有一定程度的提高,其中ORAC值在先胃蛋白酶后胰蛋白酶消化后提高最显著(p<0.01)。
总之海洋鱼蛋白低聚肽的结构和抗氧化活性均具有抗消化稳定性。
关键词:海洋鱼蛋白低聚肽;体外模拟消化;紫外光谱;圆二色光谱;抗氧化活性文章篇号:1673-9078(2021)05-109-116 DOI: 10.13982/j.mfst.1673-9078.2021.5.0955 In Vitro Digestion Stability of Structure and Antioxidant Activity ofMarine Fish Protein OligopeptidesFENG Xiao-wen1, ZHAO Xiao-han1, PAN Xiao-qi2, W ANG Zhuo-ran3, GU Rui-zeng1, LIU Wen-ying1(1.Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries Co. Ltd., Beijing 100015, China) (2.Biochemical School, Beijing City University, Beijing 100094, China) (3.College of Food Science and Engineering, Beijing Agricultural University, Beijing 102206, China)Abstract: In this study, marine fish protein oligopeptides (MFPO) were digested through simulated gastrointestinal tract in vitro. The gel filtration chromatography, UV full wavelength scanning and circular dichroism spectrum were used to characterize the structure changes before and after digestion. DPPH free radical scavenging rate, ABTS free radical scavenging capacity, ferric ion reducing antioxidant power (FRAP) and oxygen radical absorbance capacity (ORAC) were measured before and after digestion to explore the effect of simulated gastrointestinal digestion on antioxidant activity of MFPO. The components with molecular weight of 150~1000 u were the main components of MFPO, accounting for up to 88.39% revealed by the molecular weight distribution data. The MFPO was proved to have strong anti-digestion stability to pepsin and good anti-digestion stability to trypsin by UV full wavelength scanning and circular dichroism spectrum scanning. In the concentration range of 1~15 mg/mL, the DPPH free radical scavenging rate of MFPO was found positively correlated with their concentration, 引文格式:冯晓文,赵晓涵,潘骁琦,等.海洋鱼蛋白低聚肽结构和抗氧化活性的体外消化稳定性[J].现代食品科技,2021,37(5):109-116FENG Xiao-wen, ZHAO Xiao-han, PAN Xiao-qi, et al. In Vitro digestion stability of structure and antioxidant activity of marine fish protein oligopeptides [J]. Modern Food Science and Technology, 2021, 37(5): 109-116收稿日期:2020-10-17基金项目:国家重点研发计划项目(2016YFD0400604);国家自然科学基金项目(31671963);北京市科技创新基地培育与发展工程专项(Z191100002819001) 作者简介:冯晓文(1995-),男,硕士研究生,研究方向:食源低聚肽研究;共同第一作者:赵晓涵(1994-),女,硕士研究生,研究方向:功能食品与食品过敏原通讯作者:刘文颖(1984-),女,硕士研究生,高级工程师,研究方向:食源低聚肽研究109and the highest was 67.86%. The other three antioxidant indexes including ABTS free radical scavenging capacity, FRAP and ORAC were also determined that the antioxidant activities of MFPO increased to a certain extent after digestion, among which the ORAC value increased most significantly after pepsin followed by trypsin digestion (p<0.01). The results showed that the structure and antioxidant activity of MFPO had anti-digestion stability.Key words: marine fish protein oligopeptides; simulated digestion in vitro; ultraviolet spectrum; circular dichroism spectrum; antioxidant activity三文鱼因其英文Salmon音似三文而得名,也叫鲑鱼、大马哈鱼或大麻哈鱼,主要产于北冰洋、大西洋与太平洋的交界水域,如加拿大、挪威、日本和美国等国家。
ORAC法的最新研究进展
猪油
过氧化物值(POV)
酚
色拉油
Tween:山梨糖醇酐单脂肪酸酯聚氧乙烯醚 ;AWVN:2.2 一偶氧(2.4-二甲基戊晴)[聚合催化物]
AAPH:2.2 一偶氯(2-眯基丙烷)二氯化氢[聚合化氢] PBS:磷酸盐缓冲液
用样品对人工生成的自由基的清除能力来反映待测物的抗氧化活性(表2)。
表2 不同样品对人工诱导自由基清除能力的评价方法比较
通过对4个氧化产物的结构推断确认出FL与过氧自由基化学反应的方式。FL氧化的第 一步为其酚羟基向过氧自由基提供一个氢原子而形成一个稳定的FL氧自由基( FLO·) ,随后 两分子自由基形成的二聚物即为m /z661的FL1。此外, FLO ·也可以攻击反应体系中痕量的 CO2 产生FL2 (m / z375) 。FL2的不稳定共轭双键被过氧自由基加成后产生自由基重排,并与 过氧自由基作用形成过氧化中间产物,进一步分解后生成FL3 (m / z349.0) 。FL3进一步氧化 得到不具有495 /515 nm 荧光吸收的氧化产物FL4(m / z221.3) 。从化学反应过程可以看出 ORAC反应是一个经典的氢原子转移( hydrogen atom transfer, HAT)的氧化过程[5]。
-2-
作为标准进行表达,并将该方法命名为oxygen radical absorbance capacity (ORAC) ,后被译为 氧自由基清除能力或抗氧化能力指数测定。
ORAC方法最初以β-PE作为荧光底物。虽然β-PE具有荧光强度大,对氧自由基灵敏度高, 而且水溶性好等特征,但与合成的荧光素Sodium Fluorescein ( 3′, 6′dihydroxyspiro[ isobenzofuran-1 [ 3H ] , 9′[ 9H ] -xanthen ] -3-one, FL )相比,β-PE是一组大分子 蛋白,各种PE具有不同的荧光强度和与自由基的反应性。加之分离得到的PE的纯度限制,很难 保证不同结果之间的可比性[4]。Ou等人[5]的研究证明,β-PE的荧光具有不稳定性,暴露在激发 波长下会很快自发衰退,使其难以进行定量计算。后来人们在实验中还发现,β-PE会以疏水或 氢键作用[ 8, 11 ]与天然界中的一大类抗氧化物质——多酚类非特异性结合,而且对不同物质不 同量表现不同的亲和力。而FL与待测样品之间不发生相互作用,不会干扰样品的测定结果[ 7 ]。 此外,β-PE 作为从P.cruentum 中分离得到的蛋白,成本相对较高。显然,无论从方法优越性及 经济角度讲, β-PE均不如FL作为荧光指示剂更为理想。因此,后来β-PE被FL所代替,使得 ORAC方法得到了快速的发展和广泛的应用。
不同品种龙眼果肉酚类物质的抗氧化活性比较
不同品种龙眼果肉酚类物质的抗氧化活性比较林耀盛;张名位;张瑞芬;郭栋梁;潘学文;魏振承;张雁;刘磊;唐小俊【期刊名称】《北京工商大学学报(自然科学版)》【年(卷),期】2016(034)003【摘要】为研究不同龙眼品种资源中酚类物质、黄酮类化合物含量及其抗氧化性差异,选取广东省农业科学院果树研究所龙眼资源圃的24个龙眼品种,分析其果肉中游离态和结合态总酚、总黄酮物质的含量,采用DPPH自由基清除能力、ABTS 总抗氧化能力、FRAP抗氧化能力和氧自由基吸收能力ORAC四种不同方法评价其体外抗氧化能力差异;不同龙眼品种果肉总酚、总黄酮含量与DPPH、ABTS、FRAP、ORAC四种不同方法测定的抗氧化能力的变幅和变异系数较大,呈现出显著的基因型差异;不同品种龙眼果肉的多酚和黄酮的含量分别与ABTS自由基清除能力、FRAP和ORAC呈极显著(p<0.01)正相关关系,而与DPPH自由基清除能力的EC50值呈极显著负相关关系(p<0.01).采用快速聚类法将24个不同品种的龙眼聚成多酚及总黄酮含量和抗氧化能力差异显著的三大群类.不同品种龙眼果肉游离态和结合态酚类物质含量与其抗氧化活性均呈显著正相关关系,提示酚类物质是龙眼果肉抗氧化活性的主要成分;酚类物质和黄酮类物质在龙眼果肉中主要以游离态存在,其中结合态平均占总酚含量的17.45%.【总页数】11页(P20-30)【作者】林耀盛;张名位;张瑞芬;郭栋梁;潘学文;魏振承;张雁;刘磊;唐小俊【作者单位】广东省农业科学院蚕业与农产品加工研究所/农业部功能食品重点实验室/广东省农产品加工重点实验室,广东广州510610;广东省农业科学院蚕业与农产品加工研究所/农业部功能食品重点实验室/广东省农产品加工重点实验室,广东广州510610;广东省农业科学院蚕业与农产品加工研究所/农业部功能食品重点实验室/广东省农产品加工重点实验室,广东广州510610;广东省农业科学院果树研究所,广东广州510640;广东省农业科学院果树研究所,广东广州510640;广东省农业科学院蚕业与农产品加工研究所/农业部功能食品重点实验室/广东省农产品加工重点实验室,广东广州510610;广东省农业科学院蚕业与农产品加工研究所/农业部功能食品重点实验室/广东省农产品加工重点实验室,广东广州510610;广东省农业科学院蚕业与农产品加工研究所/农业部功能食品重点实验室/广东省农产品加工重点实验室,广东广州510610;广东省农业科学院蚕业与农产品加工研究所/农业部功能食品重点实验室/广东省农产品加工重点实验室,广东广州510610【正文语种】中文【中图分类】TS255.1;TS201.2【相关文献】1.不同苦瓜品种果肉中酚类物质含量及抗氧化能力比较(英文) [J], 黄龙;邓媛元;张名位;张雁;魏振承;张瑞芬;唐小俊2.不同类型桃果肉酚类物质及抗氧化活性分析 [J], 卢娟芳;刘盛雨;芦旺;席万鹏3.不同苦瓜品种果肉中酚类物质含量及抗氧化能力比较 [J], 黄龙;邓媛元;张名位;张雁;魏振承;张瑞芬;唐小俊4.不同品种龙眼果肉酚类物质的抗氧化活性比较 [J], 林耀盛;张名位;张瑞芬;郭栋梁;潘学文;魏振承;张雁;刘磊;唐小俊;邓媛元;池建伟;5.不同品种荔枝果皮酚类物质组成及其抗氧化活性比较 [J], 徐灼辉; 曾庆祝; 苏东晓; 袁杨; 何山; 唐红艳; 郑英敏; 周依映因版权原因,仅展示原文概要,查看原文内容请购买。
不同甜樱桃品种抗氧化物质及抗氧化活性分析
不同甜樱桃品种抗氧化物质及抗氧化活性分析高帆;夏惠;王秀;王进;周琼;吕秀兰;梁东【摘要】以那翁、拉宾斯、佐藤锦、雷尼和红灯为试材,测定果实色度和抗氧化物质含量(总酚、总黄酮、总黄烷醇),并采用3种机制(DPPH、ABTS和FRAP值)综合评价它们的抗氧化活性.结果表明,不同甜樱桃品种的色度、抗氧化物质含量和抗氧化活性存在差异.红肉品种红灯和拉宾斯的a*值最大,b*值很低,而黄肉品种恰好相反,那翁亮度值L*最高.红灯抗氧化物质成分总酚和总黄酮含量最高.不同方法检测的抗氧化能力也是红灯最高,拉宾斯次之,而黄肉品种佐藤锦和那翁的抗氧化能力最低.相关性分析表明,总酚、总黄酮和抗氧化能力间均呈极显著或显著正相关关系,而总黄烷醇只跟总抗氧化能力检测法(ABTS)呈显著相关关系.因此,红肉甜樱桃可作为抗氧化物质的重要来源,其中红灯具有良好的发展价值和保健功能.%To investigate the International Commission on Illumination (CIE) values and antioxidant capacity of different varieties of sweet cherry fruit, Napoleon, Lapins, Sato Nishiki, Rainier, Hongdeng were used as materials to determine the content of the 3 antioxidants (total phenolics, total flavonoids and total flavanols).The antioxidant activities of 3 different mechanisms were evaluated in terms of the antioxidant activity of sweet cherry fruits, including ABTS.+ radical scavenging capacity (ABTS), DPPH radical scavenging capacity (DPPH), and iron ion reducing ability (FRAP).The results showed that differences were found among different varieties.Red-fleshed sweet cherry varieties Hongdeng and Lapins owned higher a* value and lower b* value, while the yellow-fleshed varieties were on the contrary, and Napoleon had the highest L* value.Hongdeng had thehighest content of antioxidant compounds and also had the highest antioxidant capacity, while the yellow-fleshed varieties Sato Nishiki and Napoleon were the lowest.Moreover, significant or extremely significant positive correlations were found between total phenolics (TPC), total flavonoids (TFC) and each bioactive compound, and significant positive correlation was found between total flavanols (TFAC) and ABTS.All of these results suggested that red-fleshed sweet cherries contained high antioxidants, and Hongdeng is a promising hygienical function for human nutrition.【期刊名称】《浙江农业学报》【年(卷),期】2017(029)006【总页数】7页(P926-932)【关键词】甜樱桃;抗氧化活性成分;抗氧化能力;自由基清除【作者】高帆;夏惠;王秀;王进;周琼;吕秀兰;梁东【作者单位】四川农业大学园艺学院,四川成都 611130;四川农业大学果蔬研究所,四川成都 611130;四川农业大学园艺学院,四川成都 611130;四川农业大学果蔬研究所,四川成都 611130;四川汉源农业局,四川汉源 625300;四川农业大学果蔬研究所,四川成都 611130;四川农业大学果蔬研究所,四川成都 611130【正文语种】中文【中图分类】S662.5甜樱桃(Cerasus avium L.)是欧洲甜樱桃的简称,又称大樱桃、西洋樱桃,属蔷薇科(Rosaceae)李属(Prunus L.)樱亚属(Cerasus Pers)植物。
干红树葡萄酒与干红葡萄酒功能成分及其抗氧化活性对比
干红树葡萄酒与干红葡萄酒功能成分及其抗氧化活性对比邱珊莲;郑开斌;林宝妹;张树河【摘要】分别测定干红树葡萄酒与2种干红葡萄酒(法国干红葡萄酒、国产干红葡萄酒)中的总多酚、总黄酮、白藜芦醇、单宁、酚酸、维生素、花青素及矿物质等功能性成分,采用DPPH法、ABTS法、邻二氮菲法和FRAP法分析3种酒的抗氧化能力,并对其差异进行分析比较.结果表明:干红树葡萄酒与2种干红葡萄酒功能成分种类及含量各有特点和优势.干红树葡萄酒中没食子酸、VA、VC、Mn与Zn含量均极显著高于国产干红葡萄酒和法国干红葡萄酒;法国干红葡萄酒中总多酚、总黄酮、白藜芦醇、儿茶素、咖啡酸、香豆酸、阿魏酸、矢车菊色素及Fe含量均极显著高于国产干红葡萄酒和干红树葡萄酒;国产干红葡萄酒中单宁、VD、飞燕草色素、矮牵牛色素、天竺葵色素、芍药色素、锦葵色素、Ca和Mg含量均极显著高于法国干红葡萄酒和干红树葡萄酒.3种酒抗氧化活性亦各具特色,树葡萄红酒对DPPH·的清除能力最强,法国干红葡萄酒对·OH的清除能力最强,国产干红葡萄酒对ABTS+的清除能力及对铁离子的还原能力最强.【期刊名称】《食品与机械》【年(卷),期】2019(035)004【总页数】5页(P163-167)【关键词】干红树葡萄酒;干红葡萄酒;功能成分;抗氧化活性【作者】邱珊莲;郑开斌;林宝妹;张树河【作者单位】福建省农业科学院亚热带农业研究所,福建漳州 363005;福建省农业科学院亚热带农业研究所,福建漳州 363005;福建省农业科学院亚热带农业研究所,福建漳州 363005;福建省农业科学院亚热带农业研究所,福建漳州 363005【正文语种】中文树葡萄[Myrciaria cauliflora(DC.)Berg],又名肖柽柳桃金娘、珍宝果、嘉宝果、拟爱神木,为桃金娘科拟香桃木属常绿灌木,主要分布于南美洲的巴西、巴拉圭、阿根廷等国家或地区,中国大陆近年来栽植的树葡萄均引自台湾。
温州蜜柑果皮提取物总酚·总黄酮含量测定及其抗氧化活性研究
温州蜜柑果皮提取物总酚总黄酮含量测定及其抗氧化活性研究左龙亚;于杰【摘要】[目的]研究温州蜜柑果皮不同溶剂提取物总酚、总黄酮含量及其抗氧化活性,筛选最佳提取试剂。
[方法]依次用甲醇、乙醇、丙酮、乙酸乙酯及蒸馏水对温洲蜜柑果皮进行提取,检测不同溶剂提取物体外抗氧化活性,并对不同溶剂提取物总酚、总黄酮含量进行测定。
[结果]温州蜜柑不同溶剂提取物均具有一定的抗氧化活性,其中甲醇、丙酮提取物的抗氧化活性较强,APC指数位居前2位。
不同溶剂提取物的抗氧化活性与其总酚、总黄酮的含量呈极显著正相关关系,相关系数 r 分别为0.905**、0.583**、0.948**、0.849**、0.760**、0.955**(P <0.01)。
[结论]对温州蜜柑不同溶剂提取物总酚、总黄酮含量测定及其抗氧化活性研究确定甲醇为其最优提取试剂。
%Objective] The aim was to compare and study content of total phenols and total flavonoids in Citrus unshiu peel and antioxidant ac-tivity by different solvents,to screen out optimal extraction reagent.[ Method] Methanol,ethanol,acetone,ethyl acetate and distilled water was used to get extracts from Citrus unshiu peel.The antioxidant activity was detected.The content of total phenol,total flavonoids in different solvents was determined.[Result] The different solvents from Cit rus unshiu all had some antioxidant activity.The extracts from methanol and acetone had more stronger antioxidant activity than others,APC index was in top 2.The antioxidant activity had extremely significant positive correlation with the content of total flavonois,total phenols(r=0.905**,0.583**,0.948**,0.849**,0.760**,0.955**(P<0.01)).[Conclu sion] The ex-tracts of methanol of Citrus unshiu show the best inantioxidant activities and contents of total flavonoids and phenols from different solvent extracts of Ctirus unshiu.【期刊名称】《安徽农业科学》【年(卷),期】2016(044)028【总页数】3页(P89-91)【关键词】温州蜜柑;提取物;酚类物质;抗氧化活性【作者】左龙亚;于杰【作者单位】西南大学园艺园林学院,重庆400715; 南方山地园艺学教育部重点实验室,重庆400716;西南大学园艺园林学院,重庆400715; 南方山地园艺学教育部重点实验室,重庆400716【正文语种】中文【中图分类】S666温州蜜柑(Citrus unshiu)隶属于芸香科(Rutaceae)柑橘属(Citrus L.)植物,主产于浙江省温州市,又称无核橘,现为世界性主要柑橘之一[1]。
黑姜抗氧化活性研究
黑姜抗氧化活性研究宗宁宇;王春亮;张志国;黄珊【摘要】研究了黑姜的体外抗氧化活性.黑姜是以新鲜的姜为原料,在一定条件下发酵而成.测定了黑姜与新鲜姜醇提物和水提物的抗氧化活性,其中包括清除DPPH自由基能力、清除ABTS自由基能力、清除OH自由基能力、二价铁离子还原能力.结果显示:与新鲜姜相比,黑姜的抗氧化活性增强,醇提物的活性要高于其水提物的活性.黑姜醇提物DPPH自由基清除率,其IC50是0.12 mg/mL,ABTS自由基清除率,其IC50是0.04 mg/mL,当样品浓度为0.5 mg/mL时,OH自由基清除率为36.49%.二价铁离子还原力是鲜姜醇提的1.5倍.通过比较醇提物和水提物的抗氧化活性,得出样品的乙醇提取物的抗氧化活性要优于其水提取物的.【期刊名称】《中国调味品》【年(卷),期】2019(044)003【总页数】4页(P57-60)【关键词】黑姜;醇提;抗氧化活性【作者】宗宁宇;王春亮;张志国;黄珊【作者单位】齐鲁工业大学(山东省科学院)食品科学与工程学院,济南250353;山东和盈机械科技有限公司,山东诸城262200;齐鲁工业大学(山东省科学院)食品科学与工程学院,济南250353;齐鲁工业大学(山东省科学院)食品科学与工程学院,济南250353【正文语种】中文【中图分类】TS264.29姜,属姜科,草本植物姜的根茎,多年生,又名百辣云、因地辛、姜根,其根茎肉质肥厚,形状如掌[1,2]。
姜具有辛辣味和浓郁的芳香味,是一种常见的香辛调味料。
姜原产于东南亚热带地区,在我国中部、东南部至西南部各省均有种植,山东莱芜、湖南新邵、四川宜宾等地均是姜的主要产区[3,4]。
姜是一种药食两用植物,研究表明姜具有抗氧化、抗肿瘤、保肝利胆、消炎止痛、降血脂等多种生物活性[5-8]。
黑姜,是以新鲜姜为原料,在一定的温度和湿度的条件下,发酵而成的一种新型姜制品。
其中在加工黑姜的过程中,黑姜自身的组织遭到破坏,其物质发生一系列化学反应,包括酶促反应和非酶褐变反应,具体如美拉德反应、焦糖化反应等[9]。
不同种类茶叶抗氧化活性及茶汤颜色参数比较
2.1 抗氧化活性 DPPH 可提供一种稳定的质子自由基, 其甲
醇溶液显紫色,在 517 nm 处有最大吸收。 当有供 氢能力的抗氧化剂存在(如酚类)时,DPPH·溶 液 的颜色变浅,吸光度值变小。 通过测定 DPPH·自 由基含量(吸光度)的变化来评价抗氧化物质的抗 氧 化 活 性 [11,22]。
使用 SAS program version 9.2 (SAS Institute Inc.,美 国 ) 进 行 方 差 分 析 、 相 关 性 分 析 和 主 成 分 分 析。 平均值的多重比较: 用最小显著差异(Least
244
中国食品学报
2016 年第 2 期
significant differences,LSD) 方 法 检 测 P<0.05 时 的差异显著性。 本文所有试验均重复 3 次,试验结 果以平均值±标准差表示。
g 样 品 清 除 DPPH 自 由 基 能 力 相 当 于 Trolox (Trolox equivalent antioxidant capacity,TEAC) 的 物质的量(mmol TEAC/100 g)来表示。 1.5 ABTS 法抗氧化活性测定
茶汤的总抗氧化能力参照 ABTS 法测定 , [17-18] 并略作修改。 测定前 按 体 积 比 2∶1 将 7.0 mmol/L ABTS 母液与 2.45 mmol/L 过 硫 酸 钾 溶 液 混 合 ,室 温避光静置过夜, 反应得到 ABTS·+阳离子溶液。 将 上 述 溶 液 用 适 量 80%乙 醇 稀 释 至 波 长 734 nm 处的吸光率为 0.700±0.002。 取稀释的 ABTS·+溶液 4.0 mL,加入 0.1 mL 适当稀释的茶汤,混合,室温 反应 6 min,立刻测 734 nm 处的吸光值。 以 Trolox 为标样(50~800 μmol/L)绘制标准曲线。 结果以每 100 g 样品清除 ABTS·+阳离子自由基能力相当于 Trolox (Trolox equivalent antioxidant capacity, TEAC)的物质的量(mmol TEAC/100 g)来表示。 1.6 FRAP 法抗氧化活性测定
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
JOURNAL OF FOOD COMPOSITION AND ANALYSISJournal of Food Composition and Analysis 19(2006)669–675Original ArticleComparison of ABTS,DPPH,FRAP,and ORAC assays for estimatingantioxidant activity from guava fruit extractsKriengsak Thaipong a ,Unaroj Boonprakob a,Ã,Kevin Crosby b ,Luis Cisneros-Zevallos c ,David Hawkins Byrne ca Department of Horticulture,Kasetsart University,Kamphaengsaen Campus,Nakhon Pathom 73140,Thailand bDepartment of Horticultural Sciences,Texas A&M Research &Extension Center,Weslaco,TX 78596,USA cDepartment of Horticultural Sciences,Texas A&M University,College Station,TX 77843-2133,USAReceived 28March 2005;received in revised form 5January 2006;accepted 10January 2006AbstractGuava fruit extracts were analyzed for antioxidant activity measured in methanol extract (AOAM),antioxidant activity measured in dichloromethane extract (AOAD),ascorbic acid,total phenolics,and total carotenoids contents.The ABTS,DPPH,and FRAP assays were used for determining both AOAM and AOAD,whereas the ORAC was used for determining only AOAM.Averaged AOAM [m M Trolox equivalent (TE)/g fresh mass (FM)]were 31.1,25.2,26.1,and 21.3as determined by the ABTS,DPPH,FRAP,and ORAC assays,respectively.Averaged AOAD (m M TE/g FM)were 0.44,0.27,and 0.16as determined by the ABTS,DPPH,and FRAP assays,respectively.AOAM determined by all assays were well correlated with ascorbic acid (0.61p r p 0.92)and total phenolics (0.81p r p 0.97)and also among themselves (0.68p r p 0.97)but had negative correlation with total carotenoids (À0.67p r p À0.81).r 2006Elsevier Inc.All rights reserved.Keywords:Ascorbic acid;Phenolic;Carotenoid;Psidium guajava L.1.IntroductionNatural antioxidants,particularly in fruits and vegeta-bles have gained increasing interest among consumers and the scientific community because epidemiological studies have indicated that frequent consumption of natural antioxidants is associated with a lower risk of cardiovas-cular disease and cancer (Renaud et al.,1998;Temple,2000).The defensive effects of natural antioxidants in fruits and vegetables are related to three major groups:vitamins,phenolics,and carotenoids.Ascorbic acid and phenolics are known as hydrophilic antioxidants,while carotenoids are known as lipophilic antioxidants (Halliwell,1996).Guava (Psidium guajava L.)fruit is considered a highly nutritious fruit because it contains a high level of ascorbic acid (50–300mg/100g fresh weight),which is three to six times higher than oranges.Red-fleshed Brazilian guava hasseveral carotenoids such as phytofluene,b -carotene,b -cryptoxanthin,g -carotene,lycopene,rubixanthin,crypto-flavin,lutein,and neochrome (Mercadante et al.,1999).Setiawan et al.(2001)reported that Indonesian guava is an excellent source of provitamin A carotenoids.Phenolic compounds such as myricetin and apigenin (Miean and Mohamed,2001),ellagic acid,and anthocyanins (Misra and Seshadri,1968)are also at high levels in guava fruits.Therefore,producing guava specially bred for higher levels of antioxidant compounds,is a realistic approach to increase dietary antioxidant intake.Evaluation in any plant-breeding program,however,has to deal with numerous plants,particularly at the early selection stage.Therefore,the assay for screening germplasm and hybrids should be simple,inexpensive,rapidly performed,and provide a high degree of precision.Several assays have been frequently used to estimate antioxidant capacities in fresh fruits and vegetables and their products and foods for clinical studies including 2,2-azinobis (3-ethyl-benzothiazoline-6-sulfonic acid)(ABTS)/locate/jfca0889-1575/$-see front matter r 2006Elsevier Inc.All rights reserved.doi:10.1016/j.jfca.2006.01.003ÃCorresponding author.Tel.:6634281084;fax:6634281086.E-mail address:unaroj.b@ku.ac.th (U.Boonprakob).(Leong and Shui,2002;Miller and Rice-Evans,1997),2,2-diphenyl-1-picrylhydrazyl(DPPH)(Brand-Williams et al., 1995;Gil et al.,2002),ferric reducing antioxidant power (FRAP)(Benzie and Strain,1999;Guo et al.,2003; Jimenez-Escrig et al.,2001),and the oxygen radical absorption capacity(ORAC)(Cao et al.,1993;Ou et al., 2001;Prior et al.,2003).The ORAC assay is said to be more relevant because it utilizes a biologically relevant radical source(Prior et al.,2003).These techniques have shown different results among crop species and across laboratories.Ou et al.(2002)reported no correlation of antioxidant activity between the FRAP and ORAC techniques among most of the927freeze-dried vegetable samples,whereas these methods revealed high correlation in blueberry fruit(Connor et al.,2002).Similarly,Awika et al.(2003)observed high correlation between ABTS, DPPH,and ORAC among sorghum and its products. The aim of this research was to compare the efficiency of ABTS,DPPH,FRAP,and ORAC assays to estimate antioxidant activities and their correlations with ascorbic acid,total phenolics,and total carotenoids contents in guava fruit extracts.2.Materials and methods2.1.Plant materialsGuava fruits were harvested at maturity from one white-fleshed(‘Allahabad Safeda’)and three pink-fleshed(‘Fan Retief’,‘Ruby Supreme’and an advanced selection)clones at Weslaco,TX,USA with the cooperation of Dr.Kevin Crosby.Whole fruit was stored atÀ201C for6months before extraction.2.2.ExtractionsFruit extracts for ascorbic acid analysis were obtained by homogenizing3g of guava tissue(pulp and peel)in20mL cold solution of3%(w/v)oxalic acid plus8%glacial acetic acid(v/v)until uniform consistency,using an Ultra-Turrax homogenizer(T25,Ika Works Inc.,USA).The homo-genates were centrifuged at15,000rpm at41C for10min. The supernatants were recovered and ascorbic acid immediately measured.Fruit extracts for total phenolics and antioxidant activity measured in methanol extract(AOAM)analysis were prepared using the method of Swain and Hillis(1959), with some modifications.Three grams of guava tissue were mixed with25mL methanol and homogenized using the Ultra-Turrax homogenizer.The homogenates were kept at 41C for12h and then centrifuged at15,000rpm for20min using a vacuum micro centrifuge(Beckman,J2-21,Beck-man Instruments Inc.,USA).The supernatants were recovered and stored atÀ201C until analysis.The pellet was re-dissolved with20mL dichloromethane and homo-genized for antioxidant activity measured in dichloro-methane extract(AOAD)analysis.The homogenates were centrifuged at15,000rpm for20min.The supernatants were recovered and stored atÀ201C until analysis.In general,methanol extraction and dichloromethane extrac-tion are used for determining hydrophilic and lipophilic antioxidant activities(Arnao et al.,2001).Fruit extracts for total carotenoids analysis were prepared by the method of Wilberg and Rodriguez-Amaya (1995),with some modifications.Three grams of guava tissue were mixed with20mL ethanol–hexane(1:1) solution containing200mg/L2,6-di-ter-butyl-p-cresol to avoid carotenoid oxidation and then homogenized using the Ultra-Turrax homogenizer until uniform consistency. The homogenates werefiltered using a Whatman No.4filter paper and re-extracted two or three times,depending on the clone,with20mL solvent.The extracts were washed three times with nanopure water.The supernatants were recovered and added with hexane to afinal volume of 10mL,and then stored atÀ201C until analysis.2.3.Antioxidant determinationsAscorbic acid content was determined using the2,6-dichlorophenol-indophenol titration method described in Association of Office Analytical Chemists(1996).L-ascorbic acid was used to prepare a standard solution (1mg/mL).The ascorbic acid concentration was calculated by comparison with the standard and expressed as mg/ 100g fresh mass.Total phenolics content was determined by the Folin–Ciocalteu method,which was adapted from Swain and Hillis(1959).The150m L of extract,2400m L of nanopure water,and150m L of0.25N Folin–Ciocalteu reagent were combined in a plastic vial and then mixed well using a Vortex.The mixture was allowed to react for3min then 300m L of1N Na2CO3solution was added and mixed well. The solution was incubated at room temperature(231C)in the dark for2h.The absorbance was measured at725nm using a spectrophotometer(Hewlett Packard8452A,Diode Array,USA)and the results were expressed in gallic acid equivalents(GAE;mg/100g fresh mass)using a gallic acid (0–0.1mg/mL)standard curve.Additional dilution was done if the absorbance value measured was over the linear range of the standard curve.Total carotenoids content was determined by the spectrophotometric method at470nm,which was adapted from Talcott and Howard(1999)using a b-carotene (0.001–0.005mg/mL)standard curve.The total carotenoids content was expressed based on b-carotene equivalents(b-carotene;mg/100g fresh mass).Additional dilution was done if the absorbance value measured was over the linear range of the standard curve.2.4.Antioxidant activity determinationsFor ABTS assay,the procedure followed the method of Arnao et al.(2001)with some modifications.The stock solutions included7.4mM ABTS d+solution and2.6mMK.Thaipong et al./Journal of Food Composition and Analysis19(2006)669–675 670potassium persulfate solution.The working solution was then prepared by mixing the two stock solutions in equal quantities and allowing them to react for12h at room temperature in the dark.The solution was then diluted by mixing1mL ABTS d+solution with60mL methanol to obtain an absorbance of1.170.02units at734nm using the spectrophotometer.Fresh ABTS d+solution was prepared for each assay.Fruit extracts(150m L)were allowed to react with2850m L of the ABTS d+solution for 2h in a dark condition.Then the absorbance was taken at 734nm using the spectrophotometer.The standard curve was linear between25and600m M Trolox.Results are expressed in m M Trolox equivalents(TE)/g fresh mass.Additional dilution was needed if the ABTS value measured was over the linear range of the standard curve.The DPPH assay was done according to the method of Brand-Williams et al.(1995)with some modifications.The stock solution was prepared by dissolving24mg DPPH with100mL methanol and then stored atÀ201C until needed.The working solution was obtained by mixing 10mL stock solution with45mL methanol to obtain an absorbance of1.170.02units at515nm using the spectro-photometer.Fruit extracts(150m L)were allowed to react with2850m L of the DPPH solution for24h in the dark. Then the absorbance was taken at515nm.The standard curve was linear between25and800m M Trolox.Results are expressed in m M TE/g fresh mass.Additional dilution was needed if the DPPH value measured was over the linear range of the standard curve.The FRAP assay was done according to Benzie and Strain(1996)with some modifications.The stock solutions included300mM acetate buffer(3.1g C2H3NaO2Á3H2O and16mL C2H4O2),pH 3.6,10mM TPTZ(2,4,6-tripyridyl-s-triazine)solution in40mM HCl,and20mM FeCl3Á6H2O solution.The fresh working solution was prepared by mixing25mL acetate buffer,2.5mL TPTZ solution,and 2.5mL FeCl3Á6H2O solution and then warmed at371C before using.Fruit extracts(150m L)were allowed to react with2850m L of the FRAP solution for 30min in the dark condition.Readings of the colored product[ferrous tripyridyltriazine complex]were then taken at593nm.The standard curve was linear between 25and800m M Trolox.Results are expressed in m M TE/g fresh mass.Additional dilution was needed if the FRAP value measured was over the linear range of the standard curve.The ORAC procedure used an automated plate reader (KC4,Bio Tek,USA)with96-well plates(Prior et al., 2003).Analyses were conducted in phosphate buffer pH7.4 at371C.Peroxyl radical was generated using2,2’-azobis (2-amidino-propane)dihydrochloride which was prepared fresh for each run.Fluorescein was used as the substrate. Fluorescence conditions were as follows:excitation at 485nm and emission at520nm.The standard curve was linear between0and50m M Trolox.Results are expressed as m M TE/g fresh mass.2.5.Statistical analysisEach antioxidant activity assay was done three times from the same extract in order to determine their reproducibility.Analysis of variance was used to test any difference in antioxidant activities resulting from these methods.Duncan’s new multiple range test was used to determine significant differences.Correlations among data obtained were calculated using Pearson’s correlation coefficient(r).3.Results and discussion3.1.Ascorbic acid,total phenolic,and total carotenoid contentsThe amount of ascorbic acid(AA),total phenolics (TPH),and total carotenoids expressed as b-carotene (BET)were significantly different among guava clones (Table1).The AA was378.6mg/100g in‘Allahabad Safeda’and ranged from174.2to396.7mg/100g in the pink pulp clones.The TPH was344.9mg GAE/100g in ‘Allahabad Safeda’and ranged from170.0to300.8mg GAE/100g in the pink pulp clones.The BET ranged from 0.78to2.93mg/100g in the pink pulp clones,while it was not present in the white pulp clone.Luximon-Ramma et al. (2003)have also reported that white pulp guavas had higher AA and TPH than pink pulp guavas in which the AA was142.6and72.2mg/100g in white and pink pulp, respectively,and the TPH was247.3and126.4mg GAE/ 100g in white and pink pulp,respectively.The AA,TPH, and BET contents in guavas were very high compared to other fruit crops.The ranges of AA contents(mg/100g) were 4.8–13.2in nectarines, 3.6–12.6in peaches and 2.5–10.2in plums(Gil et al.,2002),19.0in starfruit,27.5 in pineapple,60.5in mango,92.9in papaya,13.8in litchi (Luximon-Ramma et al.,2003).The ranges of TPH contents(mg/100g)were14–102in nectarines,21–111in peaches and42–109in plums(Gil et al.,2002),142.9in starfruit,47.9in pineapple,56.0in mango,57.6in papaya, 28.8in litchi(Luximon-Ramma et al.,2003).The ranges of BET contents(mg/100g)were0.01–0.19in nectarines, 0.01–0.26in plums(Gil et al.,2002).3.2.Reproducibility of ABTS,DPPH,FRAP,and ORAC assaysAntioxidant activities measured in methanol extract obtained using ABTS,DPPH,FRAP,and ORAC assays from a single extract were measured three times to test the reproducibility of the assays.The DPPH and FRAP assays showed no differences among determinations,while the ABTS and ORAC assays differed among runs(Table2). All assays,however,had no genotypeÂtime interaction, indicating that all techniques gave a comparable ranking of antioxidant activity among clones within each time of determination.Therefore,the DPPH and FRAP assaysK.Thaipong et al./Journal of Food Composition and Analysis19(2006)669–675671could be used to determine antioxidant activity in guava as both showed high reproducibility.Working solutions of the DPPH,FRAP,and ORAC were used immediately after preparation while that of ABTS needed to be kept in the dark for 12h to generate free radicals from the ABTS salt and then was used within 4h (Awika et al.,2003;Arnao et al.,2001).Since the ABTS working solution was not always the same age,the activity of the solution to reactwith guava extracts might have been different among the determination times.For the ORAC,a 96-well plate machine (KC4,Bio Tek,USA)was used in this research.Reading value tended to be higher at the top than that at the bottom and also from the left than the right of the 96-well plates (data not shown).Prior et al.(2003)noted that a lower coefficient of variance (CV)is obtained using the 48-well format compared to the 96-well format.The 48-well plate data had a CV about 50%of the CV of the data generated in a 96-well plate.Therefore,the location of samples in the plate induced an increased error rate in the assays.In terms of cost and time of running these methods,the main disadvantage of the ORAC technique is that it required the use of expensive equipment (Awika et al.,2003),whereas the other three methods required a simple machine,a spectrophotometer,which is commonly avail-able in most laboratories.Another advantage of the ABTS and FRAP was that extracts reacted rapidly with ABTS (2h)or ferric ion (30min),respectively,whereas the DPPH reaction took much longer (24h).3.3.Antioxidant activity measured in methanol extract The genotypes and the assays resulted in different antioxidant activity measured in methanol extract (AOAM)(Table 3).The white pulp clone,‘Allahabad Safeda’,had the highest AOAM value (32.25m M TE/g).The pink pulp clones had 28.45,18.03,and 25.13m M TE/g for ‘Fan Retief’,‘Ruby Supreme’and the advanced selection,respectively (Table 4).Higher level of AOAM in the white pulp clone was found in all assays as compared to the pink pulp clones due to its higher AA and TPH (Table 1).It,however,cannot be generalized that white pulp guava has a higher level of antioxidant activity than pink pulp guava because limited numbers of samples were studied in this research.There are three major pulp colored types:white,pink and maroon.Each consists of many genotypes,especially the white and pink pulp types.Therefore,more genotypes of all of the classes need to be measured for antioxidant activity to properly assess the variation of antioxidant activity among guava types.The antioxidant activity as determined by ORAC assay of guavas (18.03–32.25m M TE/g)was comparable to that of blueberries (13.9–45.9m M TE/g)which contain an exceptionally high antioxidant activity (Prior et al.,1998).Table 1Ascorbic acid,total phenolics,and total carotenoids contents of four guava genotypes Genotype a Ascorbic acid b Total phenolics c Totalcarotenoids d Allahabad Safeda 378.6729.2a e 344.9733.6a e naFan Retief 396.7725.0a 300.8712.7b 1.5970.12b Ruby Supreme 174.275.8c 170.075.6c 2.9370.35a Advanced selection 258.9749.9b 270.672.9b 0.7870.16c P valueo 0.01o 0.01o 0.01na ¼not available.aFan Retief’,‘Ruby Supreme’,and advanced selection are pink pulp;‘Allahabad Safeda’is white pulp.bAscorbic acid expressed in mg/100g fresh mass.cTotal phenolics content expressed in mg gallic acid equivalents/100g fresh mass.dTotal carotenoids content expressed in mg b -carotene equivalents/100g fresh mass.eMean separation within columns by Duncan’s new multiple range test.Table 2ANOVA for antioxidant activity among three determinations of a single methanol extract by ABTS,DPPH,FRAP,and ORAC assays from four guava genotypes Sourcedf MS P ABTS Guava3410.95o 0.01Repeatability282.69o 0.01Guava ÂRepeatability 611.730.27Error248.68DPPH Guava3393.37o 0.01Repeatability213.760.32Guava ÂRepeatability 68.950.65Error2412.76FRAP Guava3554.81o 0.01Repeatability2 2.350.45Guava ÂRepeatability 60.810.94Error 24 2.87ORAC Guava385.54o 0.01Repeatability275.67o 0.01Guava ÂRepeatability 6 4.560.56Error245.52Table 3ANOVA for antioxidant activity by the ABTS,DPPH,FRAP,and ORAC assays based on methanol extraction from four guava genotypes Source df MS P Guava 3433.0o 0.01Assay3192.9o 0.01Guava ÂAssay 916.8o 0.01Error324.7K.Thaipong et al./Journal of Food Composition and Analysis 19(2006)669–675672Therefore,guava is another fruit that has an exceptionally high antioxidant activity.The antioxidant activities obtained in the present study were very high compared to other fruit crops.Wang et al.(1996)reported the antioxidant activity of12fresh fruits(melon,pear,tomato, apple,banana,white and pink grape,pink grapefruit, orange,kiwi,plum,strawberry)ranging from less than 1m M TE/g for melon up to15m M TE/g for strawberry. The average AOAM values were31.1,25.2,26.1and 21.3m M TE/g as determined by the ABTS,DPPH,FRAP,and ORAC assays,respectively(Table4).The different AOAM levels obtained from the assays may reflect a relative difference in the ability of antioxidant compounds in the extracts to quench aqueous peroxyl radicals and to reduce ABTS d+,the DPPH free radical and ferric iron in in vitro systems.Although the interaction of guava and assay was significant for the AOAM,it only explained a small amount of the total variation as compared to either guava or assay(Table3).The interaction of guava and assay,however,was not significant for the AOAM when the ORAC technique was excluded from the analysis(data not shown).These indicated that the other three techniques yielded comparable results between clones.3.4.Antioxidant activity measured in dichloromethane extractOnly three assays,ABTS,DPPH,and FRAP,were used to measure AOAD.The ANOVA showed that AOAD level was significantly different among assays(P o0.01)but not between guava clones,with no interaction between guavas and assays(Table5).Means of the AOAD levels from the four guavas were0.44,0.27,and0.16m M TE/g as determined by the ABTS,DPPH,and FRAP assays, respectively(Table6).The AOAD levels were very low:less than2%of the total.Means of the AOAD levels from the four guavas as determined by the ABTS were2and3times of DPPH and FRAP assays,respectively(Table6).3.5.CorrelationsCorrelations between AOAM obtained from all assays, TPH and AA were positively high(0.61p r p0.97, P o0.05),especially between AOAM based on FRAP assay and TPH(r¼0.97,P o0.01)and AA(r¼0.92, P o0.01)(Table7).Most techniques,including these four, used for determining antioxidant activity,showed high correlation with TPH in different crops.It could be that phenolic compounds,which are known as hydrophilic antioxidants,are secondary metabolites that are most abundant in fruits(Macheix et al.,1990).Gil et al.(2002) found high correlation(r40.9,P p0.05)between antiox-idant activities as determined by DPPH or FRAP assays and TPH in nectarines,peaches and plums.Also,high correlation between TPH and antioxidant activity as determined by FRAP or electron spin resonance spectro-scopy were reported in fruit juices(Gardner et al.,2000). Whereas,high correlation between antioxidant activity using any method and AA was likely to be found in only fruits that contain high AA such as orange(Gardner et al., 2000)and guava(Table6).Gil et al.(2002)demonstrated that there was no correlation between AA and antioxidant activity as determined by DPPH or FRAP assays in nectarines,peaches and plums.The AA in nectarines (4.8–13.2mg/100g),peaches(3.6–12.6mg/100g),and plums(2.5–10.2mg/100g)were very low compared to guavas(174.2–396.7mg/100g).The high correlation be-tween any of AOAM with TPH or AA in guava suggested that it was feasible to use TPH or AA to screen for AOAM. Both AA and TPH showed high positive correlation with AOAM as determined by all assays,which indicates that AA and TPH are important contributors to antioxidant activity in guava extracts.Although high phenolics may cause problems with browning in fruits,Ozoglu and Bayindirli(2002)reported that ascorbic acid can inhibit enzymic browning in apple juice.Therefore,guava fruits containing high amount of AOAM are less likely to experienceflesh browning problem.Table4Antioxidant activity of guava fruit methanol extracts as determined by the ABTS,DPPH,FRAP,and ORAC assays from four guava genotypes Genotype Antioxidant activity(m M TE/g FM)Genotypic mean(P¼0.01) ABTS DPPH FRAP ORACAllahabad Safeda37.973.432.075.133.371.425.571.632.25.1aFan Retief34.472.127.771.730.471.221.072.428.45.6bRuby Supreme22.370.916.271.015.571.418.272.318.03.1dAdvanced selection29.672.324.970.525.371.120.571.825.13.7cAssay mean(P¼0.01)31.176.8a25.276.7b26.177.8b21.373.1cTable5ANOVA for antioxidant activity by the ABTS,DPPH,and FRAP assaysbased on dichloromethane extraction from four guava genotypesSource Df MS PGuava30.0320.11Assay20.238o0.01GuavaÂAssay60.0230.18Error240.014K.Thaipong et al./Journal of Food Composition and Analysis19(2006)669–675673The AOAM based on ABTS,DPPH,and FRAP assays were negatively correlated with BET.Correlation between all pairs of AOAM assays were positively high (0.68p r p 0.97,P o 0.01)indicating that guava extracts had comparable activities in all four assays.High correla-tion between these four techniques was also found in other crops.Connor et al.(2002)found high correlation among ORAC,FRAP,and methyl linoleate oxidation assays in blueberries.Awika et al.(2003)also found high correlation between ORAC,ABTS,and DPPH in sorghum and its products.There were no consistent correlations between assays to measure AOAM and AOAD nor were AOAD assays correlated among themselves.Correlations among AOAM based on ABTS,DPPH,FRAP,and ORAC assays were positively high and ranged between 0.68and 0.97:the highest correlation was between ABTS and FRAP (0.97)and the lowest correlation was between DPPH and ORAC (0.68).4.ConclusionThe ABTS,DPPH,FRAP,and ORAC assays gave comparable results for the antioxidant activity measured inmethanol extract of guava fruit extracts.The FRAP technique showed high reproducibility,was simple,rapidly performed and showed the highest correlation with both ascorbic acid and total phenolics.Therefore,it would be an appropriate technique for determining antioxidant in guava fruit extract.Antioxidant activity measured in methanol extract may also be estimated indirectly by using ascorbic acid or total phenolics since they showed high correlation with all assays.Antioxidant activity measured in dichloromethane extract in guava fruit extract was low (2%of total)compared to antioxidant activity measured in methanol extract.Ascorbic acid and phenolics are the major contributors to antioxidant activity in guava fruit.AcknowledgementsThis research was supported financially by the Thailand Research Fund through the Royal Golden Jubilee Ph.D.Program (PHD/0203/2545)and a grant from the Graduate School of Kasetsart University,Thailand.The authors acknowledged L.F.Reyes and B.Surjadinata for technical assistance.Table 6Antioxidant activities of guava fruit extracts as determined by the ABTS,DPPH,and FRAP assays based on dichloromethane extraction from four guava genotypes GenotypeAntioxidant activity (m M TE/g FM)Genotypic mean (P ¼0.11)ABTSDPPH FRAP Allahabad Safeda 0.3870.100.2070.060.2570.060.2870.09Fan Retief 0.4270.060.3570.280.1270.010.3070.16Ruby Supreme 0.5870.150.3970.190.1370.020.3770.23Advanced selection 0.3870.100.1570.040.1370.020.2270.14Assay mean (P ¼0.01)0.4470.10a0.2770.12b0.1670.06cTable 7Pearson’s correlation coefficients of antioxidant activities,ascorbic acid,total phenolics,and total carotenoids content Trait a TPH BET AA ABM ABD DPM DPD FRM FRDBET À0.79**AA 0.89**À0.50ns ABM 0.97**À0.67*0.88**ABD À0.58*À0.53ns À0.44ns À0.55ns DPM 0.86**À0.81**0.81**0.85**À0.66*DPD À0.26ns 0.52ns À0.12ns À0.26ns 0.22ns À0.38ns FRM 0.97**À0.73*0.92**0.97**À0.60*0.92**À0.32ns FRD 0.56ns À0.05ns 0.36ns 0.57ns À0.29ns 0.62*À0.32ns 0.54ns ORM0.81**À0.57ns0.61*0.82**À0.21ns0.68*À0.18ns0.74**0.74**aTPH ¼total phenolics,BET ¼b -carotene,AA ¼ascorbic acid,ABM ¼antioxidant activity measured in methanol extract based on ABTS assay,ABD ¼antioxidant activity measured in dichloromethane extract based on ABTS assay,DPM ¼antioxidant activity measured in methanol extract based on DPPH assay,DPD ¼antioxidant activity measured in dichloromethane extract based on DPPH assay,FRM ¼antioxidant activity measured in methanol extract based on FRAP assay,FRD ¼antioxidant activity measured in dichloromethane extract based on FRAP assay,and ORM ¼antioxidant activity measured in methanol extract based on ORAC assay.ns¼non significant and *,**¼significant at P o 0.05or 0.01,respectively.K.Thaipong et al./Journal of Food Composition and Analysis 19(2006)669–675674。