3曲线运动描述实例-小船渡河

合集下载

小船渡河模型(含答案)

小船渡河模型(含答案)

运动的合成与分解实例——小船渡河模型一、基础知识(一)小船渡河问题分析(1)船的实际运动是水流的运动和船相对静水的运动的合运动.(2)三种速度:v1(船在静水中的速度)、v2(水流速度)、v(船的实际速度).(3)三种情景①过河时间最短:船头正对河岸时,渡河时间最短,t短=d v1(d为河宽).②过河路径最短(v2<v1时):合速度垂直于河岸时,航程最短,s短=d.船头指向上游与河岸夹角为α,cos α=v2v1.③过河路径最短(v2>v1时):合速度不可能垂直于河岸,无法垂直渡河.确定方法如下:如图所示,以v2矢量末端为圆心,以v1矢量的大小为半径画弧,从v2矢量的始端向圆弧作切线,则合速度沿此切线方向航程最短.由图可知:cos α=v1v2,最短航程:s短=dcos α=v2v1d.(二)求解小船渡河问题的方法求解小船渡河问题有两类:一是求最短渡河时间,二是求最短渡河位移.无论哪类都必须明确以下四点:(1)解决这类问题的关键是:正确区分分运动和合运动,船的航行方向也就是船头指向,是分运动.船的运动方向也就是船的实际运动方向,是合运动,一般情况下与船头指向不一致.(2)运动分解的基本方法,按实际效果分解,一般用平行四边形定则按水流方向和船头指向分解.(3)渡河时间只与垂直河岸的船的分速度有关,与水流速度无关.(4)求最短渡河位移时,根据船速v船与水流速度v水的大小情况用三角形法则求极限的方法处理.二、练习1、一小船渡河,河宽d=180 m,水流速度v1=2.5 m/s.若船在静水中的速度为v2=5 m/s,则:(1)欲使船在最短时间内渡河,船头应朝什么方向?用多长时间?位移是多少?(2)欲使船渡河的航程最短,船头应朝什么方向?用多长时间?位移是多少?解析(1)欲使船在最短时间内渡河,船头应朝垂直河岸方向.当船头垂直河岸时,如图所示.合速度为倾斜方向,垂直分速度为v2=5 m/s.t=dv2=1805s=36 sv=v21+v22=52 5 m/sx=v t=90 5 m(2)欲使船渡河的航程最短,应垂直河岸渡河,船头应朝上游与垂直河岸方向成某一夹角α,如图所示.有v2sin α=v1,得α=30°所以当船头向上游偏30°时航程最短.x′=d=180 m.t′=dv2cos 30°=180523s=24 3 s答案(1)垂直河岸方向36 s90 5 m (2)向上游偏30°24 3 s180 m2、一条船要在最短时间内渡过宽为100 m的河,已知河水的流速v1与船离河岸的距离x变化的关系如图甲所示,船在静水中的速度v2与时间t的关系如图乙所示,则以下判断中正确的是()A.船渡河的最短时间是25 s B.船运动的轨迹可能是直线C .船在河水中的加速度大小为0.4 m/s 2D .船在河水中的最大速度是5 m/s 答案 C 解析 船在行驶过程中,船头始终与河岸垂直时渡河时间最短,即t =1005 s =20 s ,A 错误;由于水流速度变化,所以合速度变化,船头始终与河岸垂直时,运动的轨迹不可能是直线,B 错误;船在最短时间内渡河t =20 s ,则船运动到河的中央时所用时间为10 s ,水的流速在x =0到x =50 m 之间均匀增加,则a 1=4-010 m /s 2=0.4 m/s 2,同理x =50 m到x =100 m 之间a 2=0-410 m /s 2=-0.4 m/s 2,则船在河水中的加速度大小为0.4 m/s 2,C 正确;船在河水中的最大速度为v =52+42 m/s =41 m/s ,D 错误.3、如5所示,河水流速与距出发点垂直距离的关系如图甲所示,船在静水中的速度与时间的关系如图乙所示,若要使船以最短时间渡河,则( )A .船渡河的最短时间是60 sB .船在行驶过程中,船头始终与河岸垂直C .船航行的轨迹是一条直线D .船的最大速度是5 m/s 答案 BD解析 当船头指向垂直于河岸时,船的渡河时间最短,其时间t =d v 2=3003 s =100 s ,A错,B 对.因河水流速不均匀,所以船在河水中的航线是一条曲线,当船行驶至河中央时,船速最大,最大速度v =42+32 m /s =5 m/s ,C 错,D 对.4、(2011·江苏·3)如图所示,甲、乙两同学从河中O 点出发,分别沿直线游到A 点和B 点后,立即沿原路线返回到O 点,OA 、OB 分别与水流方向平行和垂直,且OA =OB .若水流速度不变,两人在静水中游速相等,则他们所用时间t 甲、t 乙的大小关系为 ( ) A .t 甲<t 乙 B .t 甲=t 乙C .t 甲>t 乙D .无法确定 答案 C解析 设两人在静水中游速为v 0,水速为v ,则 t 甲=x OA v 0+v +x OAv 0-v =2v 0x OA v 20-v2 t 乙=2x OBv 20-v2=2x OAv 20-v 2<2v 0x OAv 20-v 2 故A 、B 、D 错,C 对.5、甲、乙两船在同一条河流中同时开始渡河,河宽为H ,河水流速为v 0,划船速度均为v ,出发时两船相距233H ,甲、乙两船船头均与河岸成60°角,如图所示.已知乙船恰好能垂直到达对岸A 点,则下列判断正确的是( )A .甲、乙两船到达对岸的时间不同B .v =2v 0C .两船可能在未到达对岸前相遇D .甲船也在A 点靠岸 答案 BD解析 渡河时间均为Hv sin 60°,乙能垂直于河岸渡河,对乙船由v cos 60°=v 0得v =2v 0,甲船在该时间内沿水流方向的位移为(v cos 60°+v 0)H v sin 60°=233H ,刚好到达A 点,综上所述,A 、C 错误,B 、D 正确.6、一快艇要从岸边某处到达河中离岸100 m 远的浮标处,已知快艇在静水中的速度图象如图甲所示,流水的速度图象如图乙所示,假设行驶中快艇在静水中航行的分速度方向选定后就不再改变,则( )A .快艇的运动轨迹可能是直线B .快艇的运动轨迹只能是曲线C .最快到达浮标处通过的位移为100 mD .最快到达浮标处所用时间为20 s 解析 快艇的实际速度为快艇在静水中的速度与水速的合速度.由图象可知快艇在静水中为匀加速直线运动,水为匀速直线运动,两速度不在同一条直线上,故快艇必做曲线运动,A 错误,B 正确;当快艇与河岸垂直时,到达浮标处时间最短,而此时快艇做曲线运动,故位移大于100 m ,C 错误;由题图甲可知快艇的加速度为a =ΔvΔt =0.5 m/s 2,最短位移为x =100 m ,对快艇由x =12at 2得:t =2x a = 2×1000.5s =20 s ,即最快到达浮标处所用时间为20 s ,D 正确. 答案 BD。

高中物理:运动学专题讲解——小船过河问题

高中物理:运动学专题讲解——小船过河问题

高中物理:运动学专题讲解——小船过河问题高一的同学应该都学倒或学过曲线运动了。

其中有一类比较经典的题目——小船过河,让不少学生焦头烂额。

会的学生觉得很简单,不会的学生觉得摸不着头脑。

今天就带来小船过河专题的讲解~希望有所帮助。

小船渡河是典型的运动的合成与分解问题,小船在有一定流速的水中过河时,实际上参与了两个方向的分运动,即随水流的运(水冲船的运动)和船相对水的运动(即在静水中的船的运动),船的实际运动是合运动常考题型分两类:1.最短过河时间最短过河时间很简单,一般而言都是船头冲着对岸就行了,但是这里需要注意的是——由于水流的原因,你是冲着对岸开的,但是一定会到达的是靠下游的地方。

2.最短过河路程分两种情况:如果船速大于水速,则可以开到正对岸如果船速小于水速,则需要成一个角度:例如,我们先看一个例题1、河宽 d=60m,水流速度 v水=6m/ s,小船在静水中的速度v船=3m/ s,问:(1)要使它渡河的时间最短,则小船应如何渡河 ?最短时间是多少 ?(2)要使它渡河的航程最短,则小船应如何渡河?最短的航程是多少 ?(物理君手写一份超级具体的答案给大家,怕大家看不懂,后续也跟着电子版……)解析:解:(1)当以静水中的速度垂直河岸过河的时候渡河时间最短,则知:(2)小船以最短距离过河时,则静水中的速度斜着向上游,合速度垂直河岸,设与河岸的夹角为,则由矢量合成的平行四边形法则解三角形得:,这时船头与河水速度夹角为;过河的时间是.答:(1)船垂直河岸过河时间最短,且过河的最短时间为,;(2)要小船以最短距离过河,开船方向与河水速度夹角为,过河时间为练习一只小船在静水中的速度为 5m/s,它要渡过一条宽为 60m 的河,河水流速为 4m/s,则:(1)过河最短时间;(2)如何过河位移最短并计算以最短位移过河的时间.答案解:(1)当以静水中的速度垂直河岸过河的时候渡河时间最短,则知: 小船以最短距离过河时,则静水中的速度斜着向上游,设船与河岸的夹角为,则有:,计算得出:合速度垂直河岸,则由速度的合成可得:所以小船要以最短距离过河时所用的时间为:答:(1)过河最短时间;(2)船与河岸的夹角为过河位移最短,且最短位移过河的时间为.O课后练习:如图所示,一小船正在渡河,在离对岸30m 处,发现其下游40m 处有一危险水域,若水流速度为 5m/s,为了使小船在进入危险水域之前到达对岸,那么小船从现在起相对于静水的最小速度应为多大?此时船头的航向如何?渡河要用多少时间?今天的内容就先分享到这里,希望能够帮助到各位考生。

曲线运动----小船渡河,运动的合成与分解

曲线运动----小船渡河,运动的合成与分解
A.物体做速率逐渐增加的直线运动时,其所受合外力的方向一定与速度方向相同
B.物体做变速率曲线运动时,其所受合外力的方向一定改变
C.物体做变速率圆周运动时,其所受合外力的方向一定指向圆心
D.物体做匀速率曲线运动时,其所受合外力的方向总是与速度方向垂直
分析:加速度方向与速度方向相同;匀减速运动中,速度方向可正可负,但二者方向必相反;加速度的正负与速度正方向的选取有关.
两种极值:①渡河最小位移;②渡河最短时间。
一条宽度为d的河,水流速度为 ,已知船在静水中速度为 ,那么:
(1)怎样渡河时间最短?
(2)若 ,怎样渡河位移最小?
(3)若 ,怎样渡河船漂下的距离最短?
解析:(1)小船过河问题,可以把小船的渡河运动分解为它同时参与的两个运动,一是小船运动,一是水流的运动,船的实际运动为合运动。如图4所示。
D、物体做匀速率曲线运动时,速度的大小不变,所以其所受合外力始终指向圆心,则其的方向总是与速度方向垂直,故D正确,故选AD.
2.物体受到几个恒力的作用处于平衡状态,若再对物体施加一个恒力,则物体可能做( )
A.静止B.匀速直线运动C.变加速曲线运动D.匀变速曲线运动
分析:曲线运动的条件是速度与合力不共线,平衡状态是指加速度为零的状态.
即收绳速率 ,因此船的速率为:
图2
总结:“微元法”。可设想物体发生一个微小位移,分析由此而引起的牵连物体运动的位移是怎样的,得出位移分解的图示,再从中找到对应的速度分解的图示,进而求出牵连物体间速度大小的关系。
解法三(能量转化法):由题意可知:人对绳子做功等于绳子对物体所做的功。人对绳子的拉力为F,则对绳子做功的功率为 ;绳子对物体的拉力,由定滑轮的特点可知,拉力大小也为F,则绳子对物体做功的功率为 ,因为 所以 。

高中物理模型08 小船渡河(解析版)

高中物理模型08 小船渡河(解析版)

高中物理模型08 小船渡河(原卷版)1. 船的实际运动是水流的运动和船相对静水的运动的合运动;2. 三种速度:v 1(船在静水中的速度)、v 2(水流速度)、v (船的实际速度);3. 三种情景:①过河时间最短:船头正对河岸时,渡河时间最短,1dt v 短=(d 为河宽);②过河路径最短(v 2<v 1时):合速度垂直于河岸时,航程最短,s 短=d 。

船头指向上游与河岸夹角为α,cos α=21v v ;③过河路径最短(v 2>v 1时):合速度不可能垂直于河岸,无法垂直渡河。

确定方法如下:如图所示,以v 2矢量末端为圆心,以v 1矢量的大小为半径画弧,从v 2矢量的始端向圆弧作切线,则合速度沿此切线方向航程最短。

由图可知:cos α=12v v ,最短航程:s 短=cos d=21v v d 。

小船渡河问题建模指导1. 物体的实际运动一定是合运动。

2. 求解运动的合成与分解问题,应抓住合运动和分运动具有等时性、独立性、等效性的关系。

3. 在小船渡河问题中可将小船的运动分解为沿船头指向的方向和沿水流方向的两个运动。

【典例1】如图某人游珠江,他以一定速度面部始终垂直河岸向对岸游去。

江中各处水流速度相等,他游过的路程、过河所用的时间与水速的关系是( C )A .水速大时,路程长,时间长B .水速大时,路程长,时间短C .水速大时,路程长,时间不变D .路程、时间与水速无关【变式训练1】在一次漂流探险中,探险者驾驶摩托艇想上岸休息,江岸是平直的,江水沿江向下流速为v ,摩托艇在静水中航速为u ,探险者离岸最近点O 的距离为d 。

如果探险者想在最短的时间内靠岸,则摩托艇登陆的地点离O 的距离为多少?【典例2】(潍坊市四区(县)2015 2016学年高一下学期质检)如图所示,帆板在海面上以速度v 朝正西方向运动,帆船以速度v 朝正北方向航行,以帆板为参照物( D )A .帆船朝正东方向航行,速度大小为vB .帆船朝正西方向航行,速度大小为vC .帆船朝南偏东45°方向航行,速度大小为2vD .帆船朝北偏东45°方向航行,速度大小为2v【变式训练2】一只小船渡过两岸平行的河流,河中水流速度各处相同且恒定不变,方向平行于河岸.小船的初速度均相同,且船头方向始终垂直于河岸,小船相对于水分别做匀加速、匀减速和匀速直线运动,其运动轨迹如图所示.下列说法错误的是( )A.沿AC和AD轨迹小船都是做匀变速运动B.AD是匀减速运动的轨迹C.沿AC轨迹渡河所用时间最短D.小船沿AD轨迹渡河,船靠岸时速度最大【典例3】(2018·西安市二模)某人划船横渡一条河,河水流速处处相同且恒定,船的划行速率恒定.已知此人过河最短时间为T1;若此人用最短的位移过河,则需时间为T2;已知船的划行速度大于水速.则船的划行速率与水流速率之比为()A.T 2T22-T21B.T2T1C.T1T21-T22D.T1T2【变式训练3】如图所示,甲、乙两同学从河中O点出发,分别沿直线游到A点和B点后,立即沿原路线返回到O 点,OA、OB分别与水流方向平行和垂直,且OA=OB。

小船渡河模型解析版

小船渡河模型解析版

小船渡河模型一、模型建构1、小船渡河问题:小船运动时一个方向上的位移不变,求解最短运动时间和最小位移。

2、两类问题第一类:静水船速大于水流速度一条河宽度为L,水流速度为为v水, 已知船在静水中的航速v船,v 水<v船,(1)渡河最短时间?(2)渡河最小位移?如图所示,沿河岸和垂直河岸建立坐标系船速在y轴方向:v y=v船sinθ,渡河所需的时间:t=L/v y=L/v船sinθ在L、v船一定时,t随sinθ增大而减小当θ=90时,sinθ=1,最大,即船头与河岸垂直时,渡河时间最短t min=L/v船船的合速度v的方向与河岸垂直时,渡河的最小位移即河的宽度L。

沿河岸方向的速度分量:v x=v船cosθv水<v船时,v水=v x=v船cosθ即cosθ=v水/v船v合=v船sinθ垂直河岸,位移最小等于河宽L。

一、解题思路:1、沿河岸和垂直河岸建立坐标系2、比较船速沿河岸分速度与水速关系3、判断小船能否垂直渡河4、列方程求最小位移和渡河时间二、解题方法:运动的合成与分解三、解题关键点:1、合理分解速度2、确定渡河位移最小时船速的方向四、解题易错点1、渡河最短时间与水速和船速的大小关系无关2、静水船速小于水流速度时,最小第二类:静水船速小于水流速度一条河宽度为L,水流速度为为v水,已知船在静水中的航速v船,v 水>v船,渡河最小位移?如图所示,沿河岸和垂直河岸建立坐标系沿河岸方向的速度分量:v x=v船cosθv水>v船时,v x始终小于v水即v合不会垂直河岸,不能垂直渡河以v水的矢尖为圆心,v船为半径画圆,当与圆相切时α角最大。

α角越大,船到下游的距离x越短。

此时sinα=v船/v水,船的最短航程为X min=L/sinα=Lv船/v水二、例题精析例题、河宽60m,水流速度v1=2m/s,小船在静水中速度v2=3m/s,则:(1)它渡河的最短时间是多少?(2)最短航程是多少?【解答】(1)、当静水速的方向与河岸垂直时,渡河时间最短,最短时间t===20s;(2)、船在静水中的速度v2=3m/s,大于水流速度v1=2m/s,因此当船的合速度垂直河岸时,则渡河位移最小,即为河宽60m;三、针对训练1.甲、乙两船在同一河流中同时开始渡河,河水流速为v0,船在静水中的速率均为v,甲、乙两船船头均与河岸成θ角,如图所示,已知甲船恰能垂直到达河正对岸的A点,乙船到达河对岸的B点,A、B之间的距离为L,则下列判断正确的是()A.甲乙船不可能同时到达对岸B.若仅是河水流速v0增大,则两船的渡河时间都变短C.不论河水流速v0如何改变,只要适当改变θ角甲船总能到达正对岸的A点D.若仅是河水流速v0增大,则两船到达对岸时,两船之间的距离仍然为L【解答】解:A、将小船的运动分解为平行于河岸和垂直于河岸两个方向,抓住分运动和合运动具有等时性,知甲、乙两船到达对岸的时间相等。

曲线运动精讲精练:3.小船渡河问题

曲线运动精讲精练:3.小船渡河问题

小船渡河问题一、小船渡河的基础知识1.小船渡河问题的速度(1)船的实际运动是水流的运动和船相对静水的运动的合运动.(2)三种速度:v1(船在静水中的速度)、v2(水流速度)、v(船的实际速度).2.小船渡河的三种情景(1)过河时间最短:船头正对河岸时,渡河时间最短,t短=dv1(d为河宽).(2)过河路径最短(v2<v1时):合速度垂直于河岸时,航程最短,s短=d.船头指向上游与河岸夹角为α,cos α=v2v1 .(3)过河路径最短(v2>v1时):合速度不可能垂直于河岸,无法垂直渡河.确定方法如下:如图所示,以v2矢量末端为圆心,以v1矢量的大小为半径画弧,从v2矢量的始端向圆弧作切线,则合速度沿此切线方向航程最短.由图可知:cos α=v1v2,最短航程:s短=dcos α=v2v1d.二、小船渡河的经典例题例题1.(多选)一只小船在静水中的速度为3 m/s,它要渡过一条宽为30 m 的河,河水流速为4 m/s,则这只船()A.过河时间不可能小于10 sB.不能沿垂直于河岸方向过河C.渡过这条河所需的时间可以为6 sD.不可能渡过这条河解析:选AB.船在过河过程同时参与两个运动,一个沿河岸向下游的水流速度,一个是船自身的运动.垂直河岸方向位移即河的宽度d=30 m,而垂直河岸方向的最大分速度即船自身的速度3 m/s,所以渡河最短时间t=d3 m/s=10 s,A对、C错.只要有垂直河岸的分速度,就可以渡过这条河,D错.船实际发生的运动就是合运动,如果船垂直河岸方向过河,即合速度垂直河岸方向.一个分速度沿河岸向下,与合速度垂直,那么在速度合成的三角形中船的速度即斜边,要求船的速度大于河水的速度,而本题目中船的速度小于河水的速度,故不可能垂直河岸方向过河,B对.例题2.有一条两岸平直、河水均匀流动、流速恒为v的大河.小明驾着小船渡河,去程时船头指向始终与河岸垂直,回程时行驶路线与河岸垂直.去程与回程所用时间的比值为k,船在静水中的速度大小相同,则小船在静水中的速度大小为( )A.kvk2-1B.v1-k2C.kv1-k2D.vk2-1解析:选B.设大河宽度为d,去程时t1=dv静,回程时,t2=dv2静-v2,又t1t2=k,得v静=v1-k2,B正确.例题3.小船匀速渡过一条河流,当船头垂直对岸方向航行时,在出发后10 min到达对岸下游120 m处;若船头保持与河岸成α角向上游航行,出发后12.5 min到达正对岸.求:(1)水流的速度;(2)船在静水中的速度、河的宽度以及船头与河岸间的夹角α.解析:(1)船头垂直对岸方向航行时,如图甲所示.由x=v2t1得v2=xt1=120600m/s=0.2 m/s①(2)船头保持与岸成α角航行时,如图乙所示.由(1)可得d=v1t1v2=v1cos α②。

高三物理小船渡河问题分析试题答案及解析

高三物理小船渡河问题分析试题答案及解析

高三物理小船渡河问题分析试题答案及解析1.一只小船渡河,水流速度各处相同且恒定不变,方向平行于岸边,小船相对于水分别做匀加速、匀减速、匀速直线运动,运动轨迹如图所示,船相对于水的初速度大小均相同,方向垂直于岸边,且船在渡河过程中船头方向始终不变,由此可以确定船()A.沿AD轨迹运动时,船相对于水做匀减速直线运动B.沿三条不同路径渡河的时间相同C.沿AB轨迹渡河所用的时间最短D.沿AC轨迹船到达对岸的速度最小【答案】 A【解析】做曲线运动的物体所受合外力的方向指向轨迹曲线的凹侧,即加速度指向曲线凹侧,由图可知,船沿AB、AC、AD轨迹运动时,小船相对于水分别做匀速、匀加速、匀减速直线运动,故选项A正确;船渡河时的时间取决于垂直河岸方向的速度,即小船相对于水的速度,因此小船相对于水做匀加速直线运动时的时间最短,做匀减速直线运动时的时间最长,故选项B、C错误;船到达对岸的速度为沿河岸方向与垂直河岸方向速度的矢量和,在沿河岸方向船的速度始终等于水流速度,不变,因此垂直河岸方向的速度越小,合速度越小,因此当船沿AD轨迹运动时到达对岸的速度最小,故选项D错误。

【考点】本题主要考查了运动的合成与分解的应用问题。

2.一只小船在静水中的速度为3m/s,它要渡过一条宽为30m的河,河水流速为4m/s,则这只船:()A.过河时间不可能小于10sB.不能沿垂直于河岸方向过河C.可以渡过这条河,而且所需时间可以为6sD.不可能渡过这条河【答案】AB【解析】船在过河过程同时参与两个运动,一个沿河岸向下游的水流速度,一个是船自身的运动。

垂直河岸方向位移即河的宽度,而垂直河岸方向的最大分速度即船自身的速度3m/s,所以渡河最短时间答案A对C错。

只要有垂直河岸的分速度,就可以渡过这条河答案D错。

船实际发生的运动就是合运动,如果船垂直河岸方向过河,即合速度垂直河岸方向,一个分速度沿河岸向下,与合速度垂直,那么在速度合成的平行四边形中船的速度即斜边,要求船的速度大于水的速度,而本题目中船的速度小于河水的速度不可能垂直河岸方向过河答案B对。

曲线运动小船渡河问题分析

曲线运动小船渡河问题分析

曲线运动——小船渡河问题分析1.一人以垂直河岸不变的速度(相对水)向对岸游去,若河水流动速度恒定。

下列说法中正确的是A.河水流动速度对人渡河无任何影响B.游泳者渡河的路线与河岸垂直C.由于河水流动的影响,人到达对岸的位置将向下游方向偏移D.由于河水流动的影响,人到达对岸的时间与静水中不同答案:C正确的是A.小船过河所需的最短时间是40sB.要使小船过河的位移最短,船头应始终正对着对岸C.要使小船过河的位移最短,过河所需的时间是50sD.如果水流速度增大为6m/s,小船过河所需的最短时间将增大答案:AA、下落时间越短B、下落时间越长C、落地时速度越小D、落地时速度越大答案:D4.小船匀速横渡一条宽120m的河流,当船头垂直于河岸方向航行时,30s到达河对岸下游60m处,则船在静水中的速度为;若船头保持与河岸上游成α角航行,恰好到达正对岸,则α= 。

答案:5.一小船在静水的速度为3m/s,它在一条河宽150m,水流速度为4m/s的河流中渡河,则该小船()A.能到达正对岸 B.渡河的时间可能少于50sC.以最短时间渡河时,它沿水流方向的位移大小为200mD.以最短位移渡河时,位移大小为150m答案:C6.小船在静水中的速度是v,今小船要渡过一河流,渡河时小船朝对岸垂直划行,若航行至河中心时,河水流速增大,则渡河时间将()A. 不变B.减小C.增大D.不能确定答案:A7.若河水的流速大小与水到河岸的距离有关,河中心水的流速最大,河岸边缘处水的流速最小。

现假设河的宽度为120m,河中心水的流速大小为5m/s,船在静水中的速度大小为3m/s,则下列说法中正确的是()A.船渡河的最短时间是40sB.船在河水中航行的轨迹是一条直线C.要使船渡河时间最短,船头应始终与河岸垂直D.要使船渡河行程最短,船头应与上游河岸成53°行驶答案:AC8.一条河宽100m,水流速度为3m/s,一条小船在静水中的速度为5m/s,关于船过河的过程,下列说法不正确的是:A.船过河的最短时间是20s B.船要垂直河岸过河需用25s的时间C.船的实际速度可能为5m/s D.船的实际速度可能为10m/s答案:D9.某船在静水中的速率为4m/s, 要横渡宽为40m的河, 河水的流速为5m/s、下列说法中不正确的是A、该船不可能沿垂直于河岸的航线抵达对岸B、该船渡河的速度最小速度是3m/sC、该船渡河所用时间至少是10sD、该船渡河所经位移的大小至少是50m答案:B10.一只船在200m宽的河中横渡,水流速度是2m/s,船在静水中的航速是4m/s,欲使小船以最短时间渡过河去,则应使船头方向_________河岸(填“垂直”或“不垂直”)行驶,最短的时间是_________ s.答案:垂直5011.一艘船以相对于静水恒定的速率渡河,水流速度也恒定(且小于船速),若河的宽度一定,要使船到达对岸航程最短,则()A.船头指向应垂直河岸航行B.船头指向应偏向下游一侧C.船头指向应偏向上游一侧D.船不可能沿直线到达对岸答案:C12.一只小船在静水中的速度为3m/s,它要渡过一条宽度为30m的河,河水的流速为4m/s,则下列说法正确的是( )A.船不能渡过河 B.船过河的速度一定为5m/sC.船运动的轨迹不可能垂直河岸D.船过河的最短时间为10s答案:CD13.王聪同学,为了测量某河流的水速,找来一条小船,他首先保持小船对水以恒定的速度行驶.第一次,保持船头始终垂直河岸划行,经10min到达正对岸下游120m处;第二次,船头始终保持指向与上游河岸成θ角划行,经12.5min到达正对岸。

高一物理人教版必修二:5.1曲线运动-小船过河

高一物理人教版必修二:5.1曲线运动-小船过河
度的关系正确的是( C )
A.水流速度越大,则路程越长,所用时 间也越长;
B.水流速度越大,则路程越短,所用时 间也越短;
C.水流速度越大,路程越长,但所用时 间不变;
D.水流速度增大,路程和时间均不变。
一、小船渡河时间最短
结论:当船头垂直河岸时,渡河时间最短,其与水流
速度无关,其值为
t mi n

d v2
二、小船过河最短路程
v v 1.当有 1 2 时,小船能够垂直过河,其所用时间为
td d v v22 v12
v v 如果
,小船渡河时向下游漂流的距离是多少呢?
12
分析:当 v1 v2时,小船不能垂直过河,
xmin
v12 v22 d v2
针对练习:
一小船在静水中的速度是,一条河
宽,河水的速度为。下列说法正确
的是( )
C
A.小船在这条河中运动的最大速度
是;
B.小船在这条河中运动的最小速度
是;
C.小船渡过这条河的最短时间是;
D.小船渡过这条河的最小距离是。
针对练习:
已知船速大于水速,欲横渡宽为的河流:
①船头垂直河岸正对彼岸航行时,横 渡时间最短;
②船头垂直河岸正对彼岸航行时,实 际航程最短;
③船头朝上游转过一定角度,使实际 航线垂直河岸,此时航程最短;
④船头朝上游转过一定角度,使实际 航速增大,此时横渡时间最短;
以上说法正确的是( C )
A.①② B.③ C.①③ D.②④
针对练习:
一轮船以一定的速度,船头垂直河岸向 对岸行驶,河水匀速流动(河道使直的)。 轮船渡河通过的路径和所用时间与水流速
v v1 x

(完整版)小船渡河模型(含答案)

(完整版)小船渡河模型(含答案)

运动的合成与分解实例——小船渡河模型一、基础知识(一)小船渡河问题分析(1)船的实际运动是水流的运动和船相对静水的运动的合运动.(2)三种速度:v1(船在静水中的速度)、v2(水流速度)、v(船的实际速度).(3)三种情景①过河时间最短:船头正对河岸时,渡河时间最短,t短=d v1(d为河宽).②过河路径最短(v2<v1时):合速度垂直于河岸时,航程最短,s短=d.船头指向上游与河岸夹角为α,cos α=v2v1.③过河路径最短(v2>v1时):合速度不可能垂直于河岸,无法垂直渡河.确定方法如下:如图所示,以v2矢量末端为圆心,以v1矢量的大小为半径画弧,从v2矢量的始端向圆弧作切线,则合速度沿此切线方向航程最短.由图可知:cos α=v1v2,最短航程:s短=dcos α=v2v1d.(二)求解小船渡河问题的方法求解小船渡河问题有两类:一是求最短渡河时间,二是求最短渡河位移.无论哪类都必须明确以下四点:(1)解决这类问题的关键是:正确区分分运动和合运动,船的航行方向也就是船头指向,是分运动.船的运动方向也就是船的实际运动方向,是合运动,一般情况下与船头指向不一致.(2)运动分解的基本方法,按实际效果分解,一般用平行四边形定则按水流方向和船头指向分解.(3)渡河时间只与垂直河岸的船的分速度有关,与水流速度无关.(4)求最短渡河位移时,根据船速v船与水流速度v水的大小情况用三角形法则求极限的方法处理.二、练习1、一小船渡河,河宽d=180 m,水流速度v1=2.5 m/s.若船在静水中的速度为v2=5 m/s,则:(1)欲使船在最短时间内渡河,船头应朝什么方向?用多长时间?位移是多少?(2)欲使船渡河的航程最短,船头应朝什么方向?用多长时间?位移是多少?解析(1)欲使船在最短时间内渡河,船头应朝垂直河岸方向.当船头垂直河岸时,如图所示.合速度为倾斜方向,垂直分速度为v2=5 m/s.t=dv2=1805s=36 sv=v21+v22=52 5 m/sx=v t=90 5 m(2)欲使船渡河的航程最短,应垂直河岸渡河,船头应朝上游与垂直河岸方向成某一夹角α,如图所示.有v2sin α=v1,得α=30°所以当船头向上游偏30°时航程最短.x′=d=180 m.t′=dv2cos 30°=180523s=24 3 s答案(1)垂直河岸方向36 s90 5 m (2)向上游偏30°24 3 s180 m2、一条船要在最短时间内渡过宽为100 m的河,已知河水的流速v1与船离河岸的距离x变化的关系如图甲所示,船在静水中的速度v2与时间t的关系如图乙所示,则以下判断中正确的是()A.船渡河的最短时间是25 s B.船运动的轨迹可能是直线。

曲线运动小船渡河问题分析

曲线运动小船渡河问题分析

高中物理-曲线运动小船渡河问题分析【模型概述】在运动的合成与分解中,如何判断物体的合运动和分运动是首要问题,判断合运动的有效方法是看见的运动就是合运动。

合运动的分解从理论上说可以是任意的,但一般按运动的实际效果进行分解。

小船渡河和斜拉船等问题是常见的运动的合成与分解的典型问题【模型讲解】一、速度的分解要从实际情况出发例1.如图1所示,人用绳子通过定滑轮以不变的速度V拉水平面上的物体A,当绳与水平方向成e角时,求物体A的速度。

图1解法一(分解法):本题的关键是正确地确定物体A的两个分运动。

物体A的运动(即绳的末端的运动)可看作两个分运动的合成:一是沿绳的方向被牵引,绳长缩短。

绳长缩短的速度即等于v i v ;二是随着绳以定滑轮为圆心的摆动,它不改变绳长,只改变角度e的值。

这样就可以将V按图示方向进行分解。

所以V i及V2实际上就是V A的两个分速度,如A二V1V 二图1所示,由此可得0V A。

COSCOS解法二(微元法):要求船在该位置的速率即为瞬时速率,需从该时刻起取一小段时间来求它的平均速率,当这一小段时间趋于零时,该平均速率就为所求速率。

设船在e角位置经厶t时间向左行驶△ x距离,滑轮右侧的绳长缩短厶L,如图2所示,当绳与水平方向的角度变化很小时,△ABC可近似看做是一直角三角形,因而有LxLxcos,两边同除以△ t得:costt即收绳速率V O V A COS,因此船的速率为:VV A 0cos图2总结:“微元法”。

可设想物体发生一个微小位移,分析由此而引起的牵连物体运动的位 移是怎样的,得出位移分解的图示,再从中找到对应的速度分解的图示,进而求出牵连物体 间速度大小的关系。

解法三(能量转化法):由题意可知:人对绳子做功等于绳子对物体所做的功。

人对绳子 的拉力为F ,则对绳子做功的功率为RFv ;绳子对物体的拉力,由定滑轮的特点可知,Q_拉力大小也为F , 则绳子对物体做功的功率为BF VA COS ,因为RF 2所以=v 0V A。

深入剖析小船渡河问题

深入剖析小船渡河问题

2012-04教学实践高中物理人教版必修二第五章《曲线运动》章节中关于小船渡河的问题是本章的常见问题。

小船渡河时,船的实际速度可以看成是v 水(水的速度)和v 船(船的速度)的合速度。

处理此问题时,往往将船相对河岸运动分解为沿平行于河岸和垂直于河岸方向的两个分运动。

我在教学中体会到主要是对以下物理量进行求解,特总结如下,有不足之处敬请指正。

一、渡河时间通常取决于小船在垂直河岸方向的分速度大小。

例1.如图1所示,河宽为d ,小船在静水中的速度为v 船,水流速度为v 水,v 船与v 水间夹角为θ,试分别求解下列三种情况下小船渡河的时间t 。

水图1(1)v 船=0;(2)v 水=0,v 船≠0;(3)v 船≠0,v 水≠0。

讲析:(1)无论v 水是否为零,船皆无法渡河;(2)根据分运动的独立性,在垂直河岸方向有t =x 1v 1=d v 船sin θ;(3)思路同(2)。

点评:渡河时间也可按实际运动求解,对(2)有t =x v 船=dsin θv 船=d v船sin θ,但此法不适合对(3)求解。

使用垂直河岸分运动解题则思路始终清晰明了。

二、侧向位移小船渡河过程中,平行于河岸方向的分运动必使小船沿岸方向发生侧移。

例2.如图2所示,河宽为d ,小船在静水中的速度为v 船,水流速度为v 水,v 船与v 水间夹角为θ,试分别求解下列三种情况下小船渡河过程中沿岸方向的侧向位移x 。

水图2(1)θ<90°;(2)θ=90°;(3)90°<θ<180°。

讲析:(1)根据分运动的独立性,在沿河岸方向有x //=v //t =(v船cos θ+v 水)t在垂直河岸方向有t =x 1v 1=d v 船sin θ;代入上式有x //=d cos θsin θ=dv 水v 船sin θ(2)同理可得x //=vt =v 水dv 船(3)设α=180°-θ,则同理可得x //=v //t=(v 船cos α-v 水)t =d cos θsin θ=dv 水v 船sin θ。

人教版高一物理必修2课件 5.1曲线运动——小船渡河问题

人教版高一物理必修2课件 5.1曲线运动——小船渡河问题
小船渡河模型
运动的合成与分解
小船渡河模型 1.小船参与的两个分运动 (1)船随水漂流的运动,它的方向与河岸平行。
V水
小船渡河模型 1.小船参与的两个分运动 (1)船随水漂流的运动,它的方向与河岸平行。 (2)船相对水的运动(即船在静水中的运动),它的方向 与船头的指向相同
V船
V水
小船渡河模型
小船渡河模型
S1
S2
小船渡河模型:如何渡河时间最短
No Image
v船=10m/s 河宽D=15m 3s内过河, 求θ范围
θ
小船渡河模型:如何渡河时间最短 No ≤3s
Image
No Image
v船=10m/s
河宽D=15m
3s内过河,
θ
求θ范围
小船渡河模型:如何渡河时间最短 No Image
No ≤3s
V船
v
V水
小船渡河模型:如何渡河距离最短 当最短的距离为河宽D
V船
v
V水
小船渡河模型:如何渡河距离最短 当最短的距离为河宽D
V船
v
V船
V水
小船渡河模型:如何渡河距离最短 V船>v水 最短的距离为河宽D
V船
v
V船
V水
小船渡河模型:如何渡河距离最短
V船>v水 最短的距离为河宽D 此时渡河时间?
V船
Image
No Image
v船=10m/s 河宽D=15m
No Image
3s内过河,
θ
求θ范围
小船渡河模型:如何渡河时间最短 No Image
No ≤3s
Image
No Image
v船=10m/s 河宽D=15m
No Image

物理建模系列(五) 小船渡河模型分析

物理建模系列(五) 小船渡河模型分析

物理建模系列(五)小船渡河模型分析1.模型构建在运动的合成与分解问题中,两个匀速直线运动的合运动仍是匀速直线运动,其中一个速度大小和方向都不变,另一个速度大小不变,方向在180°范围内(在速度不变的分运动所在直线的一侧)变化,我们对合运动或分运动的速度、时间、位移等问题进行研究.这样的运动系统可看作“小船渡河模型”.2.模型展示3.三种速度:v1(水的流速)、v2(船在静水中的速度)、v(船的实际速度).4.三种情景12求:(1)欲使船在最短的时间内渡河,船头应朝什么方向?用多长时间?位移是多少?(2)欲使船渡河的航程最短,船头应朝什么方向?用多长时间?位移是多少?【解析】 (1)欲使船在最短时间内渡河,船头应朝垂直河岸方向当船头垂直河岸时,如图甲所示,合速度为倾斜方向,垂直分速度为v 1=5 m/s. t =d v 1=1805s =36 s v =v 21+v 22=525 m/s x =v t =90 5 m.(2)欲使船渡河航程最短,合速度应垂直于河岸,船头应朝上游与垂直河岸方向成某一夹角α如图乙所示, 有v 1sin α=v 2, 得α=30°所以当船头向上游垂直河岸方向偏30°时航程最短. x ′=d =180 m. t ′=d v 1cos 30°=180523 s=24 3 s.【答案】 (1)垂直河岸方向 36 s 90 5 m (2)向上游垂直河岸方向偏30° 24 3 s 180 m1.解这类问题的关键是:正确区分分运动和合运动. 2.运动分解的基本方法:按实际运动效果分解. (1)确定合速度的方向(就是物体的实际运动方向); (2)根据合速度产生的的实际运动效果确定分速度的方向;(3)运用平行四边形定则进行分解.3.小船渡河问题的处理(1)小船渡河问题,无论v船>v水,还是v船<v水,渡河的最短时间均为t min=Lv船(L为河宽).(2)当v船>v水时,船能垂直于河岸渡河,河宽即是最小位移;当v船<v水时,船不能垂直于河岸渡河,但此时仍有最小位移渡河,可利用矢量三角形定则求极值的方法处理.[高考真题]1.(2016·课标卷Ⅰ,18)一质点做匀速直线运动,现对其施加一恒力,且原来作用在质点上的力不发生改变,则()A.质点速度的方向总是与该恒力的方向相同B.质点速度的方向不可能总是与该恒力的方向垂直C.质点加速度的方向总是与该恒力的方向相同D.质点单位时间内速率的变化量总是不变【解析】因为质点原来做匀速直线运动,合外力为0,现在施加一恒力,质点的合力就是这个恒力,所以质点可能做匀变速直线运动,也有可能做匀变速曲线运动,这个过程中加速度不变且一定与该恒力的方向相同,但若做匀变速曲线运动,单位时间内速率的变化量是变化的,故C正确,D错误.若做匀变速曲线运动,则质点速度的方向不会总是与该恒力的方向相同,故A错误;不管做匀变速直线运动,还是做匀变速曲线运动,质点速度的方向不可能总是与该恒力的方向垂直,故B正确.【答案】BC2.(2015·广东卷,14)如图所示,帆板在海面上以速度v朝正西方向运动,帆船以速度v朝正北方向航行,以帆板为参照物()A.帆船朝正东方向航行,速度大小为vB.帆船朝正西方向航行,速度大小为vC.帆船朝南偏东45°方向航行,速度大小为2vD.帆船朝北偏东45°方向航行,速度大小为2v【解析】以帆板为参照物,帆船具有朝正东方向的速度v和朝正北方向的速度v,两速度的合速度大小为2v,方向朝北偏东45°,故选项D正确.【答案】 D3.(2014·四川卷,4)有一条两岸平直、河水均匀流动、流速恒为v的大河.小明驾着小船渡河,去程时船头指向始终与河岸垂直,回程时行驶路线与河岸垂直.去程与回程所用时间的比值为k,船在静水中的速度大小相同,则小船在静水中的速度大小为()A.k vk2-1B.v1-k2C.k v1-k2D.vk2-1【解析】设河岸宽度为d,去程时t1=dv静,回程时,t2=dv2静-v2,又t1t2=k,得v静=v1-k2,B正确.【答案】 B[名校模拟]4.(2018·山东潍坊高三上学期期中)关于曲线运动,下列说法正确的是()A.曲线运动是变速运动B.变速运动一定是曲线运动C.物体保持速率不变沿曲线运动,其加速度为零D.任何做圆周运动物体的加速度都指向圆心【解析】曲线运动是变速运动,但变速运动不一定是曲线运动,例如匀变速直线运动,故A对,B错;匀速圆周运动速率不变,但加速度不为零,C错;只有做匀速圆周运动的物体加速度才指向圆心,D错.【答案】 A5.(2018·山东烟台高三上学期期中)一物体从位于一直角坐标系xOy平面上的O点开始运动,前2 s在y轴方向的v-t图象和x轴方向的s-t图象分别如图甲、乙所示,下列说法正确的是()甲乙A.物体做匀变速直线运动B .物体的初速度为8 m/sC .2 s 末物体的速度大小为4 m/sD .前2 s 内物体的位移大小为8 2 m【解析】 由图象可知,y 轴方向为匀加速运动,x 轴方向为匀速直线运动,故合运动为曲线运动,A 错;物体初速度为4 m/s ,B 错;2 s 末速度v =42+(4×2)2 m/s =4 5 m/s ,C 错;前2 s 内位移x =82+⎝⎛⎭⎫12×4×222 m =82m ,D 对. 【答案】 D6.(2018·山东师大附中高三质检)如图所示,水平面上固定一个与水平面夹角为θ的斜杆A ,另一竖直杆B 以速度v 水平向左做匀速直线运动,则从两杆开始相交到最后分离的过程中,两杆交点P 的速度方向和大小分别为( )A .水平向左,大小为vB .竖直向上,大小为v tan θC .沿A 杆斜向上,大小为v cos θD .沿A 杆斜向上,大小为v cos θ【解析】 两杆的交点P 参与了两个分运动:与B 杆一起以速度v 水平向左的匀速直线运动和沿B 杆竖直向上的匀速运动,交点P 的实际运动方向沿A 杆斜向上,如图所示,则交点P 的速度大小为v P =vcos θ,故C 正确. 【答案】 C课时作业(十) [基础小题练]1.趣味投篮比赛中,运动员站在一个旋转较快的大平台边缘上,相对平台静止,向平台圆心处的球筐内投篮球.则下图各俯视图中篮球可能被投入球筐(图中箭头指向表示投篮方向)的是( )【解析】 当沿圆周切线方向的速度和出手速度的合速度沿球筐方向,球就会被投入球筐.故C 正确,A 、B 、D 错误.【答案】 C2.下列图中实线为河岸,河水的流动方向如图v 的箭头所示,虚线为小船从河岸M 驶向对岸N 的实际航线.则其中可能正确的是( )【解析】 船头垂直于河岸时,船的实际航向应斜向右上方,A 正确,C 错误;船头斜向上游时,船的实际航向可能垂直于河岸,B 正确;船头斜向下游时,船的实际航向一定斜向下游,D 错误.【答案】 AB3.(2018·衡阳联考)如图所示,当汽车静止时,车内乘客看到窗外雨滴沿竖直方向OE 匀速运动.现从t =0时汽车由静止开始做甲、乙两种匀加速启动,甲种状态启动后t 1时刻,乘客看到雨滴从B 处离开车窗,乙种状态启动后t 2时刻,乘客看到雨滴从F 处离开车窗,F 为AB 的中点.则t 1∶t 2为( )A .2∶1B .1∶ 2C .1∶ 3D .1∶(2-1)【解析】 雨滴在竖直方向的分运动为匀速直线运动,其速度大小与水平方向的运动无关,故t 1∶t 2=AB v ∶AFv =2∶1,选项A 正确.【答案】 A4.有甲、乙两只船,它们在静水中航行速度分别为v 1和v 2,现在两船从同一渡口向河对岸开去,已知甲船想用最短时间渡河,乙船想以最短航程渡河,结果两船抵达对岸的地点恰好相同.则甲、乙两船渡河所用时间之比t 1t 2为( )A.v 22v 1B .v 1v 2C.v 22v 21 D .v 21v 22【解析】 当v 1与河岸垂直时,甲船渡河时间最短;乙船船头斜向上游开去,才有可能航程最短,由于甲、乙两只船到达对岸的地点相同(此地点并不在河正对岸),可见乙船在静水中速度v 2比水的流速v 0要小,要满足题意,则如图所示.由图可得t 1t 2=v 2v 1·sin θ①cos θ=v 2v 0②tan θ=v 0v 1③由②③式得v 2v 1=sin θ,将此式代入①式得t 1t 2=v 22v 21.【答案】 C5.自行车转弯时,可近似看成自行车绕某个定点O (图中未画出)做圆周运动,如图所示为自行车转弯时的俯视图,自行车前、后两轮轴A 、B 相距L ,虚线表示两轮转弯的轨迹,前轮所在平面与车身间的夹角θ=30°,此时轮轴B 的速度大小v 2=3 m/s ,则轮轴A 的速度v 1大小为( )A.332 m/sB .2 3 m/s C. 3 m/sD .3 3 m/s【解析】 将两车轴视为杆的两端,杆两端速度沿杆方向的投影大小相等,有v 1cos 30°=v 2,解得v 1=2 3 m/s ,B 正确.【答案】 B6.(2018·山东济南一中上学期期中)如图所示,汽车用跨过定滑轮的轻绳提升物块A .汽车匀速向右运动,在物块A 到达滑轮之前,关于物块A ,下列说法正确的是( )A.将竖直向上做匀速运动B.将处于超重状态C.将处于失重状态D.将竖直向上先加速后减速【解析】v A=v车·cos θ,v车不变,θ减小,v A增大,由T-m A g=ma知T>m A g,物块A处于超重状态,B对.【答案】 B[创新导向练]7.生活科技——曲线运动的条件在飞行中孔明灯的应用春节期间人们放飞孔明灯表达对新年的祝福,如图甲所示,孔明灯在竖直Oy方向做匀加速运动,在水平Ox方向做匀速运动,孔明灯的运动轨迹可能为图乙中的()A.直线OA B.曲线OBC.曲线OC D.曲线OD【解析】孔明灯在竖直Oy方向做匀加速运动,则合外力沿Oy方向,在水平Ox方向做匀速运动,此方向上合力为零,所以合运动的加速度方向沿Oy方向,但合速度方向不沿Oy方向,故孔明灯做曲线运动,结合合力指向轨迹内侧可知轨迹可能为曲线OD,故D正确.【答案】 D8.体育运动——足球运动中的力学问题在足球场上罚任意球时,运动员踢出的足球,在行进中绕过“人墙”转弯进入了球门,守门员“望球莫及”,轨迹如图所示.关于足球在这一飞行过程中的受力方向和速度方向,下列说法中正确的是()A .合外力的方向与速度方向在一条直线上B .合外力的方向沿轨迹切线方向,速度方向指向轨迹内侧C .合外力方向指向轨迹内侧,速度方向沿轨迹切线方向D .合外力方向指向轨迹外侧,速度方向沿轨迹切线方向【解析】 足球做曲线运动,则其速度方向为轨迹的切线方向,根据物体做曲线运动的条件可知,合外力的方向一定指向轨迹的内侧,故C 正确.【答案】 C9.生活科技——教具中的运动合成与分解的原理如图所示为竖直黑板,下边为黑板的水平槽,现有一三角板ABC ,∠C =30°.三角板上A 处固定一大小不计的滑轮.现让三角板竖直紧靠黑板,BC 边与黑板的水平槽重合,将一细线一端固定在黑板上与A 等高的Q 点,另一端系一粉笔头(可视为质点).粉笔头最初与C 重合,且细线绷紧.现用一水平向左的力推动三角板向左移动,保证粉笔头紧靠黑板的同时,紧靠三角板的AC 边,当三角板向左移动的过程中,粉笔头会在黑板上留下一条印迹.关于此印迹,以下说法正确的是( )A .若匀速推动三角板,印迹为一条直线B .若匀加速推动三角板,印迹为一条曲线C .若变加速推动三角板,印迹为一条曲线D .无论如何推动三角板,印迹均为直线,且印迹与AC 边成75°角 【解析】在三角板向左移动的过程中,粉笔头沿AC 边向上运动,且相对于黑板水平方向向左运动,由于两个分运动的速度始终相等,故粉笔头的印迹为一条直线,如图中CD 所示,A 正确,B 、C 错误;根据图中的几何关系可得,∠ACD =∠ADC =180°-30°2=75°,D 正确.【答案】 AD10.科技前沿——做曲线运动的波音737飞机如图所示,从广州飞往上海的波音737航班上午10点到达上海浦东机场,若飞机在降落过程中的水平分速度为60 m/s ,竖直分速度为6 m/s ,已知飞机在水平方向做加速度大小等于2 m/s 2的匀减速直线运动,在竖直方向做加速度大小等于0.2 m/s 2的匀减速直线运动,则飞机落地之前( )A .飞机的运动轨迹为曲线B .经20 s 飞机水平方向的分速度与竖直方向的分速度大小相等C .在第20 s 内,飞机在水平方向的分位移与竖直方向的分位移大小相等D .飞机在第20 s 内,水平方向的平均速度为21 m/s【解析】 由于合初速度的方向与合加速度的方向相反,故飞机的运动轨迹为直线,A 错误;由匀减速运动规律可知,飞机在第20 s 末的水平分速度为20 m/s ,竖直方向的分速度为2 m/s ,B 错误;飞机在第20 s 内,水平位移x =⎝⎛⎭⎫v 0x t 20+12a x t 220-⎝⎛⎭⎫v 0x t 19+12a x t 219=21 m ,竖直位移y =⎝⎛⎭⎫v 0y t 20+12a y t 220-⎝⎛⎭⎫v 0y t 19+12a y t 219=2.1 m ,C 错误.飞机在第20 s 内,水平方向的平均速度为21 m/s ,D 正确.【答案】 D[综合提升练]11.如图甲所示,质量m =2.0 kg 的物体在水平外力的作用下在水平面上运动,已知物体沿x 方向和y 方向的x -t 图象和v y -t 图象如图乙、丙所示,t =0时刻,物体位于原点O .g 取10 m/s 2.根据以上条件,求:(1)t =10 s 时刻物体的位置坐标; (2)t =10 s 时刻物体的速度大小.【解析】 (1)由图可知坐标与时间的关系为: 在x 轴方向上:x =3.0t m ,在y 轴方向上:y =0.2t 2 m 代入时间t =10 s ,可得:x =3.0×10 m =30 m ,y =0.2×102 m =20 m 即t =10 s 时刻物体的位置坐标为(30 m,20 m).(2)在x 轴方向上:v 0=3.0 m/s当t =10 s 时,v y =at =0.4×10 m/s =4.0 m/sv =v 20+v 2y = 3.02+4.02m/s =5.0 m/s【答案】 (1)(30 m,20 m) (2)5.0 m/s12.如图所示,在竖直平面内的xOy 坐标系中,Oy 竖直向上,Ox 水平向右.设平面内存在沿x 轴正方向的恒定风力.一小球从坐标原点沿Oy 方向竖直向上抛出,初速度为v 0=4 m/s ,不计空气阻力,到达最高点的位置如图中M 点所示(坐标格为正方形,g =10 m/s 2)求:(1)小球在M 点的速度v 1;(2)在图中定性画出小球的运动轨迹并标出小球落回x 轴时的位置N ;(3)小球到达N 点的速度v 2的大小.【解析】 (1)设正方形的边长为x 0.竖直方向做竖直上抛运动,有v 0=gt 1,2x 0=v 02t 1 水平方向做匀加速直线运动,有3x 0=v 12t 1. 解得v 1=6 m/s.(2)由竖直方向的对称性可知,小球再经过t 1到x 轴,水平方向做初速度为零的匀加速直线运动,所以回到x 轴时落到x =12处,位置N 的坐标为(12,0).(3)到N 点时竖直分速度大小为v 0=4 m/s水平分速度v x =a 水平t N =2v 1=12 m/s ,故v 2=v 20+v 2x =410 m/s.【答案】 (1)6 m/s (2)见解析图 (3)410 m/s。

小船渡河模型

小船渡河模型

运动的合成与分解实例——小船渡河模型一、基础知识(一)小船渡河问题分析(1)船的实际运动是水流的运动和船相对静水的运动的合运动.(2)三种速度:v 1(船在静水中的速度)、v 2(水流速度)、v (船的实际速度). (3)三种情景①过河时间最短:船头正对河岸时,渡河时间最短,t 短=d v 1(d 为河宽).②过河路径最短(v 2<v 1时):合速度垂直于河岸时,航程最短,s 短=d .船头指向上游与河岸夹角为α,cos α=v 2v 1.③过河路径最短(v 2>v 1时):合速度不可能垂直于河岸,无法 垂直渡河.确定方法如下:如图所示,以v 2矢量末端为圆心,以v 1矢量的大小为半径画弧,从v 2矢量的始端向圆弧作切线,则合速度沿此切线方向航程最短.由图可知:cos α=v 1v 2,最短航程:s 短=dcos α=v 2v 1d .(二)求解小船渡河问题的方法求解小船渡河问题有两类:一是求最短渡河时间,二是求最短渡河位移. 无论哪类都必须明确以下四点:(1)解决这类问题的关键是:正确区分分运动和合运动,船的航行方向也就是 船头指向,是分运动.船的运动方向也就是船的实际运动方向,是合运动, 一般情况下与船头指向不一致.(2)运动分解的基本方法,按实际效果分解,一般用平行四边形定则按水流 方向和船头指向分解.(3)渡河时间只与垂直河岸的船的分速度有关,与水流速度无关.(4)求最短渡河位移时,根据船速v 船与水流速度v 水的大小情况用三角形法 则求极限的方法处理. 二、练习1、一小船渡河,河宽d =180 m ,水流速度v 1=2.5 m/s.若船在静水中的速度为v 2=5 m/s ,则:(1)欲使船在最短时间内渡河,船头应朝什么方向?用多长时间?位移是多少? (2)欲使船渡河的航程最短,船头应朝什么方向?用多长时间?位移是多少? 解析 (1)欲使船在最短时间内渡河,船头应朝垂直河岸方向. 当船头垂直河岸时,如图所示.合速度为倾斜方向,垂直分速度为v 2=5 m/s.t =d v 2=1805s =36 s v =v 21+v 22=525 m/s x =vt =90 5 m(2)欲使船渡河的航程最短,应垂直河岸渡河,船头应朝上游与垂直 河岸方向成某一夹角α,如图所示. 有v 2sin α=v 1, 得α=30°所以当船头向上游偏30°时航程最短.x ′=d =180 m.t ′=d v 2cos 30°=180523s =24 3 s答案 (1)垂直河岸方向 36 s 90 5 m (2)向上游偏30° 24 3 s 180 m 2、一条船要在最短时间内渡过宽为100 m 的河,已知河水的流速v 1与船离河岸的距离x 变化的关系如图甲所示,船在静水中的速度v 2与时间t 的关系如图乙所示,则以下判断中正确的是( )A .船渡河的最短时间是25 sB .船运动的轨迹可能是直线C .船在河水中的加速度大小为0.4 m/s 2D .船在河水中的最大速度是5 m/s 答案 C 解析 船在行驶过程中,船头始终与河岸垂直时渡河时间最短,即t =1005s =20 s ,A错误;由于水流速度变化,所以合速度变化,船头始终与河岸垂直时,运动的轨迹不可能是直线,B 错误;船在最短时间内渡河t =20 s ,则船运动到河的中央时所用时间为10 s ,水的流速在x =0到x =50 m 之间均匀增加,则a 1=4-010 m/s 2=0.4 m/s 2,同理x=50 m 到x =100 m 之间a 2=0-410m/s 2=-0.4 m/s 2,则船在河水中的加速度大小为0.4 m/s 2,C 正确;船在河水中的最大速度为v =52+42m/s =41 m/s ,D 错误. 3、如5所示,河水流速与距出发点垂直距离的关系如图甲所示,船在静水中的速度与时间的关系如图乙所示,若要使船以最短时间渡河,则( )A .船渡河的最短时间是60 sB .船在行驶过程中,船头始终与河岸垂直C .船航行的轨迹是一条直线D .船的最大速度是5 m/s 答案 BD 解析 当船头指向垂直于河岸时,船的渡河时间最短,其时间t =d v 2=3003s =100 s ,A错,B 对.因河水流速不均匀,所以船在河水中的航线是一条曲线,当船行驶至河中央时,船速最大,最大速度v =42+32m/s =5 m/s ,C 错,D 对. 4、(2011·江苏·3)如图所示,甲、乙两同学从河中O 点出发,分别沿直线游到A 点和B 点后,立即沿原路线返回到O 点,OA 、OB 分别与水流方向平行和垂直,且OA =OB .若水流速度不变,两人在静水中游速相等,则他们所用时间t 甲、t 乙的大小关系为 ( ) A .t 甲<t 乙 B .t 甲=t 乙C .t 甲>t 乙D .无法确定 答案 C解析 设两人在静水中游速为v 0,水速为v ,则t 甲=x OA v 0+v +x OA v 0-v =2v 0x OA v 20-v 2 t 乙=2x OB v 20-v 2=2x OA v 20-v 2<2v 0x OAv 20-v 2故A 、B 、D 错,C 对.5、甲、乙两船在同一条河流中同时开始渡河,河宽为H ,河水流速为v 0,划船速度均为v ,出发时两船相距233H ,甲、乙两船船头均与河岸成60°角,如图所示.已知乙船恰好能垂直到达对岸A 点,则下列判断正确的是( )A .甲、乙两船到达对岸的时间不同B .v =2v 0C .两船可能在未到达对岸前相遇D .甲船也在A 点靠岸 答案 BD解析 渡河时间均为Hv sin 60°,乙能垂直于河岸渡河,对乙船由v cos 60°=v 0得v =2v 0,甲船在该时间内沿水流方向的位移为(v cos 60°+v 0)Hv sin 60°=233H ,刚好到达A 点,综上所述,A 、C 错误,B 、D 正确.6、一快艇要从岸边某处到达河中离岸100 m 远的浮标处,已知快艇在静水中的速度图象如图甲所示,流水的速度图象如图乙所示,假设行驶中快艇在静水中航行的分速度方向选定后就不再改变,则( )A .快艇的运动轨迹可能是直线B .快艇的运动轨迹只能是曲线C .最快到达浮标处通过的位移为100 mD .最快到达浮标处所用时间为20 s 解析 快艇的实际速度为快艇在静水中的速度与水速的合速度.由图象可知快艇在静水中为匀加速直线运动,水为匀速直线运动,两速度不在同一条直线上,故快艇必做曲线运动,A 错误,B 正确;当快艇与河岸垂直时,到达浮标处时间最短,而此时快艇做曲线运动,故位移大于100 m ,C 错误;由题图甲可知快艇的加速度为a =Δv Δt =0.5 m/s 2,最短位移为x =100 m ,对快艇由x =12at 2得:t =2xa= 错误! s =20 s ,即最快到达浮标处所用时间为20 s ,D 正确. 答案 BD。

3曲线运动描述实例-小船渡河

3曲线运动描述实例-小船渡河

高一物理人教新课标必修二第五章导学案 编撰人: 王高武 审定人:夏文征 姓名: 学号: 组名: 9 10曲线运动描述实例-小船渡河(预习案)【预习目标】1. 通过预习材料明确所给问题考察的知识2. 尝试利用所学知识分析该问题运动【预习内容】受热带风暴“风神”的影响,2008年6月26日白天至27日早上广东省河源市多个县市持续强降雨,江河暴涨,道路受毁,村庄受浸,山塘水库溢流.灾情就是命令,危急时刻,武警广东总队河源市支队官兵闻灾而动,支队先后派出抢险突击队2批70多名官兵及时赶到现场用冲锋舟、橡皮艇或是简陋的轮胎、木板等工具,一天内转移被洪水围困的群众8500多人请你思考:在抗洪抢险中,时间就是生命.假如你是一名战士,在救人的地点、船速和水速大小一定的情况下,你应如何驾驶冲锋舟才能在最短的时间内将人送上岸?延伸阅读加强对运动合成与分解的理解1.运动的合成和分解:由已知的分运动来求合运动,叫做运动的合成;已知合运动求跟它等效的分运动,叫运动的分解.两者互为逆运算.2.合运动分解的原则:与力的分解类似.若没有限制条件,一个实际运动可分解为无数对分运动,但在实际问题中往往分解成两个便于分析求解的简单运动.3.合成和分解的方法:运动的合成和分解常包括位移、速度和加速度的合成和分解,由于它们都是矢量,所以遵循平行四边形定则.4.对于在平面内运动的物体,常将其运动在某直角坐标系中进行正交分解,则有: v x =v ·cos _θ,v y =v ·sin _θ(θ为速度方向与x 轴的夹角)x =s ·cos _α,y =s ·sin _α(α为位移方向与x 轴的夹角).【我的疑惑】探究案【学习目标】1.理解合成与分解可以解决较复杂的运动 2.学会化繁为简研究小船渡河问题【学习重点】 分析归纳小船渡河的规律 【学习难点】 应用数学知识分析渡河【方法指导】 自主学习、交流讨论、自主归纳、练习探究一、同一直线上的运动的合成例1 某人站在自动扶梯上不动,扶梯正常运行,人经时间t 1由一楼升到二楼;如果自动扶梯不动,人从一楼沿扶梯走到二楼所用的时间为t 2.现在扶梯正常运行,人也保持原来的速率沿扶梯向上走,则人从一楼到二楼所用的时间是多少?探究二、互成角度的两运动的合成小船的实际运动(站在岸上的人看到的运动)为合运动,同时参与的两个分运动,一个是船相对于静止水的运动,它的方向与船身指向相同;另一个是船随水漂流的运动,它的方向与河岸平行.船在水中的合运动(实际看到的运动)是上述两个分运动的合成.分情况讨论小船的渡河问题第一种情况:船速大于水速,即v 1>v 2.(设船在静水中的速度为v 1,水流速度为v 2,河宽为d ) 1.怎样才能使渡河的时间最短2.怎样才能使渡河的位移最短齐贤 集成 求索 创新 最简单的回答就是行动。

曲线运动之小船渡河问题共25页文档

曲线运动之小船渡河问题共25页文档

谢谢!
25
26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。上进的力量,才是成功的保证。——罗曼·罗兰

28、知之者不如好之者,好之者不如乐之者。——孔子

29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇

30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
曲线运动之小船渡河问题
56、死去何所道,托体同山阿。 57、春秋多佳日,登高赋新诗。 58、种豆南山下,草盛豆苗稀。晨兴 理荒秽 ,带月 荷锄归 。道狭 草木长 ,夕露 沾我衣 。衣沾 不足惜 ,但使 愿无违 。 59、相见无杂言,但道桑麻长。 60、迢迢新秋夕,亭亭月将圆。

高中物理学习细节之曲线运动(一):小船渡河问题与关联速度分解问题

高中物理学习细节之曲线运动(一):小船渡河问题与关联速度分解问题

小船渡河问题如图所示,船过河时,船的实际运动(即相对于河岸的运动)可以看成是随水以速度v1漂流的运动和以v2相对于静水的划行运动的合运动。

随水漂流和划行这两个分运动互不干扰各自独立而具有等时性。

(1)最短时间:根据等时性可用船对水分运动时间代表渡河时间,由于河宽一定,只有当船对水速度v2垂直河岸时,垂直河宽的分速度最大,所以必有t min=错误!,如图所示.但此时实际位移s不是最短,s>d。

(2)船头偏向上游一定角度时,船通过的实际位移最短.当v2〉v1,若要位移最短,则船应到达小船渡河问题【典例探究】【典例1】河水的流速随离河岸的距离的变化关系如图甲所示,船在静水中的速度与时间的关系如图乙所示,若要使船以最短时间渡河,则( )A. 船渡河的最短时间是60 sB. 船在行驶过程中,船头始终与河岸垂直C。

船在河水中航行正对岸,应使合运动的速度方向垂直河岸。

如图所示。

合速度v=v2sinθ<v2,所以此时合位移最短为河宽d,而渡河时间为:t=错误!=错误!〉t min,并且要求角度θ合适(一定)cosθ=错误!。

当v2<v1时,无论船的航向如何,合速度均不可能垂直于河岸.船不可能到达正对岸B点,无论如何均会冲向下游。

根据v1、v2和v之间满足平行四边形定则,其中v1确定,v2大小确定,方向可调,画出v2所有可能方向,从中选择v与河岸夹角最大的方向,即为最短位移.如图所示,先作OA表示水流速度v1,然后,以A为圆心,以v2的大小为半径作圆,过O作圆的切线OC与圆相切于C,连接AC,再过O作AC的平行线OB,过C作OA的平行线交于B,则OB表示船对水的速度v2和船的航向,从图不难看出,船沿OCD行驶到对岸的位移最短。

此时v2与河岸的夹角θ满足cosθ=错误!。

的轨迹是一条直线D。

船在河水中的最大速度是5 m/s【典例2】已知某船在静水中的速度为v1=4m/s,现让船渡过某条河,假设这条河的两岸是理想的平行线,河宽为d=100m,水流速度为v2=3m/s,方向与河岸平行.(1) 欲使船以最短时间渡河,航向怎样?最短时间是多少?船发生的位移有多大?(2)欲使船以最小位移渡河,航向又怎样?渡河所用时间是多少?即船的航向与河岸上游方向夹角θ时,渡河位移最短,船的实际位移为:s=错误!=错误!.船渡河所需时间为:t=错误!=错误!=错误!=错误!由绳子(或杆)牵连物体的运动分解如图所示,这类问题是指同一根绳的两端连着两个物体,其速度各不相同,常常是已知一个物体的速度和有关角度,求另一个速度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一物理人教新课标必修二第五章导学案 编撰人: 王高武 审定人:夏文征 姓名: 学号: 组名: 9 10
曲线运动描述实例-小船渡河(预习案)
【预习目标】
1. 通过预习材料明确所给问题考察的知识
2. 尝试利用所学知识分析该问题运动
【预习内容】
受热带风暴“风神”的影响,2008年6月26日白天至27日早上广东省河源市多个县市持续强降雨,江河暴涨,道路受毁,村庄受浸,山塘水库溢流.灾情就是命令,危急时刻,武警广东总队河源市支队官兵闻灾而动,支队先后派出抢险突击队2批70多名官兵及时赶到现场用冲锋舟、橡皮艇或是简陋的轮胎、木板等工具,一天内转移被洪水围困的群众8500多人
请你思考:
在抗洪抢险中,时间就是生命.假如你是一名战士,在救人的地点、船速和水速大小一定的情况下,你应如何驾驶冲锋舟才能在最短的时间内将人送上岸?
延伸阅读加强对运动合成与分解的理解
1.运动的合成和分解:由已知的分运动来求合运动,叫做运动的合成;已知合运动求跟它等效的分运动,叫运动的分解.两者互为逆运算.
2.合运动分解的原则:与力的分解类似.若没有限制条件,一个实际运动可分解为无数对分运动,但在实际问题中往往分解成两个便于分析求解的简单运动.
3.合成和分解的方法:运动的合成和分解常包括位移、速度和加速度的合成和分解,由于它们都是矢量,所以遵循平行四边形定则.
4.对于在平面内运动的物体,常将其运动在某直角坐标系中进行正交分解,则有: v x =v ·cos _θ,v y =v ·sin _θ(θ为速度方向与x 轴的夹角)
x =s ·cos _α,y =s ·sin _α(α为位移方向与x 轴的夹角).
【我的疑惑】
探究案
【学习目标】
1.理解合成与分解可以解决较复杂的运动 2.学会化繁为简研究小船渡河问题
【学习重点】 分析归纳小船渡河的规律 【学习难点】 应用数学知识分析渡河
【方法指导】 自主学习、交流讨论、自主归纳、练习
探究一、同一直线上的运动的合成
例1 某人站在自动扶梯上不动,扶梯正常运行,人经时间t 1由一楼升到二楼;如果自动扶梯不动,人从一楼沿扶梯走到二楼所用的时间为t 2.现在扶梯正常运行,人也保持原来的速率沿扶梯向上走,则人从一楼到二楼所用的时间是多少?
探究二、互成角度的两运动的合成
小船的实际运动(站在岸上的人看到的运动)为合运动,同时参与的两个分运动,一个是船相对于静止水的运动,它的方向与船身指向相同;另一个是船随水漂流的运动,它的方向与河岸平行.船在水中的合运动(实际看到的运动)是上述两个分运动的合成.
分情况讨论小船的渡河问题
第一种情况:船速大于水速,即v 1>v 2.(设船在静水中的速度为v 1,水流速度为v 2,河宽为d ) 1.怎样才能使渡河的时间最短
2.怎样才能使渡河的位移最短
齐贤 集成 求索 创新 最简单的回答就是行动。

11 12
第二种情况:船速小于水速,即v 1<v 2. 1.怎样才能使渡河的时间最短
2.怎样才能使渡河的位移最短
例2 一艘小船在100 m 宽的河中横渡到对岸,已知水流的速度是3 m/s ,小船在静水中的速度是4 m/s .问:
(1)欲使船渡河的时间最短,船应该怎样渡河?最短时间是多少?船经过的位移为多大? (2)欲使船航行的距离最短,船应该怎样渡河?渡河时间为多长?
变式训练 船以v 1=4 m/s 的速度垂直河岸渡河,水流的速度v 2=5 m/s .若河的宽度x =100 m ,假设河岸为直线,试分析和计算:
(1)船能否垂直到达对岸? (2)船需要多长时间才能到达对岸?
(3)船登陆的地点离船出发点的距离s 是多少?
【课后作业】
1.湘西有座美丽的凤凰古城,它是文学大师沈从文的故乡.古城外有条美丽的沱江,“沱江泛舟”是每位游客不可缺少的活动.坐上小木船,荡漾在清澈见底的沱江上,放眼两岸尽是带有浓厚土家族民族风情的吊脚楼,真是有种“人在画中游”的感觉.设船相对于水的速率不变,当在你顺流而下时不小心将草帽掉入水中,10 min 后到达终点并立即返航,如果船速不变,请问你再经过多长时间能捞到漂来的草帽?
2. 小船匀速横渡一条河流,当船头垂直对岸方向航行时,在出发后的10min 到达对岸下游120m 处;若船头保持与河岸成α角向上游航行(速率不变),在出发后12.5min 时到达正对岸求:(1)水流的速度;(2)船在静水中的速度;(3)河的宽度;(4)船头与河岸的夹角α.
训练案
1.一人游泳渡河以垂直河岸不变的速度(相对水)向对岸游去,河水流动速度恒定.下列说法中正确的是( )
A.河水流动速度对人渡河无任何影响
B.人可以垂直到达对岸
C.由于河水的流动的影响,人到达对岸的时问与静水中不同
D.由于河水流动影响,人到达对岸的位置,向下游方向偏移
2.小船在静水中的速度已知,今小船要渡过一条河,渡河时小船船头垂直指向河岸,若船行到河中间时,水流速度突然增大,则( ) A.小船渡河时间不变 B.小船渡河时间增加 C.小船到达对岸地点在预定点下游某处
D.无法确定渡河时问及到达对岸地点如何变化
3.某人站在自动扶梯上,经时间t 1由一楼升到二楼.如果自动扶梯不动,人从一楼走到二楼的时间为t 2现在扶梯正常运行,人也保持原来的速率沿扶梯向上走,则人从一楼到二楼的时间是(
)
21.At t -
1221
.t t
B t t -
1212
.t t C t t + 22
12
.2
t t D + 4.关于互成角度的两个初速度不为零的匀变速直线运动的台运动,下列说法中正确的是 ( )
A.一定是直线运动
B.一定是曲线运动
C.可能是直线运动,也可能是曲线运动
D.以上都不对
5.雨点以8m /s 的速度竖直下落,雨中步行的人感到雨点与竖直方向成30°迎面打来,那么人行走的速度大小是________m /s .
6.河宽420m ,船在静水中的速度为4m /s ,水流速度是3m /s ,则过河的最短时间为________s ,最小位移为________m.
【学习反思】。

相关文档
最新文档