【志鸿优化设计】高考数学一轮复习 第二章函数2.3函数的奇偶性与周期性教学案 新人教B版

合集下载

高考数学一轮复习 第二章 函数2.3函数的奇偶性与周期性教学案 理

高考数学一轮复习 第二章 函数2.3函数的奇偶性与周期性教学案 理

2.3 函数的奇偶性与周期性考纲要求1.结合具体函数,了解函数奇偶性的含义.2.会运用函数图象理解和研究函数的奇偶性.3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性. 1.函数的奇偶性奇偶性 定义 图象特点 偶函数 如果对于函数f (x )的定义域内任意一个x ,都有________,那么函数f (x )是偶函数关于____对称 奇函数 如果对于函数f (x )的定义域内任意一个x ,都有________,那么函数f (x )是奇函数 关于______对称2.周期性(1)周期函数:对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=______,那么就称函数y =f (x )为周期函数,称T 为这个函数的周期.(2)最小正周期:如果在周期函数f (x )的所有周期中____________的正数,那么这个____正数就叫做f (x )的最小正周期.3.对称性若函数f (x )满足f (a -x )=f (a +x )或f (x )=f (2a -x ),则函数f (x )关于直线__________对称.1.函数f (x )=1x-x 的图象关于( ). A .y 轴对称 B .直线y =-x 对称C .坐标原点对称D .直线y =x 对称2.若函数f (x )=x 2x +1x -a为奇函数,则a =( ).A.12B.23C.34D .1 3.函数f (x )=(m -1)x 2+2mx +3为偶函数,则f (x )在区间(-5,-3)上( ).A .先减后增B .先增后减C .单调递减D .单调递增4.若f (x )是R 上周期为5的奇函数,且满足f (1)=1,f (2)=2,则f (3)-f (4)=( ).A .-1B .1C .-2D .25.若偶函数f(x)是以4为周期的函数,f(x)在区间[-6,-4]上是减函数,则f(x)在[0,2]上的单调性是__________.一、函数奇偶性的判定【例1】判断下列函数的奇偶性.(1)f(x)=3-x2+x2-3;(2)f(x)=(x+1)1-x 1+x;(3)f(x)=4-x2|x+3|-3.方法提炼判定函数奇偶性的常用方法及思路:1.定义法2.图象法3.性质法:(1)“奇+奇”是奇,“奇-奇”是奇,“奇·奇”是偶,“奇÷奇”是偶;(2)“偶+偶”是偶,“偶-偶”是偶,“偶·偶”是偶,“偶÷偶”是偶;(3)“奇·偶”是奇,“奇÷偶”是奇.提醒:(1)分段函数奇偶性的判断,要注意定义域内x取值的任意性,应分段讨论,讨论时可依据x的范围取相应地化简解析式,判断f(x)与f(-x)的关系,得出结论,也可以利用图象作判断.(2)“性质法”中的结论是在两个函数的公共定义域内才成立的.(3)性质法在选择题和填空题中可直接运用,但在解答题中应给出性质推导的过程.请做演练巩固提升1二、函数奇偶性的应用【例2-1】设偶函数f(x)满足f(x)=x3-8(x≥0),则{x|f(x -2)>0}=( ).A.{x|x<-2,或x>0} B.{x|x<0,或x>4} C.{x|x<0,或x>6} D.{x|x<-2,或x>2}【例2-2】设a,b∈R,且a≠2,若定义在区间(-b,b)内的函数f(x)=lg 1+ax1+2x是奇函数,则a+b的取值范围为__________.【例2-3】设函数f(x)=x3+bx2+cx(x∈R),已知g(x)=f(x)-f ′(x )是奇函数.(1)求b ,c 的值;(2)求g (x )的单调区间与极值.方法提炼函数奇偶性的应用:1.已知函数的奇偶性求函数的解析式,往往要抓住奇偶性讨论函数在各个分区间上的解析式,或充分利用奇偶性产生关于f (x )的方程,从而可得f (x )的解析式.2.已知带有字母参数的函数的表达式及奇偶性求参数,常常采用待定系数法:利用f (x )±f (-x )=0产生关于字母的恒等式,由系数的对等性可得知字母的值.3.奇偶性与单调性综合时要注意奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反.4.若f (x )为奇函数,且在x =0处有定义,则f (0)=0.这一结论在解决问题中十分便捷,但若f (x )是偶函数且在x =0处有定义,就不一定有f (0)=0,如f (x )=x 2+1是偶函数,而f (0)=1.请做演练巩固提升3,4三、函数的周期性及其应用【例3-1】已知定义在R 上的函数f (x )满足f (x )=-f ⎝⎛⎭⎪⎫x +32,且f (1)=3,则f (2 014)=__________.【例3-2】已知函数f (x )满足f (x +1)=1+f x 1-f x,若f (1)=2 014,则f (103)=__________.方法提炼抽象函数的周期需要根据给出的函数式子求出,常见的有以下几种情形:(1)若函数满足f (x +T )=f (x ),由函数周期性的定义可知T 是函数的一个周期;(2)若满足f (x +a )=-f (x ),则f (x +2a )=f [(x +a )+a ]=-f (x +a )=f (x ),所以2a 是函数的一个周期;(3)若满足f (x +a )=1f x,则f (x +2a )=f [(x +a )+a ]=1f x +a=f (x ),所以2a 是函数的一个周期;(4)若函数满足f(x+a)=-1f x,同理可得2a是函数的一个周期;(5)如果T是函数y=f(x)的周期,则①kT(k∈Z且k≠0)也是y=f(x)的周期,即f(x+kT)=f(x);②若已知区间[m,n](m<n)的图象,则可画出区间[m+kT,n+kT](k∈Z且k≠0)上的图象.请做演练巩固提升5没有等价变形而致误【典例】函数f(x)的定义域D={x|x≠0},且满足对于任意x1,x2∈D,有f(x1·x2)=f(x1)+f(x2).(1)求f(1)的值;(2)判断f(x)的奇偶性,并证明;(3)如果f(4)=1,f(3x+1)+f(2x-6)≤3,且f(x)在(0,+∞)上是增函数,求x的取值范围.错解:(1)令x1=x2=1,有f(1×1)=f(1)+f(1),解得f(1)=0.(2)f(x)为偶函数,证明如下:令x1=x2=-1,有f[(-1)×(-1)]=f(-1)+f(-1),解得f(-1)=0.令x1=-1,x2=x,有f(-x)=f(-1)+f(x),∴f(-x)=f(x).∴f(x)为偶函数.(3)f(4×4)=f(4)+f(4)=2,f(16×4)=f(16)+f(4)=3,由f(3x+1)+f(2x-6)≤3,得f[(3x+1)(2x-6)]≤f(64).又∵f(x)在(0,+∞)上是增函数,∴(3x+1)(2x-6)≤64.∴-73≤x≤5.分析:(1)从f(1)联想自变量的值为1,进而想到赋值x1=x2=1.(2)判断f(x)的奇偶性,就是研究f(x),f(-x)的关系,从而想到赋值x1=-1,x2=x.即f(-x)=f(-1)+f(x).(3)就是要出现f(M)<f(N)的形式,再结合单调性转化为M<N或M>N的形式求解.正解:(1)令x1=x2=1,有f(1×1)=f(1)+f(1),解得f(1)=0.(2)f(x)为偶函数,证明如下:令x 1=x 2=-1,有f [(-1)×(-1)]=f (-1)+f (-1),解得f (-1)=0.令x 1=-1,x 2=x ,有f (-x )=f (-1)+f (x ),∴f (-x )=f (x ).∴f (x )为偶函数.(3)f (4×4)=f (4)+f (4)=2,f (16×4)=f (16)+f (4)=3.由f (3x +1)+f (2x -6)≤3,变形为f [(3x +1)(2x -6)]≤f (64).(*)∵f (x )为偶函数,∴f (-x )=f (x )=f (|x |).∴不等式(*)等价于f [|(3x +1)(2x -6)|]≤f (64).又∵f (x )在(0,+∞)上是增函数,∴|(3x +1)(2x -6)|≤64,且(3x +1)(2x -6)≠0.解得-73≤x <-13或-13<x <3或3<x ≤5. ∴x 的取值范围是⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-73≤x <-13,或-13<x <3,或3<x ≤5. 答题指导:等价转化要做到规范,应注意以下几点:(1)要有明确的语言表示.如“M ”等价于“N ”、“M ”变形为“N ”.(2)要写明转化的条件.如本例中:∵f (x )为偶函数,∴不等式(*)等价于f [|(3x +1)(2x -6)|]≤f (64).(3)转化的结果要等价.如本例:由于f [|(3x +1)(2x -6)|]≤f (64) ⇒|(3x +1)(2x -6)|≤64,且(3x +1)(2x -6)≠0.若漏掉(3x +1)(2x -6)≠0,则这个转化就不等价了.1.下列函数中既不是奇函数,又不是偶函数的是( ).A .y =2|x |B .y =lg(x +x 2+1)C .y =2x +2-xD .y =lg 1x +12.已知函数f (x )对一切x ,y ∈R ,都有f (x +y )=f (x )+f (y ),则f (x )为( ).A .偶函数B .奇函数C .既是奇函数又是偶函数D .非奇非偶函数3.函数f (x )的定义域为R ,且满足:f (x )是偶函数,f (x -1)是奇函数,若f(0.5)=9,则f(8.5)等于( ).A.-9 B.9 C.-3 D.04.设偶函数f(x)满足f(x)=2x-4(x≥0),则不等式f(x-2)>0的解集为( ).A.{x|x<-2,或x>4} B.{x|x<0,或x>4}C.{x|x<0,或x>6} D.{x|x<-2,或x>2}5.已知定义在R上的奇函数f(x)的图象关于直线x=1对称,f(-1)=1,则f(2 008)+f(2 009)+f(2 010)+f(2 011)+f(2 012)+f(2 013)=__________.参考答案基础梳理自测知识梳理1.f (-x )=f (x ) y 轴 f (-x )=-f (x ) 原点2.(1)f (x ) (2)存在一个最小 最小3.x =a基础自测1.C 解析:判断f (x )为奇函数,图象关于原点对称,故选C.2.A 解析:∵f (x )为奇函数,∴f (x )=-f (-x ),即:x(2x +1)(x -a )=x(-2x +1)(-x -a )恒成立,整理得:a=12.故选A. 3.D 解析:当m =1时,f (x )=2x +3不是偶函数,当m ≠1时,f (x )为二次函数,要使其为偶函数,则其对称轴应为y 轴,故需m =0,此时f (x )=-x 2+3,其图象的开口向下,所以函数f (x )在(-5,-3)上单调递增.4.A 解析:∵f (3)=f (5-2)=f (-2)=-f (2)=-2,f (4)=f (5-1)=f (-1)=-f (1)=-1,∴f (3)-f (4)=-1,故选A.5.单调递增 解析:∵T =4,且在[-6,-4]上单调递减, ∴函数在[-2,0]上也单调递减.又f (x )为偶函数,故f (x )的图象关于y 轴对称,由对称性知f (x )在[0,2]上单调递增.考点探究突破【例1】 解:(1)由⎩⎪⎨⎪⎧ 3-x 2≥0,x 2-3≥0,得x =-3或x = 3.∴函数f (x )的定义域为{-3,3}.∵对任意的x ∈{-3,3},-x ∈{-3,3},且f (-x )=-f (x )=f (x )=0,∴f (x )既是奇函数,又是偶函数.(2)要使f (x )有意义,则1-x 1+x≥0, 解得-1<x ≤1,显然f (x )的定义域不关于原点对称,∴f (x )既不是奇函数,也不是偶函数.(3)∵⎩⎪⎨⎪⎧4-x 2≥0,|x +3|≠3, ∴-2≤x ≤2且x ≠0. ∴函数f (x )的定义域关于原点对称. 又f (x )=4-x 2x +3-3=4-x 2x , f (-x )=4-(-x )2-x =-4-x 2x, ∴f (-x )=-f (x ),即函数f (x )是奇函数.【例2-1】 B 解析:当x <0时,-x >0,∴f (-x )=(-x )3-8=-x 3-8.又f (x )是偶函数,∴f (x )=f (-x )=-x 3-8.∴f (x )=⎩⎪⎨⎪⎧ x 3-8,x ≥0,-x 3-8,x <0.∴f (x -2)=⎩⎪⎨⎪⎧ (x -2)3-8,x ≥2,-(x -2)3-8,x <2.由f (x -2)>0得:⎩⎪⎨⎪⎧ x ≥2,(x -2)3-8>0或⎩⎪⎨⎪⎧ x <2,-(x -2)3-8>0.解得x >4或x <0,故选B.【例2-2】 ⎝ ⎛⎦⎥⎤-2,-32 解析:∵f (x )在(-b ,b )上是奇函数,∴f (-x )=lg 1-ax 1-2x =-f (x )=-lg 1+ax 1+2x =lg 1+2x 1+ax , ∴1+2x 1+ax =1-ax 1-2x对x ∈(-b ,b )成立,可得a =-2(a =2舍去). ∴f (x )=lg 1-2x 1+2x.由1-2x 1+2x >0,得-12<x <12. 又f (x )定义区间为(-b ,b ),∴0<b ≤12,-2<a +b ≤-32. 【例2-3】 解:(1)∵f (x )=x 3+bx 2+cx ,∴f ′(x )=3x 2+2bx +c ,∴g (x )=f (x )-f ′(x )=x 3+(b -3)x 2+(c -2b )x -c .∵g (x )是一个奇函数,∴g (0)=0,得c =0,由奇函数定义g (-x )=-g (x )得b =3.(2)由(1)知g (x )=x 3-6x ,从而g ′(x )=3x 2-6,由此可知,(-∞,-2)和(2,+∞)是函数g (x )的单调递增区间;(-2,2)是函数g (x )的单调递减区间.g (x )在x =-2时,取得极大值,极大值为42;g (x )在x =2时,取得极小值,极小值为-4 2.【例3-1】 3 解析:∵f (x )=-f ⎝ ⎛⎭⎪⎫x +32, ∴f (x +3)=f ⎣⎢⎢⎡⎦⎥⎥⎤⎝ ⎛⎭⎪⎫x +32+32 =-f ⎝⎛⎭⎪⎫x +32=f (x ). ∴f (x )是以3为周期的周期函数.则f (2 014)=f (671×3+1)=f (1)=3.【例3-2】 -12 014 解析:∵f (x +1)=1+f (x )1-f (x ), ∴f (x +2)=1+f (x +1)1-f (x +1)=1+1+f (x )1-f (x )1-1+f (x )1-f (x )=-1f (x ). ∴f (x +4)=f (x ),即函数f (x )的周期为4.∵f (1)=2 014,∴f (103)=f (25×4+3)=f (3)=-1f (1)=-12 014.演练巩固提升1.D 解析:对于D,y=lg 1x+1的定义域为{x|x>-1},不关于原点对称,是非奇非偶函数.2.B 解析:显然f(x)的定义域是R,它关于原点对称.令y=-x,得f(0)=f(x)+f(-x),又∵f(0)=0,∴f(x)+f(-x)=0,即f(-x)=-f(x).∴f(x)是奇函数,故选B.3.B 解析:由题可知,f(x)是偶函数,所以f(x)=f(-x).又f(x-1)是奇函数,所以f(-x-1)=-f(x-1).令t=x+1,可得f(t)=-f(t-2),所以f(t-2)=-f(t-4).所以可得f(x)=f(x-4),所以f(8.5)=f(4.5)=f(0.5)=9,故选B.4.B 解析:当x≥0时,令f(x)=2x-4>0,所以x>2.又因为函数f(x)为偶函数,所以函数f(x)>0的解集为{x|x<-2,或x>2}.将函数y=f(x)的图象向右平移2个单位即得函数y=f(x-2)的图象,故f(x-2)>0的解集为{x|x<0,或x>4}.5.-1 解析:由已知得f(0)=0,f(1)=-1.又f(x)关于x=1对称,∴f(x)=f(2-x)且T=4,∴f(2)=f(0)=0,f(3)=f(3-4)=f(-1)=1,f(2 008)=f(0)=0,f(2 009)=f(1)=-1,f(2 010)=f(2)=0,f(2 011)=f(3)=1,f(2 012)=f(0)=0,f(2 013)=f(1)=-1.∴f(2 008)+f(2 009)+f(2 010)+f(2 011)+f(2 012)+f(2 013)=-1.。

高考数学一轮总复习 第二单元 函数 课时4 函数的奇偶性与周期性教案 文(含解析)

高考数学一轮总复习 第二单元 函数 课时4 函数的奇偶性与周期性教案 文(含解析)

函数的奇偶性与周期性1.了解奇偶性及周期性的定义.2.掌握判定一些简单函数的奇偶性的方法.3.会解决涉及奇偶性、周期性、单调性的简单综合问题.知识梳理1.函数的奇偶性函数的奇偶性是函数在整个定义域上的性质,在函数的定义域的真子集内讨论函数的奇偶性是没有意义的.(1)函数的奇偶性的定义①如果对定义域内的任意一个x,都有f(-x)=-f(x) 成立,那么函数f(x)为奇函数.②如果对定义域内的任意一个x,都有f(-x)=f(x) 成立,则函数f(x)为偶函数.显然,函数定义域关于原点对称是函数具有奇偶性的必要条件.(2)奇偶函数的图象特征奇函数的图象关于原点对称;偶函数的图象关于y轴对称.2.周期函数(1)周期函数:对于函数f(x)的定义域内的每一个x,都存在一个非零常数T,使得f(x+T)=f(x) 恒成立,则称函数f(x)具有周期性,T叫做f(x)的一个周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.1.函数奇偶性的常用结论(1)若奇函数f(x)在x=0处有定义,则f(0)=0.(2)如果函数f(x)是偶函数,那么f(x)=f(|x|).(3)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.(4)在公共定义域内有:奇±奇=奇;偶±偶=偶;奇×奇=偶;偶×偶=偶;奇×偶=奇.2.函数周期性的常用结论对f(x)定义域内的任一自变量的值x:(1)若f(x+a)=f(x+b),则T=|a-b|.(2)若f(x+a)=-f(x),则T=2a(a>0).(3)若f(x+a)=1f x,则T=2a(a>0).(4)若f(x+a)=-1f x,则T=2a(a>0).热身练习1.下列函数为奇函数的是(D)A.y=x B.y=|sin x|C.y=cos x D.y=e x-e-xy=x的定义域为{x|x≥0},不具有对称性,故y=x 为非奇非偶函数,y=|sin x|和y=cos x为偶函数.对于D ,f (x )=e x -e -x的定义域为R ,f (-x )=e -x -e x =-f (x ),故y =e x -e -x 为奇函数.2.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是(B)A .-13 B.13C.12 D .-12因为f (x )=ax 2+bx 为偶函数,所以b =0,又偶函数的定义域关于原点对称,所以a -1+2a =0, 所以a =13,故a +b =13.3.下列命题中:①若f (x )是奇函数,且在x =0处有定义,则f (0)=0; ②偶函数必不是单调函数;③奇函数f (x )与偶函数g (x )的定义域的交集为非空集合,则函数f (x )·g (x )一定是奇函数;④若函数f (x )的图象关于y 轴对称,则f (x )一定是偶函数. 正确命题的个数有(D) A .1个 B .2个 C .3个 D .4个①正确,由f (x )是奇函数,有f (0)=-f (0),所以f (0)=0;②正确;③正确;④正确.4.(2017·全国卷Ⅱ)已知函数f (x )是定义在R 上的奇函数,当x ∈(-∞,0)时,f (x )=2x 3+x 2,则f (2)= 12 .(方法一)令x >0,则-x <0.所以f (-x )=-2x 3+x 2.因为函数f (x )是定义在R 上的奇函数, 所以f (-x )=-f (x ), 所以f (x )=2x 3-x 2(x >0). 所以f (2)=2×23-22=12.(方法二)f (2)=-f (-2)=-[2×(-2)3+(-2)2]=12. 5.(2018·红河州二模改编)若函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,f (x )=log 2x ,则f (-94)+f (2)= 2 .因为f (x )是周期为2的奇函数,所以f (-94)=f (-94+2)=f (-14)=-f (14)=-log 214=2,f (2)=f (2+0)=f (0)=0,所以f (-94)+f (2)=2+0=2.授课提示:见听课手册P 16判断函数的奇偶性 判断下列函数的奇偶性: (1)f (x )=(x -1)1+x1-x; (2)f (x )=lg 1-x1+x.(1)由1+x 1-x ≥0,可知定义域为[-1,1).定义域不关于原点对称,故f (x )是非奇非偶函数. (2)由1-x 1+x>0,得-1<x <1.定义域(-1,1)关于原点对称,且f (-x )+f (x )=lg 1=0, 所以f (-x )=-f (x ),故f (x )为奇函数.(1)利用定义判断奇偶性的步骤:(2)在运用定义判断奇偶性时,①若表达式较复杂可适当进行化简后判断(不得改变定义域);②判断奇偶性的运算中,可以转化为判断奇偶性的等价关系式f (x )+f (-x )=0(奇函数)或f (x )-f (-x )=0(偶函数)是否成立.(3)判断函数的奇偶性除定义法外,还要注意如下方法:①图象法:f (x )的图象若关于原点对称,则f (x )为奇函数;若关于y 轴对称,则f (x )为偶函数.②性质法:如“奇±奇”是奇;“偶±偶”是偶;“奇·奇”是偶,“偶·偶”是偶,“奇·偶”是奇等.1.(1)函数f (x )=⎩⎪⎨⎪⎧x 2+x , x <0,-x 2+x , x >0的奇偶性是(A)A .奇函数B .偶函数C .非奇非偶函数D .既是奇函数也是偶函数(2)(经典真题)若函数f (x )=x ln(x +a +x 2)为偶函数,则a = 1 .(1)(方法一:利用奇偶性的定义判断) 当x <0时,-x >0,f (-x )=-(-x )2+(-x )=-(x 2+x )=-f (x );当x >0时,-x <0,f (-x )=(-x )2+(-x )=x 2-x =-f (x ).所以对任意x ∈(-∞,0)∪(0,+∞)都有f (-x )=-f (x ),故f (x )是奇函数. (方法二:用奇偶函数的图象特征判断) 画出y =f (x )的图象,如图:其图象关于原点对称,所以f (x )为奇函数. (2)利用奇偶函数的运算性质转化. 因为y =x 是奇函数,又f (x )=x ln(x +a +x 2)为偶函数, 所以y =ln(x +a +x 2)是奇函数,所以ln(x +a +x 2)+ln(-x +a +x 2)=0, 即ln(a +x 2-x 2)=ln a =0,解得a =1.奇偶性与单调性的综合应用(经典真题)设函数f (x )=ln(1+|x |)-11+x2,则使得f (x )>f (2x -1)成立的x 的取值范围是( )A .(13,1)B .(-∞,13)∪(1,+∞)C .(-13,13)D .(-∞,-13)∪(13,+∞)本题主要是考查函数奇偶性、单调性的综合应用,求解的关键是发现函数的奇偶性和单调性.由f (x )=ln(1+|x |)-11+x 2可知f (x )为偶函数,且在[0,+∞)上是增函数,所以f (x )>f (2x -1) ⇔f (|x |)>f (|2x -1|) ⇔|x |>|2x -1|⇔13<x <1.A(1)本题的求解过程中,既要利用函数的奇偶性,又要利用函数的单调性.求解此类问题要注意利用偶函数的性质f (-x )=f (x )=f (|x |).(2)掌握如下结论,会给解题带来方便: ①f (x )为偶函数f (x )=f (|x |).②若奇函数f (x )在x =0处有定义,则f (0)=0.③奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反.2.(2017·江苏卷)已知函数f (x )=x 3-2x +e x-1e x ,其中e 是自然对数的底数.若f (a-1)+f (2a 2)≤0,则实数a 的取值范围是 [-1,12] .因为f (-x )=(-x )3-2(-x )+e -x-1e -x=-x 3+2x -e x+1e x=-f (x ),所以f (x )=x 3-2x +e x-1e x 是奇函数.因为f (a -1)+f (2a 2)≤0,所以f (2a 2)≤-f (a -1),即f (2a 2)≤f (1-a ).因为f ′(x )=3x 2-2+e x +e -x ≥3x 2-2+2e x ·e -x =3x 2≥0,所以f (x )在R 上单调递增,所以2a 2≤1-a ,即2a 2+a -1≤0,所以-1≤a ≤12.奇偶性与周期性的综合应用已知f (x )是定义在R 上的偶函数,并且f (x +2)=-1f x,当2≤x ≤3时,f (x )=x ,则f (105.5)=__________.因为f (x +2)=-1f x,所以f (x +4)=f (x +2+2)=-1fx +2=f (x ), 所以f (x )是周期为4的周期函数,所以f (105.5)=f (4×26+1.5)=f (1.5)=f (1.5-4) =f (-2.5)=f (2.5),因为2≤2.5≤3,由题意,得f (2.5)=2.5. 所以f (105.5)=2.5.2.5(1)本题考查了奇偶性与周期性的综合应用,考查了化归与转化的思想.求解的关键是利用周期性和奇偶性将所求函数值转化为已知区间上的函数值.(2)若对于函数f (x )的定义域内的任一自变量的值x 都有f (x +a )=-f (x )或f (x +a )=1f x或f (x +a )=-1f x(a 是常数且a ≠0),则f (x )是一个周期为2|a |的周期函数.3.(2018·全国卷Ⅱ)已知f (x )是定义域为(-∞,+∞)的奇函数,满足f (1-x )=f (1+x ).若f (1)=2,则f (1)+f (2)+f (3)+…+f (50)=(C)A .-50B .0C .2D .50因为f (x )是奇函数,所以f (-x )=-f (x ), 所以f (1-x )=-f (x -1).由f (1-x )=f (1+x ), 所以-f (x -1)=f (x +1),所以f (x +2)=-f (x ),所以f(x+4)=-f(x+2)=-[-f(x)]=f(x),所以函数f(x)是周期为4的周期函数.由f(x)为奇函数及其定义域得f(0)=0.又因为f(1-x)=f(1+x),所以f(x)的图象关于直线x=1对称,所以f(2)=f(0)=0,所以f(-2)=0.又f(1)=2,所以f(-1)=-2,所以f(1)+f(2)+f(3)+f(4)=f(1)+f(2)+f(-1)+f(0)=2+0-2+0=0,所以f(1)+f(2)+f(3)+f(4)+…+f(49)+f(50)=0×12+f(49)+f(50)=f(1)+f(2)=2+0=2.1.函数的奇偶性是在整个定义域内讨论的整体性质,要正确理解奇函数与偶函数的定义,必须把握好两个问题:(1)定义域在数轴上关于原点对称是函数f(x)具备奇偶性的必要不充分条件;(2)f(-x)=-f(x)或f(-x)=f(x)是定义域上的恒等式.2.f(x)为奇函数f(x)的图象关于原点对称;f(x)为偶函数f(x)的图象关于y轴对称.因此可以利用函数的图象的对称性去判断函数的奇偶性.3.判断函数的奇偶性的最基本的方法是利用定义法:首先判断定义域是否关于原点对称,若不关于原点对称,立即可以判定这个函数既不是奇函数也不是偶函数.若定义域关于原点对称,再判断f(-x)是否等于f(x)或-f(x).为了便于判断函数的奇偶性,有时需要先将函数式进行化简,或应用定义的等价形式f(-x)=±f(x)f(x)±f(-x)=0f-xf x=±1 (f(x)≠0).4.奇偶性常常和单调性、周期性结合进行考查,具体求解时,要紧扣奇偶性、周期性的概念,充分利用化归与转化的思想方法.。

高考一轮复习教案函数的奇偶性与周期性

高考一轮复习教案函数的奇偶性与周期性

第三节函数的奇偶性与周期性函数的奇偶性与周期性结合具体函数,了解函数奇偶性与周期性的含义.知识点一函数的奇偶性奇偶性定义图象特点偶函数如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)是偶函数关于y轴对称奇函数如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)是奇函数关于原点对称易误提醒1.判断函数的奇偶性,易忽视判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件.2.判断函数f(x)的奇偶性时,必须对定义域内的每一个x,均有f(-x)=-f(x),而不能说存在x0使f(-x0)=-f(x0)、f(-x0)=f(x0).3.分段函数奇偶性判定时,利用函数在定义域某一区间上不是奇偶函数而否定函数在整个定义域上的奇偶性是错误的.必记结论1.函数奇偶性的几个重要结论:(1)如果一个奇函数f(x)在原点处有定义,即f(0)有意义,那么一定有f(0)=0.(2)如果函数f(x)是偶函数,那么f(x)=f(|x|).(3)既是奇函数又是偶函数的函数只有一种类型,即f(x)=0,x∈D,其中定义域D是关于原点对称的非空数集.(4)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.2.有关对称性的结论:(1)若函数y=f(x+a)为偶函数,则函数y=f(x)关于x=a对称.若函数y=f(x+a)为奇函数,则函数y=f(x)关于点(a,0)对称.(2)若f(x)=f(2a-x),则函数f(x)关于x=a对称.若f(x)+f(2a-x)=2b,则函数f(x)关于点(a,b)对称.[自测练习]1.函数f(x)=lg(x+1)+lg(x-1)的奇偶性是()A.奇函数B.偶函数C.非奇非偶函数D.既奇又偶函数2.(2015·石家庄一模)设函数f(x)为偶函数,当x∈(0,+∞)时,f(x)=log2x,则f(-)=()A.- B.C.2D.-23.若函数f(x)=x2-|x+a|为偶函数,则实数a=________.知识点二函数的周期性1.周期函数对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x +T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.2.最小正周期如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫作f(x)的最小正周期.必记结论定义式f(x+T)=f(x)对定义域内的x是恒成立的.若f(x+a)=f(x+b),则函数f(x)的周期为T=|a-b|.若在定义域内满足f(x+a)=-f(x),f(x+a)=,f(x+a)=-(a>0).则f(x)为周期函数,且T=2a为它的一个周期.对称性与周期的关系:(1)若函数f(x)的图象关于直线x=a和直线x=b对称,则函数f(x)必为周期函数,2|a-b|是它的一个周期.(2)若函数f(x)的图象关于点(a,0)和点(b,0)对称,则函数f(x)必为周期函数,2|a-b|是它的一个周期.(3)若函数f(x)的图象关于点(a,0)和直线x=b对称,则函数f(x)必为周期函数,4|a-b|是它的一个周期.[自测练习]4.函数f(x)对于任意实数x满足条件f(x+2)=,若f(1)=-5,则f(f(5))=________.考点一函数奇偶性的判断|判断下列函数的奇偶性.(1)f(x)=+;(2)f(x)=+;(3)f(x)=3x-3-x;(4)f(x)=;(5)f(x)=函数奇偶性的判定的三种常用方法1.定义法:2.图象法:3.性质法:(1)“奇+奇”是奇,“奇-奇”是奇,“奇·奇”是偶,“奇÷奇”是偶;(2)“偶+偶”是偶,“偶-偶”是偶,“偶·偶”是偶,“偶÷偶”是偶;(3)“奇·偶”是奇,“奇÷偶”是奇.考点二函数的周期性|设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x).当x∈[0,2]时,f(x)=2x-x2.(1)求证:f(x)是周期函数;(2)当x∈[2,4]时,求f(x)的解析式;(3)计算f(0)+f(1)+f(2)+…+f(2017).判断函数周期性的两个方法(1)定义法.(2)图象法.已知函数f(x)是定义在R上的偶函数,若对于x≥0,都有f(x+2)=-,且当x∈[0,2)时,f(x)=log2(x+1),则求f(-2015)+f(2017)的值为________.考点三函数奇偶性、周期性的应用|高考对于函数性质的考查,一般不会单纯地考查某一个性质,而是对奇偶性、周期性、单调性的综合考查.归纳起来常见的命题探究角度有:1.已知奇偶性求参数.2.利用单调性、奇偶性求解不等式.3.周期性与奇偶性综合.4.单调性、奇偶性与周期性相结合.探究一已知奇偶性求参数1.(2015·高考全国卷Ⅰ)若函数f(x)=x ln(x+)为偶函数,则a=________.探究二利用单调性、奇偶性求解不等式2.(2015·高考全国卷Ⅱ)设函数f(x)=ln(1+|x|)-,则使得f(x)>f(2x-1)成立的x的取值范围是()A.B.∪(1,+∞)C.D.∪探究三周期性与奇偶性相结合3.(2015·石家庄一模)已知f(x)是定义在R上的以3为周期的偶函数,若f(1)<1,f(5)=,则实数a的取值范围为()A.(-1,4)B.(-2,0)C.(-1,0)D.(-1,2)探究四单调性、奇偶性与周期性相结合4.已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数,则() A.f(-25)<f(11)<f(80)B.f(80)<f(11)<f(-25)C.f(11)<f(80)<f(-25)D.f(-25)<f(80)<f(11)函数性质综合应用问题的三种常见类型及解题策略(1)函数单调性与奇偶性结合.注意函数单调性及奇偶性的定义,以及奇、偶函数图象的对称性.(2)周期性与奇偶性结合.此类问题多考查求值问题,常利用奇偶性及周期性进行交换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.(3)周期性、奇偶性与单调性结合.解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解.2.构造法在函数奇偶性中的应用【典例】设函数f(x)=的最大值为M,最小值为m,则M+m=________.[思路点拨]直接求解函数的最大值和最小值很复杂不可取,所以可考虑对函数整理化简,构造奇函数,根据奇函数的最大值与最小值之和为零求解.[方法点评]在函数没有指明奇偶性或所给函数根本不具备奇偶性的情况下,通过观察函数的结构,发现其局部通过变式可构造出奇偶函数,这样就可以根据奇偶函数特有的性质解决问题.[跟踪练习]已知f(x)=x5+ax3+bx-8,且f(-2)=10,则f(2)等于()A.-26B.-18C.-10D.10A组考点能力演练1.(2015·陕西一检)若f(x)是定义在R上的函数,则“f(0)=0”是“函数f(x)为奇函数”的()A.必要不充分条件B.充要条件C.充分不必要条件D.既不充分也不必要条件2.(2015·唐山一模)已知函数f(x)=-x+log2+1,则f+f的值为()A.2B.-2C.0D.2log23.设f(x)是定义在R上的周期为3的函数,当x∈[-2,1)时,f(x)=,则f=()A.0B.1C.D.-14.在R上的奇函数f(x)满足f(x+3)=f(x),当0<x≤1时,f(x)=2x,则f(2015)=()A.-2B.2C.-D.5.设奇函数f(x)在(0,+∞)上是增函数,且f(1)=0,则不等式x[f(x)-f(-x)]<0的解集为()A.{x|-1<x<0,或x>1}B.{x|x<-1,或0<x<1}C.{x|x<-1,或x>1}D.{x|-1<x<0,或0<x<1}6.已知f(x)是定义在R上的偶函数,f(2)=1,且对任意的x∈R,都有f(x+3)=f(x),则f(2017)=________.7.函数f(x)=为奇函数,则a=______.8.已知函数f(x)在实数集R上具有下列性质:①直线x=1是函数f(x)的一条对称轴;②f(x+2)=-f(x);③当1≤x1<x2≤3时,[f(x2)-f(x1)](x2-x1)<0,则f(2015),f(2016),f(2017)从大到小的顺序为________.9.已知函数f(x)=是奇函数.(1)求实数m的值;(2)若函数f(x)在区间[-1,a-2]上单调递增,求实数a的取值范围.10.函数y=f(x)(x≠0)是奇函数,且当x∈(0,+∞)时是增函数,若f(1)=0,求不等式f<0的解集.B组高考题型专练1.(2014·高考新课标全国卷Ⅰ)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是()A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数2.(2014·高考安徽卷)设函数f(x)(x∈R)满足f(x+π)=f(x)+sin x.当0≤x<π时,f(x)=0,则f=()A. B.C.0D.-3.(2015·高考广东卷)下列函数中,既不是奇函数,也不是偶函数的是()A.y=B.y=x+C.y=2x+D.y=x+e x4.(2015·高考天津卷)已知定义在R上的函数f(x)=2|x-m|-1(m为实数)为偶函数.记a =f(log0.53),b=f(log25),c=f(2m),则a,b,c的大小关系为()A.a<b<c B.a<c<bC.c<a<b D.c<b<a5.(2015·高考湖南卷)设函数f(x)=ln(1+x)-ln(1-x),则f(x)是()A.奇函数,且在(0,1)上是增函数B.奇函数,且在(0,1)上是减函数C.偶函数,且在(0,1)上是增函数D.偶函数,且在(0,1)上是减函数答案:1.解析:由知x>1,定义域不关于原点对称,故f(x)为非奇非偶函数.答案:C2.解析:因为函数f(x)是偶函数,所以f(-)=f()=log2=,故选B.答案:B3.解析:∵f(-x)=f(x)对于x∈R恒成立,∴|-x+a|=|x+a|对于x∈R恒成立,两边平方整理得ax=0对于x∈R恒成立,故a=0.答案:04.解:f(x+2)=,∴f(x+4)==f(x),∴f(5)=f(1)=-5,∴f(f(5))=f(-5)=f(3)==-.答案:-考点一解:(1)由得x=±1,∴f(x)的定义域为{-1,1}.又f(1)+f(-1)=0,f(1)-f(-1)=0,即f(x)=±f(-x).∴f(x)既是奇函数又是偶函数.(2)∵函数f(x)=+的定义域为,不关于坐标原点对称,∴函数f(x)既不是奇函数,也不是偶函数.(3)∵f(x)的定义域为R,∴f(-x)=3-x-3x=-(3x-3-x)=-f(x),所以f(x)为奇函数.(4)∵由得-2≤x≤2且x≠0.∴f(x)的定义域为[-2,0)∪(0,2],∴f(x)===,∴f(-x)=-f(x),∴f(x)是奇函数.(5)易知函数的定义域为(-∞,0)∪(0,+∞),关于原点对称,又当x>0时,f(x)=x2+x,则当x<0时,-x>0,故f(-x)=x2-x=f(x);当x<0时,f(x)=x2-x,则当x>0时,-x<0,故f(-x)=x2+x=f(x),故原函数是偶函数.[解](1)∵f(x+2)=-f(x),∴f(x+4)=-f(x+2)=f(x).∴f(x)是周期为4的周期函数.(2)当x∈[-2,0]时,-x∈[0,2],由已知得f(-x)=2(-x)-(-x)2=-2x-x2.又f(x)是奇函数,∴f(-x)=-f(x)=-2x-x2,∴f(x)=x2+2x.又当x∈[2,4]时,x-4∈[-2,0],∴f(x-4)=(x-4)2+2(x-4).又f(x)是周期为4的周期函数,∴f(x)=f(x-4)=(x-4)2+2(x-4)=x2-6x+8.从而求得x∈[2,4]时,f(x)=x2-6x+8.(3)f(0)=0,f(2)=0,f(1)=1,f(3)=-1.又f(x)是周期为4的周期函数,∴f(0)+f(1)+f(2)+f(3)=f(4)+f(5)+f(6)+f(7)=…=f(2008)+f(2009)+f(2010)+f(2011)=f(2012)+f(2013)+f(2014)+f(2015)=0,∴f(0)+f(1)+f(2)+…+f(2017)=f(0)+f(1)=0+1=1.解析:当x≥0时,f(x+2)=-,∴f(x+4)=f(x),即4是f(x)(x≥0)的一个周期.∴f(2017)=f(1)=log22=1,f(-2015)=f(2015)=f(3)=-=-1,∴f(-2015)+f(2017)=0.答案:01.解析:由题意得f(x)=x ln(x+)=f(-x)=-x ln(-x),所以+x=,解得a=1.答案:12.解析:函数f(x)=ln(1+|x|)-,∴f(-x)=f(x),故f(x)为偶函数,又当x∈(0,+∞)时,f(x)=ln(1+x)-,f(x)是单调递增的,故f(x)>f(2x-1)?f(|x|)>f(|2x-1|),∴|x|>|2x-1|,解得<x<1,故选A.答案:A3.解析:∵f(x)是定义在R上的周期为3的偶函数,∴f(5)=f(5-6)=f(-1)=f(1),∵f(1)<1,f(5)=,∴<1,即<0,解得-1<a<4,故选A.答案:A4.解析:∵f(x)满足f(x-4)=-f(x),∴f(x-8)=f(x),∴函数f(x)是以8为周期的周期函数,则f(-25)=f(-1),f(80)=f(0),f(11)=f(3).由f(x)是定义在R上的奇函数,且满足f(x-4)=-f(x),得f(11)=f(3)=-f(-1)=f(1).∵f(x)在区间[0,2]上是增函数,f(x)在R上是奇函数,∴f(x)在区间[-2,2]上是增函数,∴f(-1)<f(0)<f(1),即f(-25)<f(80)<f(11).答案:D【典例】[解析]易知f(x)=1+.设g(x)=f(x)-1=,则g(x)是奇函数.∵f(x)的最大值为M,最小值为m,∴g(x)的最大值为M-1,最小值为m-1,∴M-1+m-1=0,∴M+m=2.[答案]2解析:由f(x)=x5+ax3+bx-8知f(x)+8=x5+ax3+bx,令F(x)=f(x)+8可知F(x)为奇函数,∴F(-x)+F(x)=0.∴F(-2)+F(2)=0,故f(-2)+8+f(2)+8=0.∴f(2)=-26.答案:A1.解析:f(x)在R上为奇函数?f(0)=0;f(0)=0f(x)在R上为奇函数,如f(x)=x2,故选A.答案:A2.解析:由题意知,f(x)-1=-x+log2,f(-x)-1=x+log2=x-log2=-(f(x)-1),所以f(x)-1为奇函数,则f-1+f-1=0,所以f+f=2.答案:A3.解析:因为f(x)是周期为3的周期函数,所以f=f=f=4×2-2=-1,故选D.答案:D4.解析:由f(x+3)=f(x)得函数的周期为3,所以f(2015)=f(672×3-1)=f(-1)=-f(1)=-2,故选A.答案:A5.解析:∵奇函数f(x)在(0,+∞)上是增函数,f(-x)=-f(x),x[f(x)-f(-x)]<0,∴xf(x)<0,又f(1)=0,∴f(-1)=0,从而有函数f(x)的图象如图所示:则有不等式x[f(x)-f(-x)]<0的解集为{x|-1<x<0或0<x<1},选D.答案:D6.解析:由f(x+3)=f(x)得函数f(x)的周期T=3,则f(2017)=f(1)=f(-2),又f(x)是定义在R上的偶函数,所以f(2017)=f(2)=1.答案:17.解析:由题意知,g(x)=(x+1)(x+a)为偶函数,∴a=-1.答案:-18.解析:由f(x+2)=-f(x)得f(x+4)=f(x),即函数f(x)是周期为4的函数,由③知f(x)在[1,3]上是减函数.所以f(2015)=f(3),f(2016)=f(0)=f(2),f(2017)=f(1),所以f(1)>f(2)>f(3),即f(2017)>f(2016)>f(2015).答案:f(2017)>f(2016)>f(2015)9.解:(1)设x<0,则-x>0,所以f(-x)=-(-x)2+2(-x)=-x2-2x.又f(x)为奇函数,所以f(-x)=-f(x),于是x<0时,f(x)=x2+2x=x2+mx,所以m=2.(2)要使f(x)在[-1,a-2]上单调递增,结合f(x)的图象知所以1<a≤3,故实数a的取值范围是(1,3].10.解:∵y=f(x)是奇函数,∴f(-1)=-f(1)=0.又∵y=f(x)在(0,+∞)上是增函数,∴y=f(x)在(-∞,0)上是增函数,若f<0=f(1),∴即0<x<1,解得<x<或<x<0.f<0=f(-1),∴∴x<-1,解得x∈?.∴原不等式的解集是.1.解析:由题意可知f(-x)=-f(x),g(-x)=g(x),对于选项A,f(-x)·g(-x)=-f(x)·g(x),所以f(x)g(x)是奇函数,故A项错误;对于选项B,|f(-x)|g(-x)=|-f(x)|g(x)=|f(x)|g(x),所以|f(x)|g(x)是偶函数,故B项错误;对于选项C,f(-x)|g(-x)|=-f(x)|g(x)|,所以f(x)|g(x)|是奇函数,故C项正确;对于选项D,|f(-x)g(-x)|=|-f(x)g(x)|=|f(x)g(x)|,所以|f(x)g(x)|是偶函数,故D项错误,选C.答案:C2.解析:∵f(x+2π)=f(x+π)+sin(x+π)=f(x)+sin x-sin x=f(x),∴f(x)的周期T=2π,又∵当0≤x<π时,f(x)=0,∴f=0,即f=f+sin=0,∴f=,∴f=f=f=.故选A.答案:A3.解析:选项A中的函数是偶函数;选项B中的函数是奇函数;选项C为偶函数,只有选项D中的函数既不是奇函数也不是偶函数.答案:D4.解析:由f(x)=2|x-m|-1是偶函数得m=0,则f(x)=2|x|-1,当x∈[0,+∞)时,f(x)=2x-1递增,又a=f(log0.53)=f(|log0.53|)=f(log23),c=f(0),且0<log23<log25,则f(0)<f(log23)<f(log25),即c<a<b.答案:C5.解析:由题意可得,函数f(x)的定义域为(-1,1),且f(x)=ln=ln,易知y=-1在(0,1)上为增函数,故f(x)在(0,1)上为增函数,又f(-x)=ln(1-x)-ln(1+x)=-f(x),故f(x)为奇函数,选A.答案:A。

高三数学一轮复习精品教案4:2.3 函数的奇偶性与周期性教学设计

高三数学一轮复习精品教案4:2.3 函数的奇偶性与周期性教学设计

2.3 函数的奇偶性与周期性『课前--考点引领』考点分析考点新知①函数奇偶性的考查一直是近几年江苏命题的热点,命题时主要是考查函数的概念、图象、性质等.②能综合运用函数的奇偶性、单调性及周期性分析和解决有关问题.①了解奇函数、偶函数的定义,并能运用奇偶性定义判断一些简单函数的奇偶性.②掌握奇函数与偶函数的图象对称关系,并能熟练地利用对称性解决函数的综合问题.③了解周期函数的意义,并能利用函数的周期性解决一些问题.一、回归教材1. 函数f(x)=mx2+(2m-1)x+1是偶函数,则实数m=________.2. 函数f(x)=x3-x的图象关于________对称.3.设函数f(x)是奇函数且周期为3,若f(1)=-1,则f(2 015)=________.4. 对于定义在R上的函数f(x),给出下列说法:①若f(x)是偶函数,则f(-2)=f(2);②若f(-2)=f(2),则函数f(x)是偶函数;③若f(-2)≠f(2),则函数f(x)不是偶函数;④若f(-2)=f(2),则函数f(x)不是奇函数.其中,正确的说法是________.(填序号)5.已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=x3+x+1,则当x<0时,f(x)=________.二、知识清单1. 奇函数、偶函数的概念一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数.一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数.2. 判断函数的奇偶性判断函数的奇偶性,一般都按照定义严格进行,一般步骤是: (1) 考查定义域是否关于原点对称.(2) 根据定义域考查表达式f (-x )是否等于f (x )或-f (x ). 若f (-x )=-f (x ),则f (x )为奇函数. 若f (-x )=f (x ),则f (x )为偶函数.若f (-x )=f (x )且f (-x )=-f (x ),则f (x )既是奇函数又是偶函数.若存在x 使f (-x )≠-f (x )且f (-x )≠f (x ),则f (x )既不是奇函数又不是偶函数,即非奇非偶函数.3. 函数的图象与性质奇函数的图象关于原点对称,偶函数的图象关于y 轴对称. 4. 函数奇偶性和单调性的相关关系(1) 注意函数y =f (x )与y =kf (x )的单调性与k (k ≠0)有关. (2) 注意函数y =f (x )与y =1f (x )的单调性之间的关系.(3) 奇函数在『a ,b 』和『-b ,-a 』上有相同的单调性. (4) 偶函数在『a ,b 』和『-b ,-a 』上有相反的单调性. 5. 函数的周期性设函数y =f (x ),x ∈D ,如果存在非零常数T ,使得对任意x ∈D ,都有f (x +T )=f (x ),则称函数f (x )为周期函数,T 为函数f (x )的一个周期.(D 为定义域)『课中—技巧点拨』题型1 判断函数的奇偶性 例1 判断下列函数的奇偶性: (1) f (x )=x 3-1x ;(2) f (x )=1-x 2|x +2|-2;(3) f (x )=(x -1)1+x1-x; (4) f (x )=3-x 2+x 2-3.『答案』(1) 定义域是(-∞,0)∪(0,+∞),关于原点对称,由f (-x )=-f (x ),所以f (x )是奇函数.(2) 去掉绝对值符号,根据定义判断.由⎩⎪⎨⎪⎧1-x 2≥0,|x +2|-2≠0,得⎩⎪⎨⎪⎧-1≤x≤1,x≠0且x≠-4. 故f (x )的定义域为『-1,0)∪(0,1』,关于原点对称,且有x +2>0. 从而有f (x )=1-x 2x +2-2=1-x 2x ,这时有f (-x )=1-(-x )2-x =-1-x 2x =-f (x ),故f (x )为奇函数.(3) 因为f (x )定义域为『-1,1),所以f (x )既不是奇函数也不是偶函数.(4) 因为f (x )定义域为{-3,3},所以f (x )=0,则f (x )既是奇函数也是偶函数.备选变式(教师专享) 判断下列函数的奇偶性: (1) f (x )=x 4+x ;(2) f (x )=⎩⎪⎨⎪⎧x 2+x (x<0),-x 2+x (x>0);(3) f (x )=lg (x +x 2+1).『答案』(1) 定义域为R ,f (-1)=0,f (1)=2,由于f (-1)≠f (1),f (-1)≠-f (1),所以f (x )既不是奇函数也不是偶函数;(2) 因为函数f (x )的定义域是(-∞,0)∪(0,+∞),并且当x <0时,-x >0,所以f (-x )=-(-x )2+(-x )=-(x 2+x )=-f (x )(x <0).当x >0时,-x <0,所以f (-x )=(-x )2+(-x )=-(-x 2+x )=-f (x )(x >0).故函数f (x )为奇函数.(3) 由x +x 2+1>0,得x ∈R ,由f (-x )+f (x )=lg (-x +x 2+1)+lg (x +x 2+1)=lg 1=0,所以f (-x )=-f (x ),所以f (x )为奇函数.题型2 函数奇偶性的应用例2 (1) 设a ∈R ,f (x )=a·2x +a -22x +1(x ∈R ),试确定a 的值,使f (x )为奇函数;(2) 设函数f (x )是定义在(-1,1)上的偶函数,在(0,1)上是增函数,若f (a -2)-f (4-a 2)<0,求实数a 的取值范围.『答案』(1) 要使f (x )为奇函数, ∵ x ∈R ,∴ 需f (x )+f (-x )=0. ∵ f (x )=a -22x +1,∴ f (-x )=a -22-x +1=a -2x +12x +1.由⎝⎛⎭⎫a -22x +1+⎝ ⎛⎭⎪⎫a -2x +12x +1=0,得2a -2(2x +1)2x +1=0,∴ a =1.(2) 由f (x )的定义域是()-1,1,知⎩⎪⎨⎪⎧-1<a -2<1,-1<4-a 2<1,解得3<a < 5. 由f (a -2)-f (4-a 2)<0,得f (a -2)<f (4-a 2). 因为函数f (x )是偶函数,所以f (|a -2|)<f (|4-a 2|).由于f (x )在(0,1)上是增函数,所以|a -2|<|4-a 2|,解得a <-3或a >-1且a ≠2. 综上,实数a 的取值范围是3<a <5且a ≠2. 变式训练(1) 已知函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x≤0,ax 2+bx ,x>0是奇函数,求a +b 的值;(2) 已知奇函数f (x )的定义域为『-2,2』,且在区间『-2,0』内递减,若f (1-m )+f (1-m 2)<0,求实数m 的取值范围.『答案』(1) 当x >0时,-x <0,由题意得f (-x )=-f (x ),所以x 2-x =-ax 2-bx . 从而a =-1,b =1,所以a +b =0. (2) 由f (x )的定义域是『-2,2』,知⎩⎪⎨⎪⎧-2≤1-m≤2,-2≤1-m 2≤2,解得-1≤m ≤ 3. 因为函数f (x )是奇函数,所以f (1-m )<-f (1-m 2),即f (1-m )<f (m 2-1). 由奇函数f (x )在区间『-2,0』内递减, 所以在『-2,2』上是递减函数, 所以1-m >m 2-1,解得-2<m <1. 综上,实数m 的取值范围是-1≤m <1. 题型3 函数奇偶性与周期性的综合应用例3 设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ),当x ∈『0,2』时,f (x )=2x -x 2.(1) 求证:f (x )是周期函数;(2) 当x ∈『2,4』时,求f (x )的解析式; (3) 计算f (0)+f (1)+f (2)+…+f (2 014)的值. (1) 证明:因为f (x +2)=-f (x ), 所以f (x +4)=-f (x +2)=f (x ), 所以f (x )是周期为4的周期函数. (2) 『答案』因为x ∈『2,4』,所以-x ∈『-4,-2』,4-x ∈『0,2』, 所以f (4-x )=2(4-x )-(4-x )2=-x 2+6x -8.又f (4-x )=f (-x )=-f (x ),所以-f (x )=-x 2+6x -8,即f (x )=x 2-6x +8,x ∈『2,4』. (3) 『答案』因为f (0)=0,f (1)=1,f (2)=0,f (3)=-1, 又f (x )是周期为4的周期函数,所以f (0)+f (1)+f (2)+f (3)=f (4)+f (5)+f (6)+f (7)=…=0, 所以f (0)+f (1)+f (2)+…+f (2 014)=f (0)+f (1)+f (2)=1.备选变式(教师专享)已知定义在R 上的函数f (x )对任意实数x 、y 恒有f (x )+f (y )=f (x +y ),且当x >0时,f (x )<0,又f (1)=-23.(1) 求证:f (x )为奇函数; (2) 求证:f (x )在R 上是减函数;(3) 求f (x )在『-3,6』上的最大值与最小值.(1) 证明:令x =y =0,可得f (0)+f (0)=f (0+0),从而f (0)=0.令y =-x ,可得f (x )+f (-x )=f (x -x )=0,即f (-x )=-f (x ),故f (x )为奇函数.(2) 证明:设x 1、x 2∈R ,且x 1>x 2,则x 1-x 2>0,于是f (x 1-x 2)<0.从而f (x 1)-f (x 2)=f 『(x 1- x 2)+x 2』- f (x 2) = f (x 1- x 2) +f (x 2)- f (x 2) = f (x 1- x 2)<0.所以f (x )为减函数.(3) 解:由(2)知,所求函数的最大值为f (-3),最小值为f (6).f (-3)=-f (3)=-『f (2)+f (1)』=-2f (1)-f (1)=-3f (1)=2,f (6)=-f (-6)=-『f (-3)+f (-3)』=-4.于是f (x )在『-3,6』上的最大值为2,最小值为-4.『新题推荐』1. (2013·苏州期初)已知f (x )是定义在R 上的奇函数,且f (x +4)=f (x ).当x ∈(0,2)时,f (x )=-x +4,则f (7)=________.2. (2013·江苏)已知f (x )是定义在R 上的奇函数.当x >0时,f (x )=x 2-4x ,则不等式f (x )>x 的解集用区间表示为________.3. (2013·天津)已知函数f (x )是定义在R 上的偶函数,且在区间『0,+∞)内单调递增.若实数a 满足f (log 2a )+f (log 12a )≤2f (1),则a 的取值范围是________.4. (2013·盐城二模)设函数y =f (x )满足对任意的x ∈R ,f (x )≥0且f 2(x +1)+f 2(x )=9.已知当x ∈『0,1)时,有f (x )=2-|4x -2|,则f ⎝⎛⎭⎫2 0136=________.1. 函数奇偶性的判断,本质是判断f (x )与f (-x )是否具有等量关系,前提是定义域关于原点对称,运算中,也可以转化为判断奇偶性的等价关系式(f (x )+f (-x )=0或f (x )-f (-x )=0)是否成立.2. 若f (x )是偶函数,则f (-x )=f (x )=f (|x |).3. 奇偶函数的不等式求解时,要注意到:奇函数在对称的区间上有相同的单调性,偶函数在对称的区间上有相反的单调性.答案一、回归教材 1.『答案』12『解析』由f (-x )=f (x ),知m =12.2.『答案』原点『解析』由f (-x )=(-x )3-(-x )=-x 3+x =-f (x ),知f (x )是奇函数,则其图象关于原点对称.3.『答案』1『解析』由条件,f (2 015)=f (671×3+2)=f (2)=f (-1)=-f (1)=1. 4.『答案』①③『解析』根据偶函数的定义,①正确,而③与①互为逆否命题,故③也正确,若举例奇函数f (x )=⎩⎪⎨⎪⎧x -2,x>0,x +2,x<0,由于f (-2)=f (2),所以②④都错误.5.『答案』x 3+x -1『解析』若x <0,则-x >0,f (-x )=-x 3-x +1,由于f (x )是奇函数,所以f (-x )=-f (x ),所以f (x )=x 3+x -1.『新题推荐』1.『答案』-3『解析』f (7)=f (3+4)=f (3)=f (3-4)=f (-1)=-f (1)=-3. 2.『答案』(-5,0)∪(5,+∞)『解析』作出f (x )=x 2-4x (x >0)的图象,如图所示.由于f (x )是定义在R 上的奇函数,利用奇函数图象关于原点对称,作出x <0的图象.不等式f (x )>x 表示函数y =f (x )的图象在y =x 的上方,观察图象易得,原不等式的解集为(-5,0)∪(5,+∞).3.『答案』⎣⎡⎦⎤12,2『解析』因为f (log 12a )=f (-log 2a )=f (log 2a ),所以原不等式可化为f (log 2a )≤f (1).又f (x )在区间『0,+∞)上单调递增, 所以|log 2a |≤1,解得12≤a ≤2.4.『解析』由题知f ⎝⎛⎭⎫12=2,因为f (x )≥0且f 2(x +1)+f 2(x )=9,故f ⎝⎛⎭⎫32=5,f ⎝⎛⎭⎫52=2,f ⎝⎛⎭⎫72=5,如此循环得f ⎝⎛⎭⎫6712=f ⎝⎛⎭⎫4×168-12=5,即f ⎝⎛⎭⎫2 0136= 5.。

高中数学 高三一轮第二章第3课时 函数的奇偶性与周期性(教案)

高中数学 高三一轮第二章第3课时 函数的奇偶性与周期性(教案)

1.函数的单调性(1)单调函数的定义增函数减函数定义在函数f(x)的定义域内的一个区间A上,如果对于任意两数x1,x2∈A当x1〈x2时,都有f(x1)〈f(x2),那么,就称函数f(x)在区间A上是增加的当x1〈x2时,都有f(x1)>f(x2),那么,就称函数f(x)在区间A上是减少的图像描自左向右看图像是上自左向右看图像是下如果函数y=f(x)在区间A上是增加的或是减少的,那么就称A为单调区间。

2。

函数的最值【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)在增函数与减函数的定义中,可以把“任意两数”改为“存在两数".( ×)(2)对于函数f(x),x∈D,若x1,x2∈D且(x1-x2)·[f (x1)-f(x2)]〉0,则函数f(x)在D上是增函数.( √)(3)函数y=f(x)在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).( ×)(4)函数y=错误!的单调递减区间是(-∞,0)∪(0,+∞)。

( ×)(5)所有的单调函数都有最值。

( ×)(6)对于函数y=f(x),若f(1)〈f(3),则f(x)为增函数。

( ×)1。

下列函数中,在区间(0,+∞)内单调递减的是( )A。

y=错误!-x B。

y=x2-xC.y=ln x-xD.y=e x-x答案A解析对于A,y1=错误!在(0,+∞)内是减函数,y2=x 在(0,+∞)内是增函数,则y=错误!-x在(0,+∞)内是减函数;B,C,D选项中的函数在(0,+∞)上均不单调.故选A.2。

若函数f(x)=|2x+a|的单调递增区间是[3,+∞),则a的值为( )A.-2B.2 C。

-6 D。

6答案C解析由图像易知函数f(x)=|2x+a|的单调增区间是[-错误!,+∞),令-错误!=3,∴a=-6。

3.若函数y=ax与y=-错误!在(0,+∞)上都是减函数,则y=ax2+bx在(0,+∞)上是( )A。

高考数学一轮复习-函数的奇偶性与周期性教案

高考数学一轮复习-函数的奇偶性与周期性教案

函数的奇偶性与周期性一、考纲要求函数的奇偶性与周期性 B 二、复习目标1.理解函数奇偶性的定义;2、会判断函数的奇偶性;3、能证明函数的奇偶性;4、理解函数 周期性的定义;5、会求周期函数的周期。

三、重点难点函数奇偶性的判断及证明;函数周期性判断及周期求法。

四、要点梳理1.奇、偶函数的定义:对于函数 f (x)定义域内的任意一个 x ,都有_______________,称 f (x)为偶函数,对于函数f (x)定义域内的任意一个 x ,都有________________,称 f (x)为奇函数. 2.奇、偶函数的性质(1)具有奇偶性的函数,其定义域关于_________对称;(2)奇函数的图像关于____对称,偶函数的图像关于_________对称; (3)若奇函数的定义域包含0,则_____________;(4)在偶函数中, f ( x )f (x).(5)在公共定义域内,①两个奇函数的和是___函数,两个奇函数的积是____函数;②两个偶函数 的和、积是___函数;③一个奇函数,一个偶函数的积是____函数.(填“奇”,“偶”) 3.对于函数y =f(x),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都 有 ,那么就称函数y =f(x)为周期函数,称T 为这个函数的周期. 4.最小正周期:如果在周期函数f(x)的所有周期中存在一个最小正数,那么这个 叫做f(x)的最小正周期. 就 5.周期性三个常用结论对f(x)定义域内任一自变量的值x : (1)若f(x +a)=-f(x),则T =2a ;1 1(2)若f(x +a)= ,则T =2a ; (3)若f(x +a)=- ,则T =2a.(a>0)fx fx五、基础自测1.对于定义在R 上的函数 f (x),下列命题正确的序号是___________. (1)若 f (2) f (2),则函数 f (x)是偶函数; (2)若 f (2) f (2),则函数 f (x)不是偶函数; (3)若 f (2) f (2),则函数 f (x)不是奇函数; (4)若 f (x)是偶函数,则 f (2) f (2). 2.给出4个函数:① f (x) 1 x2 1x ;④ f (x) x1. 3x 4;② f (x) 2x 5;③ f (x) lg1 xx 1 既不是奇函数也不是偶函数.其中是奇函数; 是偶函数; 3.已知函数 f (x)4x2bx 3a b 是偶函数,其定义域是 [a 6,2a],则点 a,b 的坐标为__________.3,且f (1) 2,则f(2014)=________. 2 4.已知定义在R 上的函数 f (x)满足 f (x) f x x a5.若函数 f (x)在[1,1]上是奇函数,则 f (x) x bx 12.六、典例精讲: 例1判断下列函数的奇偶性,并说明理由: (1) f (x) (1 2x ) 21x ;(2) f (x) lg(xx21);(3) f (x)(1x) 1 x; 2xx 2| x1| 1;(5) f (x)x 11 x2;(6) f (x)22x (x ≥0),(4) f (x)x x 2x (x 0).例2:设 f (x)是定义在R 上的奇函数,且对任意实数x ,恒有 f (x 2) f x .当x∈[0,2]时,f (x) 2xx 。

高考一轮复习教案二(3)函数的奇偶性、周期性(学生)文科用

高考一轮复习教案二(3)函数的奇偶性、周期性(学生)文科用

模块: 二、函数(一) 课题: 3、函数的奇偶性、周期性 教学目标: 掌握函数奇偶性、周期性概念,并能判断一些简单函数的奇偶性;掌握奇偶性、周期性与函数图像的关系.重难点: 函数奇偶性、周期性的判定,以及由函数图像研究其性质和由函数性质研究其图像的一般方法.一、 知识要点1、 函数奇偶性的定义:设函数()()y f x x D =∈,任取x D ∈,若有()()f x f x =-,则称函数()y f x =为偶函数;若()()f x f x =--,则称函数()y x =为奇函数. 2、奇、偶函数的性质(1)函数()f x 是奇函数或偶函数的必要条件是定义域关于原点对称; (2)奇函数()f x 的图像关于原点对称,偶函数()g x 的图像关于y 轴对称; (3)在公共定义域内,两奇函数之积(商)为偶函数;两偶函数之积(商)也为偶函数;一奇一偶函数之积(商)为奇函数(取商时分母不可为零);(4)若()f x 是具有奇偶性的单调函数,则奇函数在正负对称区间上的单调性相同,偶函数在正负对称区间上的单调性相反;(5)若函数()f x 的定义域关于原点对称,则()f x 既是奇函数又是偶函数的充要条件是()0f x =.3、函数的周期性(1)对于函数()()f x x D ∈,如果存在一个非零常数T ,使得对于()f x 定义域内任意x ,都有()()f x T f x +=,那么这个函数()f x 叫做周期函数,常数T 叫做函数()f x 的周期.(2)对于每一个周期函数来说,它的周期可有无穷多个,对于周期函数()f x ,如果在其所有的周期中存在最小的一个正数,那么这个最小的正数叫做这个函数的最小正周期.二、 例题精讲例1、 判断函数的奇偶性:(1)()22f x x =+-;(2)()1lg 1x f x x x-=+;(3)()f x =(4)()11312x f x x ⎛⎫=+ ⎪-⎝⎭;(5)()21f x x =-;(6)()2223,0,0,0,23,0x x x f x x x x x ⎧-->⎪==⎨⎪--+<⎩例2、(1)()f x 是R 上的奇函数,当(),0x ∈-∞时,()()31f x x x =-,求x R ∈时()f x 的解析式;(2)设()f x 为奇函数,()g x 为偶函数,且()()()210,1,1f x g x x x x-=≠-+,求()f x 和()g x 的解析式.例3、已知()23g x x =--,()f x 是二次函数,且()()f x g x +为奇函数,当[]1,2x ∈-时,()f x 的最小值为1,求()f x 的表达式.例4、已知定义在R 上的奇函数()f x ,满足()()4f x f x -=-,且在区间[]0,2上是增函数,则( ) A 、()()()251180f f f -<< B 、()()()801125f f f <<- C 、()()()118025f f f <<-D 、()()()258011f f f -<<例5、已知函数()f x 以任意实数,x y 均有()()222x y x y f x f y f f +-⎛⎫⎛⎫+=⎪ ⎪⎝⎭⎝⎭,()00f ≠,且存在非零常数c 使()0f c =.(1) 求()0f 的值;(2) 讨论函数()f x 的奇偶性; (3) 求证:()f x 是周期函数.*例6、已知函数()f x 和()g x 的图像关于原点对称,且()22f x x x =+.(1) 求函数()g x 的解析式; (2) 解不等式()()1g x f x x ≥--;(3) 若()()1h x g x x λ=-+在[]1,1-上是增函数,求实数λ的取值范围.*例7、对于函数()f x ,若存在实数0x ,使()00f x x =成立,则称0x 为函数的不动点. (1)已知函数()()()()2110f x ax b x b a =+++-≠.①若对任意实数b ,函数()f x 恒有两个相异的不动点,求实数a 的取值范围; ②在①的条件下,若()y f x =的图像上A B 、两点的横坐标都是函数()f x 的不动点,且A B 、两点关于直线2121y kx a =++对称,求实数b 的最小值;(2)命题“若定义在实数集R 上的奇函数()g x 存在有限个相异的不动点,则不动点的个数是奇数个”是否正确?若正确则加以证明,若不正确请举一反例加以说明.*例8、(1)已知函数()f x 满足:()114f =,()()()4f x f y f x y =++()f x y -(),x y R ∈,则()2010f = . (2)如图放置的边长为1的正方形PABC 沿x 轴滚动.设顶点(),P x y 的轨迹方程是()y f x =.则函数()f x 的最小正周期为 ;()y f x =在其两个相邻零点间的图像与x 轴所围区域的面积为 .三、 课堂练习1、已知对于任意实数x ,函数()f x 满足()()f x f x -=,若方程()0f x =有2013个实数解,则这2013个实数解之和为 .2、设()f x 是定义在R 上的奇函数,若当0x ≥时,()()3log 1f x x =+,则()2f -= .3、已知函数()y f x =是奇函数,当0x ≥时,()31xf x =-,设()f x 的反函数是()y g x =,则()8g -= .4、已知()()f x g x 、的定义域均为R ,()f x 是偶函数,()g x 是奇函数,且()()12x f x g x ++=,则()f x = ,()g x = .5、设函数()f x 的定义域关于原点对称,且适合下列三个条件:①对于定义域内的12x x 、都有()()()()()1212121f x f x f x x f x f x --=+;②存在常数0a >,使()1f a =;③对于()0,2x a ∈,有()0f x >.试求它的一个周期: . 6、设()f x 是定义在R 上的函数,它具有奇偶性,且()()22f x f x +=-,则()f x 的最小正周期是 . 四、 课后作业 一、填空题1、若函数()()()2f x x a bx a =++(常数,a b R ∈)是偶函数,且它的值域为(],4-∞,则该函数的解析式()f x = .2、若函数()[]323,,y x a x x a b =+++∈的图像关于直线1x =对称,则b = .3、判断函数的奇偶性:()(12log f x x =+是 函数,()()11x x x a g x a -=+()0a >是 函数.4、如果函数()23,0,,x x y f x x ->⎧⎪=⎨<⎪⎩是奇函数,则()f x = .5、写出函数()f x 的一个解析式,使()f x 同时具有下述各性质:①是定义在R 上的偶函数;②最小正周期为6的周期函数;③其图像经过定点()3,2-,则()f x = .6、设()f x 是定义在R 上的奇函数,且()y f x =的图像关于直线12x =对称,则()()()()()12345f f f f f ++++= .二、选择题7、设函数()f x 是定义在R 上的以5为周期的奇函数,若()21f >,()2333a a f a ++=-,则a 的取值范围是( ) A 、()(),20,3-∞- B 、()()2,03,-+∞C 、()(),20,-∞-+∞D 、()(),03,-∞+∞8、定义在R 上的函数()f x 既是奇函数,又是周期函数,T 是它的一个正周期.若将方程()0f x =在闭区间[],T T -上的根的个数记为n ,则n 可能为( ) A 、0B 、1C 、3D 、59、设偶函数()f x 对任意x R ∈,都有()()13f x f x +=-,且当[]3,2x ∈--时,()2f x x =,则()113.5f 的值是( )A 、27-B 、27C 、15-D 、15三、解答题 10、设a R ∈,()()2221x x a a f x x R ⋅+-=∈+.(1)确定a 的值,使()f x 为奇函数;(2)当()f x 为奇函数时,对于给定的正实数k ,解关于x 的不等式()121log xf x k-+>.11、已知集合()()()(){}|21,M f x f x f x f x x R =++=+∈,()sin 3xg x π=.(1)判断()g x 与M 的关系,并说明理由;(2)M 中的元素是否都是周期函数,证明你的结论; (3)M 中的元素是否都是奇函数,证明你的结论.12、已知函数()11335x x f x --=,()11335x x g x -+=.(1)证明()f x 是奇函数,并求()f x 的单调区间;(2)分别计算()()()4522f f g -和()()()9533f f g -的值.由此概括出涉及函数()f x 和()g x 的对所有不等于零的实数x 都成立的一个等式,并加以证明.。

高三数学一轮复习精品教案1:2.3函数的奇偶性与周期性教学设计

高三数学一轮复习精品教案1:2.3函数的奇偶性与周期性教学设计

2.3函数的奇偶性及周期性1.函数的奇偶性2.周期性(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.1.判断函数的奇偶性,易忽视判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件.2.判断函数f(x)的奇偶性时,必须对定义域内的每一个x,均有f(-x)=-f(x),而不能说存在x0使f(-x0)=-f(x0)、f(-x0)=f(x0).3.分段函数奇偶性判定时,f(-x0)=f(x0)利用函数在定义域某一区间上不是奇偶函数而否定函数在整个定义域上的奇偶性是错误的.『试一试』1.(2013·南通三模)对于定义在R上的函数f(x),给出三个命题:①若f(-2)=f(2),则f(x)为偶函数;②若f(-2)≠f(2),则f(x)不是偶函数;③若f (-2)=f (2),则f (x )一定不是奇函数. 其中正确命题的序号为________.『解析』根据偶函数的定义,对于定义域内的任意实数x ,若f (-x )=f (x ),则f (x )是偶函数.从而命题①错误,命题②正确;对于常数函数,命题③错误. 『答案』①2.已知f (x )=ax 2+bx 是定义在『a -1,2a 』上的偶函数,那么a +b 的值是________. 『解析』∵f (x )=ax 2+bx 是定义在『a -1,2a 』上的偶函数, ∴a -1+2a =0,∴a =13.又f (-x )=f (x ),∴b =0,∴a +b =13.『答案』131.判断函数奇偶性的两个方法 (1)定义法:(2)图像法:2.周期性常用的结论对f (x )定义域内任一自变量的值x : (1)若f (x +a )=-f (x ),则T =2a ; (2)若f (x +a )=1f x,则T =2a ; (3)若f (x +a )=-1f x ,则T =2a .(a >0)『练一练』已知定义在R 上的函数f (x )满足f (x )=-f ⎝⎛⎭⎫x +32,且f (1)=2,则f (2 014)=________.『解析』∵f (x )=-f ⎝⎛⎭⎫x +32, ∴f (x +3)=f ⎣⎡⎦⎤⎝⎛⎭⎫x +32+32=-f ⎝⎛⎭⎫x +32=f (x ). ∴f (x )是以3为周期的周期函数. 则f (2 014)=f (671×3+1)=f (1)=2. 『答案』2判断下列函数的奇偶性. (1)f (x )=1-x 2+x 2-1; (2)f (x )=3-2x +2x -3; (3)f (x )=3x -3-x ; (4)f (x )=4-x 2|x +3|-3;(5)f (x )=⎩⎪⎨⎪⎧x 2+x ,x >0,x 2-x ,x <0.『解析』(1)∵由⎩⎪⎨⎪⎧x 2-1≥0,1-x 2≥0,得x =±1, ∴f (x )的定义域为{-1,1}.又f (1)+f (-1)=0,f (1)-f (-1)=0, 即f (x )=±f (-x ).∴f (x )既是奇函数又是偶函数.(2)∵函数f (x )=3-2x +2x -3的定义域为⎩⎨⎧⎭⎬⎫32,不关于坐标原点对称,∴函数f (x )既不是奇函数,也不是偶函数. (3)∵f (x )的定义域为R ,∴f (-x )=3-x -3x =-(3x -3-x )=-f (x ), 所以f (x )为奇函数.(4)∵由⎩⎪⎨⎪⎧4-x 2≥0,|x +3|-3≠0,得-2≤x ≤2且x ≠0.∴f (x )的定义域为『-2,0)∪(0,2』,∴f (x )=4-x 2|x +3|-3=4-x 2x +3-3=4-x 2x ,∴f (-x )=-f (x ),∴f (x )是奇函数.(5)易知函数的定义域为(-∞,0)∪(0,+∞)关于原点对称,又当x >0时,f (x )=x 2+x ,则当x <0时,-x >0, 故f (-x )=x 2-x =f (x );当x <0时,f (x )=x 2-x ,则当x >0时,-x <0, 故f (-x )=x 2+x =f (x ),故原函数是偶函数.『备课札记』 『类题通法』判断函数奇偶性除利用定义法和图像法,应学会利用性质(1)“奇+奇”是奇,“奇-奇”是奇,“奇·奇”是偶,“奇÷奇”是偶; (2)“偶+偶”是偶,“偶-偶”是偶,“偶·偶”是偶,“偶÷偶”是偶; (3)“奇·偶”是奇,“奇÷偶”是奇.『典例』 (1)已知y =f (x )+x 2是奇函数,且f (1)=1.若g (x )=f (x )+2,则g (-1)=________. (2)已知奇函数f (x )的定义域为『-2,2』,且在区间『-2,0』上递减,求满足f (1-m )+f (1-m 2)<0的实数m 的取值范围.『解析』 (1)∵y =f (x )+x 2是奇函数,且x =1时,y =2,∴当x =-1时,y =-2, 即f (-1)+(-1)2=-2,得f (-1)=-3,所以g (-1)=f (-1)+2=-1. (2)∵f (x )的定义域为『-2,2』,∴⎩⎪⎨⎪⎧-2≤1-m ≤2,-2≤1-m 2≤2,解得-1≤m ≤ 3.① 又f (x )为奇函数,且在『-2,0』上递减, ∴f (x )在『-2,2』上递减,∴f (1-m )<-f (1-m 2)=f (m 2-1)⇒1-m >m 2-1,即-2<m <1.② 综合①②可知,-1≤m <1.『备课札记』『解析』改变.∵f(x)为奇函数且在『-2,0』上递增,∴f(x)在『-2,2』上递增.∴m2-1>1-m.即m>1或m<-2.由例(2)①知1<m≤ 3.故m的取值范围为(1,3』.『类题通法』应用函数奇偶性可解决的四类问题及解题方法(1)求函数值:将待求值利用奇偶性转化为已知区间上的函数值求解.(2)求解析式:将待求区间上的自变量转化到已知区间上,再利用奇偶性求出,或充分利用奇偶性构造关于f(x)的方程(组),从而得到f(x)的解析式.(3)求函数解析式中参数的值:利用待定系数法求解,根据f(x)±f(-x)=0得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值.(4)画函数图像和判断单调性:利用奇偶性可画出另一对称区间上的图像及判断另一区间上的单调性.『针对训练』1.已知函数y=f(x)是R上的偶函数,且在(-∞,0』上是减函数,若f(a)≥f(2),则实数a 的取值范围是________.『解析』∵y=f(x)是R上的偶函数,且在(-∞,0』上是减函数,∴函数y=f(x)在『0,+∞)上是增函数.∴当a>0时,由f(a)≥f(2)可得a≥2,当a<0时,由f(a)≥f(2)=f(-2),可得a≤-2.所以实数a的取值范围是(-∞,-2』∪『2,+∞).『答案』(-∞,-2』∪『2,+∞)2.(2013·苏北四市期中)已知定义在R 上的偶函数f (x )在『0,+∞)上是增函数,且f (2)=1,若f (x +a )≤1对x ∈『-1,1』恒成立,则实数a 的取值范围是________.『解析』由题意得-2≤x +a ≤2对x ∈『-1,1』恒成立,即-2-x ≤a ≤2-x 对x ∈『-1,1』恒成立.当x ∈『-1,1』时,(-2-x )max =-2-(-1)=-1,(2-x )min =2-1=1,所以实数a 的取值范围是『-1,1』. 『答案』『-1,1』『典例』 已知函数f (x )对任意的实数满足:f (x +3)=-1f x ,且当-3≤x <-1时,f (x )=-(x +2)2,当-1≤x <3时,f (x )=x .则f (1)+f (2)+f (3)+…+f (2 014)=________. 『解析』 ∵对任意x ∈R ,都有f (x +3)=-1f x ,∴f (x +6)=f (x +3+3)=-1f x +3=-1-1f x=f (x ),∴f (x )是以6为周期的周期函数,∵当-3≤x <-1时, f (x )=-(x +2)2, 当-1≤x <3时,f (x )=x ,∴f (1)=1,f (2)=2,f (3)=f (-3)=-1, f (4)=f (-2)=0,f (5)=f (-1)=-1,f (6)=f (0)=0. ∴f (1)+f (2)+…+f (6)=1,∴f (1)+f (2)+…+f (6)=f (7)+f (8)+…+f (12)=…=f (2 005)+f (2 006)+…+f (2 010)=1, ∴f (1)+f (2)+…+f (2 010)=1×2 0106=335.而f (2 011)+f (2 012)+f (2 013)+f (2 014)=f (1)+f (2)+f (3)+f (4)=1+2-1+0=2, ∴f (1)+f (2)+…+f (2 014)=335+2=337. 『答案』 337『备课札记』 『类题通法』函数周期性的判定与应用(1)判断函数的周期只需证明f (x +T )=f (x )(T ≠0)便可证明函数是周期函数,且周期为T ,函数的周期性常与函数的其他性质综合命题.(2)根据函数的周期性,可以由函数局部的性质得到函数的整体性质,在解决具体问题时,要注意结论:若T 是函数的周期,则kT (k ∈Z 且k ≠0)也是函数的周期. 『针对训练』设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ).当x ∈『0,2』时,f (x )=2x -x 2.(1)求证:f (x )是周期函数;(2)当x ∈『2,4』时,求f (x )的解析式. 『解析』(1)证明:∵f (x +2)=-f (x ), ∴f (x +4)=-f (x +2)=f (x ). ∴f (x )是周期为4的周期函数.(2)∵x ∈『2,4』,∴-x ∈『-4,-2』,∴4-x ∈『0,2』, ∴f (4-x )=2(4-x )-(4-x )2=-x 2+6x -8. 又∵f (4-x )=f (-x )=-f (x ), ∴-f (x )=-x 2+6x -8, 即f (x )=x 2-6x +8,x ∈『2,4』.『课堂练通考点』1.设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝⎛⎭⎫-52=________. 『解析』∵f (x )是周期为2的奇函数, ∴f ⎝⎛⎭⎫-52=-f ⎝⎛⎭⎫52=-f ⎝⎛⎭⎫52-2 =-f ⎝⎛⎭⎫12=-2×12×⎝⎛⎭⎫1-12=-12. 『答案』-122.(2010·江苏高考)设函数f (x )=x (e x +a e -x )(x ∈R )是偶函数,则实数a 的值为________. 『解析』设g (x )=x ,h (x )=e x +a e -x ,因为函数g (x )=x 是奇函数,则由题意知,函数h (x )=e x +a e -x 为奇函数,又函数f (x )的定义域为R ,∴h (0)=0,解得a =-1. 『答案』-13.设函数f (x )=x 3cos x +1.若f (a )=11,则f (-a )=________.『解析』观察可知,y =x 3cos x 为奇函数,且f (a )=a 3cos a +1=11,故a 3cos a =10.则f (-a )=-a 3·cos a +1=-10+1=-9. 『答案』-94.若函数f (x )=x 2-|x +a |为偶函数,则实数a =________. 『解析』法一:∵f (-x )=f (x )对于x ∈R 恒成立,∴|-x +a |=|x +a |对于x ∈R 恒成立,两边平方整理得ax =0对于x ∈R 恒成立,故a =0. 法二:由f (-1)=f (1),得|a -1|=|a +1|得a =0. 『答案』05.设定义在『-2,2』上的偶函数f (x )在区间『-2,0』上单调递减,若f (1-m )<f (m ),求实数m 的取值范围.『解析』由偶函数性质知f (x )在『0,2』上单调递增,且f (1-m )=f (|1-m |),f (m )=f (|m |),因此f (1-m )<f (m )等价于 ⎩⎪⎨⎪⎧-2≤1-m ≤2,-2≤m ≤2,|1-m |<|m |.解得:12<m ≤2.因此实数m 的取值范围是⎝⎛⎦⎤12,2.。

高三数学(文)一轮教学案:第二章第3讲 函数的奇偶性与周期性 Word版含解析

高三数学(文)一轮教学案:第二章第3讲 函数的奇偶性与周期性 Word版含解析

第3讲函数的奇偶性与周期性考纲展示命题探究考点一函数的奇偶性奇偶性的定义及图象特点奇函数偶函数定义如果对于函数f(x)的定义域内的任意一个x都有f(-x)=-f(x),那么函数f(x)是奇函数都有f(-x)=f(x),那么函数f(x)是偶函数图象特点关于原点对称关于y轴对称(1)对于较复杂的解析式,可先对其进行化简,再利用定义进行判断,同时应注意化简前后的等价性.(2)所给函数的定义域若不关于原点对称,则这个函数一定不具有奇偶性.1.思维辨析(1)函数具备奇偶性的必要条件是函数的定义域在x轴上是关于坐标原点对称的.()(2)若函数f(x)为奇函数,则一定有f(0)=0.()(3)若函数y=f(x+a)是偶函数,则函数y=f(x)关于直线x=a对称.()(4)若函数y =f (x +b )是奇函数,则函数y =f (x )关于点(b,0)中心对称.( )(5)函数f (x )=0,x ∈(0,+∞)既是奇函数又是偶函数.( ) (6)若函数f (x )=x(x -2)(x +a )为奇函数,则a =2.( )答案 (1)√ (2)× (3)√ (4)√ (5)× (6)√2.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是( )A .-13 B.13 C.12 D .-12答案 B解析 由已知得a -1+2a =0,得a =13,又f (x )为偶函数,f (-x )=f (x ),∴b =0,所以a +b =13.3.下列函数为奇函数的是( ) A .y =2x-12xB .y =x 3sin xC .y =2cos x +1D .y =x 2+2x答案 A解析 由函数奇偶性的定义知,B 、C 中的函数为偶函数,D 中的函数为非奇非偶函数,只有A 中的函数为奇函数,故选A.[考法综述] 判断函数的奇偶性是比较基础的问题,难度不大,常与函数单调性相结合解决求值和求参数问题,也与函数的周期性、图象对称性在同一个题目中出现.主要以选择题和填空题形式出现,属于基础或中档题目.命题法 判断函数的奇偶性及奇偶性的应用 典例 (1)下列函数为奇函数的是( )A.y=x B.y=|sin x|C.y=cos x D.y=e x-e-x(2)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是()A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数[解析](1)因为函数y=x的定义域为[0,+∞),不关于原点对称,所以函数y=x为非奇非偶函数,排除A;因为y=|sin x|为偶函数,所以排除B;因为y=cos x为偶函数,所以排除C;因为y=f(x)=e x-e-x,f(-x)=e-x-e x=-(e x-e-x)=-f(x),所以函数y=e x-e-x为奇函数,故选D.(2)由题意可知f(-x)=-f(x),g(-x)=g(x),对于选项A,f(-x)·g(-x)=-f(x)·g(x),所以f(x)g(x)是奇函数,故A项错误;对于选项B,|f(-x)|g(-x)=|-f(x)|g(x)=|f(x)|g(x),所以|f(x)|g(x)是偶函数,故B项错误;对于选项C,f(-x)|g(-x)|=-f(x)|g(x)|,所以f(x)|g(x)|是奇函数,故C项正确;对于选项D,|f(-x)g(-x)|=|-f(x)g(x)|=|f(x)g(x)|,所以|f(x)g(x)|是偶函数,故D项错误,选C.[答案](1)D(2)C【解题法】判断函数奇偶性的方法(1)定义法(2)图象法1.下列函数中,既是偶函数又存在零点的是( ) A .y =cos x B .y =sin x C .y =ln x D .y =x 2+1答案 A解析 y =cos x 是偶函数且有无数多个零点,y =sin x 为奇函数,y =ln x 既不是奇函数也不是偶函数,y =x 2+1是偶函数但没有零点,故选A.2.若函数f (x )=2x +12x -a 是奇函数,则使f (x )>3成立的x 的取值范围为( )A .(-∞,-1)B .(-1,0)C .(0,1)D .(1,+∞)答案 C解析 f (-x )=2-x +12-x -a =2x +11-a ·2x ,由f (-x )=-f (x )得2x +11-a ·2x=-2x +12x-a,即1-a ·2x =-2x +a ,化简得a ·(1+2x )=1+2x ,所以a =1,f (x )=2x +12x -1.由f (x )>3得0<x <1.故选C.3.已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3+x 2+1,则f (1)+g (1)=( )A .-3B .-1C .1D .3答案 C解析 令x =-1得,f (-1)-g (-1)=(-1)3+(-1)2+1=1.∵f (x ),g (x )分别是偶函数和奇函数,∴f (-1)=f (1),g (-1)=-g (1), 即f (1)+g (1)=1.故选C.4.已知函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=12(|x -a2|+|x -2a 2|-3a 2).若∀x ∈R ,f (x -1)≤f (x ),则实数a 的取值范围为( )A.⎣⎢⎡⎦⎥⎤-16,16 B.⎣⎢⎡⎦⎥⎤-66,66C.⎣⎢⎡⎦⎥⎤-13,13 D.⎣⎢⎡⎦⎥⎤-33,33答案 B解析 当x ≥0时,f (x )=⎩⎪⎨⎪⎧x -3a 2,x ≥2a 2,-a 2,a 2<x <2a 2,-x ,0≤x ≤a 2,画出图象,再根据f (x )是奇函数补全图象.∵满足∀x ∈R ,f (x -1)≤f (x ),则只需3a 2-(-3a 2)≤1, ∴6a 2≤1,即-66≤a ≤66,故选B.5.若定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=e x ,则g (x )=( )A .e x-e -xB.12(e x +e -x)C.12(e -x -e x) D.12(e x -e -x )答案 D解析 因为f (x )+g (x )=e x ①,则f (-x )+g (-x )=e -x ,即f (x )-g (x )=e -x②,故由①-②可得g (x )=12(e x -e -x),所以选D.6.若函数f (x )=x ln (x +a +x 2)为偶函数,则a =________. 答案 1解析 解法一:由题意得f (x )=x ln (x +a +x 2 )=f (-x )=-x ln (a +x 2-x ),所以a +x 2+x =1a +x 2-x,解得a =1.解法二:由f (x )为偶函数有y =ln (x +a +x 2)为奇函数,令g (x )=ln (x +a +x 2),有g (-x )=-g (x ),以下同解法一.7.已知f (x )是定义在R 上的奇函数,当x >0时,f (x )=x 2-4x ,则不等式f (x )>x 的解集用区间表示为________.答案 (-5,0)∪(5,+∞)解析 ∵f (x )是定义在R 上的奇函数,∴f (0)=0. 又当x <0时,-x >0,∴f (-x )=x 2+4x . 又f (x )为奇函数,∴f (-x )=-f (x ), ∴f (x )=-x 2-4x (x <0), ∴f (x )=⎩⎪⎨⎪⎧x 2-4x , x >0,0, x =0,-x 2-4x , x <0.①当x >0时,由f (x )>x 得x 2-4x >x ,解得x >5;②当x =0时,f (x )>x 无解;③当x <0时,由f (x )>x 得-x 2-4x >x ,解得-5<x <0.综上得不等式f (x )>x 的解集用区间表示为(-5,0)∪(5,+∞). 8.已知函数f (x )=e x +e -x ,其中e 是自然对数的底数. (1)证明:f (x )是R 上的偶函数;(2)若关于x 的不等式mf (x )≤e -x +m -1在(0,+∞)上恒成立,求实数m 的取值范围;(3)已知正数a 满足:存在x 0∈[1,+∞),使得f (x 0)<a (-x 30+3x 0)成立.试比较e a -1与a e -1的大小,并证明你的结论.解 (1)证明:因为对任意x ∈R ,都有f (-x )=e -x +e -(-x )=e -x +e x =f (x ),所以f (x )是R 上的偶函数.(2)由条件知m (e x +e -x -1)≤e -x -1在(0,+∞)上恒成立, 令t =e x (x >0),则t >1,所以m ≤-t -1t 2-t +1=-1t -1+1t -1+1对任意t >1成立. 因为t -1+1t -1+1≥2(t -1)·1t -1+1=3,所以-1t -1+1t -1+1≥-13,当且仅当t =2,即x =ln 2时等号成立.因此实数m 的取值范围是⎝ ⎛⎦⎥⎤-∞,-13.(3)令函数g (x )=e x +1e x -a (-x 3+3x ), 则g ′(x )=e x-1e x +3a (x 2-1).当x ≥1时,e x -1e x >0,x 2-1≥0,又a >0,故g ′(x )>0,所以g (x )是[1,+∞)上的单调增函数,因此g (x )在[1,+∞)上的最小值是g (1)=e +e -1-2a .由于存在x 0∈[1,+∞),使e x 0+e -x 0-a (-x 30+3x 0)<0成立,当且仅当最小值g (1)<0,故e +e -1-2a <0,即a >e +e-12.令函数h (x )=x -(e -1)ln x -1,则h ′(x )=1-e -1x .令h ′(x )=0,得x =e -1.当x ∈(0,e -1)时,h ′(x )<0,故h (x )是(0,e -1)上的单调减函数;当x ∈(e -1,+∞)时,h ′(x )>0,故h (x )是(e -1,+∞)上的单调增函数.所以h (x )在(0,+∞)上的最小值是h (e -1).注意到h (1)=h (e)=0,所以当x ∈(1,e -1)⊆(0,e -1)时,h (e -1)≤h (x )<h (1)=0;当x ∈(e -1,e)⊆(e -1,+∞)时,h (x )<h (e)=0.所以h (x )<0对任意的x ∈(1,e)成立.①当a ∈⎝ ⎛⎭⎪⎫e +e -12,e ⊆(1,e)时,h (a )<0,即a -1<(e -1)ln a ,从而e a -1<a e -1;②当a =e 时,e a -1=a e -1;③当a ∈(e ,+∞)⊆(e -1,+∞)时,h (a )>h (e)=0,即a -1>(e -1)ln a ,故e a -1>a e -1.综上所述,当a ∈⎝ ⎛⎭⎪⎫e +e -12,e 时,e a -1<a e -1; 当a =e 时,e a -1=a e -1; 当a ∈(e ,+∞)时,e a -1>a e -1.考点二 函数的周期性1 周期函数对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期.2 最小正周期如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.注意点 常见的有关周期的结论 周期函数y =f (x )满足:(1)若f (x +a )=f (x -a ),则函数的周期为2a . (2)若f (x +a )=-f (x ),则函数的周期为2a . (3)若f (x +a )=-1f (x ),则函数的周期为2a .1.思维辨析(1)若函数f (x )满足f (0)=f (5)=f (10),则它的周期T =5.( ) (2)若函数f (x )的周期T =5,则f (-5)=f (0)=f (5).( ) (3)若函数f (x )关于x =a 对称,也关于x =b 对称,则函数f (x )的周期为2|b -a |.( )(4)函数f (x )在定义域上满足f (x +a )=-f (x )(a >0),则f (x )是周期为a 的周期函数.( )(5)函数f (x )为R 上的奇函数,且f (x +2)=f (x ),则f ()=0.( ) 答案 (1)× (2)√ (3)√ (4)× (5)√2.已知f (x )是定义在R 上的偶函数,且对任意x ∈R 都有f (x +4)=f (x )+f (2),则f ()等于( )A .0B .3C .4D .6答案 A解析 ∵f (x )是定义在R 上的偶函数, ∴f (-2)=f (2),∴f (-2+4)=f (2)=f (-2)+f (2)=2f (2), ∴f (2)=0,f ()=f (4×503+2)=f (2)+503×f (2)=f (2)=0,故选A.3.设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝ ⎛⎭⎪⎫-52=________.答案 -12解析 ∵f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),∴f ⎝⎛⎭⎪⎫-52=f ⎝⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12=-12.[考法综述] 函数周期性的考查在高考中主要以选择题、填空题形式出现.常与函数的奇偶性、图象对称性结合考查,难度中档.命题法 判断函数的周期性,利用周期性求值典例 (1)若f (x )是R 上周期为5的奇函数,且满足f (1)=1,f (2)=2,则f (8)-f (4)的值为( )A .-1B .1C .-2D .2(2)设函数f (x )(x ∈R )满足f (x +π)=f (x )+sin x .当0≤x ≤π时,f (x )=0,则f ⎝ ⎛⎭⎪⎫23π6=( )A.12B.32 C .0 D .-12[解析] (1)由于f (x )周期为5,且为奇函数,∴f (8)=f (5+3)=f (3)=f (5-2)=f (-2)=-f (2)=-2,f (4)=f (5-1)=f (-1)=-f (1)=-1,∴f (8)-f (4)=-2-(-1)=-1.(2)因为f (x +2π)=f (x +π)+sin(x +π)=f (x )+sin x -sin x =f (x ),所以f (x )的周期T =2π.又因为当0≤x ≤π时,f (x )=0,所以f ⎝ ⎛⎭⎪⎫5π6=0,即f ⎝ ⎛⎭⎪⎫-π6+π=f ⎝ ⎛⎭⎪⎫-π6+sin ⎝ ⎛⎭⎪⎫-π6=0, 所以f ⎝ ⎛⎭⎪⎫-π6=12,所以f ⎝ ⎛⎭⎪⎫23π6=f ⎝ ⎛⎭⎪⎫4π-π6=f ⎝ ⎛⎭⎪⎫-π6=12. [答案] (1)A (2)A【解题法】 函数周期性的判定与应用(1)判定:判断函数的周期性只需证明f (x +T )=f (x )(T ≠0)便可证明函数是周期函数,且周期为T .(2)应用:根据函数的周期性,可以由函数局部的性质得到函数的整体性质,在解决具体问题时,要注意结论:若T 是函数的周期,则kT (k ∈Z 且k ≠0)也是函数的周期.1.定义在R 上的函数f (x )满足f (-x )=-f (x ),f (x -2)=f (x +2),且x ∈(-1,0)时,f (x )=2x +15,则f (log 220)=( )A .-1B.45 C .1D .-45答案 A解析 由f (x -2)=f (x +2),得f (x +4)=f (x ),∴f (x )的周期T =4,结合f (-x )=-f (x ),有f (log 220)=f (1+log 210)=f (log 210-3)=-f (3-log 210),∵3-log 210∈(-1,0),∴f (log 220)=-23-log 210-15=-45-15=-1.故选A.2.函数f (x )=lg |sin x |是( )A .最小正周期为π的奇函数B .最小正周期为2π的奇函数C .最小正周期为π的偶函数D .最小正周期为2π的偶函数答案 C解析 易知函数的定义域为{x |x ≠k π,k ∈Z },关于原点对称,又f (-x )=lg |sin(-x )|=lg |-sin x |=lg |sin x |=f (x ),所以f (x )是偶函数,又函数y =|sin x |的最小正周期为π,所以函数f (x )=lg |sin x |是最小正周期为π的偶函数.故选C.3.已知函数f (x )是(-∞,+∞)上的奇函数,且f (x )的图象关于x =1对称,当x ∈[0,1]时,f (x )=2x -1,则f ()+f ()的值为( )A .-2B .-1C .0D .1答案 D解析 ∵函数f (x )为奇函数,则f (-x )=-f (x ),又函数的图象关于x =1对称,则f (2+x )=f (-x )=-f (x ),∴f (4+x )=f [(2+x )+2]=-f (x +2)=f (x ).∴f (x )的周期为4.又函数的图象关于x =1对称,∴f (0)=f (2),∴f ()+f ()=f (1)+f (2)=f (1)+f (0)=21-1+20-1=1.故选D.4.已知定义在R 上的奇函数f (x )满足f (x +1)=-f (x ),且在[0,1)上单调递增,记a =f ⎝ ⎛⎭⎪⎫12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( )A .a >b =cB .b >a =cC .b >c >aD .a >c >b答案 A解析 由题意得,f (x +2)=-f (x +1)=f (x ),即函数f (x )是以2为周期的奇函数,所以f (2)=f (0)=0.因为f (x +1)=-f (x ),所以f (3)=-f (2)=0.又f (x )在[0,1)上是增函数,于是有f ⎝ ⎛⎭⎪⎫12>f (0)=f (2)=f (3),即a >b =c .故选A.5.已知函数f (x )=⎩⎨⎧ ⎝ ⎛⎭⎪⎫12x ,x ≥4,f (x +1),x <4,则f (2+log 23)的值为( )A.124B.112C.16D.13答案 A 解析 ∵2+log 23<4,∴f (2+log 23)=f (3+log 23).∵3+log 23>4,∴f (2+log 23)=f (3+log 23)=⎝ ⎛⎭⎪⎫123+log 23=18×⎝ ⎛⎭⎪⎫12log 23=18×13=124.故选A. 6.若y =f (x )既是周期函数,又是奇函数,则其导函数y =f ′(x )( )A .既是周期函数,又是奇函数B .既是周期函数,又是偶函数C .不是周期函数,但是奇函数D .不是周期函数,但是偶函数答案 B解析 因为y =f (x )是周期函数,设其周期为T ,则有f (x +T )=f (x ),两边同时求导,得f ′(x +T )(x +T )′=f ′(x ),即f ′(x +T )=f ′(x ),所以导函数为周期函数.因为y =f (x )是奇函数,所以f (-x )=-f (x ),两边同时求导,得f ′(-x )(-x )′=-f ′(x ),即-f ′(-x )=-f ′(x ),所以f ′(-x )=f ′(x ),即导函数为偶函数,选B.判断f (x )=x 2+1,x ∈[-2,2)的奇偶性.[错解][错因分析] 忽视判断函数的奇偶性时对定义域的要求.[正解] 由于x ∈[-2,2),所以f (x )=x 2+1的定义域不关于原点对称,所以函数f (x )=x 2+1是非奇非偶函数.[心得体会]………………………………………………………………………………………………时间:60分钟基础组1.[·冀州中学期末]下列函数中,既是偶函数又在(-∞,0)上单调递增的是( )A .y =x 2B .y =2|x |C .y =log 21|x |D .y =sin x答案 C解析 函数y =x 2在(-∞,0)上是减函数;函数y =2|x |在(-∞,0)上是减函数;函数y =log 21|x |=-log 2|x |是偶函数,且在(-∞,0)上是增函数;函数y =sin x 不是偶函数.综上所述,选C.2. [·衡水中学预测]函数f (x )=a sin 2x +bx 23 +4(a ,b ∈R ),若f ⎝ ⎛⎭⎪⎫lg 12014=,则f (lg )=( ) A .B .-C .D .-答案 C 解析 g (x )=a sin 2x +bx 23 ,g (-x )=a sin 2x +bx 23 ,g (x )=g (-x ),g (x )为偶函数,f ⎝ ⎛⎭⎪⎫lg 12014=f (-lg ),f (-lg )=g (-lg )+4=g (lg )+4=f (lg )=,故选C.3.[·枣强中学热身]若函数f (x )(x ∈R )是奇函数,函数g (x )(x ∈R )是偶函数,则一定成立的是( )A .函数f (g (x ))是奇函数B .函数g (f (x ))是奇函数C .函数f (f (x ))是奇函数D .函数g (g (x ))是奇函数答案 C解析 由题得,函数f (x ),g (x )满足f (-x )=-f (x ),g (-x )=g (x ),则有f (g (-x ))=f (g (x )),g (f (-x ))=g (-f (x ))=g (f (x )),f (f (-x ))=f (-f (x ))=-f (f (x )),g (g (-x ))=g (g (x )),可知函数f (f (x ))是奇函数,故选C.4.[·衡水中学猜题]定义域为(-∞,0)∪(0,+∞)的函数f (x )不恒为0,且对于定义域内的任意实数x ,y 都有f (xy )=f (y )x +f (x )y 成立,则f (x )( )A .是奇函数,但不是偶函数B .是偶函数,但不是奇函数C .既是奇函数,又是偶函数D .既不是奇函数,又不是偶函数答案 A解析 令x =y =1,则f (1)=f (1)1+f (1)1,∴f (1)=0.令x =y =-1,则f (1)=f (-1)-1+f (-1)-1,∴f (-1)=0. 令y =-1,则f (-x )=f (-1)x +f (x )-1, ∴f (-x )=-f (x ).∴f (x )是奇函数.又∵f (x )不恒为0,∴f (x )不是偶函数.故选A.5.[·衡水中学一轮检测]设偶函数f (x )满足f (x )=x 3-8(x ≥0),则{x |f (x -2)>0}=( )A .{x |x <-2或x >4}B .{x |x <0或x >4}C .{x |x <0或x >6}D .{x |x <-2或x >2} 答案 B解析 当x <0时,-x >0,∵f (x )是偶函数,∴f (x )=f (-x )=-x 3-8.∴f (x )=⎩⎪⎨⎪⎧ x 3-8,x ≥0,-x 3-8,x <0,∴f (x -2)=⎩⎪⎨⎪⎧ (x -2)3-8,x ≥2,-(x -2)3-8,x <2,由f (x -2)>0,得⎩⎪⎨⎪⎧ x ≥2(x -2)3-8>0或⎩⎪⎨⎪⎧x <2,-(x -2)3-8>0, 解得x >4或x <0.故选B.6. [·冀州中学模拟]已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)答案 D解析 由函数f (x )是奇函数且f (x )在[0,2]上是增函数可以推知,f (x )在[-2,2]上递增,又f (x -4)=-f (x )⇒f (x -8)=-f (x -4)=f (x ),故函数f (x )以8为周期,f (-25)=f (-1),f (11)=f (3)=-f (3-4)=f (1),f (80)=f (0),故f (-25)<f (80)<f (11).7.[·衡水二中周测]函数f (x )=x 3+sin x +1(x ∈R ),若f (m )=2,则f (-m )的值为( )A .3B .0C .-1D .-2答案 B解析 把f (x )=x 3+sin x +1变形为f (x )-1=x 3+sin x ,令g (x )=f (x )-1=x 3+sin x ,则g (x )为奇函数,有g (-m )=-g (m ),所以f (-m )-1=-[f (m )-1],得到f (-m )=-(2-1)+1=0.8.[·枣强中学仿真]设函数f (x )是定义在R 上的周期为2的偶函数,当x ∈[0,1]时,f (x )=x +1,则f ⎝ ⎛⎭⎪⎫32=________. 答案 32解析 f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫32-2=f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫12=12+1=32. 9.[·枣强中学月考]若f (x )=(x +a )(x -4)为偶函数,则实数a =________.答案 4解析 由f (x )=(x +a )(x -4),得f (x )=x 2+(a -4)x -4a ,若f (x )为偶函数,则a -4=0,即a =4.10.[·武邑中学热身]设f (x )是定义在R 上的以3为周期的奇函数,若f (2)>1,f ()=2a -3a +1,则实数a 的取值范围是________. 答案 ⎝ ⎛⎭⎪⎫-1,23 解析 ∵f ()=f (1)=f (-2)=-f (2)<-1,∴2a -3a +1<-1,解得-1<a <23. 11.[·衡水二中热身]设函数f (x )是定义在R 上的偶函数,且满足: ①f (x )=f (2-x );②当0≤x ≤1时,f (x )=x 2.(1)判断函数f (x )是否为周期函数;(2)求f (5.5)的值.解 (1)由⎩⎪⎨⎪⎧f (x )=f (2-x ),f (x )=f (-x )⇒f (-x )=f (2-x )⇒f (x )=f (x +2)⇒f (x )是周期为2的周期函数.(2)f (5.5)=f (4+1.5)=f (1.5)=f (2-1.5)=f (0.5)=0.25.12.[·武邑中学期末]已知函数f (x )的定义域为(-2,2),函数g (x )=f (x -1)+f (3-2x ).(1)求函数g (x )的定义域;(2)若f (x )为奇函数,并且在定义域上单调递减,求不等式g (x )≤0的解集.解 (1)由题意可知⎩⎪⎨⎪⎧ -2<x -1<2,-2<3-2x <2,∴⎩⎨⎧ -1<x <3,12<x <52,解得12<x <52,故函数g (x )的定义域为⎝ ⎛⎭⎪⎫12,52. (2)由g (x )≤0得f (x -1)+f (3-2x )≤0.∴f (x -1)≤-f (3-2x ).又∵f (x )为奇函数,∴f (x -1)≤f (2x -3),而f (x )在(-2,2)上单调递减,∴⎩⎨⎧ x -1≥2x -3,12<x <52,解得12<x ≤2,∴不等式g (x )≤0的解集为⎝ ⎛⎦⎥⎤12,2. 能力组13.[·衡水二中预测]已知y =f (x )是偶函数,而y =f (x +1)是奇函数,且对任意0≤x ≤1,都有f ′(x )≥0,则a =f ⎝ ⎛⎭⎪⎫9819,b =f ⎝ ⎛⎭⎪⎫10117,c =f ⎝ ⎛⎭⎪⎫10615的大小关系是( )A .c <b <aB .c <a <bC .a <c <bD .a <b <c答案 B解析 因为y =f (x )是偶函数,所以f (x )=f (-x ),①因为y =f (x +1)是奇函数,所以f (x )=-f (2-x ),②所以f (-x )=-f (2-x ),即f (x )=f (x +4).所以函数f (x )的周期为4.又因为对任意0≤x ≤1,都有f ′(x )≥0,所以函数在[0,1]上单调递增,又因为函数y =f (x +1)是奇函数,所以函数在[0,2]上单调递增,又a =f ⎝ ⎛⎭⎪⎫9819=f ⎝ ⎛⎭⎪⎫2219,b =f ⎝ ⎛⎭⎪⎫10117=f ⎝ ⎛⎭⎪⎫3317,c =f ⎝ ⎛⎭⎪⎫10615=f ⎝ ⎛⎭⎪⎫-1415=f ⎝ ⎛⎭⎪⎫1415,所以f ⎝ ⎛⎭⎪⎫1415<f ⎝ ⎛⎭⎪⎫2219<f ⎝ ⎛⎭⎪⎫3317,即c <a <b . 14.[·衡水二中月考]已知y =f (x )+x 2是奇函数,且f (1)=1.若g (x )=f (x )+2,则g (-1)=________.答案 -1解析 设h (x )=f (x )+x 2为奇函数,则h (-x )=f (-x )+x 2,∴h (-x )=-h (x ),∴f (-x )+x 2=-f (x )-x 2,∴f (-1)+1=-f (1)-1,∴f (-1)=-3,∴g (-1)=f (-1)+2=-1.15. [·衡水二中猜题]定义在R 上的函数f (x )对任意a ,b ∈R 都有f (a +b )=f (a )+f (b )+k (k 为常数).(1)判断k 为何值时f (x )为奇函数,并证明;(2)设k =-1,f (x )是R 上的增函数,且f (4)=5,若不等式f (mx 2-2mx +3)>3对任意x ∈R 恒成立,求实数m 的取值范围.解 (1)若f (x )在R 上为奇函数,则f (0)=0,令x =y =0,则f (0+0)=f (0)+f (0)+k ,∴k =0.证明:令a =b =0,由f (a +b )=f (a )+f (b ),得f (0+0)=f (0)+f (0),即f (0)=0.令a =x ,b =-x ,则f (x -x )=f (x )+f (-x ),又f (0)=0,则有0=f (x )+f (-x ),即f (-x )=-f (x )对任意x ∈R 成立,∴f (x )是奇函数.(2)∵f (4)=f (2)+f (2)-1=5,∴f (2)=3.∴f (mx 2-2mx +3)>3=f (2)对任意x ∈R 恒成立.又f (x )是R 上的增函数,∴mx 2-2mx +3>2对任意x ∈R 恒成立, 即mx 2-2mx +1>0对任意x ∈R 恒成立,当m =0时,显然成立;当m ≠0时,由⎩⎪⎨⎪⎧m >0,Δ=4m 2-4m <0,得0<m <1. ∴实数m 的取值范围是[0,1).16.[·衡水二中一轮检测]已知函数f (x )对任意实数x ,y 恒有f (x +y )=f (x )+f (y ),且当x >0时,f (x )<0,又f (1)=-2.(1)判断f (x )的奇偶性;(2)求证:f (x )是R 上的减函数;(3)求f (x )在区间[-3,3]上的值域;(4)若∀x ∈R ,不等式f (ax 2)-2f (x )<f (x )+4恒成立,求a 的取值范围.解 (1)取x =y =0,则f (0+0)=2f (0),∴f (0)=0.取y =-x ,则f (x -x )=f (x )+f (-x ),∴f (-x )=-f (x )对任意x ∈R 恒成立,∴f (x )为奇函数.(2)证明: 任取x 1,x 2∈(-∞,+∞),且x 1<x 2,则x 2-x 1>0,f (x 2)+f (-x 1)=f (x 2-x 1)<0,∴f (x 2)<-f (-x 1),又f (x )为奇函数,∴f (x 1)>f (x 2).∴f (x )是R 上的减函数.(3)由(2)知f (x )在R 上为减函数,∴对任意x ∈[-3,3],恒有f (3)≤f (x )≤f (-3),∵f (3)=f (2)+f (1)=f (1)+f (1)+f (1)=-2×3=-6,∴f (-3)=-f (3)=6,f (x )在[-3,3]上的值域为[-6,6].(4)f (x )为奇函数,整理原式得f (ax 2)+f (-2x )<f (x )+f (-2), 则f (ax 2-2x )<f (x -2),∵f (x )在(-∞,+∞)上是减函数,∴ax 2-2x >x -2,第21页 共21页 当a =0时,-2x >x -2在R 上不是恒成立,与题意矛盾;当a >0时,ax 2-2x -x +2>0,要使不等式恒成立,则Δ=9-8a <0,即a >98;当a <0时,ax 2-3x +2>0在R 上不是恒成立,不合题意.综上所述,a 的取值范围为⎝ ⎛⎭⎪⎫98,+∞.。

2025届高考数学一轮复习教案:函数-函数的奇偶性与周期性

2025届高考数学一轮复习教案:函数-函数的奇偶性与周期性

第2课时函数的奇偶性与周期性课程标准1.了解函数奇偶性的概念和几何意义.2.会运用基本初等函数的图象分析函数的奇偶性.3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性.考情分析考点考法:高考命题常以基本初等函数为载体,考查函数的奇偶性、周期性和图象的对称性及其应用.函数的奇偶性与单调性、周期性的综合问题是高考热点,常以选择题的形式出现.核心素养:数学抽象、逻辑推理、直观想象【必备知识·逐点夯实】【知识梳理·归纳】1.函数的奇偶性奇偶性定义图象偶函数设函数f(x)的定义域为D,如果∀x∈D,都有-x∈D,且f(-x)=f(x),那么函数f(x)就叫做偶函数关于y轴对称奇函数设函数f(x)的定义域为D,如果∀x∈D,都有-x∈D,且f(-x)=-f(x),那么函数f(x)就叫做奇函数关于原点对称【微点拨】奇、偶函数定义域的特点是关于原点对称,函数的定义域关于原点对称是函数具有奇偶性的必要不充分条件.2.函数的周期性(1)周期函数:设函数f(x)的定义域为D,如果存在一个非零常数T,使得对每一个x ∈D都有x+T∈D,且f(x+T)=f(x),那么函数f(x)就叫做周期函数.非零常数T叫做这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小的正数就叫做f(x)的最小正周期(若不特别说明,T一般就是指最小正周期).【微点拨】存在一个非零常数T,使f(x+T)=f(x)为恒等式,即自变量x每增加一个T后,函数值就会重复出现一次.【基础小题·自测】类型辨析改编易错高考题号14321.(多维辨析)(多选题)下列结论错误的是()A.函数y=x2在(0,+∞)上是偶函数B.若函数f(x)为奇函数,则一定有f(0)=0C.若T是函数f(x)的一个周期,则nT(n∈Z,n≠0)也是函数f(x)的周期D若函数f(x)满足关系f(a+x)=-f(b-x),则函数f(x)的图象关于点(r2,0)对称【解析】选AB.A 由于偶函数的定义域关于原点对称,因此y=x2在(0,+∞)上不具有奇偶性×B由奇函数定义可知,若f(x)为奇函数,且在x=0处有意义时才满足f(0)=0×2.(2023·上海高考)下列函数是偶函数的是()A.y=sin xB.y=cos xC.y=x3D.y=2x【解析】选B.对于A,由正弦函数的性质可知,y=sin x为奇函数;对于B,由余弦函数的性质可知,y=cos x为偶函数;对于C,由幂函数的性质可知,y=x3为奇函数;对于D,由指数函数的性质可知,y=2x为非奇非偶函数.3.(忽略奇偶函数定义域关于原点对称)已知f(x)=ax2+bx是定义在[a-1,2a]上的偶函数,那么a+b的值是()A.-13B.13C.12D.-12【解析】选B.因为f(x)=ax2+bx是定义在[a-1,2a]上的偶函数,所以a-1+2a=0,所以a=13.又f(-x)=f(x),所以b=0,所以a+b=13.4.(必修第一册P86习题T11·变设问)已知函数f(x)是定义域为R的奇函数,当x≥0时,f(x)=x(1+x),则f(-1)=__________.【解析】f(1)=1×2=2,又f(x)为奇函数,所以f(-1)=-f(1)=-2.答案:-2【巧记结论·速算】函数奇偶性的常用结论1.如果函数f(x)是奇函数且在x=0处有意义,则f(0)=0;2.如果函数f(x)是偶函数,则f(-x)=f(x)=f(|x|);3.如果函数f(x)是定义在区间D上的奇函数,则对任意的x∈D,都有f(x)+f(-x)=0.特别地,若奇函数f(x)在D上有最值,则f(x)max+f(x)min=0,且若0∈D,则f(0)=0.【即时练】1.设偶函数f(x)满足f(x)=x3-8(x≥0),则{x|f(x-2)>0}=()A.{x|x<-2或x>4}B.{x|x<0或x>4}C.{x|x<0或x>6}D.{x|x<-2或x>2}【解析】选B.由f(x)=x3-8,知f(x)在[0,+∞)上单调递增,且f(2)=0.由已知条件可知f(x-2)>0⇒f(|x-2|)>f(2),所以|x-2|>2,解得x<0或x>4.2.已知函数f(x)=a-2e+1(a∈R)是奇函数,则a=________.【解析】函数f(x)的定义域为R,且函数f(x)是奇函数,f(0)=a-1=0,即a=1,经验证a=1满足条件.答案:13.设函数f(x)=(r1)2+sin2+1的最大值为M,最小值为m,则M+m=__________.【解析】函数f(x)的定义域为R,f(x)=(r1)2+sin2+1=1+2rsin2+1,设g(x)=2rsin2+1,则g(-x)=-g(x),所以g(x)为奇函数,所以,g(x)max+g(x)min=0,所以M+m=[g(x)+1]max+[g(x)+1]min=2+g(x)max+g(x)min=2.答案:2【核心考点·分类突破】考点一函数奇偶性的判断[例1]判断下列函数的奇偶性.(1)f(x)=x3-1;(2)f(x)=2−1+1−2;(3)f(x)=x2-|x|+1,x∈[-1,4];(4)f(x)=−2+2+1,>0,2+2−1,<0;(5)f(x)=(x x∈(-1,1).【解析】(1)函数的定义域为{x|x≠0},关于原点对称,并且对于定义域内的任意一个x都有f(-x)=(-x)3-1−=-(x3-1)=-f(x),所以f(x)为奇函数.(2)f(x)的定义域为{-1,1},关于原点对称.又f(-1)=f(1)=0,f(-1)=-f(1)=0,所以f(x)既是奇函数又是偶函数.(3)因为f(x)=x2-|x|+1,x∈[-1,4]的定义域不关于原点对称,所以f(x)是非奇非偶函数.(4)方法一(定义法):当x>0时,f(x)=-x2+2x+1,-x<0,f(-x)=(-x)2+2(-x)-1=x2-2x-1=-f(x);当x<0时,f(x)=x2+2x-1,-x>0,f(-x)=-(-x)2+2(-x)+1=-x2-2x+1=-f(x).所以f(x)为奇函数.方法二(图象法):作出函数f(x)的图象,由奇函数的图象关于原点对称的特征知函数f(x)为奇函数.(5)已知f(x)的定义域为(-1,1),关于原点对称.因为f(x)=(x1−=-(1−p(1+p,所以f(-x)=-(1+p(1−p=f(x),所以f(x)是偶函数.【解题技法】判断函数的奇偶性的方法(1)定义法:若函数的定义域不是关于原点对称的区间,则可立即判断该函数既不是奇函数也不是偶函数;若函数的定义域是关于原点对称的区间,再判断f(-x)是否等于±f(x).(2)图象法:奇(或偶)函数的充要条件是它的图象关于原点(或y轴)对称.(3)性质法:偶函数的和、差、积、商(分母不为零)仍为偶函数;奇函数的和、差仍为奇函数;奇(偶)数个奇函数的积、商(分母不为零)为奇(偶)函数;一个奇函数与一个偶函数的积为奇函数.(注:利用上述结论时要注意各函数的定义域)【对点训练】1.(多选题)下列命题中正确的是()A.奇函数的图象一定过坐标原点B.函数y=x sin x是偶函数C.函数y=|x+1|-|x-1|是奇函数D.函数y=2−K1是奇函数【解析】选BC.对于A,只有奇函数在x=0处有意义时,函数的图象过原点,所以A 不正确;对于B,因为函数y=x sin x的定义域为R且f(-x)=(-x)sin(-x)=f(x),所以该函数为偶函数,所以B正确;对于C,函数y=|x+1|-|x-1|的定义域为R,关于原点对称,且满足f(-x)=|-x+1|-|-x-1|=-(|x+1|-|x-1|)=-f(x),即f(-x)=-f(x),所以函数为奇函数,所以C正确;对于D,函数y=2−K1满足x-1≠0,即x≠1,所以函数的定义域不关于原点对称,所以该函数为非奇非偶函数,所以D不正确.2.设函数f(x)=12−2r3,则下列函数中为偶函数的是()A.f(x+1)B.f(x)+1C.f(x-1)D.f(x)-1【解析】选A.f(x)=12−2r3=1(K1)2+2,则f(x+1)=12+2,因为y=12+2是偶函数,所以f(x+1)为偶函数.B,C,D既不是奇函数,也不是偶函数.3.已知函数f(x)=sin x,g(x)=e x+e-x,则下列结论正确的是()A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数【解析】选C.选项A,f(x)g(x)=(e x+e-x)sin x,f(-x)g(-x)=(e-x+e x)sin(-x)=-(e x+e-x)sin x=-f(x)g(x),是奇函数,结论错误;选项B,|f(x)|g(x)=|sin x|(e x+e-x),|f(-x)|g(-x)=|sin(-x)|(e-x+e x)=|sin x|(e x+e-x)=|f(x)|g(x),是偶函数,结论错误;选项C,f(x)|g(x)|=|e x+e-x|sin x,f(-x)|g(-x)|=|e-x+e x|sin(-x)=-|e x+e-x|sin x=-f(x)|g(x)|,是奇函数,结论正确;选项D,|f(x)g(x)|=|(e x+e-x)sin x|,|f(-x)g(-x)|=|(e-x+e x)sin(-x)|=|(e x+e-x)sin x|=|f(x)g(x)|,是偶函数,结论错误.考点二函数奇偶性的应用角度1利用奇偶性求值(解析式)[例2](1)(2023·海南模拟)已知函数f(x)为奇函数,g(x)为偶函数,且f(x)-g(x)=e x,则o1)o1)=()A.e2+1eB.e2−1eC.1−e21+e2D.1+e21−e2【解析】选C.根据题意,f(x)-g(x)=e x,则f(1)-g(1)=e①,f(-1)-g(-1)=-f(1)-g(1)=e-1=1e,变形可得f(1)+g(1)=-1e,联立①②可得,f(1)=e−1e2,g(1)=-e+1e2,则有o1)o1)=e−1e2−e+1e2=1−e21+e2.(2)设f(x)为奇函数,且当x≥0时,f(x)=e x-1,则当x<0时,f(x)=()A.e-x-1B.e-x+1C.-e-x-1D.-e-x+1【解析】选D.依题意得,当x<0时,-x>0,f(x)=-f(-x)=-(e-x-1)=-e-x+1.角度2利用奇偶性解不等式[例3](1)函数f(x)是定义域为R的奇函数,f(x)在(0,+∞)上单调递增,且f(2)=0.则不等式op−2o−p>0的解集为()A.(-2,2)B.(-∞,0)∪(0,2)C.(2,+∞)D.(-∞,-2)∪(2,+∞)【解析】选D.因为f(x)是定义域为R的奇函数,所以f(0)=0,又f(x)在(0,+∞)上单调递增,且f(2)=0,所以f(x)的大致图象如图所示.由f(-x)=-f(x)可得,op−2o−p=op+2op=3op>0,因为x在分母位置,所以x≠0.当x<0时,只需f(x)<0,由图象可知x<-2;当x>0时,只需f(x)>0,由图象可知x>2.综上,不等式的解集为(-∞,-2)∪(2,+∞).(2)已知偶函数f(x)在区间[0,+∞)上单调递增,则满足f(2x-1)<f(13)的x的取值范围是________.【解析】因为f(x)为偶函数,所以f(x)=f(|x|),所以f(2x-1)<f(13)即f(|2x-1|)<f(13).又f(x)在[0,+∞)上单调递增,所以|2x-1|<13,解得13<x<23.答案:(13,23)角度3利用奇偶性求解析式中的参数[例4](1)(一题多法)(2023·新高考Ⅱ卷)若函数f(x)=(x+a)ln(2K12r1)为偶函数,则a=()A.-1B.0C.12D.1【解析】选B.解法一:由2K12r1>0,得x>12或x<-12,因为f(x)是偶函数,所以f(-x)=f(x),得(-x+a)ln(−2K1−2r1)=(x+a)ln(2K12r1),即(-x+a)ln(2r12K1)=(x+a)ln(2K12r1),即(-x+a)ln(2K12r1)-1=(x+a)ln(2K12r1),则(x-a)ln(2K12r1)=(x+a)ln(2K12r1),所以x-a=x+a,得-a=a,得a=0.解法二:f(x)为偶函数,则有f(-1)=f(1),即(-1+a)ln3=(1+a)ln13,解得a=0.解法三:g(x)=ln2K12r1,g(-x)=-g(x),则g(x)为奇函数,若f(x)=(x+a)·ln2K12r1为偶函数,则h(x)=x+a为奇函数,得a=0.(2)(2022·全国乙卷)若f(x)=ln|a+11−|+b是奇函数,则a=__________,b=__________.【解析】若a=0,则函数f(x)的定义域为{x|x≠1},不关于原点对称,不具有奇偶性,所以a≠0.由函数解析式有意义可得,x≠1且a+11−≠0,所以x≠1且x≠1+1.因为函数f(x)为奇函数,所以定义域必须关于原点对称,所以1+1=-1,解得a=-12,所以f(x)=ln|1+2(1−p|+b,定义域为{x|x≠1且x≠-1}.由f(0)=0得ln12+b=0,所以b=ln2,即f(x)=ln|-12+11−|+ln2=ln|1+1−|,在定义域内满足f(-x)=-f(x),符合题意.综上,a=-12,b=ln2.答案:-12ln2【解题技法】已知函数奇偶性可以解决的三个问题(1)求函数值:将待求值利用奇偶性转化为已知区间上的函数值求解.(2)求解析式:将待求区间上的自变量转化到已知区间上,再利用奇偶性求出.(3)求解析式中的参数:利用待定系数法求解,根据f(x)±f(-x)=0得到关于参数的恒等式,由系数的对等性得参数的方程或方程组,进而得出参数的值.【对点训练】1.(2023·武汉模拟)已知函数f(x)=3+1,>0,B3+s<0为偶函数,则2a+b等于() A.3B.32C.-12D.-32【解析】选B.由已知得,当x>0时,-x<0,f(-x)=-ax3+b,因为f(x)为偶函数,所以f(-x)=f(x),即x3+1=-ax3+b,所以a=-1,b=1,所以2a+b=2-1+1=32.2.(一题多法)(2023·全国乙卷)已知f(x)=x e B−1是偶函数,则a=()A.-2B.-1C.1D.2【解析】选D.解法一:因为f(x)=x e B−1的定义域为{x|x≠0},f(x)为偶函数,所以f(-x)=f(x),所以−x−e−B−1=x e B−1,所以x B−e B−1=x e B−1,所以ax-x=x,所以a=2.解法二:由f(x)为偶函数得f(-1)=f(1),故−e−1e−−1=e e−1①,又-e−1e−−1=e−11−e−=e K1e−1,代入①得e K1e−1=e e−1,所以e a-1=e,从而a-1=1,故a=2,经检验,满足f(x)为偶函数.3.若函数f(x-2)为奇函数,f(-2)=0,f(x)在区间[-2,+∞)上单调递减,则f(3-x)>0的解集为__________.【解析】因为f(x-2)为奇函数,所以f(x-2)的图象的对称中心为(0,0).又因为f(x)的图象可由f(x-2)的图象向左平移2个单位长度得到,所以f(x)的图象关于点(-2,0)中心对称.因为f(x)在[-2,+∞)上单调递减,所以f(x)在(-∞,-2]上也单调递减,所以f(3-x)>0=f(-2),即3-x<-2,解得x>5,所以解集为(5,+∞).答案:(5,+∞)考点三函数周期性及应用[例5](1)(2023·长沙模拟)定义在R上的函数f(x)满足f(x+1)=f(x)-2,则下列是周期函数的是()A.y=f(x)-xB.y=f(x)+xC.y=f(x)-2xD.y=f(x)+2x【解析】选D.依题意,定义在R上的函数f(x)满足f(x+1)=f(x)-2,所以f(x+1)+2(x+1)=f(x)+2x,所以y=f(x)+2x是周期为1的周期函数.(2)函数f(x)满足f(x-2)=f(x+2),当x∈(0,2)时,f(x)=x2,则f(2025)=________.【解析】由f(x-2)=f(x+2)知f(x)的周期为4,故f(2025)=f(506×4+1)=f(1)=1.答案:1(3)已知f(x)是定义在R上的函数,并且f(x+3)=-1op,当1<x≤3时,f(x)=cosπ3,则f(2 024)=________.【解析】由已知可得f(x+6)=f((x+3)+3)=-1or3)=-1−1=f(x),op故函数f(x)的周期为6,所以f(2024)=f(6×337+2)=f(2).又f(2)=cos2π3=-12,所以f(2024)=-12.答案:-12【解题技法】函数周期性有关问题的求解策略(1)判断函数的周期性只需证明f(x+T)=f(x)(T≠0)便可得到函数是周期函数,且周期为T,函数的周期性常与函数的其他性质综合命题.(2)根据函数的周期性,可以由函数局部的性质得到函数的整体性质,即周期性与奇偶性都具有将未知区间上的问题转化到已知区间的功能.【对点训练】1.(2023·石家庄模拟)函数f(x)满足f(x)f(x+2)=13,且f(1)=2,则f(2023)=__________.【解析】因为f(x)f(x+2)=13,所以f(x),f(x+2)均不为0,所以f(x+2)=13op,所以f(x+4)=13or2)=1313op =f(x),所以f(x)的周期为4,所以f(2023)=f(3)=13o1)=132.答案:1322.设f(x)是定义在R上以2为周期的偶函数,当x∈[0,1]时,f(x)=log2(x+1),则函数f(x)在[1,2]上的解析式是____________.【解析】令x∈[-1,0],则-x∈[0,1],结合题意可得f(x)=f(-x)=log2(-x+1),令x∈[1,2],则x-2∈[-1,0],故f(x)=f(x-2)=log2[-(x-2)+1]=log2(3-x),故函数f(x)在[1,2]上的解析式是f(x)=log2(3-x).答案:f(x)=log2(3-x)3.(创新题)若函数f(x)=2−,≤0,o−1)−o−2),>0,则f(2023)=__________.【解析】当x>0时,f(x)=f(x-1)-f(x-2),①所以f(x+1)=f(x)-f(x-1),②①+②得f(x+1)=-f(x-2),即f(x+3)=-f(x),f(x+6)=-f(x+3)=f(x),所以f(x)的周期为6,所以f(2023)=f(337×6+1)=f(1)=f(0)-f(-1)=20-21=-1.答案:-1考点四函数的对称性及应用[例6](1)(多选题)已知函数y=f(x)的图象关于直线x=1对称,则下列结论成立的是()A.f(x+1)为偶函数B.f(1+x)=f(1-x)C.f(1+x)+f(1-x)=0D.f(1)=0【解析】选AB.由于y=f(x)的图象关于直线x=1对称,则f(1+x)=f(1-x),所以f(x+1)为偶函数,故A,B选项正确,C选项错误;如f(x)=(x-1)2+1,函数f(x)的图象关于直线x=1对称,但f(1)=1≠0,故D选项错误.(2)(2023·海口模拟)已知函数f(x)是定义在R上的奇函数,函数g(x)=|x-2|·f(x)的图象关于直线x=2对称,若f(-1)=-1,则g(3)=()A.5B.1C.-1D.-5【解析】选B.因为g(x)的图象关于直线x=2对称,则g(x+2)=|x|f(x+2)是偶函数,g(2-x)=|-x|f(2-x)=|x|f(2-x),所以|x|f(2-x)=|x|f(x+2)对任意的x∈R恒成立,所以f(2-x)=f(2+x).因为f(-1)=-1且f(x)为奇函数,所以f(3)=f(2+1)=f(2-1)=-f(-1)=1,因此g(3)=|3-2|f(3)=1.(3)已知函数y=f(x)-2为奇函数,g(x)=2r1,且f(x)与g(x)图象的交点分别为(x1,y1),(x2,y2),…,(x6,y6),则y1+y2+…+y6=____________.【解析】因为函数y=f(x)-2为奇函数,所以函数y=f(x)的图象关于点(0,2)对称,又g(x)=2r1=1+2,其图象也关于(0,2)对称,所以两函数图象交点关于(0,2)对称,则y1+y2+…+y6=3×4=12.答案:12【解题技法】函数对称性问题的解题关键(1)求解与函数的对称性有关的问题时,应根据题目特征和对称性的定义,求出函数的对称轴或对称中心.(2)解决函数对称性有关的问题,一般结合函数图象,利用对称性解决求值或参数问题.(3)①若f(a+x)=f(a-x),对称轴:x=a;②若f(a+x)=f(b-x),对称轴:x=r2;③若f(a+x)+f(a-x)=0,对称中心:(a,0);④若f(a+x)+f(b-x)=c,对称中心:(r2,2).【对点训练】1.(多选题)(2023·承德模拟)已知函数f(x)的定义域为R,对任意x都有f(2+x)=f(2-x),且f(-x)=f(x),则下列结论正确的是()A.f(x)的图象关于直线x=2对称B.f(x)的图象关于点(2,0)对称C.f(x)的周期为4D.y=f(x+4)为偶函数【解析】选ACD.因为f(2+x)=f(2-x),则f(x)的图象关于直线x=2对称,故A正确,B 错误;因为函数f(x)的图象关于直线x=2对称,则f(-x)=f(x+4),又f(-x)=f(x),所以f(x+4)=f(x),所以T=4,故C正确;因为T=4且f(x)为偶函数,故y=f(x+4)为偶函数,故D正确.2.若函数f(x)=(1-x2)(x2+ax+b)的图象关于x=-2对称,则a=________,b=________.【解析】f(x)最多有4个零点,显然已有2个,x=±1,又由对称性可知,另外两个零点为-3和-5,所以x2+ax+b=0的两根为-3和-5,所以a=8,b=15.答案:815。

高考数学一轮复习 第二章 第三节 函数的奇偶性及周期性教案 文(含解析)苏教版-苏教版高三全册数学教

高考数学一轮复习 第二章 第三节 函数的奇偶性及周期性教案 文(含解析)苏教版-苏教版高三全册数学教

第三节 函数的奇偶性及周期性1.函数的奇偶性 奇偶性 定义图象特点 偶函数如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=f (x ),那么函数f (x )就叫做偶函数关于y 轴对称奇函数 如果对于函数f (x )的定义域内任意一个x ,都有f (-x )= -f (x ),那么函数f (x )就叫做奇函数关于原点对称2.函数的周期性 (1)周期函数对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数f (x )为周期函数,称T 为这个函数的周期.(2)最小正周期如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.[小题体验]1.已知函数f (x )是定义在R 上的奇函数,且当x >0时,f (x )=x 2+1x,则f (-1)=________.答案:-22.若函数f (x )是周期为5的奇函数,且满足f (1)=1,f (2)=2,则f (8)-f (14)=________.答案:-13.若函数f (x )=(a -1)x 2+(a +1)x +a 2-1是奇函数,则实数a 的值是________. 解析:由于函数f (x )的定义域为R ,又函数f (x )是奇函数,故f (0)=0,解得a =1或a =-1(舍去),经检验a =1时符合题意.答案:11.判断函数的奇偶性,易忽视判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件.2.判断函数f (x )的奇偶性时,必须对定义域内的每一个x ,均有f (-x )=-f (x )或f (-x )=f (x ),而不能说存在x 0使f (-x 0)=-f (x 0)或f (-x 0)=f (x 0).3.分段函数奇偶性判定时,误用函数在定义域某一区间上不是奇偶函数去否定函数在整个定义域上的奇偶性.[小题纠偏]1.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b =________. 解析:因为f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,所以a -1+2a =0,所以a =13.又f (-x )=f (x ),所以b =0,所以a +b =13. 答案:132.函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,log 2-x ,x <0的奇偶性为________.解析:因为x ≠0,故f (x )的定义域关于原点对称. 当x >0时,-x <0,所以f (-x )=log 2x =f (x ). 当x <0时,-x >0,所以f (-x )=log 2(-x )=f (x ). 故f (-x )=f (x ),所以f (x )为偶函数. 答案:偶函数考点一 函数奇偶性的判断基础送分型考点——自主练透[题组练透]判断下列函数的奇偶性: (1)f (x )=1-x 2+x 2-1; (2)f (x )=3-2x +2x -3; (3)f (x )=3x -3-x; (4)f (x )=4-x2|x +3|-3;(5)(易错题)f (x )=⎩⎪⎨⎪⎧x 2+x ,x >0,x 2-x ,x <0.解:(1)因为由⎩⎪⎨⎪⎧x 2-1≥0,1-x 2≥0,得x =±1,所以f (x )的定义域为{-1,1}.又f (1)+f (-1)=0,f (1)-f (-1)=0, 即f (x )=±f (-x ).所以f (x )既是奇函数又是偶函数.(2)因为函数f (x )=3-2x +2x -3的定义域为⎩⎨⎧⎭⎬⎫32,不关于坐标原点对称,所以函数f (x )既不是奇函数,也不是偶函数. (3)因为f (x )的定义域为R ,所以f (-x )=3-x-3x =-(3x -3-x)=-f (x ), 所以f (x )为奇函数.(4)因为由⎩⎪⎨⎪⎧4-x 2≥0,|x +3|-3≠0,得-2≤x ≤2且x ≠0.所以f (x )的定义域为[-2,0)∪(0,2], 所以f (x )=4-x2|x +3|-3=4-x 2x +3-3=4-x2x,所以f (-x )=-f (x ),所以f (x )是奇函数.(5)易知函数的定义域为(-∞,0)∪(0,+∞),关于原点对称, 又当x >0时,f (x )=x 2+x , 则当x <0时,-x >0, 故f (-x )=x 2-x =f (x );当x <0时,f (x )=x 2-x ,则当x >0时,-x <0, 故f (-x )=x 2+x =f (x ),故原函数是偶函数.[谨记通法]判定函数奇偶性的3种常用方法 (1)定义法(2)图象法(3)性质法①设f (x ),g (x )的定义域分别是 D 1,D 2,那么在它们的公共定义域上:奇+奇=奇,奇×奇=偶,偶+偶=偶,偶×偶=偶,奇×偶=奇.②复合函数的奇偶性可概括为“同奇则奇,一偶则偶”.[提醒] (1)“性质法”中的结论是在两个函数的公共定义域内才成立的.(2)判断分段函数的奇偶性应分段分别证明f(-x)与f(x)的关系,只有对各段上的x 都满足相同的关系时,才能判断其奇偶性.考点二函数的周期性重点保分型考点——师生共研[典例引领]设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x),当x∈[0,2]时,f(x)=2x-x2.(1)求证:f(x)是周期函数;(2)计算f(0)+f(1)+f(2)+…+f(2 018).解:(1)证明:因为f(x+2)=-f(x),所以f(x+4)=-f(x+2)=f(x).所以f(x)是周期为4的周期函数.(2)因为f(0)=0,f(1)=1,f(2)=0,f(3)=-f(1)=-1.又f(x)是周期为4的周期函数,所以f(0)+f(1)+f(2)+f(3)=f(4)+f(5)+f(6)+f(7)=…=f(2 012)+f(2 013)+f(2 014)+f(2 015)=0.所以f(0)+f(1)+f(2)+…+f(2 018)=f(2 016)+f(2 017)+f(2 018)=f(0)+f(1)+f(2)=1.[由题悟法]1.判断函数周期性的2个方法(1)定义法.(2)图象法.2.周期性3个常用结论(1)若f(x+a)=-f(x),则T=2a.(2)若f(x+a)=1f x,则T=2a.(3)若f(x+a)=-1f x,则T=2a(a>0).[即时应用]1.(2018·镇江调研)已知f(x)是定义在R上周期为4的函数,且f(-x)+f(x)=0,当0<x<2时,f(x)=2x-1,则f(-21)+f(16)=________.解析:由f(-x)+f(x)=0,知f(x)是定义在R上的奇函数,∴f(0)=0.又f(x+4)=f(x),且当0<x<2时,f(x)=2x-1,∴f(-21)+f(16)=f(-1)+f(0)=-f(1)=-(21-1)=-1.答案:-12.已知f (x )是R 上最小正周期为2的周期函数,且当0≤x <2时,f (x )=x 3-x ,则函数y =f (x )的图象在区间[0,6]上与x 轴的交点个数为________.解析:因为当0≤x <2时,f (x )=x 3-x ,又f (x )是R 上最小正周期为2的周期函数,且f (0)=0, 所以f (6)=f (4)=f (2)=f (0)=0. 又f (1)=0,所以f (3)=f (5)=0.故函数y =f (x )的图象在区间[0,6]上与x 轴的交点个数为7. 答案:7考点三 函数性质的综合应用题点多变型考点——多角探明 [锁定考向]函数的奇偶性、周期性以及单调性是函数的三大性质,在高考中常常将它们综合在一起命制试题,其中奇偶性多与单调性相结合,而周期性常与抽象函数相结合,并以结合奇偶性求函数值为主.多以填空题形式出现.常见的命题角度有: (1)奇偶性的应用; (2)单调性与奇偶性结合; (3)周期性与奇偶性结合;(4)单调性、奇偶性与周期性结合.[题点全练]角度一:奇偶性的应用1.(2018·连云港模拟)函数y =f (x )是R 上的奇函数,当x <0时,f (x )=2x,则当x >0时,f (x )=________.解析:x >0时,-x <0,因为x <0时,f (x )=2x,所以当x >0时,f (-x )=2-x.因为f (x )是R 上的奇函数,所以当x >0时,f (x )=-f (-x )=-2-x .答案:-2-x角度二:单调性与奇偶性结合 2.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数,且函数f (x )在区间[-1,a -2]上单调递增,则实数a 的取值范围为________.解析:当x <0时,-x >0,f (x )=-f (-x )=-[-(-x )2+2×(-x )]=x 2+2x ,x <0,所以m =2,所以f (x )的单调递增区间为[-1,1],因此[-1,a -2]⊆[-1,1]⇒-1<a -2≤1⇒1<a ≤3.答案:(1,3]角度三:周期性与奇偶性结合3.(2019·江阴期中)已知f (x )是定义在R 上的偶函数,并满足f (x +2)=-1f x,当1≤x ≤2时f (x )=x -2,则f (6.5)=________.解析:∵f (x +2)=-1f x,∴f (x +4)=f [(x +2)+2]=-1fx +2=f (x ),即函数f (x )的周期为4. ∵f (x )是定义在R 上的偶函数,∴f (-x )=f (x ), ∴f (6.5)=f (-1.5)=f (1.5)=-0.5. 答案:-0.5角度四:单调性、奇偶性与周期性结合4.已知函数y =f (x )是定义在R 上的奇函数,对任意x ∈R ,f (x -1)=f (x +1)成立,当x ∈(0,1)且x 1≠x 2时,有f x 2-f x 1x 2-x 1<0,给出下列命题:①f (1)=0;②f (x )在区间[-2,2]上有5个零点;③点(2 018,0)是函数y =f (x )图象的一个对称中心; ④直线x =2 018是函数y =f (x )图象的一条对称轴. 则正确命题的序号为________.解析:在f (x -1)=f (x +1)中,令x =0,得f (-1)=f (1),又f (-1)=-f (1),∴2f (1)=0,∴f (1)=0,故①正确;由f (x -1)=f (x +1),得f (x )=f (x +2),∴f (x )是周期为2的周期函数,∴f (2)=f (0)=0,又当x ∈(0,1)且x 1≠x 2时,有f x 2-f x 1x 2-x 1<0,∴函数f (x )在区间(0,1)上单调递减,可作出函数f (x )的大致图象如图所示.由图知②③正确,④不正确,故正确命题的序号为①②③. 答案:①②③[通法在握]函数性质综合应用问题的常见类型及解题策略(1)函数单调性与奇偶性结合.注意函数单调性及奇偶性的定义,以及奇、偶函数图象的对称性.(2)周期性与奇偶性结合.此类问题多考查求值问题,常利用奇偶性及周期性进行交换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.(3)周期性、奇偶性与单调性结合.解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解.[演练冲关]1.(2018·启东中学月考)已知函数f (x )在定义域[2-a,3]上是偶函数,在[0,3]上单调递减,且f ⎝⎛⎭⎪⎫-m 2-a 5>f (-m 2+2m -2),则实数m 的取值范围是________.解析:因为函数f (x )在定义域[2-a,3]上是偶函数,所以2-a +3=0,所以a =5,所以f ⎝ ⎛⎭⎪⎫-m 2-a 5>f (-m 2+2m -2),即f (-m 2-1)>f (-m 2+2m -2).由题意知偶函数f (x )在[-3,0]上单调递增,而-m 2-1<0,-m 2+2m -2=-(m -1)2-1<0,所以由f (-m 2-1)>f (-m 2+2m -2),得⎩⎪⎨⎪⎧-3≤-m 2-1≤0,-3≤-m 2+2m -2≤0,-m 2-1>-m 2+2m -2,解得1-2≤m <12.答案:⎣⎢⎡⎭⎪⎫1-2,12 2.设f (x )是定义在R 上周期为4的奇函数,若在区间[-2,0)∪(0,2]上,f (x )=⎩⎪⎨⎪⎧ax +b ,-2≤x <0,ax -1,0<x ≤2,则f (2 018)=________.解析:设0<x ≤2,则-2≤-x <0,f (-x )=-ax +b .f (x )是定义在R 上周期为4的奇函数,所以f (-x )=-f (x )=-ax +1=-ax +b ,所以b =1.而f (-2)=f (-2+4)=f (2),所以 -2a +1=2a -1,解得a =12,所以f (2 018)=f (2)=2×12-1=0.答案:0一抓基础,多练小题做到眼疾手快1.(2019·南通中学高三测试)已知函数f (x )是定义域为R 的奇函数,且f (-1)=2,那么f (0)+f (1)=________.解析:因为函数f (x )是R 上的奇函数, 所以f (-x )=-f (x ),f (1)=-f (-1)=-2,f (0)=0,所以f (0)+f (1)=-2. 答案:-22.(2018·南京三模)已知f (x )是定义在R 上的偶函数,当x ≥0时,f (x )=2x-2,则不等式f (x -1)≤2的解集是________.解析:偶函数f (x )在[0,+∞)上单调递增,且f (2)=2.所以f (x -1)≤2,即f (|x -1|)≤f (2),即|x -1|≤2,所以-1≤x ≤3. 答案:[-1,3]3.函数f (x )=x +1x+1,f (a )=3,则f (-a )=________.解析:由题意得f (a )+f (-a )=a +1a +1+(-a )+1-a +1=2.所以f (-a )=2-f (a )=-1. 答案:-14.函数f (x )在R 上为奇函数,且x >0时,f (x )=x +1,则当x <0时,f (x )=________. 解析:因为f (x )为奇函数,x >0时,f (x )=x +1, 所以当x <0时,-x >0,f (x )=-f (-x )=-(-x +1),即x <0时,f (x )=-(-x +1)=--x -1. 答案:--x -15.(2019·连云港高三测试)已知函数f (x )是定义在R 上的奇函数,且当x >0时,f (x )= ⎝ ⎛⎭⎪⎫13x,则f (-2+log 35)=________.解析:由f (x )是定义在R 上的奇函数,得f (-2+log 35)=-f (2-log 35),由于当x >0时,f (x )=⎝ ⎛⎭⎪⎫13x,故f (-2+log 35)=-f ⎝ ⎛⎭⎪⎫log 395=-⎝ ⎛⎭⎪⎫1339log 5=-59. 答案:-596.(2018·南通一调)若函数f (x )=⎩⎪⎨⎪⎧xx -b ,x ≥0ax x +2,x <0(a ,b ∈R)为奇函数,则f (a+b )=________.解析:法一:因为函数f (x )为奇函数,所以⎩⎪⎨⎪⎧f-1=-f 1,f -2=-f 2,即⎩⎪⎨⎪⎧11-b =a -1+2,22-b =2a -2+2,解得⎩⎪⎨⎪⎧a =-1,b =2,经验证a =-1,b =2满足题设条件,所以f (a +b )=f (1)=-1.法二:因为函数f (x )为奇函数,所以f (x )的图象关于原点对称,由题意知,当x ≥0,二次函数的图象顶点坐标为⎝ ⎛⎭⎪⎫b2,-b 24,当x <0,二次函数的图象顶点坐标为(-1,-a ),所以⎩⎪⎨⎪⎧-b2=-1,b24=-a ,解得a =-1,b =2,经验证a =-1,b =2满足题设条件, 所以f (a +b )=f (1)=-1. 答案:-1二保高考,全练题型做到高考达标1.(2018·抚顺期末)设f (x )是定义在[-2b,3+b ]上的偶函数,且在[-2b,0]上为增函数,则f (x -1)≥f (3)的解集为________.解析:∵f (x )是定义在[-2b,3+b ]上的偶函数, ∴-2b +3+b =0, ∴b =3,∴f (x )是定义在[-6,6]上的偶函数,且在[-6,0]上为增函数, ∴f (x )在[0,6]上为减函数, ∴由f (x -1)≥f (3),得|x -1|≤3, 解得-2≤x ≤4,∴f (x -1)≥f (3)的解集为{x |-2≤x ≤4}. 答案:{x |-2≤x ≤4}2.(2019·常州一中模拟)设定义在R 上的偶函数f (x )满足f (x +1)+f (x )=1,且当x ∈[1,2]时,f (x )=2-x ,则f (-2 018.5)=________.解析:由f (x +1)+f (x )=1在R 上恒成立,得f (x -1)+f (x )=1,两式相减得f (x +1)-f (x -1)=0,即f (x +1)=f (x -1)恒成立,故函数f (x )的周期是2,∴f (-2 018.5)=f (-0.5)=f (1.5), 又当x ∈[1,2]时,f (x )=2-x , ∴f (-2 018.5)=f (1.5)=2-1.5=0.5. 答案:0.53.已知函数f (x )是定义在[-2,2]上的奇函数,且在区间[0,2]上是单调减函数.若f (2x +1)+f (1)<0,则x 的取值范围是________.解析:∵函数f (x )是定义在[-2,2]上的奇函数,且在区间[0,2]上是单调减函数, ∴函数f (x )在区间[-2,2]上是单调减函数.∵f (2x +1)+f (1)<0,即f (2x +1)<-f (1), ∴f (2x +1)<f (-1).则⎩⎪⎨⎪⎧-2≤2x +1≤2,2x +1>-1,解得-1<x ≤12.∴x 的取值范围是⎝ ⎛⎦⎥⎤-1,12. 答案:⎝⎛⎦⎥⎤-1,124.(2018·泰州期末)设f (x )是R 上的奇函数,当x >0时,f (x )=2x+ln x4,记a n =f (n-5),则数列{a n }的前8项和为________.解析:数列{a n }的前8项和为f (-4)+f (-3)+…+f (3)=f (-4)+(f (-3)+f (3))+(f (-2)+f (2))+(f (-1)+f (1))+f (0)=f (-4)=-f (4)=-⎝⎛⎭⎪⎫24+ln 44=-16.答案:-165.(2018·徐州期中)已知函数f (x )=e x -e -x+1(e 为自然对数的底数),若f (2x -1)+f (4-x 2)>2,则实数x 的取值范围为________.解析:令g (x )=f (x )-1=e x -e -x,则g (x )为奇函数,且在R 上单调递增.因为f (2x -1)+f (4-x 2)>2,所以f (2x -1)-1+f (4-x 2)-1>0,即g (2x -1)+g (4-x 2)>0,所以g (2x -1)>g (x 2-4),即2x -1>x 2-4,解得x ∈(-1,3).答案:(-1,3)6.(2019·镇江中学测试)已知奇函数f (x )在定义域R 上是单调减函数,若实数a 满足f (2|2a -1|)+f (-22)>0,则a 的取值范围是________.解析:由f (2|2a -1|)+f (-22)>0,可得f (2|2a -1|)>-f (-22).因为f (x )为奇函数,所以f (2|2a -1|)>f (22).因为f (x )在定义域R 上是单调减函数,所以2|2a -1|<22,即|2a-1|<32,解得-14<a <54.答案:⎝ ⎛⎭⎪⎫-14,547.(2019·苏州调研)已知奇函数f (x )在(-∞,0)上单调递减,且f (2)=0,则不等式f xx -1>0的解集为________. 解析:由f xx -1>0,可得⎩⎪⎨⎪⎧x >1,f x >0或⎩⎪⎨⎪⎧x <1,fx <0.因为奇函数f (x )在(-∞,0)上单调递减,所以f (x )在(0,+∞)上单调递减,且f (2)=f (-2)=0,所以当x >1时,f (x )>0的解集为(1,2);当x <1时,f (x )<0的解集为(-2,0).所以不等式f x x -1>0的解集为(-2,0)∪(1,2). 答案:(-2,0)∪(1,2)8.函数f (x )在R 上满足f (-x )=-f (x ),当x ≥0时,f (x )=-e x +1+m cos(π+x ),记a =-πf (-π),b =-134·f ⎝ ⎛⎭⎪⎫-134,c =e f (e),则a ,b ,c 的大小关系为________. 解析:∵函数f (x )为R 上的奇函数,且当x ≥0时,f (x )=-e x +1+m cos(π+x ),∴f (0)=-1+1-m =0,即m =0,∴f (x )=-e x+1(x ≥0).令g (x )=xf (x ),有g (-x )=(-x )f (-x )=xf (x )=g (x ),∴函数g (x )为偶函数,当x ≥0时,g (x )=xf (x )=x (1-e x ),g ′(x )=f (x )+xf ′(x )=1-(1+x )e x <0, ∴函数g (x )在[0,+∞)上为减函数,∵a =-πf (-π)=g (-π)=g (π),b =-134f ⎝ ⎛⎭⎪⎫-134=g ⎝ ⎛⎭⎪⎫-134=g ⎝ ⎛⎭⎪⎫134,c =e f (e)=g (e),又e <π<134,∴b <a <c . 答案:b <a <c9.已知函数f (x )=⎩⎪⎨⎪⎧ -x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数. (1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围.解:(1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x .又f (x )为奇函数,所以f (-x )=-f (x ),于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2.(2)要使f (x )在[-1,a -2]上单调递增,结合f (x )的图象(如图所示)知⎩⎪⎨⎪⎧ a -2>-1,a -2≤1,所以1<a ≤3,故实数a 的取值范围是(1,3].10.(2018·大同期末)已知函数f (x )=log a (x +1),g (x )=log a (1-x ),其中a >0,a ≠1.(1)求函数F (x )=f (x )-g (x )的定义域;(2)判断F (x )=f (x )-g (x )的奇偶性,并说明理由;(3)当a >1时,求使F (x )>0成立的x 的取值范围.解:(1)∵F (x )=f (x )-g (x )=log a (x +1)-log a (1-x ),∴⎩⎪⎨⎪⎧ x +1>0,1-x >0,解得-1<x <1,∴函数F (x )的定义域为(-1,1).(2)F (x )为(-1,1)上的奇函数.理由如下:由(1)知F (x )的定义域为(-1,1),关于原点对称,F (-x )=log a (-x +1)-log a (1+x )= -[log a (x +1)-log a (1-x )]=-F (x ),∴函数F (x )为(-1,1)上的奇函数.(3)根据题意,F (x )=log a (x +1)-log a (1-x ),当a >1时,由F (x )>0,得log a (x +1)>log a (1-x ),即⎩⎪⎨⎪⎧ x +1>0,1-x >0,x +1>1-x ,解得0<x <1, 故x 的取值范围为(0,1).三上台阶,自主选做志在冲刺名校1.(2019·南通模拟)已知定义在R 上的奇函数y =f (x )满足f (2+x )=f (2-x ),当-2≤x <0时,f (x )=2x ,若a n =f (n )(n ∈N *),则a 2 018=________.解析:∵f (2+x )=f (2-x ),以2+x 代替上式中的x ,得f (4+x )=f (-x ), 又函数y =f (x )是定义在R 上的奇函数,∴f (-x )=-f (x ),∴f (4+x )=f (-x )=-f (x ),再以4+x 代替上式中的x ,得f (8+x )=-f (4+x )=f (x ),∴函数f (x )的周期为8. ∴a 2 018=f (2 018)=f (252×8+2)=f (2),而f (2)=-f (-2)=-14,∴a 2 018=-14. 答案:-142.设函数f (x )是定义在R 上的奇函数,对任意实数x 有f ⎝ ⎛⎭⎪⎫32+x =-f ⎝ ⎛⎭⎪⎫32-x 成立. (1)证明y =f (x )是周期函数,并指出其周期;(2)若f (1)=2,求f (2)+f (3)的值;(3)若g (x )=x 2+ax +3,且y =|f (x )|·g (x )是偶函数,求实数a 的值. 解:(1)由f ⎝ ⎛⎭⎪⎫32+x =-f ⎝ ⎛⎭⎪⎫32-x , 且f (-x )=-f (x ),知f (3+x )=f ⎣⎢⎡⎦⎥⎤32+⎝ ⎛⎭⎪⎫32+x = -f ⎣⎢⎡⎦⎥⎤32-⎝ ⎛⎭⎪⎫32+x =-f (-x )=f (x ), 所以y =f (x )是周期函数,且T =3是其一个周期.(2)因为f (x )为定义在R 上的奇函数,所以f (0)=0,且f (-1)=-f (1)=-2,又T =3是y =f (x )的一个周期,所以f (2)+f (3)=f (-1)+f (0)=-2+0=-2.(3)因为y =|f (x )|·g (x )是偶函数,且|f (-x )|=|-f (x )|=|f (x )|,所以|f (x )|为偶函数.故g (x )=x 2+ax +3为偶函数,即g (-x )=g (x )恒成立,于是(-x )2+a (-x )+3=x 2+ax +3恒成立.于是2ax =0恒成立,所以a =0.。

高考数学一轮复习 第二章 函数 2.3 函数的奇偶性与周期性学案(文,含解析)新人教A版

高考数学一轮复习 第二章 函数 2.3 函数的奇偶性与周期性学案(文,含解析)新人教A版

学习资料2.3函数的奇偶性与周期性必备知识预案自诊知识梳理1。

函数的奇偶性2。

函数的周期性(1)周期函数:T为函数f(x)的一个周期,则需满足条件:①T≠0;②对定义域内的任意x都成立.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个,那么这个就叫做f(x)的最小正周期.(3)周期不唯一:若T是函数y=f(x)(x∈R)的一个周期,则nT(n∈Z,且n≠0)也是函数f(x)的周期,即f(x+nT)=f(x).1.函数奇偶性的五个重要结论(1)如果一个奇函数f(x)在x=0处有定义,即f(0)有意义,那么一定有f(0)=0.(2)如果函数f(x)是偶函数,那么f(x)=f(|x|)。

(3)奇函数在关于原点对称的区间上具有相同的单调性;偶函数在关于原点对称的区间上具有相反的单调性。

(4)在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇。

(5)只有f(x)=0(定义域是关于原点对称的非空数集)既是奇函数又是偶函数.2。

周期性的三个常用结论对f(x)定义域内任一自变量的值x(a,b为非零常数):(1)若f(x+a)=—f(x),则T=2a;(2)若f(x+a)=±1f(x),则T=2a;(3)若f(x+a)=f(x—b),则T=a+b。

3.对称性的四个常用结论(1)若函数y=f(x+a)是偶函数,即f(a-x)=f(a+x),则函数y=f(x)的图象关于直线x=a对称.(2)若对于R上的任意x都有f(2a—x)=f(x)或f(—x)=f(2a+x),则y=f(x)的图象关于直线x=a对称.(3)若函数y=f(x+b)是奇函数,即f(-x+b)+f(x+b)=0,则函数y=f(x)的图象关于点(b,0)中心对称;(4)若y=f(x)对任意的x∈R,都有f(a-x)=f(b+x),则函数y=f(x)的图象关于直线x=a+b2对称;都有f(a-x)=b—f(x),即f(a-x)+f(x)=b,则函数y=f(x)的图象关于点a 2,b2中心对称。

2019-2020学年高考数学一轮复习 2.3函数的奇偶性与周期性学案.doc

2019-2020学年高考数学一轮复习 2.3函数的奇偶性与周期性学案.doc

2019-2020学年高考数学一轮复习 2.3函数的奇偶性与周期性学案学考考察重点 1.判断函数的奇偶性;2.利用函数的奇偶性求参数;3.函数的奇偶性、周期性和单调性的综合应用.本节复习目标 1.结合函数的图象理解函数的奇偶性、周期性;2.注意函数奇偶性和周期性的小综合问题;3.利用函数的性质解决有关问题.1.奇、偶函数的概念一般地,如果对于函数f(x)的定义域内任意一个x,都有___________,那么函数f(x)就叫做偶函数.一般地,如果对于函数f(x)的定义域内任意一个x,都有___________,那么函数f(x)就叫做奇函数.奇函数的图象关于_________对称;偶函数的图象关于_______对称.2.奇、偶函数的性质(1)奇函数在关于原点对称的区间上的单调性_________,偶函数在关于原点对称的区间上的单调性_______.(2)在公共定义域内,①两个奇函数的和是_________,两个奇函数的积是___________;②两个偶函数的和、积都是___________;③一个奇函数,一个偶函数的积是___________.3.周期性(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有_____________,那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中_____________的正数,那么这个最小正数就叫做f(x)的最小正周期.基础知识·自我测试1. (课本改编题)已知f(x)=ax2+bx是定义在[a-1,2a]上的偶函数,那么a+b的值是________.2.设函数f(x)=x3cos x+1.若f(a)=11,则f(-a)=________.3.设函数f(x)是定义在R上的奇函数,若当x∈(0,+∞)时,f(x)=lg x,则满足f(x)>0的x的取值范围是________.4.函数f(x)的定义域为R,若f(x+1)与f(x-1)都是奇函数,则 ( ) A.f(x)是偶函数 B.f(x)是奇函数C .f (x )=f (x +2)D .f (x +3)是奇函数5.设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则)25( f 等 于 ( )A .-12B .-14 C.14 D.12题型一 判断函数的奇偶性例1 判断下列函数的奇偶性: (1)f (x )=9-x 2+x 2-9; (2)f (x )=(x +1)1-x 1+x ; (3)f (x )=4-x 2|x +3|-3.变式训练1:下列函数:①f (x )=1-x 2+x 2-1;②f (x )=x 3-x ;③f (x )=ln(x +x 2+1);④f (x )=3x -3-x2; ⑤f (x )=lg 1-x 1+x.其中奇函数的个数是 ( ) A .2 B .3 C .4 D .5题型二 函数的奇偶性与周期性例2 设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ).当x ∈[0,2]时,f (x )=2x -x 2.(1)求证:f (x )是周期函数;(2)当x ∈[2,4]时,求f (x )的解析式;(3)计算f (0)+f (1)+f (2)+…+f (2 013).变式训练2:已知f (x )是定义在R 上的偶函数,并且f (x +2)=-1f x ,当2≤x ≤3时,f (x )=x ,则f (105.5)=________.题型三 函数性质的综合应用例3 设f (x )是(-∞,+∞)上的奇函数,f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x .(1)求f (π)的值;(2)当-4≤x ≤4时,求f (x )的图象与x 轴所围成图形的面积;(3)写出(-∞,+∞)内函数f (x )的单调区间.变式训练3:(1)已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( )A .f(-25)<f(11)<f(80)B .f(80)<f(11)<f(-25)C .f(11)<f(80)<f(-25)D .f(-25)<f(80)<f(11)(2)函数y =f (x )(x ≠0)是奇函数,且当x ∈(0,+∞)时是增函数,若f (1)=0,求不等式f [x (x -12)]<0的解集.。

高考文科数学一轮复习经典教案(带详解)第二章第3节:函数的奇偶性与周期性

高考文科数学一轮复习经典教案(带详解)第二章第3节:函数的奇偶性与周期性

第3节函数的奇偶性与周期性【最新考纲】 1.结合具体函数,了解函数奇偶性的含义;2.会运用函数的图象理解和研究函数的奇偶性;3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性.高考会这样考 1.判断函数的奇偶性;2.利用函数的奇偶性求参数;3.考查函数的奇偶性、周期性和单调性的综合应用.要点梳理1.函数的奇偶性2.函数的周期性(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.[友情提示]1.函数奇偶性的判断(1)定义域关于原点对称是函数具有奇偶性的必要不充分条件;(2)判断f(x)与f(-x)是否具有等量关系.在判断奇偶性的运算中,可以转化为判断奇偶性的等价关系式(f(x)+f(-x)=0(奇函数)或f(x)-f(-x)=0(偶函数))是否成立.2.函数奇偶性的性质(1)若奇函数f(x)在x=0处有定义,则f(0)=0.(2)设f(x),g(x)的定义域分别是D1,D2,那么在它们的公共定义域上:奇+奇=奇,奇×奇=偶,偶+偶=偶,偶×偶=偶,奇×偶=奇.(3)奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同;偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反.基 础 自 测1.思考辨析(在括号内打“√”或“×”)(1)函数y =x 2在x ∈(0,+∞)时是偶函数.( )(2)若函数f (x )为奇函数,则一定有f (0)=0.( )(3)若T 是函数的一个周期,则nT (n ∈Z ,n ≠0)也是函数的周期.(4)若函数y =f (x +b )是奇函数,则函数y =f (x )的图象关于点(b ,0)中心对称.( ) 解析 (1)由于偶函数的定义域关于原点对称,故y =x 2在(0,+∞)上不是偶函数,(1)错.(2)由奇函数定义可知,若f (x )为奇函数,其在x =0处有意义时才满足f (0)=0,(2)错.(3)由周期函数的定义,(3)正确.(4)由于y =f (x +b )的图象关于(0,0)对称,根据图象平移变换,知y =f (x )的图象关于(b ,0)对称,正确.答案 (1)× (2)× (3)√ (4)√2.下列函数中为偶函数的是( )A.y =x 2sin xB.y =x 2cos xC.y =|ln x |D.y =2-x解析 根据偶函数的定义知偶函数满足f (-x )=f (x )且定义域关于原点对称,A 选项为奇函数;B 选项为偶函数;C 选项定义域为(0,+∞),不具有奇偶性;D 选项既不是奇函数,也不是偶函数.答案 B3.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是( )A.-13B.13C.12D.-12解析 依题意b =0,且2a =-(a -1),∴a =13,则a +b =13. 答案 B4.设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎨⎧-4x 2+2,-1≤x <0,x ,0≤x <1,则f ⎝ ⎛⎭⎪⎫32=________. 解析 ∵f (x )的周期为2,∴f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫-12, 又∵当-1≤x <0时,f (x )=-4x 2+2,∴f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫-12=-4×⎝⎛⎭⎫-122+2=1. 答案 1 5.已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当x ∈[-3,0]时,f (x )=6-x ,则f (919)=________.解析 ∵f (x +4)=f (x -2),∴f [(x +2)+4]=f [(x +2)-2],即f (x +6)=f (x ),∴f (919)=f (153×6+1)=f (1),又f (x )在R 上是偶函数,∴f (1)=f (-1)=6-(-1)=6,即f (919)=6. 答案 6错误!题型分类 错误!考点突破考点一 函数的奇偶性【例1】 (1)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________.解析 f (x )为偶函数,则y =ln(x +a +x 2)为奇函数, 所以ln(x +a +x 2)+ln(-x +a +x 2)=0, 则ln(a +x 2-x 2)=0,∴a =1.答案 1(2)判断下列函数的奇偶性:①f (x )=3-x 2+x 2-3;②f (x )=lg (1-x 2)|x -2|-2; ③f (x )=⎩⎨⎧x 2+x ,x <0,-x 2+x ,x >0.解 ①由⎩⎪⎨⎪⎧3-x 2≥0,x 2-3≥0,得x 2=3,解得x =±3, 即函数f (x )的定义域为{-3,3},从而f (x )=3-x 2+x 2-3=0.因此f (-x )=-f (x )且f (-x )=f (x ),∴函数f (x )既是奇函数又是偶函数.②由⎩⎪⎨⎪⎧1-x 2>0,|x -2|≠2,得定义域为(-1,0)∪(0,1),关于原点对称. ∴x -2<0,∴|x -2|-2=-x ,∴f (x )=lg (1-x 2)-x. 又∵f (-x )=lg[1-(-x )2]x =-lg (1-x 2)-x=-f (x ), ∴函数f (x )为奇函数.③显然函数f (x )的定义域为(-∞,0)∪(0,+∞),关于原点对称.∵当x <0时,-x >0,则f (-x )=-(-x )2-x =-x 2-x =-f (x );当x >0时,-x <0,则f (-x )=(-x )2-x =x 2-x =-f (x );综上可知:对于定义域内的任意x ,总有f (-x )=-f (x )成立,∴函数f (x )为奇函数.规律方法 1.判断函数的奇偶性,其中包括两个必备条件:(1)定义域关于原点对称,这是函数具有奇偶性的必要不充分条件,所以首先考虑定义域;(2)判断f (x )与f (-x )是否具有等量关系.2.已知函数的奇偶性求参数,一般采用待定系数法求解,根据f (x )±f (-x )=0得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值.【变式练习1】 (1)下列函数中,既不是奇函数,也不是偶函数的是( )A.y =x +sin 2xB.y =x 2-cos xC.y =2x +12xD.y =x 2+sin x(2)已知奇函数f (x )=⎩⎨⎧3x -a (x ≥0),g (x )(x <0),则f (-2)的值等于________. 解析 (1)对于A ,定义域为R ,f (-x )=-x +sin 2(-x )=-(x +sin 2x )=-f (x ),为奇函数;对于B ,定义域为R ,f (-x )=(-x )2-cos(-x )=x 2-cos x =f (x ),为偶函数;对于C ,定义域为R ,f (-x )=2-x +12-x =2x +12x =f (x ),为偶函数;y =x 2+sin x 既不是偶函数也不是奇函数. (2)因为函数f (x )为奇函数,所以f (0)=0,则30-a =0,∴a =1.∴当x ≥0时,f (x )=3x -1,则f (2)=32-1=8,因此f (-2)=-f (2)=-8.答案 (1)D (2)-8考点二 函数的周期性及其应用【例2】 (1)若函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,f (x )=4x ,则f ⎝ ⎛⎭⎪⎫-52+f (2)=________. (2)已知f (x )是定义在R 上的偶函数,且f (x +2)=-1f (x ),当2≤x ≤3时,f (x )=x ,则f (105.5)=______.解析 (1)∵f (x )是定义在R 上的奇函数,∴f (0)=0,又f (x )在R 上的周期为2,∴f (2)=f (0)=0.又f ⎝⎛⎭⎫-52=f ⎝⎛⎭⎫-12=-f ⎝⎛⎭⎫12=-412=-2, ∴f ⎝⎛⎭⎫-52+f (2)=-2. (2)f (x +4)=f [(x +2)+2]=-1f (x +2)=f (x ). 故函数的周期为4.∴f (105.5)=f (4×27-2.5)=f (-2.5)=f (2.5).∵2≤2.5≤3,由题意,得f (2.5)=2.5.∴f (105.5)=2.5.答案 (1)-2 (2)2.5规律方法 1.根据函数的周期性和奇偶性求给定区间上的函数值或解析式时,应根据周期性或奇偶性,由待求区间转化到已知区间.2.若f (x +a )=-1f (x )(a 是常数,且a ≠0),则2a 为函数f (x )的一个周期. 【变式练习2】 已知函数f (x )的定义域为R .当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x );当x >12时,f ⎝ ⎛⎭⎪⎫x +12=f ⎝ ⎛⎭⎪⎫x -12.则f (6)=( ) A.-2 B.-1 C.0 D.2解析 当x >12时,由f (x +12)=f (x -12), 得f (x )=f (x +1),∴f (6)=f (1),又由题意知f (1)=-f (-1),且f (-1)=(-1)3-1=-2.因此f (6)=-f (-1)=2.答案 D考点三 函数性质的综合运用(多维探究)命题角度1 函数单调性与奇偶性【例3-1】 (1)(一题多解)已知奇函数f (x )在R 上是增函数,g (x )=xf (x ).若a =g (-log 25.1),b =g (20.8),c =g (3),则a ,b ,c 的大小关系为( )A.a <b <cB.c <b <aC.b <a <cD.b <c <a(2)设函数f (x )=ln(1+|x |)-11+x 2,则使得f (x )>f (2x -1)成立的x 的取值范围是________.解析 (1)法一 易知g (x )=xf (x )在R 上为偶函数,∵奇函数f (x )在R 上是增函数,且f (0)=0.∴g (x )在(0,+∞)上是增函数.又3>log 25.1>2>20.8,且a =g (-log 25.1)=g (log 25.1),∴g (3)>g (log 25.1)>g (20.8),则c >a >b .法二 (特殊化)取f (x )=x ,则g (x )=x 2为偶函数且在(0,+∞)上单调递增,又3>log 25.1>20.8, 从而可得c >a >b .(2)由f (x )=ln(1+|x |)-11+x 2,知f (x )为R 上的偶函数,于是f (x )>f (2x -1)即为f (|x |)>f (|2x -1|).当x ≥0时,f (x )=ln(1+x )-11+x 2,所以f (x )为[0,+∞)上的增函数,则由f (|x |)>f (|2x -1|)得|x |>|2x -1|,两边平方得3x 2-4x +1<0,解得13<x <1. 答案 (1)C (2)⎝⎛⎭⎫13,1命题角度2 函数的奇偶性与周期性【例3-2】 (1)已知f (x )是定义在R 上的以3为周期的偶函数,若f (1)<1,f (5)=2a -3a +1,则实数a 的取值范围为( ) A.(-1,4) B.(-2,0) C.(-1,0) D.(-1,2)(2)若函数f (x )(x ∈R )是周期为4的奇函数,且在[0,2]上的解析式为f (x )=⎩⎨⎧x (1-x ),0≤x ≤1,sin πx ,1<x ≤2,则f ⎝ ⎛⎭⎪⎫294+f ⎝ ⎛⎭⎪⎫416=________.解析 (1)∵f (x )是定义在R 上的周期为3的偶函数,∴f (5)=f (5-6)=f (-1)=f (1),∵f (1)<1,f (5)=2a -3a +1,∴2a -3a +1<1,即a -4a +1<0, 解得-1<a <4.(2)由于函数f (x )是周期为4的奇函数,所以f ⎝⎛⎭⎫294+f ⎝⎛⎭⎫416=f ⎝⎛⎭⎫2×4-34+f ⎝⎛⎭⎫2×4-76=f ⎝⎛⎭⎫-34+f ⎝⎛⎭⎫-76=-f ⎝⎛⎭⎫34-f ⎝⎛⎭⎫76=-316+sin π6=516. 答案 (1)A (2)516规律方法 1.关于奇偶性、单调性、周期性的综合性问题,关键是利用奇偶性和周期性将未知区间上的问题转化为已知区间上的问题.2.掌握以下两个结论,会给解题带来方便:(1)f (x )为偶函数⇔f (x )=f (|x |).(2)若奇函数在x =0处有意义,则f (0)=0.【变式练习3】 (1)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎨⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f ⎝ ⎛⎭⎪⎫12=f⎝ ⎛⎭⎪⎫32,则a +3b 的值为________. (2)若定义域为R 的函数f (x )在(4,+∞)上为减函数,且函数y =f (x +4)为偶函数,则( )A.f (2)>f (3)B.f (2)>f (5)C.f (3)>f (5)D.f (3)>f (6)解析 (1)因为f (x )是定义在R 上且周期为2的函数,所以f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫-12且f (-1)=f (1), 故f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫-12, 从而12b +212+1=-12a +1,即3a +2b =-2.① 由f (-1)=f (1),得-a +1=b +22,即b =-2a .② 由①②得a =2,b =-4,从而a +3b =-10.(2)∵y =f (x +4)为偶函数,∴f (-x +4)=f (x +4),因此y =f (x )的图象关于直线x =4对称,∴f (2)=f (6),f (3)=f (5).又y =f (x )在(4,+∞)上为减函数,∴f (5)>f (6),所以f (3)>f (6).答案 (1)-10 (2)D错误! 课后练习A 组 (时间:40分钟)一、选择题1.在函数y =x cos x ,y =e x +x 2,y =lg x 2-2,y =x sin x 中,偶函数的个数是( )A.3B.2C.1D.0解析 y =x cos x 为奇函数,y =e x +x 2为非奇非偶函数,y =lg x 2-2与y =x sin x 为偶函数.答案 B2.已知函数f (x )=ln(e +x )+ln(e -x ),则f (x )是( )A.奇函数,且在(0,e)上是增函数B.奇函数,且在(0,e)上是减函数C.偶函数,且在(0,e)上是增函数D.偶函数,且在(0,e)上是减函数解析 f (x )的定义域为(-e ,e),且f (x )=ln(e 2-x 2).又t =e 2-x 2是偶函数,且在(0,e)上是减函数,∴f (x )是偶函数,且在(0,e)上是减函数.答案 D3.(一题多解)设函数f (x )是定义在R 上的奇函数,且f (x )=⎩⎨⎧log 3(x +1),x ≥0,g (x ),x <0,则g (-8)=( )A.-2B.-3C.2D.3解析 法一 当x <0时,-x >0,且f (x )为奇函数,则f (-x )=log 3(1-x ),所以f (x )=-log 3(1-x ).因此g (x )=-log 3(1-x ),x <0,故g (-8)=-log 39=-2.法二 由题意知,g (-8)=f (-8)=-f (8)=-log 39=-2.答案 A4.已知f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(-2,0)时,f (x )=2x 2,则f (2 019)等于( )A.-2B.2C.-98D.98解析 由f (x +4)=f (x )知,f (x )是周期为4的周期函数,f (2 019)=f (504×4+3)=f (3),又f (x +4)=f (x ),∴f (3)=f (-1),由-1∈(-2,0)得f (-1)=2,∴f (2 019)=2.答案 B5.已知奇函数f (x )在R 上是增函数.若a =-f ⎝ ⎛⎭⎪⎫log 215,b =f (log 24.1),c =f (20.8),则a ,b ,c 的大小关系为( )A.a <b <cB.b <a <cC.c <b <aD.c <a <b解析 ∵f (x )在R 上是奇函数,∴a =-f ⎝ ⎛⎭⎪⎫log 215=f ⎝⎛⎭⎪⎫-log 215=f (log 25). 又f (x )在R 上是增函数,且log 25>log 24.1>log 24=2>20.8,∴f (log 25)>f (log 24.1)>f (20.8),∴a >b >c .答案 C二、填空题6.已知函数f (x )是定义在R 上的奇函数,当x ∈(-∞,0)时,f (x )=2x 3+x 2,则f (2)=________.解析 ∵x ∈(-∞,0)时,f (x )=2x 3+x 2,且f (x )在R 上为奇函数,∴f (2)=-f (-2)=-[2×(-2)3+(-2)2]=12.答案 127.若f (x )=ln(e 3x +1)+ax 是偶函数,则a =________.解析 由于f (-x )=f (x ),∴ln(e -3x +1)-ax =ln(e 3x +1)+ax ,化简得2ax +3x =0(x ∈R ),则2a +3=0,∴a =-32.答案 -328.若函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上是单调递增函数.如果实数t 满足f (ln t )+f ⎝ ⎛⎭⎪⎫ln 1t ≤2f (1),那么t 的取值范围是________. 解析 由于函数f (x )是定义在R 上的偶函数,所以f (ln t )=f ⎝ ⎛⎭⎪⎫ln 1t , 由f (ln t )+f ⎝ ⎛⎭⎪⎫ln 1t ≤2f (1), 得f (ln t )≤f (1).又函数f (x )在区间[0,+∞)上是单调递增函数,所以|ln t |≤1,即-1≤ln t ≤1,故1e ≤t ≤e.答案 ⎣⎢⎡⎦⎥⎤1e ,e 三、解答题9.设函数f (x )是定义在R 上的奇函数,对任意实数x 有f ⎝ ⎛⎭⎪⎫32+x =-f ⎝ ⎛⎭⎪⎫32-x 成立. (1)证明y =f (x )是周期函数,并指出其周期;(2)若f (1)=2,求f (2)+f (3)的值.(1)证明 由f ⎝ ⎛⎭⎪⎫32+x =-f ⎝ ⎛⎭⎪⎫32-x , 且f (-x )=-f (x ),得f (x +3)=-f (-x )=f (x ),因此函数y =f (x )是以3为周期的函数.(2)解 由f (x )是定义在R 上的奇函数,知f (0)=0,∴f (3)=f (0)=0.又f (2)=f (-1)=-f (1)=-2,故f (2)+f (3)=-2+0=-2.10.已知函数f (x )=⎩⎨⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值; (2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围. 解 (1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x .又f (x )为奇函数,所以f (-x )=-f (x ).于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2.(2)要使f (x )在[-1,a -2]上单调递增,结合f (x )的图象知⎩⎨⎧a -2>-1,a -2≤1,所以1<a ≤3, 故实数a 的取值范围是(1,3].B 组 (时间:20分钟)11.已知函数f (x )=x 3+sin x ,x ∈(-1,1),则满足f (a 2-1)+f (a -1)>0的a 的取值范围是( )A.(0,2)B.(1,2)C.(1,2)D.(0,2)解析 易知f (x )=x 3+sin x ,x ∈(-1,1)是奇函数,又f ′(x )=3x 2+cos x >0,∴y =f (x )在区间(-1,1)上是增函数,由f (a 2-1)+f (a -1)>0,得f (a 2-1)>f (1-a ).∴⎩⎨⎧-1<1-a <1,-1<a 2-1<1,1-a <a 2-1,解得1<a <2. 答案 B12.已知f (x )是R 上最小正周期为2的周期函数,且当0≤x <2时,f (x )=x 3-x ,则函数y =f (x )的图象在区间[0,6]上与x 轴的交点个数为________.解析 因为当0≤x <2时,f (x )=x 3-x .又f (x )是R 上最小正周期为2的周期函数,且f (0)=0,则f (6)=f (4)=f (2)=f (0)=0.又f (1)=0,∴f (3)=f (5)=f (1)=0,故函数y =f (x )的图象在区间[0,6]上与x 轴的交点有7个.答案 713.设f (x )是(-∞,+∞)上的奇函数,f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x .(1)求f (π)的值;(2)当-4≤x ≤4时,求f (x )的图象与x 轴所围成图形的面积.解 (1)由f (x +2)=-f (x )得,f (x +4)=f [(x +2)+2]=-f (x +2)=f (x ),所以f (x )是以4为周期的周期函数,所以f (π)=f (-1×4+π)=f (π-4)=-f (4-π)=-(4-π)=π-4.(2)由f (x )是奇函数且f (x +2)=-f (x ),得f [(x -1)+2]=-f (x -1)=f [-(x -1)],即f (1+x )=f (1-x ).故知函数y =f (x )的图象关于直线x =1对称.又当0≤x ≤1时,f (x )=x ,且f (x )的图象关于原点成中心对称,则f (x )的图象如下图所示.当-4≤x ≤4时,f (x )的图象与x 轴围成的图形面积为S ,则S =4S △OAB =4×⎝ ⎛⎭⎪⎫12×2×1=4.。

(江苏专用)2020版高考数学复习第二章函数2.3函数的奇偶性与周期性教案

(江苏专用)2020版高考数学复习第二章函数2.3函数的奇偶性与周期性教案

§2.3函数的奇偶性与周期性考情考向分析以理解函数的奇偶性、会用函数的奇偶性为主,常与函数的单调性、周期性交汇命题,加强函数与方程思想、转化与化归思想的应用意识,题型以填空题为主,中等偏上难度.1.函数的奇偶性2.周期性(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.概念方法微思考1.如果已知函数f(x),g(x)的奇偶性,那么函数f(x)±g(x),f(x)·g(x)的奇偶性有什么结论?提示在函数f(x),g(x)公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.2.已知函数f(x)满足下列条件,你能得到什么结论?(1)f(x+a)=-f(x)(a≠0).(2)f(x+a)=1f(x)(a≠0).(3)f(x+a)=f(x+b)(a≠b).提示(1)T=2|a| (2)T=2|a| (3)T=|a-b|题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)函数y =x 2,x ∈(0,+∞)是偶函数.( × )(2)偶函数的图象不一定过原点,奇函数的图象一定过原点.( × )(3)若函数y =f (x +a )是偶函数,则函数y =f (x )关于直线x =a 对称.( √ ) (4)若T 是函数的一个周期,则nT (n ∈Z ,n ≠0)也是函数的周期.( √ )题组二 教材改编2.[P45习题T11]已知函数f (x )是定义在R 上的奇函数,且当x >0时,f (x )=x (1+x ),则f (-1)=________. 答案 -2解析 f (1)=1×2=2,又f (x )为奇函数, ∴f (-1)=-f (1)=-2.3.[P43练习T4]函数y =f (x )为(-∞,+∞)上的偶函数,且f (|a |)=3,则f (-a )=________. 答案 3解析 若a ≥0,则f (-a )=f (a )=f (|a |)=3; 若a <0,则f (-a )=f (|a |)=3. 故对a ∈R ,总有f (-a )=3.4.[P45习题T8]若函数f (x )=(x +1)(x -a )为偶函数,则a =________. 答案 1解析 ∵f (x )=(x +1)(x -a )=x 2+(1-a )x -a 为偶函数, ∴f (-x )=f (x )对x ∈R 恒成立,∴(1-a )x =(a -1)x 恒成立,∴1-a =0,∴a =1.题组三 易错自纠5.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是________. 答案 13解析 ∵f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,∴a -1+2a =0,∴a =13.又f (-x )=f (x ),∴b =0,∴a +b =13.6.已知定义在R 上的奇函数f (x )满足f (x +3)=f (x ),且当x ∈⎣⎢⎡⎭⎪⎫0,32时,f (x )=-x 3,则f ⎝ ⎛⎭⎪⎫112=________. 答案 18解析 由f (x +3)=f (x )知函数f (x )的周期为3,又函数f (x )为奇函数,所以f ⎝ ⎛⎭⎪⎫112=f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12=⎝ ⎛⎭⎪⎫123=18.题型一 函数奇偶性的判断例1判断下列函数的奇偶性: (1)f (x )=36-x 2+x 2-36; (2)f (x )=ln (1-x 2)|x -2|-2;(3)f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,-x 2+x ,x >0.解 (1)由⎩⎪⎨⎪⎧36-x 2≥0,x 2-36≥0,得x 2=36,解得x =±6,即函数f (x )的定义域为{-6,6},关于原点对称, ∴f (x )=36-x 2+x 2-36=0. ∴f (-x )=-f (x )且f (-x )=f (x ), ∴函数f (x )既是奇函数又是偶函数.(2)由⎩⎪⎨⎪⎧1-x 2>0,|x -2|≠2,得定义域为(-1,0)∪(0,1),关于原点对称.∴x -2<0,∴|x -2|-2=-x , ∴f (x )=ln (1-x 2)-x.又∵f (-x )=ln[1-(-x )2]x =ln (1-x 2)x=-f (x ),∴函数f (x )为奇函数.(3)显然函数f (x )的定义域为(-∞,0)∪(0,+∞),关于原点对称.∵当x<0时,-x>0,则f(-x)=-(-x)2-x=-x2-x=-f(x);当x>0时,-x<0,则f(-x)=(-x)2-x=x2-x=-f(x);综上可知,对于定义域内的任意x,总有f(-x)=-f(x),∴函数f(x)为奇函数.思维升华判断函数的奇偶性,其中包括两个必备条件:(1)定义域关于原点对称,这是函数具有奇偶性的必要不充分条件,所以首先考虑定义域;(2)判断f(x)与f(-x)是否具有等量关系.在判断奇偶性的运算中,可以转化为判断奇偶性的等价关系式f(x)+f(-x)=0(奇函数)或f(x)-f(-x)=0(偶函数)是否成立.跟踪训练1 (1)下列函数中,既不是奇函数也不是偶函数的是________.(填序号)①f(x)=x+sin2x; ②f(x)=x2-cos x;③f(x)=3x-13x;④f(x)=x2+tan x.答案④解析对于①,函数的定义域为R,f(-x)=-x+sin2(-x)=-(x+sin2x)=-f(x),所以f(x)=x+sin2x为奇函数;对于②,函数的定义域为R,f(-x)=(-x)2-cos(-x)=x2-cos x=f(x),所以f(x)=x2-cos x为偶函数;对于③,函数的定义域为R,f(-x)=3-x-13-x=-⎝⎛⎭⎪⎫3x-13x=-f(x),所以f(x)=3x-13x为奇函数;对于④,f(x)=x2+tan x既不是奇函数也不是偶函数.(2)函数f(x)=lg|sin x|是________.(填序号)①最小正周期为π的奇函数;②最小正周期为2π的奇函数;③最小正周期为π的偶函数;④最小正周期为2π的偶函数.答案③解析易知函数的定义域为{x|x≠kπ,k∈Z},关于原点对称,又f(-x)=lg|sin(-x)|=lg|-sin x|=lg|sin x|=f(x),所以f(x)是偶函数,又函数y=|sin x|的最小正周期为π,所以函数f(x)=lg|sin x|是最小正周期为π的偶函数.题型二函数的周期性及其应用1.若函数f(x)(x∈R)是周期为4的奇函数,且在[0,2]上的解析式为f(x)=⎩⎪⎨⎪⎧x (1-x ),0≤x ≤1,sin πx ,1<x ≤2,则f ⎝ ⎛⎭⎪⎫294+f ⎝ ⎛⎭⎪⎫416=________.答案516解析 由于函数f (x )是周期为4的奇函数, 所以f ⎝ ⎛⎭⎪⎫294+f ⎝ ⎛⎭⎪⎫416=f ⎝⎛⎭⎪⎫2×4-34+f ⎝ ⎛⎭⎪⎫2×4-76 =f ⎝ ⎛⎭⎪⎫-34+f ⎝ ⎛⎭⎪⎫-76=-f ⎝ ⎛⎭⎪⎫34-f ⎝ ⎛⎭⎪⎫76=-316+sin π6=516.2.已知定义在R 上的函数f (x )满足f (2)=2-3,且对任意的x 都有f (x +2)=1-f (x ),则f (2020)=________.答案 -2- 3 解析 由f (x +2)=1-f (x ),得f (x +4)=1-f (x +2)=f (x ),所以函数f (x )的周期为4,所以f (2020)=f (4).因为f (2+2)=1-f (2),所以f (4)=-1f (2)=-12-3=-2- 3.故f (2020)=-2- 3.3.已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当x ∈[-3,0]时,f (x )=6-x,则f (919)=________.答案 6解析 ∵f (x +4)=f (x -2),∴f ((x +2)+4)=f ((x +2)-2),即f (x +6)=f (x ), ∴f (x )是周期为6的周期函数, ∴f (919)=f (153×6+1)=f (1). 又f (x )是定义在R 上的偶函数, ∴f (1)=f (-1)=6,即f (919)=6.4.设定义在R 上的函数f (x )同时满足以下条件:①f (x )+f (-x )=0;②f (x )=f (x +2);③当0≤x <1时,f (x )=2x-1,则f ⎝ ⎛⎭⎪⎫12+f (1)+f⎝ ⎛⎭⎪⎫32+f (2)+f ⎝ ⎛⎭⎪⎫52=________. 答案2-1解析 依题意知:函数f (x )为奇函数且周期为2, 则f (1)+f (-1)=0,f (-1)=f (1),即f (1)=0.∴f ⎝ ⎛⎭⎪⎫12+f (1)+f ⎝ ⎛⎭⎪⎫32+f (2)+f ⎝ ⎛⎭⎪⎫52 =f ⎝ ⎛⎭⎪⎫12+0+f ⎝ ⎛⎭⎪⎫-12+f (0)+f ⎝ ⎛⎭⎪⎫12 =f ⎝ ⎛⎭⎪⎫12-f ⎝ ⎛⎭⎪⎫12+f (0)+f ⎝ ⎛⎭⎪⎫12 =f ⎝ ⎛⎭⎪⎫12+f (0) =122-1+20-1=2-1.思维升华利用函数的周期性,可将其他区间上的求值、求零点个数、求解析式等问题,转化到已知区间上,进而解决问题.题型三 函数性质的综合应用命题点1 求函数值或函数解析式例2(1)设f (x )是定义在R 上周期为4的奇函数,若在区间[-2,0)∪(0,2]上,f (x )=⎩⎪⎨⎪⎧ax +b ,-2≤x <0,ax -1,0<x ≤2,则f (2021)=________.答案 -12解析 设0<x ≤2,则-2≤-x <0,f (-x )=-ax +b .因为f (x )是定义在R 上周期为4的奇函数,所以f (-x )=-f (x )=-ax +1=-ax +b ,所以b =1.而f (-2)=f (-2+4)=f (2),所以-2a +b =2a -1,解得a =12,所以f (2021)=f (1)=12×1-1=-12.(2)已知f (x )为偶函数,当x ≤0时,f (x )=e-x -1-x ,则f (x )=________.答案 ⎩⎪⎨⎪⎧e -x -1-x ,x ≤0,e x -1+x ,x >0解析 ∵当x >0时,-x <0, ∴f (x )=f (-x )=ex -1+x ,∴f (x )=⎩⎪⎨⎪⎧e -x -1-x ,x ≤0,e x -1+x ,x >0.命题点2 求参数问题例3(1)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =__________. 答案 1解析 ∵f (-x )=f (x ),∴-x ln(a +x 2-x )=x ln(x +a +x 2), ∴ln[(a +x 2)2-x 2]=0. ∴ln a =0,∴a =1.(2)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫32,则a +3b 的值为________.答案 -10解析 因为f (x )是定义在R 上且周期为2的函数,所以f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫-12且f (-1)=f (1), 故f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫-12,从而12b +212+1=-12a +1, 即3a +2b =-2.①由f (-1)=f (1),得-a +1=b +22,即b =-2a .②由①②得a =2,b =-4,从而a +3b =-10.(3)已知函数f (x )是定义在R 上的奇函数,且当x >0时,f (x )=-x 2+ax -1-a ,若函数f (x )为R 上的减函数,则a 的取值范围是____________. 答案 [-1,0]解析 因为函数f (x )是R 上的奇函数,所以f (0)=0,若函数f (x )为R 上的减函数,则满足当x >0时,函数为减函数,且-1-a ≤0,此时⎩⎪⎨⎪⎧-a -2=a 2≤0,-1-a ≤0,即⎩⎪⎨⎪⎧a ≤0,a ≥-1,即-1≤a ≤0.命题点3 利用函数的性质解不等式例4(1)已知定义在R 上的偶函数f (x )在[0,+∞)上单调递增,若f (ln x )<f (2),则x 的取值范围是________. 答案 (e -2,e 2)解析 根据题意知,f (x )为偶函数且在[0,+∞)上单调递增,则f (ln x )<f (2)⇔|ln x |<2,即-2<ln x <2,解得e -2<x <e 2,即x 的取值范围是(e -2,e 2). (2)设函数f (x )=ln(1+|x |)-11+x2,则使得f (x )>f (2x -1)成立的x 的取值范围为______________.答案 ⎝ ⎛⎭⎪⎫13,1 解析 由已知得函数f (x )为偶函数,所以f (x )=f (|x |), 由f (x )>f (2x -1),可得f (|x |)>f (|2x -1|). 当x >0时,f (x )=ln(1+x )-11+x2,因为y =ln(1+x )与y =-11+x 2在(0,+∞)上都单调递增,所以函数f (x )在(0,+∞)上单调递增. 由f (|x |)>f (|2x -1|),可得|x |>|2x -1|, 两边平方可得x 2>(2x -1)2,整理得3x 2-4x +1<0, 解得13<x <1.所以符合题意的x 的取值范围为⎝ ⎛⎭⎪⎫13,1. 思维升华 解决周期性、奇偶性与单调性结合的问题,通常先利用周期性转化自变量所在的区间,再利用奇偶性和单调性求解.跟踪训练2(1)设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝ ⎛⎭⎪⎫-52=________. 答案 -12解析 由题意可知,f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12=-2×12×⎝ ⎛⎭⎪⎫1-12=-12.(2)已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则f (-25),f (11),f (80)的大小关系为________. 答案 f (-25)<f (80)<f (11)解析 因为f (x )满足f (x -4)=-f (x ),所以f (x -8)=f (x ),所以函数f (x )是以8为周期的周期函数,则f (-25)=f (-1),f (80)=f (0),f (11)=f (3).由f (x )是定义在R 上的奇函数且满足f (x -4)=-f (x ), 得f (11)=f (3)=-f (-1)=f (1).因为f (x )在区间[0,2]上是增函数,f (x )在R 上是奇函数, 所以f (x )在区间[-2,2]上是增函数, 所以f (-1)<f (0)<f (1). 所以f (-25)<f (80)<f (11).(3)已知函数g (x )是R 上的奇函数,且当x <0时,g (x )=-ln(1-x ),函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤0,g (x ),x >0,若f (6-x 2)>f (x ),则实数x 的取值范围是________.答案 (-3,2)解析 ∵g (x )是奇函数,∴当x >0时,-x <0,g (x )=-g (-x )=ln(1+x ), 易知f (x )在R 上是增函数, 由f (6-x 2)>f (x ),可得6-x 2>x , 即x 2+x -6<0,∴-3<x <2.函数的性质函数的奇偶性、周期性及单调性是函数的三大性质,在高考中常常将它们综合在一起命题,解题时,往往需要借助函数的奇偶性和周期性来确定另一区间上的单调性,即实现区间的转换,再利用单调性解决相关问题. 一、函数性质的判断例1(1)已知函数f (x )=ax 2+1x,其中a ∈R .讨论函数f (x )的奇偶性,并证明你的结论.解 方法一 f (x )的定义域为(-∞,0)∪(0,+∞). 若f (x )为奇函数,则f (-x )=-f (x )恒成立, 即ax 2-1x =-ax 2-1x,得2ax 2=0恒成立,所以a =0;若f (x )为偶函数,则f (-x )=f (x )恒成立, 即ax 2-1x =ax 2+1x ,得2x=0,这是不可能的.综上所述,当a =0时,f (x )为奇函数; 当a ≠0时,f (x )为非奇非偶函数.方法二 f (x )的定义域为(-∞,0)∪(0,+∞).当a =0时,f (x )=1x ,f (-x )=-1x=-f (x ),此时f (x )为奇函数;当a ≠0时,f (-1)=a -1,f (1)=a +1, 则f (-1)≠-f (1)且f (-1)≠f (1), 所以f (x )是非奇非偶函数. (2)下列函数: ①y =sin 3x +3sin x; ②y =1e x +1-12;③y =lg 1-x1+x;④y =⎩⎪⎨⎪⎧-x +1,x ≤0,-x -1,x >0.其中是奇函数且在(0,1)上是减函数的是________.(填序号) 答案 ②③解析 易知①中函数在(0,1)上为增函数;④中函数不是奇函数;满足条件的函数为②③. (3)已知函数y =f (x )是R 上的偶函数,对于任意x ∈R ,都有f (x +6)=f (x )+f (3)成立,当x 1,x 2∈[0,3],且x 1≠x 2时,都有f (x 1)-f (x 2)x 1-x 2>0.给出下列命题:①f (3)=0;②直线x =-6是函数y =f (x )的图象的一条对称轴; ③函数y =f (x )在[-9,-6]上为增函数; ④函数y =f (x )在[-9,9]上有四个零点. 其中所有正确命题的序号为________. 答案 ①②④解析 ∵f (-3+6)=f (-3)+f (3).又f (x )是R 上的偶函数,所以f (3)=0,故①正确; 由①知f (x +6)=f (x ),所以f (x )的周期为6. 又因为f (x )是R 上的偶函数,所以f (x +6)=f (-x ), 而f (x )的周期为6,所以f (x +6)=f (-6+x ),f (-x )=f (-x -6),所以f (-6-x )=f (-6+x ),所以直线x =-6是函数y =f (x )的图象的一条对称轴.故②正确;当x 1,x 2∈[0,3],且x 1≠x 2时,都有f (x 1)-f (x 2)x 1-x 2>0,所以函数y =f (x )在[0,3]上为增函数.因为f (x )是R 上的偶函数,所以函数y =f (x )在[-3,0]上为减函数,而f (x )的周期为6,所以函数y =f (x )在[-9,-6]上为减函数.故③错误;f (3)=0,f (x )的周期为6,所以f (-9)=f (-3)=f (3)=f (9)=0,所以函数y =f (x )在[-9,9]上有四个零点.故④正确.二、函数性质的综合应用例2(1)(2018·全国Ⅱ改编)已知f (x )是定义域为(-∞,+∞)的奇函数,满足f (1-x )=f (1+x ).若f (1)=2,则f (1)+f (2)+f (3)+…+f (50)=________. 答案 2解析 ∵f (x )是奇函数,∴f (-x )=-f (x ), ∴f (1-x )=-f (x -1).∵f (1-x )=f (1+x ), ∴-f (x -1)=f (x +1),∴f (x +2)=-f (x ), ∴f (x +4)=-f (x +2)=-[-f (x )]=f (x ), ∴函数f (x )是周期为4的周期函数. 由f (x )为奇函数且定义域为R 得f (0)=0, 又∵f (1-x )=f (1+x ),∴f (x )的图象关于直线x =1对称, ∴f (2)=f (0)=0,∴f (-2)=0. 又f (1)=2,∴f (-1)=-2,∴f (1)+f (2)+f (3)+f (4)=f (1)+f (2)+f (-1)+f (0)=2+0-2+0=0, ∴f (1)+f (2)+f (3)+f (4)+…+f (49)+f (50) =0×12+f (49)+f (50)=f (1)+f (2)=2+0=2.(2)(2018·南京、盐城模拟)若函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上是单调增函数.如果实数t 满足f (ln t )+f ⎝ ⎛⎭⎪⎫ln 1t ≤2f (1),那么t 的取值范围是________.答案 ⎣⎢⎡⎦⎥⎤1e ,e解析 f (ln t )+f ⎝ ⎛⎭⎪⎫ln 1t =f (ln t )+f (-ln t )=2f (ln t )=2f (|ln t |),于是f (ln t )+f ⎝ ⎛⎭⎪⎫ln 1t ≤2f (1),所以f (|ln t |)≤f (1),所以|ln t |≤1,所以-1≤ln t ≤1,所以1e≤t ≤e.(3)(2018·扬州期末)已知函数f (x )=sin x -x +1-4x2x ,则关于x 的不等式f (1-x 2)+f (5x-7)<0的解集为________.答案 (2,3)解析 因为f (-x )=sin(-x )+x +1-4-x2-x=-sin x +x +4x-12x =-f (x ),所以f (x )为奇函数.又因为f (x )=sin x -x +12x -2x,所以易判断f (x )在R 上单调递减, 所以f (1-x 2)+f (5x -7)<0, 即f (1-x 2)<f (7-5x ),所以1-x 2>7-5x ,即x 2-5x +6<0,解得2<x <3.1.已知y =f (x )是定义在R 上的奇函数,则下列函数中为奇函数的是________.(填序号) ①y =f (|x |);②y =f (-x );③y =xf (x );④y =f (x )+x . 答案 ②④解析 由奇函数的定义f (-x )=-f (x )验证, ①f (|-x |)=f (|x |),为偶函数;②f (-(-x ))=f (x )=-f (-x ),为奇函数; ③-xf (-x )=-x ·[-f (x )]=xf (x ),为偶函数; ④f (-x )+(-x )=-[f (x )+x ],为奇函数. 可知②④正确.2.已知f (x )为定义在R 上的奇函数,当x ≥0时,f (x )=2x+m ,则f (-2)=________. 答案 -3解析 由f (x )为R 上的奇函数,知f (0)=0,即f (0)=20+m =0,解得m =-1, 则f (-2)=-f (2)=-(22-1)=-3.3.函数f (x )=⎩⎪⎨⎪⎧x 2-2x +3,x >0,0,x =0,-x 2-2x -3,x <0为________函数.(填“奇”或“偶”)答案 奇解析 f (x )的定义域为R (关于原点对称).(1)当x =0时,-x =0,f (-x )=f (0)=0,f (x )=f (0)=0,∴f (-x )=-f (x ); (2)当x >0时,-x <0,∴f (-x )=-(-x )2-2(-x )-3 =-(x 2-2x +3)=-f (x ); (3)当x <0时,-x >0, ∴f (-x )=(-x )2-2(-x )+3 =-(-x 2-2x -3)=-f (x ).由(1)(2)(3)可知,当x ∈R 时,都有f (-x )=-f (x ), ∴f (x )为奇函数.4.已知函数f (x )是定义在R 上的奇函数,其最小正周期为4,且当x ∈⎝ ⎛⎭⎪⎫-32,0时,f (x )=log 2(-3x +1),则f (2021)=________.答案 -2解析 ∵函数f (x )是定义在R 上的奇函数,其最小正周期为4,∴f (2021)=f (4×505+1)=f (1)=-f (-1).∵-1∈⎝ ⎛⎭⎪⎫-32,0,且当x ∈⎝ ⎛⎭⎪⎫-32,0时, f (x )=log 2(-3x +1),∴f (-1)=log 2[-3×(-1)+1]=2, ∴f (2021)=-f (-1)=-2.5.已知定义域为R 的偶函数f (x )在(-∞,0]上是减函数,且f (1)=2,则不等式f (log 2x )>2的解集为________.答案 ⎝ ⎛⎭⎪⎫0,12∪(2,+∞)解析 f (x )是R 上的偶函数,且在(-∞,0]上是减函数,所以f (x )在[0,+∞)上是增函数,所以f (log 2x )>2=f (1)⇔f (|log 2x |)>f (1)⇔|log 2x |>1⇔log 2x >1或log 2x <-1⇔x >2或0<x <12.6.已知偶函数f (x )对于任意x ∈R 都有f (x +1)=-f (x ),且f (x )在区间[0,1]上是单调递增的,则f (-6.5),f (-1),f (0)的大小关系是________.(用“<”连接) 答案 f (0)<f (-6.5)<f (-1)解析 由f (x +1)=-f (x ),得f (x +2)=-f (x +1)=f (x ),∴函数f (x )的周期是2. ∵函数f (x )为偶函数,∴f (-6.5)=f (-0.5)=f (0.5),f (-1)=f (1). ∵f (x )在区间[0,1]上是单调递增的,∴f (0)<f (0.5)<f (1),即f (0)<f (-6.5)<f (-1). 7.若f (x )=ln(e 3x+1)+ax 是偶函数,则a =________. 答案 -32解析 函数f (x )=ln(e 3x +1)+ax 是偶函数,故f (-x )=f (x ),即ln(e-3x+1)-ax =ln(e3x+1)+ax ,化简得ln 1+e 3xe 3x +e 6x =2ax =lne 2ax ,即1+e 3xe 3x +e 6x =e 2ax ,整理得e 3x +1=e2ax +3x (e 3x+1),所以2ax +3x =0恒成立, 所以a =-32.8.已知函数f (x )是奇函数,当x >0时,f (x )=ln x ,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫1e 2的值为________. 答案 -ln2解析 由已知可得f ⎝ ⎛⎭⎪⎫1e 2=ln 1e 2=-2, 所以f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫1e 2=f (-2).又因为f (x )是奇函数,所以f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫1e 2=f (-2)=-f (2)=-ln2. 9.奇函数f (x )在区间[3,6]上是增函数,且在区间[3,6]上的最大值为8,最小值为-1,则f (6)+f (-3)的值为________.答案 9解析 由于f (x )在[3,6]上为增函数,所以f (x )的最大值为f (6)=8,f (x )的最小值为f (3)=-1,因为f (x )为奇函数,所以f (-3)=-f (3)=1,所以f (6)+f (-3)=8+1=9. 10.设f (x )是定义在R 上且周期为2的函数,在区间[-1,1)上,f (x )=⎩⎪⎨⎪⎧x +a ,-1≤x <0,⎪⎪⎪⎪⎪⎪25-x ,0≤x <1,其中a ∈R .若f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫92,则f (5a )的值是________. 答案 -25解析 由已知f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫-52+2=f ⎝ ⎛⎭⎪⎫-12=-12+a , f ⎝ ⎛⎭⎪⎫92=f ⎝⎛⎭⎪⎫92-4=f ⎝ ⎛⎭⎪⎫12=⎪⎪⎪⎪⎪⎪25-12=110.又∵f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫92,则-12+a =110,a =35,∴f (5a )=f (3)=f (3-4)=f (-1)=-1+35=-25.11.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围. 解 (1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x . 又f (x )为奇函数,所以f (-x )=-f (x ), 于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2. 经检验,m =2符合题意.(2)要使f (x )在[-1,a -2]上单调递增,结合f (x )的图象(如图所示)知⎩⎪⎨⎪⎧a -2>-1,a -2≤1,所以1<a ≤3,故实数a 的取值范围是(1,3].12.设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ).当x ∈[0,2]时,f (x )=2x -x 2.(1)求证:f (x )是周期函数;(2)当x ∈[2,4]时,求f (x )的解析式. (1)证明 ∵f (x +2)=-f (x ), ∴f (x +4)=-f (x +2)=f (x ). ∴f (x )是周期为4的周期函数.(2)解 ∵x ∈[2,4],∴-x ∈[-4,-2], ∴4-x ∈[0,2],∴f (4-x )=2(4-x )-(4-x )2=-x 2+6x -8. ∵f (4-x )=f (-x )=-f (x ), ∴-f (x )=-x 2+6x -8, 即f (x )=x 2-6x +8,x ∈[2,4].13.若定义在R 上的偶函数f (x )满足f (x )>0,f (x +2)=1f (x )对任意x ∈R 恒成立,则f (2023)=________.答案 1解析 因为f (x )>0,f (x +2)=1f (x ), 所以f (x +4)=f [(x +2)+2] =1f (x +2)=11f (x )=f (x ),即函数f (x )的周期是4,所以f (2023)=f (506×4-1)=f (-1). 因为函数f (x )为偶函数, 所以f (2023)=f (-1)=f (1). 当x =-1时,f (-1+2)=1f (-1),得f (1)=1f (1). 由f (x )>0,得f (1)=1,所以f (2023)=f (1)=1. 14.(2018·如东、丰县联考)已知函数f (x )=-3x+a3x +1+b .(1)当a =b =1时,求满足f (x )=3x的x 的取值集合;(2)若函数f (x )是定义在R 上的奇函数,存在t ∈R ,使得不等式f (t 2-2t )<f (2t 2-k )有解,求k 的取值范围.解 (1)由题意得-3x+13x +1+1=3x,化简得3·(3x )2+2·3x-1=0,解得3x =-1(舍去)或3x=13,从而x =-1.即满足f (x )=3x的x 的取值集合是{-1}. (2)因为f (x )是奇函数,所以f (-x )+f (x )=0, 所以-3-x+a 3-x +1+b +-3x+a 3x +1+b=0,化简并变形得(3a -b )(3x+3-x)+2ab -6=0. 要使上式对任意的x 恒成立, 则3a -b =0且2ab -6=0,解得⎩⎪⎨⎪⎧a =1,b =3或⎩⎪⎨⎪⎧a =-1,b =-3,因为f (x )的定义域是R , 所以⎩⎪⎨⎪⎧a =-1,b =-3不合题意,所以a =1,b =3.所以f (x )=-3x+13x +1+3=13⎝⎛⎭⎪⎫-1+23x +1,对任意x 1,x 2∈R ,x 1<x 2,有f (x 1)-f (x 2)=1212233131x x 骣÷ç-÷ç÷ç桫++ 2112233.3(31)(31)x x x x =?-++ 因为x 1<x 2,所以21330x x>-, 所以f (x 1)>f (x 2), 因此f (x )在R 上单调递减.因为f (t 2-2t )<f (2t 2-k ),所以t 2-2t >2t 2-k , 即t 2+2t -k <0在R 上有解, 所以Δ=4+4k >0,解得k >-1. 所以k 的取值范围为(-1,+∞).15.已知函数f (x )=sin x +x ,对任意的m ∈[-2,2],f (mx -2)+f (x )<0恒成立,则x 的取值范围为__________. 答案 ⎝ ⎛⎭⎪⎫-2,23解析 易知f (x )在R 上为单调递增函数,且f (x )为奇函数,故f (mx -2)+f (x )<0等价于f (mx -2)<-f (x )=f (-x ),则mx -2<-x ,即mx +x -2<0对所有m ∈[-2,2]恒成立,令h (m )=mx +x -2,m ∈[-2,2],此时,只需⎩⎪⎨⎪⎧h (-2)<0,h (2)<0即可,解得-2<x <23.16.已知f (x )是定义在R 上的奇函数,f (x +1)是偶函数,当x ∈(2,4)时,f (x )=|x -3|,求f (1)+f (2)+f (3)+f (4)+…+f (2020)的值.解 因为f (x )为奇函数,f (x +1)为偶函数,所以f (x +1)=f (-x +1)=-f (x -1),所以f (x +2)=-f (x ),所以f (x +4)=-f (x +2)=f (x ),所以函数f (x )的周期为4,所以f (4)=f (0)=0,f (3)=f (-1)=-f (1).在f (x +1)=f (-x +1)中,令x =1,可得f (2)=f (0)=0,所以f (1)+f (2)+f (3)+f (4)=0.所以f (1)+f (2)+f (3)+f (4)+…+f (2020)=0.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.3 函数的奇偶性与周期性考纲要求1.了解函数奇偶性的含义.2.会运用函数图象分析函数的奇偶性.3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性.1.函数的奇偶性 奇偶性 定义 图象特点偶函数 如果对于函数f (x )的定义域D 内任意一个x ,都有______,且__________,那么函数f (x )是偶函数 关于____对称奇函数 如果对于函数f (x )的定义域D 内任意一个x ,都有________,且__________,那么函数f (x )是奇函数关于______对称2.周期性(1)周期函数:对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=______,那么就称函数y =f (x )为周期函数,称T 为这个函数的周期.(2)最小正周期:如果在周期函数f (x )的所有周期中____________的正数,那么这个____正数就叫做f (x )的最小正周期.3.对称性若函数f (x )满足f (a -x )=f (a +x )或f (x )=f (2a -x ),则函数f (x )关于直线__________对称.1.函数f (x )=1x-x 的图象关于( ).A .y 轴对称B .直线y =-x 对称C .坐标原点对称D .直线y =x 对称2.若函数f (x )=x2x +1 x -a为奇函数,则a =( ).A.12B.23C.34D .1 3.函数f (x )=(m -1)x 2+2mx +3为偶函数,则f (x )在区间(-5,-3)上( ). A .先减后增 B .先增后减 C .单调递减 D .单调递增4.(2013安徽皖南八校联考)已知函数f (x )是(-∞,+∞)上的偶函数,若对于x ≥0,都有f (x +2)=f (x ),且当x ∈[0,2)时,f (x )=2x,则f (-2 012)+f (2 013)的值为( ).A .1B .2C .3D .45.若偶函数f (x )是以4为周期的函数,f (x )在区间[-6,-4]上是减函数,则f (x )在[0,2]上的单调性是__________.一、函数奇偶性的判定【例1】 判断下列函数的奇偶性.(1)f (x )=3-x 2+x 2-3;(2)f (x )=(x +1)1-x1+x ;(3)f (x )=4-x2|x +3|-3.方法提炼判定函数奇偶性的常用方法及思路: 1.定义法2.图象法3.性质法:(1)“奇+奇”是奇,“奇-奇”是奇,“奇·奇”是偶,“奇÷奇”是偶; (2)“偶+偶”是偶,“偶-偶”是偶,“偶·偶”是偶,“偶÷偶”是偶; (3)“奇·偶”是奇,“奇÷偶”是奇.提醒:(1)分段函数奇偶性的判断,要注意定义域内x 取值的任意性,应分段讨论,讨论时可依据x 的范围取相应地化简解析式,判断f (x )与f (-x )的关系,得出结论,也可以利用图象作判断.(2)“性质法”中的结论是在两个函数的公共定义域内才成立的.(3)性质法在选择题和填空题中可直接运用,但在解答题中应给出性质推导的过程. 请做演练巩固提升1 二、函数奇偶性的应用【例2-1】设偶函数f (x )满足f (x )=x 3-8(x ≥0),则{x |f (x -2)>0}=( ). A .{x |x <-2,或x >0} B .{x |x <0,或x >4} C .{x |x <0,或x >6} D .{x |x <-2,或x >2}【例2-2】设a ,b ∈R ,且a ≠2,若定义在区间(-b ,b )内的函数f (x )=lg 1+ax1+2x是奇函数,则a +b 的取值范围为__________.【例2-3】设函数f (x )=x 3+bx 2+cx (x ∈R ),已知g (x )=f (x )-f ′(x )是奇函数. (1)求b ,c 的值;(2)求g (x )的单调区间与极值. 方法提炼函数奇偶性的应用:1.已知函数的奇偶性求函数的解析式,往往要抓住奇偶性讨论函数在各个分区间上的解析式,或充分利用奇偶性产生关于f (x )的方程,从而可得f (x )的解析式.2.已知带有字母参数的函数的表达式及奇偶性求参数,常常采用待定系数法:利用f (x )±f (-x )=0产生关于字母的恒等式,由系数的对等性可得知字母的值.3.奇偶性与单调性综合时要注意奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反.4.若f (x )为奇函数,且在x =0处有定义,则f (0)=0.这一结论在解决问题中十分便捷,但若f (x )是偶函数且在x =0处有定义,就不一定有f (0)=0,如f (x )=x 2+1是偶函数,而f (0)=1.请做演练巩固提升3,4三、函数的周期性及其应用【例3-1】已知定义在R 上的函数f (x )满足f (x )=-f ⎝ ⎛⎭⎪⎫x +32,且f (1)=3,则f (2 014)=__________.【例3-2】已知函数f (x )满足f (x +1)=1+f x1-f x,若f (1)=2 014,则f (103)=__________.方法提炼抽象函数的周期需要根据给出的函数式子求出,常见的有以下几种情形:(1)若函数满足f (x +T )=f (x ),由函数周期性的定义可知T 是函数的一个周期; (2)若满足f (x +a )=-f (x ),则f (x +2a )=f [(x +a )+a ]=-f (x +a )=f (x ),所以2a 是函数的一个周期;(3)若满足f (x +a )=1f x ,则f (x +2a )=f [(x +a )+a ]=1f x +a=f (x ),所以2a 是函数的一个周期;(4)若函数满足f (x +a )=-1f x,同理可得2a 是函数的一个周期;(5)如果T 是函数y =f (x )的周期,则①kT (k ∈Z 且k ≠0)也是y =f (x )的周期,即f (x +kT )=f (x );②若已知区间[m ,n ](m <n )的图象,则可画出区间[m +kT ,n +kT ](k ∈Z 且k ≠0)上的图象.请做演练巩固提升5没有等价变形而致误【典例】 函数f (x )的定义域D ={x |x ≠0},且满足对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2).(1)求f (1)的值;(2)判断f (x )的奇偶性,并证明;(3)如果f (4)=1,f (3x +1)+f (2x -6)≤3,且f (x )在(0,+∞)上是增函数,求x 的取值范围.错解:(1)令x 1=x 2=1,有f (1×1)=f (1)+f (1),解得f (1)=0. (2)f (x )为偶函数,证明如下:令x 1=x 2=-1,有f [(-1)×(-1)]=f (-1)+f (-1),解得f (-1)=0. 令x 1=-1,x 2=x ,有f (-x )=f (-1)+f (x ), ∴f (-x )=f (x ).∴f (x )为偶函数. (3)f (4×4)=f (4)+f (4)=2, f (16×4)=f (16)+f (4)=3, 由f (3x +1)+f (2x -6)≤3, 得f [(3x +1)(2x -6)]≤f (64). 又∵f (x )在(0,+∞)上是增函数, ∴(3x +1)(2x -6)≤64.∴-73≤x ≤5.分析:(1)从f (1)联想自变量的值为1,进而想到赋值x 1=x 2=1.(2)判断f (x )的奇偶性,就是研究f (x ),f (-x )的关系,从而想到赋值x 1=-1,x 2=x .即f (-x )=f (-1)+f (x ).(3)就是要出现f (M )<f (N )的形式,再结合单调性转化为M <N 或M >N 的形式求解.正解:(1)令x 1=x 2=1,有f (1×1)=f (1)+f (1),解得f (1)=0. (2)f (x )为偶函数,证明如下: 令x 1=x 2=-1,有f [(-1)×(-1)]=f (-1)+f (-1), 解得f (-1)=0.令x 1=-1,x 2=x ,有f (-x )=f (-1)+f (x ), ∴f (-x )=f (x ).∴f (x )为偶函数. (3)f (4×4)=f (4)+f (4)=2,f (16×4)=f (16)+f (4)=3. 由f (3x +1)+f (2x -6)≤3,变形为f [(3x +1)(2x -6)]≤f (64).(*)∵f (x )为偶函数,∴f (-x )=f (x )=f (|x |).∴不等式(*)等价于f [|(3x +1)(2x -6)|]≤f (64). 又∵f (x )在(0,+∞)上是增函数,∴|(3x +1)(2x -6)|≤64,且(3x +1)(2x -6)≠0.解得-73≤x <-13或-13<x <3或3<x ≤5.∴x 的取值范围是 ⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-73≤x <-13,或-13<x <3,或3<x ≤5.答题指导:等价转化要做到规范,应注意以下几点:(1)要有明确的语言表示.如“M ”等价于“N ”、“M ”变形为“N ”. (2)要写明转化的条件.如本例中:∵f (x )为偶函数,∴不等式(*)等价于f [|(3x +1)(2x -6)|]≤f (64).(3)转化的结果要等价.如本例:由于f [|(3x +1)(2x -6)|]≤f (64)⇒|(3x +1)(2x -6)|≤64,且(3x +1)(2x -6)≠0.若漏掉(3x +1)(2x -6)≠0,则这个转化就不等价了.1.下列函数中既不是奇函数,又不是偶函数的是( ).A .y =2|x |B .y =lg(x +x 2+1)C .y =2x +2-xD .y =lg 1x +12.已知函数f (x )对一切x ,y ∈R ,都有f (x +y )=f (x )+f (y ),则f (x )为( ). A .偶函数 B .奇函数C .既是奇函数又是偶函数D .非奇非偶函数3.函数f (x )的定义域为R ,且满足:f (x )是偶函数,f (x -1)是奇函数,若f (0.5)=9,则f (8.5)等于( ).A .-9B .9C .-3D .04.设偶函数f (x )满足f (x )=2x -4(x ≥0),则不等式f (x -2)>0的解集为( ). A .{x |x <-2,或x >4} B .{x |x <0,或x >4} C .{x |x <0,或x >6} D .{x |x <-2,或x >2}5.已知定义在R 上的奇函数f (x )的图象关于直线x =1对称,f (-1)=1,则f (2 008)+f (2 009)+f (2 010)+f (2 011)+f (2 012)+f (2 013)=__________.参考答案基础梳理自测知识梳理1.-x ∈D f (-x )=f (x ) y 轴 -x ∈D f (-x )=-f (x ) 原点 2.(1)f (x ) (2)存在一个最小 最小 3.x =a 基础自测1.C 解析:判断f (x )为奇函数,图象关于原点对称,故选C. 2.A 解析:∵f (x )为奇函数, ∴f (x )=-f (-x ),即:x (2x +1)(x -a )=x (-2x +1)(-x -a )恒成立,整理得:a =12.故选A.3.D 解析:当m =1时,f (x )=2x +3不是偶函数,当m ≠1时,f (x )为二次函数,要使其为偶函数,则其对称轴应为y 轴,故需m =0,此时f (x )=-x 2+3,其图象的开口向下,所以函数f (x )在(-5,-3)上单调递增.4.C 解析:f (-2 012)+f (2 013)=f (0)+f (1)=20+21=3. 5.单调递增 解析:∵T =4,且在[-6,-4]上单调递减,∴函数在[-2,0]上也单调递减.又f (x )为偶函数,故f (x )的图象关于y 轴对称, 由对称性知f (x )在[0,2]上单调递增. 考点探究突破【例1】 解:(1)由⎩⎪⎨⎪⎧3-x 2≥0,x 2-3≥0,得x =-3或x = 3.∴函数f (x )的定义域为{-3,3}.∵对任意的x ∈{-3,3},-x ∈{-3,3},且f (-x )=-f (x )=f (x )=0, ∴f (x )既是奇函数,又是偶函数.(2)要使f (x )有意义,则1-x1+x≥0,解得-1<x ≤1,显然f (x )的定义域不关于原点对称, ∴f (x )既不是奇函数,也不是偶函数.(3)∵⎩⎪⎨⎪⎧4-x 2≥0,|x +3|≠3,∴-2≤x ≤2且x ≠0.∴函数f (x )的定义域关于原点对称.又f (x )=4-x 2x +3-3=4-x2x ,f (-x )=4-(-x )2-x =-4-x2x,∴f (-x )=-f (x ),即函数f (x )是奇函数. 【例2-1】 B 解析:当x <0时,-x >0,∴f (-x )=(-x )3-8=-x 3-8. 又f (x )是偶函数,∴f (x )=f (-x )=-x 3-8.∴f (x )=⎩⎪⎨⎪⎧x 3-8,x ≥0,-x 3-8,x <0.∴f (x -2)=⎩⎪⎨⎪⎧(x -2)3-8,x ≥2,-(x -2)3-8,x <2.由f (x -2)>0得:⎩⎪⎨⎪⎧x ≥2,(x -2)3-8>0或⎩⎪⎨⎪⎧x <2,-(x -2)3-8>0.解得x >4或x <0,故选B. 【例2-2】 ⎝⎛⎦⎥⎤-2,-32 解析:∵f (x )在(-b ,b )上是奇函数, ∴f (-x )=lg 1-ax 1-2x =-f (x )=-lg 1+ax 1+2x =lg 1+2x1+ax,∴1+2x 1+ax =1-ax 1-2x对x ∈(-b ,b )成立,可得a =-2(a =2舍去). ∴f (x )=lg 1-2x1+2x.由1-2x 1+2x >0,得-12<x <12. 又f (x )定义区间为(-b ,b ),∴0<b ≤12,-2<a +b ≤-32.【例2-3】 解:(1)∵f (x )=x 3+bx 2+cx ,∴f ′(x )=3x 2+2bx +c , ∴g (x )=f (x )-f ′(x ) =x 3+(b -3)x 2+(c -2b )x -c . ∵g (x )是一个奇函数, ∴g (0)=0,得c =0,由奇函数定义g (-x )=-g (x )得b =3.(2)由(1)知g (x )=x 3-6x ,从而g ′(x )=3x 2-6,由此可知,(-∞,-2)和(2,+∞)是函数g (x )的单调递增区间;(-2,2)是函数g (x )的单调递减区间.g (x )在x =-2时,取得极大值,极大值为42; g (x )在x =2时,取得极小值,极小值为-4 2.【例3-1】 3 解析:∵f (x )=-f ⎝ ⎛⎭⎪⎫x +32, ∴f (x +3)=f ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x +32+32 =-f ⎝ ⎛⎭⎪⎫x +32=f (x ). ∴f (x )是以3为周期的周期函数.则f (2 014)=f (671×3+1)=f (1)=3.【例3-2】 -12 014 解析:∵f (x +1)=1+f (x )1-f (x ),∴f (x +2)=1+f (x +1)1-f (x +1)=1+1+f (x )1-f (x )1-1+f (x )1-f (x )=-1f (x ).∴f (x +4)=f (x ),即函数f (x )的周期为4. ∵f (1)=2 014,∴f (103)=f (25×4+3)=f (3)=-1f (1)=-12 014. 演练巩固提升1.D 解析:对于D ,y =lg1x +1的定义域为{x |x >-1},不关于原点对称,是非奇非偶函数.2.B 解析:显然f (x )的定义域是R ,它关于原点对称. 令y =-x ,得f (0)=f (x )+f (-x ), 又可知f (0)=0,∴f (x )+f (-x )=0, 即f (-x )=-f (x ). ∴f (x )是奇函数,故选B.3.B 解析:由题可知,f (x )是偶函数,所以f (x )=f (-x ). 又f (x -1)是奇函数,所以f (-x -1)=-f (x -1).令t =x +1,可得f (t )=-f (t -2), 所以f (t -2)=-f (t -4). 所以可得f (x )=f (x -4),所以f (8.5)=f (4.5)=f (0.5)=9,故选B.4.B 解析:当x ≥0时,令f (x )=2x -4>0,所以x >2.又因为函数f (x )为偶函数,所以函数f (x )>0的解集为{x |x <-2,或x >2}.将函数y =f (x )的图象向右平移2个单位即得函数y =f (x -2)的图象,故f (x -2)>0的解集为{x |x <0,或x >4}.5.-1 解析:由已知得f (0)=0,f (1)=-1. 又f (x )关于x =1对称, ∴f (x )=f (2-x )且T =4,∴f (2)=f (0)=0,f (3)=f (3-4)=f (-1)=1, f (2 008)=f (0)=0,f (2 009)=f (1)=-1, f (2 010)=f (2)=0,f (2 011)=f (3)=1, f (2 012)=f (0)=0, f (2 013)=f (1)=-1.∴f (2 008)+f (2 009)+f (2 010)+f (2 011)+f (2 012)+f (2 013)=-1.。

相关文档
最新文档