七年级数学第一学期期末考试卷_5

合集下载

最新人教版七年级上册期末考试数学试卷含答案(共5套)

最新人教版七年级上册期末考试数学试卷含答案(共5套)

七年级数学上册期末试题一 、选择题(本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.冬季某天我国三个城市的最高气温分别是-10℃,1℃,-7℃,它们任意两城市中最大的温差是( )A.3℃B. 8℃C. 11℃D.17℃2.2015年我国大学生毕业人数将达到7 490 000人,这个数据用科学记数法表示为( )A.7.49×107B.7.49×106C.74.9×105D.0.749×107 3.-2的倒数是( )A.21 B.2 C.-21D.-2 4.已知2是关于x 的方程3x+a=0的解.那么a 的值是( )A .-6B .-3C .-4D .-5 5.下面的图形,是由A 、B 、C 、D 中的哪个图旋转形成的( )A .B .C .D .6.下列等式变形错误的是( )A.若x ﹣1=3,则x=4B.若x ﹣1=x ,则x ﹣1=2xC.若x ﹣3=y ﹣3,则x ﹣y=0D.若3x+4=2x ,则3x ﹣2x=﹣47.某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,在这次买卖中,这家商店( )A.不赔不赚B.赚了10元C.赔了10元D.赚了50元 8.如图,下列说法中错误的是( )A.OA 的方向是东北方向B.OB 的方向是北偏西55°C.OC的方向是南偏西30°D.OD的方向是南偏东30°9.如图,在正方形ABCD中,E为DC边上的一点,沿线段BE对折后,若∠ABF比∠EBF大15°,则∠EBF的度数是()A.15°B.20°C.25°D.30°10.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%,乙超市连续两次降价15%,丙超市一次降价30%.那么顾客到哪家购买更合算( )A.丙 B.乙 C.甲 D.一样11.有理数a,b在数轴上的位置如图所示,则下列关系式:①;②;③;④;⑤,其中正确的个数有()A.1个B.2个C.3个D.4个12.按照如图所示的计算机程序计算,若开始输入的x值为2,第一次得到的结果为1,第二次得到的结果为4,…第2016次得到的结果为( )A.1B.2C.3D.4二、填空题(本大题共6小题,每小题3分,共18分)13.–3的绝对值是,倒数是 ,相反数是 .14.木匠师傅锯木料时,一般先在木板上画出两个点,然后过这两点画出一条墨线,这是根据数学原理15.近似数2.13×103精确到位.16.已知关于x的方程2x-3a=-1的解为x=-1,则a的值等于______.17.多项式 3a2b-a3-1-ab2按字母 a 的升幂排列是18.若|-a |=|-531|,则a=三 、计算题(本大题共2小题,共8分) 19.(1)(2)3x 2-3(x 2-2x +1)+4四 、解答题(本大题共8小题,共48分)20.解方程:(1)4-4(x-3)=2(9-x) (2)(3)先化简,再求值:3x 2y-[2xy 2-2(xy-23x 2y)+xy]+3xy 2,其中x=3,y=-31.21.在抗洪抢险中,解放军战士的冲锋舟加满油沿东西方向的河流抢救灾民,早晨从A 地出发,晚上到达B 地,约定向东为正方向,当天的航行路程记录如下(单位:千米):14,-9,+8,-7,13,-6,+12,-5. ⑴ 请你帮忙确定B 地相对于A 地的方位?⑵ 救灾过程中,冲锋舟离出发点A 最远处有多远?⑶ 若冲锋舟每千米耗油0. 5升,油箱容量为28升,求冲锋舟当天救灾过程中至少还需 补充多少升油?22.已知|a﹣1|=9,|b+2|=6,且a+b<0,求a﹣b的值.23.某市出租车收费标准是:起步价10元,可乘3千米,3千米到5千米,每千米1.3元,超过5千米,每千米2.4元(1)若小李乘坐了x(x>5)千米的路程,则小李所支付的费用是多少(用代数式表示)?(2)若小马乘坐的路程为15千米,则小马应付的费用是多少?(3)若小张租一次车付了24.6元,求小张租车所走的路程.24.(1)如图,已知O是直线AC上一点,OB是一条射线,OD平分∠AOB,OE 在∠BOC内,∠COE=2∠BOE,∠DOE=70°,求∠COE的度数.(2)如图 ,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.(1)请你数一数, 图中有_______个小于平角的角;(2)求出∠BOD的度数;(3)请通过计算说明OE是否平分∠BOC.25.如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、b满足|a+2|+(c ﹣7)2=0.(1)a= ,b= ,c= ;(2)若将数轴折叠,使得A点与C点重合,则点B与数表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB= ,AC= ,BC= .(用含t的代数式表示)(4)请问:3BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.七年级数学上册期末题答案1.D2.B3.C4.A5.A6.B7.B8.A9.C 10.D 11.C 12.B13.-,3;14.两点确定一条直线;15.精确到了十位. 16.2 17.-1-ab2+3a2b-a3 18.19.(1)-9.25;(2)2x2+6x+120.(1)-1;(2)x=-1.5;(3)原式=xy2+xy=-;21.(1)∵14-9+8-7+13-6+12-5=20,答:B地在A地的东边20千米;(2)∵路程记录中各点离出发点的距离分别为:14千米;14-9=5(千米);14-9+8=13(千米);14-9+8-7=6(千米);14-9+8-7+13=19(千米);14-9+8-7+13-6=13(千米);14-9+8-7+13-6+12=25(千米);14-9+8-7+13-6+12-5=20(千米),25>20>19>14>13>>6>5,∴最远处离出发点25千米;(3)这一天走的总路程为:14+|-9|+8+|-7|+13+|-6|+12|+|-5|=74千米,应耗油74×0.5=37(升),故还需补充的油量为:37-28=9(升),22.解:∵|a|=9,|b|=6,∴a=±9,b=±6,∵a+b<0,∴a=-9,b=±6,当a=-9,b=6时,a-b=-9-6=-15,当a=-9,b=-6时,a-b=-9-(-6)=-9+6=-3,综上所述,a-b的值为-15或-3.23.【解答】解:(1)小李所支付的费用是10+2.6+2.4(x﹣5)元;(2)10+2.6+2.4×(15﹣5)=10+2.6+24=36.6(元)答:小马应付的费用是36.6元;(3)依题意有10+2.6+2.4(x﹣5)=24.6,解得x=10.答:小张租车所走的路程是10千米.24.(1)(2)9 155度25.解答:解:(1)∵|a+2|+(c-7)2=0,∴a+2=0,c-7=0,解得a=-2,c=7,∵b是最小的正整数,∴b=1;故答案为:-2,1,7.(2)(7+2)÷2=4.5,对称点为7-4.5=2.5,2.5+(2.5-1)=4;故答案为:4.(3)AB=t+2t+3=3t+3,AC=t+4t+9=5t+9,BC=2t+6;故答案为:3t+3,5t+9,2t+6.(4)不变. 3BC-2AB=3(2t+6)-2(3t+3)=12.2017 - 2018学年第一学期初一年级期末质量抽测 数学试卷(120分钟 满分100分)2018.1一、选择题(本题共8道小题,每小题2分,共16分)下面各题均有四个选项,其中只有一个是符合题意的. 1. -4的倒数是A. 41- B .41C .4D .-42. 中新社北京11月10日电,中组部负责人近日就做好中共十九大代表选举工作有关问题答记者问时介绍称,十九大代表名额共2300名,将2300用科学记数法表示应为 A .23×102 B .23×103C .2.3×103D .0.23×1043. 右图是某个几何体的三视图,该几何体是 A .圆柱 B .圆锥 C .球 D .棱柱4. 质检员抽查4袋方便面,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的产品是A .-3B .-1C .2D .4 5. 有理数a ,b 在数轴上的点的位置如图所示,则正确的结论是A.4a <-B. 0a b +>C. a b >D. 0ab >6. 如图,已知直线AB ,CD 相交于点O ,OE 平分∠COB ,如果∠EOB =55°,那么∠BOD 的度数是A .35°B .55°C .70°D .110° 7. 用“☆”定义一种新运算:对于任意有理数a 和b ,规定a ☆b = ab2 + a .如:1☆3=1×32+1=10. 则(-2)☆3的值为 A .10 B .-15 C . -16 D .-20123–1–2–3–4bO EDCBA8. 下列图案是用长度相同的小木棒按一定规律拼搭而成,图案①需8根小木棒,图案②需15根小木棒,……,按此规律,图案⑦需小木棒的根数是① ② ③……A .49B .50C .55D .56二、填空题(本题共8道小题,每小题2分,共16分) 9. 234x y -的系数是 ,次数是 .10. 如右图,想在河堤两岸搭建一座桥,图中四种搭建方式P A ,PB ,PC ,PD 中,最短的是 . 11. 计算:23.5°+ 12°30′= °. 12. 写出32m n - 的一个同类项 .13. 如果21(2018)0m n ++-=,那么n m 的值为 .14. 已知(1)20mm x --=是关于x 的一元一次方程,则m 的值为 .15. 已知a 与b 互为相反数,c 与d 互为倒数,x 的绝对值等于2,则a+b cdx -的值为 .16. 右图是商场优惠活动宣传单的一部分:两个品牌分别标有“满100减40元”和“打6折”. 请你比较以上两种 优惠方案的异同(可举例说明) .三、解答题(本题共12道小题,第17-22题,每小题5分,第23-26题,每小题6分,第27、28题,每小题7分,共68分) 17. 计算:-3- 2 +(-4)-(-1).A B C DPEDCBA18. 计算:(-3)×6÷(-2)×12.19. 计算:153(24)368-+-⨯-⎛⎫ ⎪⎝⎭.20. 计算:213(12)6(1)2-+-⨯--÷-.21. 解方程:-6 - 3x = 2 (5-x ).22. 解方程: 531142x x +-=-.23.如图,平面上有五个点A ,B ,C ,D ,E .按下列要求画出图形. (1)连接BD ;(2)画直线AC 交BD 于点M ; (3)过点A 作线段AP ⊥BD 于点P ;(4)请在直线AC 上确定一点N ,使B ,E 两点到点N 的距离之和最小(保留作图痕迹).24. 化简求值: 22(2)33(31)(93)x x x x -⨯+---+,其中13x =-.12345–1–2–3–4–50OM N 25. 补全解题过程.如图所示,点C 是线段AB 的中点,点D 在线段AB 上,且AD =12DB . 若AC =3,求线段DC 的长. 解:∵ 点C 是线段AB 的中点,(已知)∴ AB =2 AC .( ) ∵AC =3,(已知) ∴ AB = . ∵点D 在线段AB 上,AD =12DB ,(已知) ∴ AD = AB . ∴ AD = .∴DC = - AD = .26. 列方程解应用题.程大位,明代商人,珠算发明家,被称为珠算之父、卷尺之父. 少年时,读书极为广博,对数学颇感兴趣,60岁时完成其杰作《直指算法统宗》(简称《算法统宗》). 在《算法统宗》里记载了一道趣题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完.试问大、小和尚各多少人?27. 已知数轴上三点M ,O ,N 对应的数分别为-1,0,3,点P 为数轴上任意一点,其对应的数为x .(1)MN 的长为 ; (2)如果点P 到点M 、点N 的距离相等,那么x 的值是 ;(3)数轴上是否存在点P ,使点P 到点M 、点N 的距离之和是8?若存在,直接写出x 的值;若不存在,请说明理由.DCBA(4)如果点P 以每分钟1个单位长度的速度从点O 向左运动,同时点M 和点N 分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动. 设t 分钟时点P 到点M 、点N 的距离相等,求t 的值.28. 十九大报告中提出“广泛开展全民健身活动,加快推进体育强国建设”.为了响应号召,提升学生训练兴趣,某中学自编“功夫扇”课间操.若设最外侧两根大扇骨形成的角为∠COD ,当“功夫扇”完全展开时∠COD =160°. 在扇子舞动过程中,扇钉O 始终在水平线AB 上.小华是个爱思考的孩子,不但将以上实际问题抽象为数学问题,而且还在抽象出的图中画出了∠BOC 的平分线OE ,以便继续探究.(1)当扇子完全展开且一侧扇骨OD 呈水平状态时,如图1所示. 请在抽象出的图2中画出∠BOC 的平分线OE ,此时∠DOE 的度数为 ;图1图2(2)“功夫扇”课间操有一个动作是把扇子由图1旋转到图3所示位置,即将图2中的∠COD 绕点O 旋转至图4所示位置,其他条件不变,小华尝试用如下两种方案探究了∠AOC 和∠DOE 度数之间的关系.ABCEO图6图7O E DCB A方案一:设∠BOE 的度数为x .可得出1802AOC=x -∠︒,则111809022x=AOC =AOC --︒∠︒∠().160DOE=x -∠︒,则160x=DOE -︒∠.进而可得∠AOC 和∠DOE 度数之间的关系.方案二:如图5,过点O 作∠AOC 的平分线OF .易得90EOF=∠︒,即1902AOC+COE=∠∠︒.由160COD=∠︒,可得160DOE+COE=∠∠︒.进而可得∠AOC 和∠DOE 度数之间的关系.参考小华的思路可得∠AOC 和∠DOE 度数之间的关系为 ;(3)继续将扇子旋转至图6所示位置,即将∠COD 绕点O 旋转至如图7所示的位置,其他条件不变,请问(2)中结论是否依然成立?说明理由.F图5OEDCBA2017-2018学年第一学期初一年级期末质量抽测数学试卷参考答案及评分标准 2018.1一、选择题(本题共8道小题,每小题2分,共16分)题号 1 2 3 4 5 6 7 8答案 A C A B C C D B二、填空题(本题共8道小题,每小题2分,共16分)题号9 10 11 12 13 14 15 16答案-4,5 PC 36 答案不唯一,如m3n等. 1 -1 ±2 标价整百时,两种优惠方案相同;标价非整百时,“打6折”更优惠.三、解答题(本题共12道小题,第17-22题,每小题5分,第23-26题,每小题6分,第27、28题,每小题7分,共68分)17.解:原式= - 3 -2 - 4 + 1 ………………………… 2分= -5 - 4 + 1 ………………………… 3分= -9 + 1 ………………………… 4分= -8 . ………………………… 5分18. 解:原式= ………………………… 2分= ………………………… 4分= . ………………………… 5分19.解:原式= ………………………… 1分= 8 – 20 + 9 ………………………… 4分= - 3 . ………………………… 5分20.解:原式= ………………………… 3分= - 9- 6 + 6 ………………………… 4分= - 9 . ………………………… 5分21.解:-6 - 3x = 10 - 2x. ………………………… 1分-3x + 2x = 10 + 6. ………………………… 2分-x = 16. ………………………… 4分x = -16. ………………………… 5分22.解: 5x + 3= 4 - 2(x - 1). ………………………… 2分5x + 3 = 4 - 2x + 2. ………………………… 3分5x + 2x = 4 + 2 - 3.7x = 3. ………………………… 4分. ………………………… 5分23. 解:(1)如图,连接线段BD. …………1分(2)如图,作直线AC交BD于点M. …………3分(3)如图,过点A作线段AP⊥BD于点P. ………5分(4)如图,连接BE交AC于点N. ………………6分24.解:原式= -6x + 9x2 - 3 - 9x2 + x - 3 …………………… 3分= -5x - 6. ………………………… 4分当时,原式= ………………………… 5分= . ………………………… 6分25. 解:线段中点定义, 6 ,, 2 , AC , 1 . …………………6分(每空一分)26. 解:设小和尚有x人,则大和尚有(100 - x)人. …………… 1分根据题意列方程,得 . ……………3分解方程得:x = 75. ……………………… 4分则100 – x = 100–75 = 25. ……………………… 5分答:大和尚有25人,小和尚有75人.……………… 6分27. 解:(1)MN的长为 4 . ……………………………1分(2)x的值是 1 . ……………………………2分(3)x的值是-3或5. ……………………………4分(4)设运动t分钟时,点P到点M,点N的距离相等,即PM = PN.点P对应的数是-t,点M对应的数是-1 - 2t,点N对应的数是3 - 3t.…………5分①当点M和点N在点P同侧时,点M和点N重合,所以-1 - 2t = 3 - 3t,解得t = 4,符合题意.……………………………6分②当点M和点N在点P异侧时, 点M位于点P的左侧,点N位于点P的右侧(因为三个点都向左运动,出发时点M在点P左侧,且点M运动的速度大于点P的速度,所以点M永远位于点P的左侧),故PM = -t -(-1 - 2t)= t + 1.PN=(3 - 3t)-(-t)= 3 - 2t.所以t + 1 = 3 - 2t,解得t = ,符合题意.……………………………7分综上所述,t的值为或4.28. 解:(1)如图1. …………………………………………1分∠DOE的度数为 80° . ……………………2分(2) . ………………………4分(3)不成立.理由如下:方法一:设∠BOE的度数为x.可得出,则 . ……………5分,则 . …………………………………6分所以 . ………………………………………………7分方法二:如图2,过点O作∠AOC的平分线OF.易得,即 . ………5分由,可得 . ……6分所以 . …………………7分人教版2017~2018学年度第一学期七年级期末考试数学试卷(试卷共4页,考试时间为90分钟,满分120分)一、选择题(本题共12个小题,每小题3分,共36分.将正确答案的字母填入方框中) 1.2-等于( )A .-2B .12-C .2D .122.在墙壁上固定..一根横放的木条,则至少..需要钉子的枚数是 ( ) A .1枚 B .2枚 C .3枚 D .任意枚3.下列方程为一元一次方程的是( ) A .y +3= 0B .x +2y =3C .x 2=2xD .21=+y y4.下列各组数中,互为相反数的是( )A .)1(--与1B .(-1)2与1C .1-与1D .-12与1 5.下列各组单项式中,为同类项的是( ) A .a 3与a 2B .12a 2与2a 2C .2xy 与2xD .-3与a 6.如图,数轴A 、B 上两点分别对应实数a 、b ,则下列结论正确的是A .a +b>0B .ab >0C .110a b -<D .110a b +>7.下列各图中,可以是一个正方体的平面展开图的是( )8.把两块三角板按如图所示那样拼在一起,则∠ABC 等于( ) A .70° B .90° C .105°D .120°9.在灯塔O 处观测到轮船A 位于北偏西54°的方向,同时轮船B 在南偏东15°的方向,那么∠AOB 的大小为( )A .69° B .111° C .141°D .159°10.一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获利28元,若设这件夹克衫的成本是x 元,根据题意,可得到的方程是( ) A .(1+50%)x×80%=x -28 B .(1+50%)x×80%=x +28 C .(1+50%x)×80%=x -28 D .(1+50%x)×80%=x +28A B C D第8题图A第8题图11.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/时,水速为2千米/时,求A 港和B 港相距多少千米.设A 港和B 港相距x 千米.根据题意,可列出的方程是 ( ) A .32428-=x x B .32428+=x x C .3262262+-=+x x D .3262262-+=-x x 12.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m 的值应是( )A .110B .158C .168D .178二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上) 13.-3的倒数是________.14.单项式12-xy 2的系数是_________.15.若x =2是方程8-2x =ax 的解,则a =_________. 16.计算:15°37′+42°51′=_________.17.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将2 500 000用科学记数法表示应为_________________平方千米. 18.已知,a -b =2,那么2a -2b +5=_________.19.已知y 1=x +3,y 2=2-x ,当x =_________时,y 1比y 2大5. 20.根据图中提供的信息,可知一个杯子的价格是________元.三、解答题(本大题共8个小题;共60分)21.(本小题满分6分)计算:(-1)3-14×[2-(-3)2] .22.(本小题满分6分) 一个角的余角比这个角的21少30°,请你计算出这个角的大小.6 2 22 4 2 0 4 8 84 446……共43元共94元23.(本小题满分7分) 先化简,再求值:41(-4x 2+2x -8)-(21x -1),其中x =21.24.(本小题满分7分) 解方程:513x +-216x -=1.25.(本小题满分7分)一点A 从数轴上表示+2的点开始移动,第一次先向左移动1个单位,再向右移动2个单位;第二次先向左移动3个单位,再向右移动4个单位;第三次先向左移动5个单位,再向右移动6个单位…… (1)写出第一次移动后这个点在数轴上表示的数为 ; (2)写出第二次移动结果这个点在数轴上表示的数为 ; (3)写出第五次移动后这个点在数轴上表示的数为 ; (4)写出第n 次移动结果这个点在数轴上表示的数为 ; (5)如果第m 次移动后这个点在数轴上表示的数为56,求m 的值.26.(本小题满分8分)如图,∠AOB =∠COD =90°,OC 平分∠AOB ,∠BOD =3∠DOE . 求:∠COE 的度数.O27.(本小题满分8分)如图,已知线段AB和CD的公共部分BD=13AB=14CD,线段AB、CD的中点E、F之间距离是10cm,求AB、CD的长.28.(本小题满分11分)某中学为了表彰在书法比赛中成绩突出的学生,购买了钢笔30支,毛笔45支,共用了1755元,其中每支毛笔比钢笔贵4元.(1)求钢笔和毛笔的单价各为多少元?(2)①学校仍需要购买上面的两种笔共105支(每种笔的单价不变).陈老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领2447元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么帐肯定算错了.”请你用学过的方程知识....解释王老师为什么说他用这些钱只买这两种笔的帐算错了.②陈老师突然想起,所做的预算中还包括校长让他买的一支签字笔.如果签字笔的单价为小于10元的整数,请通过计算,直接..写出签字笔的单价可能为元.A E DB F C第一学期七年级期末考试数学试题参考答案及评分说明一、选择题(每小题3分,共36分)1.C ;2.B ;3.A ;4.D ;5.B ;6. D ;7.C ;8.D ;9.C ;10. B ;11.A ;12.B . 二、填空题(每题3分,共24分) 13.31-;14.21-;15.2;16.58°28′;17.2.5×106;18.9;19.2;20.8. 三、解答题(共60分)21.解:原式= -1-14×(2-9) ………………………………………………………3分 =-1+ 47…………………………………………………………………………5分=43……………………………………………………………………………6分22.解:设这个角的度数为x . ……………………………………………………………1分由题意得:30)90(21=--x x ………………………………………………3分 解得:x =80 …………………………………………………………………5分 答:这个角的度数是80° ……………………………………………………………6分 23.解:原式 =1212212+--+-x x x ………………………………………………3分 =12--x ………………………………………………………………4分把x =21代入原式: 原式=12--x =1)21(2--……………………………………………………………5分 =45-……………………………………………………………………………7分 24.解:6)12()15(2=--+x x . ……………………………………………2分612210=+-+x x . ………………………………………………………4分8x =3. …………………………………………………………6分83=x . …………………………………………………………7分 X|k |B| 1 . c|O |m 25.解:(1)第一次移动后这个点在数轴上表示的数是3; ……………………………1分(2)第二次移动后这个点在数轴上表示的数是4; ……………………………2分 (3)第五次移动后这个点在数轴上表示的数是7; ……………………………3分 (4)第n 次移动后这个点在数轴上表示的数是n +2; …………………………5分 (5)54. ………………………………………………………………………7分26.解:∵∠AOB=90°,OC平分∠AOB∴∠BOC=12∠AOB=45°,………………………………………………………2分∵∠BOD=∠COD-∠BOC=90°-45°=45°,………………………………4分∠BOD=3∠DOE∴∠DOE=15,……………………………………………………………………7分∴∠COE=∠COD-∠DOE=90°-15°=75°…………………………………8分27.解:设BD=x cm,则AB=3x cm,CD=4x cm,AC=6x cm.…………………………1分∵点E、点F分别为AB、CD的中点,∴AE=12AB=1.5x cm,CF=12CD=2x cm.……………………………………………3分∴EF=AC-AE-CF=2.5x cm.………………………………………………………4分∵EF=10cm,∴2.5x=10,解得:x=4.………………………………………………………………6分∴AB=12cm,CD=16cm.……………………………………………………………8分28.解:(1)设钢笔的单价为x元,则毛笔的单价为(x+4)元. ………………………1分由题意得:30x+45(x+4)=1755 ……………………………………………3分解得:x=21则x+4=25. ……………………………………………………………………4分答:钢笔的单价为21元,毛笔的单价为25元. ……………………………………5分(2)设单价为21元的钢笔为y支,所以单价为25元的毛笔则为(105-y)支. …6分根据题意,得21y+25(105-y)=2447.………………………………………………7分解之得:y=44.5 (不符合题意) .……………………………………………………8分所以王老师肯定搞错了.……………………………………………………………9分(3)2或6. ………………………………………………………………………11分〖答对1个给1分,答错1个倒扣1分,扣到0分为止〗28.(3)解法提示:设单价为21元的钢笔为z支,签字笔的单价为a元则根据题意,得21z+25(105-z)=2447-a.即:4z=178+a,因为a、z都是整数,且178+a应被4整除,所以a为偶数,又因为a为小于10元的整数,所以a可能为2、4、6、8.当a=2时,4z=180,z=45,符合题意;当a=4时,4z=182,z=45.5,不符合题意;当a=6时,4z=184,z=46,符合题意;当a=8时,4z=186,z=46.5,不符合题意.所以笔记本的单价可能2元或6元.〖本题也可由①问结果,通过讨论钢笔单价得到答案〗初一年级第一学期期末考试数学试卷本试卷包括两道大题,24道小题,共4页.全卷满分120分.考试时间为90分钟.考试结束后,将答题卡交回. 注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信 息条形码粘贴区.2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书 写,字体工整、笔迹清楚.3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效; 在草稿纸、试题卷上答题无效.4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑.5. 保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀.一、选择题(每小题3分,共24分)1.5的相反数为( )A . 1 5B .- 15 C .5 D .-5 2.下列几何体中,主视图为右图是( )3.单项式32xy -的系数和次数分别是( )A .1,32-B .1,42- C .2,4- D .2,3- 4.多项式235321x x x -++按字母x 的降幂排列为( )A .235321x x x -++ B .322531x x x +-+ C .231352x x x -++ D .321235x x x +-+A .B .C .D .5.已知整式2310x y +-=,则461x y ++的值为( )A .3B .4C .5D .6 6.下列各组单项式中,是同类项的是( )A .y 与2yB .4与4xC .ab 与abcD .2xy 与2x y7.某工厂原有工人a 人,若现有人数比原来人数增加了20%,则该工厂现在人数为( ) A .56a B .54a C .65a D .45a 8.将两个直角三角板如图所示放置,DF 恰好经过点C ,AB 与EF 在同一条直线上,则∠BCF =( ) A .30º B .45º C .60º D .75º二、填空题(每小题3分,共18分)9.4-= _____________ .10.将3.1415926用四舍五入法精确到百分位为_______________.11.为了帮助玉树地区重建家园,某班全体师生积极捐款,捐款金额共3200元,其中5名教师人均捐款a元,则该班学生共捐款____________元(用含有a 的代数式表示).12.2015年8月16日,农博会在长春开幕,据统计有1 410 000人次参观了农博会,这个数据用科学记数法表示为____________人次.13.如图,AF 是∠BAC 的平分线,EF ∥AC 交AB 于点E .若∠1=25°,则∠BAF 为__________度.第13题图 第14题图14.如图,甲从A 点出发向北偏东58°方向走60米至点B ,乙从A 点出发向南偏西8°方向走80米至点C ,则∠BAC 为__________度.三、解答题(本大题共10小题,共78分)15.(8分)计算:(1)()12-+- (2)()12---(3)()24-⨯- (4)()42-÷-16.(6分)计算:()()20162112322--÷⨯+-17.(6分)计算:()()42a b a b ---18.(7分)先化简,再求值:()()22222523262x y x y xy x -+++-,其中14,4x y =-=.19. (7分)为了有效控制酒后驾车,城管的汽车在一条东西方向的公路上巡逻,如果规定向东为正,向西为负,从出发点开始所行走的记录为(长度单位:千米):+2,3,2,1,2,1, 2.-++---(1)此时这辆城管的汽车司机应如何向队长描述他的位置?(2)如果队长命令他马上返回出发点,这次巡逻(含返回)共耗油多少升?(已知每千米耗油0.2升)20.(8分)如图所示,一块正方形纸板减去四个相同的三角形后留下了阴影部分的图形.已知正方形的边长为a ,三角形的高为h .(1)用式子表示阴影部分的面积; (2)当12,2a h ==时,求阴影部分的面积.21.(8分)如图,点C 、D 是线段AB 上两点,点C 分线段AD 为1 :3两部分,点D 是线段CB 的中点,AD = 8.(1)求线段AC 的长; (2)求线段AB 的长.BD CA22. (8分)如图,直线AB 和CD 相交于点O ,∠COE = 90°,OC 平分∠AOF ,∠COF =35°.(1)求∠BOD 的度数;(2)OE 平分∠BOF 吗?请说明理由.23.(8分)如图,∠1 =∠2,∠A =∠F. 求证:∠C =∠D .请阅读下面的解答过程,并填空(理由或数学式): 证明:∵∠1 =∠2(已知),∠1 =∠3(___________________),∴∠2 =∠3(等量代换).∴BD ∥______(__________________________). ∴∠4 =∠C (__________________________), 又∵∠A =∠F (已知),∴AC ∥______(__________________________). ∴∠4 =______(___________________________).xkb1∴∠C =∠D (等量代换).24.(12分)如图,在数轴上点A 表示的有理数为4 ,点B 表示的有理数为6,点P 从点A 出发以每秒2个单位长度的速度在数轴上沿由A 到B 方向运动,当点P 到达点B 后立即返回,仍然以每秒2个单位长度的速度运动至点A 停止运动.设运动时间为t (单位:秒). (1)求t = 2时点P 表示的有理数; (2)求点P 与点B 重合时t 的值;(3)①在点P 由点A 到点B 的运动过程中,求点P 与点A 的距离(用含t 的代数式表示);②在点P 由点A 到点B 的运动过程中,点P 表示的有理数是多少(用含t 的代数式表示). (4)当点P 表示的有理数与原点距离是2个单位时,直接写出所有满足条件的t 的值.2341N MFE DCB AFECDO BA初一年级上册期末考试数学试卷答案一、选择题(每小题3分,共24分)1.5的相反数为( D )A . 1 5B .- 15 C .5 D .-5 2.下列几何体中,主视图为右图是( C )3.单项式32xy -的系数和次数分别是( B )A .1,32-B .1,42- C .2,4- D .2,3- 4.多项式235321x x x -++按字母x 的降幂排列为( B )A .235321x x x -++B .322531x x x +-+ C .231352x x x -++ D .321235x x x +-+ 5.已知整式2310x y +-=,则461x y ++的值为( A )A .3B .4C .5D .6 6.下列各组单项式中,是同类项的是( A )A .y 与2yB .4与4xC .ab 与abcD .2xy 与2x y7.某工厂原有工人a 人,若现有人数比原来人数增加了20%,则该工厂现在人数为( C ) A .56a B .54a C .65a D .45a 8.将两个直角三角板如图所示放置,DF 恰好经过点C ,AB 与EF 在同一条直线上,则∠BCF =( D ) A .30º B .45º C .60º D .75º二、填空题(每小题3分,共18分)9.4-= 4 .10.将3.1415926用四舍五入法精确到百分位为 3.14 .11.为了帮助玉树地区重建家园,某班全体师生积极捐款,捐款金额共3200元,其中5名教师人均捐款aA .B .C .D .D CBEFA元,则该班学生共捐款(3200-5a )元(用含有a 的代数式表示).12.2015年8月16日,农博会在长春开幕,据统计有1 410 000人次参观了农博会,这个数据用科学记数法表示为 1.41×106 ________ 人次.13.如图,AF 是∠BAC 的平分线,EF ∥AC 交AB 于点E .若∠1=25°,则∠BAF 为 _25___ 度.第13题图 第14题图14.如图,甲从A 点出发向北偏东58°方向走60米至点B ,乙从A 点出发向南偏西8°方向走80米至点C ,则∠BAC 为 156____ 度.三、解答题(本大题共10小题,共78分)15.(8分)计算:(1)()123-+-=- (2)()121---=(3)()248-⨯-= (4)()422-÷-=16.(6分)计算:17.(6分)计算:18.(7分)先化简,再求值:解:()()2222222222523262564622x y x y xy x x y x y xy x xy-+++-=--++-=, …4′当14,4x y =-=时, 原式 = 2×(-4)×14=-2. …7′西北南东CBAEAC BF1()()4244223a b a b a b a ba b---=--+=-()()2016211232211247--÷⨯+-=-+=-19. (7分)为了有效控制酒后驾车,城管的汽车在一条东西方向的公路上巡逻,如果规定向东为正,向西为负,从出发点开始所行走的记录为(长度单位:千米):+2,3,2,1,2,1, 2.-++---(1) 此时这辆城管的汽车司机应如何向队长描述他的位置?解:2-3+2+1-2-1-2 = 3(千米)所以,他在出发点东侧3千米处. …3′(2) 如果队长命令他马上返回出发点,这次巡逻(含返回)共耗油多少升?(已知每千米耗油0.2升)2+3+2+1+2+1+2+3=16(千米) 16×0.2=3.2(升) 答:这次巡逻共耗油3.2升. …7′20.(8分)如图所示,一块正方形纸板减去四个相同的三角形后留下了阴影部分的图形.已知正方形的边长为a ,三角形的高为h .(1)用式子表示阴影部分的面积;解:221422a ah a ah -⨯=- …4′ (2)当12,2a h ==时,求阴影部分的面积.当12,2a h ==时,原式=2122222-⨯⨯= …8′21.(8分)如图,点C 、D 是线段AB 上两点,点C 分线段AD 为1 :3两部分,点D 是线段CB 的中点,AD = 8.(1)求线段AC 的长; 解: AC =14AD = 14×8 = 2 …3′ (2)求线段AB 的长. CD =34AD = 34×8 = 6 ∵点D 是线段CB 的中点,∴CB = 2CD = 2 × 6 = 12. …6′ ∴AB = AC + CB = 2 + 12 = 14. …8′BDCA22. (8分)如图,直线AB 和CD 相交于点O ,∠COE = 90°,OC 平分∠AOF ,∠COF =35°.(1)求∠BOD 的度数;解:∵OC 平分∠AOF , ∠COF = 35°,∴∠AOC = ∠COF = 35°. …2′ ∵∠COF = 35°,∴∠BOD = ∠AOC = 35° ...4′ (2)OE 平分∠BOF 吗?请说明理由. 解:OE 平分∠BOF .理由如下:∵∠COE = 90°, ∴∠EOD =90°∴∠COF + ∠FOE = ∠BOD + ∠BOE …6′ ∵∠COF = ∠BOE∴∠FOE = ∠BOE 即OE 平分∠BOF …8′23.(8分)如图,∠1 =∠2,∠A =∠F. 求证:∠C =∠D.请阅读下面的解答过程,并填空(理由或数学式): 证明:∵∠1 =∠2(已知),∠1 =∠3(_对顶角相等_),∴∠2 =∠3(等量代换).∴BD ∥__EC__(__同位角相等,两直线平行__). ∴∠4 =∠C (___两直线平行,同位角相等___), 又∵∠A =∠F (已知),∴AC ∥_DF_(_内错角相等,两直线平行_). ∴∠4 =_∠D_(__两直线平行,内错角相等_). ∴∠C =∠D (等量代换). (每空1分)24.(12分)如图,在数轴上点A 表示的有理数为-4,点B 表示的有理数为6,点P 从点A 出发以每秒2个单位长度的速度在数轴上沿由A 到B 方向运动,当点P 到达点B 后立即返回,仍然以每秒2个单位长度的速度运动至点A 停止运动.设运动时间为t (单位:秒). (1)(1)求t = 2时点P点P 表示的有理数为0; …2′2341N MFE DCB AFECDO BA(2)求点P与点B重合时t的值;t = 5 …2′(3)①在点P由点A到点B的运动过程中,求点P与点A的距离(用含t的代数式表示);2t …2′②在点P由点A到点B的返回过程中,点P表示的有理数是多少?(用含t的代数式表示).2t-4…2′(4)当点P表示的有理数与原点距离是2个单位时,直接写出所有满足条件的t的值. t = 1,t = 3,t = 17,t = 19. …4′七年级第一学期期末调研试题数 学学校 班级 姓名 成绩 一、选择题(每小题3分,共30分)第1~10题均有四个选项,符合题意的选项只有一个. 1. 5-的相反数是( )A .15B .15- C .5 D .5-2. 2017年10月18日上午9时,中国共产党第十九次全国代表大会在京开幕.“十九大”最受新闻网站关注.据统计,关键词“十九大”在1.3万个网站中产生数据174,000条.将174,000用科学记数法表示应 为 ( )A .517.410⨯B .51.7410⨯C .417.410⨯D .60.17410⨯3. 下列各式中,不相等...的是( )A .(-3)2和-32B .(-3)2和32C .(-2)3和-23D .32-和32- 4. 下列是一元一次方程的是( )A .2230x x --=B .25x y +=C .112x x+= D .10x += 5. 如图,下列结论正确的是( )A. c a b >>B.11b c > C. ||||a b <D. 0abc >6. 下列等式变形正确的是( )A. 若35x -=,则35x =-B. 若1132x x -+=,则23(1)1x x +-= C. 若5628x x -=+,则5286x x +=+ D. 若3(1)21x x +-=,则3321x x +-=7. 下列结论正确的是( )A.23ab -和2b a 是同类项B.π2不是单项式 C. a 比a -大D. 2是方程214x +=的解8. 将一副三角板按如图所示位置摆放,其中α∠与β∠一定互余的是( )A. B. C. D.9. 已知点A ,B ,C 在同一条直线上,若线段AB =3,BC =2,AC =1,则下列判断正确的是 ( )A. 点A 在线段BC 上B. 点B 在线段AC 上C. 点C 在线段AB 上D. 点A 在线段CB 的延长线上10. 由m 个相同的正方体组成一个立体图形,下面的图形分别是从正面和上面看它得到的平面图形,则m 能取到的最大值是 ( ) A. 6 B. 5 C. 4 D. 3二、填空题(每小题2分,共16分) 11. 计算:48°37'+53°35'=__________.12. 小何买了4本笔记本,10支圆珠笔,设笔记本的单价为a 元,圆珠笔的单价为b 元则小何共花费 元.(用含a ,b 的代数式表示) 13.已知2|2|(3)0a b -++=,则a b = .14. 北京西站和北京南站是北京的两个铁路客运中心,如图,A ,B ,C 分别表示天安门、北京西站、北京南站, 经测量,北京西站在天安门的南偏西77°方向,北京南站在天安门的南偏西18°方向.则∠BAC = °.15. 若2是关于x 的一元一次方程的解,则a = ________. 16. 规定图形a b c --,表示运算x z y w --+.则+=________________(直接写出答案). 17. 线段AB =6,点C 在直线AB 上,BC =4,则AC 的长度为 .从正面看从上面看BC。

数学七年级上学期数学期末试卷及答案-百度文库

数学七年级上学期数学期末试卷及答案-百度文库

数学七年级上学期数学期末试卷及答案-百度文库一、选择题1.有理数a ,b 在数轴上的对应点的位置如图所示,则下列各式成立的是( )A .a >bB .﹣ab <0C .|a |<|b |D .a <﹣b2.如图,数轴的单位长度为1,点A 、B 表示的数互为相反数,若数轴上有一点C 到点B 的距离为2个单位,则点C 表示的数是( )A .-1或2B .-1或5C .1或2D .1或53.下列因式分解正确的是()A .21(1)(1)xx x +=+- B .()am an a m n +=- C .2244(2)m m m +-=-D .22(2)(1)aa a a --=-+4.已知2a ﹣b =3,则代数式3b ﹣6a+5的值为( ) A .﹣4B .﹣5C .﹣6D .﹣75.探索规律:右边是用棋子摆成的“H”字,第一个图形用了 7 个棋子,第二个图形用了 12 个棋子,按这样的规律摆下去,摆成 第 20 个“H”字需要棋子( )A .97B .102C .107D .112 6.用代数式表示“m 的两倍与n 平方的差”,正确的是 ( )A .22()m n -B .2(2m-n)C .22m n -D .2(2)m n - 7.下列四个数中最小的数是( ) A .﹣1B .0C .2D .﹣(﹣1)8.﹣3的相反数是( ) A .13-B .13C .3-D .39.下列式子中,是一元一次方程的是( ) A .3x+1=4x B .x+2>1 C .x 2-9=0 D .2x -3y=010.若OC 是∠AOB 内部的一条射线,则下列式子中,不能表示“OC 是∠AOB 的平分线”的是( ) A .∠AOC=∠BOC B .∠AOB=2∠BOC C .∠AOC=12∠AOB D .∠AOC+∠BOC=∠AOB11.15( )A .1,2B .2,3C .3,4D .4,5 12.已知a ﹣b=﹣1,则3b ﹣3a ﹣(a ﹣b )3的值是( ) A .﹣4B .﹣2C .4D .213.下列图形中,哪一个是正方体的展开图( ) A .B .C .D .14.如图,C ,D 是线段AB 上两点,若CB =4cm ,DB =7cm ,且D 是AC 的中点,则AC 的长等于( )A .3 cmB .6 cmC .11 cmD .14 cm15.如图,已知点C 在线段AB 上,点M 、N 分别是AC 、BC 的中点,且AB =8cm ,则MN 的长度为( )cm .A .2B .3C .4D .6二、填空题16.已知x=5是方程ax ﹣8=20+a 的解,则a= ________17.若代数式mx 2+5y 2﹣2x 2+3的值与字母x 的取值无关,则m 的值是__.18.把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放在一个底面为长方形(一边长为4)的盒子底部(如图2、图3),盒子底面未被卡片覆盖的部分用阴影表示.已知阴影部分均为长方形,且图2与图3阴影部分周长之比为5:6,则盒子底部长方形的面积为_____.19.已知单项式245225n m xy x y ++与是同类项,则m n =______.20.一个商店把某件商品按进价提高20%作为定价,可是总卖不出去;后来按定价减价20%出售,很快卖掉,结果这次生意亏了4元.那么这件商品的进价是________元.21.单项式22ab -的系数是________.22.若523m xy +与2n x y 的和仍为单项式,则n m =__________.23.若1x =-是关于x 的方程220x a b -+=的解,则代数式241a b -+的值是___________.24.在日常生活中如取款、上网等都需要密码,有一种用“因式分解法”产生的密码,方便记忆,原理是对于多项44x y -,因式分解的结果是()()()22x y x y x y-++,若取9x =,9y =时,则各个因式的值是:()18x y +=,()0x y -=,()22162x y +=,于是就可以把“180162”作为一个六位数的密码,对于多项式324x xy -,取36x =,16y =时,用上述方法产生的密码是________ (写出一个即可).25.比较大小:﹣(﹣9)_____﹣(+9)填“>”,“<”,或”=”符号) 26.若关于x 的方程1210m x m -++=是一元一次方程,则这个方程的解是_______. 27.如果,,a b c 是整数,且c a b =,那么我们规定一种记号(,)a b c =,例如239=,那么记作(3,9)=2,根据以上规定,求(−2,16)=______.28.中国始有历法大约在四千年前每页显示一日信息的叫日历,每页显示一个月信息的叫月历,每页显示全年信息的叫年历如图是2019年1月份的月历,用一个方框圈出任意22⨯的4个数,设方框左上角第一个数是x ,则这四个数的和为______(用含x 的式子表示)29.如图都是由同样大小的黑棋子按一定规律摆出的图案,第①个图案有4个黑棋子,第②个图案有9个黑棋子,第③个图案有14个黑棋子,…,依此规律,第n 个图案有2019个黑棋子,则n=______.30.设一列数中相邻的三个数依次为m ,n ,p ,且满足p=m 2﹣n ,若这列数为﹣1,3,﹣2,a ,b ,128…,则b=________.三、压轴题31.数轴上A 、B 两点对应的数分别是﹣4、12,线段CE 在数轴上运动,点C 在点E 的左边,且CE =8,点F 是AE 的中点.(1)如图1,当线段CE 运动到点C 、E 均在A 、B 之间时,若CF =1,则AB = ,AC = ,BE = ;(2)当线段CE 运动到点A 在C 、E 之间时,①设AF 长为x ,用含x 的代数式表示BE = (结果需化简.....); ②求BE 与CF 的数量关系;(3)当点C 运动到数轴上表示数﹣14的位置时,动点P 从点E 出发,以每秒3个单位长度的速度向右运动,抵达B 后,立即以原来一半速度返回,同时点Q 从A 出发,以每秒2个单位长度的速度向终点B 运动,设它们运动的时间为t 秒(t ≤8),求t 为何值时,P 、Q 两点间的距离为1个单位长度.32.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线.(1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小; (2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求α.33.如图1,已知面积为12的长方形ABCD ,一边AB 在数轴上。

人教版七年级上册数学期末考试试卷含答案

人教版七年级上册数学期末考试试卷含答案

人教版七年级上册数学期末考试试题一、单选题1.下列四个有理数中,绝对值最小的数是()A.-5B.0C.4D.-92.温度由﹣13℃上升8℃是()A.5℃B.﹣5℃C.11℃D.﹣11℃3.数据202万用科学记数法表示为()A.2.02×105B.0.202×107C.20.2×105D.2.02×1064.已知||1(2)312m m x--+=是关于x 的一元一次方程,则m 的值为()A.1m =B.2m =C.2m =-D.2m =±5.下列方程中,与13x x -=-+的解相同的是()A.20x +=B.230x -=C.22x x-=D.20x -=6.陈老师做了一个周长为()24a b +的长方形教具,其中一边长为()a b -,则另一边长为A.3b B.5a b +C.2a D.35a b-7.如图,点A,O,B 在一条直线上,OE⊥AB 于点O,如果∠1与∠2互余,那么图中相等的角有()A.6对B.5对C.4对D.3对8.若代数式2243(251)ax x y x bx y +-+--+-的值与x 的取值无关,则a b +的值为A.6B.-6C.2D.-29.如图,点C 把线段AB 从左至右依次分成2:3两部分,点D 是AB 的中点,若CD=2,则线段AB 的长是()A.10B.15C.20D.2510.一电子跳蚤在数轴上从原点开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,……,依此规律跳下去,当它跳第2022次落下时,落点处表示的数为()A.-2022B.2022C.-1011D.1011二、填空题11.若点A、B、C、D 在数轴上的位置如图所示,则-3的相反数所对应的点是_________.12.计算:11||32-=_________.13.点A、B 在数轴上,若数轴上点A 表示-1,且AB=2,则点B 表示的数是_______.14.某企业对应聘人员进行专业考试,试题由50道不定项选择题组成,评分标准规定:每道题全选对得4分,不选得0分,选错或正确选项不全倒扣2分.已知某人有4道题未选,得了172分,则这个人全选对了_________道题.15.如图,将边长为m 的正方形纸片沿虚线剪成两块正方形和两块长方形,若拿掉边长为n 的小正方形后,再把剩下的三块图形拼成一块长方形,则这块长方形周长为_________.16.有一组数:(1,1,0),(2,4,7),(3,9,26),(4,16,63),…,按照其中的规律,第n 组数为_________.17.若方程x+5=7﹣2(x﹣2)的解也是方程6x+3k=14的解,则常数k=_____.18.如图,将一副三角尺的直角顶点O 重合在一起.若∠COB 与∠DOA 的比是2:7,OP 平分∠DOA,则∠POC=_________度.三、解答题19.计算:(1)(+7)+(﹣2)﹣(﹣5)(2)(﹣2)2×(﹣916)÷(﹣32)2(3)20×34+(﹣20)×12+20×(﹣14)(4)﹣|﹣23|﹣|﹣12×23|+320.解方程:(1)2121136x x +--=(2)1(35)2(5)2x x x --=+.21.先化简,再求值:2222734(2)2(32)a ab b b ab a ab --+---,其中2a =-,2b =.22.某同学在黑板上正确解答了一道整式的计算题,但被另一位同学不慎擦掉了算式中的一部分,如图所示:22(475)351x x x x +-+=--+.(1)求被擦掉的多项式;(2)若12x =-,求被擦掉多项式的值.23.已知x,y 为有理数,现规定一种新运算“⊗”,满足2021x y xy ⊗=-.(1)求(25)(4)⊗⊗-的值;(2)记()P a b c =⊗-,Q a b a c =⊗-⊗,请猜想P 与Q 的数量关系,并说明理由.24.如图,已知A、B 两点在数轴上,点A 表示的数为a,点B 表示的数为b,且a、b 满足2++-=,点P以每秒4个单位长度的速度从点A向右运动.点Q以每秒3个单(20)|60|0a b位长度的速度从点O向右运动(点P、点Q同时出发).(1)分别求出点A、B在数轴上对应的数;(2)经过几秒时,点P、点Q分别到原点O的距离相等?(3)当点P运动到什么位置时,恰好使AP=2BQ?25.如图,在同一平面内四个点A,B,C,D.(1)利用尺规,按下面的要求作图.要求:不写画法,保留作图痕迹,不必写结论.①作射线AC;②连接AB,BC,BD,线段BD与射线AC相交于点O;③在线段AC上作一条线段CF,使CF=AC﹣BD.(2)观察(1)题得到的图形,我们发现线段AB+BC>AC,得出这个结论的依据是.26.如图,OB是∠AOC的平分线,OD是∠COE的平分线.(1)如果∠AOC=70°,∠COE=50°,求∠BOD的度数;(2)如果∠AOE=160°,求∠BOD的度数;(3)如果OM平分∠AOE,∠COD:∠BOC=2:3,∠COM=15°,求∠BOD的度数.参考答案1.B【分析】根据负数的绝对值为负数的相反数,正数的绝对值是其本身,即可求解.【详解】解:55-=,00=,44=,99-=,且9540>>>,所以绝对值最小的数是0.故选:B.【点睛】本题考查了绝对值的定义,熟练掌握绝对值的定义即可求解.2.B【分析】根据题意列出算式,计算即可出值.【详解】解:由题意得上升后的温度为:﹣13+8=﹣5℃,故选:B.【点睛】本题考查有理数的加法,熟练掌握运算法则是解题的关键.3.D【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】解:202万62020000 2.0210==⨯.故选:D.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.C【分析】根据一元一次方程的定义可得到一个关于m 的方程,即可求出m 的值.【详解】解:根据一元一次方程的定义,可得:||11m -=,且20m -≠,可解得2m =-,故选:C.【点睛】本题主要考查一元一次方程的定义,解题的关键是掌握注意x 的系数不等于0.5.D【分析】先求出13x x -=-+的解为2x =,然后再分别求出每个选项中方程的解,即可求解.【详解】解:13x x -=-+,移项合并同类项得:24=x ,解得:2x =,A、20x +=,解得:2x =-,与13x x -=-+的解不相同,故本选项不符合题意;B、230x -=,解得:32x =,与13x x -=-+的解不相同,故本选项不符合题意;C、22x x -=,解得:2x =-,与13x x -=-+的解不相同,故本选项不符合题意;D、20x -=,解得:2x =,与13x x -=-+的解相同,故本选项符合题意;故选:D【点睛】本题主要考查了解一元一次方程,熟练掌握解一元一次方程的基本步骤是解题的关键.6.A【分析】根据长方形周长公式表示另一边长即可.【详解】解:由题意得,另一边长为()2432a b a b b +--=故选:A.【点睛】此题考查了代数式的问题,解题的关键是掌握长方形周长公式.7.B【分析】根据互余的性质得出相等的角即可得出答案.【详解】解:图中相等的角有1,2,,,COA BOD AOE BOE COD BOE COD AOE ∠=∠∠=∠∠=∠∠=∠∠=∠,共5对故选:B.【点睛】此题考查了找等角的问题,解题的关键是掌握互余的性质.8.D【分析】已知多项式合并后,根据结果与x 的取值无关,求出a 与b 的值,代入计算即可求出值.【详解】解:2243(251)ax x y x bx y +-+--+-2243251ax x y x bx y =+-+-+-+2(2)(4)64a xb x y =-++-+由结果与x 的取值无关,得到a﹣2=0,b+4=0,解得:a=2,b=-4,242a b +=-=-,故选:D.【点睛】此题考查了整式的值与字母无关问题,熟练掌握整式运算法则是解本题的关键.9.C【分析】设AC=2x,则BC=3x,利用线段中点的性质表示出CD,列出方程即可解决.【详解】解:设AC=2x,则BC=3x,∴AB=AC+BC=5x,∵点D 是AB 的中点,∴AD=12AB=2.5x,∴CD=AD −AC=2.5x −2x=0.5x,∵CD=2,∴0.5x=2,∴x=4,∴AB=5x=20,故选:C.【点睛】本题考查了两点间距离,根据题目的已知并结合图形分析是解题的关键.10.C【分析】根据题意得:第1次落点处表示的数为1,第2次落点处表示的数为121-=-,第3次落点处表示的数为132-+=,第4次落点处表示的数为242-=-,第5次落点处表示的数为253-+=,第6次落点处表示的数为363-=-,……,由此发现规律,即可求解.【详解】解:根据题意得:第1次落点处表示的数为1,第2次落点处表示的数为121-=-,第3次落点处表示的数为132-+=,第4次落点处表示的数为242-=-,第5次落点处表示的数为253-+=,第6次落点处表示的数为363-=-,……,由此发现规律,当它跳第偶数次落下时,落点处表示的数为2n -,所以当它跳第2022次落下时,落点处表示的数为202221011-÷=-.故选:C【点睛】本题主要考查了数字类规律题,数轴上两点间的距离,明确题意,准确得到规律是解题的关键.11.A【分析】先求出-3的相反数,再根据所得的结果在数轴上找到对应的点即可.【详解】解:∵-3的相反数是3∴-3的相反数3对应的点是A .故答案为:A【点睛】本题考查了相反数的定义,数轴上点所表示的数等知识,关键在于正确理解相反数的意义.12.16【分析】根据绝对值的性质可得1111||3223-=-,即可求解.【详解】解:11111||32236-=-=.故答案为:16【点睛】本题主要考查了绝对值的性质,有理数的加减运算,熟练掌握绝对值的性质,有理数运算法则是解题的关键.13.-3或1##1或-3【分析】分两种情况:当点B 在点A 的右边时,当点B 在点A 的左边时,即可求解.【详解】解:根据题意得:当点B 在点A 的右边时,点B 表示的数是()211+-=;当点B 在点A 的左边时,点B 表示的数是()123--=-;∴点B 表示的数是-3或1.故答案为:-3或1【点睛】本题主要考查了数轴上两点间的距离,利用分类讨论思想解答是解题的关键.14.44【分析】设这个人全选对了x 道题,那么做错了()504x --道题,根据得了172分,可列方程求解.【详解】解:设这个人全选对了x 道题,根据题意得,()42504172x x ---=,解得44x =.答:这个人全选对了44道题.故答案为:44.【点睛】本题考查一元一次方程的应用,关键设出全选对的题目数,表示出做错的题目数,以分数做为等量关系列方程求解.15.4m【分析】根据题意和矩形的性质列出代数式解答即可.【详解】解:新长方形的周长=2[(m+n)+(m﹣n)]=4m.【点睛】本题考查正方形、矩形等知识,解题的关键是理解题意,学会利用所学知识解决实际问题.16.(n ,2n ,31n -)【分析】根据题意可得第1组数为(1,1,0),第2组数为(2,4,7),即()232,2,21-,第3组数为(3,9,26),即()233,3,31-,第4组数为(4,16,63),即()234,4,41-,……,由此发现规律,即可求解.【详解】解:根据题意得:第1组数为(1,1,0),第2组数为(2,4,7),即()232,2,21-,第3组数为(3,9,26),即()233,3,31-,第4组数为(4,16,63),即()234,4,41-,……,由此发现,第n 组数为(n ,2n ,31n -).故答案为:(n ,2n ,31n -)【点睛】本题主要考查了数字类的规律题,明确题意,准确得到规律是解题的关键.17.23【详解】∵x+5=7-2(x-2)∴x=2.把x=2代入6x+3k=14得,12+3k=14,∴k=23.18.20【分析】根据条件可知90AOB COD ∠=∠=︒,并且180COB DOA AOB COD ∠+∠=∠+∠=︒,再根据COB ∠与DOA ∠的比是2:7,可求DOA ∠,再根据角平分线的定义和角的和差关系即可求解.【详解】解:180COB DOA COB COA COB DOB AOB COD ∠+∠=∠+∠+∠+∠=∠+∠=︒ ,又COB ∠ 与DOA ∠的比是2:7,718014027DOA ∴∠=︒⨯=︒+,OP 平分DOA ∠,70DOP ∴∠=︒,20POC ∴∠=︒.故答案为:20.【点睛】本题考查了余角与补角,角平分线的定义,正确认识COB DOA ∠+∠AOB COD =∠+∠180=︒这一个关系是解题的关键,这是一个常用的关系,需熟记.19.(1)10;(2)﹣1;(3)0;(4)2.【详解】(1)原式=7﹣2+5=12﹣2=10;(2)原式=﹣4××=﹣1;(3)原式=20×(﹣﹣)=0;(4)原式=﹣﹣+3=﹣1+3=2.【点睛】本题考查有理数的混合运算.解体的关键是掌握运算法则,注意符号.20.(1)x=38(2)x=6【分析】(1)依次去分母,去括号,移项,合并同类项,系数化为1即可得到答案;(2)依次去分母,去括号,移项,合并同类项,系数化为1即可得到答案.【详解】(1)去分母得:2(2x+1)﹣(2x﹣1)=6,去括号得:4x+2﹣2x+1=6,移项得:4x﹣2x=6﹣2﹣1,合并同类项得:2x=3,系数化为1得:x=32;(2)去分母得:2x﹣(3x﹣5)=4(5+x),去括号得:2x﹣3x+5=20+4x,移项得:2x﹣3x﹣4x=20﹣5,合并同类项得:﹣5x=15,系数化为1得:x=﹣3.【点睛】本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.21.222a b -,4-【分析】直接去括号进而合并同类项,再把已知数据代入得出答案.【详解】解:原式2222734264a ab b b ab a ab =--+--+,222a b =-,当2a =-,2b =时,原式222a b =-,22(2)22=--⨯,48=-,4=-.【点睛】此题主要考查了整式的加减——化简求值,解题的关键是正确去括号、合并同类项.22.(1)2724x x -+-(2)274-【分析】(1)设被擦掉的多项式为M,根据题意列出多项式并化简即可.(2)将12x =-代入求解即可.(1)解:设被擦掉的多项式为M,则()22351475M x x x x =--+--+22351475x x x x =--+-+-2724x x =-+-.(2)解:若12x =-,则2724M x x =-+-21172422⎛⎫⎛⎫=-⨯-+⨯-- ⎪ ⎪⎝⎭⎝⎭274=-.【点睛】此题考查了整式的加减运算及求值,解题的关键是掌握整式的加减运算及求值的方法、通过合并同类项将整式进行化简.23.(1)6023(2)2021P Q =-,理由见解析【分析】(1)根据新运算可得()()(25)(4)20114⊗-=⊗-⊗-,再次利用新运算,即可求解;(2)根据新运算可得()2021P a b c ab ac =⊗-=--,Q a b a c ab ac =⊗-⊗=-,即可求解.(1)解:()()()()2542520214⊗⊗-=⨯-⊗-)()()20114=-⊗-()()201142021=-⨯--6023=;(2)解:2021P Q =-,理由如下:∵()()20212021P a b c a b c ab ac =⊗-=--=--,()20212021Q a b a c ab ac ab ac =⊗-⊗=---=-,∴2021P Q =-.【点睛】本题主要考查了有理数的混合运算,整式的混合运算,理解新运算是解题的关键.24.(1)20-、60(2)207秒或20秒(3)28或220【分析】(1)根据绝对值和平方的非负性可得200a +=,600b -=,即可求解;(2)设经过x 秒时,点P、点Q 分别到原点O 的距离相等,分两种情况:当点P、Q 在点O 两侧时,当点P 与Q 重合时,即可求解;(3)设经过y 秒时,恰好使AP=2BQ.分两种情况:当点Q 在点B 的左侧时,当点Q 在点B 的右侧时,即可求解.(1)解:∵()220600a b ++-=(),且()2200a +≥(),600b -≥,∴200a +=,600b -=,∴20a =-,60b =,∴点A、B 在数轴上对应的数分别20-、60.(2)解:设经过x 秒时,点P、点Q 分别到原点O 的距离相等,当点P、Q 在点O 两侧时,依题意得:2043x x -=,解得:207x =;当点P 与Q 重合时,依题意得:4203x x -=,解得:20x =,∴经过207秒或20秒时,点P、Q 分别到原点O 的距离相等.(3)解:设经过y 秒时,恰好使AP=2BQ.当点Q 在点B 的左侧时,依题意得:()42603y y =-,解得:12y =,∴4122028⨯-=,当点Q 在点B 的右侧时,依题意得:()42360y y =-,解得60y =,∴46020220⨯-=,∴当点P 运动到28或220位置时,恰好使AP=2BQ.【点睛】本题主要考查了数轴上两点间的距离,动点问题,一元一次方程的应用,利用分类讨论和数形结合思想解答是解题的关键.25.(1)①如图所示,射线AC 即为所求,见解析;②如图所示,线段AB,BC,BD 即为所求,见解析;③如图所示,线段CF 即为所求,见解析;(2)根据两点之间,线段最短.【分析】(1)①连接AC 并延长即可;②连接AB,BC,BD 即可;③以点A 为圆心,BD 长为半径画弧交AC 于F,则线段CF=AC-BD;(2)根据两点之间,线段最短,可得AB+BC>AC.【详解】(1)①如图所示,射线AC 即为所求;②如图所示,线段AB,BC,BD 即为所求;③如图所示,线段CF 即为所求;(2)根据两点之间,线段最短,可得AB+BC>AC.故答案为两点之间,线段最短.【点睛】本题主要考查了复杂作图,解决问题的关键是掌握线段、射线的概念以及线段的性质.解题时注意:两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.26.(1)60°(2)80°(3)75°【分析】(1)根据OB 平分∠AOC,OD 平分∠COE,可得35BOC ∠= ,25COD ∠= ,即可求解;(2)根据OB 平分∠AOC,OD 平分∠COE,可得∠COD=12∠COE ,∠BOC =12∠AOC,从而得到∠BOD==12(∠COE +∠AOC),即可求解;(3)设∠COD=2x,则∠BOC=3x,可得∠COE =2∠COD =4x,∠AOC=2∠BOC =6x,从而得到∠AOE=10x,进而得到∠EOM=12∠AOE=5x,再由∠COM=15°,可得到x=15°,即可求解.(1)解:∵OB 平分∠AOC,∠AOC=70°,∴1352BOC AOC ∠=∠= ,∵OD 平分∠COE,∠COE=50°,∴1252COD COE ∠=∠= ,∴∠BOD=∠BOC+∠COD=35°+25°=60°.(2)解:∵OB平分∠AOC,OD平分∠COE,∴∠COD=12∠COE,∠BOC=12∠AOC∴∠BOD=∠COD+∠BOC=12∠COE+12∠AOC=12(∠COE+∠AOC)=12∠AOE=80°.(3)解∵∠COD:∠BOC=2:3,∴设∠COD=2x,则∠BOC=3x,∵OB平分∠AOC,OD平分∠COE,∴∠COE=2∠COD=4x,∠AOC=2∠BOC=6x,∴∠AOE=10x,∵OM平分∠AOE,∴∠EOM=12∠AOE=5x,∵∠EOM-∠COE=∠COM=15°,∴5x-4x=15°,∴x=15°,∴∠BOD=∠COD+∠BOC=2x+3x=75°.。

【人教版】七年级上期末数学试卷(1-5套含答案)

【人教版】七年级上期末数学试卷(1-5套含答案)

七年级数学上册期末模拟数学试卷一、选择题(共13小题;共39分)1.在−−8,−∣−7∣,−0,这四个数中,负数有 A.1个B.2个C.3个D.4个2.以下方位角中,射线OA表示南偏西30°方向的是………………()A. B.C. D.3.下列各组数中,不相等的一组是……………………………()A.−23和−23B.−23和+23C.−22和−22D.−22和−224.下面哪个不是检验直线与平面垂直的工具……………()A.铅垂线B.长方形纸片C.三角尺D.合页型折纸5.如图,几何体的底层由四个大小相同的小立方块组成,则从左面看到的图形是 A. B.C. D.6.下列算式中,运算结果为负数的是 A.−−23B.−∣−1∣C.−−D.−327.如果有理数,满足条件B>0,那么÷的值是 A.正数B.负数C.非负数D.非正数8.计算−36×−34时,可以使运算简便的是 A.乘法交换律B.乘法分配律C.加法结合律D.乘法结合律9.下列说法:①若,互为相反数,则+=0;②若+=0,则,互为相反数;③若,互为相反数,则=−1;④若=−1,则,互为相反数.其中正确的结论有 A.1个B.2个C.3个D.4个10.汛期的某一天,某水库上午8时的水位是45 m,随后水位以每小时0.6 m的速度上涨,中午12时开始开闸泄洪,之后水位以每小时0.3 m的速度下降,则当天下午6时,该水库的水位是( )A.45.4 mB.45.6 mC.45.8 mD.46 m11.用一根长为(单位:cm)的铁丝,首尾相接围成一个正方形,要将它按如图的方式向外等距扩1(单位:cm)得到新的正方形,则这根铁丝需增加( )A.4 cmB.8 cmC.+4cmD.+8cm12.定义一种对正整数的“F”运算,①当为奇数时,结果为3+5;②当为偶数时,结果为2(其中是使2为奇数的正整数),并且运算重复进行,例如,取=26,则当=449,则第201次“F”运算的结果是( )A.1B.4C.6D.813.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,⋯,按此规律排列,则第个图形中小圆圈的个数为 A.3B.3+1C.3+2D.3+3二、填空题(共4小题;共16分)14.如果用平面截掉一个长方体的一个角(即切去一个三棱锥),则剩下的几何体最多有个顶点,最少有条棱.15.如图,是一个简单的数值计算程序,当输入的的值为5,则输出的结果为.16.检查5个篮球的质量,把超过标准质量的克数记作正数,不足的克数记作负数,检查结果如表:篮球的编号12345与标准质量的差g+4+7−3−8+9(1)最接近标准质量的是号篮球;(2)质量最大的篮球比质量最小的篮球重g.17.若一个棱柱共有15条棱,则它的侧面数是.三、解答题(共8小题;共65分)18.把下列各数分别填在相应的大括号内:25,−0.91,π,3.14,−7,0,−50,78,9.(1)整数有: ;(2)分数有: ;(3)正整数有: ;(4)负整数有: ;(5)正分数有: ;(6)负分数有: ;19.将−(−3),−,−(+4),−(−1)2019在数轴上表示出来,并用“<”号连接.20.如图,若图中平面展开图折叠成正方体后,相对面上的两个数字之和为5,求++的值.21.某自行车厂计划平均每天生产300辆自行车,但由于各种原因,实际每天生产量与计划量相比有出入,下表是某周的生产情况(超产记为正,减产记为负):星期一二三四五六日增减产量/辆+6−1−4+13−10+15−8(1)根据记录的数据求该厂星期五生产自行车的辆数;(2)根据记录的数据求该厂本周实际生产自行车的辆数;(3)该厂实行每天计件工资制,每生产一辆自行车可得60元,若超额完成任务,则超过部分每辆在60元基础上另奖20元;少生产一辆扣25元.那么该厂工人这一周的工资总额是多少元?(4)若将(3)中的“实行每天计件工资制”改为“实行每周计件工资制”,其他条件不变,在此方式下这一周工人的工资与按日计件的工资哪一个较高?请说明理由.22.有20筐白菜,以每筐25 kg为标准,超过或不足的千克数分别用正、负数来表示,记录如下:与标准质量的差值/kg−3−2−1.501 2.5筐数182324(1)20筐白菜中,最重的一筐比最轻的一筐重多少千克?(2)与标准质量相比,20筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,则出售这20筐白菜可卖多少元?23.计算:(1)12−−18+−7−15;(2)−14+274−1−32;(3)−2−12×−14+(4)2+−×÷−.24.先化简再求值:(1)5B−22−3B+2B2−2,其中=−12,=−1,=3;(2)322−B−232−2B,其中=−2,=−3.25.如图所示,将连续的奇数1,3,5,7,⋯排列成如下的数表,用十字形框框出5个数.(1)探究规律一:设十字框中间的奇数为,则框中五个奇数的和用含的整式表示为,这说明被十字框框中的五个奇数的和一定是正整数>1的倍数,这个正整数是;(2)探究规律二:落在十字框中间且位于第二列的一组奇数是15,27,39,⋯,则这一组数可以用整式表示为12+3(为正整数),同样,落在十字框中间且位于第三列的一组奇数可以表示为.(用含的式子表示)(3)运用规律(1)被十字框框中的五个奇数的和可能是625吗?若能,请求出这五个数,若不能,请说明理由;(2)请问(1)中的十字框中间的奇数落在第几行第几列?答案第一部分1.A【解析】−−8=8;−∣−7∣=−7;−0=0;−=49,∴负数有1个.2.D【解析】解:根据方位角的概念,结合题意要求和选项,故选D.3.D【解析】−22和−22相等,不合题意4.B【解析】解:D、长方形纸片只能判断长与宽互相垂直,不能判断与水平面垂直;A、根据重力学原理,铅垂线垂直于水平面;C、将两块三角板的直角边重合,另外两条直角边相交,放在水平面上,可判断重合的直角边垂直于水平面;B、合页型折纸其折痕与纸被折断的一边垂直,即折痕与被折断的两线段垂直,把两放到水平面上,可判断折痕与水平面垂直;故选:B.5.B【解析】从左面看该几何体,看得到的图形下面有两个小正方形,上面左侧有一个小正方形.6.B7.A8.B9.C10.B11.B12.D13.D【解析】因为第1个图形有3+3×1=6个圆圈,第2个图形有3+3×2=9个圆圈,第3个图形有3+3×3=12个圆圈,⋯所以第个图形有3+3个圆圈.第二部分14.10,1215.32【解析】把=5代入得5−−12÷−2=5−1÷−2=−2<0,把=−2代入得−2−−12÷−2=−2−1÷−2=32>0,则输出的结果为32.16.3,17【解析】(1)因为∣4∣=4,∣7∣=7,∣−3∣=3,∣−8∣=8,∣9∣=9,3<4<7<8<9,所以3号球质量接近标准质量;(2)质量最大的篮球比质量最小的篮球重:9−−8=17(克).17.5【解析】由棱柱的特点可知,这是一个五棱柱.故它有5个侧面.第三部分18.(1)25,−7,0,−50,9(2)−0.91,3.14,78(3)25,9(4)−7,−50(5)3.14,78(6)−0.9119.−(−3)=3,−−=−12,−(+4)=−4,−(−1)2019=1,如图所示.<−(−1)2019<−(−3).故−(+4)<−20.由题意得与相对的是−1,所以−1+=5,=6,与相对的是8.所以8+=5,=−3,与2相对的是3,所以3+2=5,=1,所以++=6+(−3)+1=4.21.(1)300−10=290(辆).即该厂星期五生产自行车290辆.(2)300×7++6+−1+−4++13+−10++15+−8=2100+11=2111辆.即该厂本周实际生产自行车2111辆.(3)2111×60+6+13+15×20+−1−4−10−8×25=126765元.即该厂工人这一周的工资总额是126765元.(4)实行每周计件工资制时工资较高.理由如下:实行每周计件工资制的工资为2111×60+11×20=126660+220=126880>126765.故按周计件工资制的一周工资较高.22.(1)最重的一筐比最轻的一筐重2.5−−3=5.5kg.(2)−3×1+−2×8+−1.5×2+0×3+1×2+2.5×4=−10kg.答:与标准质量相比,20筐白菜总计不足10 kg.(3)2.6×25×20−10=1274(元).答:出售这20筐白菜可卖1274元.23.(1)12−−18+−7−15=12+18+−7+−15=8.(2)−14+274×1÷−32=−1+274×−÷9=−1−92×19=−1−12=−32.(3)−2−12×14+=−2−4+6=−9.(4)2−3×÷−=5×7÷916=−×169=6−8021=4621.24.(1)5B −22−3B +2B 2−2=5B −22−3B +2B 2−22=5B −22−3B −2B 2+22=2B −2B 2.当=−12,=−1,=3时,原式=2×−×−1×3−2×−×−12=4.(2)322−B −232−2B =62−3B −62+4B =B.当=−2,=−3时,原式=−2×−3=6.25.(1)5;5【解析】设十字框中间的奇数为,则框中五个奇数中其他四个数分别为−12,−2,+2,+ 12.所以框中五个奇数的和为−12+−2+++2++12=5,所以这个正整数是5.(2)12+5【解析】因为落在十字框中间且位于第二列的一组数为12+3,所以落在十字框中间且位于第三列的一组数为12+3+2=12+5.(3)(1)根据题意得5=625,则=125,其他四个数为−12=113,−2=123,+2=127,+12=137.所以这五个数分别为113,123,125,127,137.(2)因为125=2×63−1,所以125为该数表的第63个数又因为63=6×10+3,所以(1)中的十字框中间的奇数落在第11行第3列.上学期期末调研考试七年级数学试题注意事项:1.本卷共有4页,共有25小题,满分120分,考试时限120分钟.2.答题前,考生先将自己的姓名、准考证号填写在试卷和答题卡指定的位置,并认真核对条形码上的准考证号和姓名,在答题卡规定的位置贴好条形码.3.考生必须保持答题卡的整洁,考试结束后,请将本试卷和答题卡一并上交.一、选择题(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项的字母填涂在答题卡中相应的格子内.1.在1,0,-2,-1中,最小的数是()A.1B.0C.-2D.-12.被称为“新世界七大奇迹”之一的北京大兴国际机场,其航站楼面积为700000m2,数700000用科学记数法可表示为()A.7×106B.7×105C.0.7×107D.70×1043.如图,点A位于点O的()A.北偏西65°方向上B.南偏西65°方向上C.北偏西35°方向上D.南偏西35°方向上4.下列各组单项式是同类项的是()A.4x和4y B.xy2和4xy C.4xy2和–x2y D.–4xy2和y2x5.如果a=b,则下列变形正确的是()A.2a=2+b C.7-a=7+b D.a+b=06.一个正方体的表面展开图如图所示,则原正方体中字“铁”所在面的对面所标的字是()A.通B.十C.堰D.啦7.已知有理数a,b在数轴上的位置如图所示,则下列结论中正确的是()A.a+b<0B.a-b<0B.C.ab>0D.a>08.时钟12点10分时,时针与分针所夹的小于平角的角为()A.45°B.50°C.55°D.60°9.将一堆糖果分给幼儿园的小朋友,如果每人2颗,那么就多8颗;如果每人3颗,那么就少12颗.设有糖果x颗,则可得方程为()10.下列图形是由同样大小的棋子按照一定规律排列而成的,其中,图①中有5个棋子,图②中有10个棋子,图③中有16个棋子,……,则图⑫中棋子的个数为()A.73B.86C.100D.115二、填空题(每题3分,共18分.请直接将答案填写在答题卡中,不写过程)11.计算:−1−(−2)的结果是.12.若关于x的方程2x–3=1与x+k=1的解相同,则k=.13.若m2+mn=−5,n2−3mn=10,则m2+4mn−n2的值为.14.如图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置的9个数(如6、7、8、13、14、15、20、21、22).若圈出的9个数中,最大数与最小数的和为44,则这9个数的和为.15.如图,将两块直角三角板AOB与COD的直角顶点O重合在一起,若∠AOD=4∠BOC,OE为∠BOC的平分线,则∠DOE的度数为.16.如图所示,是一个运算程序示意图.若第一次输入k的值为125,则第2019次输出的结果是______________。

2024人教版七年级数学上册期末考试试卷

2024人教版七年级数学上册期末考试试卷

2023-2024 学年第一学期期末试卷初一数学2024.01考生须知1.本试卷共6页,共三道大题,28道小题,满分100分,考试时间120分钟.2.在试卷和答题卡上正确填写学校名称、姓名和考号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色签字笔作答.一、选择题:(共16分,每小题2分)第1--8题均有四个选项,符合题意的选项只有一个.1.下列4个几何体中,是圆锥的为2.在《九章算术》中有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫作正数与负数.若向东走5米记为+5米,则向西走3米记为(A )+5米(B )-5米(C )+3米(D )-3米3.据报道,我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到每秒338600000亿次.将338600000用科学记数法表示为(A )3.386×108(B )0.3386×109(C )33.86×107(D )3.386×1094.下列4个算式中,结果正确的是(A )3a +2b =5ab(B )3a -(-2a )=5a (C )(3-a )-(2-a )=1-2a (D )3a 2-2a =a5.下列4个式子中结果为负数的是(A )-(-4)(B )-|-4|(C )(-4)2(D )|-4|(A )(B )(C )(D )6.如图,数轴上有A,B,C,D四个点,其中所对应的数的绝对值最小的点是(A)点A(B)点B(C)点C(D)点D7.如图,∠BDC=90°,点A在线段DC上,点B到直线AC的距离是(A)线段DA的长(B)线段BA的长(C)线段DC的长(D)线段BD的长8.下列说法:①单项式ab2的系数是1;②单项式ab2的次数是2;③多项式a+b2的次数是3.正确的是(A)①(B)②(C)③(D)①②③二、填空题(共16分,每小题2分)9.-4的相反数是.10.写出一个大于-5的负整数是.11.比较大小:-3-2(填“>”,“<”或“=”).12.如果x=3是关于x的方程2x+3a=18的解,那么a的值是.13.如果单项式3x2m y6与5x4y n+3是同类项,那么n m的值是.14.计算:90°-50°30′=.15.我国明代著名数学家程大位的《算法统宗》一书中记载了一个“百羊问题”:甲赶群羊逐草茂,乙拽肥羊一只随其后;戏问甲及一百否?甲云所说无差谬,若得这般一群凑,再添半群小半群,得你一只来方凑,玄机奥妙谁猜透.题目的意思是:甲赶了一群羊在草地上往前走,乙牵了一只肥羊紧跟在甲的后面.乙问甲:“你这群羊有一百只吗?”甲说:“如果再有这么一群,再加半群,又加四分之一群,再把你的一只凑进来,才满100只.”请问甲赶的羊一共有多少只?如果设甲赶的羊一共有x只,那么可列方程...为.16.下面的框图是解方程1255241345--=-++y y y 的流程:在上述五个步骤中,依据是“等式的基本性质2”的步骤有.(只填序号)三、解答题(17-18题,每小题8分;19-26题,每小题5分;27-28题,每小题6分)17.计算:(1)(-5)+9-(-6)-20;(2)10÷(-2)+(-7)×(-3)-(-4).18.计算:(1)251()(18)362-+⨯-;(2)22115(3)4⎡⎤--⨯--⎣⎦.19.解方程:2x -3=x +1.20.解方程:12323x x +-=.21.先化简,再求值:已知:222(24)2()x x y x y --+-,其中1x =-,12y =.22.已知:点C 是线段AB 的中点,点D 在直线AB 上,且BC =5,BD =3.(1)求线段AB 的长;(2)直接写出线段AD 的长.23.按要求画图:如图,点A ,B ,C ,D 是同一平面内的四个点.(1)画线段AB 和直线AC ;(2)在线段AB 的反向延长线上取一点E ,使EA =AB ;(3)过点D 作DF ⊥AB 于点F ;(4)在直线AC 上找一点P ,使得EP +PD 最小.24.如图,∠CAB +∠ABC =90°,AD 平分∠CAB ,交BC 边于点D ,BE 平分∠ABC ,交AC 边于点E .(1)依题意补全图形;(2)①∠DAB +∠EBA =°;②补全证明过程.证明:∵AD 平分∠CAB ,BE 平分∠ABC ,∴∠DAB =21∠CAB ,∠EBA =.(理由:)∵∠CAB +∠ABC =90°,∴∠DAB +∠EBA =21(∠CAB +∠ABC )=_____ .25.本学期学习了一元一次方程的解法,下面是小明同学的解题过程:上述小明的解题过程从第步开始出现错误,错误的原因是________________________________________________.请你写出正确的解题过程.26.列方程解应用题:延庆区张山营镇是著名的“苹果之乡”,出产的苹果色泽鲜艳、品种优良,红富士苹果获得“中华名果”的称号.秋收季节,某公司打算到张山营果园基地购买一批苹的有两种销售方案,方案一:每千克10元,由基地送货上门;方案二:每千克8元,由顾客自己运回.已知该公司租车从基地到公司的运输费为5000元.(1)公司购买多少千克苹果时,选择两种购买方案所需的费用相同?(2)如果公司打算购买3000千克苹果,选择哪种方案省钱?为什么?27.阅读材料:对于任意有理数a,b,规定一种特别的运算“⊕”:a⊕b=a-b+ab.例如,2⊕5=2-5+2×5=7.(1)求3⊕(-1)的值;(2)若(-4)⊕x=6,求x的值;(3)试探究这种特别的运算“⊕”是否具有交换律?28.对于数轴上三个不同的点A,B,C,给出如下定义:在线段AB,BC,CA中,若其中有两条线段相等,则称A,B,C三点是“均衡点”.(1)点A表示的数是-2,点B表示的数是1,点C表示的数是3,①A,B,C三点______(填“是”或“不是”)“均衡点”;②点M表示的数是m,且B,C,M三点是“均衡点”,则m=;(2)点D表示的数是x,点E表示的数是n,线段EF=a(a为正整数),线段DE=b,若D,E,F三点是“均衡点”,且关于x的一元一次方程ax+x=4b的解为整数,求n的最小值.。

七年级上学期期末考试数学试卷-附带有答案

七年级上学期期末考试数学试卷-附带有答案

七年级上学期期末考试数学试卷-附带有答案学校:班级:姓名:考号:一、选择题(共12小题,每小题3分,满分36分.在每小题给出的四个选项中,只有一项是符合题目要求的,在试卷上作答无效)1.(3分)﹣2的相反数是()A.﹣2B.2C.﹣D.±22.(3分)下面的调查,适合用全面调查的是()A.雪花啤酒的市场占有率B.某校七年级1班的数学期考成绩及格率C.富川县七年级学生的视力情况D.富川脐橙的亩产量3.(3分)下列各式不属于整式的是()A.4a2B.4a2﹣a C.D.4.(3分)如如如如如如如如如如如如AB如如如BA如如如如如如如如如如AB如如如BC如如如如如如如如如如AB如如如BC如如如如如如如如如A如如如BC如如如如C如如如AB如如如如如如()A.2个B.3个C.4个D.5个5.(3分)x=1是关于x的方程2x﹣a=3的解,则a的值是()A.﹣2B.2C.﹣1D.16.(3分)已知a>0,b<0,a+b=c,则下列结论一定成立的是()A.a>c B.b>c C.c>a D.c<07.(3分)下列说法正确的是()A.近似数3.6与3.60精确度相同B.数2.9954精确到百分位为3.00C.近似数1.3×104精确到十分位D.近似数3.61万精确到百分位8.(3分)若与是同类项如如x,y如如如()A.B.C.D.9.(3分)已知A、B、C都是直线l上的点,且AB=5cm,BC=3cm,如AC=()A.8cm B.2cmC.4cm D.8cm或者2cm10.(3分)下列关于有理数的说法正确的是()A.有理数可分为正有理数和负有理数两大类B.正整数集合与负整数集合合在一起构成整数集合C.0既不属于整数也不属于分数D.整数和分数统称为有理数11.(3分)一个角的余角的度数是这个角的补角的度数的,那么这个角的度数等于()A.90°B.75°C.⋅45°D.15°12.(3分)下列表格中的四个数都是按照规律填写的,则表中x的值是()A.135B.170C.209D.252二、填空题:(每小题3分,共18分;请把答案填在答题卡对应的位置上,在试卷上作答无效.)13.(3分)人们在修建隧道时往往修建一条直的穿过大山的隧道,这反映了数学的哪个基本事实.14.(3分)多项式3+x2z﹣2xy2+4x2y2z的次数是.15.(3分)如如如如如如如如如如如如如如如如如如如如如如如如如如如如如1857如如如如如如如如如如如如如1500如如如如如如如如如如如如如如如如1000如如如如如如如如6°C如如如如如如如如如如如如如20°C如如如如如如如如如如如°C.16.(3分)数轴上到原点的距离等于3个单位长度的点所表示的数为.17.(3分)在8:30分,这一时刻钟面上时针与分针的夹角是度.18.(3分)如1-9如如如如如如3×3如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如“如如如”如如如如如如如如如“如如”如如1如如如如如如如如如“如如”如如2如如如如如如如如如如如“如如如”如如x-y如三、解答题:(共8小题,满分66分,解答题要写出文字说明、演算步骤或证明过程,在19.(6分)计算:(﹣3)2×.20.(10分)解下列方程或方程组:(1).(2).21.(6分)如如如如O如如如AB如如如如如如如如O如如如如如OC如OD如如如BOC如如BOD如如AOD如如如如如如1如2如3如如如如(1)∠BOD的度数为°;(2)∠BOC余角的度数为°;(3)∠AOD与∠AOC的度数之比为.22.(8分)先化简,再求值:3b2﹣a2+2(2a2﹣3ab)﹣3(a2+b2).其中,b=﹣2.23.(8分)如如如如如如2022如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如2290如如如如如如如如如8如如如如如如如如如如如如如如2022如11如20如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如(1)在扇形统计图中,“支持巴西”所对应的扇形的圆心角的度数是.(2)参与调查的学生共有人,支持西班牙的学生有人.(3)如果小彤所在学校的学生人数有2000人,请你估算一下该校支持法国和英格兰的学生一共约有多少人.24.(8分)如如如如如如如A如B如C如D如如如如如AC=2BC如D如AB如如如CD=2如(1)图中共有条线段;(2)求AC的长.25.(10分)对任意四个有理数a,b,c,d定义新运算=ad﹣bc.(1)根据运算规则,计算的值.(2)已知=15,求x的值.26.(10分)如如如如如如如如如如如如如如如如如如如如如如如如如如如6如如如如4如如如如如如如如如7如如如如1如如如2如如如如8如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分.在每小题给出的四个选项中,只有一项是符合题目要求的,在试卷上作答无效)1.【答案】B【解答】解:﹣2的相反数是2.故选:B.2.【答案】B【解答】A.雪花啤酒的市场占有率,不符合题意;B.某校七年级1班的数学期考成绩及格率,符合题意;C.富川县七年级学生的视力情况,不符合题意;D.富川脐橙的亩产量,不符合题意;故选:B.3.【答案】D【解答】解:A选项是单项式,属于整式;B选项是多项式,属于整式;C选项是单项式,属于整式;D选项的分母中含有字母b,是分式故选:D.4.【答案】B【解答】解:①线段AB与线段BA是同一条线段,正确;②线段AB与线段BC不是同一条线段,原来的说法错误;③直线AB与直线BC是同一条直线,正确;④点A不在线段BC上,原来的说法错误;⑤点C在射线AB上,正确;综上所述,正确的有3个.故选:B.5.【答案】C【解答】解:将x=1代入2x﹣a=72﹣a=3a=﹣3故选:C.6.【答案】A【解答】解:∵a>0,b<0∴a+b>6又∵a+b=c∴a>c故选:A.7.【答案】B【解答】解:A、近似数3.6精确到十分位,所以A选项错误;B、数4.9954精确到百分位为3.00;C、近似数1.8×104精确到千位,所以C选项错误;D、近似数3.61万精确到百位.故选:B.8.【答案】D【解答】解:∵与是同类项∴∴故选:D.9.【答案】D【解答】解:当如图1所示时∵AB=5cm,BC=3cm∴AC=5+3=3(cm);当如图2所示时∵AB=5cm,BC=5cm∴AC=5﹣3=2(cm).故选:D.10.【答案】D【解答】解:有理数可分为正有理数,0和负有理数;正整数集合,0与负整数集合合在一起构成整数集合;4是整数,但不是分数;整数和分数统称为有理数,正确;故选:D.11.【答案】C【解答】解:设这个角的度数为x,则这个角余角的度数为90°﹣x∵这个角余角的度数是这个角的补角的度数的∴90°﹣x=(180°﹣x)解得x=45°.故选:C.12.【答案】C【解答】解:根据表格可得规律:第n个表格中左上数字为n左下数字为n+1右上数字为2(n+5)右下数字为2(n+1)(n+7)+n∴20=2(n+1)解得n=4∴a=9,b=10.故选:C.二、填空题:(每小题3分,共18分;请把答案填在答题卡对应的位置上,在试卷上作答无效.)13.【答案】两点之间,线段最短.【解答】解:人们在修建隧道时往往修建一条直的穿过大山的隧道,这反映了数学的哪个基本事实:两点之间.故答案为:两点之间,线段最短.14.【答案】5.【解答】解:∵4x2y6z的次数是5∴多项式的次数是5故答案为:7.15.【答案】11.【解答】解:1500÷1000×(﹣6)=﹣9(°C)20+(﹣8)=11(°C)故答案为:11.16.【答案】见试题解答内容【解答】解:根据数轴的意义可知,在数轴上与原点的距离等于3个单位长度的点所表示的数是﹣3或7.故答案为:﹣3或3.17.【答案】见试题解答内容【解答】解:30分钟,钟面上时针从8开始转的度数为30×0.8°=15°所以此时钟面上时针与分针夹角的度数=8×30°+15°﹣180°=75°.故答案为:75.18.【答案】﹣8.【解答】解:解得:∴x﹣y=1﹣9=﹣6故答案为:﹣8.三、解答题:(共8小题,满分66分,解答题要写出文字说明、演算步骤或证明过程,在19.【答案】11.【解答】解:(﹣3)2×=7×+3﹣(﹣4)=3+5+4=11.20.【答案】(1)x=7;(2).【解答】解:(1)2x﹣(x+2)=62x﹣x﹣3=6x﹣1=6x=7;(2)②×2得:8y﹣6x=﹣12③①+③得:y=﹣1把y=﹣1代入②得:x=5∴方程组的解为:.21.【答案】(1)72°;(2)54°;(3)54:67.【解答】解:(1)∵∠BOD:∠AOD=2:3∴∠BOD=180×=72°;(2)∵∠BOC:∠BOD=1:7∴∴∠BOC=36°∴∠BOC的余角=90°﹣36°=54°;(3)∵∠BOD:∠AOD=6:3∴∠AOD=180×=108°∴∠AOC=360°﹣∠BOC﹣∠BOD﹣∠AOD=360°﹣36°﹣72°﹣108°=134°∴∠AOD:∠AOC=108°:134°=54:67.故答案为:(1)72°;(2)54°;(3)54:67.22.【答案】﹣6ab;4.【解答】解:原式=3b2﹣a5+4a2﹣8ab﹣3a2﹣2b2=﹣6ab;当a=,b=﹣2时原式=﹣4××(﹣8)=4.23.【答案】(1)108°;(2)200,46;(3)940人.【解答】解:(1)“支持巴西”的百分比为100%﹣23%﹣26%﹣21%=30%“支持巴西”所对应的扇形的圆心角的度数是360°×30%=108°故答案为:108°;(2)参与调查的学生数为60÷30%=200(人)支持西班牙的学生有200×23%=46(人)故答案为:200,46;(3)2000×(21%+26%)=940(人)∴该校支持法国和英格兰的学生一共约有940人.24.【答案】(1)6;(2)8.【解答】解:(1)图中的线段有:线段AD,线段AC,线段DC,线段CB.故答案为:6;(2)∵AC=2BC∴设BC=x,则AC=4x∵D为AB中点∴AD=BD=(AC+BC)=x∴CD=BD﹣BC=x﹣x=x∵CD=2∴x=4解得x=4∴AC=2x=2.25.【答案】(1)﹣5;(2)x=3.【解答】解:(1)由题意得:=1×5﹣2×4=6﹣8=﹣5;(2)∵=15∴4x﹣(﹣2x)=153x+6x=155x=15x=3.26.【答案】该校七年级男寄宿生有394人,预计安排给七年级男寄宿生的宿舍有65间.【解答】解:设该校七年级男寄宿生有x人,预计安排给七年级男寄宿生的宿舍有y间根据题意得:解得:.答:该校七年级男寄宿生有394人,预计安排给七年级男寄宿生的宿舍有65间。

2020-2021学年七年级上学期期末考试数学试题(含答案) (5)

2020-2021学年七年级上学期期末考试数学试题(含答案) (5)

2020-2021学年七年级上学期期末考试数学试题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分) 1.-2的绝对值是( )A .2B .-2 C.12 D .-122.我国是世界上严重缺水的国家之一,目前我国每年可利用的淡水资源总量为27 500亿立方米,人均占有淡水量居全世界第110位,因此我们要节约用水,27 500亿用科学记数法表示为( )A .275×104B .2.75×104C .2.75×1012D .27.5×10113.以下问题,不适合用普查的是( )A .了解全班同学每周体育锻炼的时间B .旅客上飞机前的安检C .学校招聘教师,对应聘人员面试D .了解一批手机的使用寿命 4.数轴上表示-1.2的点在( )A .-2和-1之间B .-1和0之间C .0和1之间D .1和2之间 5.用五块大小相同的小正方体搭成如图所示的几何体,从左面看到该几何体的形状图是( )6.下列说法错误的是( )A .倒数等于本身的数只有±1B .-2x 3y 3的系数是-23,次数是4C .经过两点可以画无数条直线D .两点之间线段最短 7.下面是小虎同学做的整式加减的题,其中正确的是( )A .2a +3b =6abB .ab -ba =0C .5a 3-4a 3=1 D .-a -a =0 8.下列方程中解为x =0的是( )A .2x +3=2x +1B .5x =3x C.x +12+4=5x D.14x +1=09.某种商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为( ) A .240元 B .250元 C .280元 D .300元10.一支水笔正好与一把直尺平靠放在一起(如图),小明发现:水笔的笔尖端(A 点)正好对着直尺刻度约为5.6 cm 处,另一端(B 点)正好对着直尺刻度约为20.6 cm 处,则水笔的中点位置的刻度约为( )A .15 cmB .7.5 cmC .13.1 cmD .12.1 cm 二、填空题(每小题3分,共18分)11.购买单价为a 元的笔记本3本和单价为b 元的铅笔5支应付款______元. 12.若-7xm +2y 与-3x 3y n是同类项,则m =______,n =______.13.已知m ,n 互为相反数,则3+5m +5n =______.14.把两块三角板按如图所示那样拼在一起,则∠ABC =______度.15.某超市统计了某个时间段顾客在收银台排队付款的等待时间,并绘制成如图所示的频数直方图(图中等待时间6 min 到7 min 表示大于或等于6 min 而小于7 min ,其他类同).这个时间段内顾客等待时间不少于4 min 的人数有______人.16.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是______天.三、解答题(共72分) 17.(8分)计算:(1)(29-14+118)÷(-136); (2)-14-(-6)+2-3×(-13).18.(6分)先化简,再求值:2x 3-(7x 2-9x)-2(x 3-3x 2+4x),其中x =-1.19.(8分)小明去文具店购买2B 铅笔,店主说:“如果多买一些,给你打8折”.小明测算了一下,如果买100支,比按原价购买可以便宜10元,求每支铅笔的原价是多少?20.(8分)如图,在铅笔盒中有一支圆珠笔和一把小刀,已知圆珠笔的长为13.5 cm ,若把圆珠笔与小刀按平行于铅笔盒长的方向放置,则其重叠部分BC 的长是2 cm.经测量,铅笔盒的中点E 到点A 的距离为10 cm ,请求出小刀的长度.21.(10分)某校想了解学生每周的课外阅读时间的情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数直方图和扇形统计图.根据图中提供的信息,解答下列问题:(1)补全频数直方图;(2)求扇形统计图中m的值和E组对应的圆心角度数.22.(10分)某市对居民生活用电实行“阶梯电价”收费,具体收费标准见下表:今年5月份,该市居民甲用电100度,交电费80元;居民乙用电200度,交电费170元.(1)上表中,a=0.8,b=1;(2)若该市某居民8月份交的电费的平均电价为0.9元/度,则该居民8月份用电多少度?23.(10分)如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.(1)图中有多少个小于平角的角?(2)求出∠BOD的度数;(3)请通过计算说明OE平分∠BOC.24.(12分)如图是一计算程序,回答下列问题:(1)当输入某数后,第1次得到的结果为5,则输入的数值x是多少?(2)小华发现若输入的x的值为16时,第1次得到的结果为8,第2次得到的结果为4,…①请你帮小华完成下列表格:②你能求出第2 019次得到的结果是多少吗?请说明理由.参考答案一、选择题(每小题3分,共30分) 1.-2的绝对值是(A)A .2B .-2 C.12 D .-122.我国是世界上严重缺水的国家之一,目前我国每年可利用的淡水资源总量为27 500亿立方米,人均占有淡水量居全世界第110位,因此我们要节约用水,27 500亿用科学记数法表示为(C)A .275×104B .2.75×104C .2.75×1012D .27.5×10113.以下问题,不适合用普查的是(D)A .了解全班同学每周体育锻炼的时间B .旅客上飞机前的安检C .学校招聘教师,对应聘人员面试D .了解一批手机的使用寿命 4.数轴上表示-1.2的点在(A)A .-2和-1之间B .-1和0之间C .0和1之间D .1和2之间5.用五块大小相同的小正方体搭成如图所示的几何体,从左面看到该几何体的形状图是(D)6.下列说法错误的是(C)A .倒数等于本身的数只有±1B .-2x 3y 3的系数是-23,次数是4C .经过两点可以画无数条直线D .两点之间线段最短 7.下面是小虎同学做的整式加减的题,其中正确的是(B)A .2a +3b =6abB .ab -ba =0C .5a 3-4a 3=1 D .-a -a =0 8.下列方程中解为x =0的是(B)A .2x +3=2x +1B .5x =3x C.x +12+4=5x D.14x +1=09.某种商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为(A) A .240元 B .250元 C .280元 D .300元10.一支水笔正好与一把直尺平靠放在一起(如图),小明发现:水笔的笔尖端(A 点)正好对着直尺刻度约为5.6 cm 处,另一端(B 点)正好对着直尺刻度约为20.6 cm 处,则水笔的中点位置的刻度约为(C)A .15 cmB .7.5 cmC .13.1 cmD .12.1 cm 二、填空题(每小题3分,共18分)11.购买单价为a 元的笔记本3本和单价为b 元的铅笔5支应付款(3a +5b)元. 12.若-7xm +2y 与-3x 3y n是同类项,则m =1,n =1.13.已知m ,n 互为相反数,则3+5m +5n =3.14.把两块三角板按如图所示那样拼在一起,则∠ABC =120度.15.某超市统计了某个时间段顾客在收银台排队付款的等待时间,并绘制成如图所示的频数直方图(图中等待时间6 min 到7 min 表示大于或等于6 min 而小于7 min ,其他类同).这个时间段内顾客等待时间不少于4 min 的人数有32人.16.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是167天.三、解答题(共72分) 17.(8分)计算:(1)(29-14+118)÷(-136); (2)-14-(-6)+2-3×(-13).解:原式=(29-14+118)×(-36)=-8+9-2=-1. 解:原式=-1+6+2+1 =8.18.(6分)先化简,再求值:2x 3-(7x 2-9x)-2(x 3-3x 2+4x),其中x =-1. 解:原式=2x 3-7x 2+9x -2x 3+6x 2-8x =-x 2+x. 当x =-1时,原式=-(-1)2+(-1)=-2.19.(8分)小明去文具店购买2B 铅笔,店主说:“如果多买一些,给你打8折”.小明测算了一下,如果买100支,比按原价购买可以便宜10元,求每支铅笔的原价是多少? 解:设每支铅笔的原价是x 元,由题意,得 100×0.8x =100x -10.解得x =0.5. 答:每支铅笔的原价是0.5元.20.(8分)如图,在铅笔盒中有一支圆珠笔和一把小刀,已知圆珠笔的长为13.5 cm ,若把圆珠笔与小刀按平行于铅笔盒长的方向放置,则其重叠部分BC的长是2 cm.经测量,铅笔盒的中点E到点A的距离为10 cm,请求出小刀的长度.解:AC=AB-BC=13.5-2=11.5(cm).因为E是AD的中点,所以AD=2AE=2×10=20(cm).所以CD=AD-AC=20-11.5=8.5(cm).答:小刀的长度为8.5 cm.21.(10分)某校想了解学生每周的课外阅读时间的情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数直方图和扇形统计图.根据图中提供的信息,解答下列问题:(1)补全频数直方图;(2)求扇形统计图中m的值和E组对应的圆心角度数.解:(1)总人数为21÷21%=100(人).D组人数为100-10-21-40-4=25(人).频数直方图补充如图.(2)m=40÷100×100=40.E组对应的圆心角度数为360°×4100=14.4°.22.(10分)某市对居民生活用电实行“阶梯电价”收费,具体收费标准见下表:今年5月份,该市居民甲用电100度,交电费80元;居民乙用电200度,交电费170元.(1)上表中,a=0.8,b=1;(2)若该市某居民8月份交的电费的平均电价为0.9元/度,则该居民8月份用电多少度?解:设该居民8月份用电x度.根据题意,得150×0.8+1×(x-150)=0.9x.解得x=300.答:该居民8月份用电300度.23.(10分)如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.(1)图中有多少个小于平角的角?(2)求出∠BOD的度数;(3)请通过计算说明OE平分∠BOC.解:(1)图中有9个小于平角的角.(2)因为OD平分∠AOC,∠AOC=50°,所以∠AOD =∠COD =12∠AOC =25°. 所以∠BOD =180°-25°=155°.(3)因为∠BOE =180°-∠DOE -∠AOD =180°-90°-25°=65°,∠COE =∠DOE -∠COD =90°-25°=65°,所以∠BOE =∠COE ,即OE 平分∠BOC.24.(12分)如图是一计算程序,回答下列问题:(1)当输入某数后,第1次得到的结果为5,则输入的数值x 是多少?(2)小华发现若输入的x 的值为16时,第1次得到的结果为8,第2次得到的结果为4,… ①请你帮小华完成下列表格:②你能求出第2 019次得到的结果是多少吗?请说明理由.解:(1)因为第1次得到的结果为5,而输入值可能是奇数,也可能是偶数,当输入值是奇数时,则x +3=5,解得x =2,不符合前提,舍去;当输入值是偶数时,则12x =5,解得x =10,符合前提. 故输入的数值x 是10.(2)①如表所示.②第2 019次得到的结果是2.理由:因为从第2次开始,每3次是一个循环,且(2 019-1)÷3=672……2,又因为672×3+1=2 017,所以第2 017次与第4次的结果相同,即为1. 所以第2 019次与第3次结果相同,即为2.。

七年级数学第一学期期末测试卷5

七年级数学第一学期期末测试卷5

七年级数学第一学期期末测试卷5班级姓名学号一、填空题(每小题3分,共30分)1.数轴上在原点左边且离开原点2个单位的点所表示的数是。

2.2004年12月21日的天气预报,北京市的最低气温为– 3℃,武汉市的最低气温为5℃,这一天北京市的最低气温比武汉市的最低气温低℃3.神州五号载人飞船的成功发射,标志着我国向月球发射围绕月球探测卫星的条件已渐成熟。

月球距地球约为38万千米,用科学记数法表示为。

4.关于x的方程ax = x + a的解是x = 3,则a的值是。

5.七年级(1)班数学爱好小组的同学一起租车秋游,估量租车费人均摊1 5元,后来又有4名同学加入进来,租车费不变,结果每人可少摊3元,设原先有学生x人,可列方程为。

6.如图是某晚报“热线”一周内接到的热线的统计图,这周内一共接到热线个。

AO CDB(第6题图)(第10题图)7.运算:36°27′×3 = 。

8.已知点C是线段AB的中点,点D是AB的一个三等分点,且AB = 24cm,则CD = cm。

9.时钟上7点整时,时针和分针的夹角是度。

10.如图,∠AOC =∠BOD = 90°,且∠AOB = 162°,则∠COD = 度。

二、选择题(每小题3分,共18分)在每小题给出的四个选项中,只有一个是正确的。

11.式子6 + x与x + 1的和是31,则x的值是()A.– 12 B.12 C.13 D.– 19 12.若有理数a、b满足ab>0,且a + b<0,则下列说法正确的是()A.a、b可能一正一负B.a、b差不多上正数C.a、b差不多上负数D.a、b中可能有一个为013.为了节约用水,某市规定:每户居民每月用水不超过15立方米,按每立方米1.6元收费,超过15立方米,则超过部分按每立方米2.4元收费。

小明家六月份交水费33. 6元,则小明家六月份实际用水()立方米A.21 B.20 C.19 D.18 14.下列图形中,不是正方体表面展开图的图形的个数是()A.1个B.2个C.3个D.4个15.如图,将长方形ABCD沿AE折叠,使点D 落在BC边上的点F,若∠BAF = 60°,则∠DAE =()AB CDFEABCD(第15题图)(第16题图)A.15°B.30°C.45°D.60°16.观看图形,下列说法正确的个数是()(1)直线BA和直线AB是同一条直线;(2)射线AC和射线AD是同一条射线;(3)AB + BD >AD;(4)三条直线两两相交时,一定有三个交点;A.1个B.2个C.3个D.4个三、解答题(本大题共52分)17.(本题5分)运算:355343322⨯⎪⎭⎫⎝⎛-÷⨯⨯⎪⎭⎫⎝⎛-18.(本题5分)解方程:7x + 6 = 16 – 3x 19.(本题共8分,每小题4分)(1)在直线l 上顺次取A 、B 、C 三点,使得AB =4cm ,BC = 3cm 。

2022-2023年北师大版初中数学七年级上册期末考试检测试卷及答案(共五套)

2022-2023年北师大版初中数学七年级上册期末考试检测试卷及答案(共五套)

2022-2023年北师大版数学七年级上册期末考试测试卷及答案(一)一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)已知2x3y2与﹣x3m y2的和是单项式,则式子4m﹣24的值是()A.20B.﹣20C.28D.﹣22.(3分)﹣的相反数是()A.﹣2B.2C.﹣D.3.(3分)下列运算正确的是()A.2a+3b=5a+b B.2a﹣3b=﹣(a﹣b)C.2a2b﹣2ab2=0D.3ab﹣3ba=0 4.(3分)若2(a+3)的值与4互为相反数,则a的值为()A.﹣1B.﹣C.﹣5D.5.(3分)解方程4(x﹣1)﹣x=2(x+)步骤如下:①去括号,得4x﹣4﹣x=2x+1;②移项,得4x+x﹣2x=4+1;③合并同类项,得3x=5;④化系数为1,x=.从哪一步开始出现错误()A.①B.②C.③D.④6.(3分)由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方形个数是()A.3B.4C.5D.67.(3分)下列画图的语句中,正确的为()A.画直线AB=10cmB.画射线OB=10cmC.延长射线BA到C,使BA=BCD.过直线AB外一点画一条直线和直线AB相交8.(3分)有理数,a、b在数轴上的位置如图所示,则a、b、﹣b、﹣a的大小关系是()A.b<﹣a<a<﹣b B.b<a<﹣b<﹣aC.b<﹣b<﹣a<a D.b<a<﹣a<﹣b9.(3分)儿子今年12岁,父亲今年39岁,()父亲的年龄是儿子的年龄的2倍.()A.5年后B.9年后C.12年后D.15年后10.(3分)已知:点A,B,C在同一条直线上,点M、N分别是AB、AC的中点,如果AB=10cm,AC=8cm,那么线段MN的长度为()A.6cm B.9cm C.3cm或6cm D.1cm或9cm二、填空题(本大题共10个小题,每小题3分,共30分)11.(3分)若一个角的余角是它的2倍,这个角的补角为.12.(3分)若关于x的方程3x+2b+1=x﹣(3b+2)的解是1,则b=.13.(3分)如果(a﹣2)x a﹣2+6=0是关于x的一元一次方程,那么a=.14.(3分)如图,用灰白两色正方形瓷砖铺设地面,第n个图案中白色瓷砖块数为.(用含n的代数式表示)15.(3分)单项式﹣的系数是,次数是.16.(3分)有理数a、b、c在数轴上的对应点如图所示,化简:|b|﹣|c+b|+|b ﹣a|=.17.(3分)如图,圈中有6个数按一定的规律填入,后因不慎,一滴墨水涂掉了一个数,你认为这个数可能是.18.(3分)如图,C,D,E是线段AB上的三个点,下面关于线段CE的表示:①CE=CD+DE;②CE=BC﹣EB;③CE=CD+BD﹣AC;④CE=AE+BC﹣AB.其中正确的是(填序号).三、解答题(共40分)19.(8分)计算(1)(﹣)×(﹣30);(2)1÷(﹣1)+0÷4﹣5×0.1×(﹣2)3.20.(8分)解方程(1)3(x+2)﹣1=x﹣3;(2)﹣1=.21.(8分)先化简,再求值:(4x2﹣4y2)﹣3(x2y2+x2)+3(x2y2+y2),其中x=﹣1,y=2.22.(8分)用大小两台拖拉机耕地,每小时共耕地30亩.已知大拖拉机的效率是小拖拉机的1.5倍,问小拖拉机每小时耕地多少亩?23.(14分)如图,P是线段AB上一点,AB=12cm,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上),运动的时间为ts.(1)当t=1时,PD=2AC,请求出AP的长;(2)当t=2时,PD=2AC,请求出AP的长;(3)若C、D运动到任一时刻时,总有PD=2AC,请求出AP的长;(4)在(3)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQ的长.参考答案:一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)下列运算正确的是()A.2a+3b=5a+b B.2a﹣3b=﹣(a﹣b)C.2a2b﹣2ab2=0D.3ab﹣3ba=0【解答】解:A、2a、3b不是同类项,不能合并,此选项错误;B、2a﹣3b=﹣(a﹣b),此选项错误;C、2a2b、﹣2ab2不是同类项,不能合并,此选项错误;D、3ab﹣3ba=0,此选项正确;故选:D2.(3分)已知2x3y2与﹣x3m y2的和是单项式,则式子4m﹣24的值是()A.20B.﹣20C.28D.﹣2【解答】解:由题意可知:2x3y2与﹣x3m y2是同类项,∴3=3m,∴m=1,∴4m﹣24=4﹣24=﹣20,故选(B)3.(3分)﹣的相反数是()A.﹣2B.2C.﹣D.【解答】解:根据相反数的含义,可得﹣的相反数是:﹣(﹣)=.故选:D.4.(3分)若2(a+3)的值与4互为相反数,则a的值为()A.﹣1B.﹣C.﹣5D.【解答】解:∵2(a+3)的值与4互为相反数,∴2(a+3)+4=0,∴a=﹣5,故选C5.(3分)解方程4(x﹣1)﹣x=2(x+)步骤如下:①去括号,得4x﹣4﹣x=2x+1;②移项,得4x+x﹣2x=4+1;③合并同类项,得3x=5;④化系数为1,x=.从哪一步开始出现错误()A.①B.②C.③D.④【解答】解:方程4(x﹣1)﹣x=2(x+)步骤如下:①去括号,得4x﹣4﹣x=2x+1;②移项,得4x﹣x﹣2x=4+1;③合并同类项,得x=5;④化系数为1,x=5.其中错误的一步是②.故选B.6.(3分)由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方形个数是()A.3B.4C.5D.6【解答】解:综合三视图,我们可以得出,这个几何模型的底层有3+1=4个小正方体,第二有1个小正方体,因此搭成这个几何体模型所用的小正方体的个数是4+1=5个.故选:C.7.(3分)下列画图的语句中,正确的为()A.画直线AB=10cmB.画射线OB=10cmC.延长射线BA到C,使BA=BCD.过直线AB外一点画一条直线和直线AB相交【解答】解:A、错误.直线没有长度;B、错误.射线没有长度;C、错误.射线有无限延伸性,不需要延长;D、正确.故选D.8.(3分)有理数,a、b在数轴上的位置如图所示,则a、b、﹣b、﹣a的大小关系是()A.b<﹣a<a<﹣b B.b<a<﹣b<﹣a C.b<﹣b<﹣a<a D.b<a<﹣a<﹣b 【解答】解:根据图示,可得b<﹣a<a<﹣b.故选:A.9.(3分)儿子今年12岁,父亲今年39岁,()父亲的年龄是儿子的年龄的2倍.()A.5年后B.9年后C.12年后D.15年后【解答】解:设x年后父亲的年龄是儿子的年龄的2倍,根据题意得:39+x=2(12+x),解得:x=15.答:15年后父亲的年龄是儿子的年龄的2倍.故选D.10.(3分)已知:点A,B,C在同一条直线上,点M、N分别是AB、AC的中点,如果AB=10cm,AC=8cm,那么线段MN的长度为()A.6cm B.9cm C.3cm或6cm D.1cm或9cm【解答】解:(1)点C在线段AB上,如:点M是线段AB的中点,点N是线段BC的中点,MB=AB=5,BN=CB=4,MN=BM﹣BN=5﹣4=1cm;(2)点C在线段AB的延长线上,如:点M是线段AB的中点,点N是线段BC的中点,MB=AB=5,BN=CB=4,MN=MB+BN=5+4=9cm,故选:D.二、填空题(本大题共10个小题,每小题3分,共30分)11.(3分)若一个角的余角是它的2倍,这个角的补角为150°.【解答】解:设这个角为x°,则它的余角为(90﹣x)°,90﹣x=2x解得:x=30,180°﹣30°=150°,答:这个角的补角为150°,故答案为:150°.12.(3分)若关于x的方程3x+2b+1=x﹣(3b+2)的解是1,则b=﹣1.【解答】解:把x=1代入方程3x+2b+1=x﹣(3b+2)得:3+2b+1=1﹣(3b+2),解得:b=﹣1,故答案为:﹣1.13.(3分)如果(a﹣2)x a﹣2+6=0是关于x的一元一次方程,那么a=3.【解答】解:∵(a﹣2)x a﹣2+6=0是关于x的一元一次方程,∴a﹣2=1,解得:a=3,故答案为:3.14.(3分)如图,用灰白两色正方形瓷砖铺设地面,第n个图案中白色瓷砖块数为2+3n.(用含n的代数式表示)【解答】解:观察图形发现:第1个图案中有白色瓷砖5块,第2个图案中白色瓷砖多了3块,依此类推,第n个图案中,白色瓷砖是5+3(n﹣1)=3n+2.15.(3分)单项式﹣的系数是﹣,次数是3.【解答】解:∵单项式﹣的数字因数是﹣,所有字母指数的和=2+1=3,∴此单项式的系数是﹣,次数是3.故答案为:﹣,3.16.(3分)有理数a、b、c在数轴上的对应点如图所示,化简:|b|﹣|c+b|+|b ﹣a|=﹣b+c+a.【解答】解:由数轴可知:c<b<0<a,∴b<0,c+b<0,b﹣a<0,∴原式=﹣b+(c+b)﹣(b﹣a)=﹣b+c+b﹣b+a=﹣b+c+a,故答案为:﹣b+c+a17.(3分)如图,圈中有6个数按一定的规律填入,后因不慎,一滴墨水涂掉了一个数,你认为这个数可能是26或5.【解答】解:∵按逆时针方向有8﹣6=2;11﹣8=3;15﹣11=4;∴这个数可能是20+6=26或6﹣1=5.18.(3分)如图,C,D,E是线段AB上的三个点,下面关于线段CE的表示:①CE=CD+DE;②CE=BC﹣EB;③CE=CD+BD﹣AC;④CE=AE+BC﹣AB.其中正确的是①②④(填序号).【解答】解:如图,①CE=CD+DE,故①正确;②CE=BC﹣EB,故②正确;③CE=CD+BD﹣BE,故③错误;④∵AE+BC=AB+CE,∴CE=AE+BC﹣AB=AB+CE﹣AB=CE,故④正确;故答案是:①②④.三、解答题(共40分)19.(8分)计算(1)(﹣)×(﹣30);(2)1÷(﹣1)+0÷4﹣5×0.1×(﹣2)3.【解答】解:(1)原式=﹣10+2=﹣8;(2)原式=﹣1+0﹣0.5×(﹣8)=﹣1+4=3.20.(8分)解方程(1)3(x+2)﹣1=x﹣3;(2)﹣1=.【解答】解:(1)去括号,得:3x+6﹣1=x﹣3,移项,得:3x﹣x=﹣3﹣6+1,合并同类项,得:2x=﹣8,系数化为1,得:x=﹣4;(2)去分母,得:3(x+1)﹣6=2(2﹣x),去括号,得:3x+3﹣6=4﹣2x,移项,得:3x+2x=4+6﹣3,合并同类项,得:5x=7,系数化为1,得:x=.21.(8分)先化简,再求值:(4x2﹣4y2)﹣3(x2y2+x2)+3(x2y2+y2),其中x=﹣1,y=2.【解答】解:(4x2﹣4y2)﹣3(x2y2+x2)+3(x2y2+y2)=4x2﹣4y2﹣3x2y2﹣3x2+3x2y2+3y2=x2﹣y2,当x=﹣1,y=2时,原式=(﹣1)2﹣22=﹣3.22.(8分)用大小两台拖拉机耕地,每小时共耕地30亩.已知大拖拉机的效率是小拖拉机的1.5倍,问小拖拉机每小时耕地多少亩?【解答】解:设小拖拉机每小时耕地x亩,则大拖拉机每小时耕地(30﹣x)亩,根据题意得:30﹣x=1.5x,解得:x=12.答:小拖拉机每小时耕地12亩.23.(14分)如图,P是线段AB上一点,AB=12cm,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上),运动的时间为ts.(1)当t=1时,PD=2AC,请求出AP的长;(2)当t=2时,PD=2AC,请求出AP的长;(3)若C、D运动到任一时刻时,总有PD=2AC,请求出AP的长;(4)在(3)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQ的长.【解答】解:(1)根据C、D的运动速度知:BD=2,PC=1,则BD=2PC,∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP,∵AB=12cm,AB=AP+PB,∴12=3AP,则AP=4cm;(2)根据C、D的运动速度知:BD=4,PC=2,则BD=2PC,∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP,∵AB=12cm,AB=AP+PB,∴12=3AP,则AP=4cm;(3)根据C、D的运动速度知:BD=2PC∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP,∴点P在线段AB上的处,即AP=4cm;(4)如图:∵AQ ﹣BQ=PQ ,∴AQ=PQ +BQ ;又∵AQ=AP +PQ ,∴AP=BQ ,∴PQ=AB=4cm ;当点Q'在AB 的延长线上时,AQ′﹣AP=PQ′,所以AQ′﹣BQ′=PQ=AB=12cm .综上所述,PQ=4cm 或12cm .2022-2023年北师大版数学七年级上册期末考试测试卷及答案(二)一.选择题(每小题3分)1.下列选项中,比3-小的数是()A.1- B.0 C.21 D.5-2.第14届中国(深圳)国际茶产业博览会在深圳会展中心展出一只如图所示的紫砂壶,从不同方向看这只紫砂壶,你认为是从上面看到的效果图是()3.下列各式符合代数式书写规范的是()A.a b B.7⨯a C.12-m 元 D.x 2134.2017年12月11日,深圳证券交易所成功招标发行深圳轨道交通专项债劵,用来建设地铁14号线,该项目估算资金总额约为39500000000元,将39500000000元用科学计数法表示为()A.1110395.0⨯元B.101095.3⨯元C.91095.3⨯元D.9105.39⨯元5.下列计算正确的是()A.2624a a a =+ B.ab ba ab =-67 C.ab b a 624=+ D.325=-a a 6.如图所示,能用∠AOB,∠O,∠1三种方法表示同一个角的图形的是()7.现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”,请用数学知识解释图中这一现象,其原因为()A.两点之间线段的长度,叫做这两点之间的距离B.过一点有无数条直线C.两点确定一条直线D.两点之间,线段最短8.深圳市12月上旬每天平均空气质量指数(AQI)分别为:35,42,55,78,57,64,58,69,74,82,为了描述这十天空气质量的变化情况,最适合用的统计图是()A.折线统计图B.频数直方图C.条形统计图D.扇形统计图9.如图,AB=24,点C 为AB 的中点,点D 在线段AC 上,且AD:CB=1:3,则DB 的长度为()A.12B.18C.16D.2010.若2=x 是方程01424=-+m x 的解,则m 的值为()A.10B.4C.3D.-311.在如图所示的2018年元月份的月历表中,任意框出表中竖列上四个数,这四个数的和可能是()A.86B.78C.60D.10112.下列叙述:①最小的正整数是0;②36x π的系数是π6;③用一个平面去截正方体,截面不可能是六边形;④若AC=BC,则点C 是线段AB 的中点;⑤三角形是多边形;⑥绝对值等于本身的数是正数,其中正确的个数有()A.2B.3C.4D.5二、填空题(每小题3分)13.已知323y x m 和n y x 22-是同类项,则式子n m +的值是.14.在数轴上,与表示数1-的点的距离是三个单位长度的点表示的数是.15.某书店把一本新书按标价的八折出售,仍获利30%,若该书的进价为40元,则标价为元.16.如图所示的运算程序中,若开始输入的x 值为96,我们发现第1次输出的结果为48,第2次输出的结果为24,……,第2018次输出的结果为.三、解答题17.(本题15分)计算:(1);15)9()18(16--+--(2)-(;5324)8312761-⨯-+(3).6)5()2(322---⨯-+-18.(本题4分)先化简,再求值:),244(21)53(22----a a a a 其中a=31.19.(本题8分)解方程(1));3(1)2(2+-=+x x21.(本题5分):如图,∠AOC=21∠BOC=50°,OD 平分∠AOB,求∠AOB 和∠COD 的度数.22.(本题5分)深圳某小区停车场的收费标准如下:中型汽车的停车费为15元/辆,小型汽车的停车费为10元/辆.现在停车场有50辆中、小型汽车,期中中型汽车有x辆.(1)则小型汽车的车辆数为(用含x的代数式表示)(2)这些车共缴纳停车费580元,求中、小型汽车各有多少辆?23.(本题8分)如图,在数轴上点A表示的数a、点B表示数b,a、b满足|a-30|+(b+6)2=0.点O是数轴原点.(1)点A表示的数为__,点B表示的数为,线段AB的长为.(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,请在数轴上找一点C,使AC=2BC,则点C在数轴上表示的数为.(3)现有动点P、Q都从B点出发,点P以每秒1个单位长度的速度向终点A移动;当点P移动到O点时,点Q才从B点出发,并以每秒3个单位长度的速度向右移动,且当点P到达A点时,点Q就停止移动,设点P移动的时间为t秒,问:当t为多少时,P、Q两点相距4个单位长度?参考答案2022-2023年北师大版数学七年级上册期末考试测试卷及答案(三)一、选择题(每题3分,共30分)1.在0,-2,1,5这四个数中,最小的数是()A.0B.-2C.1D.52.下列调查中,适宜采用抽样调查方式的是()A.调查奥运会上女子铅球参赛运动员兴奋剂的使用情况B.调查某校某班学生的体育锻炼情况C.调查一批灯泡的使用寿命D.调查游乐园中一辆过山车上共40个座位的稳固情况3.下列运算正确的是()A.6a2-a2=5B.2a+b=2abC.4ba2-3a2b=a2b D.2a2+3a4=5a64.如图,若A是有理数a在数轴上对应的点,则关于a,-a,1的大小关系表示正确的是()A.a<1<-a B.a<-a<1C.1<-a<a D.-a<a<15.如图,两块三角尺的直角顶点O重合在一起,且OB平分∠COD,则∠AOD 的度数为()A.45°B.120°C.135°D.150°6.某市获“全国文明城市”提名,为此小王特制了一个正方体玩具,其表面展开图如图所示,正方体中与“全”字相对的字是()A.文B.明C.城D.市7.有一篮苹果平均分给若干人,若每人分2个,则还余下2个苹果,若每人分3个,则少7个苹果,设有x人分苹果,则可列方程为()A.3x+2=2x+7B.2x-2=3x+7C.3x-2=2x-7D.2x+2=3x-78.如图,把一根绳子对折成线段AB,从P处把绳子剪断,已知PB=2P A,若剪断后的各段绳子中最长的一段为40cm,则绳子的原长为()A.30cmB.60cmC.120cmD.60cm或120cm9.小王去早市为餐馆选购蔬菜,他指着标价为每千克3元的豆角问摊主:“这豆角能便宜吗?”摊主说:“多买按八折,你要多少千克?”小王报了质量后,摊主同意按八折卖给小王,并说:“之前有一人只比你少买5kg就是按标价,还比你多花了3元呢!”小王购买豆角的质量是()A.25kg B.20kgC.30kg D.15kg10.如图所示的图案均是由长度相同的木棒按一定规律拼搭而成的,第1个图案需7根木棒,第2个图案需13根木棒,…以此规律,第11个图案需要木棒的根数是()A.156B.157C.158D.159二、填空题(每题3分,共24分)11.22.5°=________°________′;12°24′=________°.12.某中学要了解七年级学生的视力情况,在全校七年级学生中抽取了25名学生进行检查,在这个问题中,总体是________________________,样本是________________________.13.我国“南仓”级远洋综合补给舰满载排水量为37000t ,把数37000用科学记数法表示为_______________________________________.14.若a +b =2,则代数式3-2a -2b =________.15.从中午12时开始,时钟的时针转过了80°的角,则此时的时间是________.16.一位美术老师在课堂上进行立体模型素描教学时,把14个棱长为1dm 的正方体摆放在课桌上,如图所示,然后他把露出的表面都涂上不同的颜色,则被他涂上颜色部分的面积为________.17.如图,O 是直线AC 上一点,OB 是一条射线,OD 平分∠AOB ,OE 在∠BOC内,且∠BOE =13∠EOC ,∠DOE =60°,则∠EOC =________.18.某市为提倡节约用水,采取分段收费.若每户每月用水量不超过20m 3,每立方米收费2元;若用水量超过20m 3,超过的部分每立方米加收1元.小明家5月份缴水费64元,则他家该月用水________.三、解答题(19~23题每题6分,24~26题每题12分,共66分)19.计算:(1)-32-(-17)-|-23|+(-15);÷9121-+23--24).20.解方程:(1)3x+7=32-2x;(2)x-1-x3=x+5 6.21.化简求值:已知|2x+1|+=0,求4x2y-[6xy-3(4xy-2)-x2y]+1的值.22.如图是由小立方块搭成的几何体,请画出从正面、左面和上面看到的平面图形.23.如图,OC是∠AOD的平分线,∠BOC=12∠COD,那么∠BOC是∠AOD 的几分之几?说明你的理由.24.为弘扬中华传统文化,我市某中学决定根据学生的兴趣爱好组建课外兴趣小组,因此学校随机抽取了部分学生的兴趣爱好进行调查,将收集的数据整理并绘制成如图所示的两幅统计图.请根据图中的信息,完成下列问题:(1)学校这次调查共抽取了________名学生;(2)补全条形统计图;(3)在扇形统计图中,“戏曲”所在扇形的圆心角度数为________.25.某班计划购买一些乒乓球和乒乓球拍,现了解到的情况如下:甲、乙两家店出售同样品牌同种型号的乒乓球和乒乓球拍,乒乓球拍每副定价100元,乒乓球每盒定价25元.经洽谈后,甲店每买一副乒乓球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需乒乓球拍5副,乒乓球若干盒(不少于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当购买20盒、40盒乒乓球时,去哪家店购买更合算?26.在数轴上,表示数m与n的点之间的距离可以表示为|m-n|.例如:在数轴上,表示数-3与2的点之间的距离是5=|-3-2|,表示数-4与-1的点之间的距离是3=|-4-(-1)|.利用上述结论解决如下问题:(1)若|x-5|=3,求x的值;(2)点A,B为数轴上的两个动点,点A表示的数是a,点B表示的数是b,且|a-b|=6(b>a),点C表示的数为-2.若A,B,C三个点中的某一个点是另两个点所连线段的中点,求a,b的值.参考答案:一、1.B2.C3.C4.A5.C6.B7.D8.D9.C点拨:设小王购买豆角的质量是x kg,则3×80%x=3(x-5)-3,整理得2.4x=3x-18,解得x=30.所以小王购买豆角的质量是30kg.10.B点拨:第1个图案需7根木棒,7=1×(1+3)+3,第2个图案需13根木棒,13=2×(2+3)+3,第3个图案需21根木棒,21=3×(3+3)+3,……第n个图案需[n(n+3)+3]根木棒,所以第11个图案需11×(11+3)+3=157(根)木棒.故选B.二、11.22;30;12.412.该中学七年级学生的视力情况;抽取的25名学生的视力情况13.3.7×10414.-115.14时40分16.33dm217.90°点拨:设∠BOE=x°,则∠EOC=3x°,∠DOB=60°-x°.由OD平分∠AOB,得∠AOB=2∠DOB,故3x+x+2(60-x)=180,解方程得x=30,所以∠EOC=90°,故答案为90°.18.28m3点拨:设小明家5月份用水x m3,因为20×2=40(元),64>40,所以x>20.根据题意可得2×20+(2+1)(x-20)=64,解得x=28.三、19.解:(1)原式=-32+17-23-15=-53.(2)原式=-11-[12×(-24)+23×(-24)-34×(-24)]=-11-(-12-16+18)=-1.20.解:(1)移项,得3x+2x=32-7.合并同类项,得5x=25.系数化为1,得x=5.(2)去分母,得6x-2(1-x)=x+5,去括号,得6x-2+2x=x+5,移项、合并同类项,得7x=7,系数化为1,得x=1.21.解:由|2x+1|+=0得2x+1=0,y-14=0,即x=-12,y=14.原式=4x2y-6xy+12xy-6+x2y+1=5x2y+6xy-5.当x=-12,y=14时,原式=5x2y+6xy-5=516-34-5=-5716.22.解:如图.23.解:∠BOC是∠AOD的四分之一.理由如下:因为OC是∠AOD的平分线,所以∠COD=12∠AOD.因为∠BOC=12∠COD,所以∠BOC=12×12∠AOD=14∠AOD.24.解:(1)100(2)喜欢民乐的人数为100×20%=20(人),补全条形统计图如图所示.(3)36°25.解:(1)设该班购买乒乓球x盒,则在甲店付款:100×5+(x-5)×25=(25x+375)元,在乙店付款:0.9×100×5+25×0.9×x=(22.5x+450)元,由25x+375=22.5x+450,解得x=30.答:当购买乒乓球30盒时,两种优惠办法付款一样.(2)当购买20盒乒乓球时,在甲店付款:25×20+375=875(元),在乙店付款:22.5×20+450=900(元),875<900,故在甲店购买更合算;当购买40盒乒乓球时,在甲店付款:25×40+375=1375(元),在乙店付款:22.5×40+450=1350(元),1350<1375,故在乙店购买更合算.答:购买20盒时,去甲店购买更合算;购买40盒时,去乙店购买更合算。

七年级数学上册期末考试试题5(含答案)

七年级数学上册期末考试试题5(含答案)

七年级上数学期末试卷一、选择题(共15个小题,每小题2分,共30分)1.如果向东走80m 记为80m ,那么向西走60m 记为 ( )A .60m -B .|60|m -C .(60)m --D .60m +2.某市2010年元旦的最高气温为2‵,最低气温为-8‵,那么这天的最高气温比最低气温高 ( )A .-10‵B .-6‵C .6‵D .10‵3.-6的绝对值等于 ( )A .6B .16C .16- D .6 4.未来三年,国家将投入8500亿元用于缓解群众“看病难,看病贵”问题.将8500亿元用科学记数法表示为 ( )A .40.8510⨯亿元B .38.510⨯亿元C .48.510⨯亿元D .28510⨯亿元5.当2x =-时,代数式1x +的值是 ( )A .1-B .3-C .1D .36.下列计算正确的是 ( )A .33a b ab +=B .32a a -=C .225235a a a +=D .2222a b a b a b -+=7.将线段AB 延长至C ,再将线段AB 反向延长至D ,则图中共有线段 ( )A .8条B .7条C .6条D .5条8.下列语句正确的是 ( )A .在所有联结两点的线中,直线最短B .线段A 曰是点A 与点B 的距离C .三条直线两两相交,必定有三个交点D .在同一平面内,两条不重合的直线,不平行必相交9.已知线段AB 和点P ,如果PA PB AB +=,那么 ( )A .点P 为AB 中点 B .点P 在线段AB 上C .点P 在线段AB AB 外D .点P 在线段AB 的延长线上10.一个多项式减去222x y -等于222x y -,则这个多项式是A .222x y -+B .222x y -C .222x y -D .222x y -+11.若x y >,则下列式子错误的是A .33x y ->-B .33x y ->-C .32x y +>+D .33x y > 12.下列哪个不等式组的解集在数轴上的表示如图所示A .21x x ≥⎧⎨<-⎩B .21x x <⎧⎨≥-⎩C .21x x >⎧⎨≤-⎩ D .21x x ≤⎧⎨>-⎩13.如图,已知直线AB 、CD 相交于点O ,OE 平分∠COB ,若∠EOB=55︒A .35︒B .55︒C .70︒D .110︒14.把方程0.10.20.710.30.4x x ---=的分母化为整数的方程是( ) A .0.10.20.7134x x ---= B .12710134x x ---= C .127134x x ---= D .127101034x x ---= 15.不等式组9511x x x m +<+⎧⎨>+⎩的解集是2x >,则m 的取值范围是 A .1m ≤ B .1m ≥ C .2m ≤ D .2m ≥二、填空题(共10个小题,每小题2分,共20分)16.比较大小:6-_________8-(填“<”、“=”或“>”)17.计算:|3|2--=_________18.如果a 与5互为相反数,那么a=_________19.甲数x 的23与乙数y 的14差可以表示为_________ 20.定义a ‴b =2a b -,则(1‴2)‴3=_________21.如图,要使输出值Y 大于100,则输入的最小正整数x 是___________22.如图,将一副三角板叠放在一起,使直角顶点重合于0点,则∠AOC+∠DOB=___________ 度.23.如图,∠AOB 中,OD 是∠BOC 的平分线,OE 是∠AOC 的平分线,若∠AOB=140︒,则∠EOD=___________度.24.已知2|312|102n m ⎛⎫-++= ⎪⎝⎭,则2m n -=___________. 25.观察下面的一列单项式:2342,4,8,16x x x x --,…根据你发现的规律,第7个单项式为___________;第n 个单项式为___________.三、计算或化简(共4个小题,每小题4分,共16分)26.计算:1241123723⎛⎫⎛⎫⎛⎫+-++-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭27.计算:2( 6.5)(2)(5)5⎛⎫-+-÷-÷- ⎪⎝⎭28.计算:1820`32``3015`22``︒+︒29.化简:22(521)4(382)a a a a +---+四、解方程或不等式(共2个小题,每小题5分。

七年级上学期期末考试 (数学)(含答案)052841

七年级上学期期末考试 (数学)(含答案)052841

七年级上学期期末考试 (数学)试卷考试总分:115 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1. 的相反数是 A.B.C.D.2. 作为世界文化遗产的长城,其总长约为米,将用科学记数法表示为A.B.C.D.3. 已知,则的值为( )A.B.C.D.不能确定4. 如果单项式与的和仍然是一个单项式,则、的值是 A.,B.,C.,D.,5. 如图所示的几何体的俯视图是( )A.−2()2−212−1267000006700000()6.7×1056.7×1066.7×1076.7×108(x−1=a +b +cx+d )3x 3x 2a +b +c +d −11x 2y m+2y x n m n ()m=2n =2m=−2n =2m=−1n =2m=2n =−1B. C. D.6. 现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”,请用数学知识解释图中这一现象,其原因为A.两点之间,线段最短B.过一点有无数条直线C.两点确定一条直线D.两点之间线段的长度,叫做这两点之间的距离7. 为比较两条线段与的大小,小明将点与点重合使两条线段在一条直线上,点在的延长线上,则 A.B.C.=D.以上都有可能8. 将一块含角的直角三角尺按照如图所示的方式放置,点落在直线上,点落在直线上,,,则的度数是( )A.B.C.D.()AB CD A C B CD ()AB <CDAB >CDAB CD45∘ABC C a B b a//b ∠1=25∘∠215∘20∘25∘30∘9. 如图所示,直线,直线,若,则的度数为( )A.B.C.D.10. 如图,图中有个三角形,图中有个三角形,图中有个三角形,图中有个三角形,,则图中三角形的个数为( )A.个B.个C.个D.个二、 填空题 (本题共计 5 小题 ,每题 5 分 ,共计25分 )11. 如果有理数,满足,那么________.12. 多项式化简后不含项,则为________.13. 如图是一正方体的平面展开图,若,则该正方体上、两点间的距离为________.14. 如图,请你写出一个能判定的条件:________.15.如图,,且,,则的度数为________.三、 解答题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )16. 计算:a//b AB ⊥AC ∠1=50∘∠250∘45∘40∘30∘(1)2(2)6(3)12(4)20…(8)36707290x y |x+y+5|+=0(y−4)2xy =2−xy−8+3kxy−6x 2y 2xy k AB =5A B //l 1l 2AB//CD ∠ABE =70∘∠ECD =150∘∠BEC; .17. 先化简,再求值:,其中=. 18.十一黄金周期间,某风景区在天假期中每天旅游人数变化如表(正号表示人数比前一天多,负号表示比前天少),已知月日的旅客人数为万人.日期日日日日日日日人数变化单位:万人月日的旅客人数为________万人;七天中旅客人数最多的一天比最少的一天多________万人;如果每万人带来的经济收入约为万元,则该风景区黄金周七天的旅游总收入约为多少万元?19. 如图是一所住宅的建筑平面图(图中长度单位:米).(1)用式子表示这所住宅的建筑面积.(2)当=时,试计算该住宅的面积.20.如图,处在处的南偏西方向,处在处的南偏东方向,处在处的北偏东方向,求的度数.21. 如图,在一条不完整的数轴上从左到右有点,,,其中,设点,,对应数的和是.若点为原点, ,写出点,所对应的数以及的值;若点为原点, ,求的值;若原点到点的距离为,且,求的值.22. 如图,,,平分,,.(1)3×(−4)−28÷(−7)(2)−−×[(−2−6]1412)2(x−1)(x+6)−(6+10−12)÷2x 4x 3x 2x 2x 27930 4.21234567+1.8−0.6+0.2−0.7−1.3+0.5−2.4(1)104(2)(3)100x 7B A 45∘C A 15∘C B 85∘∠ACB A B C AB =2BC A B C m (1)C BC =2A B m (2)B AC =9m (3)O C 8OC =AB m EF//AD AD//BC CE ∠BCF ∠DAC =3∠BCF ∠ACF =20∘求的度数;若,求证:;当________时,.23.已知,直线,点为平面上一点,连接与.如图,点在直线,之间,当,时,则________.如图,点在直线,之间,与的角平分线相交于点,直接写出与之间的数量关系;如图,点落在外,与的角平分线相交于点,上述结论还成立吗?并说明理由.(1)∠EFC (2)∠BAC =3∠B AB ⊥AC (3)∠DAB =CF ⊥AB AB//DC P AP CP (1)1P AB CD ∠BAP =60∘∠DCP =25∘∠APC =(2)2P AB CD ∠BAP ∠DCP K ∠AKC ∠APC (3)3P CD ∠BAP ∠DCP K参考答案与试题解析七年级上学期期末考试 (数学)试卷一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1.【答案】A【考点】相反数【解析】此题暂无解析【解答】解:互为相反数的两个数相加得,的相反数是,故选2.【答案】B【考点】科学记数法--表示较大的数【解析】用科学记数法表示较大的数时,一般形式为,其中,为整数,据此判断即可.【解答】解:.故选.3.【答案】B【考点】列代数式求值【解析】令,即可求出原式的值.【解答】解:令,得:.故选4.∵0∴−22A.a ×10n 1≤|a |<10n 6700000=6.7×106B x =1x =1a +b +c +d =0B.同类项的概念【解析】本题考查同类项的定义,单项式与的和仍然是一个单项式,意思是与是同类项,根据同类项中相同字母的指数相同得出.【解答】解:由同类项的定义,可知,,解得,.故选.5.【答案】B【考点】简单组合体的三视图【解析】利用几何体的结构特征即可判断【解答】解:该几何体从上往下看到的是圆且中间有一顶点,如图所示.故选.6.【答案】A【考点】线段的性质:两点之间线段最短【解析】根据线段的性质,直线的性质,可得答案.【解答】解:现实生活中有部分行人选择横穿马路而不走天桥或斑马线,用数学知识解释这一现象的原因,两点之间线段最短.故选.7.x 2y m+2y x n x 2y m+2y x n 2=n m+2=1m=−1n =2C B A线段的和差【解析】解:由点与点重合使两条线段在一条直线上,点在的延长线上,得.故选.【解答】此题暂无解答8.【答案】B【考点】平行线的性质【解析】利用两直线平行,同旁内角互补进行求解即可.【解答】解:如图:∵,∴,∴,又∵,∴.故选.9.【答案】C【考点】平行线的性质余角和补角【解析】根据两直线平行,内错角相等可得,根据垂直的定义和补角、余角的定义列式计算得到.【解答】解:如图,A CB CD AB >CD B a//b ∠FBC +∠ECB =180∘∠1++∠2+=90∘45∘180∘∠1=25∘∠2=20∘B ∠3=∠1∠2∵直线,,∴.∵直线,∴,∴.故选.10.【答案】C【考点】规律型:图形的变化类【解析】本题考查了规律型,图形变化类,关键是找到图形的变化规律:图有个三角形,根据图有个三角形即可求得答案.【解答】解:图有个三角形,即,图有个三角形,即,图有个三角形,即,图有个三角形,即,所以图有个三角形,图有个三角形.故选.二、 填空题 (本题共计 5 小题 ,每题 5 分 ,共计25分 )11.【答案】【考点】非负数的性质:绝对值非负数的性质:偶次方【解析】利用非负数的性质得出,的值,进而得出答案.【解答】解:,,,解得:,,故.故答案为:.12.a//b ∠1=50∘∠3=∠1=50∘AB ⊥AC ∠2+∠3=−=180∘90∘90∘∠2=−=90∘50∘40∘C n n(n+1)n n(n+1)121×2262×33123×44204×5⋅⋅⋅⋅⋅⋅n n(n+1)88×9=72C −36x y ∵|x+y+5|+=0(y−4)2∴x+y+5=0y−4=0y =4x =−9xy =4×(−9)=−36−36【答案】【考点】多项式合并同类项【解析】直接利用多项式的定义得出多项式的系数为,解答即可.【解答】解:∵多项式化简后不含项,∴合并同类项后项系数为,∴,解得.故答案为:.13.【答案】【考点】勾股定理几何体的展开图【解析】利用立方体展开图与平面图对应情况可得出,两点间的距离.【解答】解:由题意可得出:正方体上、两点间的距离为正方形对角线长,则、两点间的距离为.故答案为:.14.【答案】=或=或=【考点】平行线的判定【解析】根据平行线的判定定理即可求解,如=(内错角相等,两直线平行),=(同位角相等,两直线平行),=(同旁内角互补,两直线平行).【解答】若=,根据内错角相等,两直线平行,若=,根据同位角相等,两直线平行,若=,根据同旁内角互补,两直线平行,15.1302−xy−8+3kxy−6x 2y 2xy xy 03k −1=0k =13132.5AB A B A B 2.52.5∠1∠2∠3∠5∠3+∠4180∘∠1∠2∠3∠5∠3+∠4180∘∠1∠2∠3∠5∠3+∠4180∘【答案】【考点】平行线的性质【解析】作,根据,求出,即可解决问题.【解答】解:作,如图,,,..,,.故答案为:.三、 解答题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )16.【答案】解:原式.原式.【考点】有理数的混合运算有理数的乘方【解析】根据有理数的混合运算,得出结论;根据有理数的混合运算和乘方的计算,得出结论.【解答】解:原式.40∘EF//CD ∠BEC =∠BEF −∠CEF∠BEF ∠CEF EF//CD ∵AB//CD ∴AB//EF ∴∠ABE =∠BEF =70∘∵CD//EF∴∠ECD+∠CEF =180∘∵∠ECD =150∘∴∠CEF =30∘∴∠BEC =∠BEF −∠CEF =40∘40∘(1)=(−12)−(−4)=−12+4=−8(2)=−1−×(4−6)12=−1−×(−2)12=−1−(−1)=−1+1=0(1)(2)(1)=(−12)−(−4)=−12+4=−8−1−×(4−6)1原式.17.【答案】原式====,当=时,原式==.【考点】整式的混合运算——化简求值【解析】先根据多项式乘以多项式和多项式除以单项式进行计算,再合并同类项,最后代入求出即可.【解答】原式====,当=时,原式==.18.【答案】根据表格得:每天旅客人数分别为:万人、万人、万人、万人、万人、万人、万人,则黄金周七天的旅游总收入约为:(万元).【考点】有理数的加减混合运算正数和负数的识别【解析】(1)根据题意列得算式,计算即可得到结果;(2)根据表格找出旅客人数最多的与最少的,相减计算即可得到结果;【解答】解:根据题意列式得:(万人).故答案为:.根据表格得:日:,日:,日:,日:,日:,日:,日:,(2)=−1−×(4−6)12=−1−×(−2)12=−1−(−1)=−1+1=0+5x−6−(3+5x−6)x 2x 2+5x−6−3−5x+6x 2x 2−3x 2x 2−2x 2x 2−2×22−8+5x−6−(3+5x−6)x 2x 2+5x−6−3−5x+6x 2x 2−3x 2x 2−2x 2x 2−2×22−84.94.3(3)6 5.4 5.6 4.9 3.6 4.1 1.7(6+5.4+5.6+4.9+3.6+4.1+1.7)×100=3130(1)4.2+(1.8−0.6+0.2−0.7)=4.2+0.7=4.94.9(2)1 4.2+1.8=626−0.6=5.43 5.4+0.2=5.64 5.6−0.7=4.95 4.9−1.3=3.66 3.6+0.5=4.17 4.1−2.4=1.7∴天中旅客最多的是日为万人,最少的是日为万人,则七天中旅客人数最多的一天比最少的一天多(万人).故答案为:.根据表格得:每天旅客人数分别为:万人、万人、万人、万人、万人、万人、万人,则黄金周七天的旅游总收入约为:(万元).19.【答案】住宅的建筑面积为:=;当=时,住宅的建筑面积有=.【考点】列代数式列代数式求值【解析】(1)把四个小长方形的面积合并起来即可;(2)把=代入(1)中的代数式求得答案即可.【解答】住宅的建筑面积为:=;当=时,住宅的建筑面积有=.20.【答案】解:如图:由处在处的南偏西方向,处在处的南偏东方向,处在处的北偏东方向,得:,,.由得.∴,.由三角形的内角和定理,得.【考点】方向角【解析】根据方向角的表示,可得,,,根据角的和差,可得,,根据三角形的内角和,可得答案.【解答】解:如图:7367 1.76−1.7=4.34.3(3)6 5.4 5.6 4.9 3.6 4.1 1.7(6+5.4+5.6+4.9+3.6+4.1+1.7)×100=31302x++3×2+4×3x 2+2x+18x 2x 7+2x+18x 281x 72x++3×2+4×3x 2+2x+18x 2x 7+2x+18x 281B A 45∘C A 15∘C B 85∘∠BAE =45∘∠CAE =15∘∠CBD =85∘AE//BD ∠DBA =∠BAE =45∘∠ABC =∠DBC −∠DBA =−=85∘45∘40∘∠BAC =∠BAE+CAE =+=45∘15∘60∘∠C =−∠BAC −∠ABC180∘=−−=180∘60∘40∘80∘∠BAE =45∘∠CAE =15∘∠CBD =85∘∠ABC ∠BAC由处在处的南偏西方向,处在处的南偏东方向,处在处的北偏东方向,得:,,.由得.∴,.由三角形的内角和定理,得.21.【答案】解:∵点为原点, ,∴所对应的数为,∵,∴,∴点所对应的数为,∴.∵点为原点,,,∴点所对应的数为,点所对应的数为,∴.∵原点到点的距离为,∴点所对应的数为,∵,∴,当点对应的数为,∵,,∴,∴点所对应的数为,点所对应的数为,∴;当点所对应的数为 ,∵,,∴,∴点所对应的数为,点所对应的数为,∴.综上所述或.【考点】数轴两点间的距离【解析】此题暂无解析【解答】解:∵点为原点, ,∴所对应的数为,∵,∴,∴点所对应的数为,∴.∵点为原点,,,∴点所对应的数为,点所对应的数为,∴.∵原点到点的距离为,∴点所对应的数为,∵,B A 45∘C A 15∘C B 85∘∠BAE =45∘∠CAE =15∘∠CBD =85∘AE//BD ∠DBA =∠BAE =45∘∠ABC =∠DBC −∠DBA =−=85∘45∘40∘∠BAC =∠BAE+CAE =+=45∘15∘60∘∠C =−∠BAC −∠ABC180∘=−−=180∘60∘40∘80∘(1)C BC =2B −2AB =2BC AB =4A −6m=−6−2+0=−8(2)B AC =9AB =2BC A −6C 3m=−6+3+0=−3(3)O C 8C ±8OC =AB AB =8C 8AB =8AB =2BC BC =4B 4A −4m=4−4+8=8C −8AB =8AB =2BC BC =4B −12A −20m=−20−12−8=−40m=8−40(1)C BC =2B −2AB =2BC AB =4A −6m=−6−2+0=−8(2)B AC =9AB =2BC A −6C 3m=−6+3+0=−3(3)O C 8C ±8OC =AB∴,当点对应的数为,∵,,∴,∴点所对应的数为,点所对应的数为,∴;当点所对应的数为 ,∵,,∴,∴点所对应的数为,点所对应的数为,∴.综上所述或.22.【答案】解:设的度数为.∵平分,∴.∵,∴.∵,∴.∵,∴∴,∴,∴,∴.∵,,∴,∴,∴.证明:∵,∴,又∵,由知,∴,∴∴,∴.【考点】平行线的性质平行线的判定【解析】此题暂无解析【解答】解:设的度数为.∵平分,∴.∵,∴.∵,∴.∵,∴∴,AB =8C 8AB =8AB =2BC BC =4B 4A −4m=4−4+8=8C −8AB =8AB =2BC BC =4B −12A −20m=−20−12−8=−40m=8−40(1)∠BCF 2x CE ∠BCF ∠BCE =∠ECF =∠BCF =x 12∠DAC =3∠BCF ∠DAC =6x ∠ACF =20∘∠ACB =∠BCF +∠ACF =2x+20∘AD//BC ∠DAC +∠ACB =180∘6x+2x+=20∘180∘x =20∘∠BCE =∠FCE =20∘∠BCF =40∘EF//AD AD//BC EF//BC ∠EFC +∠BCF =180∘∠EFC =−∠BCF 180∘=140∘(2)AD//BC ∠DAB =∠B ∠BAC =3∠B (1)∠DAC =120∘∠DAC =4∠B =120∘∠B =30∘∠BAC =3∠B =90∘AB ⊥AC 50∘(1)∠BCF 2x CE ∠BCF ∠BCE =∠ECF =∠BCF =x 12∠DAC =3∠BCF ∠DAC =6x ∠ACF =20∘∠ACB =∠BCF +∠ACF =2x+20∘AD//BC ∠DAC +∠ACB =180∘6x+2x+=20∘180∘∴,∴,∴.∵,,∴,∴,∴.证明:∵,∴,又∵,由知,∴,∴∴,∴.解:∵由知.∵当时,,∵,∴.故答案为:.23.【答案】.理由如下:如图,过作,∵,∴,∴,,∴.过作,同理,得,∵与的角平分线相交于点,∴,∴.成立.理由如下:如图,过作,∵,∴,∴,,∴.过作,同理,得,∵与的角平分线相交于点,∴ ,∴.【考点】x =20∘∠BCE =∠FCE =20∘∠BCF =40∘EF//AD AD//BC EF//BC ∠EFC +∠BCF =180∘∠EFC =−∠BCF 180∘=140∘(2)AD//BC ∠DAB =∠B ∠BAC =3∠B (1)∠DAC =120∘∠DAC =4∠B =120∘∠B =30∘∠BAC =3∠B =90∘AB ⊥AC (3)(1)∠BCF =40∘CF ⊥AB ∠B =50∘AD//BC ∠DAB =50∘50∘85∘(2)∠AKC =∠APC 122K KE//AB AB//CD KE//AB//CD ∠AKE =∠BAK ∠CKE =∠DCK ∠AKC =∠AKE+∠CKE =∠BAK +∠DCK P PF//AB ∠APC =∠BAP +∠DCP ∠BAP ∠DCP K ∠BAK +∠DCK =∠BAP +∠DCP1212=(∠BAP +∠DCP)=∠APC 1212∠AKC =∠APC 12(3)3K KH//AB AB//CD KH//AB//CD ∠BAK =∠AKH ∠DCK =∠CKH ∠AKC =∠AKH−∠CKH =∠BAK −∠DCK P PG//AB ∠APC =∠BAP −∠DCP ∠BAP ∠DCP K ∠BAK −∠DCK =∠BAP −∠DCP1212=(∠BAP −∠DCP)=∠APC 1212∠AKC =∠APC 12平行线的性质角平分线的定义【解析】根据平行线的性质来解答即可.根据平行线的性质和角平线的性质来解答即可.根据平行线的性质和角平分线的性质来解答即可.【解答】解:如图,过作,∵,∴,∴,,∴.故答案为:..理由如下:如图,过作,∵,∴,∴,,∴.过作,同理,得,∵与的角平分线相交于点,∴,∴.成立.理由如下:如图,过作,∵,∴,∴,,∴.过作,同理,得,∵与的角平分线相交于点,∴ ,∴.(1)1P PQ//AB AB//CD PQ//AB//CD ∠APQ =∠BAP ∠CPQ =∠DCP ∠APC =∠APQ +∠CPQ=∠BAP +∠DCP =+=60∘25∘85∘85∘(2)∠AKC =∠APC 122K KE//AB AB//CD KE//AB//CD ∠AKE =∠BAK ∠CKE =∠DCK ∠AKC =∠AKE+∠CKE =∠BAK +∠DCK P PF//AB ∠APC =∠BAP +∠DCP ∠BAP ∠DCP K ∠BAK +∠DCK =∠BAP +∠DCP1212=(∠BAP +∠DCP)=∠APC 1212∠AKC =∠APC 12(3)3K KH//AB AB//CD KH//AB//CD ∠BAK =∠AKH ∠DCK =∠CKH ∠AKC =∠AKH−∠CKH =∠BAK −∠DCK P PG//AB ∠APC =∠BAP −∠DCP ∠BAP ∠DCP K ∠BAK −∠DCK =∠BAP −∠DCP1212=(∠BAP −∠DCP)=∠APC 1212∠AKC =∠APC 12。

七年级上学期数学期末试卷及答案-百度文库

七年级上学期数学期末试卷及答案-百度文库

七年级上学期数学期末试卷及答案-百度文库一、选择题1.下列各组数中,数值相等的是( )A .﹣22和(﹣2)2B .23和 32C .﹣33和(﹣3)3D .(﹣3×2)2和﹣32×22 2.下列各式中运算正确的是( )A .2222a a a +=B .220a b ab -=C .2(1)21a a -=-D .33323a a a -= 3.方程114x x --=-去分母正确的是( ). A .x-1-x=-1 B .4x-1-x=-4 C .4x-1+x=-4 D .4x-1+x=-14.如图,王老师将某班近三个月跳跃类项目的训练情况做了统计,并绘制了折线统计图,则根据图中信息以下判断错误的是( )A .男女生5月份的平均成绩一样B .4月到6月,女生平均成绩一直在进步C .4月到5月,女生平均成绩的增长率约为8.5%D .5月到6月女生平均成绩比4月到5月的平均成绩增长快5.将1,2,3,...,30,这30个整数,任意分为15组,每组2个数.现将每组数中的一个数记为x ,另一个数记为y ,计算代数式()1||||2x y x y -++的值,15组数代入后可得到15个值,则这15个值之和的最小值为( )A .2252B .120C .225D .240 6.2018年电影《我不是药神》反映了进口药用药贵的事实,从而引起了社会的广泛关注.国家针对部分药品进行改革,看病贵将成为历史.某药厂对售价为m 元的药品进行了降价,现在有三种方案.方案一:第一次降价10%,第二次降价30%;方案二:第一次降价20%,第二次降价15%;方案三:第一、二次降价均为20%.三种方案哪种降价最多( )A .方案一B .方案二C .方案三D .不能确定 7.点C 、D 在线段AB 上,若点C 是线段AD 的中点,2BD>AD ,则下列结论正确的是( ).A .CD<AD - BDB .AB>2BDC .BD>AD D .BC>AD8.下列方程中,属于一元一次方程的是( ).A .23x y +=B .21x >C .720222020x +=D .241x =9.若m 5=,n 3=,且m n 0+<,则m n -的值是( )A .8-或2-B .8±或2±C .8- 或2D .8或2 10.已知线段AB=m ,BC=n ,且m 2﹣mn=28,mn ﹣n 2=12,则m 2﹣2mn+n 2等于( ) A .49B .40C .16D .9 11.如果-2a m b 2与12a 5b n+1的和仍然是单项式,那么m +n 的值为( ). A .5 B .6 C .7 D .812.某商店在某一时间以每件90元的价格出售两件商品,其中一件盈利25%,另一件亏损25%,则在这次买卖中,商家( )A .亏损8元B .赚了12元C .亏损了12元D .不亏不损二、填空题13.关于x 的方程23x kx -=的解是整数,则整数k 可以取的值是_____________.14.按一定顺序的一列数叫做数列,如数列:12,16,112,120,,则这个数列前2019个数的和为____.15.如图,将ABC 沿着过AB 中点D 的直线折叠,使点A 落在BC 边上的A 1处,称为第1次操作,折痕DE 到BC 的距离记为h 1,还原纸片后,再将ADE 沿着过AD 中点D 1的直线折叠,使点A 落在DE 边上的A 2处,称为第2次操作,折痕D 1E 1到BC 的距离记为h 2,按上述方法不断操作下去…经过第2020次操作后得到的折痕D 2020E 2020到BC 的距离记为h 2020,若h 1=1,则h 2020的值为_____.16.我们知道,分数可以转化为有限小数或无限循环小数,无限循环小数也可以转化为分数.例如:将0.3转化为分数时,可设0.3x =,则x 10x 3-=,解得13x =.仿照这样的方法,将0.16化成分数是________.17.已知236(3)0x y -++=,则23y x -的值是_________.18.我们知道,一个两位数的十位数字为a ,个位数字为b ,其中09a <≤,09b ≤≤,且a ,b 都为整数,这个两位数可以表示为10a b +.观察下列各式:2323÷101=23,4545÷101=45,5151÷101=51,7979÷101=79,……,根据以上等式,猜想:()()101010110a b a b +÷+=______.19.如图,已知圆柱体底面圆的半径为2π,高为2,AB,CD分别是两底面的直径.若一只小虫从A点出发,沿圆柱侧面爬行到C点,则小虫爬行的最短路线的长度是________(结果保留根号).20.如图所示,把一根绳子对折后得到的图形为线段AB,从点P处把绳子剪断,已知AP:BP=4:5,若剪断后的各段绳子中最长的一段为80cm,则绳子的原长为________ cm.21.如图,对面积为1的△ABC逐次进行以下操作:第一次操作,分别延长AB、BC、CA至点A1、B1、C1,使得A1B=2AB,B1C=2BC,C1A=2CA,顺次连接A1、B1、C1得到△A1B1C1,记其面积为S1;第二次操作,分别延长A1B1、B1C1、C1A1至点A2、B2、C2,使得A2B1=2A1B1,B2C1=2B1C1,C2A1=2C1A1,顺次连按A2、B2、C2,得到△A2B2C2,记其面积为S2;按此规律继续下去,可得到△A2019B2019C2019,则其面积S2019=_____.22.在数轴上,点A,B表示的数分别是8-,10.点P以每秒2个单位长度从A出发沿数轴向右运动,同时点Q以每秒3个单位长度从点B出发沿数轴在B,A之间往返运动,设运动时间为t秒.当点P,Q之间的距离为6个单位长度时,t的值为__________.三、解答题23.将一三角板中的两块直角三角尺的直角顶点O按如图方式叠放在一起.(1)如图1,若∠BOD=35°,则∠AOC=______°;若∠AOC=135°,则∠BOD=_____°;(2)如图2,若∠AOC=140°,则∠BOD=_____°;(3)猜想∠AOC与∠BOD的大小关系,并结合图1说明理由;(4)三角尺AOB不动,将三角尺COD的OD边与OA边重合,然后绕点O按顺时针或逆时针方向任意转动一个角度,当∠AOD(0°<∠AOD<90°)等于多少度时,这两块三角尺各有一条边互相垂直,直接写出∠AOD角度所有可能的值,不用说明理由.24.有理数a、b在数轴上的位置如图所示:求:(1)a-b 0(填“>,<,=”)(2)|b-a|=25.已知数轴上,点A和点B分别位于原点O两侧,点A对应的数为a,点B对应的数为b,且|a-b|=15.(1)若b=-6,则a的值为;(2)若OA=2OB,求a的值;(3)点C为数轴上一点,对应的数为c,若A点在原点的左侧,O为AC的中点,OB=3BC,请画出图形并求出满足条件的c的值.26.如图所示,在一张正方形纸片的四个角上各剪去一个同样大小的正方形,然后把剩下的部分折成一个无盖的长方体盒子.请回答下列问题:(1)剪去的小正方形的边长与折成的无盖长方体盒子的高之间的大小关系为;(2)如果设原来这张正方形纸片的边长为acm,所折成的无盖长方体盒子的高为hcm,cm;那么,这个无盖长方体盒子的容积可以表示为3(3)如果原正方形纸片的边长为20cm,剪去的小正方形的边长按整数值依次变化,即分别取cm cm cm cm cm cm cm cm cm cm时,计算折成的无盖长方体盒子的容1,2,3,4,5,6,7,8,9,10积得到下表,由此可以判断,当剪去的小正方形边长为cm时,折成的无盖长方体盒子的容积最大剪去的小正方形的边长/cm12345678910折成的无盖长方体的容积3/cm324m n57650038425212836027.如图,A、B分别为数轴上的两点,A点对应的数为-20,B点对应的数为100.(1)请写出与A、B两点距离相等的点M所对应的数;(2)若当电子蚂蚁P从B点出发时,以6单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4单位/秒的速度也向左运动,设两只电子蚂蚁在数轴上的D点相遇,你知道D点对应的数是多少吗?(3)现有一只电子蚂蚁P从B点出发,以6单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4单位/秒的速度向右运动,设两只电子蚂蚁在数轴上相距10单位时电子蚂蚁Q刚好在C点,你知道C点对应的数是多少吗?28.如图,C是线段AB上一点,5AC cm=,点P从点A出发沿AB以3/cm s的速度匀速向点B运动,点Q从点C出发沿CB以1/cm s的速度匀速向点B运动,两点同时出发,结果点P比点Q先到3s.()1求AB的长;()2设点P Q、出发时间为ts,①求点P与点Q重合时(未到达点B),t的值;②直接写出点P与点Q相距2cm时,t的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】将原式各项运用有理数的运算法则计算得到结果,比较即可.【详解】解:A 、-22=-4,(-2)2=4,不相等,故A 错误;B 、23=8,32=9,不相等,故B 错误;C 、-33=(-3)3=-27,相等,故C 正确;D 、(-3×2)2=36,-32×22=-36,不相等,故D 错误.故选C【点睛】此题考查了有理数的乘方,以及有理数的乘法,熟练掌握运算法则是解本题的关键.2.A解析:A【解析】【分析】各项计算得到结果,即可作出判断.【详解】A 、2222a a a +=,符合题意;B 、2a b 和2ab 不是同类项,不能合并,不符合题意;C 、2(1)22a a -=-,不符合题意;D 、33323a a a -=-,不符合题意,故选:A .【点睛】本题考查了整式的加减,熟练掌握运算法则是解本题的关键.3.C解析:C【解析】1144(1)4414x x x x x x --=---=--+=- 方程左右两边各项都要乘以4,故选C4.C解析:C【分析】男女生5月份的平均成绩均为8.9,据此判断A选项;4月到6月,女生平均成绩依次为8.8、8.9、9.2,据此可判断B选项;根据增长率的概念,结合折线图的数据计算,从而判断C选项;根据女生平均成绩两端折线的上升趋势可判断D选项.【详解】解:A.男女生5月份的平均成绩一样,都是8.9,此选项正确,不符合题意;B.4月到6月,女生平均成绩依次为8.8、8.9、9.2,其平均成绩一直在进步,此选项正确,不符合题意;C.4月到5月,女生平均成绩的增长率为8.98.8100% 1.14%8.8-⨯≈,此选项错误,符合题意;D.5月到6月女生平均成绩比4月到5月的平均成绩增长快,此选项正确,不符合题意;故选:C.【点睛】本题考查折线统计图的运用,折线统计图表示的是事物的变化情况,解题的关键是根据折线图得出解题所需的数据及增长率的概念.5.D解析:D【解析】【分析】先分别讨论x和y的大小关系,分别得出代数式的值,进而得出规律,然后以此规律可得出符合题意的组合,求解即可.【详解】①若x>y,则代数式中绝对值符号可直接去掉,∴代数式等于x,②若y>x则绝对值内符号相反,∴代数式等于y,由此可知,原式等于一组中较大的那个数,当相邻2个数为一组时,这样求出的和最小= 2+4+6+…+30=240.故选:D.【点睛】本题考查了绝对值、有理数的加减混合运算,通过假设,把所给代数式化简,然后把满足条件的字母的值代入计算.6.A解析:A【解析】【分析】先用代数式分别表示出三种方案降价前后的价格,然后进行比较即可.解:由题意可得:方案一降价0.1m+m(1-10%)30%=0.37m;方案二降价0.2m+m(1-20%)15%=0.32m;方案三降价0.2m+m(1-20%)20%=0.36m;故答案为A.【点睛】本题考查列代数式,解答本题的关键是明确题意、列出相应的代数式并进行比较..7.D解析:D【解析】【分析】根据点C是线段AD的中点,可得AD=2AC=2CD,再根据2BD>AD,可得BD> AC= CD,再根据线段的和差,逐一进行判即可.【详解】∵点C是线段AD的中点,∴AD=2AC=2CD,∵2BD>AD,∴BD> AC= CD,A. CD=AD-AC> AD- BD,该选项错误;B. 由A得AD- BD< CD,则AD<BD+CD=BC,则AB=AD+BD< BC+ BD<2BD,该选项错误;C.由B得 AB<2BD ,则BD+AD<2BD,则AD<BD,该选项错误;D. 由A得AD- BD< CD,则AD<BD+CD=BC, 该选项正确故选D.【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.8.C解析:C【解析】【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).【详解】解:A、含有两个未知数,不是一元一次方程,选项错误;B、不是方程是不等式,选项错误;C、符合一元一次方程定义,是一元一次方程,正确;D、未知项的最高次数为2,不是一元一次方程,选项错误.故选:C.【点睛】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.9.A解析:A【解析】【分析】根据题意,利用绝对值的代数意义求出m与n的值,即可确定出原式的值.【详解】解:∵|m|=5,|n|=3,且m+n<0,∴m=−5,n=3或m=−5,n=−3,∴m−n=−8或m-n=-2故选A.【点睛】本题考查了有理数的加减法和绝对值的代数意义.10.C解析:C【解析】【分析】将两个式子相减后即可求解.【详解】两式相减得:m2﹣mn-mn+ n2=28-12,即 m2﹣2mn+n2=16,故选C.【点睛】本题考查了整式加减的应用,正确进行整式的加减是解题的关键.. 11.B解析:B【解析】【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:∵-2a m b2与12a5b n+1是同类项,∴m=5,n+1=2,解得:m=1,∴m+n=6.故选B.【点睛】本题主要考查的是同类项的定义,熟练掌握同类项的定义是解题的关键.12.C解析:C【解析】试题分析:设第一件衣服的进价为x 元,依题意得:x (1+25%)=90,解得:x =72,所以盈利了90﹣72=18(元).设第二件衣服的进价为y 元,依题意得:y (1﹣25%)=90,解得:y =120,所以亏损了120﹣90=30元,所以两件衣服一共亏损了30﹣18=12(元).故选C .点睛:本题考查了一元一次方程的应用.解决本题的关键是要知道两件衣服的进价,知道了进价,就可求出总盈亏.二、填空题13.【解析】【分析】先求出含有参数k 的方程的解,并列举出它是整数的所有可能性,再求出k 的整数值.【详解】解:先解方程,,,,要使方程的解是整数,则必须是整数,∴可以取的整数有:、,则整数解析:1,3,5±【解析】【分析】先求出含有参数k 的方程的解,并列举出它是整数的所有可能性,再求出k 的整数值.【详解】解:先解方程,23x kx -=,()23k x -=,32x k =-, 要使方程的解是整数,则32k-必须是整数, ∴2k -可以取的整数有:±1、3±,则整数k 可以取的值有:±1、3、5.故答案是:±1、3、5.【点睛】本题考查方程的整数解,解题的关键是理解方程解的定义.14.【解析】【分析】根据数列得出第n 个数为,据此可得前2019个数的和为,再用裂项求和计算可得.【详解】解:由数列知第n 个数为,则前2019个数的和为:====故答案为:.【点 解析:20192020【解析】【分析】根据数列得出第n 个数为()11n n +,据此可得前2019个数的和为111 (122320192020)+++⨯⨯⨯,再用裂项求和计算可得. 【详解】解:由数列知第n 个数为()11n n +, 则前2019个数的和为: 11111 (26122020192020)+++++⨯ =111 (122320192020)+++⨯⨯⨯ =11111111 (2233420192020)-+-+-++- =112020- =20192020故答案为:20192020. 【点睛】 本题主要考查数字的变化类,解题的关键是根据数列得出第n 个数为()11n n +,并熟练掌握裂项求和的方法. 15.2﹣()2019【解析】【分析】根据题意和图形,可以写出前几次操作后h 对应的值,从而可以发现变化特点,从而可以写出h2020的值.【详解】解:由题意可知,h1=2﹣1=1,h2=2﹣=解析:2﹣(12)2019 【解析】【分析】根据题意和图形,可以写出前几次操作后h 对应的值,从而可以发现变化特点,从而可以写出h 2020的值.【详解】解:由题意可知,h 1=2﹣1=1,h 2=2﹣12=32, h 3=2﹣(12)2, …, 则h 2020=2﹣(12)2019, 故答案为:2﹣(12)2019. 【点睛】 此题主要考查图形的规律探索,解题的关键是根据题意先求出前几次变换的距离,再发现规律进行求解.16.【解析】【分析】根据无限循环小数都可以转化为分数的方法,先设=x①,得到=100x②,由②-①得16=99x,进而解得x=,即可得到=.【详解】解:设=x①,则=100x②,,②-①得1解析:16 99【解析】【分析】根据无限循环小数都可以转化为分数的方法,先设0.16=x①,得到16.16=100x②,由②-①得16=99x,进而解得x=1699,即可得到0.16=1699.【详解】解:设0.16=x①,则16.16=100x②,,②-①得16=99x,解得x=16 99,即0.16=16 99,故答案为:16 99.【点睛】本题主要考查了解一元一次方程的应用,解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号.17.-12【解析】【分析】利用非负数的性质求出x与y的值,代入所求式子计算即可得到结果.【详解】解:∵|3x-6|+(y+3)2=0,∴3x-6=0,y+3=0,即x=2,y=-3,则2解析:-12【解析】【分析】利用非负数的性质求出x与y的值,代入所求式子计算即可得到结果.【详解】解:∵|3x-6|+(y+3)2=0,∴3x-6=0,y+3=0,即x=2,y=-3,则2y-3x=-6-6=-12.故答案为:-12.【点睛】此题考查了代数式求值以及非负数的性质,根据“几个非负数的和为0时,每个非负数都为0”进行求解是解本题的关键.18.101【解析】【分析】观察算式可知,一个两位数十位数字的1010倍与个位数字的101倍的和除以这个两位数,商是101,依此即可求解.【详解】解:由分析可知:(1010a+101b)÷(10解析:101【解析】【分析】观察算式可知,一个两位数十位数字的1010倍与个位数字的101倍的和除以这个两位数,商是101,依此即可求解.【详解】解:由分析可知:(1010a+101b)÷(10a+b)=101.故答案为:101.【点睛】本题考查了规律型:数字的变化类,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.19.【解析】【分析】将圆柱体的侧面沿AD展开是长方形,并找到长方形长的中点C,连接AC,线段AC的长度即为所求路径的长度.【详解】将圆柱体的侧面沿剪开并铺平,得长方形,取的中点C,连接,根据两解析:【解析】【分析】将圆柱体的侧面沿AD 展开是长方形''AA D D ,并找到长方形长'D D 的中点C ,连接AC ,线段AC 的长度即为所求路径的长度.【详解】将圆柱体的侧面沿AD 剪开并铺平,得长方形''AA D D ,取'D D 的中点C ,连接AC ,根据两点之间线段最短可得线段AC 就是小虫爬行的最短路线,如图:根据题意得212π2π2AB =⨯⨯=. 在Rt ABC ∆中,由勾股定理得22222228AC AB BC =+=+=,∴822AC ==.故答案为:22.【点睛】考查最短路径的问题,学生要掌握圆柱体的侧面张开图是长方形,并且理解两点之间线段最短这一基本事实是本道题解题的关键.20.绳子的原长为144cm 或180cm .【解析】【分析】解:分两种情形讨论:(1)当点A 是绳子的对折点时,(2)当点B 是绳子的对折点时,分别求解即可.【详解】解:本题有两种情形:(1)当点A解析:绳子的原长为144cm 或180cm .【解析】【分析】解:分两种情形讨论:(1)当点A 是绳子的对折点时,(2)当点B 是绳子的对折点时,分别求解即可.【详解】解:本题有两种情形:(1)当点A 是绳子的对折点时,将绳子展开如图.∵AP :BP=4:5,剪断后的各段绳子中最长的一段为80cm ,∴2AP=80cm ,∴AP=40cm ,∴PB=50cm ,∴绳子的原长=2AB=2(AP+PB )=2×(40+50)=180(cm );(2)当点B 是绳子的对折点时,将绳子展开如图.∵AP :BP=4:5,剪断后的各段绳子中最长的一段为80cm ,∴2BP=80cm ,∴BP=40cm ,∴AP=32cm .∴绳子的原长=2AB=2(AP+BP )=2×(32+40)=144(cm ).综上,绳子的原长为144cm 或180cm .【点睛】本题主要考查了线段相关计算,和分类讨论的思想,懂得分类讨论,防止漏解是解决本题的关键.21.192019【解析】【分析】首先根据题意,求得=2,同理求得=19,则可求得面积S1的值;根据题意发现规律:Sn=19nS△ABC 即可求得答案.【详解】解:连接BC1,∵C1A=2CA ,解析:192019【解析】【分析】首先根据题意,求得1ABC S △=2ABC S,同理求得111A B C △S =19ABC S ,则可求得面积S 1的值;根据题意发现规律:S n =19n S △ABC 即可求得答案.【详解】解:连接BC 1,∵C 1A =2CA ,∴1ABC S △=2S △ABC ,同理:111A B C △S =21ABC S △=4S △ABC ,∴11A AC S △=6S △ABC ,同理:11A BB S △=11CB C S △=6S △ABC ,∴111A B C △S =19S △ABC ,即S 1=19S △ABC ,∵S △ABC =1,∴S 1=19;同理:S 2=19S 1=192S △ABC ,S 3=193S △ABC ,∴S 2019=192019S △ABC =192019.故答案是:192019.【点睛】此题考查了三角形面积之间的关系.注意找到规律:S n =19n S △ABC 是解此题的关键.22.【解析】【分析】根据题意分别表示P,Q 的数为-8+2t 和10-3t ,并分到A 前和到A 后进行分析求值.【详解】解:由题意表示P,Q 的数为-8+2t ()和10-3t (),-8+3(t-6)() 解析:125【解析】【分析】根据题意分别表示P ,Q 的数为-8+2t 和10-3t ,并分Q 到A 前和Q 到A 后进行分析求值.【详解】解:由题意表示P ,Q 的数为-8+2t (09t <≤)和10-3t (06t <≤),-8+3(t-6)(69t <≤)Q 到A 前:103826t t -+-=,求得125t =,且满足06t <≤, Q 到A 后:82836t t -++--()=6,求得12t =,但不满足69t <≤,故舍去, 综上125t =. 故填125. 【点睛】本题考查数轴上的动点问题,运用数形结合的思想将动点问题转化为代数问题进行分析求解.三、解答题23.(1)145°,45°;(2)40°;(3)∠AOC 与∠BOD 互补,理由详见解析;(4)∠AOD 角度所有可能的值为:30°、45°、60°、75°.【解析】【分析】(1)由于是两直角三角形板重叠,根据∠AOC=∠AOB+∠COD-∠BOD可分别计算出∠AOC、∠BOD的度数;(2)根据∠BOD=360°-∠AOC-∠AOB-∠COD计算可得;(3)由∠AOD+∠BOD+∠BOD+∠BOC=180°且∠AOD+∠BOD+∠BOC=∠AOC可知两角互补;(4)分别利用OD⊥AB、CD⊥OB、CD⊥AB、OC⊥AB分别求出即可.【详解】解:(1)若∠BOD=35°,∵∠AOB=∠COD=90°,∴∠AOC=∠AOB+∠COD﹣∠BOD=90°+90°﹣35°=145°,若∠AOC=135°,则∠BOD=∠AOB+∠COD﹣∠AOC=90°+90°﹣135°=45°;(2)如图 2,若∠AOC=140°,则∠BOD=360°﹣∠AOC﹣∠AOB﹣∠COD=40°;(3)∠AOC 与∠BOD 互补.∵∠AOD+∠BOD+∠BOD+∠BOC=180°.∵∠AOD+∠BOD+∠BOC=∠AOC,∴∠AOC+∠BOD=180°,即∠AOC 与∠BOD 互补.(4)OD⊥AB 时,∠AOD=30°,CD⊥OB 时,∠AOD=45°,CD⊥AB 时,∠AOD=75°,OC⊥AB 时,∠AOD=60°,即∠AOD 角度所有可能的值为:30°、45°、60°、75°;故答案为(1)145°,45°;(2)40°.【点睛】本题题主要考查了互补、互余的定义等知识,解决本题的关键是理解重叠的部分实质是两个角的重叠.24.(1)>;(2)a-b【解析】【分析】(1)从数轴上可得:a>0,b<0且|a|<|b|,(2)先判断b-a的正负,再根据绝对值的性质进行化简即可【详解】解:(1)根据数轴可得:a>0,b<0且|a|<|b|,则a>b,a-b>0,故答案为:>;(2)从数轴上可得:a >0,b <0且|a |<|b |,则b -a <0,根据绝对值的法则可得:|b -a |= a -b ,故答案为:a -b .【点睛】本题考查用数轴表示有理数和绝对值化简,根据点在数轴上的位置判断出0a b >>是解题的关键.25.(1)9;(2)a 的值为10或-10;(3)见解析,c 的值为6或607【解析】【分析】(1)依据|a-b|=15,a ,b 异号,即可得到a 的值;(2)分点A 在原点左、右两侧两种情况讨论,依据OA=2OB ,即可得到a 的值;(3)分点C 在点B 左、右两侧两种情况进行讨论,依据O 为AC 的中点,OB=3BC ,设未知数列方程即可得到所有满足条件的c 的值.【详解】解:(1)∵b=-6,|a-b|=15,∴|a+6|=15, ∴a+6=15或-15,∴a=9或-21,∵点A 和点B 分别位于原点O 两侧,b=-6,∴a >0,∴a=9,故答案为:9;(2)当A 在原点左侧时,点A 表示的数为a ,又|a-b|=15,即A ,B 两点间的距离为15,则可知B 点对应的数为a+15,如图,由OA =2OB 得,2(a+15-0)=0-a ,解得a=-10;当A 在原点右侧时,可知B 点对应的数为a-15,如图,由OA =2OB 得,2[0-(a-15)]=a-0,解得,a=10.综上所得:a=10或-10;(3)满足条件的C 有两种情况:①当点C 在点B 左侧时,如图,设BC=x,由O为AC的中点,OB=3BC,则OC=OA=2x,∴AB=x+2x+2x=15,解得x=3,∴OC=2x=6,故c=6;②当点C在点B右侧时,如图,设BC=x,由O为AC的中点,OB=3BC,则OB=3x,OA=OC=4x,∴AB=3x+4x=15,解得x=157,∴OC=4x=607,则c=60 7,综上所述,c的值为6或607.【点睛】此题考查了线段长度的计算,一元一次方程的应用和数轴上两点间距离的计算,用到的知识点是线段的中点,关键是根据线段的和差关系求出线段的长度.26.(1)相等;(2)h(a-2h)2;(3)3【解析】【分析】(1)根据图形作答即可;(2)根据长方体体积公式即可解答;(3)将h=2,3分别代入体积公式,即可求出m,n的值;再根据材料一定时长方体体积最大与底面积和高都有关,进而得出答案.【详解】解:(1)由折叠可知,剪去的小正方形的边长与折成的无盖长方体盒子的高之间的大小关系为相等,故答案为:相等;(2)这个无盖长方体盒子的容积=h(a-2h)(a-2h)=h(a-2h)2(cm3);故答案为:h(a-2h)2;(3)当剪去的小正方形的边长取2时,m=2×(20-2×2)2=512,当剪去的小正方形的边长取3时,n=3×(20-2×3)2=588,当剪去的小正方形的边长的值逐渐增大时,所得到的无盖长方体纸盒的容积的值先增大后减小,当剪去的小正方形的边长为3cm时,所得到的无盖长方体纸盒的容积最大.故答案为:3.【点睛】此题主要考查了几何体的体积求法以及展开图问题,根据题意表示出长方体体积是解题关键.27.(1)40;(2)-260;(3)24或32.【解析】【分析】(1)与A、B两点距离相等的点是它们的中点,即(-20+100)÷2结果是M;(2)此题是追及问题,可先求出P追上Q所需的时间,然后可求出Q所走的路程,根据左减右加的原则,可求出点D所对应的数;(3)此题是相遇问题,先求出相距10单位时所需的时间,相距10单位,分相遇前和相遇后计算,再求出点Q走的路程,根据左减右加的原则,可求出-20向右运动到C地点所对应的数.【详解】(1)根据题意可知,点M为A、B的中点,∴(-20+100)÷2=40,答:点M对应的数为40,故答案为:40;(2)点P追到Q点的时间为120÷(6-4)=60,即此时Q点经过的路程为4×60=240,即-20-240=-260,答:点D对应的数是-260,故答案为:-260;(3)分相遇前和相遇后两种情况讨论:他们相遇前相距10单位时,(120-10)÷(6+4)=11,及相同时间Q点运动路程为:11×4=44,即-20+44=24;他们相遇后相距10单位时,(120+10)÷(6+4)=13,及相同时间Q点运动路程为:13×4=52,即-20+52=32,答:点C对应的数是24或32,故答案为:24或32.【点睛】本题考查了数轴上的动点问题,相遇和追及问题,有理数的运算,掌握数轴上的动点问题是解题的关键.28.(1)AB 的长为12cm ;(2)①52t =;②32t =或72t = 【解析】【分析】 (1)设AB 的长,根据题意列出方程,求解即得;(2)①当P ,Q 重合时,P 的路程=Q 的路程+5,列出方程式即得; ②点P 与点Q 相距2cm 时,分P 追上Q 前,和追上Q 后两种情况,分别列出方程式求解即得.【详解】解:()1设AB xcm =,由题意得()533x x --= 解得12x =AB ∴的长为12cm ,()2①由题意得35=+t t 解得52t = 52t ∴=时点P 与点Q 重合, 故答案为:52; ②P 追上Q 前,3t+2=t+5, 解得32t =, P 追上Q 后,3t-2=t+5, 解得72t =, 综上:32t =或72t =. 【点睛】 考查一元一次方程的应用,利用路程=速度⨯时间的关系式,找到变量之间的等量关系列出方程,求解,注意追及问题分情况讨论的情况.。

七年级上学期数学期末试卷及答案-百度文库

七年级上学期数学期末试卷及答案-百度文库
A.第80个图形B.第82个图形C.第84个图形D.第86个图形
5.已知:如图,C是线段AB的中点,D是线段BC的中点,AB=20 cm,那么线段AD等于( )
A.15 cmB.16 cmC.10 cmD.5 cm
6.下列方程为一元一次方程的是( )
A.x+2y=3B.y+3=0C.x2﹣2x=0D. +y=0
7.已知一个角的补角比它的余角的3倍小20度,则这个角的度数是()
A. B. C. D.
8.一组数据的最小值为 ,最大值为 ,若取组距为 ,则分成的组数应为()
A. B. C. D.
9.如图,已知矩形的长宽分别为m,n,顺次将各边加倍延长,然后顺次连接得到一个新的边形,则该四边形的面积为()
A.3mnB.5mnC.7mnD.9mn
A.2B.4C.6D.8
13.小牧用60根长短相同的小木棍按照下图所示的方式,先连续摆出若干正方形,再摆出一些六边形,摆出的正方形和六边形一共有1个,要求所有的图形都摆在一行上,且相邻的图形只有一条公共边,同时没有木棍剩余.则 可以取()个不同的值.
A.2B.3C.4D.5
14.“幻方”在中国古代称为“河图”、“洛书”,又叫“纵横图”.其主要性质是在一个由若干个排列整齐的数组成的正方形中,图中任意一横行,一纵行及对角线的几个数之和都相等.图(l)所示是一个 幻方.有人建议向火星发射如图(2)所示的幻方图案,如果火星上有智能生物,那么他们可以从这种“数学语言”了解到地球上也有智能生物(人).图(3)是一个未完成的 幻方,请你类比图(l)推算图(3)中 处所对应的数字是()
16.如图所示的四个几何体中,从正面、上面、左面看得到的平面图形都相同的有( )
A.1个B.2个C.3个D.4个

七年级上学期数学期末试卷及答案-百度文库

七年级上学期数学期末试卷及答案-百度文库

七年级上学期数学期末试卷及答案-百度文库一、选择题1.如果a+b <0,并且ab >0,那么( )A .a <0,b <0B .a >0,b >0C .a <0,b >0D .a >0,b <02.如图,一个底面直径为30πcm ,高为20cm 的糖罐子,一只蚂蚁从A 处沿着糖罐的表面爬行到B 处,则蚂蚁爬行的最短距离是( )A .24cmB .1013cmC .25cmD .30cm3.一辆客车和一辆卡车同时从A 地出发沿同一公路同向行驶,客车的行驶速度是70km /h ,卡车的行驶速度是60km /h ,客车经过x 小时到达B 地,卡车比客车晚到1h .根据题意列出关于x 的方程,正确的是( )A .16070x x -=B .106070x x +-=C .70x =60x+60D .60x =70x-70 4.某班有48位同学,在一次数学检测中,分数只取整数,统计其成绩,绘制出频数分布直方图(横半轴表示分数,把50.5分到100.5分之间的分数分成5组,组距是10分,纵半轴表示频数)如图所示,从左到右的小矩形的高度比是1:3:6:4:2,则由图可知,其中分数在70.5~80.5之间的人数是( )A .9B .18C .12D .65.如图1是一个正方体的展开图,该正方体按如图2所示的位置摆放,此时这个正方体朝下的一面的字是( )A .中B .国C .梦D .强6.在数轴上,a ,b 所表示的数如图所示,下列结论正确的是( )A .a +b >0B .|b |<|a |C .a ﹣b >0D .a •b >07.骰子是一种特别的数字立方体(见下图),它符合规则:相对两面的点数之和总是7,下面四幅图中可以折成符合规则的骰子的是( )A .B .C .D .8.如图,在数轴上,若A 、B 、C 三点表示的数为a 、b 、c ,则下列结论正确的是( )A .c >a >bB .1b >1cC .|a |<|b |D .abc >09.下列解方程的步骤正确的是( )A .由2x +4=3x +1,得2x +3x =1+4B .由3(x ﹣2)=2(x +3),得3x ﹣6=2x +6C .由0.5x ﹣0.7x =5﹣1.3x ,得5x ﹣7=5﹣13xD .由1226x x -+-=2,得3x ﹣3﹣x +2=12 10.对于一个自然数n ,如果能找到正整数x 、y ,使得n x y xy =++,则称n 为“好数”.例如:31111=++⨯,则3是一个“好数”,在8,9,10,11这四个数中,“好数”的个数共有( )个A .1B .2C .3D .411.已知a ,b ,c 为有理数,且0a b c ++=,0abc <,则a b c a b c++的值为( ) A .1 B .1-或3- C .1或3- D .1-或312.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,…,依次规律,第9个图形圆的个数为( )A .94B .85C .84D .76二、填空题13.如图,点D 为线段AB 上一点,C 为AB 的中点,且AB =8m ,BD =2cm ,则CD 的长度为_____cm .14.某品牌服装店以200元的进价购进一批体恤衫,销售时标价为300元,为了减少商品库存,让利于顾客,准备打折销售,但要保证利润率不低于20%,则至多可大打_______________折.15.一个角的余角比这个角的12少30°,则这个角的度数是_____. 16.如图,点A ,B ,C ,D ,E ,F 都在同一直线上,点B 是线段AD 的中点,点E 是线段CF 的中点,有下列结论:①AE =12(AC +AF ),②BE =12AF ,③BE =12(AF ﹣CD ),④BC =12(AC ﹣CD ).其中正确的结论是_____(只填相应的序号).17.计算:[(5)11](3)-+÷-=________.18.当x =1时,ax +b +1=﹣3,则(a +b ﹣1)(1﹣a ﹣b )的值为_____.19.如图,将一个正方形纸片分割成四个面积相等的小正方形纸片,然后将其中一个小正方形纸片再分割成四个面积相等的小正方形纸片.如此分割下去,第n 次分割后,正方形纸片共有_________个.20.将图中的三角形纸片沿AB 折叠所得的AB 右边的图形的面积与原三角形面积之比为2:3,已知图中重叠部分的面积为5,则图中三个阴影部分的三角形的面积之和为_____.21.当n 取正整数时,(1+x )n 的展开式中每一项的系数可以表示成如下形式:(1)观察上面数表的规律,若(1+x )6=1+6x +15x 2+ax 3+15x 4+6x 5+x 6,则a =_____; (2)(1+x )7的展开式中每一项的系数和为_____.22.如图是一回形图,其回形通道的宽和OB 的长均为1,回形线与射线OA 交于1A ,2A ,3A ,…,若从点O 到点1A 的回形线为第1圈(长为7),从点1A 到点2A 的回形线为第2圈,…,依此类推,则第13圈的长为_______.三、解答题23.如图,AB CD ⊥,垂足为O ,EF 经过点O ,130∠=︒.求2∠、3∠的度数.24.有A 、B 两家复印社,A 4纸复印计费方式如表:A 4纸复印计费方式 A 复印社复印页数不超过20页时,每页0.12元;复印页数超过20 页时,超过部分每页收费0.09元. B 复印社 不论复印多少页,每页收费0.1元.(1)若要用A 4纸复印30页,选哪家复印社划算?能便宜多少钱?(2)用A 4纸复印多少页时,两家复印社收费相同?25.如图,两条直线AB 、CD 相交于点O ,且∠AOC=∠AOD ,射线OM (与射线OB 重合)绕O 点逆时针方向旋转,速度为15°/s ,射线ON (与射线OD 重合)绕O 点顺时值方向旋转,速度为12°/s ,两射线,同时运动,运动时间为t 秒(本题出现的角均指小于平角的角)(1)图中一定有______个直角;当t=2时,∠MON 的度数为_____,∠BON 的度数为_____,∠MOC 的度数为_____;(2)当0<t <12时,若∠AOM=3∠AON -60°,试求出t 的值.(3)当0<t <6时,探究72COM BON MON∠+∠∠的值,在t 满足怎样的条件是定值,在t 满足怎样的条件不是定值.26.如图,数轴上点A 表示的数为-2,点B 表示的数为8.点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,设运动时间为t 秒(0t >).(1)填空:①A 、B 两点间的距离AB =________,线段AB 的中点表示的数为________;②用含t 的代数式表示:t 秒后,点P 表示的数为________;点Q 表示的数为________; (2)求当t 为何值时,1||||2PQ AB =; (3)当点P 运动到点B 的右侧时,线段PA 的中点为M ,N 为线段PB 的三等分点且靠近于P 点,求3||||4PM BN -的值. 27.如图,C 是线段AB 上一点,5AC cm =,点P 从点A 出发沿AB 以3/cm s 的速度匀速向点B 运动,点Q 从点C 出发沿CB 以1/cm s 的速度匀速向点B 运动,两点同时出发,结果点P 比点Q 先到3s .()1求AB 的长;()2设点P Q 、出发时间为ts ,①求点P 与点Q 重合时(未到达点B ), t 的值;②直接写出点P 与点Q 相距2cm 时,t 的值.28.如图,160AOB ∠=︒,OC 为其内部一条射线.(1)若OE 平分AOC ∠,OF 平分BOC ∠.求EOF ∠的度数;(2)若100AOC ∠=,射线OM 从OA 起绕着O 点顺时针旋转,旋转的速度是20︒每秒钟,设旋转的时间为t ,试求当AOM ∠+MOC ∠+MOB ∠200=时t 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】分析:根据ab 大于0,利用同号得正,异号得负的取符号法则得到a 与b 同号,再由a+b 小于0,即可得到a 与b 都为负数.详解:∵ab >0,∴a 与b 同号,又a+b <0,则a <0,b <0.故选A .点睛:此题考查了有理数的乘法、加法运算,熟练掌握运算法则是解本题的关键.2.C解析:C【解析】【分析】根据题意首先将此圆柱展成平面图,根据两点间线段最短,可得AB 最短,由勾股定理即可求得需要爬行的最短路程.【详解】解:将此圆柱展成平面图得:∵有一圆柱,它的高等于20cm ,底面直径等于30πcm , ∴底面周长=3030ππ⋅=cm ,∴BC =20cm ,AC =12×30=15(cm ),∴AB25==(cm ).答:它需要爬行的最短路程为25cm .故选:C .【点睛】本题主要考查平面展开图求最短路径问题,将圆柱体展开,根据两点之间线段最短,运用勾股定理解答是解题关键.3.C解析:C【解析】【分析】根据A 地到B 地的路程相等,可构造等量关系7060(1)x x =+,即可得出答案.【详解】解:根据题意,客车从A 地到B 地的路程为:70S x =卡车从A 地到B 地的路程为:60(1)S x =+则7060(1)x x =+故答案为:C .【点睛】本题考查一元一次方程路程的应用题,注意设未知数后等量关系构成的条件,属于一般题型.4.B解析:B【解析】试题分析:由频率直方图上的小长方形的高为频数,即高之和为总数,知道高度比,即可算出个范围的频数,即各个范围的人数.解:由图形可知,从左到右的小矩形的高度比是1:3:6:4:2,且总数为48, 即各范围的人数分别为3,9,18,12,6.所以分数在70.5~80.5之间的人数是18人.故选B .考点:频数(率)分布直方图.5.B解析:B【解析】【分析】动手进行实验操作,或者在头脑中模拟(想象)折纸、翻转活动即可求解.【详解】解:由图1可得,“中”和第三行的“国”相对;第二行“国”和“强”相对;“梦”和“梦”相对;由图2可得,此时小正方体朝下面的字即为“中”的相对面对应的字,即为“国”.故选:B.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.6.C解析:C【解析】【分析】先根据数轴判定a、b、a+b、a-b的正负,然后进行判定即可.【详解】解:由数轴可得,b<﹣2<0<a<2,∴a+b<0,故选项A错误,|b|>|a|,故选项B错误,a﹣b>0,故选项C正确,a•b<0,故选项D错误,故答案为C.【点睛】本题考查了数轴的应用、绝对值、正数和负数的相关知识,解题的关键在于根据数轴判定字母和代数式的正负.7.C解析:C【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解.【详解】根据正方体的表面展开图,相对的面之间一定相隔一个正方形,A、1点与3点是向对面,4点与6点是向对面,2点与5点是向对面,所以不可以折成符合规则的骰子,故本选项错误;B、3点与4点是向对面,1点与5点是向对面,2点与6点是向对面,所以不可以折成符合规则的骰子,故本选项错误;C、4点与3点是向对面,5点与2点是向对面,1点与6点是向对面,所以可以折成符合规则的骰子,故本选项正确;D、1点与5点是向对面,3点与4点是向对面,2点与6点是向对面,所以不可以折成符合规则的骰子,故本选项错误.故选C.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.8.B解析:B【解析】【分析】先确定出a、b、c的取值范围,然后根据有理数的运算法则解答即可.【详解】解:观察数轴,可知:﹣2<a<﹣1,0<b<1,1<c<2,∴c>b>a,1b >1c,|a|>|b|,abc<0.故选:B.【点睛】本题考查了利用数轴比较有理数的大小,以及有理数的运算法则,熟练掌握有理数的运算法则是解答本题的关键.9.B解析:B【解析】【分析】根据一元一次方程的解题步骤,去分母、去括号、移项、合并同类项、化系数为1一一判断即可,其中C选项利用等式的性质进行化简.【详解】解:A、2x+4=3x+1,移项得:2x-3x=1-4,故本选项错误;B、3(x-2)=2(x+3),去括号得:3x-6=2x+6,故本选项正确;C、0.5x-0.7x=5-1.3x,利用等式基本性质等式两边都乘以10得:5x-7x=50-13x,故本选项错误;D、1226x x-+-=2,去分母得:3x-3-x-2=12,故本选项错误;故选:B.【点睛】本题考查了一元一次方程的解法,能正确根据等式的性质进行变形是解此题的关键.解一元一次方程的一般步骤:去分母,去括号,移项,合并同类项,系数化成1.10.C解析:C【解析】【分析】根据题意,由n=x+y+xy,可得n+1=x+y+xy+1,所以n+1=(x+1)(y+1),因此如果n+1是合数,则n是“好数”,据此判断即可.【详解】根据分析,∵8=2+2+2×2,∴8是好数;∵9=1+4+1×4,∴9是好数;∵10+1=11,11是一个质数,∴10不是好数;∵11=2+3+2×3,∴11是好数.综上,可得在8,9,10,11这四个数中,“好数”有3个:8、9、11.故选C .【点睛】此题主要考查了有理数的混合运算,要熟练掌握,解答此题的关键是要明确:(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化;此题还考查了对“好数”的定义的理解,要熟练掌握,解答此题的关键是要明确:如果n +1是合数,则n 是“好数”.11.A解析:A【解析】【分析】先根据有理数的乘法法则推出:要使三个数的乘积为负,a ,b ,c 中应有奇数个负数,进而可将a ,b ,c 的符号分两种情况:1负2正或3负;再根据加法法则:要使三个数的和为0,a ,b ,c 的符号只能为1负2正,然后化简即得.【详解】∵0abc <∴a ,b ,c 中应有奇数个负数∴a ,b ,c 的符号可以为:1负2正或3负∵0a b c ++=∴a ,b ,c 的符号为1负2正令0a <,0b >,0c > ∴a a =-,b b =,c c = ∴a b c a b c ++1111=-++= 故选:A .【点睛】本题考查了绝对值的性质、乘法法则及加法法则,利用加法法则和乘法法则确定数的符号是解题关键.12.A【解析】【分析】分析数据可得:第1个图形中小圆的个数为6;第2个图形中小圆的个数为10;第3个图形中小圆的个数为16;第4个图形中小圆的个数为24;可以推出第n 个图形中小圆的个数为n (n+1) +4.将9代入即可.【详解】第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,因为6= 4+1×2,10=4+2×3,16=4+3×4,24=4+4×5...,所以第n 个图形中小圆的个数为4+n (n+1)所以第9个图形有: 4 +9×10=94个小圆,故选: A【点睛】本题是一道找规律题,利用题目中给出的条件观察计算的出关于第n个图形的代数表达式将所求的代入.二、填空题13.【解析】【分析】先根据点C是线段AB的中点,AB=8cm求出BC的长,再根据CD=BC﹣BD 即可得出结论.【详解】解:∵点C是线段AB的中点,AB=8cm,∴BC=AB=×8=4cm,解析:【解析】【分析】先根据点C是线段AB的中点,AB=8cm求出BC的长,再根据CD=BC﹣BD即可得出结论.【详解】解:∵点C是线段AB的中点,AB=8cm,∴BC=12AB=12×8=4cm,∵BD=2cm,∴CD=BC﹣BD=4﹣2=2cm.故答案为2.本题考查的是线段,比较简单,需要熟练掌握线段的基本性质.14.8【解析】【分析】设打x 折,得出售价是300×元,利润是(300×-200)元,再根据利润率不低于20%,即利润要大于或等于200×20%元,列出不等式,解出x 的取值范围.【详解】解:设打解析:8【解析】【分析】设打x 折,得出售价是300×10x 元,利润是(300×10x -200)元,再根据利润率不低于20%,即利润要大于或等于200×20%元,列出不等式,解出x 的取值范围.【详解】解:设打x 折,根据题意得:则300×10x -200≥200×20%, 解得:x≥8,则最多可打8折.故答案为:8.【点睛】 本题考查一元一次不等式组的应用,正确理解利润率的含义,理解利润=进价×利润率,列出不等式是解题关键.15.80°【解析】【分析】设这个角为x ,则它的余角是90°-x ,列方程求解即可.【详解】解:设这个角为x ,则它的余角是90°﹣x ,由题意,得:90°﹣x =x ﹣30°,解得:x =80°.即解析:80°【解析】设这个角为x,则它的余角是90°-x,列方程求解即可.【详解】解:设这个角为x,则它的余角是90°﹣x,由题意,得:90°﹣x=12x﹣30°,解得:x=80°.即这个角的度数是80°.故答案为:80°.【点睛】本题考查了余角的知识,掌握互余的两角之和为90°是解题关键.16.① ③ ④【解析】【分析】根据线段的关系和中点的定义,得到AB=BD=,CE=EF=,再根据线段和与查的计算方法逐一推导即可.【详解】∵点是线段的中点,点是线段的中点,∴AB=BD=,C解析:① ③ ④【解析】【分析】根据线段的关系和中点的定义,得到AB=BD=12AD,CE=EF=12CF,再根据线段和与查的计算方法逐一推导即可.【详解】∵点B是线段AD的中点,点E是线段CF的中点,∴AB=BD=12AD,CE=EF=12CF()()()()()()1211122211222112212AE AB BEAD BD CE CD AD AD CF CD AC CD AD CF CD AC CD AF CD AC CD AF CD =+=++-⎛⎫=++- ⎪⎝⎭=+++-=++-=++- ()12AC AF =+,故①正确; ()()11221212BE BD DEBD CE CDAD CF CD AD CF CD AF CD CD =+=+-=+-=+-=+- ()12AF CD =-,故②错误,③正确; ()1212BC BD CDAD CD AC CD CD =-=-=+- ()12AC CD =-,④正确 故答案为①③④.【点睛】 此题考查的是线段的和与差,掌握各个线段之间的关系和中点的定义是解决此题的关键.17.-2【解析】【分析】先算小括号内的,再算中括号内的,最后算括号外的.【详解】解:原式=6÷(-3)=-2,故答案为:-2.本题考查了有理数的混合运算,注意运算顺序和运算法则.解析:-2【解析】【分析】先算小括号内的,再算中括号内的,最后算括号外的.【详解】解:原式=6÷(-3)=-2,故答案为:-2.【点睛】本题考查了有理数的混合运算,注意运算顺序和运算法则.18.-25.【解析】【分析】由x=1时,代数式ax+b+1的值是﹣3,求出a+b的值,将所得的值整体代入所求的代数式中进行计算即可得解.【详解】解:∵当x=1时,ax+b+1的值为﹣3,∴a解析:-25.【解析】【分析】由x=1时,代数式ax+b+1的值是﹣3,求出a+b的值,将所得的值整体代入所求的代数式中进行计算即可得解.【详解】解:∵当x=1时,ax+b+1的值为﹣3,∴a+b+1=﹣3,∴a+b=﹣4,∴(a+b﹣1)(1﹣a﹣b)=(a+b﹣1)[1﹣(a+b)]=(﹣4﹣1)×(1+4)=﹣25.故答案为:﹣25.【点睛】此题考查整式的化简求值,运用整体代入法是解决问题的关键.19.3n+1【解析】【分析】观察图形规律,第一次有4个,第二次有7个,第三次有10个,依此类推可以得到第n次的计算结果.解:第一次有4个,第二次有7=3+4,第三次有10=3×2+4,解析:3n+1【解析】【分析】观察图形规律,第一次有4个,第二次有7个,第三次有10个,依此类推可以得到第n 次的计算结果.【详解】解:第一次有4个,第二次有7=3+4,第三次有10=3×2+4,第四次有13=3(4-1)+4,…以此类推,第n次有3(n-1)+4=3n+1.故答案为:3n+1.【点睛】本题考查了规律性的题目,首先至少正确计算三个特殊数据,然后进一步发现数据之间的规律,进行计算即可,本题可看到第一次有4个,第二次有7=3+4,第三次有10=3×2+4,从而得到第n次的规律.20.5【解析】【分析】设图中三个阴影部分的三角形的面积之和为y,可得AB右边的图形的面积=5+y,原三角形面积=2×5+y=10+y,由题意列出方程可求解.【详解】设图中三个阴影部分的三角形的解析:5【解析】【分析】设图中三个阴影部分的三角形的面积之和为y,可得AB右边的图形的面积=5+y,原三角形面积=2×5+y=10+y,由题意列出方程可求解.【详解】设图中三个阴影部分的三角形的面积之和为y,则AB右边的图形的面积=5+y,原三角形面积=2×5+y=10+y,由题意可得:(5+y):(10+y)=2:3,∴y=5,故答案为:5.21.27【解析】【分析】(1)根据表中的规律,从而可以解答本题;(2)根据数学归纳法,写出前几项总结规律,从而可以解答本题.【详解】解:(1)由题意可得,(1+x)6=1+6x+1解析:27【解析】【分析】(1)根据表中的规律,从而可以解答本题;(2)根据数学归纳法,写出前几项总结规律,从而可以解答本题.【详解】解:(1)由题意可得,(1+x)6=1+6x+15x2+ax3+15x4+6x5+x6,则a=20;(2)∵当n=1时,多项式(1+x)1展开式的各项系数之和为:1+1=2=21,当n=2时,多项式(1+x)2展开式的各项系数之和为:1+2+1=4=22,当n=3时,多项式(1+x)3展开式的各项系数之和为:1+3+3+1=8=23,当n=4时,多项式(1+x)4展开式的各项系数之和为:1+4+6+4+1=16=24,…∴多项式(1+x)7展开式的各项系数之和=27.故答案为:20,27.【点睛】本题考查整式的运算,数字的变化规律,解题的关键是明确题意,利用数学归纳法解答本题.22.103【解析】【分析】将第一、二、三圈的式子依次列出得到规律即可得到答案.【详解】第1圈:1+1+2+2+1=7,第2圈:2+3+4+4+2=15,第3圈:3+5+6+6+3=23,解析:103【解析】【分析】将第一、二、三圈的式子依次列出得到规律即可得到答案.【详解】第1圈:1+1+2+2+1=7,第2圈:2+3+4+4+2=15,第3圈:3+5+6+6+3=23,∴第13圈:13+25+26+26+13=103,故答案为:103.【点睛】此题考查图形类规律的探究,正确观察图形得到图形的变化规律是解题的关键.三、解答题23.60°,30°【解析】【分析】根据对顶角相等可得∠3=∠1=30°,根据邻补角互补可得∠EOB=150°,再由垂直可得∠BOD=90°,根据∠2=90°-∠1即可算出度数.【详解】解:由题意可知,AB与EF相交于点O,3130∴∠=∠=︒⊥AB CD∴∠︒BOD=90∠+∠=︒即2390260∴∠=︒;【点睛】此题主要考查了对顶角,邻补角,以及垂直的定义,题目比较简单,要注意领会由垂直得直角这一要点.24.(1)选B复印社划算,能便宜0.3元;(2)复印42页时两家复印社收费相同.【解析】【分析】(1)根据题意得出两种复印社的代数式解答即可;(2)复印x页时两家复印社收费相同.根据题意列出方程解答即可.【详解】解:(1)A复印社:20×0.12+0.09×(30﹣20)=3.3(元),B复印社:30×0.1=3(元),3<3.3,3.3﹣3=0.3(元),答:选B复印社划算,能便宜0.3元.(2)设:复印x页时两家复印社收费相同.可得:20×0.12+0.09×(x﹣20)=0.1x,解得:x=42,答:复印42页时两家复印社收费相同.【点睛】本题考查一元一次方程的应用,解题的关键是找到题目中的等量关系,设未知数列方程求解.25.(1)4;144°,114°,60°;(2)107s 或10s ;(3),当0<t <103时,72COM BON MON ∠+∠∠的值不是定值,当103<t <6时,72COM BON MON∠+∠∠的值是3 【解析】【分析】(1)根据两条直线AB ,CD 相交于点O ,∠AOC=∠AOD ,可得图中一定有4个直角;当t=2时,根据射线OM ,ON 的位置,可得∠MON 的度数,∠BON 的度数以及∠MOC 的度数;(2)分两种情况进行讨论:当0<t≤7.5时,当7.5<t <12时,分别根据∠AOM=3∠AON-60°,列出方程式进行求解,即可得到t 的值;(3)先判断当∠MON 为平角时t 的值,再以此分两种情况讨论:当0<t <103时,当103<t <6时,分别计算72COM BON MON∠+∠∠的值,根据结果作出判断即可. 【详解】解:(1)如图所示,∵两条直线AB ,CD 相交于点O ,∠AOC=∠AOD ,∴∠AOC=∠AOD=90°,∴∠BOC=∠BOD=90°,∴图中一定有4个直角;当t=2时,∠BOM=30°,∠NON=24°,∴∠MON=30°+90°+24°=144°,∠BON=90°+24°=114°,∠MOC=90°-30°=60°;故答案为:4;144°,114°,60°;(2)当ON 与OA 重合时,t=90÷12=7.5(s ),当OM 与OA 重合时,t=180°÷15=12(s ),如图所示,当0<t≤7.5时,∠AON=90°-12t°,∠AOM=180°-15t°,由∠AOM=3∠AON-60°,可得180°-15t°=3(90°-12t°)-60°,解得t=107;如图所示,当7.5<t<12时,∠AON=12t°-90°,∠AOM=180°-15t°,由∠AOM=3∠AON-60°,可得180°-15t°=3(12t°-90°)-60°,解得t=10;综上所述,当∠AOM=3∠AON-60°时,t的值为107s或10s;(3)当∠MON=180°时,∠BOM+∠BOD+∠DON=180°,∴15t°+90°+12t°=180°,解得t=103,①如图所示,当0<t<103时,∠COM=90°-15t°,∠BON=90°+12t°,∠MON=∠BOM+∠BOD+∠DON=15t°+90°+12t°,∴72COMBON MON ∠+∠∠=()()7901529012159012t t t t ︒︒︒︒︒︒︒-++++ =810812790t t ︒︒︒-+(不是定值), ②如图所示,当103<t <6时,∠COM=90°-15t°,∠BON=90°+12t°,∠MON=360°-(∠BOM+∠BOD+∠DON)=360°-(15t°+90°+12t°)=270°-27t°,∴72COM BON MON ∠+∠∠=()()790152901227027t t t ︒︒︒︒︒︒-++- =8108127027t t︒︒︒︒--=3(定值), 综上所述,当0<t <103时,72COM BON MON ∠+∠∠的值不是定值,当103<t <6时,72COM BON MON∠+∠∠的值是3. 【点睛】本题属于角的计算综合题,主要考查了角的和差关系的运用,解决问题的关键是将相关的角用含t 的代数式表示出来,并根据题意列出方程进行求解,以及进行分类讨论,解题时注意方程思想和分类思想的灵活运用.26.(1)①10;3;②点P 表示的数为-2+3t ,点Q 表示的数为8-2t ;(2)1或3;(3)5【解析】【分析】(1)①根据点A 表示的数为-2,点B 表示的数为8,即可得到A 、B 两点间的距离以及线段AB 的中点表示的数;②依据点P ,Q 的运动速度以及方向,即可得到结论;(2)由t 秒后,点P 表示的数-2+3t ,点Q 表示的数为8-2t ,于是得到|PQ|=|(-2+3t )-(8-2t )|=|5t-10|,列方程即可得到结论;(3)依据PA 的中点为M ,N 为PB 的三等分点且靠近于P 点,运用线段的和差关系进行计算,即可得到3||||4PM BN -的值. 【详解】解:(1)①AB =8-(-2)=10,-2+12×10=3, 故答案为:10,3; ②由题可得,点P 表示的数为-2+3t ,点Q 表示的数为8-2t ;故答案为:-2+3t ,8-2t ;(2)∵t 秒后,点P 表示的数-2+3t ,点Q 表示的数为8-2t ,∴|PQ|=|(-2+3t )-(8-2t )|=|5t-10|, 又1||||2PQ AB ==12×10=5, ∴|5t-10|=5,解得:t=1或3, ∴当t=1或3时,1||||2PQ AB =; (3)∵PA 的中点为M ,N 为PB 的三等分点且靠近于P 点,∴|MP|=12|AP|=12×3t=32t , |BN|=23|BP|=23(|AP|-|AB|)=23×(3t-10)=2t-203, ∴3||||4PM BN -=32t-34(2t-203)=5. 【点睛】本题考查了实数和数轴以及一元一次方程的应用,解题的关键是掌握点的移动与点所表示的数之间的关系,根据题目给出的条件,找出合适的等量关系列出方程求解.27.(1)AB 的长为12cm ;(2)①52t =;②32t =或72t = 【解析】【分析】(1)设AB 的长,根据题意列出方程,求解即得;(2)①当P ,Q 重合时,P 的路程=Q 的路程+5,列出方程式即得; ②点P 与点Q 相距2cm 时,分P 追上Q 前,和追上Q 后两种情况,分别列出方程式求解即得.【详解】解:()1设AB xcm =,由题意得()533x x --= 解得12x =AB ∴的长为12cm ,()2①由题意得35=+t t解得52t = 52t ∴=时点P 与点Q 重合, 故答案为:52; ②P 追上Q 前,3t+2=t+5,解得32t =, P 追上Q 后,3t-2=t+5, 解得72t =, 综上:32t =或72t =. 【点睛】 考查一元一次方程的应用,利用路程=速度⨯时间的关系式,找到变量之间的等量关系列出方程,求解,注意追及问题分情况讨论的情况.28.(1)80EOF ∠=;(2)3t s =或7t s =,【解析】【分析】(1)根据角平分线定义和角的和差计算即可;(2)分四种情况讨论:①当OM 在∠AOC 内部时,②当OM 在∠BOC 内部时,③当OM 在∠AOB 外部,靠近射线OB 时,④当OM 在∠AOB 外部,靠近射线OA 时.分别列方程求解即可.【详解】(1)∵OE 平分∠AOC ,OF 平分∠BOC ,∴∠1=12∠AOC ,∠2=12∠BOC , ∴∠EOF =∠1+∠2=12∠AOC +12∠BOC =12(∠AOC +∠BOC )=12∠AOB . ∵∠AOB =160°,∴∠EOF =80°.(2)分四种情况讨论:①当OM 在∠AOC 内部时,如图1.∵∠AOC =100°,∠AOB =160°,∴∠MOB =∠AOB -∠AOM =160°-20t .∵∠AOM +∠MOC +∠MOB =∠AOC +∠MOB =200°,∴100°+160°-20t =200°,∴t =3.②当OM 在∠BOC 内部时,如图2.∵∠AOC =100°,∠AOB =160°,∴∠BOC =∠AOB -∠AOC =160°-100°=60°.∵∠AOM +∠MOC +∠MOB =∠AOM +∠COB =200°,∴2060200t +=,∴t =7.③当OM 在∠AOB 外部,靠近射线OB 时,如图3,∵∠AOB =160°,∠AOC =100°,∴∠BOC =160°-100°=60°.∵∠AOM =20t ,∴∠MOB =∠AOM -∠AOB =20160t ︒-︒,∠MOC =20100t ︒-︒.∵∠AOM +∠MOC +∠MOB =200°,∴202010020160200t t t ︒+︒-︒+︒-︒=︒,解得:t =233. ∵∠AOB =160°,∴OM 转到OB 时,所用时间t =160°÷20°=8.∵233<8, ∴此时OM 在∠BOC 内部,不合题意,舍去.④当OM 在∠AOB 外部,靠近射线OA 时,如图4,∵∠AOB =160°,∠AOC =100°,∴∠BOC =160°-100°=60°.∵36020AOM t ∠=︒-︒,∴∠MOC =∠AOM +∠AOC =36020100t ︒-︒+︒=46020t ︒-︒,∠MOB =∠AOM +∠AOB =36020160t ︒-︒+︒=52020t ︒-︒.∵∠AOM +∠MOC +∠MOB =200°,∴()()()360204602052020200t t t ︒-︒+︒-︒+︒-︒=︒,解得:t =19.当t =19时,20t =380°>360°,则OM 转到了∠AOC 的内部,不合题意,舍去. 综上所述:t =3s 或t =7s .【点睛】本题考查了角的和差和一元一次方程的应用.用含t 的式子表示出对应的角是解答本题的关键.。

七年级上学期数学期末试卷及答案-百度文库

七年级上学期数学期末试卷及答案-百度文库

七年级上学期数学期末试卷及答案-百度文库一、选择题1.当x 取2时,代数式(1)2x x -的值是( ) A .0 B .1 C .2 D .3 2.地球与月球的平均距离为384 000km ,将384 000这个数用科学记数法表示为( ) A .3.84×103B .3.84×104C .3.84×105D .3.84×1063.根据等式的性质,下列变形正确的是( ) A .若2a =3b ,则a =23b B .若a =b ,则a +1=b ﹣1 C .若a =b ,则2﹣3a =2﹣3bD .若23a b=,则2a =3b 4.宁波港处于“一带一路”和长江经济带交汇点,地理位置得天独厚.全年货物吞吐量达9.2亿吨,晋升为全球首个“9亿吨”大港,并连续8年蝉联世界第一宝座.其中9.2亿用科学记数法表示正确的是( ) A .B .C .D .5.在实数:3.1415935-π2517,0.1313313331…(每2个1之间依次多一个3)中,无理数的个数是( ) A .1个 B .2个C .3个D .4个6.按一定规律排列的单项式:x 3,-x 5,x 7,-x 9,x 11,……第n 个单项式是( )A .(-1)n -1x 2n -1B .(-1)n x 2n -1C .(-1)n -1x 2n +1D .(-1)n x 2n +17.观察下列算式,用你所发现的规律得出22015的末位数字是( ) 21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…. A .2 B .4 C .6 D .8 8.若-4x 2y 和-23x m y n 是同类项,则m ,n 的值分别是( ) A .m=2,n=1B .m=2,n=0C .m=4,n=1D .m=4,n=09.点()5,3M 在第( )象限. A .第一象限B .第二象限C .第三象限D .第四象限10.某中学进行义务劳动,去甲处劳动的有30人,去乙处劳动的有24人,从乙处调一部分人到甲处,使甲处人数是乙处人数的2倍,若设应从乙处调x 人到甲处,则所列方程是( )A .2(30+x )=24﹣xB .2(30﹣x )=24+xC .30﹣x =2(24+x )D .30+x =2(24﹣x )11.赣州是中国脐橙之乡,据估计2013年全市脐橙总产量将达到150万吨,用科学计数法表示为 ( )吨. A .415010⨯B .51510⨯C .70.1510⨯D .61.510⨯12.已知a ﹣b=﹣1,则3b ﹣3a ﹣(a ﹣b )3的值是( ) A .﹣4B .﹣2C .4D .2二、填空题13.如图,线段AB 被点C ,D 分成2:4:7三部分,M ,N 分别是AC ,DB 的中点,若MN=17cm ,则BD=__________cm.14.如图,点A 在点B 的北偏西30方向,点C 在点B 的南偏东60︒方向.则ABC ∠的度数是__________.15.把5,5,35按从小到大的顺序排列为______.16.甲乙两个足够大的油桶各装有一定量的油,先把甲桶中的油的一半给乙桶,然后把乙桶中的油倒出18给甲桶,若最终两个油桶装有的油体积相等,则原来甲桶中的油是乙桶中油的______倍。

七年级上学期数学期末试卷及答案-百度文库

七年级上学期数学期末试卷及答案-百度文库
一、选择题
1.D
解析:D
【解析】
【分析】
首先根据有理数a,b在数轴上的位置判断出a、b两数的符号,从而确定答案.
方案三:第一、二次降价均为20%.三种方案哪种降价最多()
A.方案一B.方案二C.方案三D.不能确定
22.如图1是一个正方体的展开图,该正方体按如图2所示的位置摆放,此时这个正方体朝下的一面的字是()
A.中B.国C.梦D.强
23.用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺满地面:第(1)个图形有黑色瓷砖6块,第(2)个图形有黑色瓷砖11块,第(3)个图形有黑色瓷砖16块,…,则第(9)个图形黑色瓷砖的块数为().,b在数轴上的位置如图示,则( )
A.a+b>0B.ab>0C.a﹣b>0D.﹣a﹣b>0
2.下列图形都是由同样大小的黑色正方形纸片组成,其中第1个图中有3张黑色正方形纸片,第2个图中有5张黑色正方形纸片,第3个图中有7张黑色正方形纸片,…,按此规律排列下去第n个图中黑色正方形纸片的张数为()
6.一个正方体的每个面都写有一个汉字,其平面展开图如图所示,则在该正方体中,和“我”相对面上所写的汉字是()
A.美B.丽C.琼D.海
7.计算 的结果为()
A. B. C. D.
8.若3x-2y-7=0,则4y-6x+12的值为()
A.12B.19C.-2D.无法确定
9.下列方程为一元一次方程的是( )
15.已知线段AB=m,BC=n,且m2﹣mn=28,mn﹣n2=12,则m2﹣2mn+n2等于( )
A.49B.40C.16D.9
16.下列各组数中,数值相等的是( )
A.﹣22和(﹣2)2B.23和 32
C.﹣33和(﹣3)3D.(﹣3×2)2和﹣32×22
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学第一学期期末考试卷
七年级 数学
同学们,答题前请先看:
1、本卷共8页,七大题,共30小题,满分100分,答案一律写在答题卡上,否则无效。

考试形式为闭卷,考试时间120分钟。

2分,共20分)
1、-18
1
的倒数是 。

2、如果x= -3,那么x 的相反数是 。

3、计算-2-5= 。

4、比较-54和-65的大小,结果是:-54 -6
5
5、据统计,到2005年底,某州总人口约为391万,如果用科学记数法来表示,可以表示成 人。

6、木工师傅要把一根14m 长的木头锯成七段,锯一段要用5分钟,一共需要 分钟。

7、1.45度= 分= 秒。

8、2700秒= 分 度。

9、当x= 时,代数式5
1
3-x —1等于零。

10、将圆分成三个扇形,其三个扇形的面积比为2:3:4,则最小那个扇形的圆心角为 度。

3分,共30分)
11、在数轴上到-3的距离等于5的数是:
A 、2
B 、-8和-2
C 、-2
D 、2和-8
12、计算(-1)2004+(-1)2005有值为:
A 、0
B 、-2
C 、2
D 、2⨯(-1)2004 13、若b<0<a ,则下列各式不成立的是:
A 、a-b>0
B 、-a+b<0
C 、ab<0
D 、|a|>|b| 14、下列说法中正确的是
A 、两点之间的所有连线中,线段最短。

B 、射线就是直线。

C 、两条射线组成的图形叫做角。

D 、小于平角的角可分为锐角和钝角两类。

15、已知线段AB ,延长AB 到C ,使BC = 3
1
AB ,D 为AC 中点,DC = 2cm ,则线段AB 的长度

A 、3
B 、6cm
C 、4cm
D 、3cm
16、元旦节期间,百货商场为了促销,每件夹克按成本价提高50%后标价,后因季节关系按标
价的8折出售,每件以60元卖出,这批夹克每件的成本价是: A 、150元 B 、50元 C 、120元 D 、100元
17、如图,∠AOC 和∠BOD 都是直角,如果∠AOB = 150º,那么∠COD 等于
A 、30º
B 、40º
C 、50º
D 、60º
18
、如果一个数的平方等于这个数的倒数,
那么这个数是
A 、-1
B 、0
C 、1
D 、 -1
19、一条船向北偏东50方向航行到某地,
然后依原航线返回,
船返回时航行的正确方向是:
A 、南偏西400
B 、南偏西500
C 、北偏西400
D 、北偏西500
20、下列各题中合并同类项,结果正确的是
A 、2a 2+3a 2=5a 2
B 、2a 2+3a 2=6a 2 =1 D 、2x 3+3x 3=5x 6
5分,共25分)
21、计算:{1+[161-(43)2]⨯(-2)4}÷(23
1
)2
22、化简:5x 2-[x 2+(5x 2-2x )- 2(x 2-3x )]
23、已知:a 、b 互为相反数,c 、d 互为倒数,x 的绝对值为2,
求:x
b a ++x 3
–cd 的值:
24、解方程:7
.0x -3.027.1x
-=1
25、相信你很细心,请先化简,再求值:
7x 2y + {xy - [3x 2y-(4xy 2 +21xy )] - 4x 2y},其中x= -2
1
,y= -1
5分) 26、如图,已知射线OX ,当OX 绕端点按逆时针方向旋转300到OA 时,如果线段OA 的长是2cm ,
那么点A 用记号A (2,300
)表示。

A O
B
C D
(1)画出两点B (3,500),C
(4,1400)的位置; (2)量出BC 的长(精确到0.1cm ); (3)求B 点的方位角。

5分)
27、已知:|a+2b-1|+(b+1)2=0,代数式
22m a b +-的值比2
1
b-a+m 的值大2。

求m 的值。

5分)
28、一点A 从数轴上表示+2的A 点开始移动,第一次先向左移动1个单位,再向右移动2个单位;第二次先向左移动3个单位,再向右移动4个单位;第三次先向左移动5个单位,再向右移动6个单位…... 求:(1)写出第一次移动后这个点在数轴上表示的数; (2)写出第二次移动结果这个点在数轴上表示的数; (3)写出第五次移动后这个点在数轴上表示的数; (4)写出第n 次移动结果这个点在数轴上表示的数; 24小题4分,第26小题6分,共10分)
29、某人完成一份文稿的打字工作,现已完成3
2
,还剩30页,求这份文稿的总页数。

30、甲乙两个工厂,去年计划总产值为360万元,结果甲厂完成了计划的112%,乙厂比原计划增
加了10%,这样两厂共完成的产值为400万元,求去年两厂各超额完成产值多少万元?
A
·
O
X
参考答案 初一数学
一、(每小题2分,共20分)
1、-9
8
; 2、3; 3、-7 4、>
5、3.91⨯106
6、30 ;
7、87;5220;
8、45分; 0.75度;
9、2 ; 10、800
21、解:原式=[1+(-168)⨯16] ⨯499
2分
=-7⨯499
4分
= - 172
5分
22、解:原式=5x 2
-[x 2+5x 2-2x-2x 2+6x] 1分 =5x 2-x 2-5x 2+2x+2x 2-6x 2分 =(5x 2-x 2-5x 2+2x 2)+(2x-6x) 4分 =x 2-4x 5分
23、解:因为a 、b 互为相反数,c 、d 互为倒数,|x|=2,
所以a+b=0;cd=1,x=±2 3分 当x=2时,原式=0+8-1=7 4分 当x= - 2时,原式=0+(-8)-1= - 9; 5分 24、解:710x - 3
2017x
-=1 1分
30x-7(17-20x )=21 2分 30x-119+140x=21
30x+140x=119+21 3分
170x=140 4分
x=17
14
5分
25、原式化简得
23
xy+4xy 2 3分 当x= -21,y= -1时,上式=43-2= -141
5分
四、(本题共5分)
26、(1)B 、C 如图所示; 2分
(2)BC ≈5cm ; 4分
(3)B 点的方位角是北偏东400。

5分
五、(本题共5分) 27、由已知条件知:b= -1,a=3, 2分
把b= -1,a=3代入22m a b +--(2
1
b-a+m )=2,可得m= -2 5分
六、(本题共5分)
28、第一次移动后这个点在数轴上表示的数是3; 1分 第二次移动后这个点在数轴上表示的数是4; 2分 第五次移动后这个点在数轴上表示的数是7; 3分 第n 次移动后这个点在数轴上表示的数是n+2; 5分 七、(第24小题4分,第26小题6分,共10分)
29、解:设这份文稿的总页数为x 页,根据题意得 1分
x-3
2
x=30 2分
解这个方程,得x=90 3分 答:这份文稿的总页数为90页。

4分
30、解:设去年甲工厂计划完成x 万元,乙工厂去年计划完成(360-x )万元,依题意得:
1分
112% x+(1+10%)(360-x )=400 3分
解方程得x=200 4分
200⨯(112%-100%)=24
160⨯10%=16 5分
答:甲工厂超额完成产值24万元,乙工厂超额完成产值16万元。

6分
o X
· A
·
B
·
C。

相关文档
最新文档