动量定理、动量守恒在电磁感应中导轨与导体棒的应用—解析版

合集下载

电磁感应综合问题(解析版)--2024年高考物理大题突破

电磁感应综合问题(解析版)--2024年高考物理大题突破

电磁感应综合问题1.掌握应用动量定理处理电磁感应问题的思路。

2.掌握应用动量守恒定律处理电磁感应问题的方法。

3.熟练应用楞次定律与法拉第电磁感应定律解决问题。

4.会分析电磁感应中的图像问题。

5.会分析电磁感应中的动力学与能量问题。

电磁感应中的动力学与能量问题1(2024·河北·模拟预测)如图甲所示,水平粗糙导轨左侧接有定值电阻R =3Ω,导轨处于垂直纸面向外的匀强磁场中,磁感应强度B =1T ,导轨间距L =1m 。

一质量m =1kg ,阻值r =1Ω的金属棒在水平向右拉力F 作用下由静止开始从CD 处运动,金属棒与导轨间动摩擦因数μ=0.25,金属棒的v -x 图像如图乙所示,取g =10m/s 2,求:(1)x =1m 时,安培力的大小;(2)从起点到发生x =1m 位移的过程中,金属棒产生的焦耳热;(3)从起点到发生x =1m 位移的过程中,拉力F 做的功。

【答案】(1)0.5N ;(2)116J ;(3)4.75J 【详解】(1)由图乙可知,x =1m 时,v =2m/s ,回路中电流为I =E R +r =BLv R +r=0.5A安培力的大小为F 安=IBL =0.5N (2)由图乙可得v =2x金属棒受到的安培力为F A =IBL =B 2L 2v R +r=x2(N )回路中产生的焦耳热等于克服安培力做的功,从起点到发生x =1m 位移的过程中,回路中产生的焦耳热为Q =W 安=F A x =0+0.52×1J =0.25J金属棒产生的焦耳热为Q 棒=r R +rQ =116J(3)从起点到发生x =1m 位移的过程中,根据动能定理有W F -W 安-μmgx =12mv 2解得拉力F 做的功为W F =4.75J1.电磁感应综合问题的解题思路2.求解焦耳热Q 的三种方法(1)焦耳定律:Q =I 2Rt ,适用于电流恒定的情况;(2)功能关系:Q =W 克安(W 克安为克服安培力做的功);(3)能量转化:Q =ΔE (其他能的减少量)。

动量定理及动量守恒定律在电磁感应中的应用

动量定理及动量守恒定律在电磁感应中的应用

动量定理及动量守恒定律在电磁感应中的应用摘要:《普通高中物理课程标准》指出,高中物理课程旨在进一步提高学生的科学素养,落实“立德树人”的根本任务。

基于学科核心素养教学实施策略和方法,要落实到教育教学的全过程,本文重点介绍动量定理、动量守恒定律在电磁感应解题的运用。

关键词:动量动量守恒电磁感应应用一、动量定理:物体所受合外力的冲量等于物体的动量变化.表达式:I=Δp或Ft=mv2-mv1.二、动量守恒定律:一个系统不受外力或者所受合外力为零,这个系统的总动量保持不变.表达式:m1v1+m2v2=m1v1′+m2v2′或p=p′.三、在电磁感应中,动量定理应用于单杆切割磁感线运动,可求解变力的时间、速度、位移和电荷量.(1)求电荷量或速度:B LΔt=mv2-mv1, q= t.(2)求时间:Ft-I冲=mv2-mv1, I冲=BILΔt=BL .(3)求位移:-BILΔt=- =0-mv0,即 - s=m(0-v).四、在电磁感应中对于双杆切割磁感线运动,若双杆系统所受合外力为零,运用动量守恒定律结合能量守恒定律可求解与能量有关的问题。

例1.如图所示,在水平面上有两条导电导轨MN,PQ,导轨间距为d,匀强磁场垂直于导轨所在的平面向里,磁感应强度的大小为B,两根完全相同的金属杆1,2间隔一定的距离摆开放在导轨上,且与导轨垂直.它们的电阻均为R,两杆与导轨接触良好,导轨电阻不计,金属杆的摩擦不计.杆1以初速度v滑向杆2,为使两杆不相碰,则杆2固定与不固定两种情况下,最初摆放两杆时的最小距离之比为( C )A.1∶1B.1∶2C.2∶1D.1∶1解析:杆2固定:对回路 q1= = .对杆1:-B d·Δt=0-mv0,q1=·Δt 联立解得s1= .杆2不固定: 对回路 q2=对杆2:B d·Δt=mv2-0 全程动量守恒:mv=mv1+mv2末态两棒速度相同,v1=v2,q2=·Δt 联立解得s2= . s1∶s2=2∶1,则C选项正确.例2.如图所示,宽度为L的平行光滑的金属轨道,左端为半径为r1的四分之一圆弧轨道,右端为半径为r2的半圆轨道,中部为与它们相切的水平轨道.水平轨道所在的区域有磁感应强度为B的竖直向上的匀强磁场.一根质量为m的金属杆a 置于水平轨道上,另一根质量为M的金属杆b由静止开始自左端轨道最高点滑下,当b滑入水平轨道某位置时,a就滑上了右端半圆轨道最高点(b始终运动且a,b 未相撞),并且a在最高点对轨道的压力大小为mg,此过程中通过a的电荷量为q,a,b杆的电阻分别为R1,R2,其余部分电阻不计.在b由静止释放到a运动到右端半圆轨道最高点过程中,求:(1)在水平轨道上运动时b的最大加速度是多大;(2)自b释放到a到达右端半圆轨道最高点过程中,系统产生的焦耳热是多少;(3)a刚到达右端半圆轨道最低点时b的速度是多大.解析:(1)由机械能守恒定律得 M =Mgr1解得vb1=b刚滑到水平轨道时加速度最大,E=BLvb1, I= ,由牛顿第二定律有F安=BIL=Ma 解得a= .(2)由动量定理有-B Lt=Mvb2-Mvb1, 即-BLq=Mvb2-Mvb1解得vb2= -根据牛顿第三定律得:a在最高点受支持力N=N′=mg, mg+N=m解得va1=由能量守恒定律得Mgr1= M + m +mg2r2+Q 解得Q=BLq -3mgr2-.(3)由能量守恒定律有2mgr2= m - m解得va2=由动量守恒定律得Mvb1=Mvb3+mva2解得vb3= - .答案:(1)(2)BLq -3mgr2-(3) -例3.如图所示,将不计电阻的长导线弯折成P1P2P3,Q1Q2Q3形状,P1P2P3和Q1Q2Q3是相互平行且相距为d的光滑固定金属导轨.P1P2,Q1Q2的倾角均为θ,P2P3,Q2Q3在同一水平面上,P2Q2⊥P2P3,整个导轨在方向竖直向上、磁感应强度大小为B的匀强磁场中,质量为m电阻为R的金属杆CD从斜导轨上某处静止释放,然后沿水平导轨滑动一段距离后停下.杆CD始终垂直导轨并与导轨保持良好接触,导轨和空气阻力均不计,重力加速度大小为g,导轨倾斜段和水平段都足够长,求:(1)杆CD能达到的最大速度;( 2)杆CD在距P2Q2为L处释放,滑到P2Q2处恰达到最大速度,则沿倾斜导轨下滑的时间Δt1及在水平导轨上滑行的最大距离.解析:(1)杆CD达到最大速度时,杆受力平衡BdImcosθ=mgsinθ此时杆CD切割磁感线产生的感应电动势为E=Bdvmcosθ由欧姆定律可得Im = , 解得vm= .(2)在杆CD沿倾斜导轨下滑的过程中,动量定理有mgsinθ·Δt1-Bdcosθ·Δt1=mvm-0= = =解得Δt1= +在杆CD沿水平导轨运动的过程中,根据动量定理有 -B d·Δt2=0-mvm该过程中通过R的电荷量为 q2=Δt2,得q2=杆CD沿水平导轨运动的过程中,通过的平均电流为 = =得q2=Δt2=解得s= .答案:(1)(2) +3。

例析动量定理在电磁感应问题中的应用

例析动量定理在电磁感应问题中的应用
i 一 : 一Ls B
△ △f
导轨 MN、 Q, P 存在 有竖 直向上的匀 强磁 场 , 磁感 .
应强度为 B, 导轨上 放着 两根 质量均 为 、 电阻均 图3
为| R的金属棒 n b 、。开 始时 , 棒 静止 , b a棒 以初 速度向 右运动 。设两棒始终不相碰 , 在运动过程 中通过 a棒 求 上 的总电荷量 。 解析 : 设棒稳 定运动后 的共 同速度为 , 对系统从 a 棒开始运动到两棒达 到共 同速度 的过程 , 应用动量守 恒 定律有 : o my mv :2 设 回路中的平均 电流 为 J 。再对 a棒 , 应用 动量定
理:

根据欧姆定律 , 可得平均 电流为 了 E一 : 由动量定理得 : 一B儿 ・ 一 △ 一0 联立上式 :一 点评 : 本题 实质上是利 用动量定理 求感应电荷 量。
【 2 如 图 2 例 】
B L△t I 一
— m
所示 , 足够 长 的相 距 为z 的平行金 属导轨
由法拉第 电磁感应定律得 : 一 :
【 1 如图 1 示 , 例 】 所
质量为 m 的导体棒可沿光
滑 水 平 面 的 平 行 导 轨 滑
由闭合 电路欧姆定律 :一 一 - E 』
对 a 应 用 动量 定 理 得 : l £=1 解得 : x 棒 B = 17 =1 2 A 一
又 Q=7 t = a 解得 : = Q一 点评 : 本题是利用动量定理计算电荷量的典型例子。
MN 、 Q放 置在 水平 P 面内 , 强 磁 场 竖 直 匀
通过 以上三个例题 的分析 , 会当导体切 割磁感 线 体
而产生感应 电流 , 果感应 电流不恒定 , 体所受 到的 如 导 安 培力也 不恒 定 而做变 速运 动 时 , 些 问题 如 涉及 位 有 ( 责任 编辑 易志毅)

动量定理、动量守恒在电磁感应中导轨与导体棒的应用—解析版

动量定理、动量守恒在电磁感应中导轨与导体棒的应用—解析版

ARv 0导轨与导体棒问题一、单棒问题【典例1】如图所示,AB 杆受一冲量作用后以初速度v 0=4m/s 沿水平面内的固定轨道运动,经一段时间后而停止.AB 的质量为m=5g ,导轨宽为L=0.4m ,电阻为R=2Ω,其余的电阻不计,磁感强度B=0.5T ,棒和导轨间的动摩擦因数为μ=0.4,测得杆从运动到停止的过程中通过导线的电量q=10﹣2C ,求:上述过程中 (g 取10m/s 2)(1)AB 杆运动的距离;(2)AB 杆运动的时间;(3)当杆速度为2m/s时,其加速度为多大?【答案】(1) 0.1m;(2)0.9s;(3)12m/s2.(2)根据动量定理有:﹣(F安t+μmgt)=0﹣mv0而F安t=BLt=BLq,得:BLq+μmgt=mv0,解得:t=0.9s(3)当杆速度为2m/s时,由感应电动势为:E=BLv安培力为:F=BIL,而I=然后根据牛顿第二定律:F+μmg=ma代入得:解得加速度:a=12m/s2,25.(20分)如图(a),超级高铁(Hyperloop)是一种以“真空管道运输”为理论核心设计的交通工具,它具有超高速、低能耗、无噪声、零污染等特点。

如图(b),已知管道中固定着两根平行金属导轨MN、PQ,两导轨间距为r;运输车的质量为m,横截面是半径为r的圆。

运输车上固定着间距为D、与导轨垂直的两根导体棒1和2,每根导体棒的电阻为R,每段长度为D的导轨的电阻也为R。

其他电阻忽略不计,重力加速度为g。

(1)如图(c),当管道中的导轨平面与水平面成θ=30°时,运输车恰好能无动力地匀速下滑。

求运输车与导轨间的动摩擦因数μ;(2)在水平导轨上进行实验,不考虑摩擦及空气阻力。

①当运输车由静止离站时,在导体棒2后间距为D处接通固定在导轨上电动势为E的直流电源,此时导体棒1、2均处于磁感应强度为B,垂直导轨平向下的匀强磁场中,如图(d)。

求刚接通电源时运输车的加速度的大小;(电源内阻不计,不考虑电磁感应现象)②当运输车进站时,管道内依次分布磁感应强度为B,宽度为D的匀强磁场,且相邻的匀强磁场的方向相反。

(完整版)难点6电磁感应中动量定理和动量守恒定律的运用

(完整版)难点6电磁感应中动量定理和动量守恒定律的运用

难点6 电磁感应中动量定理和动量守恒定律的运用1. 如图1所示,半径为r的两半圆形光滑金属导轨并列竖直放置,在轨道左侧上方MN间接有阻值为R0的电阻,整个轨道处在竖直向下的磁感应强度为B的匀强磁场中,两轨道间距为L,一电阻也为R0质量为m的金属棒ab从MN处由静止释放经时间t到达轨道最低点cd时的速度为v,不计摩擦。

求:(1)棒从ab到cd过程中通过棒的电量。

(2)棒在cd处的加速度。

2. 如图2所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽度为L的区域内,现有一个边长为a(a﹤L)的正方形闭合线圈以初速度v0垂直磁场边界滑过磁场后,速度为v(v﹤v0),那么线圈A.完全进入磁场中时的速度大于(v0+v)/2B.完全进入磁场中时的速度等于(v0+v)/2C.完全进入磁场中时的速度小于(v0+v)/2D.以上情况均有可能3. 在水平光滑等距的金属导轨上有一定值电阻R,导轨宽d电阻不计,导体棒AB垂直于导轨放置,质量为m ,整个装置处于垂直导轨平面向上的匀强磁场中,磁感应强度为B.现给导体棒一水平初速度v0,求AB在导轨上滑行的距离.4. 如图3所示,在水平面上有两条导电导轨MN、PQ,导轨间距为d,匀强磁场垂直于导轨所在的平面向里,磁感应强度的大小为B,两根完全相同的金属杆1、2间隔一定的距离摆开放在导轨上,且与导轨垂直。

它们的电阻均为R,两杆与导轨接触良好,导轨电阻不计,金属杆的摩擦不计。

杆1以初速度v0滑向杆2,为使两杆不相碰,则杆2固定与不固定两种情况下,最初摆放两杆时的最少距离之比为:A.1:1B.1:2C.2:1D.1:15:如图所示,光滑导轨EF、GH等高平行放置,EG间宽度为FH间宽度的3倍,导轨右侧水平且处于竖直向上的匀强磁场中,左侧呈弧形升高。

ab、cd是质量均为m的金属棒,现让ab从离水平轨道h高处由静止下滑,设导轨足够长。

试求: (1)ab、cd棒的最终速度;(2)全过程中感应电流产生的焦耳热。

2020届浙江高考复习专题:电磁感应的综合应用(能量问题、动量问题、杆+导轨模型)(解析版)

2020届浙江高考复习专题:电磁感应的综合应用(能量问题、动量问题、杆+导轨模型)(解析版)

专题09 电磁感应的综合应用(能量问题、动量问题、杆+导轨模型)考点分类:考点分类见下表考点内容常见题型及要求考点一电磁感应中的能量问题选择题、计算题考点二电磁感应中的动量问题选择题、计算题考点三电磁感应中的“杆+导轨”模型选择题、计算题考点一: 电磁感应中的能量问题1.能量转化及焦耳热的求法(1)能量转化(2)求解焦耳热Q的三种方法2.解题的一般步骤(1)确定研究对象(导体棒或回路);(2)弄清电磁感应过程中,哪些力做功,哪些形式的能量相互转化;(3)根据功能关系或能量守恒定律列式求解.3.方法技巧求解电能应分清两类情况(1)若回路中电流恒定,可以利用电路结构及W=UIt或Q=I2Rt直接进行计算.(2)若电流变化,则①利用安培力做的功求解:电磁感应中产生的电能等于克服安培力所做的功;②利用能量守恒求解:若只有电能与机械能的转化,则机械能的减少量等于产生的电能.③利用功能关系求解:若除重力、安培力做功外,还有其他力做功,则其他力做功等于增加的机械能和电能.学科#网考点二电磁感应中的动量问题电磁感应问题往往涉及牛顿定律、动量守恒、能量守恒、电路的分析和计算等许多方面的物理知识,试题常见的形式是导体棒切割磁感线,产生感应电流,从而使导体棒受到安培力作用.导体棒运动的形式有匀速、匀变速和非匀变速3种,对前两种情况,容易想到用牛顿定律求解,对后一种情况一般要用能量守恒和动量守恒定律求解,但当安培力变化,且又涉及位移、速度、电荷量等问题时,用动量定理求解往往能巧妙解决.方法技巧动量在电磁感应中的应用技巧(1)在电磁感应中,动量定理应用于单杆切割磁感线运动,可求解变力的时间、速度、位移和电荷量.①求电荷量或速度:B I lΔt=mv2-mv1,q=I t.③求位移:-BIlΔt=-22B l v tR总=0-mv0,即-22B lR总x=m(0-v0).(2)电磁感应中对于双杆切割磁感线运动,若双杆系统所受合外力为零,运用动量守恒定律结合能量守恒定律可求解与能量有关的问题.考点三:电磁感应中的“杆+导轨”模型模型概述“导轨+杆”模型是电磁感应问题在高考命题中的“基本道具”,也是高考的热点,考查的知识点多,题目的综合性强,物理情景变化空间大,是我们复习中的难点.“导轨+杆”模型又分为“单杆”型和“双杆”型;导轨放置方式可分为水平、竖直和倾斜;杆的运动状态可分为匀速运动、匀变速运动、非匀变速运动或转动等;磁场的状态可分为恒定不变、均匀变化和非均匀变化等等,情景复杂,形式多变常见类型单杆水平式(导轨光滑)设运动过程中某时刻棒的速度为v,加速度为a=Fm-22B L vmR,a,v同向,随v的增加,a减小,当a=0时,v最大,I=BLvR恒定单杆倾斜式(导轨光滑)杆释放后下滑,开始时a=gsin α,速度v↑→E=BLv↑→I=ER↑→F=BIL↑→a↓,当F=mgsin α时,a=0,v最大双杆切割式(导轨光滑)杆MN做变减速运动,杆PQ做变加速运动,稳定时,两杆的加速度均为零,以相等的速度匀速运动.对系统动量守恒,对其中某杆适用动量定理学科&网光滑不等距导轨杆MN做变减速运动,杆PQ做变加速运动,稳定时,两杆的加速度均为零,两杆以不同的速度做匀速运动含“源”水平光滑导轨(v0=0)S闭合,ab杆受安培力F=BLEr,此时a=BLEmr,速度v↑⇒E感=BLv↑⇒I↓⇒F=B IL↓⇒加速度a↓,当E感=E时,v最大,且v m=EBL含“容”水平光滑导轨(v0=0)拉力F恒定,开始时a=Fm,速度v↑⇒E=BLv↑,经过Δt速度为v+Δv,此时E′=BL(v+Δv),电容器增加的电荷量ΔQ=CΔU=C(E′-E)=CBLΔv,电流I=Qt∆∆=CBL vt∆∆=CBLa,安培力F安=BIL=CB2L2a,F-F安=ma,a=22Fm B L C+,所以杆做匀加速运动★考点一:电磁感应中的能量问题◆典例一:( 2019·浙江卷)如图所示,倾角θ=37°、间距l=0.1 m的足够长金属导轨底端接有阻值R=0.1 Ω的电阻,质量m=0.1 kg的金属棒ab垂直导轨放置,与导轨间的动摩擦因数μ=0.45.建立原点位于底端、方向沿导轨向上的坐标轴x.在0.2 m≤x≤0.8 m区间有垂直导轨平面向上的匀强磁场.从t=0时刻起,棒ab在沿x轴正方向的外力F作用下,从x=0处由静止开始沿斜面向上运动,其速度v与位移x满足v=kx(可导出a=kv),k=5 s-1.当棒ab运动至x1=0.2 m处时,电阻R消耗的电功率P=0.12 W,运动至x2=0.8 m处时撤去外力F ,此后棒ab 将继续运动,最终返回至x =0处.棒ab 始终保持与导轨垂直,不计其他电阻,求:(提示:可以用F-x 图象下的“面积”代表力F 做的功,sin 37°=0.6)(1)磁感应强度B 的大小; (2)外力F 随位移x 变化的关系式;(3)在棒ab 整个运动过程中,电阻R 产生的焦耳热Q.【解析】(1)在x 1=0.2 m 处时,电阻R 消耗的电功率P =(Blv )2R此时v =kx =1 m/s 解得B =PR (lv )2=305 T(2)在无磁场区间0≤x<0.2 m 内,有 a =5 s -1×v =25 s -2×xF =25 s -2×xm +μmgcos θ+mgsin θ=(0.96+2.5x) N 在有磁场区间0.2 m≤x≤0.8 m 内,有 F A =(Bl )2vR=0.6x NF =(0.96+2.5x +0.6x) N =(0.96+3.1x) N (3)上升过程中克服安培力做的功(梯形面积) W A1=0.6 N 2(x 1+x 2)(x 2-x 1)=0.18 J撤去外力后,设棒ab 上升的最大距离为x ,再次进入磁场时的速度为v′,由动能定理有 (mgsin θ+μmgcos θ)x =12mv 2(mgsin θ-μmgcos θ)x =12mv′2解得v′=2 m/s由于mgsin θ-μmgcos θ-(Bl )2v′R =0故棒ab 再次进入磁场后做匀速运动下降过程中克服安培力做的功W A2=(Bl )2v′R (x 2-x 1)=0.144 JQ =W A1+W A2=0.324 J 【答案】 (1)305T (2)(0.96+3.1x) N (3)0.324 J◆典例二:[用功能关系求焦耳热]两足够长且不计电阻的光滑金属轨道如图甲所示放置,间距为d =1 m ,在左端弧形轨道部分高h =1.25 m 处放置一金属杆a ,弧形轨道与平直轨道的连接处光滑无摩擦,在平直轨道右端放置另一金属杆b ,杆a 、b 的电阻分别为R a =2 Ω、R b =5 Ω,在平直轨道区域有竖直向上的匀强磁场,磁感应强度B =2 T .现杆b 以初速度大小v 0=5 m/s 开始向左滑动,同时由静止释放杆a ,杆a 由静止滑到水平轨道的过程中,通过杆b 的平均电流为0.3 A ;从a 下滑到水平轨道时开始计时,a 、b 运动的速度—时间图象如图乙所示(以a 运动方向为正方向),其中m a =2 kg ,m b =1 kg ,g =10 m/s 2,求:(1)杆a 在弧形轨道上运动的时间;(2)杆a 在水平轨道上运动过程中通过其截面的电荷量; (3)在整个运动过程中杆b 产生的焦耳热. 【答案】(1)5 s (2)73 C (3)1156J【解析】(1)设杆a 由静止滑至弧形轨道与平直轨道连接处时杆b 的速度大小为v b0,对杆b 运用动量定理,有Bd I -·Δt =m b (v 0-v b0)其中v b0=2 m/s 代入数据解得Δt =5 s.(2)对杆a 由静止下滑到平直导轨上的过程中,由机械能守恒定律有m a gh =12m a v 2a解得v a =2gh =5 m/s设最后a 、b 两杆共同的速度为v′,由动量守恒定律得m a v a -m b v b0=(m a +m b )v′ 代入数据解得v′=83m/s杆a 动量的变化量等于它所受安培力的冲量,设杆a 的速度从v a 到v′的运动时间为Δt′,则由动量定理可得BdI·Δt′=m a (v a -v′)而q =I·Δt′代入数据得q =73C.(3)由能量守恒定律可知杆a 、b 中产生的焦耳热为 Q =m a gh +12m b v 20-12(m b +m a )v′2=1616 J b 棒中产生的焦耳热为Q′=52+5Q =1156 J.★考点二:电磁感应中的动量问题◆典例一:.(多选)(2019·高考全国卷Ⅲ)如图,方向竖直向下的匀强磁场中有两根位于同一水平面内的足够长的平行金属导轨,两相同的光滑导体棒ab 、cd 静止在导轨上.t =0时,棒ab 以初速度v 0向右滑动.运动过程中,ab 、cd 始终与导轨垂直并接触良好,两者速度分别用v 1、v 2表示,回路中的电流用I 表示.下列图象中可能正确的是( )【答案】AC【解析】棒ab以初速度v0向右滑动,切割磁感线产生感应电动势,使整个回路中产生感应电流,判断可知棒ab受到方向与v0方向相反的安培力的作用而做变减速运动,棒cd受到方向与v0方向相同的安培力的作用而做变加速运动,它们之间的速度差Δv=v1-v2逐渐减小,整个系统产生的感应电动势逐渐减小,回路中感应电流逐渐减小,最后变为零,即最终棒ab和棒cd的速度相同,v1=v2,两相同的光滑导体棒ab、cd组成的系统在足够长的平行金属导轨上运动时不受外力作用,由动量守恒定律有mv0=mv1+mv2,解得v1=v2=v02,选项A、C均正确,B、D均错误.◆典例二:[动量定理和能量守恒结合](2018·江西九江模拟)如图所示,光滑水平面停放一小车,车上固定一边长为L=0.5 m的正方形金属线框abcd,金属框的总电阻R=0.25 Ω,小车与金属框的总质量m=0.5 kg.在小车的右侧,有一宽度大于金属线框边长,具有理想边界的匀强磁场,磁感应强度B=1.0 T,方向水平且与线框平面垂直.现给小车一水平速度使其向右运动并能穿过磁场,当车上线框的ab边刚进入磁场时,测得小车加速度a=10 m/s2.求:(1)金属框刚进入磁场时,小车的速度为多大?(2)从金属框刚要进入磁场开始,到其完全离开磁场,线框中产生的焦耳热为多少? 【答案】(1) v 0=5 m/s. (2) 4.0 J. 【解析】(1)设小车初速度为v 0,则线框刚进入磁场时,ab 边由于切割磁感线产生的电动势为E=BLv 0 回路中的电流I=ER,根据牛顿定律BIL=ma 由以上三式可解得v 0=5 m/s.学&科网(2)设线框全部进入磁场时小车速度为v 1,进入过程平均电流为1I ,所用时间为Δt,则1I =R t ∆Φ∆=2BL R t∆根据动量定理得-B 1I LΔt=mv 1-mv 0,解得v 1=4 m/s设线框离开磁场时小车速度为v 2,离开过程平均电流为2I ,所用时间为Δt 1,则2I =1R t ∆Φ∆=21BL R t ∆ 根据动量定理得-B 2I LΔt 1=mv 2-mv 1,解得v 2=3 m/s线框从进入到离开产生的焦耳热Q=12m 20v -12m 22v =4.0 J.★考点三:电磁感应中的“杆+导轨”模型◆典例一:(2018·高考江苏卷)如图所示,竖直放置的“”形光滑导轨宽为L ,矩形匀强磁场Ⅰ、Ⅱ的高和间距均为d ,磁感应强度为B.质量为m 的水平金属杆由静止释放,进入磁场Ⅰ和Ⅱ时的速度相等.金属杆在导轨间的电阻为R ,与导轨接触良好,其余电阻不计,重力加速度为g.金属杆( )A .刚进入磁场Ⅰ时加速度方向竖直向下B .穿过磁场Ⅰ的时间大于在两磁场之间的运动时间C .穿过两磁场产生的总热量为4mgdD .释放时距磁场Ⅰ上边界的高度h 可能小于m 2gR 22B 4L 4【答案】BC【解析】根据题述,由金属杆进入磁场Ⅰ和进入磁场Ⅱ时速度相等可知,金属杆在磁场Ⅰ中做减速运动,所以金属杆刚进入磁场Ⅰ时加速度方向竖直向上,选项A 错误;由于金属杆进入磁场Ⅰ后做加速度逐渐减小的减速运动,而在两磁场之间做匀加速运动,所以穿过磁场Ⅰ的时间大于在两磁场之间的运动时间,选项B 正确;根据能量守恒定律,金属杆从刚进入磁场Ⅰ到刚进入磁场Ⅱ过程动能变化量为0,重力做功为2mgd ,则金属杆穿过磁场Ⅰ产生的热量Q 1=2mgd ,而金属杆在两磁场区域的运动情况相同,产生的热量相等,所以金属杆穿过两磁场产生的总热量为2×2mgd =4mgd ,选项C 正确;金属杆刚进入磁场Ⅰ时的速度v =2gh ,进入磁场Ⅰ时产生的感应电动势E =BLv ,感应电流I =ER ,所受安培力F =BIL ,由于金属杆刚进入磁场Ⅰ时加速度方向竖直向上,所以安培力大于重力,即F>mg ,联立解得h>m 2gR 22B 4L 4,选项D 错误.◆典例二(2019·高考天津卷)如图所示,固定在水平面上间距为l 的两条平行光滑金属导轨,垂直于导轨放置的两根金属棒MN 和PQ 长度也为l 、电阻均为R ,两棒与导轨始终接触良好.MN 两端通过开关S 与电阻为R 的单匝金属线圈相连,线圈内存在竖直向下均匀增加的磁场,磁通量变化率为常量k.图中虚线右侧有垂直于导轨平面向下的匀强磁场,磁感应强度大小为B.PQ 的质量为m ,金属导轨足够长、电阻忽略不计.(1)闭合S ,若使PQ 保持静止,需在其上加多大的水平恒力F ,并指出其方向;(2)断开S ,PQ 在上述恒力作用下,由静止开始到速度大小为v 的加速过程中流过PQ 的电荷量为q ,求该过程安培力做的功W.【解析】(1)设线圈中的感应电动势为E ,由法拉第电磁感应定律E =ΔΦΔt ,则E =k ①设PQ 与MN 并联的电阻为R 并,有 R 并=R 2②闭合S 时,设线圈中的电流为I ,根据闭合电路欧姆定律得I =ER 并+R③ 设PQ 中的电流为I PQ ,有 I PQ =12I ④设PQ 受到的安培力为F 安,有 F 安=BI PQ l ⑤保持PQ 静止,由受力平衡,有 F =F 安⑥联立①②③④⑤⑥式得 F =Bkl 3R⑦ 方向水平向右.(2)设PQ 由静止开始到速度大小为v 的加速过程中,PQ 运动的位移为x ,所用时间为Δt ,回路中的磁通量变化量为ΔΦ ,平均感应电动势为E -,有E -=ΔΦΔt ⑧其中ΔΦ=Blx ⑨设PQ 中的平均电流为I -,有 I -=E -2R ⑩根据电流的定义得 I -=qΔt (11)由动能定理,有 Fx +W =12mv 2-0(12)联立⑦⑧⑨⑩(11) (12)式得W =12mv 2-23kq. (13)1.(2019·高考全国卷Ⅰ)空间存在一方向与纸面垂直、大小随时间变化的匀强磁场,其边界如图(a)中虚线MN 所示.一硬质细导线的电阻率为ρ、横截面积为S ,将该导线做成半径为r 的圆环固定在纸面内,圆心O 在MN 上.t =0时磁感应强度的方向如图(a)所示;磁感应强度B 随时间t 的变化关系如图(b)所示.则在t =0到t =t 1的时间间隔内( )A .圆环所受安培力的方向始终不变B .圆环中的感应电流始终沿顺时针方向C .圆环中的感应电流大小为B 0rS 4t 0ρD .圆环中的感应电动势大小为B 0πr 24t 0【答案】BC【解析】根据楞次定律可知在0~t 0时间内,磁感应强度减小,感应电流的方向为顺时针,圆环所受安培力水平向左,在t 0~t 1时间内,磁感应强度反向增大,感应电流的方向为顺时针,圆环所受安培力水平向右,所以选项A 错误,B 正确;根据法拉第电磁感应定律得E =ΔΦΔt =12πr 2·B 0t 0=B 0πr 22t 0,根据电阻定律可得R=ρ2πr S ,根据欧姆定律可得I =E R =B 0rS 4t 0ρ,所以选项C 正确,D 错误.2.(2019·新课标全国Ⅱ卷)如图,两条光滑平行金属导轨固定,所在平面与水平面夹角为θ,导轨电阻忽略不计。

第16课时 力学三大观点在电磁感应中的应用

第16课时 力学三大观点在电磁感应中的应用
【例4】 (2022·河北张家口期末)如图6所示,足够长、间距为L的平行光滑金 属导轨ab、de构成倾角为θ的斜面,上端接有阻值为R的定值电阻,足够长的 平行光滑金属导轨bc、ef处于同一水平面内,倾斜导轨与水平导轨在b、e处 平滑连接,且b、e处装有感应开关。倾斜导轨处于垂直导轨平面向上的匀强 磁场中,水平导轨处于竖直向上的匀强磁场中,磁感应强度大小均为B。距 离b足够远处接有未闭合的开关S,在开关S右侧垂直导轨放置导体棒N,在 倾斜导轨上距b、e足够远的位置放置导体棒M,现将导体棒M由静止释放, 当导体棒M通过b、e处后瞬间感应开关自动断开。已知导体棒M的质量为m, 电阻为R,导体棒N的质量为2m,电阻为2R速度为g,不计导轨电阻及空气阻力。
题 干
目录
突破高考题型
创新设计
在导体切割磁感线做变加速运动时,若用牛顿运动定律和能量观点不能解决,
可运用动量定理巧妙解决问题
求解的物理量
应用示例
电荷量或速度 位移
-B-IlΔt=mv2-mv1,q=-IΔt -B2Rl2总 - vΔt=0-mv0 即-BR2l总2x=0-mv0
目录
突破高考题型
时间
目录
突破高考题型
创新设计
高考题型二 动量观点在电磁感应中的应用
角度1 动量定理在电磁感应中的应用
【例3】 (2022·浙江1月选考,21)如图5所示,水平固定一半径r=0.2 m的金属 圆环,长均为r、电阻均为R0的两金属棒沿直径放置,其中一端与圆环接触 良好,另一端固定在过圆心的导电竖直转轴OO′上,并随轴以角速度ω= 600 rad/s匀速转动,圆环内左半圆存在磁感应强度大小为B1的匀强磁场。圆 环边缘、与转轴良好接触的电刷分别与间距l1的水平放置的平行金属轨道相 连,轨道间接有电容C=0.09 F的电容器,通过单刀双掷开关S可分别与接线 柱1、2相连。电容器左侧存在宽度也为l1、长度为l2、磁感应强度大小为B2的 匀强磁场区域。在磁场区域内靠近左侧边缘处垂直轨道放置金属棒ab,磁场 区域外有间距也为l1的绝缘轨道与金属轨道平滑连接,在绝缘轨道的水平段

动量观点在电磁感应中的应用

动量观点在电磁感应中的应用

小于磁场区域的宽度。若线框进、出磁场的过程中通
过线框横截面的电荷量分别为q1、q2,线框经过位置
Ⅱ时的速度为v。则下列说法正确的是( BD)
A.q1=q2 C.v=1.0 m/s
B.q1=2q2 D.v=1.5 m/s
01 02 03 04 05 06 07 08
图2
目录
提升素养能力
解析 根据 q=ΔRΦ=BRΔS可知,线框进、出磁场的过程中通过线框横截面的电 荷量 q1=2q2,故 A 错误,B 正确;线圈从开始进入到位置Ⅱ,由动量定理- B-I1LΔt1=mv-mv0,即-BLq1=mv-mv0,同理线圈从位置Ⅱ到位置Ⅲ,由动 量定理-B-I2LΔt2=0-mv,即-BLq2=0-mv,联立解得 v=13v0=1.5 m/s,故 C 错误,D 正确。
目录
研透核心考点
解析 对 ab 棒由动量定理有-B-ILt=0-mv0,而 q=-It,即-BqL=0-mv0,当流过棒的电荷量为q2 时,有-B·q2L=mv1-mv0,解得 v1=12v0,A 错误; 当棒发生位移为 s 时,q=ΔRΦ=BRLs,则当棒发生位移为3s时,q′=ΔRΦ′=B3LRs, 可知此时流过棒的电荷量 q′=q3,代入 B-ILΔt=BLq′=mv2-mv0,解得棒的速 度为 v2=32v0,B 错误;定值电阻与导体棒释放的热量相同,在流过棒的电荷量 达到q2的过程中,棒释放的热量为 Q=1212mv20-12mv21=136mv20=3B1q6Lv0,C 正确; 同理可得整个过程中定值电阻 R 释放的热量为 Q′=21×21mv20=qB4Lv0,D 错误。
给金属棒 ab 一个水平向右的初速度 v0,金属棒沿着金属导轨滑过磁场的过程中,流 过金属棒的电流最大值为 I,最小值为12I。不计导轨电阻,金属棒与导轨始终接触良

电磁感应中动量定理和动量守恒定律的运用

电磁感应中动量定理和动量守恒定律的运用

高考物理电磁感应中动量定理和动量守恒定律的运用(1)如图1所示,半径为r的两半圆形光滑金属导轨并列竖直放置,在轨道左侧上方MN间接有阻值为R0的电阻,整个轨道处在竖直向下的磁感应强度为B的匀强磁场中,两轨道间距为L,一电阻也为R0质量为m的金属棒ab从MN处由静止释放经时间t到达轨道最低点cd时的速度为v,不计摩擦。

求:(1)棒从ab到cd过程中通过棒的电量。

(2)棒在cd处的加速度。

(2)如图2所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽度为L的区域内,现有一个边长为a(a﹤L)的正方形闭合线圈以初速度v0垂直磁场边界滑过磁场后,速度为v(v﹤v0),那么线圈A.完全进入磁场中时的速度大于(v0+v)/2B.完全进入磁场中时的速度等于(v0+v)/2C.完全进入磁场中时的速度小于(v0+v)/2D.以上情况均有可能(4)如图3所示,在水平面上有两条导电导轨MN、PQ,导轨间距为d,匀强磁场垂直于导轨所在的平面向里,磁感应强度的大小为B,两根完全相同的金属杆1、2间隔一定的距离摆开放在导轨上,且与导轨垂直。

它们的电阻均为R,两杆与导轨接触良好,导轨电阻不计,金属杆的摩擦不计。

杆1以初速度v0滑向杆2,为使两杆不相碰,则杆2固定与不固定两种情况下,最初摆放两杆时的最少距离之比为:A.1:1B.1:2C.2:1D.1:15:如图所示,光滑导轨EF、GH等高平行放置,EG间宽度为FH间宽度的3倍,导轨右侧水平且处于竖直向上的匀强磁场中,左侧呈弧形升高。

ab、cd是质量均为m的金属棒,现让ab从离水平轨道h高处由静止下滑,设导轨足够长。

试求: (1)ab、cd棒的最终速度;(2)全过程中感应电流产生的焦耳热。

6、:如图所示,竖直放置的两光滑平行金属导轨,置于垂直于导轨平面向里的匀强磁场中,两根质量相同的导体棒a 和b ,与导轨紧密接触且可自由滑动。

先固定a ,释放b ,当b 的速度达到10m/s 时,再释放a ,经过1s 后,a 的速度达到12m/s ,则(1)此时b 的速度大小是多少?(2)若导轨很长,a 、b 棒最后的运动状态。

电磁感应问题中动量定理应用归类

电磁感应问题中动量定理应用归类

电磁感应问题中动量定理应用归类
动量定理是指在相互作用系统中,两个物体发生相互作用前后,它们的动量变化量相等且大小相同,也就是说总动量守恒。

在电磁感应问题中,动量定理可以被应用于分析导体中自由电子受到电磁力的作用。

下面是电磁感应问题中动量定理的应用所需的相关参考内容:
1. 磁场中运动带电粒子的动量定理
在磁场中运动带电粒子的情况下,动量定理可以用来分析带电粒子受到磁场作用时的运动规律。

具体的参考内容包括磁场对带电粒子产生的洛伦兹力公式以及动量定理的定义和应用。

2. 感应电动势的产生与动量定理
在感应电动势的产生问题中,可以利用动量定理来推导感应电动势的产生。

具体的参考内容包括受到磁场作用的导体中的自由电子受到洛伦兹力的描述、动量定理的定义和应用、以及感应电动势的产生过程。

3. 电磁铁中导体的运动和动量定理
在电磁铁中导体的运动问题中,动量定理可以用来分析导体所受的力以及速度的变化。

具体的参考内容包括电磁铁的结构和工作原理、动量定理的定义和应用、以及导体受到的力和速度的变化规律。

小专题(十九) 电磁感应中的动量问题

小专题(十九) 电磁感应中的动量问题
速度做匀加速直线运动
系统动量守恒
系统动量不守恒
示意图
动力学
观点
动量
观点
能量
观点
棒1动能的减少量=棒2动能的增加量+焦耳热
外力做的功=棒1的动能+棒2的动能+焦耳热
[例3][导体框与导体棒在同一匀强磁场中的运动] (多选)如图所示,一质量为
2m的足够长U形光滑金属框abcd置于水平绝缘平台上,bc边长为L,不计金属框电
方案有多种,并且十分复杂。一种简化的物理模型如图所示,电源和一对足够长平行金属
导轨M、N分别通过单刀双掷开关K与电容器相连。电源的电动势E=10 V,内阻不计。两条
足够长的导轨相距L=0.1 m 且水平放置在磁感应强度B=0.5 T的匀强磁场中,磁场方向垂
直于导轨平面且竖直向下,电容器的电容C=10 F。现将一质量为m=0.1 kg,电阻r=0.1 Ω



BΔS=BLx。当题目中涉及速度 v、电荷量 q、运动时间 t、运动位移 x 时常用动量定理
求解。
[例1][“单棒+电阻”模型] (2022·辽宁沈阳模拟)(多选)如图所示,两根足够长、电阻
不计且相距L=0.2 m的平行金属导轨固定在倾角θ=37°的绝缘斜面上,顶端接有一盏额
定电压为U=4 V的小灯泡(电阻恒定),两导轨间有一磁感应强度大小为B=5 T、方向垂直
斜面向上的匀强磁场。今将一根长为L、质量m=0.2 kg、电阻r=1.0 Ω的金属棒垂直于
导轨放置,在顶端附近无初速度释放,金属棒与导轨接触良好,金属棒与导轨间的动摩擦
因数μ。已知金属棒下滑x=3.6 m后速度稳定,且此时小灯泡恰能正常发光,重力加速度g
取10 m/s2,sin 37°=0.6,cos 37°=0.8,则(

08讲 动量与动量守恒定律在电磁感应中的应用解析版

08讲 动量与动量守恒定律在电磁感应中的应用解析版

2022-2023高考物理二轮复习(新高考)08讲动量与动量守恒定律在电磁感应中的应用●动量与动量守恒定律在电磁感应中的应用的思维导图●重难点突破一.动量定理在电磁感应现象中的应用:导体棒在感应电流所引起的安培力作用下运动时,当题目中涉及速度v、电荷量q、运动时间t、运动位移x时常用动量定理求解.二.动量守恒定律在电磁感应中的应用:在双金属棒切割磁感线的系统中,双金属棒和导轨构成闭合回路,安培力充当系统内力,如果它们不受摩擦力,且受到的安培力的合力为0时,满足动量守恒,运用动量守恒定律解题比较方便.●考点应用,质量为m,电阻不计,匀强1.水平放置的平行光滑导轨,间距为L,左侧接有电阻R,导体棒初速度为v磁场的磁感应强度为B,导轨足够长且电阻不计,从开始运动至停下来导体棒或金属框在感应电流所引起的安培力作用下做非匀变速直线运动时,常用的计算:-B I L Δt =0-mv 0,q =I Δt ,q =mv 0BL -B 2L 2v R Δt =0-mv 0,x =v Δt =mv 0R B 2L2例1:如图所示,固定在同一水平面内的两根平行长直金属导轨的间距为d ,其右端接有阻值为R 的电阻,整个装置处在竖直向上、磁感应强度大小为B 的匀强磁场中。

一质量为m (质量分布均匀)的导体杆ab 垂直于导轨放置,且与两导轨保持良好接触,杆与导轨之间的动摩擦因数为μ。

现杆在水平向左、垂直于杆的恒力F 作用下从静止开始沿导轨运动距离L 时,速度恰好达到最大(运动过程中杆始终与导轨保持垂直)。

设杆接入电路的电阻为r ,导轨电阻不计,重力加速度大小为g ,则此过程错误的是()A .杆的速度最大值为22()F mg RB d μ-B .流过电阻R 的电荷量为BdLR r+C .从静止到速度恰好达到最大经历的时间2222()()()m R r B d L t B d F mg R r μ+=+-+D .恒力F 做的功与安培力做的功之和大于杆动能的变化量【答案】A【详解】A .当杆的速度达到最大时,安培力为22=B d v F R r +安此时杆受力平衡,则有F-μmg-F 安=0解得22()()F mg R r v B d μ-+=A 错误,符合题意;B .流过电阻R 的电荷量为BdLq It R r R r∆Φ===++B 正确,不符合题意;C .根据动量定理有()F mg t BIt mv μ--=,q It=结合上述解得2222()()()mg R r B d L t B d F mg R r μ+=+-+C 正确,不符合题意;D .对于杆从静止到速度达到最大的过程,根据动能定理,恒力F 、安培力、摩擦力做功的代数和等于杆动能的变化量,由于摩擦力做负功,所以恒力F 、安培力做功的代数和大于杆动能的变化量,D 正确,不符合题意。

高考物理二轮复习专题归纳—动量观点在电磁感应中的应用

高考物理二轮复习专题归纳—动量观点在电磁感应中的应用

高考物理二轮复习专题归纳—动量观点在电磁感应中的应用命题规律1、命题角度:动量定理、动量守恒定律在电磁感应中的应用.2、常用方法:建立单杆切割中q、x、t的关系模型;建立双杆系统模型.3、常考题型:选择题、计算题.考点一动量定理在电磁感应中的应用在导体单杆切割磁感线做变加速运动时,若牛顿运动定律和能量观点不能解决问题,可运用动量定理巧妙解决问题求解的物理量应用示例电荷量或速度-B I LΔt=mv2-mv1,q=IΔt,即-BqL=mv2-mv1位移-B2L2vΔtR总=0-mv,即-B2L2xR总=0-mv时间-B I LΔt+F其他Δt=mv2-mv1即-BLq+F其他Δt=mv2-mv1已知电荷量q、F其他(F其他为恒力)-B2L2vΔtR总+F其他Δt=mv2-mv1,即-B2L2xR总+F其他Δt=mv2-mv1已知位移x、F其他(F其他为恒力)例1(多选)(2022·河南开封市二模)如图所示,在光滑的水平面上有一方向竖直向下的有界匀强磁场.磁场区域的左侧,一正方形线框由位置Ⅰ以4.5m/s 的初速度垂直于磁场边界水平向右运动,经过位置Ⅱ,当运动到位置Ⅲ时速度恰为零,此时线框刚好有一半离开磁场区域.线框的边长小于磁场区域的宽度.若线框进、出磁场的过程中通过线框横截面的电荷量分别为q 1、q 2,线框经过位置Ⅱ时的速度为v .则下列说法正确的是()A.q 1=q 2B.q 1=2q 2C.v =1.0m/s D.v =1.5m/s答案BD 解析根据q =ΔΦR =BSR可知,线框进、出磁场的过程中通过线框横截面的电荷量q 1=2q 2,故A 错误,B 正确;线圈从开始进入到位置Ⅱ,由动量定理-B I 1L Δt 1=mv -mv 0,即-BLq 1=mv -mv 0,同理线圈从位置Ⅱ到位置Ⅲ,由动量定理-B I 2L Δt 2=0-mv ,即-BLq 2=0-mv ,联立解得v =13v 0=1.5m/s,故C 错误,D正确.例2(2022·浙江省精诚联盟联考)如图(a)所示,电阻为2R 、半径为r 、匝数为n 的圆形导体线圈两端与水平导轨AD 、MN 相连.与导体线圈共圆心的圆形区域内有竖直向下的磁场,其磁感应强度随时间变化的规律如图(b)所示,图(b)中的B 0和t 0均已知.PT 、DE 、NG 是横截面积和材料完全相同的三根粗细均匀的金属棒.金属棒PT 的长度为3L 、电阻为3R 、质量为m .导轨AD 与MN 平行且间距为L ,导轨EF 与GH 平行且间距为3L ,DE 和NG 的长度相同且与水平方向的夹角均为30°.区域Ⅰ和区域Ⅱ是两个相邻的、长和宽均为d 的空间区域.区域Ⅰ中存在方向竖直向下、磁感应强度大小为B 0的匀强磁场.0~2t 0时间内,使棒PT 在区域Ⅰ中某位置保持静止,且其两端分别与导轨EF 和GH 对齐.除导体线圈、金属棒PT 、DE 、NG 外,其余导体电阻均不计,所有导体间接触均良好且均处于同一水平面内,不计一切摩擦,不考虑回路中的自感.(1)求在0~2t 0时间内,使棒PT 保持静止的水平外力F 的大小;(2)在2t 0以后的某时刻,若区域Ⅰ内的磁场在外力作用下从区域Ⅰ以v 0的速度匀速运动,完全运动到区域Ⅱ时,导体棒PT 速度恰好达到v 0且恰好进入区域Ⅱ,该过程棒PT 产生的焦耳热为Q ,求金属棒PT 与区域Ⅰ右边界的初始距离x 0和该过程维持磁场匀速运动的外力做的功W ;(3)若磁场完全运动到区域Ⅱ时立刻停下,求导体棒PT 运动到EG 时的速度大小v .答案(1)0~t 0时间内F =nB 02πLr 23Rt 0;t 0~2t 0时间内F =0(2)d -3mRv 0B 02L23Q +1 2mv2(3)v-23B2L33mR解析(1)在0~t0时间内,由法拉第电磁感应定律得E=nΔBΔtS=nBtπr2由闭合电路欧姆定律得I=E3R=nBπr23Rt故在0~t0时间内,使PT棒保持静止的水平外力大小为F=FA=BIL=nB2πLr23Rt在t0~2t时间内,磁场不变化,回路中电动势为零,无电流,则外力F=0(2)PT棒向右加速运动过程中,取向右的方向为正方向,由动量定理得B2L2Δx3R=mv得Δx=3mRv0 B2L2所以x0=d-Δx=d-3mRvB2L2PT棒向右加速过程中,回路中的总焦耳热为Q总=3Q由功能关系和能量守恒定律得W=3Q+12 mv2(3)棒PT从磁场区域Ⅱ左边界向右运动距离x时,回路中棒PT的长度为lx =233x+L回路中总电阻为R总x x+2233xR233x+L+2233xR=RL(23x+3L)回路中电流为Ix =BlxvxR总x=B233x+L vxRL23x+3L=BLvx3R棒PT所受安培力大小为FA x =BIxlx=B2Lvxlx3R棒PT从磁场区域Ⅱ左边界运动到EG过程中,以v方向为正方向,由动量定理得-∑B2Lvxlx3RΔt=mv-mv即-B2LS梯3R=mv-mv其中S梯=23L2所以v=v0-23B2L33mR.考点二动量守恒定律在电磁感应中的应用双杆模型物理模型“一动一静”:甲杆静止不动,乙杆运动,其实质是单杆问题,不过要注意问题包含着一个条件——甲杆静止,受力平衡两杆都在运动,对于这种情况,要注意两杆切割磁感线产生的感应电动势是相加还是相减;系统动量是否守恒分析方法动力学观点通常情况下一个金属杆做加速度逐渐减小的加速运动,而另一个金属杆做加速度逐渐减小的减速运动,最终两金属杆以共同的速度匀速运动能量观点两杆系统机械能减少量等于回路中产生的焦耳热之和动量观点对于两金属杆在平直的光滑导轨上运动的情况,如果两金属杆所受的外力之和为零,则考虑应用动量守恒定律处理问题例3(2022·广东省模拟)如图所示,间距L=1m的光滑平行金属导轨MN和PQ的倾斜部分与水平部分平滑连接,水平导轨处在方向竖直向上、磁感应强度大小为B=0.2T的匀强磁场中,距离磁场左边界D=1.8m的导轨上垂直放置着金属棒cd,现将金属棒ab从距离桌面高度h=0.8m的倾斜导轨处由静止释放,随后进入水平导轨,两金属棒未相碰,金属棒cd从导轨右端飞出后,落地点距导轨右端的水平位移s=1.20m.已知金属棒ab的质量m=0.2kg,金属棒cd的质量1m=0.1kg,金属棒ab、cd的电阻均为r=0.1Ω、长度均为L,两金属棒在导2轨上运动的过程中始终与导轨垂直且接触良好,导轨电阻不计,桌面离地面的高度H=1.8m,重力加速度g=10m/s2,求:(1)金属棒cd在水平导轨上运动的最大加速度;(2)金属棒ab在水平导轨上运动的过程中克服安培力所做的功和整个回路中产生的焦耳热;(3)金属棒ab、cd在水平导轨上运动的过程中两金属棒之间距离的最小值.答案(1)8m/s2(2)0.7J0.5J(3)0.8m解析(1)金属棒ab从释放到刚进入水平导轨的过程,根据机械能守恒定律得m 1gh =12m 1v 2,金属棒ab 切割磁感线产生的感应电动势E =BLv ,回路中的电流I =E 2r金属棒cd 所受的安培力大小为F cd =BIL ,此时金属棒cd 的加速度最大,最大加速度a m =F cd m 2联立解得a =8m/s 2(2)金属棒cd 离开水平导轨后做平抛运动,有s =v c t ,H =12gt 2金属棒ab 与金属棒cd 在相互作用的过程中,根据动量守恒定律得m 1v =m 1v a +m 2v c 设金属棒ab 克服安培力做的功为W ,由动能定理得-W =12m 1v a 2-12m 1v 2解得W =0.7J,整个回路中产生的焦耳热Q =m 1gh -12m 1v a 2-12m 2v c2解得Q =0.5J(3)金属棒cd 在安培力的作用下加速,根据动量定理得B I L Δt =m 2v c金属棒ab 、金属棒cd 组成的回路中通过某截面的电荷量q =I -Δt根据法拉第电磁感应定律得E =ΔΦΔt =B ΔxL Δt ,I -=E 2r ,联立解得Δx =1m,两金属棒之间距离的最小值为D -Δx =0.8m.1.(多选)如图所示,水平金属导轨P 、Q 间距为L ,M 、N 间距为2L ,P 与M 相连,Q 与N 相连,金属棒a 垂直于P 、Q 放置,金属棒b 垂直于M 、N 放置,整个装置处在磁感应强度大小为B 、方向竖直向上的匀强磁场中.现给a 棒一大小为v 0的初速度,方向水平向右.设两部分导轨均足够长,两棒质量均为m ,在a 棒的速度由v 0减小到0.8v 0的过程中,两棒始终与导轨接触良好.在这个过程中,以下说法正确的是()A.俯视时感应电流方向为顺时针B.b 棒的最大速度为0.4v 0C.回路中产生的焦耳热为0.1mv 02D.通过回路中某一截面的电荷量为2mv 025BL 答案BC解析a 棒向右运动,根据右手定则可知,俯视时感应电流方向为逆时针,故A错误;由题意分析可知,a 棒减速,b 棒加速,设a 棒的速度大小为0.8v 0时b 棒的速度大小为v ,取水平向右为正方向,根据动量定理,对a 棒有-B I L Δt =m ·0.8v 0-mv 0,对b 棒有B I ·2L Δt =mv ,联立解得v =0.4v 0,此后回路中电流为0,a 、b 棒都做匀速运动,即b 棒的最大速度为0.4v 0,故B 正确;根据能量守恒定律有Q =12mv 02-[12m (0.8v 0)2+12m (0.4v 0)2]=0.1mv 02,故C 正确;对b 棒,由2B I L ·Δt =mv 得,通过回路中某一截面的电荷量q =I ·Δt =mv 2BL =mv 05BL ,故D 错误.2.(2022·安徽阜阳市质检)如图,两平行光滑金属导轨ABC 、A ′B ′C ′的左端接有阻值为R 的定值电阻Z,间距为L ,其中AB 、A ′B ′固定于同一水平面上(图中未画出)且与竖直面内半径为r 的14光滑圆弧形导轨BC 、B ′C ′相切于B 、B ′两点.矩形DBB ′D ′区域内存在磁感应强度大小为B 、方向竖直向上的匀强磁场.导体棒ab 的质量为m 、阻值为R 、长度为L ,ab 棒在功率恒定、方向水平向右的推力作用下由静止开始沿导轨运动,经时间t 后撤去推力,然后ab 棒与另一根相同的导体棒cd 发生碰撞并粘在一起,以32gr 的速率进入磁场,两导体棒穿过磁场区域后,恰好能到达CC ′处.重力加速度大小为g ,导体棒运动过程中始终与导轨垂直且接触良好,不计导轨的电阻.(1)求该推力的功率P ;(2)求两导体棒通过磁场右边界BB ′时的速度大小v ;(3)求两导体棒穿越磁场的过程中定值电阻Z 产生的焦耳热Q ;(4)两导体棒到达CC ′后原路返回,请通过计算判断两导体棒能否再次穿过磁场区域.若不能穿过,求出两导体棒停止的位置与DD ′的距离x .答案(1)36mgrt(2)2gr(3)323mgr (4)不能3mR 2gr B 2L 2解析(1)设两导体棒碰撞前瞬间ab 棒的速度大小为v 0,在推力作用的过程中,由动能定理有Pt =12mv 02设ab 与cd 碰后瞬间结合体的速度大小为v 1,由题意知v 1=32gr ,由动量守恒定律有mv 0=2mv 1联立解得P=36mgr t(2)对两导体棒沿圆弧形导轨上滑的过程分析,由机械能守恒定律有12×2mv2=2mgr解得v=2gr(3)两棒碰撞并粘在一起,由电阻定律可知,两导体棒的总电阻为R2,阻值为R的定值电阻Z产生的焦耳热为Q,故两棒产生的总焦耳热为Q2,由能量守恒定律有-(Q+Q2)=12×2mv2-12×2mv12解得Q=323 mgr(4)设导体棒第一次穿越磁场的时间为t1,该过程回路中的平均电流为I,DD′与BB′的间距为x1,由动量定理有-B I Lt1=2mv-2mv1根据法拉第电磁感应定律和电路相关知识有I t1=BLx13R2解得x1=6mR2grB2L2由机械能守恒定律可知,导体棒再次回到BB′处时的速度大小仍为v=2gr,导体棒再次进入磁场向左运动的过程中,仍用动量定理和相关电路知识,并且假设导体棒会停在磁场中,同时设导体棒在磁场中向左运动的时间为t2,导体棒进入磁场后到停止运动的距离为Δx,该过程回路中的平均电流为I′,同前述道理可分别列式为-B I ′Lt 2=0-2mvI ′t 2=BL ·Δx 3R 2解得Δx =3mR 2gr B 2L 2显然Δx <x 1,假设成立,故导体棒不能向左穿过磁场区域,导体棒停止的位置与DD ′的距离x =x 1-Δx =3mR 2grB 2L2.专题强化练1.(2022·广东省调研)如图所示,左端接有阻值为R 的定值电阻,且足够长的平行光滑导轨CE 、DF 的间距为L ,导轨固定在水平面上,且处在磁感应强度大小为B 、方向竖直向下的匀强磁场中,一质量为m 、电阻为r 的导体棒ab 垂直导轨放置且静止,导轨的电阻不计.某时刻给导体棒ab 一个水平向右的瞬时冲量I ,导体棒将向右运动,最后停下来,则此过程中()A.导体棒做匀减速直线运动直至停止运动B.电阻R 上产生的焦耳热为I 22m C.通过导体棒ab 横截面的电荷量为I BLD.导体棒ab 运动的位移为IRB 2L 2答案C解析导体棒获得向右的瞬时冲量后切割磁感线,回路中出现感应电流,导体棒ab 受到向左的安培力,向右做减速运动,有B 2L 2vR +r =ma ,由于导体棒速度减小,则加速度减小,所以导体棒做的是加速度减小的减速运动直至停止运动,A 错误;导体棒减少的动能E k =12mv 2=12m (I m )2=I 22m,根据能量守恒定律可得E k =Q 总,又根据串、并联电路知识可得Q R =R R +r Q 总=I 2R2m R +r ,B 错误;根据动量定理可得-B I L Δt =0-mv ,I =mv ,q =I -Δt ,联立可得q =IBL,C 正确;由于q =I -Δt=E -R +r Δt =ΔΦR +r =BLx R +r ,将q =I BL 代入可得,导体棒ab 运动的位移x =I R +r B 2L2,D 错误.2.(多选)如图甲所示,质量m =3.0×10-3kg 的形金属细框水平放置在两水银槽中,形框的水平细杆CD 长l =0.20m,处于磁感应强度大小为B 1=1.0T、方向水平向右的匀强磁场中.有一匝数n =300匝、面积S =0.01m 2的线圈通过开关K 与两水银槽相连.线圈处于与线圈平面垂直、沿竖直方向的匀强磁场中,其磁感应强度B 2随时间t 变化的关系如图乙所示.t =0.22s 时闭合开关K,瞬间细框跳起(细框跳起瞬间安培力远大于重力),跳起的最大高度h =0.20m.不计空气阻力,重力加速度g 取10m/s 2,下列说法正确的是()A.0~0.10s内线圈中的感应电动势大小为3VB.0.10~0.20s内线圈中的磁通量最大,故感应电动势最大C.开关K闭合瞬间,CD中的电流方向由C到DD.开关K闭合瞬间,通过细杆CD的电荷量为0.03C答案CD解析由题图乙所示图像可知,在0~0.10s内,ΔΦ=ΔB2S=(1.0-0)×0.01 Wb=0.01Wb0~0.10s内线圈中的感应电动势大小E=n ΔΦΔt=300×0.010.1V=30V,在0.10~0.20s内线圈中的磁通量最大,但B2-t图像的斜率为0,故感应电动势为0,A、B错误;由题可知细杆CD所受安培力方向竖直向上,由左手定则可知,电流方向为由C到D,C正确;对细杆,由动量定理及题意得B1I l·Δt=mv-0,细杆竖直向上做竖直上抛运动,有v2=2gh,电荷量Q=IΔt,联立解得Q=m2ghB1l=0.03C,D正确.3.(多选)(2022·河南信阳市高三质量检测)如图所示,两根足够长相互平行、间距d=0.20m的竖直导轨,下端连接阻值R=0.50Ω的电阻.一根阻值也为0.50Ω、质量m=1.0×10-2kg的导体棒ab搁置在两端等高的挡条上.在竖直导轨内有垂直纸面的匀强磁场,磁感应强度B=0.50T(图中未画出).撤去挡条,棒开始下滑,经t=0.25s后下降了h=0.29m.假设棒始终与导轨垂直,且与导轨接触良好,不计一切摩擦阻力和导轨电阻,重力加速度取10m/s 2.下列说法正确的是()A.导体棒能获得的最大速度为20m/s B.导体棒能获得的最大速度为10m/sC.t =0.25s 时间内通过导体棒的电荷量为2.9×10-2CD.t =0.25s 时导体棒的速度为2.21m/s 答案BCD解析导体棒获得最大速度时,导体棒受力平衡,有mg =F 安=BId ,解得I =1A,又由E =Bdv m ,I =E2R,解得v m =10m/s,故A 错误,B 正确;在下落0.29m 的过程中有E =ΔΦt ,I =E 2R ,q =I t ,可知q =ΔΦ2R ,其中ΔΦ=ΔS ·B =0.2×0.29×0.5Wb=0.029Wb,解得q =2.9×10-2C,故C 正确;由动量定理有(mg -B I d )t =mv ,通过导体棒的电荷量为q =I t =Bdh 2R ,可得v =gt -B 2hd 22Rm,代入数据解得v =2.21m/s,故D 正确.4.(多选)(2022·山东青岛市黄岛区期末)如图,光滑平行金属导轨MN 、PQ 固定在水平桌面上,窄轨MP 间距0.5m,宽轨NQ 间距1m,电阻不计.空间存在竖直向上的磁感应强度B =1T 的匀强磁场.金属棒a 、b 水平放置在两导轨上,棒与导轨垂直并保持良好接触,a 棒的质量为0.2kg,b 棒的质量为0.1kg,若a 棒以v=9m/s的水平初速度从宽轨某处向左滑动,最终与b棒以相同的速度沿窄轨运动.若a棒滑离宽轨前加速度恰好为0,窄导轨足够长.下列说法正确的是()A.从开始到两棒以相同速度运动的过程,a、b组成的系统动量守恒B.金属棒a滑离宽轨时的速度大小为3m/sC.金属棒a、b最终的速度大小为6m/sD.通过金属棒横截面的电荷量为0.8C答案BD解析由于两导轨的宽度不相等,根据F=BIL,知a、b两个金属棒所受水平方向的安培力之和不为零,系统动量不守恒,故A错误;a棒滑离宽轨前加速度恰好为0,即做匀速运动,a棒匀速运动时,两棒切割磁感线产生的电动势大小相等,有BLb vb=BLava,La=2Lb,得末速度vb=2va,对a棒根据动量定理可得-B I LaΔt=ma va-mav,对b棒根据动量定理可得B I LbΔt=mbvb,联立代入数据解得va=3m/s,vb=6m/s,故B正确;a棒滑离宽轨道进入窄轨道后,a、b两个金属棒所受水平方向的安培力之和为零,系统动量守恒,设a、b两个金属棒最终的共同速度为v′,则ma va+mbvb=(ma+mb)v′,解得v′=4m/s,故C错误;b金属棒始终在窄轨道上运动,对b金属棒全过程利用动量定理可得B I′Lb ·Δt′=mbv′,q=I′·Δt′,即BLb q=mbv′,代入数据得q=0.8C,故D正确.5.(多选)如图所示,两条足够长、电阻不计的平行导轨放在同一水平面内,相距l.磁感应强度大小为B的范围足够大的匀强磁场垂直于导轨平面向下.两根质量均为m 、电阻均为r 的导体杆a 、b 与两导轨垂直放置且接触良好,开始时两杆均静止.已知b 杆光滑,a 杆与导轨间最大静摩擦力大小为F 0.现对b 杆施加一与杆垂直且大小随时间按图乙所示规律变化的水平外力F ,已知在t 1时刻,a 杆开始运动,此时拉力大小为F 1,下列说法正确的是(最大静摩擦力等于滑动摩擦力)()A.当a 杆开始运动时,b 杆的速度大小为2F 0r B 2l 2B.在0~t 1这段时间内,b 杆所受安培力的冲量大小为2mF 0r B 2l 2-12F 1t 1C.在t 1~t 2这段时间内,a 、b 杆的总动量增加了F 1+F 2t 2-t 12D.a 、b 两杆最终速度将恒定,且两杆速度大小之差等于t 1时刻b 杆速度大小答案AD解析在整个运动过程中,a 、b 两杆所受安培力大小相等,当a 杆开始运动时,所受的安培力大小等于最大静摩擦力F 0,则B 2l 2v2r =F 0,解得b 杆的速度大小为v=2F 0rB 2l2,选项A 正确;由动量定理得I F -I 安=mv ,F -t 图线与横轴围成的面积表示I F 的大小,知I F =12F 1t 1,解得I 安=I F -mv =12F 1t 1-2mF 0rB 2l2,选项B 错误;在t 1~t 2这段时间内,外力F 对a 、b 杆的冲量为I F ′=F 1+F 2t 2-t 12,因a 杆受摩擦力作用,可知a 、b 杆所受合力的总冲量小于F 1+F 2t 2-t 12,即a 、b杆的总动量增加量小于F 1+F 2t 2-t 12,选项C 错误;由于最终外力F =F 0,故此时对两杆整体,所受合力为零,两杆所受的安培力均为F 0,处于稳定状态,因开始时b 杆做减速运动,a 杆做加速运动,故a 、b 两杆最终速度将恒定,速度大小之差满足B 2l 2Δv2r =F 0,即Δv =v ,速度大小之差等于t 1时刻b 杆速度大小,选项D 正确.6.(2022·天津市红桥区第二次质检)如图所示,两足够长的光滑金属导轨竖直放置,相距为L ,一理想电流表与两导轨相连,匀强磁场与导轨平面垂直.一质量为m 、有效电阻为R 的导体棒在距磁场上边界h 处由静止释放.导体棒进入磁场后流经电流表的电流逐渐减小,最终稳定为I .整个运动过程中,导体棒与导轨接触良好,且始终保持水平,不计导轨的电阻,重力加速度大小为g .求:(重力加速度取10m/s 2)(1)导体棒的最大速度v m ,磁感应强度的大小B ;(2)电流稳定后,导体棒运动速度的大小v ;(3)若导体棒进入磁场后恰经t 时间达到稳定,这段时间的位移x 大小.答案(1)2gh mg IL (2)I 2R mg (3)(mgt +m 2gh -I 2R g )RB 2L2解析(1)由题意得导体棒刚进入磁场时的速度最大,设为vm,由机械能守恒定律得12mvm2=mgh解得vm=2gh电流稳定后,导体棒做匀速运动,此时导体棒受到的重力和安培力平衡,则有:BIL=mg解得:B=mg IL(2)感应电动势E=BLv感应电流I=E R解得v=I2R mg(3)导体棒进入磁场t时间运动的过程由动量定理有mgt-B I Lt=mv-mvm又q=I t=ΔΦR=BLxR,解得x=(mgt+m2gh-I2Rg)RB2L2.7.(2022·陕西西安市一模)如图所示,有两光滑平行金属导轨,倾斜部分和水平部分平滑连接,BE、CH段用特殊材料制成,光滑不导电,导轨的间距L=1m,左侧接R=1Ω的定值电阻,右侧接电容C=1F的电容器,ABCD区域、EFGH区域均存在垂直于导轨所在平面向下、磁感应强度B=1T的匀强磁场,ABCD区域长s =0.3m.金属杆a、b的长度均为L=1m,质量均为m=0.1kg,a的电阻为r =2Ω,b的电阻不计.金属杆a从距导轨水平部分h=0.45m的高度处由静止滑下,金属杆b静止在BEHC区域,金属杆b与金属杆a发生弹性碰撞后进入EFGH区域,最终稳定运动.求:(重力加速度g 取10m/s 2)(1)金属杆a 刚进入ABCD 区域时通过电阻R 的电流I ;(2)金属杆a 刚离开ABCD 区域时的速度v 2的大小;(3)金属杆b 稳定运动时的速度v 4的大小;(4)整个运动过程中金属杆a 上产生的焦耳热.答案(1)1A(2)2m/s(3)211m/s (4)16J 解析(1)金属杆a 从开始运动到进入ABCD 区域,由动能定理有mgh =12mv 12解得v 1=3m/s刚进入ABCD 区域时E =BLv 1I =E R +r联立解得I =1A(2)金属杆a 从进入ABCD 区域到离开ABCD 区域,由动量定理有-B I L ·t =mv 2-mv 1I t =BL vR +r t =BLsR +r 解得v 2=2m/s(3)金属杆a 、b 碰撞过程中,有mv 2=mv 2′+mv 31 2mv22=12mv2′2+12mv32解得v3=2m/s,v2′=0分析可知,杆b进入磁场后,电容器充电,杆b速度减小,匀速运动时,杆b产生的感应电动势与电容器两端电压相同,且通过杆b的电荷量就是电容器储存的电荷量,由动量定理有-BLq=mv4-mv3q C =BLv4联立解得v4=211m/s(4)杆a仅在ABCD区域中运动时产生焦耳热,即Q=rR+r(12mv12-12mv22)=16J.8.如图所示,MN、PQ为足够长的水平光滑金属导轨,导轨间距L=0.5m,导轨电阻不计,空间有竖直向下的匀强磁场,磁感应强度B=1T;两直导体棒ab、cd均垂直于导轨放置,导体棒与导轨始终接触良好.导体棒ab的质量m1=0.5kg,电阻R1=0.2Ω;导体棒cd的质量m2=1.0kg,电阻R2=0.1Ω.将cd棒用平行于导轨的水平细线与固定的力传感器连接,给ab一个水平向右、大小为v=3m/s 的初速度,求:(1)导体棒ab开始运动瞬间两端的电压Uab;(2)力传感器示数F随ab运动距离x的变化关系;(3)若导体棒ab向右运动的速度为1.5m/s时剪断细线,求此后回路中产生的焦耳热.答案(1)0.5V(2)F=2.5-2518x(N)(0≤x≤1.8m)(3)0.375J解析(1)导体棒ab开始运动瞬间产生的感应电动势E=BLv=1×0.5×3V=1.5 V回路的电流I=ER1+R2=1.50.2+0.1A=5A导体棒ab开始运动瞬间两端的电压U ab =IR2=0.5V(2)设导体棒ab向右运动x时的速度为v,则根据动量定理得-B I LΔt=m1v-m1v而I=ER1+R2,E=ΔΦΔt =BLx Δtab棒所受安培力F安=BI′L=B2L2vR1+R2cd棒与ab棒所受安培力大小相等,故力传感器的示数F=F安,联立得F=B2L2R1+R2[v-B2L2xm1R1+R2]代入数据得F=2.5-2518x(N)(0≤x≤1.8m)(3)若导体棒ab向右运动的速度为1.5m/s时剪断细线,此后ab做减速运动,cd 做加速运动,当两棒速度相等时达到稳定状态,由动量守恒定律可知m1v1=(m1+m2)v′回路中产生的焦耳热等于损失的机械能,则Q=12m1v12-12(m1+m2)v′2代入数据解得Q=0.375J.。

专题08 电磁感应中的动量问题(解析版)

专题08 电磁感应中的动量问题(解析版)

浙江高考物理尖子生核心素养提升之电磁感应中的动量问题命题点一 动量定理在电磁感应现象中的应用导体棒或金属框在感应电流所引起的安培力作用下做非匀变速直线运动时,安培力的冲量为:I 安=B I Lt =BLq ,通过导体棒或金属框的电荷量为:q =I Δt =ER 总Δt =n ΔΦΔtR 总Δt =n ΔΦR 总,磁通量变化量:ΔΦ=B ΔS =BLx 。

如果安培力是导体棒或金属框受到的合外力,则I 安=mv 2-mv 1。

当题目中涉及速度v 、电荷量q 、运动时间t 、运动位移x 时常用动量定理求解更方便。

[典例] 如图甲所示,两条相距l 的光滑平行金属导轨位于同一竖直面(纸面)内,其上端接一阻值为R 的电阻,在两导轨间OO ′下方区域内有垂直导轨平面向里的匀强磁场,磁感应强度为B 。

现使长为l 、电阻为r 、质量为m 的金属棒ab 由静止开始自OO ′位置释放,向下运动距离d 后速度不再变化(棒ab 与导轨始终保持良好的接触且下落过程中始终保持水平,导轨电阻不计)。

(1)求棒ab 在向下运动距离d 过程中回路产生的总焦耳热; (2)棒ab 从静止释放经过时间t 0下降了d2,求此时刻的速度大小;(3)如图乙所示,在OO ′上方区域加一面积为S 的垂直于纸面向里的匀强磁场B ′,棒ab 由静止开始自OO ′上方某一高度处释放,自棒ab 运动到OO ′位置开始计时,B ′随时间t 的变化关系B ′=kt ,式中k 为已知常量;棒ab 以速度v 0进入OO ′下方磁场后立即施加一竖直外力使其保持匀速运动。

求在t 时刻穿过回路的总磁通量和电阻R 的电功率。

[解析] (1)对闭合回路:I =Blv mR +r由平衡条件可知:mg =BIl 解得v m =mg (R +r )B 2l 2由功能关系:mgd =12mv m 2+Q解得Q =mgd -m 3g 2(R +r )22B 4l 4(2)由动量定理可知:(mg -BIl )t 0=mv即mgt 0-Blq =mv 又q =ΔΦ1r +R =Bl d 2r +R解得v =gt 0-B 2l 2d2m (R +r )。

电磁感应问题中动量定理应用归类

电磁感应问题中动量定理应用归类

电磁感应问题中动量定理应用归类电磁感应的动量定理是指当导体中存在磁场变化时,会在导体内产生感应电动势,并产生电流,而电流会受到磁场力的作用,导致导体受到一个力,从而产生动量变化。

在电磁感应问题中,动量定理可以应用于多个方面。

下面将对其中的几个应用进行归类和讨论。

1. 等离子体推动:等离子体是一个带电粒子(离子和电子)的气体,在磁场中可以受到磁场力的作用而运动。

根据动量定理,等离子体在受到磁场力的作用下会产生动量变化,从而改变运动状态。

这个应用在等离子体推动引擎和等离子体推进器中有着重要的应用。

2. 磁体推动:在磁场中,导体中的电流会受到磁场力的作用,从而产生一个受力的导体。

根据动量定理,磁体在受到磁场力的作用下会产生动量变化,从而改变运动状态。

这个应用在磁悬浮列车和磁漂浮车辆中有着重要的应用。

3. 电磁铁打击力:电磁铁是一种利用电流在导线中产生磁场的装置。

当电流通过导线时,会在铁芯中产生磁场并产生一个力,这个力可以用动量定理来计算。

根据动量定理,电磁铁在产生磁场的同时也会受到与磁场力相等但方向相反的力,从而产生动量变化。

4. 电磁感应制动:电磁感应制动是一种利用电磁感应现象来制动运动物体的方法。

当运动物体进入磁场区域时,会产生感应电流,而这个感应电流会受到磁场力的作用,从而产生一个制动力。

根据动量定理,运动物体在受到制动力的作用下会产生动量变化,从而减速停止。

综上所述,电磁感应问题中动量定理的应用主要包括等离子体推动、磁体推动、电磁铁打击力和电磁感应制动等方面。

这些应用都是基于电流受到磁场力的作用,从而导致物体受到一个力,从而产生动量变化。

这些应用在工程和科学领域中有重要的应用,对于我们理解电磁感应和能量传递也有着重要的意义。

高中物理:动量定理在电磁感应中的应用

高中物理:动量定理在电磁感应中的应用

高中物理:动量定理在电磁感应中的应用碰撞与动量这部分内容对进一步学习物理学科是非常重要的,因为动量守恒定律是解决经典力学和微观物理问题的重要工具和方法之一。

动量动量定理1、动量、冲量2、动量变化量和动量变化率3、动量、冲量4、应用动量定理解题的一般步骤(1)选定研究对象,明确运动过程(2)受力分析和运动的初、末状态分析(3) 选正方向,根据动量定理列方程求解动量动量定理动量定理揭示了冲量和动量变化量之间的关系.1.应用动量定理的两类简单问题(1) 应用I=Δp求变力的冲量和平均作用力.物体受到变力作用,不能直接用I=Ft求变力的冲量.(2) 应用Δp=Ft求恒力作用下的曲线运动中物体动量的变化.曲线运动中,作用力是恒力,可求恒力的冲量,等效代换动量的变化量.2.动量定理使用的注意事项(1) 用牛顿第二定律能解决的问题,用动量定理也能解决,题目不涉及加速度和位移,用动量定理求解更简便.(2) 动量定理的表达式是矢量式,运用它分析问题时要特别注意冲量、动量及动量变化量的方向,公式中的F是物体或系统所受的合力.3.动量定理在电磁感应现象中的应用在电磁感应现象中,安培力往往是变力,可用动量定理求解有关运动过程中的时间、位移、速度等物理量.动量守恒定律1、动量守恒定律内容如果一个系统不受外力,或者所受外力的矢量和为零,这个系统的总动量保持不变.这就是动量守恒定律.2、动量守恒定律表达式(1) m1v1+m2v2=m1v′1+m2v′2,两个物体组成系统相互作用前后,动量保持不变.(2) Δp1=-Δp2,相互作用的两物体组成的系统,两物体的动量变化量大小相等、方向相反.(3) Δp=0,系统的动量变化量为零.3、对动量守恒定律的理解(1) 矢量性:只讨论物体相互作用前后速度方向都在同一条直线上的情况,这时要选取一个正方向,用正负号表示各矢量的方向.(2) 瞬时性:动量是一个状态量,动量守恒指的是系统任一瞬时的动量恒定.(3) 相对性:动量的大小与参考系的选取有关,一般以地面为参考系.(4) 普适性:①适用于两物体系统及多物体系统;②适用于宏观物体以及微观物体;③适用于低速情况及高速情况.动量守恒定律的简单应用1、应用动量守恒定律的条件(1) 系统不受外力或系统所受的合外力为零.(2) 系统所受的合外力不为零,比系统内力小得多.(3) 系统所受的合力不为零,在某个方向上的分量为零.2、运用动量守恒定律解题的基本思路(1) 确定研究对象并进行受力分析和过程分析;(2) 确定系统动量在研究过程中是否守恒;(3) 明确过程的初、末状态的系统动量;(4) 选择正方向,根据动量守恒定律列方程.3、动量守恒条件和机械能守恒条件的比较(1) 守恒条件不同:系统动量守恒是系统不受外力或所受外力的矢量和为零;机械能守恒的条件是只有重力或弹簧弹力做功,重力或弹簧弹力以外的其他力不做功.(2) 系统动量守恒时,机械能不一定守恒.(3) 系统机械能守恒时,动量不一定守恒.动量定理在电磁感应中的应用电磁感应中的动力学问题往往比较复杂,运用动量和能量的观点可以清晰、简洁地解决问题。

新高考下动量、动量守恒定律在“电磁感应”中的应用

新高考下动量、动量守恒定律在“电磁感应”中的应用

新高考下动量、动量守恒定律在“电磁感应”中的应用引言:电磁感应是物理学中重要的概念之一,涉及到动量和动量守恒定律的应用。

在新高考的物理考试中,动量和动量守恒定律的运用在解题过程中显得尤为重要。

本文将重点探讨动量和动量守恒定律在“电磁感应”中的应用,通过实例分析具体案例,帮助读者更好地理解和掌握相关知识。

一、电磁感应的基本原理1.电磁感应的概念电磁感应是指磁场相对运动产生电场,或者电场相对运动产生磁场的现象。

电磁感应是电动势和电流产生的基础,也是电磁感应定律的基础。

2.法拉第电磁感应定律法拉第电磁感应定律表明,在导线中出现磁通量的变化时,将会诱导出产生的电动势。

即:ε = -dΦ/dt其中,ε表示产生的感应电动势,Φ表示磁通量,t表示时间。

二、动量和动量守恒定律在电磁感应中的应用1.动量的概念动量是物体运动的物理量,它等于物体的质量乘以速度。

在电磁感应中,动量与产生的电动势和磁通量的变化有着密切的关系。

2.动量守恒定律在电磁感应中的应用动量守恒定律是指在闭合系统中,系统的总动量保持不变。

这一定律在电磁感应中有着重要的应用。

例如,在变压器的工作过程中,通过电磁感应产生的电动势使得电流变化,而电流的变化又产生磁场的变化,最终会导致动量的变化。

根据动量守恒定律,系统的总动量始终保持不变。

具体应用案例:假设在一个闭合回路中,有一匀强磁场B。

开始时,闭合回路中没有电流,磁场作用在回路上,这时由于运动的原因(例如运动的金属杆较彼处在一个大的强磁场区域)而产生的感应电动势,从而电流可以在回路中开始流动。

根据动量守恒定律,电流的产生导致磁场中的能量转化为电场中的能量,并且导致产生的电磁场中的能量。

引入动量守恒定律,可以描述上述过程中的动量变化。

在开始时,闭合回路中的动量为零,由于磁场作用,金属杆开始运动,动量开始发生变化。

随着动量的变化,电动势产生,从而电流开始流动。

通过运用动量守恒定律,我们可以定量描述磁场能量和电场能量之间的转化过程。

高中物理电磁感应现象专题:电磁感应中的导轨类问题全解

高中物理电磁感应现象专题:电磁感应中的导轨类问题全解



应 中
受力情况分析
动力学观点

动量观点
导 轨
运动情况分析
能量观点


牛顿定律 平衡条件 动量定理 动量守恒 动能定理 能量守恒
一、单棒问题 基本模型 运动特点 最终特征
阻尼式 电动式
v0 a逐渐减小 静止 的减速运动 I=0
a逐渐减小 匀速 的加速运动 I=0 (或恒定)
发电式
F a逐渐减小 匀速 的加速运动 I 恒定
Blv q C
对ab棒由动量定理得: BIl Δt mv0 mv
可以求得此时ab棒的速度:v

mv0 B2l 2C
m
电容器的带电量(通过导体横截面的电量) 为:
q

Blv C

BClmv0 B2l 2C m
电容有外力充电式
1.电路特点
F
导体棒为发电棒;电容器被充电。
2.三个基本关系
速运动。
4.最终特征 匀速运动
v
但此时电容器带电量不为零 O
t
电容无外力充电式
5.最终速度
v0
电容器充电量: q CU
最终导体棒的感应电动 势等于电容两端电压:
U Blv
对杆应用动量定理:
mv0 mv BIl t Blq
v

mv0 B2l 2C
m
解:由于安培力的作用,ab棒的速度越 来越小,产生的感应电动势越来越低,而电容器 由于充电,其两端电压越来越高,当ab两端电压 等于电容器C两端电压时,回路中的电流为0时, 导体最终将做匀速运动.则有
(1)电容器极板上积累的电荷量与金属棒速度大小的关系;

专题65 电磁感应中的双棒问题(解析版)

专题65 电磁感应中的双棒问题(解析版)

2023届高三物理一轮复习多维度导学与分层专练专题65 电磁感应中的双棒问题导练目标导练内容目标1无外力等距式双棒问题目标2有外力等距式双棒问题目标3无外力不等距式双棒问题目标4有外力不等距式双棒问题模型规律无外力等距式(导轨光滑)1、电流大小:21211212Blv Blv Bl(v v)IR R R R--==++2、稳定条件:两棒达到共同速度3、动量关系:2012()m v m m v=+4、能量关系:2122211m v(m m)v Q22=+共+;1122Q RQ R=有外力等距式(导轨光滑)1、电流大小:1221Blv BlvIR R-=+2、力学关系:11AFam=;22AF Fam-=。

(任意时刻两棒加速度)3、稳定条件:当a2=a1时,v2-v1恒定;I恒定;F A恒定;两棒匀加速。

4、稳定时的物理关系: 12F (m m )a =+;1A F m a =;2112A Bl(v v )F BIlB lR R -==+;121212212(R R )m F v v B l (m m )+-=+无外力不等距式 (导轨光滑)1、动量关系:11110BL I t m v m v -∆=-;2220BL I t m v -∆=-2、稳定条件:1122BL v BL v =3、最终速度:21222122110m L v v m L m L =+;12122122120m L L v v m L m L =+4、能量关系:222101122111222Q m v m v m v =-- 5、电量关系:2202BL q m v =-有外力不等距式 (导轨光滑)F 为恒力,则:1、稳定条件:1122l a l a =,I 恒定,两棒做匀加速直线运动 2、常用关系:111A F F a m -=;222A F a m =;1122l a l a =;1122A A F l F l =3、常用结果:2121221221A l m F F l m l m =+;1222221221A l l m F F l m l m =+; 221221221l a F l m l m =+; 122221221l l a F l m l m =+; 此时回路中电流为:12221221l m F I l m l m B=⋅+与两棒电阻无关一、无外力等距式双棒问题【例1】如图,水平面内固定有两根平行的光滑长直金属导轨,导轨间距为l ,电阻不计。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ABRv0B导轨与导体棒问题一、单棒问题【典例1】如图所示,AB杆受一冲量作用后以初速度v0=4m/s沿水平面内的固定轨道运动,经一段时间后而停止.AB的质量为m=5g,导轨宽为L=,电阻为R=2Ω,其余的电阻不计,磁感强度B=,棒和导轨间的动摩擦因数为μ=,测得杆从运动到停止的过程中通过导线的电量q=10﹣2C,求:上述过程中(g取10m/s2)(1)AB杆运动的距离;(2)AB 杆运动的时间;(3)当杆速度为2m/s时,其加速度为多大?【答案】(1);(2);(3)12m/s2.(2)根据动量定理有:﹣(F安t+μmgt)=0﹣mv0而F安t=BLt=BLq,得:BLq+μmgt=mv0,解得:t=(3)当杆速度为2m/s时,由感应电动势为:E=BLv安培力为:F=BIL,而I=然后根据牛顿第二定律:F+μmg=ma代入得:解得加速度:a=12m/s2,25.(20分)如图(a),超级高铁(Hyperloop)是一种以“真空管道运输”为理论核心设计的交通工具,它具有超高速、低能耗、无噪声、零污染等特点。

如图(b),已知管道中固定着两根平行金属导轨MN、PQ,两导轨间距为r;运输车的质量为m,横截面是半径为r的圆。

运输车上固定着间距为D、与导轨垂直的两根导体棒1和2,每根导体棒的电阻为R,每段长度为D的导轨的电阻也为R。

其他电阻忽略不计,重力加速度为g。

(1)如图(c),当管道中的导轨平面与水平面成θ=30°时,运输车恰好能无动力地匀速下滑。

求运输车与导轨间的动摩擦因数μ;(2)在水平导轨上进行实验,不考虑摩擦及空气阻力。

①当运输车由静止离站时,在导体棒2后间距为D处接通固定在导轨上电动势为E的直流电源,此时导体棒1、2均处于磁感应强度为B,垂直导轨平向下的匀强磁场中,如图(d)。

求刚接通电源时运输车的加速度的大小;(电源内阻不计,不考虑电磁感应现象)②当运输车进站时,管道内依次分布磁感应强度为B,宽度为D的匀强磁场,且相邻的匀强磁场的方向相反。

求运输车以速度vo从如图(e)通过距离D后的速度v。

【典例3】如图所示,水平放置的光滑平行金属导轨上有一质量为m的金属棒ab.导轨的一端连接电阻R,其他电阻均不计,磁感应强度为B的匀强磁场垂直于导轨平面向下,金属棒ab在一水平恒力F作用下由静止开始向右运动.则 ( )A.随着ab运动速度的增大,其加速度也增大B.外力F对ab做的功等于电路中产生的电能C .当ab 做匀速运动时,外力F 做功的功率等于电路中的电功率D .无论ab 做何种运动,它克服安培力做的功一定等于电路中产生的电能【答案】CD【典例4】 一个闭合回路由两部分组成,如图所示,右侧是电阻为r 的圆形导线,置于竖直方向均匀变化的磁场B 1中,左侧是光滑的倾角为θ的平行导轨,宽度为d ,其电阻不计.磁感应强度为B 2的匀强磁场垂直导轨平面向上,且只分布在左侧,一个质量为m 、电阻为R 的导体棒此时恰好能静止在导轨上,分析下述判断正确的是 ( )A .圆形导线中的磁场,可以方向向上且均匀增强,也可以方向向下且均匀减弱B .导体棒ab 受到的安培力大小为mg sin θC .回路中的感应电流为mg sin θB 2dD .圆形导线中的电热功率为m 2g 2sin 2θB 2 2d 2(r +R ) 【答案】ABC【解析】根据左手定则,导体棒上的电流从b 到a ,根据电磁感应定律可得A 项正确;根据共点力平衡知识,导体棒ab 受到的安培力大小等于重力沿导轨向下的分力,即mg sin θ,B 项正确;根据mg sin θ=B 2Id ,解得I =mg sin θB 2d ,C 项正确;圆形导线的电热功率P =I 2r =(mg sin θB 2d )2r =m 2g 2sin 2 θB 22d 2r ,D 项错误.【典例4】如图甲所示,两根足够长平行金属导轨MN 、PQ 相距为L ,导轨平面与水平面夹角为α,金属棒ab 垂直于MN 、PQ 放置在导轨上,且始终与导轨接触良好,金属棒的质量为m 。

导轨处于匀强磁场中,磁场的方向垂直于导轨平面斜向上,磁感应强度大小为B 。

金属导轨的上端与开关S 、定值电阻R 1和电阻箱R 2相连。

不计一切摩擦,不计导轨、金属棒的电阻,重力加速度为g 。

现在闭合开关S ,将金属棒由静止释放。

(1) 判断金属棒ab 中电流的方向;(2) 若电阻箱R 2接入电路的阻值为0,当金属棒下降高度为h 时,速度为v ,求此过程中定值电阻上产生的焦耳热Q ;(3) 当B = T ,L = m ,α=37°时,金属棒能达到的最大速度v m 随电阻箱R 2阻值的变化关系,如图乙所示。

取g =10 m/s 2,sin 37°=,cos 37°=。

求R 1的阻值和金属棒的质量m 。

【答案】 (1)b →a (2)mgh -12mv 2 (3) Ω kg (3)金属棒达到最大速度v m 时,切割磁感线产生的感应电动势:E =BLv m 由闭合电路的欧姆定律得:I =ER 1+R 2从b 端向a 端看,金属棒受力如图所示金属棒达到最大速度时,满足:mg sin α-BIL =0由以上三式得v m =mg sin αB 2L 2(R 2+R 1)由图乙可知:斜率k =60-302m·s -1·Ω-1=15 m·s -1·Ω-1,纵轴截距v =30 m/s所以mg sin αB 2L 2R 1=v ,mg sin αB 2L 2=k 解得R 1= Ω,m = kg24.如图所示,相距L = m 、电阻不计的两平行光滑金属导轨水平放置,一端与阻值R = Ω的电阻相连,导轨处于磁感应强度B = T 的匀强磁场中,磁场方向垂直于导轨平面向里。

质量m = kg 、电阻r = Ω的金属棒置于导轨上,并与导轨垂直。

t =0时起棒在水平外力F 作用下以初速度v 0=2 m/s 、加速度a =1 m/s 2沿导轨向右匀加速运动。

求:(1)t =2 s 时回路中的电流;(2)t =2 s 时外力F 大小;(3)前2 s 内通过棒的电荷量。

【答案】(1)4 A (2) N (3)6 C【解析】(1)t =2 s 时,棒的速度为:v 1=v 0+at =2+1×2=4 m/s此时由于棒运动切割产生的电动势为:E =BLv 1=××4 V= V由闭合电路欧姆定律可知,回路中的感应电流:(2)对棒,根据牛顿第二定律得:F ?BIL =ma解得F =BIL +ma =×4×+×1= N(3)t =2 s根据闭合电路欧姆定律得EI =【名师点睛】(1)棒向右匀加速运动,由速度时间公式求出t =1 s 时的速度,由E=BLv 求出感应电动势,由闭合电路欧姆定律求解回路中的电流。

(2)根据牛顿第二定律和安培力公式求解外力F 的大小。

(3)由位移时间公式求出第2 s 内棒通过的位移大小,由法拉第电磁感应定律、欧姆定律和电荷量公式求解电荷量。

2.如图所示,两根足够长平行金属导轨MN 、PQ 固定在倾角θ=37°的绝缘斜面上,顶部接有一阻值R =3 Ω的定值电阻,下端开口,轨道间距L =1 m .整个装置处于磁感应强度B =2 T 的匀强磁场中,磁场方向垂直斜面向上.质量m =1 kg 的金属棒ab 置于导轨上,ab 在导轨之间的电阻r =1 Ω,电路中其余电阻不计.金属棒ab 由静止释放后沿导轨运动时始终垂直于导轨,且与导轨接触良好.不计空气阻力影响.已知金属棒ab 与导轨间动摩擦因数μ=,sin 37°=,cos 37°=,取g =10 m/s 2.(1)求金属棒ab 沿导轨向下运动的最大速度v m ;(2)求金属棒ab 沿导轨向下运动过程中,电阻R 上的最大电功率P R ;(3)若从金属棒ab 开始运动至达到最大速度过程中,电阻R 上产生的焦耳热总共为 J ,求流过电阻R 的总电荷量q .解析:(1)金属棒由静止释放后,沿斜面做变加速运动,加速度不断减小,当加速度为零时有最大速度v m .由牛顿第二定律得mg sin θ-μmg cos θ-F 安=0F 安=BIL ,I =BLv m R +r,解得v m = m/s (2)金属棒以最大速度v m 匀速运动时,电阻R 上的电功率最大,此时P R =I 2R ,解得P R =3 W(3)设金属棒从开始运动至达到最大速度过程中,沿导轨下滑距离为x ,由能量守恒定律得mgx sin θ=μmgx cos θ+Q R +Q r +12mv 2m 根据焦耳定律Q R Q r =R r,解得x = m 根据q =I Δt ,I =E R +r E =ΔΦΔt =BLx Δt,解得q = C 答案:(1)2 m/s (2)3 W (3) C26.CD 、EF 是水平放置的电阻可忽略的光滑平行金属导轨,两导轨距离水平地面高度为H ,导轨间距为L ,在水平导轨区域存在方向垂直导轨平面向上的有界匀强磁场(磁场区域为CPQE ),磁感应强度大小为B ,如图所示。

导轨左端与一弯曲的光滑轨道平滑连接,弯曲的光滑轨道的上端接有一电阻R 。

将一阻值也为R 的导体棒从弯曲轨道上距离水平金属导轨高度h 处由静止释放,导体棒最终通过磁场区域落在水平地面上距离水平导轨最右端水平距离x 处。

已知导体棒质量为m ,导体棒与导轨始终接触良好,重力加速度为g 。

求:(1)电阻R 中的最大电流和整个电路中产生的焦耳热。

(2)磁场区域的长度d 。

【答案】(1(2)222mR d B L =【解析】(1)由题意可知,导体棒刚进入磁场的瞬间速度最大,产生的感应电动势最大,感应电流最大 由机械能守恒定律有:2112mgh mv =解得:1v =由法拉第电磁感应定律得:1E BLv =由闭合电路欧姆定律得:2E I R =联立解得:2BL ghI = 由平抛运动规律可得:221,2x v t H gt ==解得:22gv x H = 由能量守恒定律可知整个电路中产生的焦耳热为:【名师点睛】对于电磁感应问题两条研究思路:一条从力的角度,重点是分析安培力作用下导体棒的平衡问题,根据平衡条件列出方程;另一条是能量,分析涉及电磁感应现象中的能量转化问题,根据动能定理、功能关系等列方程求解。

【典例9】如图所示,水平放置的足够长平行导轨MN 、PQ 的间距为L=,电源的电动势E=10V ,内阻r=Ω,金属杆EF 的质量为m=1kg ,其有效电阻为R=Ω,其与导轨间的动摩擦因素为μ=,整个装置处于竖直向上的匀强磁场中,磁感应强度B=1T ,现在闭合开关,求:(1)闭合开关瞬间,金属杆的加速度;(2)金属杆所能达到的最大速度;(3)当其速度为v=20m/s 时杆的加速度为多大?(g=10m/s 2,不计其它阻力).【答案】(1)1m/s 2;(2)50m/s ;(3)s 2.【解析】(1)根据闭合电路欧姆定律,有:I=安培力:F A =BIL=1×20×=2N根据牛顿第二定律,有:a= 【典例10】如图所示,长平行导轨PQ 、MN 光滑,相距5.0=l m ,处在同一水平面中,磁感应强度B =的匀强磁场竖直向下穿过导轨面.横跨在导轨上的直导线ab 的质量m =、电阻R =Ω,导轨电阻不计.导轨间通过开关S 将电动势E =、内电阻r =Ω的电池接在M 、P 两端,试计算分析:(1)在开关S 刚闭合的初始时刻,导线ab 的加速度多大?随后ab 的加速度、速度如何变化?(2)在闭合开关S 后,怎样才能使ab 以恒定的速度υ =s 沿导轨向右运动?试描述这时电路中的能量转化情况(通过具体的数据计算说明).【答案】见解析设最终达到的最大速度为υm ,根据上述分析可知:0m E Bl υ-= 所以 1.50.80.5m E Bl υ==⨯m/s=s . (2)如果ab 以恒定速度7.5υ=m/s 向右沿导轨运动,则ab 中感应电动势 5.75.08.0'⨯⨯==Blv E V=3V由于'E >E ,这时闭合电路中电流方向为逆时针方向,大小为:2.08.05.13''+-=+-=r R E E I A= 直导线ab 中的电流由b 到a ,根据左手定则,磁场对ab 有水平向左的安培力作用,大小为5.15.08.0''⨯⨯==BlI F N=所以要使ab 以恒定速度5.7=v m/s 向右运动,必须有水平向右的恒力6.0=F N 作用于ab .上述物理过程的能量转化情况,可以概括为下列三点:①作用于ab 的恒力(F )的功率:5.76.0⨯==Fv P W=②电阻(R +r )产生焦耳热的功率:)2.08.0(5.1)(22'+⨯=+=r R I P W= ③逆时针方向的电流'I ,从电池的正极流入,负极流出,电池处于“充电”状态,吸收能量,以化学能的形式储存起来.电池吸收能量的功率:'' 1.5 1.5P I E ==⨯W=由上看出,'''P P P +=,符合能量转化和守恒定律(沿水平面匀速运动机械能不变).3.如图所示,一对足够长的平行光滑金属导轨固定在水平面上,两导轨间距为L ,左端接一电源,其电动势为E 、内阻为r ,有一质量为m 、长度也为L 的金属棒置于导轨上,且与导轨垂直,金属棒的电阻为R ,导轨电阻可忽略不计,整个装置处于磁感应强度为B ,方向竖直向下的匀强磁场中.(1)若闭合开关S 的同时对金属棒施加水平向右恒力F ,求棒即将运动时的加速度和运动过程中的最大速度;(2)若开关S 开始是断开的,现对静止的金属棒施加水平向右的恒力F ,一段时间后再闭合开关S ;要使开关S 闭合瞬间棒的加速度大小为F m ,则F 需作用多长时间.解析:(1)闭合开关S 的瞬间回路电流I =ER +r金属棒所受安培力水平向右,其大小F A =ILB由牛顿第二定律得a =F A +Fm整理可得a =E?R +r ?m LB +Fm金属棒向右运动的过程中,切割磁感线产生与电源正负极相反的感应电动势,回路中电流减小,安培力减小,金属棒做加速度逐渐减小的加速运动,匀速运动时速度最大,此时由平衡条件得F A ′=F由安培力公式得F A ′=I ′LB由闭合电路欧姆定律得I ′=BLv m -ER +r联立求得v m =F ?R +r ?B 2L 2+EBL(2)设闭合开关S 时金属棒的速度为v , 此时电流I ″=BLv -ER +r由牛顿第二定律得a ″=F -F A ″m所以加速度a ″=F m -BLv -E?R +r ?mLB若加速度大小为F m ,则⎪⎪⎪⎪⎪⎪F m -BLv -E ?R +r ?m LB =Fm 解得速度v 1=E BL ,v 2=E BL +2F ?R +r ?B 2L 2未闭合开关S 前金属棒的加速度一直为a 0=Fm解得恒力F 作用时间t 1=v 1a 0=mE FBL 或t 2=v 2a 0=mE FBL +2m ?R +r ?B 2L 2答案:(1)E?R +r ?m LB +F m F ?R +r ?B 2L 2+EBL(2)mE FBL 或mE FBL +2m ?R +r ?B 2L 2【典例8】如图所示,在水平面内有一个半径为a 的金属圆盘,处在竖直向下磁感应强度为B的匀强磁场中,金属圆盘绕中心O顺时针匀速转动,圆盘的边缘和中心分别通过电刷与右侧电路相连,圆盘的边缘和中心之间的等效电阻为r,外电阻为R,电容器的电容为C,单刀双掷开关S与触头1闭合,电路稳定时理想电压表读数为U,右侧光滑平行水平导轨足够长,处在竖直向下磁感强度也为B的匀强磁场中,两导轨电阻不计,间距为L,导轨上垂直放置质量为m,电阻也为R的导体棒,导体棒与导轨始终垂直且接触良好,求:(1)金属圆盘匀速转动的角度ω;(2)开关S与触头2闭合后,导体棒运动稳定时的速度v.【答案】(1);(2).(2)根据动量定理得:F△t=mv﹣0,而F△t=BIL△t=BL△q,电荷的变化量△q=C△U,电压的变化量△U=U﹣U′=U﹣BLv则mv=BLC(U﹣BLv)解得:v=【典例11】光滑U型金属框架宽为L,足够长,其上放一质量为m的金属棒ab,左端连接有一电容为C的电容器,现给棒一个初速v0,使棒始终垂直框架并沿框架运动,如图所示。

相关文档
最新文档