特征函数

合集下载

特征函数与矩函数

特征函数与矩函数
公式法
根据概率分布的性质和公式,计算相应的矩函数。例如,对于离散型随机变量,可以使用概率质量函数和概率分布函 数来计算;对于连续型随机变量,可以使用概率密度函数和概率分布函数来计算。
数值法
对于一些复杂的概率分布,可以使用数值方法来近似计算矩函数。例如,蒙特卡洛方法可以用来模拟随 机变量的样本值,然后通过样本值的数学期望来近似计算矩函数。
05 特征函数与矩函数的扩展
广义特征函数与矩函数
定义
广义特征函数与矩函数是相对于经典的特征 函数与矩函数的扩展,它们在更广泛的意义 下描述了数据的统计特性。
性质
广义特征函数与矩函数具有更强的灵活性和适应性 ,能够更好地处理复杂的数据分布和异常值。
应用
在统计学、机器学习、数据分析等领域,广 义特征函数与矩函数被广泛应用于数据建模 、特征提取和异常检测。
03 特征函数与矩函数的应用
在概率论中的应用
特征函数用于描述随机变量的概率分布, 可以表示为复平面上的函数。通过计算特 征函数的导数,可以得到随机变量的各阶 矩,如均值、方差、偏度、峰度等。
特征函数还可以用于研究随机变量的 变换性质,例如,通过特征函数可以 推导出随机变量的变换规律,以及随 机变量的独立性、相关性等性质。
特征函数与矩函数
目录
• 特征函数 • 矩函数 • 特征函数与矩函数的应用 • 特征函数与矩函数的区别与联系 • 特征函数与矩函数的扩展
01 特征函数
定义与性质
定义
特征函数是概率论和统计学中的一个 概念,用于描述随机变量或随机过程 的特性。
性质
特征函数具有一些重要的性质,如实 部和虚部都是单调递减的,且实部和 虚部都是偶函数。
特征函数的性质
唯一性

概率论课件 特征函数

概率论课件 特征函数

e jtX cos(tX ) j sin(tX )
(t ) E(e jtX )


cos(tx)dF( x) j sin(tx)dF( x)


e jtX dF ( x)
一、定义及例 1. 特征函数的定义 定义4.1.1 设X 是定义在概率空间(, F , P)上的随机变量, 它 的分布函数为F ( x), 称 e jtX 的数学期望 E(e jtX ) 为X 的特征函数. 有时也称为分布函数 F ( x) 的特征函数, 其中 j 1, t R.
( t ) E( e jtX ) e jtxk pk
k
( t
)


e itk
k0
ke
k!

e
(e it )k
k0 k!
e e eit
e(eit -1)
例4.1.5 设随机变量X 服从 [a,a]的均匀分布, 求其特征函数.
(t) E(e jtX )
记X 的特征函数为X (t), 在不会引起混乱的情况下简写为 (t).
e jtX cos tX j sintX
(t) E(e jtX ) E(cos Xt )+jE(sin Xt )
3. 特征函数的计算 e jtX cos(tX ) j sin(tX )
(t ) E(e jtX )
X的特征函数就是x的函数的期望,此时的函数是 由X 构造出来的复值随机变量的期望。
例4.1.1 设随机变量X 服从退化分布, 即
求X 的特征函数.
P{X c} 1
( t ) E( e jtX ) e jtxk k

概率论_特征函数

概率论_特征函数

概率论_特征函数特征函数(characteristic function)是概率论中一个非常重要的工具,它能够完全描述一个随机变量的分布,并且可以用来推导和证明一系列的性质和定理。

特征函数具有许多重要的性质,如唯一决定定理、独立性的性质、收敛性的性质等。

特征函数的定义如下:对于一个随机变量X,它的特征函数$\varphi(t)$定义为$E[e^{itX}]$,其中 i 是复数单位,t 是实数。

特征函数是关于 t 的复数函数,其实部和虚部分别是 $\cos(tx)$ 和$\sin(tx)$。

特征函数的一个重要性质是唯一决定性(uniqueness),即对于一个分布,它的特征函数是唯一确定的,并且确定了分布的所有性质。

这一性质使得特征函数成为一种描述概率分布的有效工具。

对于连续分布,特征函数可以通过概率密度函数和积分的关系得到,对于离散分布,特征函数可以通过概率质量函数和求和的关系得到。

另一个重要的性质是独立性的性质。

如果两个随机变量 X 和 Y 是独立的,那么它们的特征函数的乘积等于它们各自的特征函数的乘积。

即$\varphi_{X+Y}(t)=\varphi_X(t)\varphi_Y(t)$。

这个性质可以用来推导和证明随机变量的和的分布。

特别地,如果 X 和 Y 是独立同分布的,那么它们的特征函数的乘积等于它们特征函数的平方。

特征函数还有一个重要的性质是收敛性的性质。

对于一个随机变量序列X₁,X₂,...,如果它们的特征函数逐点收敛于一个函数,那么这个函数也是一个随机变量的特征函数,且收敛到的分布是弱收敛的。

这个性质可以用来证明中心极限定理等重要的结果。

特征函数在概率论和统计学中有广泛的应用。

它被用来推导和证明许多重要的定理,如中心极限定理、大数定律、极限理论等。

它还可以用来计算随机变量的矩、协方差、相关系数等统计量,并且可以用来推导各种分布族的性质。

特征函数的计算通常比较简单,只需计算指数函数的期望。

14特征函数讲解

14特征函数讲解

14特征函数讲解特征函数是机器学习与统计学中一种常用的工具,用于描述样本数据的特征或属性。

在机器学习中,特征函数通常是由特征工程师根据实际问题设计的,通过将原始数据转化为能够被机器学习算法所处理的形式,提取样本数据中的关键特征。

特征函数的设计需要结合具体问题领域的背景知识和对数据的理解,以下将介绍14种常见的特征函数。

1.数值特征:最常见的一类特征函数,用于处理连续型数据。

例如,平均值特征函数计算样本数据的平均值,标准差特征函数计算样本数据的标准差。

2. 类别特征:用于处理离散型数据,通常使用独热编码(one-hot encoding)将类别特征转化为二进制向量表示。

3.多项式特征:生成原始特征的高次项或交叉项,可以增加特征空间的维度,提高模型的拟合能力。

例如,二次多项式特征函数生成原始特征的平方项。

4.对数特征:将原始特征取对数,常用于对长尾分布的数据进行处理,使其近似服从正态分布。

5.傅里叶变换特征:通过傅里叶变换将时域信号转换为频域信号,常用于处理信号或时间序列数据。

6. 尺度变换特征:通过对原始特征进行线性或非线性的尺度变换,如归一化(Normalization)将特征缩放到一定范围内。

7.统计特征:计算样本数据的统计量,如最大值、最小值、中位数、众数等。

8.元素组合特征:将多个特征的值进行组合,生成新的特征。

例如,求和特征函数将多个特征的值相加。

9.离散化特征:将连续型特征离散化为若干个区间,可以减少特征空间的维度和计算复杂度。

10.时序特征:处理时间序列数据的特征函数,例如,移动平均特征函数计算时间序列数据的滑动平均值。

11.图像特征:处理图像数据的特征函数,如灰度特征函数将彩色图像转化为灰度图像。

12.文本特征:处理文本数据的特征函数,如词袋模型特征函数将文本转化为词频向量。

13.物理特征:针对一些特定领域的问题设计的特征函数,如声音信号处理中的声音强度特征函数。

14.模型特征:使用其他模型的输出作为特征,如使用预训练的深度神经网络模型提取图像特征。

常见分布的特征函数

常见分布的特征函数

常见分布的特征函数特征函数概述特征函数是概率论和数理统计中的常用概念,它是一个复数函数,描述了随机变量的特征信息。

对于一个随机变量X,它的特征函数f(t)定义为:f(t) = E[e^(itX)],其中i为虚数单位,E为期望运算符。

特征函数不仅对概率密度函数具有很好的描述和表达作用,还可以描述随机变量的各种性质,比如分布、矩和相关系数等。

下面将具体介绍几种常见的分布的特征函数。

1.正态分布正态分布是自然界中多种现象的分布模式,其概率密度函数在数学上也能很好地描述为高斯函数。

其特征函数如下:f(t) = e^(-t^2/2)该特征函数具有良好的解析性质和奇偶性质,能很好地反映正态分布的对称性和峰态。

2.泊松分布泊松分布是描述单位时间内某个随机事件发生次数的概率分布,例如单位时间内打进一个电话亭电话而来的电话数量、在网球场内接到的球的数量等。

其特征函数如下:f(t) = e^(λ(e^(it)-1))其中λ为单位时间内事件发生的平均次数。

3.指数分布指数分布是描述随机事件发生的时间间隔的概率分布,例如寿命、等待时间、顾客到达时间等。

其特征函数如下:f(t) = 1 / (1-it/λ),其中λ为事件发生的平均速率。

4.卡方分布卡方分布是应用最广泛的概率分布之一,常用于分析样本差异性和偏离程度,例如方差分析、偏度分析、正态性检验等。

其特征函数如下:f(t) = (1-2it)^(-k/2)其中k为自由度。

5. beta分布beta分布是应用广泛的概率分布之一,常用于贝叶斯统计、假设检验、数据挖掘等领域。

其特征函数如下:f(t) = B(a+it,b-it) / B(a,b)其中B(a,b)表示beta函数,a,b为形状参数。

上述几种分布是常见的概率分布,它们的特征函数形式各不相同,但都能很好地反映分布的各种性质和特点,为进一步分析和研究提供了便利。

sympy中特征函数

sympy中特征函数

sympy中特征函数特征函数是数学中的一种重要概念,它在很多领域都有广泛的应用。

在代数、概率论、数论等领域中,特征函数都起着非常重要的作用。

特征函数可以用来描述一个随机变量的性质,它可以完整地刻画一个随机变量的分布。

特征函数的定义非常简单,它是一个复数函数,通常记作φ(t),其中t是一个实数。

对于一个随机变量X,它的特征函数φ(t)的定义为E(e^{itX}),其中E表示期望。

特征函数的定义中,e^{itX}是一个复数随机变量,它的实部是余弦函数,虚部是正弦函数。

特征函数的性质非常丰富,它可以用来描述随机变量的各种性质。

首先,特征函数的模长总是小于等于1,即|φ(t)|≤1。

这是因为特征函数是复数函数,|φ(t)|的取值范围是[0,1]。

其次,特征函数具有唯一性,即不同的随机变量有不同的特征函数。

特征函数还具有线性性质,即对于任意的实数a和b,有φ(at+b)=e^{itbx}φ(at)。

特征函数的另一个重要性质是它的连续性。

对于一个随机变量序列{X_n},如果它们的特征函数φ_n(t)依点收敛到一个函数φ(t),那么这个函数φ(t)也是一个特征函数。

这个性质在概率论中有广泛的应用,它可以用来证明中心极限定理等重要定理。

特征函数还有一个重要的应用是在推导和计算随机变量的分布时。

通过特征函数,我们可以得到随机变量的各种矩和累积分布函数。

特征函数可以通过傅里叶反演公式来恢复原始的分布函数,这在数值计算和统计推断中非常有用。

特征函数在数论中也有重要的应用。

例如,特征函数可以用来计算素数的分布情况。

根据素数定理,素数的分布与特征函数的零点有关。

特征函数的零点也与黎曼猜想有关,这是数论中一个著名的未解问题。

特征函数在代数中也有广泛的应用。

特征函数可以用来刻画一个群的性质,例如群的阶和子群的结构。

特征函数还可以用来定义一个群的表示,通过表示理论,我们可以研究群的性质和结构。

特征函数在数学中起着非常重要的作用,它可以用来描述随机变量的性质,推导和计算分布函数,刻画群的性质等。

随机过程及应用:预备知识:特征函数

随机过程及应用:预备知识:特征函数

e
jtxφ(t
)dt
反演公式


φ(t)
e
jtx
f
(
x)dx
对于连续型随机变量X,概率密度与特征 函数互为富氏变换.
特征函数
推论3 随机变量X 是离散型的,其分布律为
pk PX k, k 0,1,2.
则 φ(t ) pke jkt , t R. k
1
pk 2π
π e j tkφ(t )dt
φ(t) e jt0(1 p) e jt1 p 1 p pe jt q pe jt , t R.
Ex.3 二项分布 φ(t) (q pe jt )n , t R
Ex.4 泊松分布 φ(t ) e(e jt 1) , t R
Hale Waihona Puke 特征函数Ex.5 指数分布
ex ,
f (x) 0,
e
jtxdF
(
x)
求随机变 量函数的 数学期望
注 1)t R, costx 和 sintx 均为有界函数, 故
E(e jtX ) 总存在.
2) E(e j是tX )实变量t 的函数.
特征函数
定义5.1 设X是定义在(Ω,F , P )上的随机变 量,称
φ(t ) E(e jtX )
e
jtxdF
π
反演公式
证 设 s 有N ,
πe jtsφ(t )dt π
π π
pk e jkte jtsdt
k
特征函数
π
π psdt
π π
pke
jt(k s)dt
2ps
0
k
ks
其中当k s时
π
e
jt(k s)dt

1.4.11.4特征函数的定义

1.4.11.4特征函数的定义


i

MY
t
M n
i1 Xi
ait
20 X
X1,, X n 为n维实值随机向量,
t
M
t
t1,, E
tn e(
Rn,X的 矩 E X1t1 X ntn )
母 e
函数
X ,t




X
30 矩母函数与分布函数也是一一对应关系 .
13
E e i X ,t
n维实值随机向量的特征函数为n元函数.
10
矩母函数
概率空间,F , P 上实值随机变量X ,密度函数 为p x,t R,矩母函数定义为
MX t
E etX
etx p x dx
t 2 x2
1
tx
2!
t n xn
n!
p
x
dx
1 tEX t 2 E X 2 t n E X n
50 X t 一致连续.
0,
X t h X t eitx eihx 1 p x dx
a
e ihx 1 p x dx e ihx 1 p x dx 2 p x dx
a
x a
1) 取 a 充 分 大 ,使 得 2 p x dx
2) x a , 取 h x a
目录
条件期望 特征函数
1
目录
1.4 特征函数的定义
从傅里叶变换到特征函数,再到矩母函数
2
特征函数前传
一 、卷积
如果随机变量X 与Y 相互独立,则它们的和 Z X Y的密度函数等于X 与Y 密度函数的 卷积:
fZ z f X x * fY y
f Z z f X x fY z x dx

第08章特征函数

第08章特征函数

第八章特征函数第一节特征函数一、复随机变量1、定义:设与均为上的一维随机变量,称为上的复随机变量.2、的数学期望: ,若、均存在.3、相互独立:设()独立,称()独立.4、性质:(1),其中为复常数.证明:.(2).证明:.精彩文档精彩文档(3).证明:仅证离散型.设,则||||)(,,Z E p iy x p iy xlk kl l k lk kl l k∑∑=+≤+=.(4)|||1|x e ix≤-, R ∈∀x .证明:|||||1|0x dt edt e e xitx it ix=≤=-⎰⎰.(5)若k k k iY X Z +=独立,则. 证明:仅证明时成立即可.因独立,则与独立, 从而与,与,与,与,均独立.那么.(6),必存在.证明:仅证连续型. 因 ,,故与存在,从而存在.精彩文档二、特征函数 1、定义:设为上的一维随机变量,,规定,称为的特征函数.显然:①.② 若为离散型,则.③ 若为连续型,则.2、性质: (1);证明:.(2);证明:.(3)在上一致连续;证明:R ∈∀t ,R ∈∀h ,|])1[(||||)()(|)(itX ihX itX X h t i X X e e E Ee Ee t h t -=-=-++ψψ⎰⎰+∞∞-+∞∞--≤-=dx x edx x e e ihxitxihx)(|1|)()1(ϕϕ⎰∞∞-=dx x hx)(2sin2ϕ 其中:2sin222|1|222hx ie eeex h i x h i x h i ihx=-=--;精彩文档由于 0>∀ε, 0>∃K ..t s ⎰>Kx dx x ||)(ϕε<, (因为1)(=⎰+∞∞-dx x ϕ收敛)取0>=Kεδ , 当δ<||h 时,⎰⎰->+≤-+KKK x X X dx x hxdx x hx t h t )(2sin 2)(2sin 2|)()(|||ϕϕψψ⎰⎰⎰-->+<+≤KKKKKx dx x K h dx x hx dx x )(||22)(||2)(2||ϕεϕϕεϕεε4)(22≤++<⎰-KKdx x .(4),为常数;证明:.(5)设()独立, 则.证明:仅证明时成立即可..(6),若存在.证明:因 .所以 .三、常见分布的特征函数1、离散型(1)退化分布:.证明:.(2):,其中.证明:.(3):.证明:,服从参数为的(0-1)分布,且独立, , 所以.(3):.证明:.2、连续型(1):.特别:①:;②:.精彩文档精彩文档证明:(2):.(3):.证明:.(4) :.证明:222122221 221t t i it itz t t i edz eeσμσσσμπ--+∞-∞---==⎰.其中:.2222)(2σσσμσμσσμit it x x it x z +--⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛--=精彩文档22222σμσμt it xit x -+-⎪⎭⎫ ⎝⎛-= 222221212t t i itx x z σμσμ+-+⎪⎭⎫ ⎝⎛--=- 下面计算 πσσ22222==⎰⎰-+∞-∞---it itz Lz dz edz e:,.,,在上, ,π2022=+→+=⎰⎰⎰⎰+∞∞---dx ex l xxL xx.第二节 唯一性定理一、逆转公式 1、预备知识 (1)设有函数,使得,,收敛,则在上一致收敛. 于是有;又若在上连续,则.华东师大《数学分析(下)》(2)狄里克莱积分: 华东师大《数学分析(下)》,.(3)设,,则2、逆转公式:设的分布函数为,特征函数为,又是的连续点,则证明: 不妨设,且,令,因为精彩文档.又收敛,则又因为存在,故. 所以.二、唯一性定理1、唯一性定理: 的分布函数由其特征函数为唯一确定.证明:在的每一个连续点上,取也为的连续点,于是有.因由其上连续点唯一确定,故由唯一确定.精彩文档精彩文档2、设,且,则⎰∞∞--='=dt t ex F x X itxX )(21)()(ψπϕ.证明: 因,故连续.,,有, 又 ,且 ,于是⎰⎰∞∞--+∞∞-∆+--→∆=∆-=dt t e dt t x it e e X itxX x x it itx x )(21)(lim 21)(0ψπψπ.注意为解析函数,.三、分布函数的再生性 1、,独立,则: . 证明:因,.由唯一性定理知, .2、,独立,则: .证明:因,.由唯一性定理知, .3、,独立,则: .证明:,,由唯一性定理知, .4、,独立,则: .证明:,, 由唯一性定理知, .第三节维随机变量的特征函数一、特征函数1、定义:设为上的维随机变量,,规定,称为精彩文档精彩文档的特征函数. 显然:① 若为离散型,则.② 若为连续型,则.注:∑==⎪⎪⎪⎪⎪⎭⎫ ⎝⎛='nk k k n n X t X X X t t t X t 12121) (M Λ2、性质: (1);证明:.(2);证明:.(3)在上一致连续; 证明:,,.其中:2121|||)()(|||X X t t X t '∆'∆≤'∆,注:∑=∆='∆nk k kX tX t 1,∑=∆∆=∆'∆nk k k t t t t 1,∑=='nk k k X X X X 1此式利用了许瓦兹不等式:精彩文档.因,由判别式可得.为方便起见,以下引入记号: ①,,.②,,特别记: ,.例: )4(}4,2{N I ⊂=,)1,0,1,0(1=I ,)0,1,0,0(11}3{3==.③ ,其中,.特别记,为单位矩阵.例: )4(}4,2{N I ⊂=,精彩文档⎪⎪⎪⎪⎪⎭⎫⎝⎛=1000000000100000I E , ⎪⎪⎪⎪⎪⎭⎫⎝⎛==0000010000000000}3{3E E .④ t E t I I =, 为t 的取有行的向量,I I I AE E A =, 为的取有行和列的矩阵,例: ),,,(4321t t t t t =,)4(}4,2{N I ⊂=,⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==43214242100000000010000000),0,,0(t t t t t t t t t I ,⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛=00000010000100000000010000000000000000000444342413433323124232221141312114422a a a a a a a a a a a a a a a a a a A I ④ ,,但均为非负整数. (4),为常量,为常矩阵. 证明:.精彩文档注:A B AB ''=')((5) 边缘分布:,, 特别,证明:.其中:X t E X E t X E E t X E t E X t I I I I I I I I )()()('='='='='(6),若存在,.说明:n kn kkkt t t t ∂∂∂=∂Λ2121二、逆转公式 1、逆转公式:设的分布函数为,特征函数为,在体面上概率为0,则⎰∏∈=---=-n kk k k x nk k b it a it X n dt it e e t a F b F R 1)()2(1)()(ψπ.2、唯一性定理:的分布函数由其特征函数唯一确定.⎰∏∈=---∞→-=n k k k k x nk k x it y it X n y dt it e e t x F R1)()2(1lim )(ψπ.三、独立性 1、设()独立, 则.证明:仅证明时成立即可.精彩文档.2、设为维随机变量,则 ,独立 ⇔ ∏==nk k X X t t k1)()(ψψ.证明:“”因为,独立,从而, 所以. “”因为,所以⎰∏∈=---∞→-=n kk k k x nk k x it y it X n y dt it e e t x F R1)()2(1lim )(ψπ⎰∏∈=---∞→-=n k kk k k x nk k X k x it y it n y dt t it e e R 1)()2(1lim ψπ ∏∏⎰==∈---∞→=-=nk k X nk t k k X k x it y it y x F dt t it e e k k k kk k k 11)()(21lim Rψπ.故,独立.第四节 n 维正态分布矩阵回顾:(1) 正定,记为; 非负定,记为.(2) ,.(3) 所有主子式存在,,使得存在,,使得.(4) 所有主子式存在,使得.(5) . 这时即的主子式.(6) ,则.(7) 对称合同于对角矩阵,即存在,,使得为对角矩阵.一、n维正态分布1、定义:设,,为阶正定矩阵,且,称服从维正态分布,记作.2、验算:验算确实是维随机变量的密度函数.(1)显然:,;(2)因,故存在,,使得,且.令,于是,这样,而,有,那么精彩文档,从而.于是.3、特别,当时, .二、特征函数1、的特征函数:.证明:,令,.由于,而,令,, 有,所以.精彩文档精彩文档2、I X 的特征函数: ,因此也是正态分布),(~I I I C N X μ. 其中,,为二次型的矩阵,也是正定矩阵.特别: ,.证明:.三、数字特征 1、设,则μ=EX .证明:因,从而,,所以.2、设,则. 因此有.预备工作: (1)设,为含自变量的可微函数,定义:.(2).证明:⎪⎪⎭⎫ ⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂∂=∂∂∑∑==)()(11n j jl kj nj jl kj B A t B A t t AB .(3)设,与无关,则精彩文档,.下面证明.证明:因)()()(202l k l k t l k X X X E X X E i t t t -==∂∂∂=ψ,又,而,,kl k l l k lk C C C t t Z -='-'-=∂∂∂111121212, lk Z k l Z k Z l l k X t t Z e t Z t Z e t Z e t t t t ∂∂∂+∂∂⎪⎪⎭⎫ ⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂∂∂∂=∂∂∂22)(ψ, 于是kl k l t l k X C i i t t t -=∂∂∂=))(()(02μμψ,从而,所以.四、独立性设,则独立,,证明:“”显然. “”因,,)(ex p()ex p()(221121kk k nk k k X C t it Ct t t i t -='-'=∑=μμψ∏∏===-=nk k X n k kkk k k t C t it k 11221)()ex p(ψμ. 所以 独立.精彩文档五、线性变换 1、,,,,则.证明:因})()( ex p{21t A AC t A t i ''-'=μ, 下面证明.因,,,故存在,,使得,且, 于是.可见.2、,,服从一维正态分布.证明:“”取,由1知.“”①先证明,当,,时., ,令,,,有,,已知,精彩文档那么.故 .显然,可见, 有,又X X k k 1'=服从一维正态分布,有0),cov(>==k k k kk DX X X C ,可知, 所以. ②再证明一般地也有.由于为实对称矩阵,故存在,,使得为对角矩阵.令,由条件知,,,,也服从一维正态分布, 而由知道,,,由①知,又,由1知.3、独立,),0(~E N X .证明:“”因,那么,故独立,.“”因,故,,服从一维正态分布.因此,又因独立,,所以.精彩文档作业:1、设nk X P X 1}{~==,.,,2,1n k Λ= 求)(t X ψ2、设X 服从几何分布,求)(t X ψ、EX 及DX .3、设||21)(~x e x X -=ϕ, 求)(t X ψ.4、已知itt X -=11)(ψ,求)(),(x x F ϕ.5、已知)1,0(~N X ,32+=X Y ,求)(t Y ψ.6、设X0 1 3P21 83 81 Y 01P 31 32 已知X 与Y 独立,求Y X Z +=的概率分布.7、已知),1,1,0,0(~ρN X ,求)(21X X E . 8、证明:若)(t k ψ,.,,2,1n k Λ=均为特征函数,则∏=nk kt 1)(ψ也是特征函数.9、已知)21,1,1,0,0(~N X ,⎩⎨⎧--=++=11211211X X Y X X Y ,求),(21y y Y ϕ.精彩文档作业:1、设nk X P X 1}{~==,.,,2,1n k Λ= 求)(t X ψ解: )1()1()(1)( 1111it t in it nk k it itn k ikt nk k itx itXX e n e e ene e n p eEet k--=====∑∑∑=-==ψ )1(1 --=-it tin e n e .2、设X 服从几何分布,求)(t X ψ、EX 及DX . 解:(1) qe p qe pe qepep qe Eet it it it k k it itk k ikt itXX -=-====-∞=-∞=-∑∑1)()(1111ψ. (2)由于kk k EX i X =)0()(ψ,而22)()()()(q e ipe i e q e p t it it itit X -=---='----ψ,精彩文档22)()()(2))(()(q e i e q e ipe q e i ipe t it it it it it it X ---⋅---=''------ψ32)(q e pe pqe it ti it ---=---. 于是 pq p i i EX X1)1()0(22=--='-=ψ. 又 2321)1()0(p q q p pq EX X +=----=''-=ψ, 从而 2222211)(p q p p q EX EX DX =-+=-=.3、设||21)(~x e x X -=ϕ, 求)(t X ψ.解: ⎰⎰⎰+∞∞-+∞∞-+∞∞-+===txdx x i txdx x dx x e Eet itxitXX sin )(cos )()()(ϕϕϕψ220||111)cos sin (cos cos 21t t tx tx t e txdx e txdx e x xx +=+-===+∞-+∞-+∞∞--⎰⎰.4、已知itt X -=11)(ψ,求)(),(x x F ϕ.解: 由于1111)(-⎪⎭⎫⎝⎛-=-=λψit it t X , 可见 )1(~Exp X .所以 ⎩⎨⎧≤>=- .0 ,0,0 ,)(x x e x x X ϕ⎩⎨⎧≤>-=- .0 ,0,0 ,1)(x x e x F x X精彩文档另解: ⎰⎰⎰∞∞--∞∞--∞∞--++=-==dt t e it dt it e dt t e x itxitx X itxX 21)1(21121)(21)(ππψπϕ ⎰⎰∞∞---∞∞--⎩⎨⎧≤>=+=+++= .0 ,0 ,0 ,121212122x x e iI I dt t te idt t e x itxitx ππ其中: ⎪⎩⎪⎨⎧≤>=- .0 ,21 ,0 ,211x e x e I xx⎪⎩⎪⎨⎧≤->=- .0 ,21 ,0 ,212x e x e iI x x 于是 ⎩⎨⎧≤>-=- .0 ,0 ,0 ,1)(x x e x F x X5、已知)1,0(~N X ,32+=X Y ,求)(t Y ψ. 解: 由于 2212221 )(t t t i X ee t --==σμψ,而)()(at e t X ibtb aX ψψ=+, 那么222212212323)2(3332)2()()(t t i t t i t t i X t i X Y e eee t e t t ---+=====ψψψ.可见 3=EY ,422==DY ,由唯一性定理知: )4,3(~N Y .6、设X0 1 3P21 83 81 Y 01P 31 32 已知X 与Y 独立,求Y X Z +=的概率分布. 解: 310818321)(⋅⋅⋅++==it it it itXX e e e Eet ψ, 103231)(⋅⋅+==it it itY Y e e Ee t ψ,因 X 与Y 独立, 于是精彩文档4321012124141241161)()()(⋅⋅⋅⋅⋅++++==it it it it it itX Y X Z e e e e e Ee t t t ψψψ, 所以,由唯一性定理知Z1234P612411 41 241 1217、已知),1,1,0,0(~ρN X ,求)(21X X E . 解: 由于) ex p()(21Ct t t i t X '-'=μψ,而 ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=0021μμμ, ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=1122212121ρρσσρσσρσσC , ()⎪⎪⎭⎫ ⎝⎛++=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛='211221212111)(t t t t t t t t t t Ct t ρρρρ222121212221212t t t t t t t t t t ++=+++=ρρρ, 于是 u t t t t X e eCt t t =='-=++-)2(2121222121)ex p()(ρψ因 ,而uu X e t t t t e t t )(222)(21211ρρψ+-=⎪⎭⎫ ⎝⎛+-=∂∂, )()()(1221212t t e t t e t t t u u X ρρρψ+++-=∂∂∂,所以 ρψ=∂∂∂-==021221)()(t X t t t X X E .精彩文档8、证明:若)(t k ψ,.,,2,1n k Λ=均为特征函数,则∏=nk kt 1)(ψ也是特征函数.证明: 设k X 的特征函数为)(t k ψ,.,,2,1n k Λ=且独立,则∑==n k k X X 1的特征函数为=∏=n k X t k 1)(ψ∏=nk k t 1)(ψ.因此∏=nk kt 1)(ψ也是特征函数.9、已知)21,1,1,0,0(~N X ,⎩⎨⎧--=++=11211211X X Y X X Y ,求),(21y y Y ϕ.解: 由于b AX Y +=,因 })()( ex p{)()()(21t A AC t A t i e t A e t t bt i X b t i b AX Y ''-'='==''+μψψψ,})()( ex p{21t A AC t b A t i ''-+'=μ, 由唯一性定理知 ),(~A AC b A N Y '+μ.而 ⎪⎪⎭⎫ ⎝⎛-=1111A ,⎪⎪⎭⎫ ⎝⎛-=11b ,⎪⎪⎭⎫⎝⎛=11ρρC , 有 b b A =+μ,⎪⎪⎭⎫ ⎝⎛-+=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-='ρρρρ2200221111111111A AC , 从而 1,121-==y y μμ,0,)1(2,)1(22121=-=+=y y y y ρρσρσ,于是 ⎥⎥⎦⎤⎢⎢⎣⎡-+++---=ρρρπϕ1)1(1)1(412212221141),(y y ey y2)1(6)1(2221321+---=y y eπ.参考:精彩文档,⎥⎥⎦⎤⎢⎢⎣⎡-+-------=2222212121212)())((2)()1(21221121),(σμσσμμρσμρρσπσϕy y x x ey x .。

14特征函数

14特征函数
1) g(t ) g0 1;
2) g(t ) g(t ).
性质2:设随机变量X的特征函数为 g X t ,则 Y=aX+b的特征函数是 gY (t ) e gX (at ).
ibt
Ex.6 设Y~N(μ,σ2 ),求其特征函数. 解:设X~N( 0,1),有Y =σX+μ, 且
问题
能否由X的特征函数唯一确定其分布函数?
φ(t ) F ( x )
φ(Байду номын сангаас )
F ( x ) ?
函数分别为 F x 和 t ,则对任意的 x1,x2 R1,有:
(1)
(逆转公式) 设随机变量 的分布函数和特征 定理1
F x2 0 F x2 0 2 1 e lim 2 l l
如果f ( t1 , t 2 , , t n )是(1 , 2 , , n )的特征函数 则 a11 a2 2 an n的特征函数为
f (t ) f (a1t , a2t ,, ant )
(3) 性质3
n
如果矩E( )存在,则 kn E (1k1 2k2 n )

T1
T2
T1 T2

Tn
Tn

k 1
n
e
i t k ak
e i tk
i t k bk
f ( t1 , t 2 , , t n )d t1 d t 2 d t n
其中ak 和bk 都是任意实数,但须满足唯一的要求: (1 , 2 ,, n )落在平行体ak xk bk , k 1, 2, , n 的面上的概率等于零
§4.4 特征函数

求特征函数

求特征函数

求特征函数1. 什么是特征函数?特征函数是数学中的一个重要概念,广泛应用于统计学、概率论、信号处理等领域。

它是一种描述随机变量的函数,反映了随机变量在不同取值下的特征。

在概率论中,特征函数指的是随机变量的某个矩的生成函数,可以用来描述随机变量的基本特征,如均值、方差等。

特征函数常常用于概率分布函数的分析,可以通过特征函数的计算来推导出概率密度函数、累积分布函数等概率分布的相关特性。

2. 特征函数的定义设随机变量X的概率密度函数为f(x),特征函数φ(x)定义为:φ(x) = E(e^(jxX))其中,j为虚数单位,E表示期望。

特征函数的定义式和普通的函数定义式有所不同,它引入了虚数单位和期望运算符,是一种较为复杂的定义形式。

3. 特征函数的性质特征函数具有以下基本性质:(1)满足连续性和逆连续性:如果随机变量X的概率密度函数为f(x),那么它的特征函数φ(x)是一个连续函数,同时满足逆连续性,即若φ(x)的导数存在,则f(x)存在,并有:f(x) =1/(2π) ∫(-∞,∞) e^(-jxt) φ(t) dt.(2)满足唯一性:若两个随机变量X和Y的特征函数相等,即φ(x)=φ(y),则它们的分布函数也相等,即FX(x)=FY(y)。

(3)满足矩的求解:若随机变量X的特征函数为φ(x),那么它的k阶矩可以表示为:E(X^k) = (j^-k) * φ^(k)(0)其中,φ^(k)表示φ的k阶导数,即φ的k阶矩。

4. 怎样求解特征函数有时候,我们需要通过特征函数来推导出一个概率分布的相关性质,但是并不知道该分布的概率密度函数。

这个时候,我们可以通过特征函数的求解来获取这个分布的相关信息。

对于一些简单的分布,特征函数可以直接求解,如正态分布、泊松分布等。

对于一些复杂的分布,特征函数的求解可能比较困难,需要借助数学工具来计算。

当然,也可以通过模拟方法来近似求解特征函数,例如蒙特卡罗模拟、马尔科夫链蒙特卡罗模拟等,但这种方法通常比较耗时,无法处理大规模数据。

特征函数与矩母函数

特征函数与矩母函数

特征函数与矩母函数
特征函数和矩母函数都是数学中的概念,主要用于描述随机变量的性质。

特征函数(Characteristic function)是随机变量的一个描述函数,它是随机变量的概率分布的Fourier变换。

特征函数的定
义是:对于任意实数t,特征函数φ(t)等于随机变量X的概率
密度函数或概率分布函数的Fourier变换。

特征函数能够完全
描述一个随机变量的分布,它包含了分布的所有信息。

特征函数具有一些重要性质,比如对于相互独立的随机变量,它们的特征函数的乘积等于它们特征函数的逐点相乘。

矩母函数(Moment generating function)是随机变量的另一个
描述函数,它是随机变量的概率分布的矩级数的生成函数。

矩母函数的定义是:对于任意实数t,矩母函数M(t)等于随机变
量X的概率密度函数或概率分布函数的矩级数的生成函数。

矩母函数可以用来计算随机变量的各阶矩(均值、方差等),因此可以用于推导随机变量的性质。

特征函数和矩母函数都是对随机变量的描述函数,它们在概率论和统计学中有着广泛的应用,比如用于计算随机变量的分布、矩以及推导各种统计性质。

特征函数和特征值

特征函数和特征值

特征函数和特征值中的特定函数1. 特征函数1.1 定义在数学中,特征函数是一个从一个随机变量到复数域的映射。

对于一个随机变量X,其特征函数定义为:ϕX(t)=E(e itX)其中,E表示期望运算符,i是虚数单位。

1.2 用途特征函数在概率论和统计学中具有广泛的应用。

它可以唯一地确定一个随机变量的分布,并且可以用于推导和证明概率论中的一些重要定理。

具体来说,特征函数可以用于以下几个方面:•唯一性:对于连续型随机变量来说,它们的特征函数唯一地确定了它们的分布。

这意味着如果两个随机变量有相同的特征函数,则它们具有相同的分布。

•独立性:对于独立随机变量来说,它们的特征函数之积等于它们各自特征函数之积。

•中心极限定理:中心极限定理表明当独立同分布的随机变量求和时,其标准化后的和的分布趋近于正态分布。

特征函数可以用于证明中心极限定理。

•估计参数:特征函数可以用于估计随机变量的参数。

通过观察样本的特征函数,可以推断出随机变量的分布参数。

1.3 工作方式特征函数是通过对随机变量X的概率密度函数或概率质量函数进行傅里叶变换得到的。

傅里叶变换是一种将一个函数表示为一组正弦和余弦函数(即频谱)之和的方法。

具体地,给定一个连续型随机变量X,其概率密度函数为f(x),则其特征函数ϕX(t)可以通过如下公式计算:∞ϕX(t)=∫e itxf(x)dx−∞对于离散型随机变量X,其概率质量函数为p(x),则其特征函数ϕX(t)可以通过如下公式计算:ϕX(t)=∑e itxp(x)x2. 特征值中的特定函数2.1 定义在线性代数中,特征值是一个方阵在线性变换下不改变方向的非零向量所对应的标量。

给定一个n×n的方阵A,如果存在一个非零向量v和一个标量λ,使得满足以下方程:Av=λv则称λ为矩阵A的特征值,v为相应于特征值λ的特征向量。

2.2 用途特征值和特征向量在线性代数和各个领域中都有广泛的应用。

它们可以用于求解线性方程组、矩阵对角化、判断矩阵的性质等。

特征函数及其应用

特征函数及其应用

特征函数及其应用1 引言在概率论和数理统计中,我们学习了特征函数,发现了它可以更高级、优越、方便的表示出一般的随机变量的统计规律.是研究随机变量的重要工具.本文将向大家详细的阐述特征函数的基本概念,性质以及特征函数的应用和一些相关定理的证明.2 特征函数2.1 特征函数的定义设ξ是定义在样本空间上的随机变量.称ξ的复值函数it eξ=cos ()t ξ+i sin ()t ξ的数学期望E ()it e ξ=E ()()cos t ξ+i E ()()sin t ξ t -∞<<+∞其中,i =ξ的特征函数,记为()t ϕ.特征函数()t ϕ一般为实变量t 的复值函数,它对一切t 有定义.事实上,当ξ是连续型随机变量时,对(),t ∀∈-∞+∞,总有()()1itx e dF x dF x +∞+∞-∞-∞==⎰⎰若ξ为离散型随机变量,则1kitx k kep =∑因此,任一随机变量ξ,必有特征函数存在.2.2 特征函数的性质()1 有界性:()()()01,,t t ϕϕ≤=∀∈-∞+∞ ()2 一致连续性:()t ϕ在(),-∞+∞上一致连续 ()3 非负定[]()1181P 性:对1n ∀>个实数1t ,,n t 及复数1z ,,n z ,总有()0s rs r rstt z z ϕ-≥∑∑()4 ()t ϕ-=()t ϕ,这里()t ϕ表示()t ϕ的共轭()5 若a b ηξ=+,a ,b ,为常数,则()t ηϕ=ibt e ()at ξϕ⋅()6 设12,ξξ的特征函数分别为()1t ϕ,()2t ϕ,又1ξ与2ξ相互独立,则12ξξξ=+的特征函数为()()()12t t t ϕϕϕ=⋅2.3 特征函数与矩的关系在以前的学习中,我们发现求随机变量的各阶矩往往需要作繁难的求无穷级数和或无穷积分的计算,有时应用一定的技巧方可计算出结果.现在我们有了特征函数这一优越的工具后,可以通过对特征函数()t ϕ求导的方法来计算随机变量的矩.设随机变量ξ有l 阶矩存在,则ξ的特征函数()t ϕ可微分l 次,且对k l ≤,有()()0k k k i E ϕξ=设ξ有密度函数()p x ,则()t ϕ=()itx e p x dx +∞-∞⎰由于ξ的l 阶矩存在,即有()lx p x dx +∞-∞<∞⎰从而()itx e p x dx +∞-∞⎰可以在积分号下对t 求导l 次,于是对0k l ≤≤,有()()k t ϕ=()()k k itx k k it i x e p x dx i E e ξξ+∞-∞=⎰令0t =即得()()0k k k i E ϕξ=当ξ是离散型随机变量时,证明也是类似的.由这个性质,在求ξ的各阶矩(如果他们存在的话),只要对ξ的特征函数求导即可.而从定义出发是要计算积分的,大家都知道,求导一般总是要比求积分简单的多,所以可以这样说:特征函数提供了一条求各阶矩的捷径[]()2175176P -.2.4 几种常见分布的特征函数()1 单点分布 设ξ服从单点分布,即()1P c ξ==,则()()()it itc itc t E e e P c e ξϕξ==⋅==()2 两点分布 设()~1,B p ξ,即 ()1P p ξ==,()01P p q ξ==-=,则()01it it it t e q e p q pe ϕ⋅⋅=⋅+⋅=+()3 二项分布 设()k k n k n P k p q C ξ-==,0k n ≤≤,则()t ϕ=0nikt k k n k n k e p q C -=∑()nitpe q=+()4 普哇松分布 设ξ为普哇松分布,即()!kP k e k λλξ-==,0k =,1,2则()t ϕ=0!itkikte k ee e e k λλλλ∞--==⋅∑()5 均匀分布 设ξ在[]0,1上均匀分布,即()011,0,x p x ≤≤⎧=⎨⎩其它则()t ϕ=()1itx itx e p x dx e dx +∞-∞=⎰⎰1it e it-=()6 指数分布 设ξ服从参数为λ的指数分布,即 ()0,0,x x e p x x λλ->⎧=⎨≤⎩故()t ϕ=itx x e e dx λλ∞-⎰由数学分析知道 220sin x ttxe dx t λλ∞-=+⎰22cos x txe dx tλλλ∞-=+⎰由此可得()t ϕ=11it λ-⎛⎫- ⎪⎝⎭()7 正态分布 设ξ服从()2,N μσ分布,把()2,N μσ分布的密度函数代入()t ϕ=()itx e p x dx +∞-∞⎰中,即有()t ϕ=()222x itx edx μσ--+∞-∞⎰222t i t eσμ-=22it zit edz σσ∞---∞-⎰222t i t e σμ-=其中22it zit edz σσ∞---∞-⎰=是利用复变函数中的围道积分求得的.例1 求()2,Nμσ分布的数学期望和方差解 已知()2,Nμσ分布的特征函数为()t ϕ=222t i t eσμ-于是由()()0k k k i E ϕξ= 有()0iE i ξϕμ'==()22220i E ξϕμσ''==--由此即得()222,E D E E ξμξξξσ==-=从这里我们可以看出用特征函数求正态分布的数学期望和方差,要比从定义去证更方便[]()31P .2.5 特征函数与分布函数的关系逆转公[]()2177P 式 设随机变量ξ的分布函数为()F x ,特征函数为()t ϕ,又1x 与2x 为()F x 的任意两个连续点,则有()()()12121lim2itx itx TT T e e F x F x t dt it ϕπ---→∞--=⎰其中,当0t =时,按连续性延拓定义1221itx itx e e x x it---=- 由特征函数的定义可知,随机变量的分布函数唯一的确定了它的特征函数.反过来,由唯一性定理可知特征函数可以唯一地确定它的分布函数.从而由特征函数来确定分布函数的式子也常常称为“逆转公式”.唯一性定[]()2178P 理 随机变量的分布函数由其特征函数唯一确定.3 特征函数的应用3.1 特征函数在求独立随机变量和的分布上的应用设1ξ,2ξ的特征函数分别为()1t ϕ,()2t ϕ,又1ξ与2ξ相互独立,则12ξξξ=+的特征函数为()()()12t t t ϕϕϕ=⋅因为1ξ与2ξ相互独立,由以前的知识我们知道1it e ξ与2it eξ也相互独立,于是由数学期望的性质即得()t ϕ=()12it Ee ξξ+()12it it E e e ξξ=⋅12it it EeEe ξξ=⋅()()12t t ϕϕ=⋅利用归纳法,不难把上述性质推广到n 个独立随机变量的场合,若1ξ,2ξ,n ξ是n 个相互独立的随机变量,相应的特征函数为()1t ϕ,()2t ϕ,…,()n t ϕ 则ξ1ni i ξ==∑的特征函数为()t ϕ=()1ni i t ϕ=∏例2 设jξ(1j =,2,)n 是n 个相互独立的,且服从()2,j j N a σ分布的正态随机变量,试求ξ1nj j ξ==∑的分布.解 已知j ξ的分布为()2,j j N a σ,故相应的特征函数为()222j j t ia t j t eσϕ-=由特征函数的性质()t ϕ=()1nj j t ϕ=∏ 可知ξ的特征函数为()t ϕ=()1n j j t ϕ=∏2222111221nnj j j j j j t i a t t nia t j eeσσ==⎛⎫⎛⎫ ⎪ ⎪--⎪ ⎪⎝⎭⎝⎭=∑∑==∏而这是211,n n j j j j N a σ==⎛⎫ ⎪⎝⎭∑∑分布的特征函数,由分布函数与特征函数的一一对应关系即知ξ服从211,n n j j j j N a σ==⎛⎫⎪⎝⎭∑∑分布.这正是我们所熟知的可加性,这里用特征函数作为工具证明了这个可加性.3.2 在普哇松分布收敛于正态分布上的应用连续性定[]()2205P 理 分布函数列(){}n F x 弱收敛于分布函数()F x 的充要条件是相应的特征函数列(){}nx ϕ收敛于()F x 的特征函数()t ϕ.例3 若λξ是服从参数为λ的普哇松分布的随机变量,证明:22lim t xP x e dt λ--∞→∞⎫<=⎪⎭证明 已知λξ的特征函数为()x λϕ()1it e eλ-=,故λη= 的特征函数为()1g t e eλλλϕ⎛⎫⎪ ⎪-⎝⎭==对于任意的t ,有2112!t o λλ⎛⎫=-+ ⎪⎝⎭,λ→∞于是221122t t eo λλλ⎛⎫⎛⎫--=-+⋅→- ⎪ ⎪ ⎪⎝⎭⎝⎭,λ→∞ 从而对任意的点列n λ→∞,有()22lim n n t g t eλλ-→∞=但是22te-是()0,1N分布的特征函数,由连续性定理即知有22limntxP x e dtλξλ--∞→∞⎛⎫-<=⎪⎪⎭成立,因为nλ是可以任意选取的,这就意味着22limtxP x e dtλ--∞→∞⎫<=⎪⎭成立.即“普哇松分布收敛与正态分布”.3.3在证明辛钦大数定律上的应用若1ξ,2ξ…是独立同分布随机变量序列,且(iE a iξ==1,2,)则11npiianξ=−−→∑,n→∞证明因为1ξ,2ξ…有相同的分布,所以也有相同的特征函数,记这个特征函数为()tϕ,又因为iEξ存在,从而特征函数()tϕ有展开式()()0tϕϕ=+ϕ'()()0t o t+()1iat o t=++再由独立性知11niinξ=∑的特征函数为1n nt t tia on n nϕ⎡⎤⎡⎤⎛⎫⎛⎫=++⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦对任意取定的t,有lim lim1n niatn nt t tia o en n nϕ→∞→∞⎡⎤⎡⎤⎛⎫⎛⎫=++=⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦已知iate是退化分布的特征函数,相应的分布函数为()1,0,x aF xx a>⎧=⎨≤⎩由连续性定理知11niinξ=∑的分布函数弱收敛于()F x,因a是常数,则有11n pi i a n ξ=−−→∑ 故辛钦大数定律成立.3.4 在证明二项分布收敛于正态分布上的应用在n 重贝努里试验中,事件A 在每次试验中出现的概率为()01P p <<,n μ为n 次试验中事件A 出现的次数,则22lim t xn P x e dt --∞→∞⎛⎫<=⎪⎪⎭要证明这个式子我们只需证明下面的这个式子,因为它是下面的式子的一个特例,证明了下面的式子,也就证明了它.若1ξ,2ξ,…是一列独立同分布的随机变量, 且 k E a ξ=,()220k D ξσσ=>,k =1,2,…则有22lim n t k xn na P x e dt ξ--∞→∞⎛⎫- ⎪⎪<=⎪⎪⎝⎭∑证明 设k a ξ-的特征函数为()t ϕ,则nknk naξ=-=∑的特征函数为nϕ⎡⎤⎢⎥⎣⎦又因为()0k E a ξ-=,()2k D a ξσ-=,所以ϕ'()00=,ϕ''()20σ=-于是特征函数()t ϕ有展开式()()0t ϕϕ=+ϕ'()0t +ϕ''()()2202t o t +()222112t o tσ=-+从而对任意固定的t,有2212nnt ton nϕ⎡⎤⎡⎤⎛⎫=-+⎢⎥⎪⎢⎥⎝⎭⎣⎦⎣⎦22te-−−→,n→∞而22te-是()0,1N分布的特征函数,由连续性定理知22limntkxnnaP x e dtξ--∞→∞⎛⎫-⎪⎪<=⎪⎪⎝⎭∑成立,证毕.我们知道在22limtxnP x e dt--∞→∞⎛⎫<=⎪⎪⎭中nμ是服从二项分布()k k n kn nP k p qCμ-==,0k n≤≤的随机变量,如上3.2中称22limtxP x e dtλ--∞→∞⎫<=⎪⎭为“普哇松分布收敛与正态分布”,我们把上面证明的式子常常称为“二项分布收敛于正态分布”.[]()2210211P-通过上文的讨论,我们加深了对特征函数的认识,对于特征函数的应用也有了大概的了解,而随着理论和实践的不断发展,对特征函数的研究也将会不断深化.。

§4.1特征函数§4.2大数定律§4.3随机变量序列的两种收敛性

§4.1特征函数§4.2大数定律§4.3随机变量序列的两种收敛性

第10页
特征函数的定理
定理4.1.1 一致连续性.
定理4.1.2 非负定性.
定理4.1.3 逆转公式.
定理4.1.4 定理4.1.5
分布函数的唯一性.
连续场合,求p(密x)度函21数. eitx(t)dt
第11页
定理4.1.5 设X为连续型随机变量,密度函数
为p(x),若 | (t) | dt ,则 p(x) 1 eitx(t)dt 2
二、给定 n 和概率,求 y
例4 P237 15 设一家有500间客房的大旅馆的每间 客房装有一台2kw的空调机.若开房率为80%, 问需要多少kw的电力才能有99%的可能性保证 有足够的电力使用空调机?
第53页
三、给定 y 和概率,求 n
例5 用调查对象中的收看比例 作为某电
视节目的收视率 p 的估计 pˆ . 要有 90% 的把握,使调查所得收视率 pˆ与实际收
第44页
练习 P238 6 某汽车销售点每天出售的汽车数服 从参数为λ=2的泊松分布,若一年365天都经 营汽车销售,且每天出售的汽车数相互独立, 求一年中售出700辆以上汽车的概率.
第45页
例2 P238 4 掷一颗骰子100次,记第i次掷出的点
数为Xi , i=1,2,…,100,试求概率
å P{3 # 1
性质4.1.1 |(t)| (0)=1
性质4.1.2 (t) (t)
性质4.1.3 aX b(t) eibtX (at)
第7页
性质4.1.4 若 X 与 Y 独立,则
X Y (t) X (t)Y (t)
性质4.1.5 若 E(X l )存在,则对0≤k≤l有
(k)(0) ik E(X k )

特征函数

特征函数
1 f ( x) 2



e ikxx (k )dk
也就是说,概率密度函数 f(x) 与其特征 函数 x (k ) 是等价的。
4
为什么引入特征函数
问题:既然概率密度函数与特征函数一一对应, 给出任意一个都可以完全确定概率密度函数的 所有性质,为什么还需要引入特征函数?
很多问题直接用概率密度函数不易处理, 但用特征函数处理则非常方便。比如, 1)求独立随机变量之和的分布的卷积变为 乘法运算; 2)求n阶代数矩变为求n阶微分 ......
i 1 n
( xi i ) 2
i2
服从自由度为n的 2分布。
证:首先容易证明yi 概率密度函数为
xi i
i
服从标准高斯分布, 并且z yi 2的
dy 1 g ( z ) 2 ( yi ) e z / 2 f ( z; n 1) dz 2 z 即z服从ndf =1的 2分布,其特征函数为z (k ) (1 2ik ) 1/ 2。 若z yi2,显然特征函数为z (k ) (1 2ik ) n / 2 ,
2
(1 2ik ) n / 2 e |k |
柯西分布
1 1 f ( x) 1 x 2
柯西分布在k=0处不问题:既然概率密度函数与特征函数一一对应, 给出任意一个都可以完全确定概率密度函数的 所有性质,为什么还需要引入特征函数?
很多问题直接用概率密度函数不易处理, 但用特征函数处理则非常方便。比如, 1)求独立随机变量之和的分布的卷积变为 乘法运算; 2)求n阶代数矩变为求n阶微分 ......
i n
此即ndf =n的 2分布的特征函数。
14
中心极限定理(1)

特征函数的概念及意义

特征函数的概念及意义

特征函数的概念及意义目录:一.特征函数的定义。

二.常用分布的特征函数。

三.特征函数的应用。

四.绪论。

一.特征函数的定义设X 是一个随机变量,称()()itXe t E =ϕ, +∞<<∞-t ,为X 的特征函数.因为=1Xit e ,所以()itX e E 总是存在的,即任一随机变量的特征函数总是存在的.当离散随机变量X 的分布列为() ,3,2,1,P p k ===k x X k ,则X 的特征函数为()∑+∞==1k k itx p e t k ϕ, +∞<<∞-t .当连续随机变量X 的密度函数为()x p ,则X 的特征函数为 ()()⎰+∞∞-=dx x p e t k itx ϕ, +∞<<∞-t .与随机变量的数学期望,方差及各阶矩阵一样,特征函数只依赖于随机变量的分布,分布相同则特征函数也相同,所以我们也常称为某分布的特征函数.二.常用分布的特征函数1、单点分布:().1P ==a X 其特征函数为 ().e t it a =ϕ2、10-分布:()(),10x p 1p x X P x 1x =-==-,,其特征函数为 ()q pe t it +=ϕ,其中p 1q -=.3、泊松分布()λP :()λλ-==e k k X P k!,k=0,1, ,其特征函数为()()∑+∞=---===0k 1e e kiktit ite ee e k et λλλλλϕ!.4、均匀分布()b a U ,:因为密度函数为()⎪⎩⎪⎨⎧<<-=.;,0,1其他b x a a b x p所以特征函数为()()⎰--=-=b aiatibt itx a b it e e dx a b e x ϕ. 5、标准正态分布()1,0N :因为密度函数为()2221x e x p -=π, +∞<<∞-x .所以特征函数为()()⎰⎰∞+∞-∞+∞-----∞==dxit x t x itx e edx e x 2222222121πϕ=⎰-∞+-∞----=ititt t t edz ee22222221π.其中⎰-∞+-∞--=ititx dz eπ222 .三.特征函数的应用1、在求数字特征上的应用求()2N σμ,分布的数学期望和方差. 由于()2N σμ,的分布的特征函数为()2t i 22et σμϕ=,于是由()k k k i 0ξϕE =得,()μϕξi 0i ′==E , ()22″220i σμϕξ--==E , 由此即得()222D σξξξμξ=E -E ==E ,.我们可以看出用特征函数求正态分布的数学期望和方差, 要比从定义计算方便的多.2、 在求独立随机变量和的分布上的应用利用归纳法, 不难把性质4推广到n 个独立随机变量的场合,而n21,ξξξ ,,是n 个相互独立的随机变量, 相应的特征函数为()()()∑==n 1i i n 21t t t ξξϕϕϕ,则,,, 的特征函数为()()∏==n1i i t t ϕϕ.设()n ,,21j j ,=ξ是n 个相互独立的,且服从正态分布()2N j j a σ,的正态随机变量.试求∑==n1j j ξξ的分布.由于j ξ的分布为()2N j j a σ,,故相应的特征为()222tia j j je t σϕ=.由特征函数的性质()()ξϕϕ可知∏==nj j t t 1的特征函数为()()21212221112t t a i n j nj tia j nj j nj j j jeet t ⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛==∑∑=====∏∏σσϕϕ.而这正是⎪⎪⎭⎫ ⎝⎛∑∑==n j j n j j a N 121,σ的特征函数. 由分布函数与特征函数的一一对应关系即知ξ服从⎪⎪⎭⎫ ⎝⎛∑∑==n j j n j j a N 121,σ.3、 在证明二项分布收敛于正态分布上的应用在n 重贝努力实验中,事件A 每次出现的概率为p(0<p<1),n μ为n 次试验中事件A 出现的次数,则dt e x npq np P xt n n ⎰∞-∞→=⎪⎪⎭⎫⎝⎛<-2221lim πμ.要证明上述结论只需证明下面的结论,因为它是下面的结论一个特例. 若 ,,21ξξ是一列独立同分布的随机变量,且(),,2,1,0,22 =>==E k D a k k σσξξ则有dt e x nna P xt n k k n ⎰∑∞-=∞→=⎪⎪⎪⎪⎭⎫ ⎝⎛<-21221lim πσξ.证明 设a k -ξ的特征函数为(),t ϕ则∑∑==-=-nk knk kn anna11σξσξ的特征函数为nn t ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛σϕ 又因为()(),,02σξξ=-=-E a D a k k 所以()()20,00σϕϕ-=''=' 于是特征函数()t ϕ有展开式()()()()()()222222112000t t t t t t οσοϕϕϕϕ+-=+''+'+=.从而对任意的t 有,∞→→⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-n e n t nt n t tn,2122222οσϕ. 而22t e-是()1,0N 分布的特征函数,由连续定理可知dt e x n na P xt n k k n ⎰∑∞-=∞→=⎪⎪⎪⎪⎭⎫ ⎝⎛<-21221lim πσξ.成立,证毕.我们知道在n 2221Plim μπμ中dt e x npq np xt n n ⎰∞-∞→=⎪⎪⎭⎫⎝⎛<-是服从二项分布.()n k q p C k p kn k k n n ≤≤==-0,μ.的随机变量,dt e x xt ⎰∞-∞→=⎪⎭⎫⎝⎛<-2221P lim πλλξλλ为“泊松分布收敛于正态分布” , 我们把上面的结论常常称为“ 二项分布收敛于正态分布”.4、在求某些积分上的应用我们知道⎰+∞-022dx e x x k 可以用递推法,现在我们用特征函数来解决随机变量ξ服从⎪⎭⎫ ⎝⎛21,0N ,其密度函数为:()21x e x p -=π,其特征函数为:()∑⎰∞+=-∞+∞--⎪⎭⎫ ⎝⎛-==⋅⋅=0241!41122i tit x itx i t edx e e t πϕξ, 故 ()()()() +++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=+!131241!!241212k t k k k t k kkξϕ ,所以 ()()()!!1221!!24102-⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-=k k k kkk ξϕ,由特征函数的性质 ()()()kk kk k i 2!!120222-=-=E ξϕξ,又 ⎰+∞-=E 0222dx e x x k kξ,故()⎰∞+∞-+--=122!!122k x k k dx e x .即 ()⎰∞++--=0122!!122k x k k dx e x四.结论从上面的内容可以看出:特征函数并不是一个抽象概念,在概率论与数理统计的许多问题中,无论是证明还是应用,通过构造特征函数,比如在求分布的数学期望和方差;在求独立随机变量和的分布上的应用,利用独立随机变量和的特征函数为特征函数的积性质推广,往往能使问题得到简化;在证明二项分布收敛于正态分布上的应用,可以从特例到一般问题,从而使问题迎刃而解;在求某些积分上的时候,可以通过构造特征函数使问题简单.• • ••••••••••••••••【唯美句子】走累的时候,我就到升国旗哪里的一角台阶坐下,双手抚膝,再闭眼,让心灵受到阳光的洗涤。

特征函数的意义

特征函数的意义

特征函数的意义特征函数是概率学中一个十分重要的概念,它是描述随机变量的一个有效的工具。

特征函数的意义在于,通过它可以确定一组概率分布。

本文将围绕着“特征函数的意义”这一主题,分步骤来阐述这个概念及其应用。

1.特征函数的定义首先,我们来看一下特征函数的定义。

特征函数指的是一个随机变量X 的复合函数φ(t),其中t是一个实数,φ(t)的形式如下:φ(t) = E(e^{itX})其中,E表示期望值,i是虚数单位。

上式中的e表示自然对数的底数,e^{itX} 是指将itX 代入e 中的值(也就是复数),即e^{itX} = cos(tX) + isin(tX)。

2.特征函数的意义特征函数的意义在于,通过它可以唯一地确定一组概率分布。

具体来说,如果两个随机变量的特征函数完全相同,那么这两个随机变量满足相同的分布。

这就是说,特征函数是确定一个随机变量的概率分布的一个有效工具。

3.特征函数的应用特征函数在许多方面都有着广泛的应用。

3.1.求统计量通过特征函数,我们可以得到随机变量的许多统计量,如均值、方差、偏度等。

这些统计量对于概率分布的研究具有十分重要的意义。

3.2.求和我们可以用特征函数来求两个随机变量的和的特征函数。

具体来说,如果X和Y是两个随机变量,那么它们的和Z=X+Y 的特征函数是φ_Z(t) = φ_X(t)φ_Y(t)。

3.3.中心极限定理中心极限定理是概率统计学中的一个重要定理,它指出,当许多独立随机变量的和趋向于正态分布时,这些独立随机变量的分布本身并不需要满足正态分布。

中心极限定理的证明中就用到了特征函数的性质。

4.总结本文围绕着“特征函数的意义”这一主题,分步骤阐述了特征函数的定义,意义以及应用。

特征函数在概率统计领域中有着重要的作用,它可以唯一地确定一组概率分布,可以用于求统计量、求和以及证明中心极限定理等。

对于学习概率统计学的人来说,理解特征函数的意义十分重要。

第一节特征函数

第一节特征函数

第一节特征函数特征函数是机器学习和统计建模中常用的一个工具。

它将输入数据映射到一个特征空间,用来描述数据的特征或者属性。

特征函数可以是任何能够提供关于数据特征的有用信息的函数,它可以是基于统计分析、经验知识、领域专业知识等等。

特征函数的主要作用是将原始的输入数据转化成机器学习模型能够处理的形式。

在许多的机器学习算法中,输入数据的维度往往很高,而原始数据的形式可能是非结构化的、不可直接处理的。

通过使用特征函数,我们可以将原始数据转化成一组有意义的特征向量,这样就可以更好地进行模型的训练和预测。

特征函数的选择是机器学习中一个关键的问题。

一个好的特征函数可以提取出数据中的关键信息,并且能够在模型训练和预测中发挥重要的作用。

在选择特征函数时,需要考虑以下几个因素:1.相关性:特征函数应该与目标变量有一定的相关性,即它应该能够提供关于目标变量的有效信息。

如果特征函数与目标变量相关性较低,则可能无法很好地表达数据的特征。

2.独立性:特征函数应该是独立的,即它们之间不应该存在高度相关性。

如果特征函数之间存在高度相关性,可能会引入冗余信息,从而影响模型的训练和预测效果。

3.可解释性:特征函数应该具有可解释性,即它们应该能够提供关于数据特征的直观理解。

这样可以帮助分析人员了解数据的特征和模型的预测结果,从而更好地进行模型的解释和优化。

在实际应用中,选择合适的特征函数是一个非常具有挑战性的任务。

通常需要通过领域知识、实验分析和模型评估等方式来确定最佳的特征函数。

一些常用的特征函数包括:统计特征,如均值、方差、偏度、峰度等;频率特征,如频率分量、谱平均等;时间序列特征,如自相关函数、互相关函数等。

总之,特征函数在机器学习和统计建模中起着至关重要的作用。

通过选择合适的特征函数,我们可以将原始的输入数据转化成机器学习模型能够处理的形式,从而更好地进行模型的训练和预测。

选择合适的特征函数是一个具有挑战性的任务,需要综合考虑相关性、独立性和可解释性等因素。

特征函数和特征值

特征函数和特征值

特征函数和特征值特征函数和特征值是线性代数中的重要概念,它们在矩阵的理论和应用中都有着广泛的应用。

本文将围绕特征函数和特征值展开,介绍它们的定义、性质、求解方法及其在实际问题中的应用。

一、特征函数和特征值的定义1. 特征函数特征函数是指对于一个n阶方阵A,存在一个非零向量x,使得Ax=kx成立,其中k为一个标量。

这个方程称为矩阵A关于k的特征方程,而k则称为矩阵A的一个特征值。

由此可见,特征函数是与矩阵相关联的一个函数。

2. 特征值根据上述定义可知,矩阵A关于k的特征方程Ax=kx成立时,k即为矩阵A的一个特征值。

每个n阶方阵都有n个特征值。

二、特征函数和特征值的性质1. 特殊性质(1)如果一个n阶方阵A有n个不同的特征值,则它一定可以被对角化。

(2)如果两个n阶方阵A、B相似,则它们具有相同的特征值。

(3)如果一个n阶方阵A是实对称矩阵,则它的特征值都是实数。

(4)如果一个n阶方阵A是正定矩阵,则它的特征值都是正数。

2. 求解方法求解矩阵的特征值和特征向量有多种方法,下面介绍两种常用的方法。

(1)特征多项式法设A为n阶方阵,I为n阶单位矩阵,则其特征多项式为f(λ)=det(A-λI),其中λ为变量。

由于f(λ)是一个n次多项式,因此有n个根,即为A的n个特征值。

(2)幂法幂法是一种迭代算法,通过不断迭代矩阵与向量的乘积来逼近特征向量。

假设有一个初始向量x0,通过不断迭代可以得到x1=Ax0、x2=Ax1=AAx0、x3=Ax2=AAAx0……直到收敛为止。

此时,xk即为A的最大特征值所对应的特征向量。

三、特征函数和特征值在实际问题中的应用1. 特殊结构问题在计算机图形学中,对于一个三维物体进行旋转时,可以使用特征值和特征向量来计算旋转矩阵。

此外,在工程中,特征值和特征向量还可以用于求解桥梁、建筑物等结构的振动频率和振动模态。

2. 数据分析问题在数据分析领域,特征值和特征向量可以用于PCA(Principal Component Analysis)降维算法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

特征函数 (概率论)
维基百科,自由的百科全书
跳转到:导航, 搜索
在概率论中,任何随机变量的特征函数完全定义了它的概率分布。

在实直线上,它由以下公式给出,其中X是任何具有该分布的随机变量:

其中t是一个实数,i是虚数单位,E表示期望值。

用矩母函数M X(t)来表示(如果它存在),特征函数就是iX的矩母函数,或X 在虚数轴上求得的矩母函数。

与矩母函数不同,特征函数总是存在。

如果F X是累积分布函数,那么特征函数由黎曼-斯蒂尔切斯积分给出:。

在概率密度函数f X存在的情况下,该公式就变为:。

如果X是一个向量值随机变量,我们便取自变量t为向量,tX为数量积。

R或R n上的每一个概率分布都有特征函数,因为我们是在有限测度的空间上对一个有界函数进行积分,且对于每一个特征函数都正好有一个概率分布。

一个对称概率密度函数的特征函数(也就是满足f X(x) = f X(-x))是实数,因为从x>0所获得的虚数部分与从x<0所获得的相互抵消。

目录
[隐藏]
• 1 性质
• 2 连续性
o 2.1 反演定理
o 2.2 博赫纳-辛钦定理/公理化定义
o 2.3 计算性质
• 3 特征函数的应用
o 3.1 矩
o 3.2 一个例子
• 4 多元特征函数
o 4.1 例子
• 5 矩阵值随机变量
• 6 相关概念
•7 参考文献
[编辑]性质
[编辑]连续性
主条目:勒维连续定理
勒维连续定理说明,假设为一个随机变量序列,其中每一个都有特征函数,那么它依分布收敛于某个随机变量:

如果

且在处连续,是的特征函数。

勒维连续定理可以用来证明弱大数定律。

[编辑]反演定理
在累积概率分布函数与特征函数之间存在双射。

也就是说,两个不同的概率分布不能有相同的特征函数。

给定一个特征函数φ,可以用以下公式求得对应的累积概率分布函数F:。

一般地,这是一个广义积分;被积分的函数可能只是条件可积而不是勒贝格可积的,也就是说,它的绝对值的积分可能是无穷大。

[1]
[编辑]博赫纳-辛钦定理/公理化定义
主条目:博赫纳定理
任意一个函数是对应于某个概率律的特征函数,当且仅当满足以下三个条件:
1.是连续的;
2.;
3.是一个正定函数(注意这是一个复杂的条件,与不等价)。

[编辑]计算性质
特征函数对于处理独立随机变量的函数特别有用。

例如,如果X1、X2、……、X n 是一个独立(不一定同分布)的随机变量的序列,且
其中a i是常数,那么S n的特征函数为:
特别地,。

这是因为:。

注意我们需要和的独立性来确立第三和第四个表达式的相等性。

另外一个特殊情况,是且为样本平均值。

在这个情况下,用表示平均值,我们便有:。

[编辑]特征函数的应用
由于连续定理,特征函数被用于中心极限定理的最常见的证明中。

[编辑]矩
特征函数还可以用来求出某个随机变量的矩。

只要第n个矩存在,特征函数就可以微分n次,得到:
例如,假设具有标准柯西分布。

那么。

它在处不可微,说明柯西分布没有期望值。

另外,注意到个独立的观测的样本平均值具有特
征函数,利用前一节的结果。

这就是标准柯西分布的特征函数;因此,样本平均值与总体本身具有相同的分布。

特征函数的对数是一个累积量母函数,它对于求出累积量是十分有用的;注意有时定义累积量母函数为矩母函数的对数,而把特征函数的对数称为第二累积量母函数。

[编辑]一个例子
具有尺度参数θ和形状参数k的伽玛分布的特征函数为:。

现在假设我们有:

其中X和Y相互独立,我们想要知道X + Y的分布是什么。

X和Y特征函数分别为:
根据独立性和特征函数的基本性质,可得:。

这就是尺度参数为θ、形状参数为k1 + k2的伽玛分布的特征函数,因此我们得出结论:

这个结果可以推广到n个独立、具有相同尺度参数的伽玛随机变量:。

[编辑]多元特征函数
如果是一个多元随机变量,那么它的特征函数定义为:。

这里的点表示向量的点积,而向量位于的对偶空间内。

用更加常见的矩阵表示法,就是:。

[编辑]例子
如果是一个平均值为零的多元高斯随机变量,那么:
其中表示正定矩阵Σ的行列式。

[编辑]矩阵值随机变量
如果是一个矩阵值随机变量,那么它的特征函数为:
在这里,是迹函数,表示与的矩阵乘积。

由于矩阵XT一定有迹,因此矩阵X必须与矩阵T的转置的大小相同;因此,如果X是m×n矩阵,那么T必须是n×m矩阵。

注意乘法的顺序不重要(但)。

矩阵值随机变量的例子包括威沙特分布和矩阵正态分布。

[编辑]相关概念
相关概念有矩母函数和概率母函数。

特征函数对于所有概率分布都存在,但矩母函数不是这样。

特征函数与傅里叶变换有密切的关系:一个概率密度函数的特征函数是的连续傅里叶变换的共轭复数(按照通常的惯例)。

其中表示概率密度函数的连续傅里叶变换。

类似地,从可以通过傅里叶逆变换求出:。

确实,即使当随机变量没有密度时,特征函数仍然可以视为对应于该随机变量的测度的傅里叶变换。

相关文档
最新文档