5.3.1平行线的性质(第1课时)

合集下载

人教版数学七年级下册5.3.1 第1课时 平行线的性质 -课件

人教版数学七年级下册5.3.1 第1课时 平行线的性质 -课件

4
b
2
∴ 2+ 4=180°
线被第三条直线所截,同旁内角互补. 简单说成:两直线平行,同旁内角互补.
应用格式:
∵a∥b(已知)
∴∠2+∠4=180 °
a
1
4
b
2
(两直线平行,内错角相等)
c
典例精析
例 如图,是一块梯形铁片的残余部分,量得∠A=100°, ∠B=115°,梯形的另外两个角分别是多少度?
解:因为梯形上、下底互相平行,所以
∠A与∠D互补, ∠B与∠C互补. D
C
于是∠D=180 °-∠A=180°-
100°=80°
A
B
∠所C以=梯18形0的°另-∠外B两=1个80角°分-1别15是°8=06°5°、 65°.
四、平行线的判定与性质 讨论:平行线三个性质的条件是什么?结论是
什么?它与判定有什么区别?(分组讨论)
如图,已知a//b,那么2与3相等吗?为什么?
解 ∵ a∥b(已知),
∴∠1=∠2(两直线平行,同位角相等).
a
1
又∵ ∠1=∠3(对顶角相等),
3
b
2
∴ ∠2=∠3(等量代换).
c
总结归纳
性质2:两条平行线被第三条直线所截,内错角相等. 简单说成:两直线平行,内错角相等.
应用格式:
∵a∥b(已知)
解: ∠A =∠D.理由:
∵ AB∥DE( 已知 )
D
∴∠A=_∠__C_P_E__ ( 两直线平行,同位角相等)
A
∵AC∥DF( 已知 )
F C
P E
图1 B
∴∠D=_∠__C_P_E_ ( 两直线平行,同位角相等 )

5.3.1平行线的性质(1)课件(新人教版七年级数学下)

5.3.1平行线的性质(1)课件(新人教版七年级数学下)

创设情景
现在同学们已经掌握了利用同位角相等,或者内错角相等, 或者同旁内角互补, 判定两条直线平行的三种方法.在这一 节课里:大家把思维的指向反过来: 如果两条直线平行,那 么同位角、内错角、同旁内角的数量关系又该如何表达
【课中探究】
1.数学活动 (1)学生画图活动:用直尺和三角尺画出两条平行线a∥b,再 画一条截线c与直线a、b相交,标出所形成的八个角 (2)学生测量这些角的度数,把结果填入表内.


三、选择题. 1.∠1和∠2是直线AB、CD被直线EF所截而成的内错角,那么∠1和∠2 的大小关系是( ) D A.∠1=∠2 B.∠1>∠2; C.∠1<∠2 D.无法确定 2.一个人驱车前进时,两次拐弯后,按原来的方向前进, 这两次拐弯的角 度是( B) A.向右拐85°,再向右拐95°; B.向右拐85°,再向左拐85° C.向右拐85°,再向右拐85°; D.向右拐85°,再向左拐95°
3.数学活动——在小组内部交流,归纳结论.
平行线具有性质: 性质1:两条平行线被第三条直线所截,同位角相等,简称为两直线平行, 同位 角相等. 性质2:两条平行线被第三条直线所截,内错角相等,简称为两直线平行, 内错 相等. 性质3:两条直线按被第三条线所截,同旁内角互补,简称为两直线平行, 同旁 内角互补.
5.3.1平行线的性质(1)
【学习目标】
1.掌握平行线的三条性质,并能用它们进行简单的推理和计算. 2.能区分平行线的性质和判定,平行线的性质与判定的混合应用.
【重点难点】
重点:探索并掌握平行线的性质,能用平行线性质进行简单的推理和计算. 难点:能区分平行线的性质和判定,平行线的性质与判定的混合应用 .
4.数学活动——先独立思考,然后在小组内交流,并展示.

5.3平行线的性质---共3课时

5.3平行线的性质---共3课时

★ 课题: 5.3.1平行线的性质 第一课时(初中数学新人教版七下第19页~第20页思考)班级 姓名 座号学习目标:1.掌握平行线的三个性质;(重点)2.理解平行线的性质和判定的区别和联系,并能运用它们解决问题;(难点)3.进一步培养学生的推理能力以及几何语言表达能力一、课前诊断1.怎样判定两条直线平行?2. 如图,∠1=∠2=55°,试说明直线AB ,CD 平行?.二、导学思考1.阅读课本第19页思考,大胆得出猜想:两直线平行,同位角 ;内错角 ;同旁内角 。

2.完成第19页探究,通过度量的方法,验证你的猜想。

3.阅读课本第20页平行线的三条性质,并对比平行线的三条性质与平行线的三种判定方法的区别与联系:性质定理,已知两条直线平行,而得出 ;判定定理,已知 ,要证明两条直线平行。

三、新知检测1.如图1(1)如果a ∥b,根据_______________________ ,得∠1=∠4;(2)如果a ∥b,根据_______________________ ,得∠2+∠3=180°;(3)如果a ∥b,根据_______________________ ,得∠2=∠4.2.如图2,若AB ∥CD,则下列结论正确的是( ).A.∠3=∠4B.∠A=∠CC.∠3+∠1+∠4=180°D.∠3+∠1+∠A=180° 四、精练反馈 1.如图,直线a ∥b ,其中∠1=54°,求∠2、∠3的度数,完成下面的解答过程解∵∠1=54° ( ),又∵∠3=∠1 ( ),∴∠3 =( ) ( ),∵a ∥b ( ),∴∠1+∠2 =180°( ),∴∠2 =( ) ( 等式的性质 ). 3 A B CD EF 2 1a b 图1图2 4321(13)DC AB2. 如图所示,AD ∥BC,∠1=78°,∠2=40°,求∠ADC 的度数.D C B A12五、评价小结1. 回顾平行线的性质:(1)两直线平行, 相等;(2) , ;(3) ,同旁内角 。

5.3 .1平行线的性质(1)

5.3 .1平行线的性质(1)

B 4 D F
如图,已知:AC∥DE,∠1=∠2, 试说明AB∥CD.
证明:由AC∥DE (已知), 根据:两直线平行,内错角相等. A D 得∠ACD= ∠ 2 . 1 2 又由∠1=∠2(已知).B E C 根据: 等量代换 . 得∠1=∠ACD . 再根据:内错角相等,两直线平行 . 得 AB ∥CD .
引例1 小明必须要订做一块与原来一模一样的 新玻璃,已知量得∠A=115°,∠D=100°, 请你想一想,梯形的另外两个角各是多少度时, 才能为小明合理地解决问题。 解:∵AD∥BC (已知) A D ∴ A + B=180° C (两直线平行,同旁内角互补) B 即 ∠B= 180°- A=180°-115°=65° ∵AD∥BC (已知) ∴ D+ C=180° (两直线平行,同旁内角互补) 即 C=180°- D =180°-100°=80° 答:梯形的另外两个角分别为65°、80° 。
思考2
简单说成:两直线平行,同旁内角互补。
精彩回放
平行线的性质1 两条平行线被第三条直线所截,同位角相等。 简单说成:两直线平行,同位角相等。 平行线的性质2 两条平行线被第三条直线所截,内错角相等 简单说成:两直线平行,内错角相等。 平行线的性质3 两条平行线被第三条直线所截,同旁内角互补 简单说成:两直线平行,同旁内角互补。
判断正误
①两直线被第三条直线所截,同位角相等(
②两直线平行,同旁内角相等。(
×
×


③“内错角相等,两直线平行”是平行线的性质。 ( )
×
④“两直线平行,同旁内角互补”是平行线的性 质。( )
√ห้องสมุดไป่ตู้
完成并比较.如图, (1)∵a∥b(已知), ∴∠1___ ) = ∠2( 两直线平行,同位角相等 (2)∵ a∥b (已知), = ∠3( 两直线平行,内错角相等 ∴∠2___ ) (3)∵a∥b(已知), ∴∠2+∠4=180 ____( ° 两直线平行,同旁内角互 )

5.3.1平行线的性质(1)(新版人教版) 4

5.3.1平行线的性质(1)(新版人教版) 4
A 1 2 4 3 E
B
D
4.巩固新知,深化理解
10. 如图,已知AB∥CD,AE∥CF,∠A= 39°,
∠C是多少度?为什么?
E F
A C
G
B D
4.巩固新知,深化理解
方法一
E
解:∵AB∥CD, ∴ ∠C=∠1. ∵ AE∥CF, ∴ ∠A=∠1. ∴ ∠C=∠A. ∵∠A= 39º , ∴∠C= 39º .
A C G
F
1
B D
4.巩固新知,深化理解
方法二
解:∵AB∥CD,
∴ ∠C=∠2. ∵ AE∥CF,
A G
E F
∴ ∠A=∠2. ∴ ∠C=∠A. ∵∠A= 39º , ∴∠C= 39º .
C
2
B D
小结
两直线平行
线的关系
性质 判定
系 法平 的行 线 的 性 区质 同位角相等 和 内错角相等 平 别 行 同旁内角互补 线 与的 角的关系 判 定 联方
A 1 2 4 3 E
B
D
4.巩固新知,深化理解
8. 如图,平行线AB,CD被直线AE所截. (2)从∠1=110º 可以知道∠3是多少度吗?为什么? 答:∠3 =110º .因为AB∥CD ,∠1和∠3是同位角, 根据两直线平行,同位角相等,得到∠1=∠3.因为 ∠1=110º ,所以∠3 =110º . C
1.梳理旧知,引出新课
平行线的判定
结论
判定方法1 同位角相等,两直线平行. 判定方法2 内错角相等,两直线平行. 判定方法3 同旁内角互补,两直线平行.
1 线 平 行
结论

1.梳理旧知,引出新课
条件
两条平行线 被第三条直 线所截

5.3平行线的性质(第1课时)-教学设计

5.3平行线的性质(第1课时)-教学设计
3
学习发现的平行线第一个性质
通过自主学习,合作学习,培养学生分析问题、解决问题的能力。
4
演绎推理,发现平行线的其它性质
把问题交给学生,培养学生观察、分析、想象、推理的能力,体现学生的主体地位。
5
巩固新知深化理解
检验新知的掌握情况,帮助学生巩固平行线的性质及文字语言、符号语言、图形语言之间的相互转化,为今后进一步学习推理打下基础。
5.3平行线的性质教学设计
第1课时
一、教学任务分析
教学目标
知识技能
理解平行线的性质和判定的区别,并能够正确掌握平行线的三个性质,并能运用它们作简单的推理。
数学思考
在生动的情境中让学生获得平行线性质的初步经验;培养学生观察、分析、想象、推理的能力;经历探索直线平行的性质过程,从中感受转化的数学思想。
解决问题
布置作业:
1.教科书练习题1、2题
2.预习5.3.2命题、定理、证明
教师布置作业。
学生记录作业。
对学生可能会提出一些疑问。教师应给出有针对性的、具体的指导与帮助。
巩固所学
首先,学生动笔操作、回答计算结果。
然后,分组讨论、交流。
教师板书
充分调动学生的主动性和积极性,让学生独立思考,同时,通过实例,培养学生分析问题的能力,让学生从具体的实例中发现数学问题,使学生懂得数学来源于现实,服务于现实生活。
6
问题
1.平行线判定与性质的区别与联系
(1)性质:根据两条直线平行,去证角的相等或互补。
问题3
1.你能结合图形ห้องสมุดไป่ตู้表达你得到的结论吗?
如果 ,那么∠1=∠2。
2.你能用文字语言表达这个结论吗?
两条平行直线被第三条直线所截,同位角相等。(性质1)

5.3.1 平行线的性质(1) -李欢

5.3.1 平行线的性质(1) -李欢

5.3.1 平行线的性质(1)长海三中李欢教材分析:本节课的主要内容是平行线的三条性质等内容,首先在研究了平行线的判定的基础上研究平行线的性质,学生很自然就想到研究平行线的性质也要研究同位角、内错角、同旁内角的关系,因此从平行线的判定关系入手,引入对平行线性质的探究。

平行线的性质是教学中的重点,而平行线的判定与性质互为逆命题,条件与结论相反,因此区分判定和性质是教学中的一个难点。

在教学过程中可以告诉学生,从角的关系得到两直线平行式判定,由已知直线平行,得出角的相等或互补关系,是平行线的性质。

教学目标:1、经历探索平行线的性质的过程,掌握平行线的性质。

2、会用平行线的性质进行简单的推理和计算。

3、经历观察、操作、推理、交流等活动,进一步发展空间观念,推理能力和有条理的表达能力。

重点:平行线性质的探索。

难点:有条理的表达和简单的推理计算。

教学方法:有目的有计划的设计问题,引导学生进行观察、实验、猜测和推理等活动,从而使学生完成自己对数学知识的理解和有效的学习策略。

教学过程:一、复习1、复习平行线的判定方法。

2、把它们已知和结论颠倒一下,可以得到怎样的语句?它们成立吗?(通过复习回忆平行线的判定来引入新课。

)二、深入探究1、画图活动。

学生利用三角板和直尺画出两条平行线a∥b,再画一条截线c,与直线a、b相交,标出所形成的八个角。

老师板演,利用几何画板画出几何图形。

(画平行线的这个过程主要是让学生明白,确定平行线性质的前提是要有两条平行线。

)2、已知a∥b,度量∠1和∠5的大小,会发现同位角∠1 ∠5。

同时还会发现其他同位角∠2和∠6,,∠3和∠7,∠4和∠8也。

3、学生说出猜想,师生一起归纳平行线的性质1:两条平行线被第三条直线所截,同位角相等。

(通过学生自己的操作发现,验证出平行线的性质。

)4、(1)通过观察发现,∠5的同位角∠1与∠3是,所以∠1与∠3是相等的,又因为∠1=∠5,所以∠3=∠5,所以猜想两直线平行,不仅同位角相等,内错角也。

《5.3.1 平行线的性质》教案、导学案、同步练习

《5.3.1 平行线的性质》教案、导学案、同步练习

《5.3.1 平行线的性质》教案第1课时平行线的性质【教学目标】1.理解平行线的性质;(重点)2.能运用平行线的性质进行推理证明.(重点、难点)【教学过程】一、情境导入窗户内窗的两条竖直的边是平行的,在推动过程中,两条竖直的边与窗户外框形成的两个角∠1、∠2有什么数量关系?二、合作探究探究点一:平行线的性质如图,AB∥CD,BE∥DF,∠B=65°,求∠D的度数.解析:利用“两直线平行,内错角相等,同旁内角互补”的性质可求出结论.解:∵AB∥CD,∴∠BED=∠B=65°.∵BE∥FD,∴∠BED+∠D=180°,∴∠D=180°-∠BED=180°-65°=115°.方法总结:已知平行线求角度,应根据平行线的性质得出同位角相等,内错角相等,同旁内角互补.再结合已知条件进行转化.探究点二:平行线与角平分线的综合运用如图,DB∥FG∥EC,∠ACE=36°,AP平分∠BAC,∠PAG=12°,求∠ABD 的度数.解析:先利用GF ∥CE ,易求∠CAG ,而∠PAG =12°,可求得∠PAC =48°.由AP 是∠BAC 的角平分线,可求得∠BAP =48°,从而可求得∠BAG =∠BAP +∠PAG =48°+12°=60°,即可求得∠ABD 的度数.解:∵FG ∥EC ,∴∠CAG =∠ACE =36°.∴∠PAC =∠CAG +∠PAG =36°+12°=48°.∵AP 平分∠BAC ,∴∠BAP =∠PAC =48°.∵DB ∥FG ,∴∠ABD =∠BAG =∠BAP +∠PAG =48°+12°=60°.方法总结:(1)利用平行线的性质可以得出角之间的相等或互补关系,利用角平分线的定义,可以得出角之间的倍分关系;(2)求角的度数,可把一个角转化为一个与它相等的角或转化为已知角的和差.探究点三:平行线性质的探究应用如图,已知∠ABC .请你再画一个∠DEF ,使DE ∥AB ,EF ∥BC ,且DE 交BC 边与点P .探究:∠ABC 与∠DEF 有怎样的数量关系?并说明理由.解析:先根据题意画出图形,再根据平行线的性质进行解答即可.解:∠ABC 与∠DEF 的数量关系是相等或互补.理由如下:如图①,因为DE ∥AB ,所以∠ABC =∠DPC .又因为EF ∥BC ,所以∠DEF =∠DPC ,所以∠ABC =∠DEF .如图②,因为DE ∥AB ,所以∠ABC +∠DPB =180°.又因为EF ∥BC ,所以∠DEF =∠DPB ,所以∠ABC +∠DEF =180°.故∠ABC 与∠DEF 的数量关系是相等或互补.方法总结:画出满足条件的图形时,必须注意分情况讨论,即把所有满足条件的图形都要作出来.三、板书设计平行线的性质⎩⎨⎧⎭⎬⎫两直线平行,同位角相等两直线平行,内错角相等两直线平行,同旁内角互补求角的大小或说明角之间的数量关系【教学反思】平行线的性质是几何证明的基础,教学中注意基本的推理格式的书写,培养学生的逻辑思维能力,鼓励学生勇于尝试.在课堂上,力求体现学生的主体地位,把课堂交给学生,让学生在动口、动手、动脑中学数学第2课时平行线的性质和判定及其综合运用【教学目标】1.掌握平行线的性质与判定的综合运用;(重点、难点)2.体会平行线的性质与判定的区别与联系.【教学过程】一、复习引入问题:平行线的判定与平行线的性质的区别是什么?判定是已知角的关系得平行关系,性质是已知平行关系得角的关系.两者的条件和结论刚好相反,也就是说平行线的判定与性质是互逆的.二、合作探究探究点一:先用判定再用性质如图,C,D是直线AB上两点,∠1+∠2=180°,DE平分∠CDF,EF ∥AB.(1)CE与DF平行吗?为什么?(2)若∠DCE=130°,求∠DEF的度数.解析:(1)由∠1+∠DCE=180°,∠1+∠2=180°,可得∠2=∠DCE,即可证明CE∥DF;(2)由平行线的性质,可得∠CDF=50°.由DE平分∠CDF,可得∠CDE=1 2∠CDF=25°.最后根据“两直线平行,内错角相等”,可得到∠DEF的度数.解:(1)CE∥DF.理由如下:∵∠1+∠2=180°,∠1+∠DCE=180°,∴∠2=∠DCE,∴CE∥DF;(2)∵CE∥DF,∠DCE=130°,∴∠CDF=180°-∠DCE=180°-130°=50°.∵DE平分∠CDF,∴∠CDE=12∠CDF=25°.∵EF∥AB,∴∠DEF=∠CDE=25°.方法总结:根据题目中的数量找出各量之间的关系是解这类问题的关键.从角的关系得到直线平行用平行线的判定,从平行线得到角相等或互补的关系用平行线的性质,二者不要混淆.探究点二:先用性质再用判定如图,已知DF∥AC,∠C=∠D,CE与BD有怎样的位置关系?说明理由.解析:由图可知∠ABD和∠ACE是同位角,只要证得同位角相等,则CE∥BD.由平行线的性质结合已知条件,稍作转化即可得到∠ABD=∠C.解:CE∥BD.理由如下:∵DF∥AC,∴∠D=∠ABD.∵∠C=∠D,∴∠ABD=∠C,∴CE∥BD.方法总结:解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.探究点三:平行线性质与判定中的探究型问题如图,AB∥CD,E,F分别是AB,CD之间的两点,且∠BAF=2∠EAF,∠CDF=2∠EDF.(1)判定∠BAE,∠CDE与∠AED之间的数量关系,并说明理由;(2)∠AFD与∠AED之间有怎样的数量关系?解析:平行线中的拐点问题,通常需过拐点作平行线.解:(1)∠AED=∠BAE+∠CDE.理由如下:如图,过点E作EG∥AB.∵AB∥CD,∴AB∥EG∥CD,∴∠AEG=∠BAE,∠DEG=∠CDE.∵∠AED=∠AEG+∠DEG,∴∠AED=∠BAE+∠CDE;(2)同(1)可得∠AFD =∠BAF +∠CDF .∵∠BAF =2∠EAF ,∠CDF =2∠EDF ,∴∠BAE +∠CDE =32∠BAF +32∠CDF =32(∠BAF +∠CDF )=32∠AFD ,∴∠AED =32∠AFD .方法总结:无论平行线中的何种问题,都可转化到基本模型中去解决,把复杂的问题分解到简单模型中,问题便迎刃而解.三、板书设计⎭⎬⎫同位角相等内错角相等同旁内角互补判定性质两直线平行【教学反思】本节内容的重点是平行线的性质及判定的综合,直接运用了“∵”“∴”的推理形式,为学生创设了一个学习推理的环境,逐步培养学生的逻辑推理能力.因此,这一节课有着承上启下的作用,比较重要.本节内容的难点是理解平行线的性质和判定的区别,并在推理中正确地应用.由于学生还没有学习命题的概念和命题的组成,不知道判定和性质的本质区别和联系是什么,所以在教学中,应让学生通过应用和讨论,体会到如果已知角的关系,推出两直线平行,就是平行线的判定;反之,如果两直线平行,得出角的关系,就是平行线的性质《5.3.1 平行线的性质》导学案第1课时 平行线的性质【学习目标】:1.掌握两直线平行,同位角、内错角相等,同旁内角互补,并能熟练运用.2.通过独立思考,小组合作,运用猜想、推理的方法,提升自己利用图形分析问题的能力.3.激情投入,全力以赴,培养严谨细致的学习习惯.【重点】:平行线的性质.【难点】:根据平行线的性质进行推理.【自主学习】一、知识链接平行线的判定方法有哪几种?二、新知预习如图,直线a与直线b平行,直线c与它们相交.(1)量一量:用量角器量图中8个角的度数.(2)说一说:由测量的结果,你发现∠1与∠5、∠2与∠6、∠3与∠7、∠4与∠8、∠3与∠6、∠4与∠5、∠3与∠5、∠4与∠6的大小有什么关系?(3)想一想:(2)中的各对角分别是什么角?(4)议一议:两条平行直线被第三条直线所截,所得的同位角、内错角、同旁内角有什么关系?三、自学自测1.如图,直线a∥b,∠1=70°,那么∠2的度数是()A.50°B.60°C.70°D.80°2.下列说法中,(1)同位角相等,两直线平行;(2)两直线平行,同旁内角互补;(3)内错角相等,两直线平行;(4)同一平面内,垂直于同一直线的两条直线平行.其中是平行线的性质的是()A.(1)和(3)B.(2)C.(4)D.(2)和(4)【课堂探究】要点探究探究点:平行线的性质问题1:画两条平行线a//b,然后画一条截线c与a、b相交,标出如图所示的角. 度量所形成的8个角的度数,把结果填入下表:角∠1 ∠2 ∠3 ∠4度数角∠5 ∠6 ∠7 ∠8度数观察:∠1~ ∠8中,哪些是同位角?它们的度数之间有什么关系?说出你的猜想.猜想:两条平行线被第三条直线所截,同位角 .思考:再任意画一条截线d,同样度量各个角的度数,你的猜想还成立吗?问题2:如图,已知a//b,那么∠2与∠3相等吗?为什么?问题3:如图,已知a//b,那么∠2与∠4有什么关系呢?为什么?例1.如图是一块梯形铁片的残余部分,量得∠A=100°,∠B=115°,梯形的另外两个角的度数分别是多少?例2:小明在纸上画了一个∠A,准备用量角器测量它的度数时,因不小心将纸片撕破,只剩下如图的一部分,如果不能延长DC、FE的话,你能帮他设计出多少种方法测出∠A的度数?【当堂检测】1.如图,已知平行线AB、CD被直线AE所截(1)从∠1=110°可以知道∠2 是多少度吗,为什么?(2)从∠1=110°可以知道∠3是多少度吗,为什么?(3)从∠1=110°可以知道∠4 是多少度吗,为什么?2.如图,一条公路两次拐弯的前后两条路互相平行.第一次拐弯时∠B是142°,第二次拐弯时∠C是多少度?为什么?3.如图,直线 a ∥ b,直线b垂直于直线c,那么直线a垂直于直线c吗?4.如果有两条直线被第三条直线所截,那么必定有()A.内错角相等B.同位角相等C.同旁内角互补D.以上都不对5.(1)如图1,若AB∥DE , AC∥DF,试说明∠A=∠D.请补全下面的解答过程,括号内填写依据.解: ∵ AB∥DE( )∴∠A=_______ ( )∵AC∥DF( )∴∠D=______ ( )∴∠A=∠D ( )(2)如图2,若AB∥DE , AC∥DF,试说明∠A+∠D=180o.请补全下面的解答过程,括号内填写依据.解: ∵ AB∥DE( )∴∠A= ______ ( )∵AC∥DF( )∴∠D+ _______=180° ( )∴∠A+∠D=180°()6.【拓展题】如图,潜望镜中的两面镜子是互相平行放置的,光线经过镜子反射时,∠1=∠2,∠3=∠4,∠2和∠3有什么关系?为什么进入潜望镜的光线和离开潜望镜的光线是平行的?5.3.1 平行线的性质第2课时平行线的性质和判定及其综合运用【学习目标】:1.进一步熟悉平行线的判定方法和性质.2.运用平行线的性质和判定进行简单的推理和计算.【重点】:平行线的判定方法和性质.【难点】:平行线的性质和判定的综合运用.【自主学习】一、知识链接1.平行线的判定方法有哪些?2.平行线的性质有哪些?二、新知预习1.两条直线被第三条直线所截,同位角、内错角相等,或者说同旁内角互补,这句话对吗?2.自主归纳:(1)两直线平行,同位角,内错角,同旁内角 .(2)不难发现,平行线的判定,反过来就是,注意它们之间的联系和区别.(3)运用平行线的性质时,不要忽略前提条件“”,不要一提同位角或内错角,就认为是相等的.【课堂探究】一、要点探究探究点:平行线的性质和判定及其综合应用例1.如图,三角形ABC中,D是AB上一点,E是AC上一点,∠ADE=60°,∠B = 60°,∠AED=40°.(1)DE和BC平行吗?为什么?(2)∠C是多少度?为什么?做一做:已知AB∥CD,∠1 = ∠2.试说明:BE∥CF.例2.如图,AB∥CD,猜想∠A、∠P 、∠PCD的数量关系,并说明理由.例3.如图,若AB//CD ,你能确定∠B 、∠D 与∠BED 的大小关系吗?说说你的看法.【变式题1】如图,AB//CD ,探索∠B 、∠D 与∠DEB 的大小关系 .【变式题2】如图,AB ∥CD,则∠A ,∠C 与∠E 1,∠E 2,…,∠E n 有什么关系?【变式题3】如图,若AB ∥CD, 则∠A ,∠C 与各拐角之间有什么关系?EDC BA【当堂检测】1.填空:如图,(1)∠1= 时,AB∥CD.(2)∠3= 时,AD∥BC.2.直线a,b与直线c相交,给出下列条件:①∠1= ∠2;②∠3= ∠6;③∠4+∠7=180°;④∠3+ ∠5=180°,其中能判断a//b的是( )A. ①②③④ B .①③④ C. ①③ D. ④3. 有这样一道题:如图,AB//CD,∠A=100°, ∠C=110°,求∠AEC的度数. 请补全下列解答过程.解:过点E作EF//AB.∵AB//CD(已知),∴ // (平行于同一直线的两直线平行).∴∠A+∠ =180°,∠C+∠ =180°(两直线平行,同旁内角互补).又∵∠A=100°,∠C=110°(已知),∴∠ = °, ∠ = °.∴∠AEC=∠1+∠2= °+ ° = °.4.已知AB⊥BF,CD⊥BF,∠1= ∠2,试说明∠3=∠E.5.如图,EF∥AD,∠1=∠2,∠BAC=70 °,求∠AGD的度数.第五章相交线与平行线5.3.1《平行线的性质》同步练习一、单选题(共15题;共30分)1、如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20o,那么∠2的度数是( )A、30°B、25°C、20°D、15°2、如图所示BC//DE,∠1=108°,∠AED=75°,则∠A的大小是()A、60°B、33°C、30°D、23°3、两条平行直线被第三条直线所截,下列命题中正确的是()A、同位角相等,但内错角不相等B、同位角不相等,但同旁内角互补C、内错角相等,且同旁内角不互补D、同位角相等,且同旁内角互补4、一架飞机向北飞行,两次改变方向后,前进的方向与原来的航行方向平行,已知第一次向左拐50°,那么第二次向右拐()A、40°B、50°C、130°D、150°5、如图,下列说法正确的是()A、若AB//CD,则∠1=∠2B、若AD//BC,则∠B+∠BCD=180ºC、若∠1=∠2,则AD//BCD、若∠3=∠4,则AD//BC6、下列图形中,由AB//CD能得到∠1=∠2的是()A、 B、C、 D、7、下列语句:①两条不相交的直线叫做平行线;②过直线外一点有且只有一条直线与已知直线垂直;③若AB=BC,则点B是AC的中点;④若两角的两边互相平行,则这两个角一定相等;其中说法正确的个数是()A、1B、2C、3D、48、同一平面内,两条不重合的直线的位置关系是()A、平行或垂直B、平行或相交C、平行、相交或垂直D、相交9、下列生活实例中;①交通道口的斑马线;②天上的彩虹;③体操的纵队;④百米跑道线;⑤火车的平直铁轨线.其中属于平行线的有()A、1个B、2个C、3个D、4个10、如图,AB∥CD,∠A=46°,∠C=27°,则∠AEC的大小应为()A、19°B、29°C、63°D、73°11、如图,直线l1∥l2,且分别与△ABC的两边AB、AC相交,若∠A=50°,∠1=35°,∠2的度数为()A、95°B、65°C、85°D、35°12、如图,已知:AB∥CD,CE分别交AB、CD于点F、C,若∠E=20°,∠C=45°,则∠A的度数为()A、5°B、15°C、25°D、35°13、如图,l∥m,矩形ABCD的顶点B在直线m上,则∠α=()A、20°B、25°C、30°D、35°14、如图,若a∥b,则下列选项中,能直接利用“两直线平行,内错角相等”判定∠1=∠2的是()A、 B、C、 D、15、如图,如果AB∥CD,那么图中相等的内错角是()A、∠1与∠5,∠2与∠6B、∠3与∠7,∠4与∠8C、∠5与∠1,∠4与∠8D、∠2与∠6,∠7与∠3二、填空题(共5题;共10分)16、如图,已知:∠A=∠F,∠C=∠D,求证:BD∥EC,下面是不完整的说明过程,请将过程及其依据补充完整.证明:∵∠A=∠F(已知)∴AC∥________,________∴∠D=∠1________又∵∠C=∠D(已知)∴∠1=________________∴BD∥CE ________17、如图,点A,C,F,B在同一直线上,CD平分∠ECB,FG∥CD.若∠ECA为α度,则∠GFB为________ 度(用关于α的代数式表示).18、如图所示,一条公路两次拐弯后和原来的方向相同,即拐弯前、•后的两条路平行,若第一次拐角是150°,则第二次拐角为________ .19、如图,把含有60 º角的三角尺ABC的直角顶点C放在直线DE上,当AB∥DE。

人教版七年级数学下册《平行线的性质(第一课时)》教学设计

人教版七年级数学下册《平行线的性质(第一课时)》教学设计

5.3 平行线的性质(第1课时)(学生独立回忆,思考并回答问题。

)【承上启下。

】2、师:反过来:如果两条直线平行,那么同位角、内错角、同旁内角又各有什么样的关系呢?这就是我们这节课要探究的问题。

二、探究合作交流一1、画两条平行线a//b,然后画一条截线c与a、b相交,标出如图的角. 度量所形成的8个角的度数,把结果填入下表:(学生自学,独立思考并回答问题)角∠1 ∠2 ∠3 ∠4度数角∠5 ∠6 ∠7 ∠8度数2、观察、猜想两条直线被第三条直线截得的同位角有什么关系?生回答可以用度量的方法或剪切的方法来验证。

(多媒体展示)3、如果改变截线的位置,你发现的结论还成立吗?(学生分组讨论,观察、思考问题)4、如果两直线不平行,上述结论还成立吗?变式1:已知条件不变,求∠3,∠4的度数? 变式2:已知∠3 =∠4,∠1=47°,求∠2的度数? 四、走进生活1如图,是一块梯形铁片的残余部分,量∠A =100°, ∠B =115°,梯形的另外两个角分别是多少度? 【让学生独立思考,同时,通过实例,培养学生分 析问题的能力,让学生从具体的实例中发现数学问题 ,使学生懂得数学来源于实际生活,服务于实际生活。

】五、巩固提升 六、总结升华、反思提升1.回顾本节课学习的主要内容,填写下表:2.运用平行线性质的前提条件是什么?3.本节课涉及的数学思想方法有哪些?4.本节课的学习,你还有哪些收获或疑惑? 归纳:性质:线的关系←角的关系判定:角的关系→线的关系【学生对本节课进行知识梳理,巩固教学目标。

】A BCD七、板书设计:5.3平行线的性质(第1课时)。

5.3.1平行线的性质1doc

5.3.1平行线的性质1doc
情感态度与价值观
能结合一些具体内容进行说理,初步养成言之有据的习惯,从而培养逻辑性的数学思维。
重点
探索并掌握平行线的性质,能用平行线性质进行简单的推理和计算。
难点
难点:能区分平行的性质和判定,正确利用平行线的性质解决有关问题
教学流程安排
活动说明
活动目的
知识链接
回顾旧知,导入新知,出示目标
新知初探
掌握平行线的性质及符号表示
老师:出示学习目标进行解读。
做好知识的铺垫,明确本节课的学习任务。
二、新知初探:(学,展:10分钟)
活动一:平行线的性质1:两直线平行,同位角相等。(2分钟)
学生:1、动手操作,完成习题1(存在适当的误差是允许的)
2、总结性质并用符号表示。
老师:1、巡视点拨,评价激励
2、板书性质一
活动二:平行线的性质2:两直线平行,内错角相等。:8分钟)
典例分析
会使用平行线的性质进行计算
题组练习
强化平行线的性质
达标Байду номын сангаас测
检测学习成果
教学过程设计
问题与情景
设计意图
一、知识回顾(导:5分钟)
问题:1、平行线的判定方法有哪些?这些判定方法中共同点是什么?
2、由已知角相等或互补能推出两直线平行,那么由两直线平行能否推出两角相等或互补呢?
学生:书写平行线的判定方法及符号表示。
平行线的性质3:两直线平行,同旁内角互补。
学生:1、独立完成习题2、3,推理发现其他性质。
提示:以性质1为依据,结合判定的推理方法。
2、对子组互助完善答案,并展示上板。
3、展讲。要求:结合图形,思路明确,条理清晰。
老师:1、巡视指导,进行点拨。

531 第1课时 平行线的性质

531 第1课时 平行线的性质

平行线的性质1 第课时学习1.知道平行线的性质。

2.会用平行线的性质目标重点平行线的性质难点平行线的性质的应用导学师生活动过程一、情境导入我们知道,同位角相等,内错角相等,或同旁内角互补,可以判定两直线平行。

反过来,如果已知两条直线平行,那么同位角、内错角、同旁内角有怎样的数量关系?呢二、导学(一)探究性质一相,bb,再画一条直线c与直线a1.学生画图:用直尺和三角尺画出两条平行线a∥交,如下图。

测量这些角的度数,把结果填入表内:2.∠3 2 ∠4 角∠1 ∠度数3.根据测量所得数据作出猜想:图中哪些角是同位角?它们具有怎样的数量关系?在详尽分析后,写出猜想。

4.学生验证猜测:再任意画一条直线d与直线a,b相交,度量并计算各同位角的度数,你的猜想还成立吗? 4归纳平行线的性两条平行线被第三条直线所截相等简几何语言(二)探究性质二、三1.学生自学教材19页思考——例1之前2.归纳性质23 b, 且a∥ca已知: 直线、b被直线所截, b22.1=:求证∠∠1 a c证明:两条平行线被第三条直线所截,相等。

简称,几何语言:2.归纳性质33 b, 且a∥、b被直线c所截,已知: 直线a b21. o求证:∠1+∠2=180 a c:证明两条平行线被第三条直线所截,相等。

简称,几何语言:三、精讲点拔例1.如图(1),直线,,那么∠2、∠3、∠4各是多少度?巩固练习:如图,要设计一个弯形管道,求管道,那么如何设计的角度呢?巩固提高:如图(3),是一条直线,,求的度数四、学习小结这节课的收获:。

5.3.1 平行线的性质(1)

5.3.1 平行线的性质(1)
A E
B
1
C
2
F D
已知AB∥CD,∠B=130°,∠E=80° 已Байду номын сангаасAB∥CD,∠B=35°,∠E=80° 求∠D的度数
A
E C
B E D
考 考 你
如图DE∥GF,BC∥DE EF∥DC, DC∥AB 你知道∠B与∠F的关系吗?
D G C
E
F B
A
复习回顾:
平行线的判定方法 平行线的性质
同位角相等, 两直线平行. 两直线平行, 同位角相等. 两直线平行, 内错角相等. 两直线平行, 同旁内角互补.
∴ AE∥BC
(内错角相等,两直线平行)
6.如图,已知∠ABC+∠C=180°,BD 平分∠ABC,∠CBD与∠D相等吗?请说明 理由.
A B
D
C
7.如图, ∠1= ∠2,∠3=65°.
求∠4的度数.
a
1 2 3 4
b
c
d
∵ AD//BC (已知) A ∴∠2=∠3
(两直线平行,内错角相等).
B
5.已知:如图∠1=∠2, ∠A= ∠C,说明:AE∥BC
(已知) 解:∵ ∠1=∠2 ∴AB//CD (同位角相等,两直线平行) ∴ ∠ 3= ∠ A (两直线平行,同位角相等) ∵ ∠A=∠C (已知) (等量代换)
∴ ∠ 3= ∠ C
如图,一条公路两次转弯后, 和原来的方向相同.如果第一 O 次拐的角是36 ,第二次拐 的角是多少度?为什么?
如图,在一条公路两侧铺设 平行管道,如果公路一侧铺设 o 的角度为120 ,那么为了使管 道对接,别一侧应以什么角度 铺设?为什么?
如图,DE∥BC,DF∥AC 试写出图中和∠C相等的角

平行线的性质(1)-

平行线的性质(1)-



•B
41°
A•
如图,F在直线DF上,B在直线AC上, 若∠ AGB= ∠ EHF, ∠ C= ∠ D 则∠ A= ∠ F,为什么?
D
E
F
H
G
A
BC
本节小 结
同位角相等 内错角相等 同旁内角互补
判定 性质
两直线平 行
再见
即:两直线平行,同位角相等
性质2 两条平行线被第三条直线所截,内错角相等
即:两直线平行,内错角相等
性质3 两条平行线被第三条直线所截,同旁内角互补
即:两直线平行,同旁内角互补
; 宠物DR 宠物DR ;
过程给了它缤纷;生命本没有芳香,过程给了它花香;生命本是一朵白色的纸花,过程给了它活力。法布尔的《昆虫记》告诉我们:生命的意义在于去发现、去挖掘、去体现。生命是美丽的,生命的美丽,永远是展现在她的进取之中,就像大树的美丽,是展现在它负势向上高耸入云的蓬 勃生机中;像雄鹰的美丽,是展现在它搏风击雨如苍天之魂的翱翔中;像江河的美丽,是展现在它波涛汹涌一泻千里的奔流中……法布尔的《昆虫记》也告诉我们我们的生命不是天地间的过客,也不是时光的影子,我们的生命是自然的花朵,是岁月的果实,我们是宇宙间充满激情、梦想、力 量和智慧的创造者,我们正以自己的奋斗展现着人类生命的美丽。法布尔的《昆虫记》还告诉我们生命是伟大的,生命给予我们一切,生命让世界变得更美丽。有了生命才有了生活,有了生活才有了生命,生命让生活充满活力,我们要珍惜生命、赞叹生命、感谢生命。 纵观历史,我们可 以发现,历史上那些伟人、那些为人们所怀念和称颂的人、那些被认为实现了生命意义的人,都是对社会发展做出了极大贡献的人;而历史上那些坏人之所以是坏人,就是因为他们被认为是对社会发展起到破坏作用的人。揭开中国历史的篇章,有多少人的生命
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新人教版七年级数学
5.3.1平行线的性质---教学设计
灵宝市第三初级中学
刘婉平
5.3.1平行线的性质(第1课时)
河南省灵宝市第三初级中学刘婉平
教学目标
1.经历观察、操作、想像、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力。

2.经历探索直线平行的性质的过程,掌握平行线的三条性质,并能用它们进行简单的推理和计算.
3.培养学生言之有理、言之有据的良好品质,培养学生探索数学问题的兴趣。

重点、难点
重点:探索并掌握平行线的性质,能用平行线性质进行简单的推理和计算.
难点:能区分平行线的性质和判定,平行线的性质与判定的混合应用.
教学方法
创设情境—自主探索——引导点拨——巩固达标
教学过程
一、创设情镜,引入课题。

1.让学生回顾平行线的判定方法。

2.设问:根据同位角、内错角、同旁内角的关系可以判定两条直线的位置关系,那么,
如果两条直线平行,同位角、内错角、同旁内角之间有什么关系呢?
3.提出本节课的课题:平行线的性质
二、探究新知
(一)学生自主学习
1. 学生画图活动:用直尺和三角尺画出两条平行线a∥b,再画一条截线c与直线a、b相
交,标出所形成的八个角(如课本P21图5.3-1).
3. 学生根据测量所得数据作出猜想.
图中哪些角是同位角?它们具有怎样的数量关系?
图中哪些角是内错角?它们具有怎样的数量关系?
图中哪些角是同旁内角?它们具有怎样的数量关系?
在详尽分析后,让学生写出猜想.并展示给同学们.
(二)学生合作学习
1. 学生验证猜测.
学生活动:再任意画一条截线d,同样度量并计算各个角的度数,你的猜想还成立吗?
2. 学生归纳平行线的性质,教师板书.
c b a
4
3
2 1
平行线具有性质:
性质1:两条平行线被第三条直线所截,同位角相等
简称为:两直线平行, 同位角相等.
符号语言:因为a∥b,
所以∠1=∠2
性质2:两条平行线被第三条直线所截,内错角相等
简称为:两直线平行, 内错相等.
符号语言:因为a∥b,
所以∠2=∠3,
性质3:两条直线按被第三条线所截,同旁内角互补
简称为:两直线平行, 同旁内角互补.
符号语言:因为a∥b,
所以∠2+∠4=180°,
3. 小组讨论:平行线的性质与平行线判定的区别.
平行线的性质平行线的判定
因为a∥b, 因为∠1=∠2,
所以∠1=∠2 所以a∥b.
因为a∥b, 因为∠2=∠3,
所以∠2=∠3, 所以a∥b.
因为a∥b, 因为∠2+∠4=180°,
所以∠2+∠4=180°, 所以a∥b.
学生交流后,师生归纳:两者的条件和结论正好相反:
(1)由角的数量关系(指同位角相等,内错角相等,同旁内角互补), 得出两条直线平行的论述是平行线的判定,这里角的关系是条件,两直线平行是结论.
(2)由已知的两条直线平行得出角的数量关系(指同位角相等,内错角相等, 同旁内角互补)的论述是平行线的性质,这里两直线平行是条件,角的关系是结论.
4. 教师点拨:平行线三条性质之间的关系.
教师:大家能根据性质1,推出性质2成立的道理吗?
结合上图,教师启发分析:考察性质1、性质2的结论发生了什么变化? 学生回答∠1换成∠3,教师再问∠1与∠3有什么关系?并完成说理过程,教师纠正学生错误,规范地给出说理过程.
因为a∥b
所以∠1=∠2(两直线平行,同位角相等);
又因为∠3=∠1(对顶角相等)
所以∠2=∠3.
教师说明:这是有两步的说理,第一步推理根据平行线性质1,第二步推理的条件不仅有∠1=∠2,还有∠3=∠1.∠2=∠3是根据等式性质.根据等式性质得到的结论可以不写理由.
学生仿照以下说理,说出如何根据性质1得到性质3的道理.
三.新知应用:
1.试一试:(学生合作)如图,AB∥CD,AC∥BD,请你证明:∠1=∠2
C B A F E
D C B A D
C B A 1分析: (1) 小组讨论。

(2) 各个小组发言。

(3) 学生展示。

证明:∵AB ∥CD (已知)
∴∠2=∠3 (两直线平行,内错角相等) ∵AC ∥BD (已知)
∴∠1=∠3 (两直线平行,同位角相等) ∴ ∠1=∠2 (等量代换)
2.例 (教材20)如图是一块梯形铁片的残余部分,量得∠A=100°,∠B=115°, 梯形另外两个角分别是多少度? 分析: ①梯形这条件说明 ∥ 。

②∠A 与∠D 、∠B 与∠C 的位置关系是 ,数量关系是 。

解题过程学生展示在黑板上
3.练一练:教材21页练习1、2
四、课堂小结
1. 本节主要学习了平行线的三条性质。

2. 主要用到的思想方法是转化思想。

3. 注意的问题平行线的判定方法与性质的区别。

五、达标检测:
(一)选择题: 1.如图1所示,AB ∥CD,则与∠1相等的角(∠1除外)共有( )
A.5个
B.4个
C.3个
D.2个
(1) (2) (3)
2.如图2所示,CD ∥AB,OE 平分∠AOD,OF ⊥OE,∠D=50°,则∠BOF 为( ) A.35° B.30° C.25° D.20°
3.∠1和∠2是直线AB 、CD 被直线EF 所截而成的内错角,那么∠1和∠2 的大小关系是( ) A.∠1=∠2 B.∠1>∠2; C.∠1<∠2 D.无法确定
4.一个人驱车前进时,两次拐弯后,按原来的相反方向前进, 这两次拐弯的角度是( ) A.向右拐85°,再向右拐95°; B.向右拐85°,再向左拐85° C.向右拐85°,再向右拐85°; D.向右拐85°,再向左拐95°
(二)填空题: 1.如图3所示,AB ∥CD,∠D=80°,∠CAD:∠BAC=3:2,则∠CAD=_______,∠ACD=•_______. 2.如图4,若AD ∥BC,则∠______=∠_______,∠_______=∠_______, ∠ABC+∠_______=180°; 若DC ∥AB,则∠______=∠_______, ∠________=∠__________,∠ABC+∠_________=180°.
D C B
A
N
M G F E D
C B
A 876
54321D C
B A
G
F E D C B A 1
2
(4) (5) (6)
3.如图5,在甲、乙两地之间要修一条笔直的公路, 从甲地测得公路的走向是南偏西56°,甲、乙两地同时开工,若干天后公路准确接通, 则乙地所修公路的走向是_________,因为____________.
4.(2002.河南)如图6所示,已知AB ∥CD,直线EF 分别交AB,CD 于E,F,EG •平分∠BEF,若∠1=72°,则∠2=_______. (三)解答题 1.如图,AB ∥CD ,∠1=102°,求∠2、∠3、∠4、∠5的度数,并说明根据?
2.如图,EF 过△ABC 的一个顶点A ,且EF ∥BC ,如果∠B =40°,∠2=75°,那么∠1、∠3、∠C 、∠BAC +∠B +∠C 各是多少度,并说明依据?
六、拓展延伸
如图所示,把一张长方形纸片ABCD 沿EF 折叠,若∠EFG=50°,求∠DEG 的度数
七、作业
.课本P25.1,2,3,4,6.。

相关文档
最新文档