微积分基础知识_图文.ppt

合集下载

微积分基础知识PPT演示课件

微积分基础知识PPT演示课件

A lim f ( i )xi
0 i 1
6
4)无穷级数
1 1 1 1 1 lim n n 2 2 4 2 4 1 1 (1 n ) 2 1 lim 2 n 1 1 2
1 2n
7
具备的数学素质:
从实际问题抽象出数学模型的能力
1. 分析基础: 函数 , 极限, 连续 2. 微积分学: 一元微积分 (上册) 多元微积分 (下册) 3. 向量代数与空间解析几何 4. 无穷级数 5. 常微分方程
2
三、如何学习高等数学 ?
1. 认识高等数学的重要性, 培养浓厚的学习兴趣.会运用 数学能力。
一门科学, 只有当它成功地运用数学时, 才能达到真正完善的地步 .
y a0 a1 x an x 为初等函数
n
y a0 a1x an x 不是初等函数
n
y e sin x 1
x 2
x y x 1 y x, x,
x0 不是初等函数 x0 x 0 可表为 2 故为初等函数. y x , x0 20
1. 定义 设数集 D,若存在对应法则 f ,使对 x D , 存在唯一确定 y M R 与之对应,则称 f 是定义在数集D 上的函数。记作 f : D M ( x | y ). 函数 f 在点 x 的函数值,记为 f ( x ) , 全体函数值的集合称为函数 f 的值域,记作 f ( D) 。 即 f ( D) y | y f ( x), x D 。
o
x
-1
x sgn x x
13
(2) 取整函数 y=[x]
[x]表示不超过 x 的最大整数 4 3 2 1 o

微积分讲解ppt课件

微积分讲解ppt课件

多元函数的表示 方法
多元函数可用记号 f(x1,x2,…,xn)或z=f(x,y) 表示。
多元函数的定义 域
使多元函数有意义的自 变量组合(x1,x2,…,xn) 的集合。
多元函数的值域
多元函数所有值的集合 。
偏导数与全微分
偏导数的定义
设函数z=f(x,y)在点(x0,y0)的某一邻域内有定义,当y固定在y0而x在x0处有增量Δx时,相应地函数有增量 f(x0+Δx,y0)-f(x0,y0)。如果Δz与Δx之比当Δx→0时的极限存在,那么此极限值称为函数z=f(x,y)在点(x0,y0)处对 x的偏导数。
齐次方程法
通过变量替换,将齐次方程转化为可分离变 量的形式
一阶线性微分方程法
利用积分因子,将方程转化为可积分的形式
二阶常微分方程解法
可降阶的二阶微分方程
通过变量替换或分组,将方程降为一阶微分方 程求解
二阶线性微分方程法
利用特征根的性质,求解二阶线性常系数齐次 和非齐次微分方程
常系数线性微分方程组法
在经济学中的应用
边际分析
通过求导计算边际成本、边际收益等,为企业的决策 提供依据。
弹性分析
研究价格、需求等经济变量之间的相对变化关系,微 积分可用于计算弹性系数。
最优化问题
在资源有限的情况下,通过微积分求解最大化或最小 化某一经济指标的问题。
在工程学中的应用
结构力学
分析建筑、桥梁等结构的受力情况和稳定性,微积分可用 于求解复杂的力学方程。
通过消元法或特征根法,求解常系数线性微分方程组
05
多元函数微积分
多元函数的基本概念
多元函数的定义
设D为一个非空的n元有 序数组的集合,f为某一 确定的对应规则。若对 于每一个有序数组 (x1,x2,…,xn)∈D,通过 对应规则f,都有唯一确 定的实数y与之对应, 则称对应规则f为定义在 D上的n元函数。

微积分简介 PPT课件

微积分简介 PPT课件

(注意:v不为0)
设y=f(v),v=g(x)均有导数,则
y '(x) f '(v).g '(x)
dy dy . dv dx dv dx
10
例3. y tan x,求y
解:
y'


sin x cos x


(sin
x) 'cos x sin cos2 x
x(cos
x) '
h

h0

1 2
gt
2
2
二、极限
当自变量x无限接近于某一数值x0(记作x x0) 时,函数f(x)的数值无限趋于某一确定的数值a,则
a叫做x x0时函数f(x)的极限值,记作
lim f (x) a
xx0
例2:
lim(x2 2x 3) ?
x0
lim arctan x
当取 x0 0 时,有近似公式
f (x) f (0) f '(0)x
15
当x为小量时,可得到一系列的近似公式
(1 x)N 1 Nx 1 x 1 1 x 2
ex 1 x ln(1 x) x sin x x; tan x x
16
一、定积分
积分
物体做匀速直线运动,路程=速度X时间,即s=v x t,
f (x) f '(x)
则在x=a到x=b区间内f(x)对x的定积分等于f(x)在这区 间内的增量,即
b
a f (x)dx f(b) f(a)
其中f(x)称为原函数。积分是导数的逆运算。
19
例1. 求 2 x3dx 0
2

《微积分》PPT课件

《微积分》PPT课件

公式.
微积分Ⅰ
第九章
重积分
10
说明: ① 使用公式 (1) 必须是 X- 型域, 使用公式 (2) 必 须是 Y - 型域. ② 若积分区域既是 X - 型区域又是 Y- 型区域,
则有
f ( x, y ) d x d y
dx
a
d
y
y 2 ( x)
D b
x 1 ( y)
微积分Ⅰ
第九章
重积分
6
在 [a, b] 上任意取定一点 x0, 作平行于 yOz 面的平
面 x = x0, 则该平面截曲顶柱体所得的截面是一个以区 间 [ 1 (x0), 2 (x0) ] 为底、曲线 z = f (x0 , y) 为曲边的 曲边梯形.
z
z f ( x, y)
y
A( x0 )
2
R
它的底为 D {( x, y ) | 0 y R2 x 2 , 0 x R},
微积分Ⅰ
第九章
重积分
23
∴所求体积为
8
R
0
R 2 x 2 dx
R2 x 2
0
dy
8 ( R 2 x 2 )dx
0
R
16 3 R . 3
微积分Ⅰ
第九章
重积分
24
1 x
y x

1
微积分Ⅰ
第九章
重积分
21
说明: ① 计算二重积分时, 选择积分次序是比较重要的 一步, 积分次序选择不当, 可能会使计算繁琐, 甚至无
法计算. 一般地, 既要考虑积分区域 D 的形状, 又要考
虑被积函数 f (x, y) 的特性. ② 应遵循 “能积分, 少分快, 计算简” 的原则.

微积分的基本公式PPT幻灯片课件

微积分的基本公式PPT幻灯片课件

一个原函数, 则
b a
f
(x)d x

F ( x)
b a

F (b)
于是
0 | F(x) | |
x x
f (t)dt |
xx
| f (t) | dt Mx
x
x
由夹逼定理及点 x 的任意性, 即可得 F (x) C([a,b]) .
7
定理1说明: 定义在区间[a,b] 上的 积分上限函数是连续的.
积分上限函数是否可导?
8
由 F(x x) F(x)
xx
f (t)dt,
x
如果 f (x) C([a,b]), 则由积分中值定理, 得
xx
F(x x) F(x) x f (t)dt f ( )x ,
( 在 x 与 x x 之间)
故 lim F (x x) F (x) lim f ( )x
x0
推论2 基本初等函数在其定义域内原函数存在.
推论3 初等函数在其有定义的区间内原函数存在.
17
2. 微积分基本公式
如果 f (x) C([a,b]), 则
x
f (t)dt
为 f (x) 在[a,b] 上
a
的一个原函数.
若已知 F (x) 为 f (x) 的原函数, 则有
x
a f (t)dt F (x) C0.
( x)
F(x) ( a f (t)dt ) f ((x)) (x) .
14
例3
e1 t2 d t
计算 lim x0
cos x
x2
.

e1 t2 d t
cos x et2 d t

微积分讲解ppt课件

微积分讲解ppt课件

3.2.1 原函数和不定积分的概念
一、案例 二、概念和公式的引出
一、案例[路程函数]
已知物体的运动方程为 s(t) t2 ,则其速度为 v(t) s(t) (t 2 ) 2t
这里速度2t是路程t2的导数,反过来,路程t2又称为速 度2t的什么函数呢?若已知物体运动的速度v(t),又如 何求物体的运动方程s(t)呢?
f xdx f x C 或 df x f x C
3.2.2 基本积分表
一、案例 二、概念和公式的引出
一、案例[幂函数的不定积分]
因为

x 1

1

x
x 1
1 是 x 的一个原函数
于是
x dx x 1 C
32微积分基本公式321原函数和不定积分的概念322基本积分表323微积分基本公式321原函数和不定积分的概念一案例二概念和公式的引出一案例路程函数已知物体的运动方程为又称为速度2t的什么函数呢
3.2 微积分基本公式
3.2.1 原函数和不定积分的概念 3.2.2 基本积分表 3.2.3 微积分基本公式
1
1
类似地, 由基本初等函数的求导公式,可以写出与之对应的不定积分公式.
二、概念和公式的引出
1.基本积分表
(1)
kdx kx C ( k 为常数)
(2) x dx x 1 C
1
1
(3)

1 x
dx

ln
x

C
(4) a xdx a x C
即两个函数和(差)的定积分等于它们定积分的和(差). 性质1可推广到有限个函数的情形.
(2) 性质2 kf xdx k f xdx k为常数

大学微积分课件幻灯片版

大学微积分课件幻灯片版

不定积分的性质
包括线性性质、积分区间可加性 、常数倍性质和积分与微分互逆 性质。
基本积分公式与法

包括幂函数、三角函数、指数函 数、对数函数等基本初等函数的 不定积分公式,以及分部积分法 、换元积分法等基本积分法则。
定积分的概念与性质
定积分的定义
定积分是求一个函数在闭区间上的积分值,表达形式为 ∫[a,b]f(x)dx,表示函数f(x)在区间[a,b]上的面积。
根据未知函数及其导数的次数划 分
一阶微分方程及其解法
可分离变量法
通过变量分离,将微分方程转化为可积分的 形式
齐次方程法
通过变量替换,将齐次方程转化为可分离变 量的形式
一阶线性微分方程法
利用积分因子,将一阶线性微分方程转化为 可积分的形式
二阶微分方程及其解法
二阶线性微分方程
具有常系数的二阶线性微分方程的通解结构
振动与波动方程
描述振动与波动现象的二阶线性微分方程
欧拉方程
通过变量替换,将欧拉方程转化为二阶线性微分方程进行求解
高阶微分方程的降阶法
通过变量替换或积分法,将高阶微分方程降阶为一阶或二阶微分方程进行求解
05
多元函数微积分学
多元函数的基本概念
01 02
多元函数的定义
设$D$为一个非空的$n$ 元有序数组的集合, $f$为某一 确定的对应规则。若对于每一个有序数组$( x1,x2,…,xn)∈D$,通过对应规则$f$,都有唯一确定的实 数$y$与之对应,则称对应规则$f$为定义在$D$上的$n$ 元函数。
三重积分的定义
设三元函数$f(x,y,z)$在可求体积的有界闭区域$Omega$上连续,将$Omega$任意分成$n$个小闭区域$Delta V_1,Delta V_2,…,Delta V_n$,记各小闭区域的直径中的最大值为$lambda $。若不论对$Omega $如何分割 及如何选取点$(xi_i,eta_i,zeta_i)$,只要当$lambda to 0 $时,和式$sum_{i=1}^{n} f(xi_i,eta_i,zeta_i)Delta V_i $的极限存在且唯一,则称此极限为函数 $f(x,y,z) $在区域 $Omega $上的三重积分。

微积分基本定理_图文_图文

微积分基本定理_图文_图文
微积分基本定理_图文_图文.ppt
【课标要求】 1.了解微积分基本定理的内容与含义. 2.会利用微积分基本定理求函数的定积分. 【核心扫描】 1.用微积分基本定理求函数的定积分是本课的重点. 2.对微积分基本定理的考查常以选择、填空题的形式出现.
1.微积分基本定理
自学导引
连续
f(x)
F(b)-F(a)

(1)用微积分基本定理求定积分的步骤: ①求f(x)的一个原函数F(x); ②计算F(b)-F(a). (2)注意事项: ①有时需先化简,再求积分; ②f(x)的原函数有无穷多个,如F(x)+c,计算时,一般只写一个最 简单的,不再加任意常数c.
【变式1】 求下列定积分:
求较复杂函数的定积分的方法: (1)掌握基本初等函数的导数以及导数的运算法则,正确求解被积 函数的原函数,当原函数不易求时,可将被积函数适当变形后求 解,具体方法是能化简的化简,不能化简的变为幂函数、正、余 函数、指数、对数函数与常数的和与差. (2)精确定位积分区间,分清积分下限与积分上限.
定积分的应用体现了积分与函数的内在联系,可以通过 积分构造新的函数,进而对这一函数进行性质、最值等方面的考 查,解题过程中注意体会转化思想的应用.
【题后反思】 (1)求分段函数的定积分时,可利用积分性质将其表 示为几段积分和的形式; (2)带绝对值的解析式,先根据绝对值的意义找到分界点,去掉绝 对值号,化为分段函数; (3)含有字母参数的绝对值问题要注意分类讨论.
2.被积函数为分段函数或绝对值函数时的正确处理方式 分段函数和绝对值函数积分时要分段去积和去掉绝对值符
号去积.处理这类积分一定要弄清分段临界点,同时对于定积分 的性质,必须熟记在心.
题型一 求简单函数的定积分 【例1】 计算下列定积分
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档