2022年九年级中考数学复习专题九 函数的实际应用

合集下载

2022-2023学年人教版九年级数学上学期压轴题汇编专题04 一元二次方程的实际应用(含详解)

2022-2023学年人教版九年级数学上学期压轴题汇编专题04 一元二次方程的实际应用(含详解)

2022-2023学年人教版数学九年级上册压轴题专题精选汇编专题04 一元二次方程的实际应用考试时间:120分钟 试卷满分:100分姓名:__________ 班级:__________考号:__________ 题号 一二三总分得分评卷人 得 分一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2022·肥西模拟)在肥西悬主城区,共享单车为市民出行带来了方便,某单车公司第一个月投放1000辆单车,计划第三个月投放单车数量比第一个月多690辆.设该公司第二、三两个月投放单车数量的月平均增长率为x ,则所列方程正确的为( ) A .()2100011000690x +=+ B .()210001690x += C .()269011000x +=D .()1000121000690x +=+2.(2分)(2022·兖州模拟)欧几里得的《原本》记载,形如22x ax b +=的方程的图解法是:画Rt ABC ∆,使90ACB ∠=,2a BC =,AC b =,再在斜边AB 上截取2aBD =.则该方程的一个正根是( )A .AC 的长B .AD 的长C .BC 的长D .CD 的长3.(2分)(2022八下·余杭月考)某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有 x 名同学,根据题意,列出方程为( ) A .()x x 11035+= B .()1x x 110352+= C .()x x 11035-=D .()1x x 110352-=4.(2分)(2022八下·杭州月考)某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x 名同学,根据题意,列出方程为( )A .x(x +1)=1035B .x(x -1)=1035C .12 x(x +1)=1035 D .12x(x -1)=1035 5.(2分)()某厂家1~5月份的口罩产量统计如图所示,设从2月份到4月份,该厂家口罩产量的平均月增长率为x ,则根据题意可列方程为( )A .180(1-x )2=461B .180(1+x )2=461C .368(1-x )2=442D .368(1+x )2=4426.(2分)(2018九上·孝感月考)如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m 2.若设道路的宽为 xm ,则下面所列方程正确的是( )A .()()32203220570x x --=⨯-B .322203220570x x +⨯=⨯-C .2322202570x x x +⨯-=D .()()32220570x x --=7.(2分)某农户种植花生,原来种植的花生亩产量为200千克,出油率为50%(即每100千克花生可加工成花生油50千克).现在种植新品种花生后,每亩收获的花生可加工成花生油132千克,其中花生出油率的增长率是亩产量的增长率的12.则新品种花生亩产量的增长率为( ) A .20%B .30%C .50%D .120%8.(2分)(2020九上·遵化期末)已知 a , b , c 是1,3,4中的任意一个数( a , b ,c 互不相等),当方程 20ax bx c -+= 的解均为整数时,以1,3和此方程的所有解为边长能构成的多边形一定是( ) A .轴对称图形 B .中心对称图形C .轴对称图形或中心对称图形D .非轴对称图形或中心对称图形9.(2分)(2022八下·杭州开学考)现有x 支球队参加篮球比赛,比赛采用单循环制即每个球队必须和其余球队比赛一场,共比赛了45场,则下列方程中符合题意的是( ) A .()11452x x -= B .()11452x x +=C.x(x﹣1)=45 D.x(x+1)=4510.(2分)一个两位数,个位数字比十位数字小4,且个位数字与十位数字的平方和比这个两位数小4,设个位数字为x,则方程为()A.x2+(x+4)2=10(x+4)+x-4 B.x2+(x+4)2=10x+x-4-4C.x2+(x-4)2=10(x+4)+x-4 D.x2+(x-4)2=10x+(x-4)-4评卷人得分二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2021九上·临江期末)某航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了10条航线,则这个航空公司共有个飞机场12.(2分)(2021九上·太原期中)学校秋季运动会上,九年级准备队列表演,一开始排成8行12列,后来又有84名同学积极参加,使得队列增加的行数比增加的列数多1.现在队列表演时的列数是.13.(2分)(2021九上·阆中期中)某校九年级举行篮球赛(每两班比赛一场),共比赛了15场,则九年级共有个班.14.(2分)(2021九上·海安月考)某学习小组全体同学都为本组其他人员送了一张新年贺卡,若全组共送贺卡20张,设这个小组的同学共有x人,可列方程:.15.(2分)(2021九上·茂南月考)如图,在△ABC中,∠B=90°,AB=6cm,点P从点A开始沿AB向B 以1cm/s的速度移动,点Q从点B开始沿BC向C点以2cm/s的速度移动,如果P,Q分别从A,B同时出发,秒后△PBQ的面积等于8cm2.16.(2分)(2021九上·厦门期中)一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,若主干、支干和小分支的总数是31,每个支干长出个小分支.17.(2分)(2021九上·安义月考)在2021年10月的日历表上可以用一个方框圈出4个数(如图所示),若圈出的四个数中,最小数与最大数的乘积为180,则这个最小数为.18.(2分)(2021·甘井子模拟)在设计人体雕像时,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,可以增加视觉美感按此比例,如果雕像的高为3m,那么它的下部应设计为多高?设它的下部设计高度为xm,根据题意,可列方程为.19.(2分)(2021八下·宁波期中)某校准备组织一次篮球比赛,参赛的每两个队之间都要比赛一场,赛程计划安排7天,每天安排4场比赛,那么共有个队参加.20.(2分)如图,点A为x轴负半轴上一点,点B为x轴正半轴上一点,OA,OB(OA<OB)的长分别是关于x的一元二次方程x2﹣4mx+m2+2=0的两根,C(0,3),且S△ABC=6,则∠ABC的度数为.评卷人得分三.解答题(共10小题,满分60分)21.(4分)(2022·大连模拟)第24届北京冬奥会冰壶混合双人循环赛在冰立方举行.参加比赛的每两队之间都进行一场比赛,共要比赛45场,共有多少个队参加比赛?22.(6分)(2022八下·杭州月考)某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。

专题05二次函数的实际应用(含解析)2023年秋人教版数学九年级上册期中专题复习

专题05二次函数的实际应用(含解析)2023年秋人教版数学九年级上册期中专题复习

专题05 二次函数的实际应用图形问题1.某校九年级数学兴趣小组在社会实践活动中,进行了如下的专题探究;一定长度的铝合金材料,将它设计成外观为长方形的框,在实际使用中,如果竖档越多,窗框承重就越大,如果窗框面积越大,采光效果就越好.小组讨论后,同学们做了以下试验:请根据以上图案回答下列问题:(1)在图案①中,如果铝合金材料总长度(图中所有黑线的长度和)为,当为,窗框的面积是______;(2)在图案②中,如果铝合金材料总长度为,试探究长为多少时,窗框的面积最大,最大为多少?(3)经过不断的试验,他们发现:总长度一定时,竖档越多,窗框的最大面积越小,试验证:当总长还是时,对于图案③的最大面积,图案④不能达到这个面积.2.工匠师傅准备从六边形的铁皮中,裁出一块矩形铁皮制作工件,如图所示.经测量,,与之间的距离为2米,米,米,6m AB 1m ABCD 2m 6m AB ABCD 6m ABCDEF AB DE ∥AB DE 3AB =1AF BC ==,.,,是工匠师傅画出的裁剪虚线.当的长度为多少时,矩形铁皮的面积最大,最大面积是多少?3.某建筑物的窗户如图所示,上半部分是等腰三角形,,,点、、分别是边、、的中点;下半部分四边形是矩形,,制造窗户框的材料总长为16米(图中所有黑线的长度和),设米,米.(1)求与之间的函数关系式,并求出自变量的取值范围;(2)当为多少时,窗户透过的光线最多(窗户的面积最大),并计算窗户的最大面积.图形运动问题4.如图(单位:cm ),等腰直角以2cm/s 的速度沿直线l 向正方形移动,直到与重合,当运动时间为x s 时,与正方形重叠部分的面积为y cm 2,下列图象中能反映y 与x 的函数关系的是( )90A B ∠=∠=︒135C F ∠=∠=︒MH H G GN MH MNGH ABC V AB AC =:3:4AF BF =G H F AB AC BC BCDE BE IJ MN CD ∥∥∥BF x =BE y =y x x x EFG V EF BC EFG V ABCD. .. ..如图,一个边长为的菱形,过点作直线沿线段向右平移,直至经过点时停止,在平移的过程中,若菱形在直线部分面积为,则与直线之间的函数图象大致为( )A . . ..的边长为,点O 为正方形的中心,出发沿运动,连接的运动速度为260︒A l AB ⊥AB l y y l 2cm BC 2cm/s....销售利润问题.某公司经销一种绿茶,每千克成本为元,市场调查发现,在一段时间内,销售量(千克)随销售单价x(元/千克)的变化而变化,具体关系如图所示,设这种绿茶在(1)求y与x的函数关系式;(2)如果物价部门规定这种绿茶的销售单价不得高于得2000元的销售利润,销售单价应定为多少元?(3)求销售单价为多少时销售利润最大?最大为多少元?8.某公司生产的某种时令商品每件成本为投球问题水平距离竖直高度(1)根据题意,填空:________________;(1)某运动员第一次发球时,测得水平距离与竖直高度水平距离竖直高度①根据上述数据,求抛物线解析式;增长率问题(m)x 0123(m)y 0 3.567.5=a x /mx 02461112/m y 2.38 2.62 2.7 2.62 1.721.4213.据省统计局公布的数据,合肥市2021年第一季度总值约为2.4千亿元人民币,若我市第三季度总值为千亿元人民币,平均每个季度增长的百分率为,则关于的函数表达式是( )A. B . C . D . 14.某厂家2022年2月份生产口罩产量为180万只,4月份生产口罩的产量为461万只,设从2月份到4月份该厂家口罩产量的平均月增长率为x ,根据题意可得方程( )A .B .C .D .15.进入夏季后,某电器商场为减少库存,对电热取暖器连续进行两次降价.若设平均每次降价的百分率是,降价后的价格为元,原价为元,则y 与之间的函数关系式为( )A .B .C .D .16.目前,随着新冠病毒毒力减弱,国家对新冠疫情防控的政策更加科学化,人们对新冠病毒的认识更加理性.佩戴口罩可以阻断传播途径,在一定程度上能够有效防止感染新型冠状病毒肺炎.某药品销售店将购进一批A 、B 两种类型口罩进行销售,A 型口罩进价m 元每盒,B 型口罩进价30元每盒,若各购进m 盒,成本为1375元.(1)求A 型口罩的进价为多少元?(2)设两种口罩的售价均为x 元,当A 型口罩售价为30元时,可销售60盒,售价每提高1元,少销售5盒;B 型口罩的销量y (盒)与售价x 之间的关系为;若B 型口罩的销售量不低于A 型口罩的销售量的10倍,该药品销售店如何定价?才能使两种口罩的利润总和最高.17.重庆潼南某一蔬菜种植基地种植的一种蔬菜,它的成本是每千克元,售价是每千克元,年销量为万千克多吃绿色蔬菜有利于身体健康,因而绿色蔬菜倍受欢迎,十分畅销.为了获得更好的销量,保证人民的身体健康,基地准备拿出一定的资金作绿色开发,根据经验,若每年投入绿色开发的资金万元,该种蔬菜的年销量将是原年销量的倍,它们的关系如下表:GDP GDP y GDP x y x ()2.412y x =+()22.41y x =-()22.41y x =+()()2.4 2.41 2.41y x x =++++()21801461x -=()21801461x +=()24611180x -=()24611180x +=x y a x ()12y a x =-()21y a x =-()21y a x =-()21y a x =-3005y x =-2310.X m参考答案:,,米,四边形是平行四边形,又,90A B ∠=∠=︒Q AF BC ∴P 1AF BC ==Q ∴ABCF 90A B ∠=∠=︒Q重叠部分为三角形,面积如图,当时,重叠部分为梯形,面积∴图象为两段二次函数图象,第一段开口向上,第二段开口向下,函数的最大值为纵观各选项,只有C 选项符合.y =510x <≤12y =⨯,图象开口向上的抛物线的一部分;②当时,如图,③当时,如图,故选:.【点睛】此题考查了动点图象问题,涉及到解直角三角形等知识,解题的关键是不同取值范围内,图象和图形的对应关系,进而求解.6.D21332y x x x =⨯=12x <≤()1133132y x =⨯⨯+-=23x <≤()23323322y x =⨯--=-A∴,由题得,,∴,∵,由题得,∴.故选D .【点睛】本题考查了动点问题的函数图象的应用,求出分段函数的解析式是解题的关键.PE AD ⊥cm BQ t =cm AE PE t ==2cm QE AB ==cm BP BQ t ==212s t =(3)根据,即可作答.【详解】(1)解:设y 与x 的函数关系式为:,把,代入解析式得:,解得,∴y 与x 的函数关系式为;(2)根据题意,得;当时,,解得:,,∵这种商品的销售价不得高于90元/千克,∴,∴应将销售价定为70元/千克;(3),∵,∴当销售单价时,销售利润w 的值最大,最大值为2450元.【点睛】本题考查了二次函数的应用,属于常考题型,正确理解题意、得出二次函数的关系式是解题的关键.8.(1)(2)第18天的日销售利润最大为450元(3),1500元【分析】(1)从表格可看出每天比前一天少销售2件,所以判断为一次函数关系式,故可利用待定系数法可求解;(2)日利润=日销售量×每件利润,据此分别表示前20天和后20天的日利润,根据函数性质求最大值后比较得结论;(3)列式表示前20天中每天扣除捐赠后的日销售利润,根据函数性质求a 的取值范围,进而求解即可.()222340120002852450w x x x =-+-=--+()0y kx b k =+≠()50,140()80,80501408080k b k b +=⎧⎨+=⎩2240k b =-⎧⎨=⎩2240y x =-+()()()250502240234012000w x y x x x x =-⋅=--+=-+-2000w =22340120002000x x -+-=170x =2100x =70x =()222340120002852450w x x x =-+-=--+20-<85x =296m x =-+1a =②不能.当时,,该运动员第一次发球能过网,故答案为:不能;(2)判断:没有出界.第二次发球:,令,则,,解得舍,,,该运动员此次发球没有出界.【点睛】本题考查二次函数的应用,解题关键是正确求出函数解析式.13.C【分析】根据平均每个季度增长的百分率为,第二季度季度总值约为元,第三季度总值为元,则函数解析式即可求得.【详解】解:根据题意得:关于的函数表达式是:,故选:C .【点睛】此题主要考查了根据实际问题列二次函数关系式,正确理解增长率问题是解题关键.14.B【分析】利用4月份该厂家口罩产量月份该厂家口罩产量从2月份到4月份该厂家口罩产量的平均月增长率,即可得出关于x 的一元二次方程,此题得解.【详解】解:根据题意得,故选:B .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.9x =()20.0294 2.7 2.2 2.24y =--+=<∴20.02(5) 2.88y x =--+0y =20.02(4) 2.880x --+=17(x =-)217x =21718x =<Q ∴GDP x GDP ()2.41x +GDP ()22.41x +y x ()22.41y x =+2=(1⨯+2)()21801461x +=。

中考数学 函数图象与性质的探究题

中考数学 函数图象与性质的探究题

y=1x 的图象交点的个数.
答图3
专题九 函数图象与性质的探究题
由图象可知,函数 y=x+x 2 与函数 y=x1 的图象只有一个交点, ∴方程 x+x 2=1x 的根的个数为 1.
专题九 函数图象与性质的探究题
3.探究函数性质时,我们经历了列表、描点、连线画出函数图象,
观察分析图象特征,概括函数性质的过程.结合已有的学习经验,请画
专题九 函数图象与性质的探究题
(3)类比延伸:利用题中的平面直角坐标系,在不解方程的情况下,
判断方程 x+x 2=1x 的根的个数. 解:由题意可知,反比例函数的图象也遵循
“上加下减”的平移规律.
如答图3,画出函数y=x+2 的图象,则方 x
程 x+2=1 的根的个数即函数y=x+2 与函数
xx
x
图1 明 明 发 现 , 随 着 点 C 位 置 的 改 变 , △ ODE 的 三 边 都 随 之 改 变 , 所 以,明明决定以BC的长度为自变量,设BC的长为x cm,借助学习函数 的经验来研究△ODE三边的变化规律,请你将下面的探究过程补充完 整.
专题九 函数图象与性质的探究题
(1)根据点C在OB上的不同位置,画出相应的图形,测量线段OD, DE的长度,得到下表中的几组对应值.
解:①3,2.②描点见答图1. ③图象见答图1.
答图 1
专题九 函数图象与性质的探究题
(3)结合画出的函数图象,解决问题:当图1中小正方形的边长约为 ___0_._5_6___dm时,盒子的体积最大,最大值约为____3_.0_3___dm3(结果精 确到0.01).
解:【提示】结合画出的函数图象,看最高点(0.56,3.03). 当答图1中小正方形的边长约为0.56 dm时,盒子的体积最大,最大 值约为3.03 dm3.

2021年九年级数学中考复习——方程专题:不等式与不等式组实际应用(二)

2021年九年级数学中考复习——方程专题:不等式与不等式组实际应用(二)

2021年九年级数学中考复习——方程专题:不等式与不等式组实际应用(二)1.列方程组或不等式解决实际问题某汽车专卖店销售A,B两种型号的新能源汽车,上周和本周的销售情况如下表:A型B型销售额时间型号上周1辆2辆70万元本周3辆1辆80万元(1)每辆A型车和B型车的售价各为多少万元?(2)甲公司拟向该店购买A,B两种型号的新能源汽车共7辆,且A型号车不少于2辆,购车费不少于154万元,则有哪几种购车方案?2.某网店销售甲、乙两种书包,已知甲种书包每个售价比乙种书包每个售价2倍少30元,网购2个甲种书包和3个乙种书包共花费255元(免运费).请解答下列问题:(1)该网店甲、乙两种书包每个售价各是多少元?(列方程组解答此问)(2)根据消费者需求,该网店决定用不超过8900元购进甲、乙两种书包共200个,且甲种书包的数量超过87个,已知甲种书包每个进价为50元,乙种书包每个进价为40元,该网店有哪几种进货方案;(3)在(2)条件下,若该网店推出促销活动:一次性购买同一种书包超过10个,赠送1个相同的书包,该网店这次所购进书包全部售出,共赠送了4个书包,获利1250元,直接写出该网店甲、乙两种书包各赠送几个.3.北流市某初中为了改善教师办公条件,计划采购A、B两种型号空调,已知采购2台A 型空调和1台B型空调需要费用24000元,3台A型空调比4台B型空调的费用多3000元.(1)求A型空调和B型空调每台各需多少元?(2)若学校计划采购A、B两种型号空调共30台,B型空调的台数不多于A型空调台数的2倍,两型号空调的采购总费用不超过218000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?4.养牛场的李大叔分三次购进若干头大牛和小牛,其中有一次购买大牛和小牛的价格同时打折,其余两次均按原价购买,三次购买的数量和总价如表:大牛(头)小牛(头)总价(元)第一次439900第二次269000第三次678550(1)李大叔以折扣价购买大牛和小牛是第次;(2)每头大牛和小牛的原价分别为多少元?(3)如果李大叔第四次购买大牛和小牛共10头(其中小牛至少一头),仍按之前的折扣(大牛和小牛的折扣相同),且总价不低于8100元,那么他共有哪几种购买方案?5.在新冠肺炎疫情期间,为保证孩子们的身心健康发展,各级各类学校都进行了“停课不停学”活动,某校七年级开展了网上教学,并对学生的学习情况进行了调查.经过统计,我们发现:大约有二分之一的孩子是通过电脑进行学习,约四分之一的孩子是利用手机进行学习,约六分之一的孩子是利用P AD等其他电子设备进行学习,而在受访班级中,平均每个班都有不超过4名同学没有进行线上学习;若该校七年级每个班的学生总数都超过了40人,请你分析一下,该所学校七年级每个班学生人数的范围.6.便利店老板从厂家购进A、B两种香醋,A种香醋每瓶进价为5元,B种香醋每瓶进价为6元,共购进70瓶,花了390元,且该店A种香醋售价7元,B种香醋售价9元.(1)该店购进A、B两种香醋各多少瓶?(2)将购进的70瓶香醋全部售完可获利多少元?(3)老板计划再以原来的进价购进A、B两种香醋共150瓶,且投资不超过850元,仍以原来的售价将这150瓶香醋售完,且确保获利不少于398元,请问有哪几种购货方案?7.近日来,长江中下游连降特大暴雨.沿江两岸的群众受灾很严重.“一方有难、八方支援”我校某班准备捐赠一批帐篷和食品包共360个,其中帐篷比食品包多120个.(1)求帐篷和食品包各有多少个?(2)现计划租用甲、乙两种型号的货车共8辆.一次性将这批帐篷和食品包运往受灾地区,已知每辆甲种货车最多可装帐篷40个和食品包10个,每辆乙种货车最多可装帐篷30个和食品包20个.运输部门安排甲、乙两种型号的货车时,有几种方案?请你帮助设计出来.(3)在(2)的条件下.如果甲种型号的货车每辆需付运费1000元,乙种型号的货车每辆需付运费900元.假设你是决策者,应选择哪种方案可使运费最少?最少运费是多少元?8.在六一儿童节到来之际,某校特举行书画大赛活动,准备购买甲、乙两种文具作为奖品,奖励在活动中获得优秀的同学.已知购买2个甲种文具、3个乙种文具共需花费45元;购买3个甲种文具、1个乙种文具共需花费50元.(1)问:购买一个甲种文具、一个乙种文具各需多少元?(2)若学校计划购买这两种文具共100个,投入资金不少于995元又不多于1050元,设购买甲种文具x个,则有多少种购买方案?(3)设学校投入资金w元,在(2)的条件下,哪种购买方案需要的资金最少?最少是多少元?9.随着新能源汽车的发展,某公交公司将用新能源公交车淘汰某一条线路上“冒黑烟”较严重的燃油公交车,计划购买A型和B型新能源公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需280万元;若购买A型公交车2辆,B型公交车1辆,共需260万元,(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该条线路上A型和B型公交车每辆车的年均载客量分别为60万人次和80万人次.若该公司购买A型和B型公交车的总费用不超过900万元,且确保这10辆公交车在该线路的年均载客量总和不少于670万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?10.基金会计划购买A、B两种纪念册共50册,已知B种纪念册的单价比A种的单价少10元,买3册A种纪念册与买4册B种纪念册的总费用310元.(1)求A、B两种纪念册的单价分别是多少元?(2)如果购买的A种纪念册的数量要大于B种纪念册数量的,但又不大于B种纪念册数量的,设购买A种纪念册m册.①有多少种不同的购买方案?②购买时A种纪念册每册降价a元(12≤a≤15),B种纪念册每册降价b元.若满足条件的购买方案所需的总费用一样,求总费用的最小值.参考答案1.解:(1)设每辆A型车的售价为x万元,B型车的售价为y万元,依题意,得:,解得:.答:每辆A型车的售价为18万元,B型车的售价为26万元.(2)设购进A型车m辆,则购进B型车(7﹣m)辆,依题意,得,解得:2≤m≤3.5,∵m为整数,∴m=2或3.∴有两种购车方案:购进A型车2辆,则购进B型车5辆;购进A型车3辆,则购进B型车4辆.答:有两种购车方案:购进A型车2辆,则购进B型车5辆;购进A型车3辆,则购进B型车4辆.2.解:(1)设甲种书包每个售价x元,乙种书包每个售价y元.根据题意得.解得.答:该网店甲种书包每个售价60元,乙种书包每个售价45元;(2)设购进甲种书包m个,则购进乙种书包(200﹣m)个,根据题意可得50m+40(200﹣m)≤8900.解得m≤90.∵m>87,∴87<m≤90.∵m为整数,∴m=88、89、90,200﹣m=112,111,110.∴该网店有3种进货方案:方案一、购进甲种书包88个,乙种书包112个;方案二、购进甲种书包89个,乙种书包111个;方案三、购进甲种书包90个,乙种书包110个;(3)分三种情况:①购进甲种书包88个,乙种书包112个时:设该网店甲书包赠送了m个,则乙书包赠送了(4﹣m)个,根据题意得,88×(60﹣50)﹣m×50+112×(45﹣40)﹣(4﹣m)×40=1250,解得,m=3,4﹣m=1,故甲书包赠送3个,乙书包赠送1个;②购进甲种书包89个,乙种书包111个时;设该网店甲书包赠送了m个,则乙书包赠送了(4﹣m)个,根据题意得,89×(60﹣50)﹣m×50+111×(45﹣40)﹣(4﹣m)×40=1250,解得,m=3.5,∵m是整数,故此种情况不成立;③购进甲种书包90个,乙种书包110个时;设该网店甲书包赠送了m个,则乙书包赠送了(4﹣m)个,根据题意得,90×(60﹣50)﹣m×50+110×(45﹣40)﹣(4﹣m)×40=1250,解得,m=4,4﹣m=0,故甲书包赠送4个,乙书包赠送0个.3.解:(1)设A型空调每台需x元,B型空调每台需y元,依题意,得:,解得:.答:A型空调每台需9000元,B型空调每台需6000元.(2)设购买A型空调m台,则购买B型空调(30﹣m)台,依题意,得:,解得:10≤m≤12.∵a为正整数,∴a可以取10,11,12,∴共有三种采购方案,方案1:采购A型空调10台,B型空调20台;方案2:采购A型空调11台,B型空调19台;方案3:采购A型空调12台,B型空调18台.(3)方案1所需费用为:9000×10+6000×20=210000(元);方案2所需费用为:9000×11+6000×19=213000(元);方案3所需费用为:9000×12+6000×18=216000(元).∵210000<213000<216000,∴采用方案1,采购A型空调10台,B型空调20台可使总费用最低,最低费用是210000元.4.解:(1)第三次购买大牛和小牛的数量较多,但花费较少,所以李大叔以折扣价购买大牛和小牛是第三次;13230÷(9900+9000)=13230÷18900=0.7.故是打七折.故答案为:三.(2)设大牛的单价为x元,小牛单价为y元.根据题意得:,解得.故大牛的单价为1800元,小牛单价为900元.(3)设大牛买m头,小牛买(10﹣m)头.根据题意得:900m+450(10﹣m)≥8100,解得:m≥8.所以m=8或9.当m=8时,10﹣m=2;当m=9时,10﹣m=1;所以他共有两种购买方案.方案一:大牛买8头,小牛买2头;方案二:大牛买9头,小牛买1头.5.解:设该所学校七年级每个班学生人数为x,依题意,得:,解得:40<x≤48.答:该所学校七年级每个班学生人数的范围为40<x≤48.6.解:(1)设该店购进A种香醋X瓶,购进B种香醋Y瓶,根据题意得…..(1分)…………..(2分)解得.答:该店购进A种香醋30瓶,购进B种香醋40瓶;(2)(7﹣5)×30+(9﹣6)×40=60+120=180(元).答:70瓶香醋全部售完可获利180元;(3)设该店购进A种香醋a瓶,购进B种香醋(150﹣a)瓶,根据题意得,解得:50≤a≤52,因为a取正整数,所以a取50、51、52.购货方案为:(1)A种香醋购进50瓶,B种香醋购进100瓶.(2)A种香醋购进51瓶,B种香醋购进99瓶.(3)A种香醋购进52瓶,B种香醋购进98瓶.7.解:(1)设帐篷有x个,食品包有y个,依题意,得:,解得:.答:帐篷有240个,食品包有120个.(2)设安排甲种货车m辆,则安排乙种货车(8﹣m)辆,依题意,得:,解得:0≤m≤4.又∵m为非负整数,∴m可以取0,1,2,3,4,相对应的8﹣m为8,7,6,5,4,∴共有5种运输方案,方案1:安排8辆乙种货车;方案2:安排1辆甲种货车,7辆乙种货车;方案2:安排1辆甲种货车,7辆乙种货车;方案3:安排2辆甲种货车,6辆乙种货车;方案4:安排3辆甲种货车,5辆乙种货车;方案5:安排4辆甲种货车,4辆乙种货车.(3)设总运费为w元,则w=1000m+900(8﹣m)=100m+7200,∵k=100>0,∴w随m的增大而增大,∴当m=0时,w取得最小值,最小值=100×0+7200=7200.∴选择方案1,可使运费最少,最少运费是7200元.8.解:(1)设购买一个甲种文具a元,一个乙种文具b元,由题意得:,解得.答:购买一个甲种文具需15元,一个乙种文具需5元;(2)根据题意得:995≤15x+5(100﹣x)≤1050,解得49.5≤x≤55,∵x是整数,∴x=50,51,52,53,54,55,∴有6种购买方案;(3)w=15x+5(100﹣x)=10x+500,∵10>0,∴W随x的增大而增大,当x=50时,W=10×50+500=1000(元),最小∴100﹣50=50.答:购买甲种文具50个,乙种文具50个时需要的资金最少,最少是1000元.9.解:(1)设购买A型新能源公交车每辆需x万元,购买B型新能源公交车每辆需y万元,由题意得:,解得,答:购买A型新能源公交车每辆需80万元,购买B型新能源公交车每辆需100万元.(2)设购买A型公交车a辆,则B型公交车(10﹣a)辆,由题意得,解得:5≤a≤6.5,因为a是整数,所以a=5,6;则共有两种购买方案:①购买A型公交车5辆,则B型公交车5辆:80×5+100×5=900(万元);②购买A型公交车4辆,则B型公交车6辆:80×4+100×6=920(万元);购买A型公交车5辆,则B型公交车5辆费用最少,最少总费用为900万元.10.解:(1)设A种纪念册的单价为x元,B种纪念册的单价为y元,依题意,得:,解得:.答:A种纪念册的单价为50元,B种纪念册的单价为40元.(2)①设购买A种纪念册m册,则购买B种纪念册(50﹣m)册,依题意,得:,解得:<m≤.又∵m为正整数,∴m可取15,16,17,18,∴共有4种不同的购买方案.②设总费用为w元,则w=(50﹣a)m+(40﹣b)(50﹣m)=(10﹣a+b)m+2000﹣50b.∵满足条件的购买方案所需的总费用一样,∴10﹣a+b=0,∴b=a﹣10.∵12≤a≤15,∴2≤b≤5.∵﹣50<0,∴w随b的增大而减小,∴当b=5时,w取得最小值,最小值=2000﹣50×5=1750,即总费用的最小值为1750元.。

2020年九年级数学中考复习专题专题:函数模型的应用(含答案)

2020年九年级数学中考复习专题专题:函数模型的应用(含答案)

专题:函数模型的应用1.超市以每千克40元的价格购进夏威夷果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种夏威夷果销售量y(千克)与每千克降价x(元)(0<x<20)之间满足一次函数关系,其图象如图所示:(1)求y与x之间的函数关系式;(2)超市要想获利2090元,则这种夏威夷果每千克应降价多少元?2.如图①,某商场在一楼到二楼之间设有上、下行自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲乘自动扶梯,乙走步行楼梯,甲离一楼地面的高度h(单位:m)与下行时间x(单位:s)之间具有函数关系h=-310x+6,乙离一楼地面的高度y(单位:m)与下行时间x(单位:s)的函数关系如图②所示.(1)求y关于x的函数解析式;(2)请通过计算说明甲、乙两人谁先到达一楼地面.3.某智能品牌店,在销售某型号运动手环时,以高出进价的50%标价.已知按标价九折销售该型号运动手环8个与将标价直降100元销售7个获利相同.(1)求该型号运动手环的进价和标价分别是多少元?(2)若该型号运动手环的进价不变,按(1)中的标价出售,该店平均每月可售出38个;若每个运动手环每降价20元,每月可多售出2辆,求该型号运动手环降价多少元时,每月获利最大?最大利润是多少?4.一水果店以进价为每千克16元购进万荣苹果,销售中发现,销售单价定为20元时,日销售量为50千克;当销售单价每上涨1元,日销售量就减少5千克,设销售单价为x(元),每天的销售量为y(千克),每天获利为w(元).(1)求y与x之间的函数关系式;(2)求w与x之间的函数关系式;该苹果售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果商家规定这种苹果每天的销售量不低于40千克,求商家每天销售利润的最大值是多少元?5.挂灯笼成为我国的一种传统文化. 小明在春节前购进甲、乙两种红灯笼,用3120元购进甲灯笼与用4200元购进乙灯笼的数量相同,已知乙灯笼每对进价比甲灯笼每对进价多9元.(1)求甲、乙两种灯笼每对的进价;(2)经市场调查发现,乙灯笼每对售价50元时,每天可售出98对,售价每提高1元,则每天少售出2对;物价部门规定其销售单价不高于每对65元,设乙灯笼每对涨价x元,小明一天通过乙灯笼获得利润y元.①求出y与x之间的函数解析式;②乙种灯笼的销售单价为多少元时,一天获得利润最大?最大利润是多少元?6.甲、乙两个批发店销售同一种苹果.在甲批发店,不论一次购买数量是多少,价格均为6元/kg.在乙批发店,一次购买数量不超过50 kg时,价格为7元/kg;一次购买数量超过50 kg时,其中有50 kg的价格仍为7元/kg,超出50 kg部分的价格为5元/kg.设小王在同一个批发店一次购买苹果的数量为x kg(x>0).(Ⅰ)根据题意填表:(Ⅱ)设在甲批发店花费y1元,在乙批发店花费y2元,分别求y1,y2关于x的函数解析式;(Ⅲ)根据题意填空:①若小王在甲批发店和在乙批发店一次购买苹果的数量相同,且花费相同,则他在同一个批发店一次购买苹果的数量为________kg;②若小王在同一个批发店一次购买苹果的数量为120 kg,则他在甲、乙两个批发店中的________批发店购买花费少;③若小王在同一个批发店一次购买苹果花费了360元,则他在甲、乙两个批发店中的________批发店购买数量多.7.某工厂计划生产甲乙两种产品共2500吨,每生产1吨甲产品可获得利润0.3万元,每生产1吨乙产品可获得利润0.4万元,设该工厂生产了甲产品x(吨),生产甲、乙两种产品获得的总利润为y(万元).(1)求y与x之间的函数表达式;(2)若每生产1吨甲产品需要A原料0.25吨,每生产1吨乙产品需要A原料0.5吨,受市场影响,该厂能获得的A原料至多为1000吨,其它原料充足.求出该工厂生产甲、乙两种产品各为多少吨时,能获得最大利润.8.某商场销售一批足球文化衫,已知该文化衫的进价为每件40元,当售价为每件60元时,每个月可销售出100件,根据市场行情,现决定涨价销售,调查表明,每件商品的售价每上涨1元,每月少销售出2件,设每件商品的售价为x元.每个月的销售为y件.(1)求y与x之间的函数关系式;(2)当每件商品的售价定为多少元时,每个月的利润恰好为2250元;(3)当每件商品的售价定为多少元时,每个月获得利润最大?最大月利润为多少?9.某公司计划在某地区销售一款5G产品,根据市场分析,该产品的销售价格将随销售周期的变化而变化,设该产品在第x(x为正整数)个销售周期每台的销售价格为y元,y与x 之间满足如图所示的一次函数关系.(1)求y与x之间的关系式;(2)设该产品在第x 个销售周期的销售数量为p (万台),p 与x 的关系可以用p =12x +12来描述.根据以上信息,试问:哪个销售周期的销售收入最大?此时该产品每台的销售价格是多少元?10. 某商店销售一种商品,经市场调查发现,该商品的周销售量y (件)是售价x (元/件)的一次函数,其售价,周销售量,周销售利润w (元)的三组对应值如下表:(1)①求y 关于x 的函数解析式(不要求写出自变量的取值范围);②该商品进价是________元/件;当售价是____元/件时,周销售利润最大,最大利润是______元;(2)由于某种原因,该商品进价提高了m 元/件(m >0),物价部门规定该商品售价不得超过65元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1400元,求m 的值.参考答案1. 解:(1)设一次函数解析式为y =kx +b , ∵当x =2,y =120;当x =4,y =140;∴⎩⎪⎨⎪⎧2k +b =120,4k +b =140, 解得⎩⎪⎨⎪⎧k =10,b =100.∴y 与x 之间的函数关系式为y =10x +100; (2)由题意得(60-40-x )(10x +100)=2090, 整理得x 2-10x +9=0, 解得x 1=1,x 2=9. ∵让顾客得到更大的实惠, ∴x =9,答:超市要想获利2090元,则这种夏威夷果每千克应降价9元.2. 解:(1)设y 关于x 的函数解析式为y =kx +b ,把点(0,6)(15,3)代入y =kx +b 得⎩⎪⎨⎪⎧6=b ,3=15k +b ,解得⎩⎪⎨⎪⎧k =-15,b =6,∴y 关于x 的函数解析式为y =-15x +6;(2)甲:当h =0时,得x =20.乙:当y=0时,得x=30.∵20<30,∴甲先到达一楼地面.3.解:(1)设该型号运动手环的进价为x元,根据题意得[(1+50%)x×0.9-x]×8=[(1+50%)x-100-x]×7,∴x=1000,∴(1+50%)x=1500元,∴该型号运动手环的进价为1000元,标价为1500元;(4分) (2)设该型号运动手环降价y元,利润为w元.根据题意得w=(38+y20×2)(1500-1000-y)=(38+0.1y)(500-y)=-0.1(y-60)2+19360,当y=60时,w有最大值19360.∴降价60元,每月获利最大,最大利润为19360元.4.解:(1)根据题意得y=50-5(x-20)=-5x+150;(2)根据题意得w=(x-16)(-5x+150)=-5x2+230x-2400,∴w与x的函数关系式为:w=-5x2+230x-2400=-5(x-23)2+245.∵-5 <0,∴当x=23时,w有最大值,最大值为245.(5分)答:w与x之间的函数关系式为w=-5x2+230x-2400.该苹果售价定为每千克23元时,每天销售利润最大,最大利润是245元;(3)根据题意得-5x+150≥40,解得x≤22.∵w=-5(x-23)2+245.∵-5<0,w≤23时,w随x增大而增大,∴当x=22时w有最大值,其最大值为-5×(22-23)2+245=240(元).答:商家每天销售利润的最大值是240元.5.解:(1)设甲种灯笼进价为x元/对,则乙种灯笼的进价为(x+9)元/对,由题意得3120 x=4200 x+9,解得x=26,经检验,x=26是原方程的解,且符合题意,∴x+9=26+9=35,答:甲种灯笼单价为26元/对,乙种灯笼的单价为35元/对;(2)①y=(50+x-35)(98-2x)=-2x2+68x+1470,答:y与x之间的函数解析式为:y=-2x2+68x+1470;②∵a=-2<0,∴函数y有最大值,该二次函数的对称轴为:x=-b2a=17,物价部门规定其销售单价不高于每对65元,∴x+50≤65,∴x≤15,∵x<17时,y随x的增大而增大,∴当x=15时,y最大=2040.∴15+50=65.答:乙种灯笼的销售单价为每对65元时,一天获得利润最大,最大利润是2040元.6.解:(Ⅰ)180,900,210,850;【解法提示】甲批发店花费:当x=30时,花费为30×6=180;当x=150时,花费为150×6=900.乙批发店花费:当x =30时,花费为30×7=210;当x =150时,花费为50×7+(150-50)×5=850.(Ⅱ)y 1=6x (x >0), 当0<x ≤50时,y 2=7x ;当x >50时,y 2=7×50+5(x -50),即y 2=5x +100;即y 2=⎩⎪⎨⎪⎧7x (0<x ≤50),5x +100(x >50).(Ⅲ)①100;②乙;③甲.【解法提示】①当0<x ≤50时,甲批发店和乙批发店花费不可能相同,则x >50时,令y 1=y 2,则6x =5x +100,解得x =100;②当x =120时,y 1=6×120=720,y 2=5×120+100=700,∵720>700,∴在乙批发店购买花费少;③对甲批发店而言:令y 1=360,则6x =360,解得x =60.对乙批发店而言:当x =50时,花费为350<360,则令5x +100=360,解得x =52,∵60>52,∴小王花费360元时,在甲批发店购买数量多.7. 解:(1)y =x ·0.3+(2500-x )·0.4=-0.1x +1000; (2)由题意得x ·0.25+(2500-x )·0.5≤1000,解得x ≥1000. 又∵x ≤2500, ∴1000≤x ≤2500. 由(1)可知,-0.1<0,∴y 的值随着x 的增加而减小,∴当x =1000时,y 取最大值,此时生产乙种产品2500-1000=1500(吨) 答:工厂生产甲产品1000吨,乙产品1500吨时,能获得最大利润. 8. 解:(1)根据题意得y = 100-2(x -60)=-2x +220(60≤x ≤110);(2)由题意可得:(-2x +220)(x -40)=2250. x 2-150x +5525=0, 解得x 1=65,x 2=85.答:当每件商品的售价定为65元或85元时,利润恰好是2250元; (3)设利润为W 元,∴W =(x -40)(-2x +220)=-2x 2+300x -8800=-2(x -75)2+2450. ∵a =-2<0, ∴抛物线开口向下. ∵60≤x ≤110,∴当x =75时,W 有最大值,W 最大=2450(元).答:当售价定为75元时,获得最大利润,最大利润是2450元. 9. 解:(1)设y 关于x 的函数关系式为y =kx +b (k ≠0),由图象可知,将点(1,7000),(5,5000)代入得⎩⎪⎨⎪⎧k +b =7000,5k +b =5000,解得⎩⎪⎨⎪⎧k =-500,b =7500,∴y 关于x 的函数关系式为y =-500x +7500; (2)设销售收入为W ,根据题意得 W =yp =(-500x +7500)·(12x +12),整理得W =-250(x -7)2+16000,∵-250<0,∴W 在x =7时取得最大值,最大值为16000元, 此时该产品每台的销售价格为-500×7+7500=4000元.答:第7个销售周期的销售收入最大,此时该产品每台的销售价格为4000元.10. 解:(1)①y =-2x +200; ②40,70,1800;(2)由题意可知w =(-2x +200)×(x -40-m )=-2x 2+(280+2m )x -8000-200m ,对称轴为直线x =140+m2,∵m >0,∴对称轴x =140+m2>70,∵抛物线开口向下,在对称轴左侧,y 随x 的增大而增大, ∴当x =65时,y max =1400,代入表达式解得m =5.。

2023年九年级数学中考专题:实际问题与二次函数压轴应用题

2023年九年级数学中考专题:实际问题与二次函数压轴应用题

2023年九年级数学中考专题:实际问题与二次函数压轴应用题1.某工厂生产A 型产品,每件成本为20元,当A 型产品的销售单价为x 元时,销售量为y 万件.要求每件A 型产品的销售单价不低于20元且不高于28元.经市场调查发现,y 与x 之间满足一次函数关系,且当x =23时,y =34;x =25时,y =30.(1)求y 与x 的函数关系式,并写出自变量x 的取值范围;(2)若某次销售刚好获得182万元的利润,则每件A 型产品的销售单价是多少元?(3)设该工厂销售A 型产品所获得的利润为w 万元,将该产品的销售单价定为多少元时,才能使销售该产品所获得的利润最大?最大利润是多少万元?2.如图,有长为24m 的篱笆,一面利用墙(墙的最大可用长度a 为12m )围成中间隔有一道篱笆的矩形花圃,设花圃的宽AB 为m x ,面积为2m S .(1)求S 与x 的函数表达式.(2)如果要围成面积为245m 的花圃,AB 的长是多少米?(3)根据(1)中求得的函数关系式,判断当x 取何值时,花圃的面积最大?最大面积是多少?3.2022年2月4日,第24届冬季奥林匹克运动会在北京举行,吉祥物“冰墩墩”备受人民的喜爱,某商店经销吉祥物“冰墩墩”玩具,销售成本为每件40元,据市场分析,若按每件50元销售,一个月能售出500件;销售单价每涨1元,月销售量就减少10件,针对这种玩具的销售情况,请解答以下问题:(1)求当销售单价涨多少元时,月销售利润能够达到8000元;(2)商店想在月销售成本不超过9000元的情况下,使得月销售利润达到8000元,求销售定价应为多少元?4.某大型商场准备购买一批A 型和B 型商品,已知一件A 型商品的进价比一件B 型商品的进价多30元,用6000元采购A 型商品的件数是用1200元采购B 型商品的件数的2倍.(1)求一件A ,B 型商品的进价分别为多少元?(2)该商场购进A 型和B 型商品若干,准备采取“买二送一”的优惠销售方案,即:买两件A 型商品赠送一件B型商品,通过一段试销发现A 型商品每天的销售量y (件)与A 型商品的销售单价x (元)满足:2200y x =-+,若商场继续以上述优惠销售方案进行销售,当A 型商品的销售单价定为多少元时,每天的销售利润最大,并求出此时的最大销售利润.5.某数学兴趣小组想借助如图所示的直角墙角ADC ∠(两边足够长),用20m 长的篱笆围成一个矩形花园ABCD (篱笆只围AB ,BC 两边).(1)若围成的花园面积为291m ,求矩形花园AB 的长;(2)在点P 处有一棵树与墙CD ,AD 的距离分别为12m 和6m ,要能将这棵树围在花园内(含边界,不考虑树的粗细),又使得花园面积有最大值,求此时矩形花园AB 的长.6.第一届全国青年运动会射箭项目决赛于10月20-24日在福建省莆田市体育公园举行.我市某工艺厂为青运会设计了一款成本为每件20元的工艺品,投放市场进行试销后发现每天的销售量y (件)是售价x (元/件)的一次函数:当售价为20元/件时,每天销售量为800件;当售价为25元/件时,每天的销售量为750件.(1)求y 与x 的函数关系式(2)如果该工艺品售价最高不能超过每件50元,那么售价定为每件多少元时,工艺厂销售该工艺品每天获得的利润最大?最大利润是多少元?(利润=售价-成本)7.中秋节期间,某水果超市调查某种水果的销售情况,下面是调查员的对话:小王:该水果的进价是每千克22元;小李:当销售价为每千克38元时,每天可售出160千克;若每千克降低1元,每天的销售量将增加40千克.根据他们的对话,解决下面所给问题:设降价(0)x x >元,每天所获得的利润为w 元.(1)超市每天要获得销售利润3640元,又要尽可能让顾客得到实惠,求这种水果的销售价为每千克多少元?(2)这种水果的销售价定为多少时,可使每天销售利润最大?最大的利润是多少?8.贫困户李大爷在某单位精准扶贫工作队的帮扶下,将一片坡地改造后种植了优质水果蓝莓,经核算,种植成本为18元/千克.今年正式上市销售,通过30天的试销发现:①第1天卖出20千克,以后每天比前一天多卖4千克:②销售价格y (元/千克)与时间x (天)之间满足如下函数关系:76(120)(2030)mx m x x y n x x -≤<⎧=⎨≤≤⎩,为正整数,为正整数,且第12天的售价为32元/千克,第23天的售价为25元/千克. (1)填空:m =_______,n =_______;试销中销售量P (千克)与时间x (天)之间的函数关系式为_______;(2)求销售蓝莓第几天时,当天的利润W 最大?最大利润是多少元?(3)求试销的30天中,当天利润W 不低于870元的天数共有几天?9.某商店销售一种销售成本为40元/千克的水产品,若按50元/千克销售,一个月售出500kg ,销售价每涨价1元,月销售量就减少5kg .(1)当销售单价定为60元时,计算月销售量和销售利润.(2)商店想让顾客获得更多实惠的情况下,使月销售利润达到9000元,销售单价应定为多少?(3)当售价定为多少元时会获得最大利润?求出最大利润.10.某商店出售一款商品,经市场调查反映,该商品的日销售量y(件)与销售单价x(元)之间满足一次函数关系,关于该商品的销售单价,日销售量,日销售利润的部分对应数据如表:[注:日销售利润=日销售量×(销售单价﹣成本单价)](1)根据以上信息,求y关于x的函数关系式.(2)①填空:该产品的成本单价是元,表中a的值是.②求该商品日销售利润的最大值.ABCD,墙长为25米.设11.小茗同学准备用一段长为50米的篱笆在家修建一个一边靠墙的矩形花圃(矩形)花圃的一边AD为x米.(1)如图1,写出花圃的面积S(平方米)与x(米)的函数关系式;(2)图1中花圃的面积能为300平方米吗?若能,请求出x的值;若不能,请说明理由;(3)为方便进出,小茗同学决定在BC边上留一处长为a米(04)<<的门(如图2),且最终围成的花圃的最大a面积为325平方米,直接写出a的值.12.包河区发展农业经济产业,在大圩乡种植多品种的葡萄,已知某葡萄种植户李大爷的葡萄成本为10元/kg,如果在未来40天葡萄的销售单价p(元/kg)与时间t(天)之间的函数关系式为:120(120)4135(2140)2t t t p t t t ⎧+≤<⎪⎪=⎨⎪+<≤⎪⎩,为整数,为整数,且葡萄的日销量y (千克)与时间t (天)的关系如下表:(1)请直接写出y 与t 之间的变化规律符合什么函数关系?并求在第15天的日销售量是多少千克?(2)在后20天(即2140t ≤≤,t 为整数),请求出哪一天的日销售利润最大?日销售利润最大为多少?(3)在实际销售的前20天中,李大爷决定每销售1千克水果就捐赠n 元利润(8n <)给留守儿童作为助学金,前20天销售完后李大爷发现,每天扣除捐赠后的日销售利润随时间t 的增大而增大,请求出n 的取值范围.13.红灯笼,象征着国家团圆,红红火火,挂灯笼成为我国的一种传统文化.小明在春节前购进甲、乙两种红灯笼,用3120元购进甲灯笼与用4200元购进乙灯笼的数量相同,已知乙灯笼每对进价比甲灯笼每对进价多9元.(1)求甲、乙两种灯笼每对的进价;(2)经市场调查发现,乙灯笼每对售价50元时,每天可售出98对,售价每提高1元,则每天少售出2对,若规定每对乙灯笼的利润不能高于30元,设乙灯笼每对售价为x 元,小明一天通过乙灯笼获得利润y 元. ①求出y 与x 之间的函数解析式;②乙种灯笼的销售单价为多少元时,一天获得利润最大?最大利润是多少元?14.跳台滑雪是冬季奥运会的比赛项目之一,如图,运动员通过助滑道后在点A 处起跳经空中飞行后落在着陆坡BC 上的点P 处,他在空中飞行的路线可以看作抛物线的一部分,这里OA 表示起跳点A 到地面OB 的距离,OC 表示着陆坡BC 的高度,OB 表示着陆坡底端B 到点O 的水平距离,建立如图所示的平面直角坐标系,从起跳到着陆的过程中,运动员的竖直高度y (单位:m )与水平距离x (单位:m )近似满足函数关系:2116y x bx c =-++,已知70m OA =,60m OC =,落点P 的水平距离是40m ,竖直高度是30m .(1)点A 的坐标是_____,点P 的坐标是_______;(2)求满足的函数关系2116y x bx c =-++; (3)运动员在空中飞行过程中,当他与着陆坡BC 竖直方向上的距离达到最大时,直接写出此时的水平距离.15.某商家销售一种纪念品.每个纪念品进价40元,规定销售单价不低于44元,且不高于52元.销售期间发现,当销售单价定为44元时,每天可售出300个,销售单价每上涨1元,每天销量减少10个.现商家决定提价销售,设每天销售量为y 个,销售单价为x 元.(1)在横线上直接写出y 与x 之间的函数关系式;(2)求当每个纪念品的销售单价是多少元时,商家每天获利2400元;(3)将纪念品的销售单价定为多少元时,商家每天销售纪念品获得的利润w 元最大?最大利润是多少元?16.金秋十月,我省某农业合作社有机水稻再获丰收,加工成有机大米后通过实体和电商两种渠道进行销售.该有机大米成本为每千克 14 元,销售价格不低于成本,且不超过 25 元/千克,根据各销售渠道的反馈,发现该有机大米一天的销售量y (千克)是该天的售价x (元/千克)的一次函数,部分情况如表:(1)求一天的销售量y (千克)与售价x (元/千克)之间的函数关系式并写出x 的取值范围.(2)若某天销售这种大米获利 2400 元,那么这天该大米的售价为多少?(3)该有机大米售价定为多少时,当天获利w 最大?最大利润为多少?17.某公司为了宣传一种新产品,在某地先后举行18场产品促销会,已知该产品每台成本为4万元,设第x 场产品的销售量为y (台),在销售过程中获得以下信息:信息1:已知第一场销售产品38台,然后每增加一场,产品就少卖出2台;信息2:产品的每场销售单价p (万元)由基本价和浮动价两部分组成,其中基本价保持不变,第1场—第10场浮动价与销售场次x 成正比,第11场—第18场浮动价与销售场次x 成反比,经过统计,得到如下数据:(1)求y 与x 之间的函数关系式;(2)求销售单价p 与销售场次x 之间的函数关系式;(3)当产品销售单价为6.5万元时,求销售场次是第几场?(4)在这18场产品促销会中,哪一场获得的利润最大,最大利润是多少?(结果保留整数)18.某商场经营A 种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.(1)不妨设该种品牌玩具的销售单价为x 元()40x >,请用含x 的代数式表示该玩具的销售量______.(2)若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于450件的销售任务,求商场销售该品牌玩具获得的最大利润.(3)该商场计划将(2)中所得的利润的一部分采购一批B 种玩具并转手出售,根据调查准备两种方案: 方案①:月初出售,获利15%,并可用本和利再投资C 种玩具,到月末又可获利10%;方案②:只到月末出售直接获利30%,但要另支付仓库保管费350元.请问商场如何使用这笔资金,采用哪种方案获利较多?尝试填写以下表格.参考答案:1.(1)y 与x 的函数关系式为280y x =-+,自变量x 的取值范围是2028x ≤≤(2)每件A 型产品的销售单价是27元(3)该产品的销售单价定为28元时,才能使销售该产品所获得的利润最大,最大利润是192万元2.(1)()232448S x x x =-+≤<;(2)AB 的长为5m ;(3)当4x =时,围成的花圃的面积最大,最大面积为248m .3.(1)涨10元或30元(2)80元4.(1)一件A ,B 型商品的进价分别为50元,20元(2)A 型商品的销售单价定为80元时,每天的销售利润最大,最大销售利润为800元5.(1)13m 和7m .(2)8m6.(1)101000y x =-+(2)当售价定为50元时,该工艺品每天获得的利润最大,最大利润为12000元.7.(1)每千克29元(2)定为32元时可使每天销售利润最大,最大的利润是4000元8.(1)12-,25,416P x =+; (2)第18天的利润最大,最大利润为968元;(3)共有12天9.(1)销售单价定为60元时,月销售量为450千克,销售利润为9000元(2)销售单价应定为60元(3)当售价定为95元时会获得最大利润,求出最大利润为15125元.10.(1)10900y x =-+(2)①40,4560 ②该商品日销售利润的最大值为6250元11.(1)21252S x x =-+(2)能为300平方米,此时x 的值为20(3)a 的值为112.(1)2120y t =-+;90kg(2)21天,1131元(3)58n ≤<13.(1)甲种灯笼单价为26元/对,乙种灯笼的单价为35元/对;(2)①222686930y x x =-+-,②乙种灯笼的销售单价为每对65元时,一天获得利润最大,最大利润是2040元.14.(1)()0,70A ,()40,30P ; (2)21370162y x x =-++; (3)18m15.(1)()107404452y x x =-+≤≤(2)当每个纪念品的销售单价是50元时,商家每天获利2400元(3)将纪念品的销售单价定为52元时,商家每天销售纪念品获得的利润w 元最大,最大利润是2640元16.(1)5501504201yx x(2)18元11(3)当22x =时,w 有最大值3200元.17.(1)240y x =-+ (2)()()1411044541118x x p x x⎧+≤≤⎪⎪=⎨⎪+≤≤⎪⎩ (3)当产品销售单价为6.5万元时,销售场次是第10场和第18场(4)在这18场产品促销会中,第11场获得的利润最大,最大利润约为74万元18.(1)101000x -+(2)max 11250w =元。

中考数学 专题九 综合型问题复习1

中考数学 专题九 综合型问题复习1
数 学
专题九 综合型问题
综合题,各地中考常常作为压轴题进行考查,这类题目难度大, 考查知识多,解这类习题的关键就是善于利用几何图形的有关性质 和代数的有关知识,并注意挖掘题目中的一些隐含条件,以达到解 题目的.
近几年中考试题中的综合题大多以代数几何综合题的形式出现, 其解题关键是借助几何直观解题,运用方程、函数的思想解题,灵 活运用数形结合,由形导数,以数促形,综合运用代数和几何知识 解题.值得注意的是,近年中考几何综合计算的呈现形式多样,如 折叠类型、探究型、开放型、运动型、情境型等,背景鲜活,具有 实用性和创造性,在考查考生计算能力的同时,考查考生的阅读理 解能力、动手操作能力、抽象思维能力、建模能力,力求引导考生 将数学知识运用到实际生活中去.
点拨::设 OA=3a,则 OB=4a,设直线 AB 的解析式是 y=kx+b,则
根据题意得:3ba=k+4ab,=0,解得:kb= =4-a43,,则直线 AB 的解析式是 y=-43x
+4a,直线 OD 是∠AOB 的平分线,则 OD 的解析式是 y=x.根据题
意得:yy= =x-,43x+4a,解得:yx==117722aa,,则 D 的坐标是(172a,172a),OA
解 : (1)AE = CE. 理 由 : 连 接 AE , DE , ∵ ∠ ABC = 90° , ∴∠ABE=90,∴∠ADE=∠ABE=90°.∵AD=DC,∴AE= CE
(2)连接 AE,ED,∵∠ABE=90°,∴AE 是⊙O 的直径.∵EF 是⊙O 的 切线,∴∠AEF=90°,∴∠ADE=∠AEF=90°.又∵∠DAE=∠EAF,
CF=
aCD(a>0)时,sin∠CAB= aa++22.提示:∵CF=aCD,AD=DC,∴AF= AD+DC+CF=(a+2)CD,∴AE2=DC·(a+2)DC=(a+2)DC2,∴AE=

2021年九年级数学中考复习——方程专题:分式方程实际应用(二)

2021年九年级数学中考复习——方程专题:分式方程实际应用(二)

2021年九年级数学中考复习——方程专题:分式方程实际应用(二)1.两个小组同时开始登一座450m高的山,第一组的速度是第二组的1.2倍,他们比第二组早15min到达顶峰.两个小组的速度各是多少?如果山高为hm,第一组的攀登速度是第二组的a倍,并比第二组早tmin达到顶峰,则两组的攀登速度各是多少?2.一台收割机的工作效率相当于一个农民工作效率的150倍,用这台机器收割10公顷小麦比100个农民人工收割这些小麦要少用1小时.这台收割机每小时收割多少公顷小麦?3.某服装店用960元购进一批服装,并以每件46元的价格全部售完,由于服装畅销,服装店又用2220元,再次以比第一次进价多5元的价格购进服装,数量是第一次购进服装的2倍,仍以每件46元的价格出售,卖了部分后,为了加快资金周转,服装店将剩余的20件以售价的九折全部出售.问:(1)该服装店第一次购买了此种服装多少件?(2)两次出售服装共盈利多少元?4.宜鲜水果店某种纽荷尔1月份的销售总额为600元,2月份与1月份相比,销量不变,但每斤的售价比1月份减少4元,因此销售总额比1月份减少了40%.(1)求2月份这种纽荷尔每斤的售价;(2)2月价该店计划新进一批这种纽荷尔和沃柑共45斤,已知纽荷尔进货价格是每斤3元;沃柑进货价格是每斤7元,销售价格是每斤20元.要求沃柑进货数量不超过纽荷尔数量的两倍,应如何进货才能使这批水果获得最大利润,并求出最大利润.5.越野自行车是中学生喜爱的交通工具,市场巨大,竞争也激烈.某品牌经销商经营的A 型车去年销售总额为5万元,今年每辆售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)设今年A型车每辆销售价为x元,求x的值.(2)该品牌经销商计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍,请问应如何安排两种型号车的进货数量,才能使这批售出后获利最多?A、B两种型号车今年的进货和销售价格表A型车B型车进货价1100元/辆1400元/辆销售价x元/辆2000元/辆6.某汽车销售公司销售某品牌A款汽车,随着汽车的普及,其价格也不断下降,今年12月份比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年12月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万且不少于100万元的资金购进这两款汽车共15辆,有几种进货方案?哪种方案更省钱?7.“一带一路”的战略构想为国内许多企业的发展带来了新的机遇,其中华为企业凭信自身实力在国际上得到快速发展,华为手机也越来越受到国际消费者的喜爱:重庆某手机专卖店经销华为P10和Mate30两款手机,两款手机售价如表:售价型号去年国庆假期售价(元/部)今年元旦假期售价(元/部)华为P3043003800华为Mate3050004500假设两款手机的进价始终保持不变.若今年元旦假期和去年国庆假期卖出的华为P30手机数量相同,且去年国庆假期利润为4.5万元,今年元旦假期利润为2.25万元.(1)求每部华为P30手机进价为多少元?(2)若每台Mate30的进价比P30的进价多400元,专卖店考虑到即将到来的今年1月24号大年初一“春节假期活动”,预计用不少于32万元且不多于32.1万元的资金购进这两款手机共90部,请问有哪几种进货方案?(3)“重外少年,爱心少年”.重外学生积极为偏远地区的孩子募集资金购买保暖冬装,得到该手机专卖店的大力支持,他们决定,每卖出一部P30捐出50元,每卖出一部Mate30捐出80元,在(2)向的前提下,当专卖店销售完这90部手机后,他们最多能为孩子们捐出多少资金?8.A、B两种新型智能仓储机器人都被用来搬运货箱,A型机器人比B型机器人每次多搬运3箱,A型机器人搬运300箱所用次数与B型机器人搬运240箱所用次数相同,两种机器人每次分别搬运多少货箱?9.随着《广州市深化生活垃圾分类处理三年行动计划(2019﹣2021)》的正式印发,广州市全面开启城乡生活垃圾分类全覆盖.为推进垃圾分类行动,某工厂购进甲、乙两种型号智能机器人用来进行垃圾分类,用360万元购买甲型机器人和用480万元购买乙型机器人的台数相同,两种型号机器人的单价和为140万元,求甲、乙两种型号机器人每台各多少万元?10.斑马线前“车让人”,不仅体现着一座城市对生命的尊重,也直接反映着城市的文明程度,如图,某路口的斑马线路段A﹣B﹣C横穿双向行驶车道,其中AB=BC=15米,在绿灯亮时,小明共用11秒通过AC.其中通过BC段的速度是通过AB段速度的1.2倍,求小明通过AB段时的速度.参考答案1.解:设第二组的速度为xm/min,则第一组的速度是1.2xm/min,由题意得﹣=15,解得:x=5,经检验:x=5是原分式方程的解,且符合题意,则1.2x=6.答:第一组的攀登速度6m/min,第二组的攀登速度5m/min.设第二组的速度为ym/min,则第一组的速度是aym/min,由题意得﹣=t,解得:y=,经检验:y=是原分式方程的解,且符合题意,则ay=.答:第一组的攀登速度是m/min,第二组的攀登速度m/min.2.解:设一个农民每小时收割小麦x公顷,则一台收割机每小时收割150x公顷,由题意,得+1,解得:x=,经检验,x=是原方程的根.∴收割机每小时收割小麦:=5公顷,答:这台收割机每小时收割5公顷小麦.3.解:(1)设第一次购买了此种服装x件,那么第二次购进2x件,依题意得,解之得x=30,经检验x=30是方程的解,答:第一次购买了此种服装30件;(2)∵第一次购买了此种服装30件,盈利46×30﹣960=420元;∴第二次购买了此种服装60件,46×(60﹣20)+46×0.9×20﹣2220=448元;∴两次出售服装共盈利420+448=868元.4.解:(1)设2月份这种纽荷尔每斤的售价为x元,则1月份这种纽荷尔每斤的售价为(x+4)元,由题意得:=,解得:x=6,答:2月份这种纽荷尔每斤的售价为6元;(2)设纽荷尔进货数量为a斤,总利润为w元,则w=(6﹣3)a+(20﹣7)(45﹣a)=﹣10a+585,由题意得:45﹣a≤2a,解得:a≥15,∵w=﹣10a+585,﹣10<0,∴w随a的增大而减小,∴a=15时,w=﹣10×15+585=435(元),最大则45﹣a=30,即纽荷尔进货15斤,沃柑进货30斤,才能使这批水果获得最大利润,最大利润为435元.5.解:(1)由题意得:=,解得:x=1600,经检验,x=1600是方程的解,∴x=1600;(2)设经销商新进A型车a辆,则B型车为(60﹣a)辆,获利y元.由题意得:y=(1600﹣1100)a+(2000﹣1400)(60﹣a),即y=﹣100a+36000,∵B型车的进货数量不超过A型车数量的2倍,∴60﹣a≤2a,∴a≥20,由y与a的关系式可知,﹣100<0,y的值随a的值增大而减小.∴a=20时,y的值最大,∴60﹣a=60﹣20=40(辆),∴当经销商新进A型车20辆,B型车40辆时,这批车获利最多.6.解:(1)设今年12月份A款汽车每辆售价m万元,则去年同期A款汽车每辆售价(m+1)万元,由题意得:=,解得:m=9,答:今年12月份A款汽车每辆售价9万元;(2)设购进A款汽车x辆,则购进B款汽车(15﹣x)辆,由题意得:100≤7.5x+6(15﹣x)≤105,解得:≤x≤10,∵x的正整数解为:7,8,9,10,∴共有4种进货方案:方案一,购进A款汽车7辆、B款汽车8辆,资金为:7.5×7+6×8=100.5(万元);方案二,购进A款汽车8辆、B款汽车7辆,资金为:7.5×8+6×7=102(万元);方案三,购进A款汽车9辆、B款汽车6辆,资金为:7.5×9+6×6=103.5(万元);方案四,购进A款汽车10辆、B款汽车5辆,资金为:7.5×10+6×5=105(万元);∴购进A款汽车7辆、B款汽车8辆的方案更省钱.7.解:(1)设每部华为P30手机进价为x元,依题意得:=,解得:x=3300,经检验,x=3300是原方程的解,且符合题意.答:每部华为P30手机进价为3300元.(2)每台Mate30手机的进价为3300+400=3700(元).设购进华为P30手机m部,则购进Mate30手机(90﹣m)部,依题意得:,解得:30≤m≤32,又∵m为正整数,∴m可以为30,31,32,∴共有3种进货方案,方案1:购进30部华为P30手机,60部Mate30手机;方案2:购进31部华为P30手机,59部Mate30手机;方案3:购进32部华为P30手机,58部Mate30手机.(3)设捐出的资金为w元,则w=50m+80(90﹣m)=﹣30m+7200,∵﹣30<0,∴w随m的增大而减小,∴当m=30时,w取得最大值,最大值=﹣30×30+7200=6300(元).答:当专卖店销售完这90部手机后,他们最多能为孩子们捐出6300元资金.8.解:设B型机器人每小时搬运x货箱,则A型机器人每小时搬运(x+3)货箱,根据题意得:=,解得:x=12,经检验,x=12是分式方程的解,∴x+3=15.答:B型机器人每小时搬运12货箱,A型机器人每小时搬运15货箱.9.解:设甲型机器人每台x万元,则乙型机器人每台(140﹣x)万元,根据题意得:=,解得:x=60,经检验,x=60是原方程的解,且符合题意,则140﹣x=80,答:甲型机器人每台60万元,乙型机器人每台80万元.10.解:设通过AB段的速度是xm/s,则通过BC段的速度是1.2xm/s,由题意得:,解得:x=2.5,经检验:x=2.5是原方程的解,且符合题意,答:通过AB时的速度是2.5m/s.。

专题02 二次函数的实际应用(30题)(原卷版)-2024-2025学年九年级数学上册同步学与练(人

专题02 二次函数的实际应用(30题)(原卷版)-2024-2025学年九年级数学上册同步学与练(人

专题第02讲二次函数的实际应用(30题)1.(2022秋•泰兴市期末)一水果店售卖一种水果,以8元/千克的价格进货,经过往年销售经验可知:以12元/千克售卖,每天可卖60千克;若每千克涨价0.5元,每天要少卖2千克;若每千克降价0.5元,每天要多卖2千克,但不低于成本价.设该商品的价格为x元/千克时,一天销售总质量为y千克.(1)求y与x的函数关系式.(2)若水果店货源充足,每天以固定价格x元/千克销售(x≥8),试求出水果店每天利润W与单价x的函数关系式,并求出当x为何值时,利润达到最大.2.(2023•朝阳)某超市以每件10元的价格购进一种文具,销售时该文具的销售单价不低于进价且不高于19元.经过市场调查发现,该文具的每天销售数量y(件)与销售单价x(元)之间满足一次函数关系,部分数据如下表所示:销售单价x/元…121314……363432…每天销售数量y/件(1)直接写出y与x之间的函数关系式;(2)若该超市每天销售这种文具获利192元,则销售单价为多少元?(3)设销售这种文具每天获利w(元),当销售单价为多少元时,每天获利最大?最大利润是多少元?3.(2023•海淀区校级开学)电缆在空中架设时,两端挂起的电缆下垂可以近似的看成抛物线的形状.如图,在一个斜坡BD上按水平距离间隔60米架设两个塔柱,每个塔柱固定电缆的位置离地面高度为27米(AB =CD=27米),以过点A的水平线为x轴,水平线与电缆的另一个交点为原点O建立平面直角坐标系,如图所示.经测量,AO=40米,斜坡高度12米(即B、D两点的铅直高度差).结合上面信息,回答问题:(1)若以1米为一个单位长度,则D点坐标为,下垂电缆的抛物线表达式为.(2)若电缆下垂的安全高度是13.5米,即电缆距离坡面铅直高度的最小值不小于13.5米时,符合安全要求,否则存在安全隐患.(说明:直线GH⊥x轴分别交直线BD和抛物线于点H、G.点G距离坡面的铅直高度为GH的长),请判断上述这种电缆的架设是否符合安全要求?请说明理由.4.(2023春•江岸区校级月考)如图,在斜坡底部点O处安装一个的自动喷水装置,喷水头(视为点A)的高度(喷水头距喷水装置底部的距离)是1.8米,自动喷水装置喷射出的水流可以近似地看成抛物线.当喷射出的水流与喷水装置的水平距离为8米时,达到最大高度5米.以点O为原点,自动喷水装置所在的直线为y轴,建立平面直角坐标系.(1)求抛物线的解析式;(2)斜坡上距离O水平距离为10米处有一棵高度为1.75米的小树NM,MN垂直水平地面且M点到水平地面的距离为2米.①记水流的高度为y1,斜坡的高度为y2,求y1﹣y2的最大值(斜坡可视作直线OM);②如果要使水流恰好喷射到小树顶端的点N,直接写出自动喷水装置应向后平移(即抛物线向左)多少米?5.(2023•武汉模拟)如图,灌溉车为绿化带浇水,喷水口H离地竖直高度OH为1.2m.可以把灌溉车喷出水的上、下边缘抽象为平面直角坐标系中两条抛物线的部分图象;把绿化带横截面抽象为矩形DEFG,其水平宽度DE=3m,竖直高度EF=0.5m.下边缘抛物线是由上边缘抛物线向左平移得到,上边抛物线最高点A离喷水口的水平距离为2m,高出喷水口0.4m,灌溉车到绿化带的距离OD为d(单位:m).(1)求上边缘抛物线的函数解析式,并求喷出水的最大射程OC;(2)求下边缘抛物线与x轴的正半轴交点B的坐标;(3)要使灌溉车行驶时喷出的水能浇灌到整个绿化带,直接写出d的取值范围.6.(2022秋•华容区期末)农户销售某农产品,经市场调查发现:若售价为6元/千克,日销售量为40千克,若售价每提高1元/千克,日销售量就减少2千克.现设售价为x元/千克(x≥6且为正整数).(1)若某日销售量为24千克,求该日产品的单价;(2)若政府将销售价格定为不超过18元/千克.设每日销售额为w元,求w关于x的函数表达式,并求w的最大值和最小值;(3)市政府每日给农户补贴a元后(a为正整数),发现最大日收入(日收入=销售额+政府补贴)还是不超过450元,并且只有5种不同的单价使日收入不少于440元,请直接写出所有符合题意的a的值.7.(2023春•蔡甸区月考)如图,抛物线AB,AC是某喷水器喷出的水抽象而成,抛物线AB由抛物线AC 向左平移得到,把汽车横截面抽象为矩形DEFG,其中DE=米,DG=2米,OA=h米,抛物线AC表达式为y=a(x﹣2)2+h+,h=,且点A,B,D,G,C均在坐标轴上.(1)求抛物线AC表达式.(2)求点B的坐标.(3)要使喷水器喷出的水能洒到整个汽车,记OD长为d米,直接写出d的取值范围.8.(2022秋•华容区期末)如图,足球场上守门员在O处开出一高球,球从离地面1米的A处飞出(A在y 轴上),运动员乙在距O点6米的B处发现球在自己头的正上方达到最高点M,距地面约4米高.球第一次落地点后又一次弹起.据实验,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.(1)求足球开始飞出到第一次落地时,该抛物线的表达式.(2)运动员乙要抢到第二个落点D,他应再向前跑多少米?(取,)9.(2023•淮安一模)某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?10.(2023•盘锦)某工厂生产一种产品,经市场调查发现,该产品每月的销售量y(件)与售价x(万元/件)之间满足一次函数关系,部分数据如表:每件售价x/万元…2426283032…月销售量y/件…5248444036…(1)求y与x的函数关系式(不写自变量的取值范围).(2)该产品今年三月份的售价为35万元/件,利润为450万元.①求:三月份每件产品的成本是多少万元?②四月份工厂为了降低成本,提高产品质量,投资了450万元改进设备和革新技术,使每件产品的成本比三月份下降了14万元.若四月份每件产品的售价至少为25万元,且不高于30万元,求这个月获得的利润w(万元)关于售价x(万元/件)的函数关系式,并求最少利润是多少万元.11.(2023春•江都区月考)某企业生产并销售某种产品,假设销售量与产量相等,图中的线段AB表示该产品每千克生产成本y1(单位:元)与产量x(单位:kg)之间的函数关系;线段CD表示该产品销售价y2(单位:元)与产量x(单位:kg)之间的函数关系,已知0<x≤120,m>60.(1)求线段AB所表示的y1与x之间的函数表达式;(2)若m=90,该产品产量为多少时,获得的利润最大?最大利润是多少?(3)若60<m<70,该产品产量为多少时,获得的利润最大?最大利润是多少?12.(2023•梁溪区模拟)为加强劳动教育,各校纷纷落实劳动实践基地.某校学生在种植某种高产番茄时,经过试验发现:①当每平方米种植2株番茄时,平均单株产量为8.4千克;②在每平方米种植的株数不超过10的前提下,以同样的栽培条件,株数每增加1株,平均单株产量减少0.8千克.(1)求平均单株产量y(千克)与每平方米种植的株数x(x为整数,且2≤x<10)之间的函数关系式;(2)已知学校劳动基地共有10平方米的空地用于种植这种番茄.问:当每平方米种植多少株时,该学校劳动基地能获得最大的产量?最大产量为多少千克?13.(2023春•仓山区校级期末)根据以下素材,探索完成任务.如何设计大棚苗木种植方案?素材1:图1中有一个大棚苗木种植基地及其截面图,其下半部分是一个长为20m,宽为1m的矩形,其上半部分是一条抛物线,现测得,大棚顶部的最高点距离地面5m.素材2:种植苗木时,每棵苗木高1.76m,为了保证生长空间,相邻两棵苗木种植点之间间隔1m,苗木顶部不触碰大棚,且种植后苗木成轴对称分布.(1)任务1:确定大棚上半部分形状.根据图2建立的平面直角坐标系,通过素材1提供的信息确定点的坐标,求出抛物线的函数关系式;(2)任务2:探究种植范围.在图2的坐标系中,在不影响苗木生长的情况下,确定种植点的横坐标的取值范围.14.(2023•岳麓区校级二模)从2020年开始,越来越多的商家向线上转型发展,“直播带货”已经成为商家的一种促销的重要手段.某商家在直播间销售一种进价为每件10元的日用商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)满足y=﹣10x+400,设销售这种商品每天的利润为W(元).(1)求W与x之间的函数关系式;(2)该商家每天想获得1250元的利润,又要减少库存,应将销售单价定为多少元?(3)若销售单价不低于28元,且每天至少销售50件时,求W的最大值.15.(2022秋•蜀山区校级期末)某超市经销甲、乙两种商品.商品甲每千克成本为20元,经试销发现,该种商品每天销售量y(千克)与销售单价x(元/千克)满足如图所示的一次函数关系,商品乙的成本为4元/千克,销售单价为10元/千克,但每天供货总量只有80千克,且能当天销售完.为了让利消费者,超市开展了“买一送一”活动,即买1千克的商品甲,免费送1千克的商品乙.(1)直接写出销售量y与销售单价x之间的函数表达式;(2)设这两种商品的每天销售总额为S元,求出S(元)与x(元/千克)的函数关系式;(注:商品的销售额=销售单价×销售量)(3)设这两种商品销售总利润为W,若商品甲的售价不低于成本,不超过成本的150%,当销售单价定为多少时,才能使当天的销售总利润最大?最大利润是多少?(注:销售总利润=两种商品的销售总额﹣两种商品的总成本)16.(2023春•莲池区校级期中)为促进学生德智体美劳全面发展,推动文化学习与体育锻炼协调发展,某校举办了学生趣味运动会.该校计划用不超过5900元购买足球和篮球共36个,分别作为运动会团体一、二等奖的奖品.已知足球单价170元,篮球单价160元.(1)学校至多可购买多少个足球?(2)受卡塔尔世界杯的影响,学校商议决定按(1)问的结果购买足球作为一等奖奖品,以鼓励更多学生热爱足球,同时商场也对足球和篮球的价格进行调整,足球单价下降了a%,篮球单价上涨了,最终学校购买奖品的经费比计划经费的最大值节省了155元,求a的值.17.(2023春•宜都市期末)某公司分别在A,B两城生产同种产品,共100件.A城生产产品的总成本y(万元)与产品数量x(件)之间具有一次函数关系:y=ax+b.当x=5时,y=40;当x=30时,y=140.B 城生产产品的每件成本为7万元.(1)求a,b的值;(2)当A,B两城生产这批产品的总成本之和为660万元时,求A,B两城各生产产品多少件?(3)从A城把该产品运往C,D两地的费用分别为m万元/件和3万元/件;从B城把该产品运往C,D 两地的费用分别为1万元/件和2万元/件.C地需要90件,D地需要10件,在(2)的条件下,若A,B 两城总运费之和的最小值为150万元,求m的值.18.(2023•海淀区校级四模)某公园修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端安装一个可调节角度的喷水头,从喷水头喷出的水柱形状是一条抛物线.建立如图所示的平面直角坐标系,抛物线形水柱的竖直高度y(单位:m)与到池中心的水平距离x(单位:m)满足的关系式近似为y=a (x﹣h)2+k(a<0).(1)在某次安装调试过程中,测得x与y的部分对应值如下表:水平距离x/m00.51 1.52 2.53竖直高度y/m 2.25 2.81253 2.8125 2.25 1.31250根据表格中的数据,解答下列问题:①水管的长度是m;②求出y与x满足的函数解析式y=a(x﹣h)2+k(a<0);(2)安装工人在上述基础上进行了下面两种调试:①不改变喷水头的角度,将水管长度增加1m,水柱落地时与池中心的距离为d1;②不改变水管的长度,调节喷水头的角度,使得水柱满足y=﹣0.6(x﹣1.5)2+3.6,水柱落地时与池中心的距离为d2.则比较d1与d2的大小关系是:d1d2(填“>”或“=”或“<”)19.(2023•罗山县三模)实心球是中考体育项目之一.在掷实心球时,实心球被掷出后的运动路线可以看作是抛物线的一部分.已知小军在一次掷实心球训练中,第一次投掷时出手点距地面1.8m,实心球运动至最高点时距地面3.4m,距出手点的水平距离为4m.设实心球掷出后距地面的竖直高度为y(m),实心球距出手点的水平距离为x(m).如图,以水平方向为x轴,出手点所在竖直方向为y轴建立平面直角坐标系.(1)求第一次掷实心球时运动路线所在抛物线的表达式.(2)若实心球投掷成绩(即出手点与着陆点的水平距离)达到12.4m为满分,请判断小军第一次投掷实心球能否得满分.(3)第二次投掷时,实心球运动的竖直高度y与水平距离x近似满足函数关系y=﹣0.08(x﹣5)2+3.8记小军第一次投掷时出手点与着陆点的水平距离为d1,第二次投掷时出手点与着陆点的水平距离为d2,则d1d2.(填“>”“<”“=”)20.(2023•花溪区校级一模)过山车是一项富有刺激性的娱乐工具,在乘坐过山车的过程中能够亲身体验由能量守恒、加速度和力交织在一起产生的效果,那感觉真是妙不可言.如图是合肥某乐园中部分过山车滑道所抽象出来的函数图象,线段AB是一段直线滑道,且AB长为米,点A到地面距离OA=6米,点B到地面距离BE=3米,滑道B﹣C﹣D可以看作一段抛物线,最高点为C(8,4).(1)求滑道B﹣C﹣D部分抛物线的函数表达式;(2)当小车(看成点)沿滑道从A运动到D的过程中,小车距离x轴的垂直距离为2.5米时,它到出发点A的水平距离是多少?(3)现在需要对滑道C﹣D部分进行加固,建造某种材料的水平和竖直支架CF,PH,PG.已知这种材料的价格是75000元/米,为了预算充足,至少需要申请多少元的资金.21.(2022秋•丰都县期末)抛实心球是丰都中考体育考试项目之一,如图1是一名男生投实心球情境,实心球行进路线是一条抛物线,行进高度y(m)与水平距离x(m)之间的函数关系如图2所示,掷出时,起点处高度为1.9m,当水平距离为4m时,实心球行进至最高点3.5m处.(1)求y关于x的函数表达式;(2)根据中考体育考试评分标准(男生版),投掷过程中,实心球从起点到落地点的水平距离大于等于9.7m时,即可得满分10分.该男生在此项考试中能否得满分,请说明理由.22.(2022秋•建昌县期末)2022年11月,“中国传统制茶技艺及其相关习俗”申遗成功,弘扬茶文化,倡导“和美雅静”的生活方式已成时尚.某茶商经销某品牌茶,成本为50元/千克,经市场调查发现,每周的销量y(千克)与销售单价x(元/千克)满足一次函数关系,部分数据列表如下:566575…销售单价x(元/千克)销量y(千克)12811090…(1)求y与x的一次函数关系式;(2)求该茶商这一周销售该品牌茶叶所获利润w(元)的最大值.23.(2023•锦州二模)近年来国家出台政策要求电动车上牌照,“保安全、戴头盔”出行.某头盔专卖店购进一批单价为36元的头盔.在销售中,通过分析销售情况发现这种头盔的月销售量y(个)与售价x(元/个)(42≤x≤72)满足一次函数关系,下表是其中的两组对应值.售价x(元/个)…5055…月销售量y(个)…10090…(1)求y与x之间的函数关系式;(2)专卖店的优惠活动:若购买一个这种头盔,就赠送一个成本为6元的头盔面罩.请问这种头盔的售价定为多少元时,月销售利润最大,最大月销售利润是多少元?24.(2023•金湖县三模)某超市购进甲、乙两种商品,已知购进5件甲商品和2件乙商品,需80元:购进3件甲商品和4件乙商品,需90元.(1)甲、乙两种商品的进货单价分别是多少?(2)设甲商品的销售单价为x(单位:元/件),在销售过程中发现:当12≤x≤18时,甲商品的日销售量y(单位:件)与销售单价x之间存在一次函数关系,x、y之间的部分数值对应关系如表:销售单价x(元/件)1218日销售量y(件)164请写出当12≤x≤18时,y与x之间的函数关系式;(3)在(2)的条件下,设甲商品的日销售利润为w元,当甲商品的销售单价x(元/件)定为多少时,日销售利润最大?最大利润是多少?25.(2022秋•新抚区期末)疫情防控常态化,全国人民同心抗疫.某商家决定将一个月获得的利润全部捐赠给社区用于抗疫.已知商家购进一批产品,成本为10元/件,拟采取线上和线下两种方式进行销售,市场调查发现,线下的月销量y(件)与线下售价x(元/件,且12≤x≤16)之间满足一次函数关系,部分数据如下表:x(元/件)12131415y(件)1000900800700(1)求y与x之间的函数关系式;(2)若线上售价始终比线下每件便宜2元,且线上的月销量固定为600件.当x为何值时,线上和线下销售月利润总和W达到最大?最大利润是多少?(3)要使(2)中月利润总和W不低于4400元,请直接写出x的取值范围.26.(2023•嘉鱼县模拟)为巩固扶贫攻坚成果,我县政府督查各部门和单位对口扶贫情况.某单位的帮扶对象种植的农产品在某月(按30天计)的第x天(x为正整数)的销售价格p(元/千克)关于x的函数关系为p=,销售量y(千克)与x之间的关系如图所示.(1)直接写出y与x之间的函数关系式和x的取值范围;(2)求该农产品的销售量有几天不超过60千克?(3)当月第几天,该农产品的销售额最大,最大销售额是多少?(销售额=销售量×销售价格)27.(2023•云梦县校级三模)李丽大学毕业后回家乡创业,开了一家服装专卖店代理品牌服装的销售.已知该品牌服装进价每件40元,日销售y(件)与销售价x(元/件)之间的关系如图所示(实线),每天付员工的工资每人82元,每天应支付其他费用106元.(1)直接写出日销售y(件)与销售价x(元/件)之间的函数关系式;(2)当某天的销售价为48元/件时,收支恰好平衡(收入=支出),求该店员工人数;(3)若该店只有2名员工,则每天能获得的最大利润是多少元?此时,每件服装的价格应定为多少元?28.(2023•卧龙区二模)如图,在斜坡底部点O处安装一个自动喷水装置,喷水头(视为点A)的高度(喷水头距喷水装置底部的距离)是1.8米,自动喷水装置喷射出的水流可以近似地看成抛物线.当喷射出的水流与喷水装置的水平距离为8米时,达到最大高度5米.以点O为原点,自动喷水装置所在的直线为y轴,建立平面直角坐标系.(1)求抛物线的函数关系式;(2)斜坡上距离O水平距离为10米处有一棵高度为1.75米的小树NM,MN垂直水平地面,且M点到水平地面的距离为2米,绿化工人向左水平移动喷水装置后,水流恰好喷射到小树顶端的点N,求自动喷水装置向左水平平移(即抛物线向左)了多少米?29.(2023•竞秀区二模)过山车是一项富有刺激性的娱乐工具,深受年轻游客的喜爱.某游乐场修建了一款大型过山车.如图所示,A→B→C为这款过山车的一部分轨道(B为轨道最低点),它可以看成一段抛物线,其中OA=16.9米,OB=13米(轨道厚度忽略不计).(1)求抛物线A→B→C的函数表达式;(2)在轨道上有两个位置P和C到地面的距离均为n米,当过山车运动到C处时,又进入下坡段C→E (接口处轨道忽略不计,E为轨道最低点),已知轨道抛物线C→E→F的形状与抛物线A→B→C完全相同,E点坐标为(33,0),求n的值;(3)现需要对轨道下坡段A→B进行安全加固,建造某种材料的水平和竖直支架GD、GM、HI、HN,且要求MN=2OM,已知这种材料的价格是100000元/米,请计算OM多长时,造价最低?最低造价为多少元?30.(2023•利辛县模拟)如图,某小区的景观池中安装一雕塑OA,OA=2米,在点A处安装喷水装置,喷出两股水流,两股水流可以抽象为平面直角坐标系中的两条抛物线(图中的C1,C2)的部分图象,两条抛物线的形状相同且顶点的纵坐标相同,且经测算发现抛物线C2的最高点(顶点)C距离水池面2.5米,且与OA的水平距离为2米.(1)求抛物线C2的解析式;(2)求抛物线C1与x轴的交点B的坐标;(3)小明同学打算操控微型无人机在C1,C2之间飞行,为了无人机的安全,要求无人机在竖直方向上的活动范围不小于0.5米,设无人机与OA的水平距离为m,求m的取值范围.。

2024年九年级中考数学专题复习:二次函数实际应用(抛物线型问题)

2024年九年级中考数学专题复习:二次函数实际应用(抛物线型问题)

2024年九年级中考数学专题复习:二次函数实际应用(抛物线型问题)一、单选题1.飞机着陆后滑行的距离s(单位:m)关于滑行的时间t(单位:s)的函数解析式是21.560=-+.飞机着陆后到停下来滑行的距离是()ms t t2A.小球距O点水平距离超过4米呈下降趋势B.当小球水平运动2米时,小球距离坡面的高度为6米C.小球落地点距O点水平距离为7米D.当小球拋出高度达到8m时,小球距O点水平距离为4m的水平距离,则小康此次掷球的成绩(即OA的长度)是()A.8m B.7m C.6m D.5m4.如图,要修建一个圆形喷水池,在池中心O点竖直安装一根水管,在水管的顶端A 处安一个喷水头,使喷出的抛物线形水柱与水池中心O点的水平距离为1m处达到最高,高度为3m,水柱落地处离池中心O点3m,则水管OA的高是()A.2m B.2.25m C.2.5m D.2.8m5.学校组织学生去同安进行研学实践活动,小王同学发现在宾馆房间的洗手盘台面上有一瓶洗手液(如图①).于是好奇的小王同学进行了实地测量研究.当小王用一定的力按住顶部A下压如图①位置时,洗手液从喷口B流出,路线近似呈抛物线状,且喷口B 为该抛物线的顶点.洗手液瓶子的截面图下面部分是矩形CGHD.小王同学测得:洗GH=,喷嘴位置点B距台面的距离为16cm,且B、D、H三手液瓶子的底面直径12cm点共线.小王在距离台面15.5cm处接洗于液时,手心Q到直线DH的水平距离为3cm,若小王不去接,则洗手液落在台面的位置距DH的水平距离是()6.某公园有一个圆形喷水池,喷出的水流呈抛物线形,一条水流的高度h(单位:m)与水流运动时间t(单位:s)之间的函数解析式为2h t t=-,那么水流从喷出至回305落到地面所需要的时间是()A.6s B.4s C.3s D.2s7.如图所示,某工厂的大门是抛物线形水泥建筑物,大门的地面宽度为8m,两侧距地303848508.如图,一座拱桥的轮廓是抛物线型,桥高10米,拱高8米,跨度24米,相邻两支柱间的距离均为6米,则支柱MN 的长度为( )A .6米B .5米C .4.5米D .4米二、填空题9.如图,已知一抛物线形大门,其地面宽度AB 长10米,一位身高1.8米的同学站在门下离门角B 点1米的D 处,其头顶刚好顶在抛物线形门上C 处.则该大门的最高处离地面高h 为 米.10.如图所示,抛物线形拱桥的顶点距水面2m 时,测得拱桥内水面宽为12m .当水面升高1m 后,拱桥内水面的宽度减少 m .11.从地面竖直向上抛出一小球,小球的高度h (米)与小球的运动时间(秒)之间的关系式是()230506h t t t =-≤≤,若抛出小球1秒钟后再抛出同样的第二个小球.则第二个小球抛出 秒时,两个小球在空中相撞.12.从地面竖直向上跑出一小球,小球的高度h (单位:m )与小球的运动时间t (单位:s )之间的关系式是()230206h t t t =-≤≤,小球运动到 s 时,达到最大高度 .13.如图,以40m/s 的速度将小球沿与地面成30︒角的方向击出时,小球的飞行路线将是一条抛物线,如果不考虑空气阻力,小球的飞行高度h (单位:m )与飞行时间t (单位:s )之间具有函数关系2520h t t =-+,小球飞行过程中能达到的最大高度为 m .14.如图,在喷水池的中心A处竖直安装一个水管AB,水管的顶端B处有一个喷水孔,喷出的抛物线形水柱在与池中心A的水平距离为1m处达到A最高点C,高度为3m,水柱落地点D离池中心A处3m,则水管AB的长为m.15.如图,水池中心点O处竖直安装一水管,水管喷头喷出抛物线形水柱,喷头上下移动时,抛物线形水柱随之竖直上下平移,水柱落点与点O在同一水平面.安装师傅调试发现,喷头高2.5m时,水柱落点距O点2.5m;喷头高4m时,水柱落点距O点3m.那么喷头高8m时,水柱落点距O点为m.16.某次踢球,足球的飞行高度h(米)与水平距离x(米)之间满足2=-+,h x x560则足球从离地到落地的水平距离为米.三、解答题17.如图,隧道的截面由抛物线和长方形构成,长方形的长为16m,宽为6m,抛物线AA的距离为8m.的最高点C离地面1(1)按如图所示的直角坐标系,求该抛物线的函数表达式.(2)一大型汽车装载某大型设备后,高为7m ,宽为4m ,如果该隧道内设双向行车道,那么这辆货车能否安全通过?18.掷实心球是中考体育考试的项目.如图是一男生所掷实心球的行进路线(抛物线的一部分)的高度()y m 与水平距离()x m 之间的函数图象,且掷出时起点处高度为2m ,当到起点的水平距离为4m 时,实心球行进至最高点,此时实心球与地面的距离为3m .(1)求抛物线的函数解析式;(2)在该市的评分标准中,实心球从起点到落地点的水平距离大于等于10m 时,即可得满分,试判断该男生在此项考试中能否得满分,并说明理由(参考数据:3 1.73≈).19.南湖大桥作为我市首个全面采用数控技术的桥体音乐喷泉项目,历经多年已经成为长春市民夜间休闲放松的网红打卡地.其中喷水头喷出的水柱轨迹呈抛物线形状,喷水头P 距水面7.5m ,水柱喷射水平距离为5m 时,达到最大高度,此时距水面10m ,水柱落在水面A 点处.将收集到数据建立如图所示的平面直角坐标系,水柱喷出的高度()m y 与水平距离()m x 之间的函数关系式是21()y a x h k =-+.(1)求抛物线的表达式.参考答案:。

2022年九年级数学复习专题---图形的变换(平移、翻折、旋转)综合问题题

2022年九年级数学复习专题---图形的变换(平移、翻折、旋转)综合问题题

2022年中考数学复习专题---图形的变换(平移、翻折、旋转)综合题班级:___________姓名:___________学号:___________1.综合与实践 问题情境:综合与实践课上,同学们以“三角形纸片的折叠与旋转“为主题展开数学活动,探究有关的数学问题. 动手操作:已知:三角形纸片ABC 中,6120AB AC BC BAC ==∠=︒,,.将三角形纸片ABC 按如下步骤进行操作: 第一步:如图1,折叠三角形纸片ABC ,使点C 与点A 重合,然后展开铺平,折痕分别交BC AC ,于点D E ,,连接AD ,易知AD CD =.第二步:在图1的基础上,将三角形纸片ABC 沿AD 剪开,得到ABD ∆和ACD ∆.保持ABD ∆的位置不变,将ACD ∆绕点D 逆时针旋转得到FDG ∆(点F G ,分别是A C ,的对应点),旋转角为()0360αα︒<<︒问题解决:(1)如图2,小彬画出了旋转角0120α︒<<︒时的图形,设线段FG AC ,交于点P ,连接AG DP ,.小彬发现DP 所在直线始终垂直平分线段AG .请证明这一结论;(2)如图3,小颖画出了旋转角90α=︒时的图形,设直线AF 与直线CG 相交于点O ,连接CF 判断此时COF ∆的形状,说明理由;(3)在ACD ∆绕点D 逆时针旋转过程中,当FG BC ⊥时,请直接写出B F ,两点间的距离.2.如图,△ABC 中,已知∠C=90°,∠B=60°,点D 在边BC 上,过D 作DE ⊥AB 于E . (1)连接AD ,取AD 的中点F ,连接CF ,EF ,判断△CEF 的形状,并说明理由(2)若.把△BED 绕着点D 逆时针旋转m (0<m <180)度后,如果点B 恰好落在初始Rt △ABC 的边上,那么m=3.问题背景:如图1,在矩形ABCD 中,30AB ABD =∠=︒,点E 是边AB 的中点,过点E 作EF AB ⊥交BD 于点F . 实验探究:(1)在一次数学活动中,小明在图1中发现AEDF=_________. 将图1中的BEF 绕点B 按逆时针方向旋转90︒,连接,AE DF ,如图2所示,发现AEDF=_________. (2)小亮同学继续将BEF 绕点B 按逆时针方向旋转,连接,AE DF ,旋转至如图3所示位置,请问探究(1)中的结论是否仍然成立?并说明理由. 拓展延伸:(3)在以上探究中,当BEF 旋转至D 、E 、F 三点共线时,AE 的长为____________.4.如图,在Rt ABC 中,90ACB ∠=︒,CD 平分ACB ∠.P 为边BC 上一动点,将DPB 沿着直线DP 翻折到DPE ,点E 恰好落在CDP 的外接圆O 上. (1)求证:D 是AB 的中点.(2)当60BDE ∠=︒,BP =DC 的长.(3)设线段DB 与O 交于点Q ,连结QC ,当QC 垂直于DPE 的一边时,求满足条件的所有QCB ∠的度数.5.如图1,O 为正方形ABCD 的中心,分别延长OA 、OD 到点,F E ,使OF=2OA ,OE 2OD =,连接EF ,将FOE ∆绕点O 按逆时针方向旋转角α得到F OE ''∆,连接,AE BF ''(如图2).(1)探究AE '与BF '的数量关系,并给予证明; (2)当30α=︒时,求证:AOE '为直角三角形.6.如图,在△ABC 中,AB =∠B =45°,∠C =60°. (1)求BC 边上的高线长.(2)点E 为线段AB 的中点,点F 在边AC 上,连结EF ,沿EF 将△AEF 折叠得到△PEF . ①如图2,当点P 落在BC 上时,求∠AEP 的度数. ②如图3,连结AP ,当PF ⊥AC 时,求AP 的长.7.如图1,点C 在线段AB 上,分别以AC 、BC 为边在线段AB 的同侧作正方形ACDE 和正方形BCMN , 连结AM 、BD .(1)AM与BD的关系是:________.(2)如果将正方形BCMN绕点C顺时针旋转锐角α(如图2).(1) 中所得的结论是否仍然成立?请说明理由.(3)在(2)的条件下,连接AB、DM,若AC=4,BC=2,求AB2+DM2的值.8.已知正方形ABCD,一等腰直角三角板的一个锐角顶点与A重合,将此三角板绕A点旋转时,两边分别交直线BC、CD于M、N.(1)当M、N分别在边BC、CD上时(如图1),求证:BM+DN=MN;(2)当M、N分别在边BC、CD所在的直线上时(如图2),线段BM、DN、MN之间又有怎样的数量关系,请直接写出结论;(不用证明)(3)当M、N分别在边BC、CD所在的直线上时(如图3),线段BM、DN、MN之间又有怎样的数量关系,请写出结论并写出证明过程.9.如图,已知∠ABC=90°,△ABE是等边三角形,点P为射线BC上任意一点(点P与点B不重合),连接AP,将线段AP绕点A逆时针旋转60°得到线段AQ,连接QE并延长交射线BC于点F.(1)如图,当BP=BA时,∠EBF=______°,猜想∠QFC =______°;(2)如图,当点P为射线BC上任意一点时,猜想∠QFC的度数,并加以证明.(3)已知线段AB=BP=x,点Q到射线BC的距离为y,求y关于x的函数关系式.10.我们知道,直角坐标系是研究“数形结合”的重要工具.请探索研究下列问题:(1)如图1,点A 的坐标为(-5,1),将点A 绕坐标原点(0,0)按顺时针方向旋转90°,得对应点A ',若反比例函数(0)k y x x=>的图像经过点A ',求k 的值.(2)将(1)中的(0)ky x x =>的图像绕坐标原点(0,0)按顺时针方向旋转45°,如图2,旋转后的图像与x 轴相交于点B ,若直线x =C 与点D ,求△BCD 的面积. (3)在(2)的情况下,半径为6的M 的圆心M 在x 轴上,如图3,若要使△BCD 完全在M 的内部,求M 的圆心M 横坐标xm 的范围(直接写出结果,不必写详细的解答过程).11.对于平面直角坐标系xOy 中的点A 和点P ,若将点P 绕点A 逆时针旋转90︒后得到点Q ,则称点Q 为点P 关于点A 的“垂链点”,图1为点P 关于点A 的“垂链点”Q 的示意图.(1)已知点A 的坐标为(0,0),点P 关于点A 的“垂链点”为点Q ;①若点P 的坐标为(2,0),则点Q 的坐标为________; ②若点Q 的坐标为(2,1)-,则点P 的坐标为________; (2)如图2,已知点C 的坐标为(1,0),点D 在直线113y x =+上,若点D 关于点C 的“垂链点”在坐标轴上,试求出点D 的坐标;(3)如图3,已知图形G 是端点为(1,0)和(0,2)-的线段,图形H 是以点O 为中心,各边分别与坐标轴平行的边长为6的正方形,点M 为图形G 上的动点,点N 为图形H 上的动点,若存在点(0,)T t ,使得点M 关于点T 的“垂链点”恰为点N ,请直接写出t 的取值范围.12.如图,正比例函数y =12x 与反比例函数()0k y x x =>的图象交于点A ,将正比例函数y =12x 向上平移6个单位,交y 轴于点C ,交反比例函数图象于点B ,已知AO =2BC . (1)求反比例函数解析式;(2)作直线AB ,将直线AB 向下平移p 个单位,恰与反比例函数图象有唯一交点,求p 的值.13.综合与实践:问题情境:(1)如图,点E 是正方形ABCD 边CD 上的一点,连接BD 、BE ,将DBE ∠绕点B 顺针旋转90︒,旋转后角的两边分别与射线DA 交于点F 和点G .①线段BE 和BF 的数量关系是______.②写出线段DE 、DF 和BD 之间的数量关系.并说明理由;操作探究:(2)在菱形ABCD 中,60ADC ∠=︒,点E 是菱形ABCD 边CD 所在直线上的-点,连接BD 、BE ,将DBE ∠绕点B 顺时针旋转120︒,旋转后角的两边分别与射线DA 交于点F 和点G .①如图,点E 在线段DC 上时,请探究线段DE 、DF 和BD 之间的数量关系,写出结论并给出证明;②如图,点E在线段CD的延长线上时,BE交射线DA于点M,若2==,直接写出线段FM和AGDE DC a的长度.14.两个全等的直角三角形ABC和DEF重叠在一起,其中∠A=60°,AC=4.固定△ABC不动,将△DEF 进行如下操作:(1)操作发现如图①,△DEF沿线段AB向右平移(即D点在线段AB内移动),连接DC,CF,FB,四边形CDBF的形状在不断的变化,那么它的面积大小是否变化呢?如果不变化,请求出其面积.(2)猜想论证如图②,当D点移到AB的中点时,请你猜想四边形CDBF的形状,并说明理由.(3)拓展探究如图③,△DEF的D点固定在AB的中点,然后绕D点按顺时针方向旋转△DEF,使DF落在AB边上,此时F点恰好与B点重合,连接AE,求sinα翻折问题姓名:___________班级:___________学号:___________1.如图将矩形纸片ABCD 沿AE 翻折,使点B 落在线段DC 上,对应的点为F . (1)求证:EFC DAF ∠=∠;(2)若3tan 4AE EFC =∠=,求AB 的长.2.如图,在Rt△ABC 中,∠C=90°,AC=BC=2,AD 是BC 边上的中线,将A 点翻折与点D 重合,得到折痕EF ,求:CE AE 的值.3.如图,点A ,M ,N 在O 上,将MN 沿MN 折叠后,与AM 交于点B .(1)若70MAN ∠=︒,则ANB ∠=________°; (2)如图1,点B 恰好是翻折所得MN 的中点, ①若MA MN =,求AMN ∠的度数;②若tan MAN ∠=tan AMN ∠的值; (3)如图2,若222AB BN MN +=,求MBAB的值.4.已知矩形ABCD 中,AB =2,BC =m ,点E 是边BC 上一点,BE =1,连接AE ,沿AE 翻折△ABE 使点B 落在点F 处.(1)连接CF ,若CF ∥AE ,求m 的值;(2)连接DF ,若65≤DF ,求m 的取值范围.5.如图1,一张矩形纸ABCD ,ABa AD=,点,E F 分别在边,CD AB 上,且AE EF =,把ADE 沿AE 翻折得到AGE .(1)如图1,若1AD =.(Ⅰ)当AD DE =时,AFE ∠=_____度; (Ⅱ)当//AG EF 时,求AF 的长度.(2)若直线EG 与边AB 交于点H ,当2AH FH =时,求a 的最小值.6.如图,在折纸游戏中,正方形ABCD 沿着BE ,BF 将BC ,AB 翻折,使A ,C 两点恰好落在点P . (1)求证:45EBF ∠=︒.(2)如图,过点P 作//MN BC ,交BF 于点Q . ①若5BM =,且10MP PN ⋅=,求正方形折纸的面积. ②若12QP BC =,求AM BM的值.7.如图,在ABC 中,12,120AC BC ACB ==∠=︒,点D 是AB 边上一点,连接CD ,以CD 为边作等边CDE △.(1)如图1,若45CDB ∠=︒,求等边CDE △的边长;(2)如图2,点D 在AB 边上移动过程中,连接BE ,取BE 的中点F ,连接,CF DF ,过点D 作DG AC ⊥于点G . ①求证:CFDF .②如图3,将CFD 沿CF 翻折得CFD ',连接BD ',求出BD '的最小值.8.在矩形ABCD 中,1AB =,BC a =,点E 是边BC 上一动点,连接AE ,将ABE △沿AE 翻折,点B 的对应点为点B '.(1)如图,设BE x =,BC =E 从B 点运动到C 点的过程中. ①AB CB ''+最小值是______,此时x =______; ②点B '的运动路径长为.(2)如图,设35BE a =,当点B 的对应点B '落在矩形ABCD 的边上时,求a 的值.9.如图1,平行四边形ABCD 的对角线AC ,BD 相交于点O ,CD 边的垂直平分线EH 交BD 于点E ,连接AE ,CE .(1)过点A 作//AF EC 交BD 于点F ,求证:AF BF =;(2)如图2,将ABE △沿AB 翻折得到'ABE △.①求证:'//BE CE ;②若'//AE BC ,1OE =,求CE 的长度.10.如图,矩形ABCD 中,已知6AB =.8BC =,点E 是射线BC 上的一个动点,连接AE 并延长,交射线DC 于点F .将ABE △沿直线AE 翻折,点B 的对应点为点B ',延长AB '交直线CD 于点M .(1)如图1,若点B '恰好落在对角线AC 上,求BE CE的值. (2)如图2.当点E 为BC 的中点时,求DM 之长.(3)若32BE CE =,求sin DAB '∠.11.【基础巩固】(1)如图①,ABC ACD CED α∠=∠=∠=,求证:ABC CED ∽△△.【尝试应用】(2)如图②,在菱形ABCD 中,60A ∠=︒,点E ,F 分别为边,AD AB 上两点,将菱形ABCD 沿EF 翻折,点A 恰好落在对角线DB 上的点P 处,若2PD PB =,求AE AF的值. 【拓展提高】(3)如图③,在矩形ABCD 中,点P 是AD 边上一点,连接,PB PC ,若2,4,120PA PD BPC ==∠=︒,求AB 的长.12.如图,在ABC 中,60B ∠=︒,AD BC ⊥于点D ,CE AB ⊥于点E ,AB CE =.(1)如图1,将ABD △沿AD 翻折到AFD ,AF 交CE 于点G ,探索线段AB 、AG 、CG 之间有何等量关系,并加以证明;(2)如图2,H 为直线BC 上任意一点,连接AH ,将AH 绕点A 逆时针旋转60°到AH ',连接CH ',若BD =,求CH '的最小值.13.如图,在矩形ABCD 中,12BC AB =,F 、G 分别为AB 、DC 边上的动点,连接GF ,沿GF 将四边形AFGD 翻折至四边形EFGP ,点E 落在BC 上,EP 交CD 于点H ,连接AE 交GF 于点O(1)GF 与AE 之间的位置关系是:______,GF AE 的值是:______,请证明你的结论;(2)连接CP ,若3tan 4CGP ∠=,GF =CP 的长14.如图,在矩形ABCD 中,8AB =,10BC =,点P 在矩形的边CD 上由点D 向点C 运动.沿直线AP 翻折ADP ∆,形成如下四种情形,设DP x =,ADP ∆和矩形重叠部分(阴影)的面积为y .(1)如图4,当点P 运动到与点C 重合时,求重叠部分的面积y ;(2)如图2,当点P 运动到何处时,翻折ADP ∆后,点D 恰好落在BC 边上?这时重叠部分的面积y 等于多少?15.如图1,ABC 中,AB AC =,点D 在BA 的延长线上,点E 在BC 上,连接DE 、DC ,DE 交AC 于点G ,且DE DC =.(1)找出一个与BDE ∠相等的角;(2)若AB =mAD ,求DG GE的值(用含m 的式子表示); (3)如图2,将ABC 沿BC 翻折,若点A 的对应点A '恰好落在DE 的延长线上,求BE EC的值.16.在等腰直角三角形ABC中,∠BAC=90°,AB=AC,D是斜边BC的中点,连接AD.(1)如图1,E是AC的中点,连接DE,将△CDE沿CD翻折到△CDE′,连接AE′,当时,求AE的值.(2)如图2,在AC上取一点E,使得CE=13AC,连接DE,将△CDE沿CD翻折到△CDE′,连接AE′交BC于点F,求证:DF=CF.。

2024学年九年级中考数学专题复习:分配方案问题(一次函数实际综合应用)(含答案)

2024学年九年级中考数学专题复习:分配方案问题(一次函数实际综合应用)(含答案)

2024 学年九年级中考数学专题复习:分配方案问题(一次函数实际综合应用)1.春天来了,学校计划用两种花卉对校园进行美化.已知用600元购买A 种花卉与用900元购买B 种花卉的数量相等,且B 种花卉每盆的价格比A 种花卉每盆的价格多0.5元.(1)求A ,B 两种花卉每盆的价格各是多少元;(2)学校计划购买A ,B 两种花卉共6000盆,其中A 种花卉的数量不超过B 种花卉数量的13,请你给出购买这批花卉费用最低的方案,并求出最低费用. 2.某市的A 县和B 县春季育苗,急需化肥分别为90t 和60t ,该市的C 县和D 县分别储存化肥100t 和50t ,全部调配给A 县和B 县.已知从C 县运化肥到A 县的运费为35元/t ,从C 县运化肥到B 县的运费为30元/t ,从D 县运化肥到A 县的运费为40元/t ,从D 县运化肥到B 县的运费为45元/t .(1)设C 县运到A 县的化肥为x t ,求总运费W (单位:元)关于x (单位:t )的函数解析式,并写出自变量x 的取值范围;(2)求最低总运费,并说明总运费最低时的运送方案.3.为加强学生的劳动教育,某校准备开展以“种下希望,共建美好家园”为主题的义务植树活动. 经了解,购买2棵枣树和3棵石榴树共需44元;购买5棵枣树和6棵石榴树共需98元,该校决定购买(0)m m 棵枣树和50棵石榴树.(1)求枣树和石榴树的单价;(2)实际购买时,商家给出了如下优惠方案:方案一:均按原价的九折销售;方案二:如果购买的枣树不超过50棵,按原价销售. 如果购买的枣树超过50棵,则超出的部分按原价的八折销售,石榴树始终按原价销售.分别求出两种方案的费用1W ,2W 关于m 的函数解析式.4.“一骑红尘妃子笑,无人知是荔枝来”,夏季是盛产荔枝的季节,某县城为尽快打开市场,对本地的荔枝品种妃子笑进行线上和线下销售相结合的模式,具体费用标准如下:线上销售模式:不超过6千克时,按原价出售,超过6千克时,超出部分每千克再让利3.5元;线下销售模式:一律九折出售.购买妃子笑x 千克,所需费用为y 元,y 与x 之间的函数关系如图所示.根据以上信息回答下列问题:(1)请问妃子笑的标价为多少?(2)请求出线上销售模式所需费用y关于x的函数解析式;(3)若想购买妃子笑40千克,请问选择哪种模式购买最省钱?5.某公司为改善办公条件,计划采购一批A,B两种型号的电脑,已知1台A型电脑比1台B型电脑的便宜1200元;采购4台A型电脑与采购3台B型电脑的费用一样多.(1)求A型电脑和B型电脑每台各需多少元;(2)若公司计划采购A、B两种型号电脑共50台,且A型电脑的台数不超过B型电脑的4倍,两种型号电脑的采购总费用不超过200000元,该公司共有几种采购方案?哪种采购方案可使总费用最低,最低费用是多少元?6.希望艺术团准备采购甲,乙两种道具,某经销商知道了活动的方案后,主动联系希望艺术团,对甲种道具的出售价格根据购买量给予优惠,对乙种道具按25元/件的价格出售.设希望艺术团购买甲种道具x件,付款y元,y与x之间的函数关系如图所示.(1)直接写出当0≤x≤50和x>50时,y与x之间的函数关系式;(2)若希望艺术团计划一次性购买甲,乙两种道具共100件,且甲种道具不少于40件,但又不超过60件.如何分配甲,乙两种道具的购买量,才能使希望艺术团付款总金额w(元)最少?(3)若甲、乙两种道具的进货价格分别为22元/件和18元/件.经销商按(2)中甲,乙两种道具购买量的分配比例卖出两种道具共a件,且销售完a件道具获得的利润不少于1050元,求a的最小值.7.我市某中学计划举行以“奋斗百年路,启航新征程”为主题的知识竞赛,并对获奖的同学给予奖励.现要购买A,B两种奖品.已知2件A种奖品和3件B种奖品共需41元,5件A种奖品和2件B种奖品共需53元.(1)这两种奖品的单价各是多少元?(2)学校准备购进这两种奖品共90件,且B种奖品的数量不少于A种奖品数量的13,请设计出最省钱的购买方案,并求出最少费用.8.我市是福建省茶叶的主要产区,清明过后就是春茶的采摘季节.已知熟练采茶工人每天采茶的数量是新手采茶工人的3倍,每个熟练采茶工人采摘600斤鲜叶比新手采茶工人采摘450斤鲜叶少用25天.(1)求熟练采茶工人和新手采茶工人一天分别能采摘鲜叶的斤数;(2)某茶厂计划一天采摘鲜叶600斤,该茶厂有20名熟练采茶工人和15名新手采茶工人,按点工制度付给熟练采茶工人每人每天的工资为300元,付给新手采茶工人每人每天的工资为80元,应如何安排熟练采茶工人和新手采茶工人能使费用最少?9.为了方便老师工作,某中学决定购进一批教学用具,在购买教学用具时,该校从甲、乙、丙三家商场了解到同一种型号教学用具的优惠条件如下:甲:定价为90元,超过5个,超过的部分每个优惠20%;乙:定价为90元,每个优惠10% ;丙:购会员卡100元,每个教学用具70元.(1)设该校购买x个教学用具,选择甲商场时,所需费用为y1元;选择乙商场时,所需费用为y2元;选择丙商场时,所需费用为y3元;请分别求出y1,y2,y3与x之间的函数关系式;(2)当购买教学用具数量大于多少件时,y2>y3?10.某年级430名师生秋游,计划租用8辆客车,现有甲、乙两种型号客车,它们的载客量和租金如下表:(1)设租用甲种客车x辆,租车总费用为y元.求出y(元)与x(辆)之间的函数表达式;(2)当甲种客车有多少辆时,能保障所有的师生能参加秋游且租车费用最少,最少费用是多少元?11.目前,全国各地都在积极开展新冠肺炎疫苗接种工作,某生物公司接到批量生产疫苗任务,要求5天内加工完成22万支疫苗,该公司安排甲,乙两车间共同完成加工任务,乙车间加工过程中停工一段时间维修设备,然后提高效率继续加工,直到与甲车间同时完成加工任务为止,设甲,乙两车间各自生产疫苗y (万支)与甲车间加工时间x (天)之间的关系如图1所示;两车间未生产疫苗w (万支)与甲车间加工时间x (天)之间的关系如图2所示,请结合图象回答下列问题:(1)甲车间每天生产疫苗 万支,第一天甲、乙两车间共生产疫苗 万支,=a ;(2)当3x =时,求甲、乙车间生产的疫苗数(万支)之差12y y -;(3)若5.5万支疫苗恰好装满一辆货车,那么加工多长时间装满第一辆货车?再加工多长时间恰好装满第三辆货车?12.某校准备在健康大药房购买口罩和水银体温计发放给每个学生.已知每盒口罩有100只,每盒水银体温计有10支,每盒口罩价格比每盒水银体温计价格多150元.用1200元购买口罩盒数与用300元购买水银体温计所得盒数相同.(1)求每盒口罩和每盒水银体温计的价格各是多少元?(2)如果给每位学生发放2只口罩和1支水银体温计,且口罩和水银体温计均整盒购买.设购买口罩m 盒(m 为正整数),则购买水银体温计多少盒能和口罩刚好配套?请用含m 的代数式表示.(3)在健康大药房累计购医用品超过1800元后,超出1800元的部分可享受8折优惠.该校按(2)中的配套方案购买,共支付w 元,求w 关于m 的函数关系式.若该校九年级有1000名学生,需要购买口罩和水银体温计各多少盒?所需总费用为多少元? 13.某商场销售一种夹克和衬衣,夹克每件定价100元,衬衣每件定价50元,商场在开展促销活动期间,向顾客提供两种优惠方案.方案一:买一件夹克送一件衬衣方案二:夹克和衬衣均按定价的80%付款现有顾客要到该商场购买夹克30件,衬衣x件(x>30)(1)用含x的代数式表示方案一购买共需付款y1元和方案二购买共需付款y2元;(2)通过计算说明,购买衬衣多少件时,两种方案付款一样多?(3)当x=40时,哪种方案更省钱?请说明理由.14.灵宝寺河山被誉为“亚洲第一高山果园”,海拔800﹣1200米,土质肥沃,雨量充沛,日照充足,昼夜温差大,气候条件得天独厚,是苹果的最佳适生地.寺河山苹果,是三门峡市灵宝苹果的龙头品牌,素有“天下苹果属灵宝,灵宝苹果属寺河”之说.在苹果收获季节,为了保证苹果的新鲜度,需要将苹果运送至冷库进行保存,现有A,B两个果园,若A果园有苹果120吨,B果园有苹果60吨.现将A,B两个果园的苹果全部运往C,D两个冷库进行冷藏保存,已知C仓库可储存100吨,D仓库可储存80吨,A,B 两个果园到C,D两个冷藏仓库的运费如下表:设从A果园运往C仓库的苹果重量为x吨.(1)用含x(吨)的代数式表示总运费W(元),并写出自变量x的取值范围;(2)如何进行运送才能使总运费最少?求出最低总运费.15.学习贯彻习近平总书记关于生态文明建设系列重要讲话精神,牢固树立“绿水青山就是金山银山”理念,把生态文明建设融入经济建设、政治建设、文化建设、社会建设各个方面和全过程.在建设美丽中国的活动中,某学校计划组织全校1450名师生到相关部门规划的林区植树,经过研究,决定在当地租车公司租用62辆A、B两种型号的客车作为交通工具.下表是租车公司提供给学校有关A、B两种型号客车的载客量和租金信息:注:载客量指的是每辆客车最多可载该校师生的人数;(1)设租用A型号客车x辆,租车总费用为y元,求y与x之间的函数表达式,并通过计算求出x的取值范围;(2)若要使租车总费用不超过13460元,则共有几种租车方案?哪种租车方案最省钱?参考答案:1.(1)A 种花卉每盆1元,B 种花卉每盆1.5元(2)当购买A 种花卉1500盆,B 种花卉4500盆时购买这批花卉总费用最低,最低费用为8250元.2.(1)W =10x +4800(40≤x ≤90)(2)最低总运费为5200元,此时的运送方案是:C 县的100t 化肥40t 运往A 县,60t 运往B 县,D 县的50t 化肥全部运往A 县3.(1)枣树的单价为10元,石榴树的单价为8元(2)19360W m =+,210400(050),8500(50).m m W m m +<≤⎧=⎨+>⎩4.(1)25元/千克(2)()()250621.5216x x y x x ⎧≤<⎪=⎨+>⎪⎩(3)线上购买5.(1)购买1台A 型电脑需要3600元,购买1台B 型电脑需要4800元.(2)该公司共有7种采购方案. 购买A 型电脑40台,B 型电脑10台方案可使总费用最低,最低费用是192000元6.(1)30(050)24300(50)x x y x x ≤≤⎧=⎨+>⎩ (2)购进甲道具40件,乙道具60件时,才能使希望艺术团付款总金额w (元)最少;(3)a 的最小值为2107.(1)A :7元,B :9元(2)购进A 种奖品67件,购进B 种奖品23件;676元8.(1)每名熟练的采茶工人一天能采摘鲜叶30斤,每名新手采茶工人一天能采摘鲜叶10斤(2)茶厂应安排15名熟练的采茶工人采摘鲜叶,15名新手采茶工人采摘鲜叶能使得费用最少9.(1)190(05)7290(5)x x y x x <≤⎧=⎨+>⎩;290(110%)81y x x =⨯-=;370100y x =+ (2)1010.(1)y =100x +3600(2)当甲种客车有5辆时,能保障所有的师生能参加秋游且租车费用最少,最少费用是4100元11.(1)2,3.5,1.5(2)1(3)2天,2天12.(1)每盒口罩和每盒水银体温计的价格各是200元,50元(2)5m(3)当m ≤4时,则w=450m ;当m >4时,w =360m +360,需要购买口罩20盒,水银体温计100盒,所需总费用为7560元13.(1)12501500402400y x y x =+⎧⎨=+⎩;(2)当90x =时12y y =;(3)当x =40时,方案一更省钱. 14.(1)43400W x =+,40100x ≤≤;(2)运送方案为A 果园将40吨苹果运往C 仓库,80吨运往D 仓库,B 果园的60吨苹果全部运往C 仓库,此时总运费最低,最低是3560元 15.(1)y =100x +11160(21≤x ≤62且x 为整数);(2)3种,租用A 型号客车21辆。

人教版九年级数学上册中考专题复习题含答案全套

人教版九年级数学上册中考专题复习题含答案全套

人教版九年级数学上册中考专题复习题1.类比归纳专题:配方法的应用2.类比归纳专题:一元二次方程的解法3.易错易混专题:一元二次方程中的易错问题4.考点综合专题:一元二次方程与其他知识的综合5.解题技巧专题:抛物线中与系数a,b,c有关的问题6.易错易混专题:二次函数的最值或函数值的范围7.难点探究专题:抛物线与几何图形的综合(选做)8.抛物线中的压轴题9.易错专题:抛物线的变换10.解题技巧专题:巧用旋转进行计算11.旋转变化中的压轴题12.类比归纳专题:圆中利用转化思想求角度13.类比归纳专题:切线证明的常用方法14.解题技巧专题:圆中辅助线的作法15.解题技巧专题:圆中求阴影部分的面积16.考点综合专题:圆与其他知识的综合17.圆中的最值问题18.抛物线与圆的综合19.易错专题:概率与放回、不放回问题类比归纳专题:配方法的应用——体会利用配方法解决特定问题◆类型一 配方法解方程1.一元二次方程x 2-2x -1=0的解是( )A .x 1=x 2=1B .x 1=1+2,x 2=-1- 2C .x 1=1+2,x 2=1- 2D .x 1=-1+2,x 2=-1- 22.用配方法解下列方程时,配方有错误的是( )A .x 2-2x -99=0化为(x -1)2=100B .x 2+8x +9=0化为(x +4)2=25C .2t 2-7t -4=0化为⎝⎛⎭⎫t -742=8116 D .3x 2-4x -2=0化为⎝⎛⎭⎫x -232=1093.利用配方法解下列方程:(1)(2016·淄博中考)x 2+4x -1=0;(2)(x +4)(x +2)=2;(3)4x 2-8x -1=0;(4)3x 2+4x -1=0.◆类型二 配方法求最值或证明 4.代数式x 2-4x +5的最小值是( ) A .-1 B .1 C .2 D .55.下列关于多项式-2x 2+8x +5的说法正确的是( )A .有最大值13B .有最小值-3C .有最大值37D .有最小值1 6.(2016-2017·夏津县月考)求证:代数式3x 2-6x +9的值恒为正数.7.若M =10a 2+2b 2-7a +6,N =a 2+2b 2+5a +1,试说明无论a ,b 为何值,总有M >N .◆类型三 完全平方式中的配方 8.如果多项式x 2-2mx +1是完全平方式,则m 的值为( )A .-1B .1C .±1D .±29.若方程25x 2-(k -1)x +1=0的左边可以写成一个完全平方式,则k 的值为( )A .-9或11B .-7或8C .-8或9D .-6或7◆类型四 利用配方构成非负数求值 10.已知m 2+n 2+2m -6n +10=0,则m +n 的值为( )A .3B .-1C .2D .-211.已知x 2+y 2-4x +6y +13=0,求(x +y )2016的值.答案:类比归纳专题:一元二次方程的解法——学会选择最优的解法◆类型一 一元二次方程的一般解法方法点拨: 形如(x +m )2=n (n ≥0)的方程可用直接开平方法;当方程二次项系数为1,且一次项系数为偶数时,可用配方法;若方程移项后一边为0,另一边能分解成两个一次因式的积,可用因式分解法;如果方程不能用直接开平方法和因式分解法求解,则用公式法.1.用合适的方法解下列方程:(1)⎝⎛⎭⎫x -522-14=0;(2)x 2-6x +7=0;(3)x 2-22x +18=0;(4)3x (2x +1)=4x +2.◆*类型二 一元二次方程的特殊解法 一、十字相乘法方法点拨:例如:解方程:x 2+3x -4=0.第1种拆法:4x -x =3x (正确), 第2种拆法:2x -2x =0(错误), 所以x 2+3x -4=(x +4)(x -1)=0,即x +4=0或x -1=0,所以x 1=-4,x 2=1. 2.解一元二次方程x 2+2x -3=0时,可转化为解两个一元一次方程,请写出其中的一个一元一次方程____________.3.用十字相乘法解下列一元二次方程: (1)x 2-5x -6=0; (2)x 2+9x -36=0.二、换元法方法点拨:在已知或者未知条件中,某个代数式几次出现,可用一个字母来代替它从而简化问题,这就是换元法,当然有时候要通过变形才能换元.把一些形式复杂的方程通过换元的方法变成一元二次方程,从而达到降次的目的.4.若实数a ,b 满足(4a +4b )(4a +4b -2)-8=0,则a +b =_______.5.解方程:(x 2+5x +1)(x 2+5x +7)=7.1.解:(1)移项,得⎝⎛⎭⎫x -522=14, 两边开平方,得x -52=±14, 即x -52=12或x -52=-12,∴x 1=3,x 2=2;(2)移项,得x 2-6x =-7,配方,得x 2-6x +9=-7+9,即(x -3)2=2, 两边开平方,得x -3=±2, ∴x 1=3+2,x 2=3-2;(3)原方程可化为8x 2-42x +1=0. ∵a =8,b =-42,c =1,∴b 2-4ac =(-42)2-4×8×1=0, ∴x =-(-42)±02×8=24,∴x 1=x 2=24; |(4)原方程可变形为(2x +1)(3x -2) =0,∴2x +1=0或3x -2=0, ∴x 1=-12,x 2=23.2. x -1=0或x +3=0.3.解:(1)原方程可变形为(x -6)(x +1) =0,∴x -6=0或x +1=0, ∴x 1=6,x 2=-1;(2)原方程可变形为(x +12)(x -3) =0,∴x +12=0或x -3=0, ∴x 1=-12,x 2=3. 4.-12或15.解:设x 2+5x +1=t ,则原方程化为t (t +6)=7,∴t 2+6t -7=0,解得t =1或-7.当t =1时,x 2+5x +1=1,x 2+5x =0, x (x +5)=0,∴x =0或x +5=0,∴x 1=0,x 2=-5; 当t =-7时,x 2+5x +1=-7,x 2+5x +8=0,∴b 2-4ac =52-4×1×8<0,此时方程 无实数根.∴原方程的解为x 1=0,x 2=-5.易错易混专题:一元二次方程中的易错问题◆类型一 利用方程或其解的定义求待定系数时,忽略“a ≠0”1.(2016-2017·江都区期中)若关于x的方程(a +3)x |a |-1-3x +2=0是一元二次方程,则a 的值为______.【易错1】2.关于x 的一元二次方程(a -1)x 2+x +a 2-1=0的一个根是0,则a 的值是( )A .-1B .1C .1或-1D .-1或0 3.已知关于x 的一元二次方程(m -1)x 2+5x +m 2-3m +2=0的常数项为0.(1)求m 的值; (2)求方程的解.◆类型二 利用判别式求字母取值范围时,忽略“a ≠0”及“a 中的a ≥0”4.(2016-2017·抚州期中)若关于x 的一元二次方程(m -2)2x 2+(2m +1)x +1=0有解,那么m 的取值范围是( )A .m >34B .m ≥34C .m >34且m ≠2D .m ≥34且m ≠25.已知关于x 的一元二次方程x 2+k -1x -1=0有两个不相等的实数根,则k的取值范围是________.6.若m 是非负整数,且关于x 的方程(m -1)x 2-2x +1=0有两个实数根,求m 的值及其对应方程的根.◆类型三 利用根与系数关系求值时,忽略“Δ≥0”7.(2016·朝阳中考)关于x 的一元二次方程x 2+kx +k +1=0的两根分别为x 1,x 2,且x 21+x 22=1,则k 的值为_______.【易错2】 8.已知关于x 的方程x 2+2(m -2)x +m 2+4=0有两个实数根,且这两根的平方和比两根的积大21,求m 的值.【易错2】◆类型四 与三角形结合时忘记取舍 9.已知三角形两边长分别为2和9,第三边的长为一元二次方程x 2-14x +48=0的根,则这个三角形的周长为( )A .11B .17C .17或19D .1910.在等腰△ABC 中,三边分别为a ,b ,c ,其中a =5,若关于x 的方程x 2+(b +2)x +6-b =0有两个相等的实数根,求△ABC 的周长.考点综合专题:一元二次方程与其他知识的综合◆类型一一元二次方程与三角形、四边形的综合1.(雅安中考)已知等腰三角形的腰和底的长分别是一元二次方程x2-4x+3=0的根,则该三角形的周长可以是()A.5 B.7 C.5或7 D.102.(广安中考)一个等腰三角形的两条边长分别是方程x2-7x+10=0的根,则该等腰三角形的周长是()A.12 B.9C.13 D.12或93.(罗田县期中)菱形ABCD的一条对角线长为6,边AB的长是方程x2-7x+12=0的一个根,则菱形ABCD的周长为()A.16 B.12 C.16或12 D.244.(烟台中考)等腰三角形边长分别为a,b,2,且a,b是关于x的一元二次方程x2-6x+n-1=0的两根,则n的值为()A.9 B.10C.9或10 D.8或105.(齐齐哈尔中考)△ABC的两边长分别为2和3,第三边的长是方程x2-8x+15=0的根,则△ABC的周长是________.6.(西宁中考)若矩形的长和宽是方程2x2-16x+m=0(0<m≤32)的两根,则矩形的周长为_________.【方法8】7.已知一直角三角形的两条直角边是关于x的一元二次方程x2+(2k-1)x+k2+3=0的两个不相等的实数根,如果此直角三角形的斜边是5,求它的两条直角边分别是多少.【易错4】◆类型二一元二次方程与一次函数的综合8.(泸州中考)若关于x的一元二次方程x2-2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()9.(安顺中考)若一元二次方程x2-2x -m=0无实数根,则一次函数y=(m+1)x +m-1的图象不经过()A.第四象限B.第三象限C.第二象限D.第一象限10.(葫芦岛中考)已知k、b是一元二次方程(2x+1)(3x-1)=0的两个根,且k>b,则函数y=kx+b的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限11.(广元中考)从3,0,-1,-2,-3这五个数中抽取一个数,作为函数y=(5-m2)x和关于x的一元二次方程(m+1)x2+mx+1=0中m的值.若恰好使函数的图象经过第一、三象限,且使方程有实数根,则满足条件的m的值是______.◆类型三一元二次方程与二次根式的综合12.(达州中考)方程(m-2)x2-3-mx +14=0有两个实数根,则m的取值范围为()A.m>52B.m≤52且m≠2C.m≥3 D.m≤3且m≠213.(包头中考)已知关于x的一元二次方程x2+k-1x-1=0有两个不相等的实数根,则k的取值范围是______.答案:12.B 13.解题技巧专题:抛物线中与系数a,b,c有关的问题◆类型一由某一函数的图象确定其他函数图象的位置1.二次函数y=-x2+ax-b的图象如图所示,则一次函数y=ax+b的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限第1题图第2题图2.已知一次函数y=-kx+k的图象如图所示,则二次函数y=-kx2-2x+k的图象大致是()3.已知函数y=(x-a)(x-b)(其中a>b)的图象如图所示,则函数y=ax+b的图象可能正确的是()第3题图第4题图4.如图,一次函数y1=x与二次函数y2=ax2+bx+c的图象相交于P,Q两点,则函数y=ax2+(b-1)x+c的图象可能是()◆类型二由抛物线的位置确定代数式的符号或未知数的值5.(2016·新疆中考)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是【方法10】()A.a>0B.c<0C.3是方程ax2+bx+c=0的一个根D.当x<1时,y随x的增大而减小第5题图第7题图6.(2016·黄石中考)以x为自变量的二次函数y=x2-2(b-2)x+b2-1的图象不经过第三象限,则实数b的取值范围是【方法10】()A.b≥54B.b≥1或b≤-1C.b≥2 D.1≤b≤27.(2016·孝感中考)如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a-b+c>0;②3a+b=0;③b2=4a(c-n);④一元二次方程ax2+bx+c=n-1有两个不相等的实数根.其中正确结论的个数是()A.1个B.2个C.3个D.4个8.(2016·天水中考)如图,二次函数y =ax2+bx+c(a≠0)的图象与x轴交于A,B 两点,与y轴交于点C,且OA=OC,则下列结论:①abc<0;②b2-4ac4a>0;③ac-b+1=0;④OA·OB =-ca .其中正确结论的序号是____________.答案:易错易混专题:二次函数的最值或函数值的范围——类比各形式,突破给定范围求最值◆类型一 没有限定自变量的范围求最值 1.函数y =-(x +1)2+5的最大值为_______. 2.已知二次函数y =3x 2-12x +13,则函数值y 的最小值是【方法11】( )A .3B .2C .1D .-13.已知函数y =x(2-3x),当x 为何值时,函数有最大值还是最小值?并求出最值.◆类型二 限定自变量的取值范围求最值4.(2016-2017·双台子区校级月考)函数y =x 2+2x -3(-2≤x ≤2)的最大值和最小值分别是( )A .4和-3B .-3和-4C .5和-4D .-1和-45.二次函数y =-12x 2+32x +2的图象如图所示,当-1≤x ≤0时,该函数的最大值是【方法11】( )A .3.125B .4C .2D .06.已知0≤x ≤32,则函数y =x 2+x +1( ) A .有最小值34,但无最大值B .有最小值34,有最大值1C .有最小值1,有最大值194D .无最小值,也无最大值◆类型三 限定自变量的取值范围求函数值的范围7.从y =2x 2-3的图象上可以看出,当-1≤x ≤2时,y 的取值范围是( )A .-1≤y ≤5B .-5≤y ≤5C .-3≤y ≤5D .-2≤y ≤18.已知二次函数y =-x 2+2x +3,当x ≥2时,y 的取值范围是( )A .y ≥3B .y ≤3C .y >3D .y <39.二次函数y =x 2-x +m(m 为常数)的图象如图所示,当x =a 时,y <0;那么当x =a -1时,函数值CA .y <0B .0<y <mC .y >mD .y =m◆类型四 已知函数的最值,求自变量的取值范围或待定系数的值10.当二次函数y =x 2+4x +9取最小值时,x 的值为( )A .-2B .1C .2D .911.已知二次函数y =ax 2+4x +a -1的最小值为2,则a 的值为( )A.3 B.-1C.4 D.4或-112.已知y=-x(x+3-a)+1是关于x 的二次函数,当x的取值范围在1≤x≤5时,y在x=1时取得最大值,则实数a的取值范围是()A.a=9 B.a=5 C.a≤9 D.a≤513.在△ABC中,∠A,∠B所对的边分别为a,b,∠C=70°.若二次函数y=(a+b)x2+(a+b)x-(a-b)的最小值为-a2,则∠A=_______度.14.★已知函数y=-4x2+4ax-4a-a2,若函数在0≤x≤1上的最大值是-5,求a的值.答案:难点探究专题:抛物线与几何图形的综合(选做)——代几结合,突破面积及点的存在性问题◆类型一二次函数与三角形的综合一、全等三角形的存在性问题1.如图,抛物线y=x2+bx+c经过点(1,-4)和(-2,5),请解答下列问题:(1)求抛物线的解析式;(2)若抛物线与x轴的两个交点为A,B,与y轴交于点C.在该抛物线上是否存在点D,使得△ABC与△ABD全等?若存在,求出D点的坐标;若不存在,请说明理由.二、线段(或周长)的最值问题及等腰三角形的存在性问题2.(2016·凉山州中考)如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(3,0),C(0,-3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当点P到点A、点B的距离之和最短时,求点P 的坐标;(3)点M也是直线l上的动点,且△MAC 为等腰三角形,请直接写出所有符合条件的点M的坐标.◆类型二二次函数与平行四边形的综合3.如图,抛物线y=ax2+2ax+c(a>0)与y轴交于点C,与x轴交于A,B两点,A点在B点左侧.若点E在x轴上,点P 在抛物线上,且以A,C,E,P为顶点的四边形是平行四边形,则符合条件的点P有()A.1个B.2个C.3个D.4个4.如图,抛物线y=12x2+x-32与x轴相交于A,B两点,顶点为P.(1)求点A,B的坐标;(2)在抛物线上是否存在点E,使△ABP 的面积等于△ABE的面积?若存在,求出符合条件的点E的坐标;若不存在,请说明理由;(3)坐标平面内是否存在点F,使得以A,B,P,F为顶点的四边形为平行四边形?直接写出所有符合条件的点F的坐标.◆类型三 二次函数与矩形、菱形、正方形的综合5.如图,在平面直角坐标系中,点A 在抛物线y =x 2-2x +2上运动.过点A 作AC ⊥x 轴于点C ,以AC 为对角线作矩形ABCD ,连接BD ,则对角线BD 的最小值为________.第5题图 第6题图6.如图,抛物线y =ax 2-x -32与x 轴正半轴交于点A(3,0).以OA 为边在x 轴上方作正方形OABC ,延长CB 交抛物线于点D ,再以BD 为边向上作正方形BDEF.则a =,点E 的坐标是_________________.7. (2016·新疆中考)如图,对称轴为直线x =72的抛物线经过点A(6,0)和B(0,-4). (1)求抛物线的解析式及顶点坐标; (2)设点E(x ,y)是抛物线上一动点,且位于第一象限,四边形OEAF 是以OA 为对角线的平行四边形,求平行四边形OEAF 的面积S 与x 之间的函数关系式;(3)当(2)中的平行四边形OEAF 的面积为24时,请判断平行四边形OEAF 是否为菱形.8.(2016·百色中考)正方形OABC 的边长为4,对角线相交于点P ,抛物线l 经过O ,P ,A 三点,点E 是正方形内的抛物线l 上的动点.(1)建立适当的平面直角坐标系,①直接写出O ,P ,A 三点的坐标; ②求抛物线l 的解析式;(2)求△OAE 与△OCE 面积之和的最大值.答案:拔高专题抛物线中的压轴题一、基本模型构建常见模型思考在边长为1的正方形网格中有A, B, C三点,画出以A,B,C为其三个顶点的平行四边形ABCD。

2021年九年级数学中考复习——函数专题:二次函数实际应用(四)

2021年九年级数学中考复习——函数专题:二次函数实际应用(四)

2021年九年级数学中考复习——函数专题:二次函数实际应用(四)1.某公司计划投资A、B两种产品,若只投资A产品,所获得利润W A(万元)与投资金额x(万元)之间的关系如图所示,若只投资B产品,所获得利润W B(万元)与投资金额x(万元)的函数关系式为W B=﹣x2+nx+300.(1)求W A与x之间的函数关系式;(2)若投资A产品所获得利润的最大值比投资B产品所获得利润的最大值少140万元,求n的值;(3)该公司筹集50万元资金,同时投资A、B两种产品,设投资B产品的资金为a万元,所获得的总利润记作Q万元,若a≥30时,Q随a的增大而减少,求n的取值范围.2.某宾馆有50个房间供游客居住,当每个房间的定价为每天160元时,房间会全部住满,当每个房间每天的定价每增加10元时,就会有一个房间空闲,如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.设每个房间的定价为x元时,相应的住房数为y间.(1)求y与x的函数关系式;(2)定价为多少时宾馆当天利润w最大?并求出一天的最大利润;(3)若老板决定每住进去一间房就捐出a元(a≤30)给当地福利院,同时要保证房间定价x在160元至350元之间波动时(包括两端点),利润w随x的增大而增大,求a的取值范围.3.攀枝花得天独厚,气候宜人,农产品资源极为丰富,其中晚熟芒果远销北上广等大城市.某水果店购进一批优质晚熟芒果,进价为10元/千克,售价不低于15元/千克,且不超过40元/每千克,根据销售情况,发现该芒果在一天内的销售量y(千克)与该天的售价x(元/千克)之间的数量满足如表所示的一次函数关系.销售量y(千克)…32.53535.538…售价x(元/千克)…27.52524.522…(1)求芒果一天的销售量y与该天售价x之间的一次函数关系式,写出x的取值范围.(2)设某天销售这种芒果获利m元,写出m与售价x之间的函数关系式.如果水果店该天获利400元,那么这天芒果的售价为多少元?4.某农经公司以40元/千克的价格收购一批农产品进行销售,经过市场调查,发现该产品日销售量p(千克)与销售价格x(元/千克)之间满足一次函数关系,部分数据如表:销售价格x(元/千克)4050607080日销售量p(千克)120100806040(1)求p与x之间的函数表达式;(2)农经公司应该如何确定这批农产品的销售价格,才能使日销售利润最大?(3)若农经公司每销售1千克这种农产品需支出m元(m>0)的相关费用,当70≤x≤75时,农经公司的日获利的最大值为1682元,求m的值.求出月销售利润y(元)与售价x(元/件)之间的函数关系式;(2)衬衣店想在月销售量不少于300件的情况下,使月销售利润达到10000元,则售价应定为多少?(3)当销售价定为多少元时会获得最大利润?求出最大利润.6.瑞安城市规划展览馆位于瑞样新区瑞祥公园内,是温州目前规模最大的城市规划展览馆.为了让参观的人方便停车,城市规划展览馆利用一块矩形空地建了一个停车场,其布局如图所示,已知停车场的长为58米,宽为22米,阴影部分为停车位,其余部分是等宽的通道,已知停车位的面积为700平方米.(1)求通道的宽是多少米?(2)该停车场共有车位70个,据调查分析,当每个车位的月租金为300元时,可全部租出:当每个车位的月租金每上涨10元,就会少租出1个车位,那么停车场的月租金收入最大为元?(请直接写出答案)7.某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.(1)不妨设该种品牌玩具的销售单价为在40元的基础上上涨x元(x>0),请你分别用含x的代数式来表示销售量y件和销售该品牌玩具获得利润W(元),并把结果填写在表格中:销售单价(元)40+x销售量y(件)销售玩具获得利润W(元)(2)在(1)问的条件下,若商场获得10000元销售利润,则该玩具销售单价应定为多少元?(3)在(1)问的条件下,若商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?8.某网商经销一种玩具,每件进价为40元.市场调查反映,每星期的销售量y(件)与销售单价x(元)之间的函数关系如图中线段AB所示:(1)写出每星期的销售量y(件)与销售单价x(元)之间的函数关系式并写出自变量x 的取值范围;(2)如果该网商每个星期想获得4000元的利润,请你计算出玩具的销售单价定为多少元?(3)当每件玩具的销售价定为多少元时,该网商每星期经销这种玩具能够获得最大销售利润?最大销售利润是多少?(每件玩具的销售利润=售价﹣进价)9.学校准备建一个矩形花圃,其中一边靠墙,另外三边用周长为30米的篱笆围成.已知墙长为18米,设花圃垂直于墙的一边长为x米,花圃的面积为y平方米.(1)求出y与x的函数关系式,并写出x的取值范围;(2)当x为何值时,y有最大值?最大值是多少?10.某车间生产以甲、乙两种水果为原料的某种罐头,在一次进货中得知,花费1.8万元购进的甲种水果与2.4万元购进的乙种水果质量相同,乙种水果每千克比甲种水果多2元.(1)求甲、乙两种水果的单价;(2)车间将水果制成罐头投入市场进行售卖,已知一听罐头需要甲乙水果各0.5千克,而每听罐头的成本除了水果成本之外,其他所有成本是水果成本的的还要多3元.调查发现,以28元的定价进行销售,每天只能卖出3000听,超市对它进行促销,每降低1元,平均每天可多卖出1000听,当售价为多少元时,利润最大?最大利润为多少?(3)若想使得该种罐头的销售利润每天达到6万元,并且保证降价的幅度不超过定价的15%,每听罐头的价钱应为多少钱?参考答案1.解:(1)由图象可知(20,240)是抛物线的顶点,设W A=a(x﹣20)2+240,将点(10,230)代入上式并解得:a=﹣,故W A与x之间的函数关系式为W A=﹣(x﹣20)2+240=﹣x2+4x+200;(2)由(1)知投资A产品所获得利润的最大值为240万元,W B=﹣x2+nx+300=﹣(x﹣)2+300+n2,即投资B产品所获得利润的最大值为300+n2,∴240+140=300+n2,解得n=±8(舍去﹣8),故n=8;(3)设投资B产品的资金为a万元,则投资A产品的资金为(50﹣a)万元,由题意得:Q=W A+W B=﹣(50﹣a)2+4×(50﹣a)+200+﹣a2+na+300=﹣a2+(n+6)a+450,∵a≥30时,Q随a的增大而减少,∴﹣=﹣≤30,解得n≤12,故n的取值范围为n≤12.2.解:(1)根据题意得:y=50﹣=﹣0.1x+66;(2)由题意知:w=(x﹣20)(﹣0.1x+66)=﹣0.1(x﹣660)(x﹣20),函数的对称轴为x=(660+20)=340,∵﹣0.1<0,故w有最大值,此时w为10240,即定价为340元时,宾馆当天利润w,最大值为10240元;(3)由题意得:w=(﹣0.1x+66)(x﹣20﹣a)=﹣0.1(x﹣660)(x﹣20﹣a),函数的对称轴为x=(660+20+a),∵要保证房间定价x在160元至350元之间波动且利润w随x的增大而增大,∴x=(660+20+a)≥350,解得a≥20,故20≤a≤30.3.解:(1)设一次函数关系式为y=kx+b(k≠0),将表中数据代入得:,解得:.∴y=﹣x+60(15≤x≤40).(2)由题知m=y(x﹣10)=(﹣x+60)(x﹣10)=﹣x2+70x﹣600,∴当m=400时,﹣x2+70x﹣600=400,整理得:x2﹣70x+1000=0,解得:x1=20,x2=50.∵15≤x≤40,∴x=20.∴这天芒果的售价为20元.4.解:(1)∵p与x成一次函数关系,设函数关系式为p=kx+b,可选择x=40,y=120和x=50,y=100代入,则,解得:k=﹣2,b=200,∴所求的函数关系为p=﹣2x+200.(2)设日销售利润为w元,∴w=p(x﹣40)=(﹣2x+200)(x﹣40),即w=﹣2x2+280x﹣8000,∴当时,w有最大值1800,答:这批农产品的销售价格定为70元/千克时日销售利润有最大,这个最大日销售利润为1800元;(3)日获利w=p(x﹣40﹣m)=(﹣2x+200)(x﹣40﹣m),即w=﹣2x2+(280+2m)x﹣(8000+200m),对称轴为直线,①若m>10,则当x=75 时,w有最大值,即w=(﹣2×75+200)(75﹣40﹣m)=1750﹣50m<1682(不合题意,舍去);②若0<m≤10,则当时,w有最大值,将代入,可得=,当w=1682时,=1682,解得m1=2,m2=118(舍去),综上所述,m的值为2.5.解:(1)由题意可得:y=(x﹣30)[600﹣10(x﹣40)]=﹣10x2+1300x﹣30000;(2)设售价应定(元/件)时,满足题设条件,由题意得:,解得,故x=50,即售价应定为50(元/件)时,满足题设要求;(3)y=﹣10x2+1300x﹣30000,=﹣10(x﹣65)2+12250,故当x=65(元/件),最大利润为12250(元),故当每件售价为65元时,可以获得最大利润为12250元.36.解:(1)设通道的宽为x米,根据题意得:(58﹣2x)(22﹣2x)=700,解得:x=36(舍去)或x=4,答:甬道的宽为4米;(2)设月租金上涨a元,设停车场的月租金收入为w元,根据题意得:w=(300+a)(70﹣a)=﹣(a﹣700)(a+300),∵<0,故w有最大值,当a=(700﹣300)=200(元)时,w的最大值为25000(元),故答案为25000.7.解:(1)由题意得,销售量为:y=600﹣10x,销售玩具获得利润为:W=(40+x﹣30)(600﹣10x)=﹣10x2+500x+6000;故答案为:600﹣10x,﹣10x2+500x+6000;(2)由题意得:﹣10x2+500x+6000=10000,解得:x1=10,x2=40.∴该玩具销售单价应定为50元或80元;答:玩具销售单价为50元或80元时,可获得10000元销售利润;(3)销售单价为在40元的基础上上涨x,根据题意得:600﹣10x≥540,解得x≤6,故0<x≤6,W=﹣10x2+500x+6000=﹣10(x﹣25)2+12250,∵a=﹣10<0,对称轴x=25,∴当0<x≤6时,y随x增大而增大,∴当x=6(元)时,W=8640(元),最大值答:商场销售该品牌玩具获得的最大利润为8640元.8.解:(1)设y1与x之间的函数关系式为y=kx+b,将A(40,500),B(90,0)代入上式,得,解得:,∴y与x之间的函数关系式为:y=﹣10x+900,自变量的取值范围是40≤x≤90;(2)由题意得(﹣10x+900)(x﹣40)=4000,解得x=80或x=50,又∵40≤x≤90,∴如果每星期的利润是4000元,销售单价应为50元或80元;(3)设经销这种玩具能够获得的销售利润为w元,由题意得,w=(﹣10x+900)(x﹣40)=﹣10(x﹣65)2+6250,∵﹣10<0,∴w有最大值,∵40≤x≤90,=6250(元).∴当x=65(元)时,w最大∴当销售单价为65元时,每星期的利润最大,最大销售利润为6250元.9.解:(1)由题意可得,y=x(30﹣2x)=﹣2x2+30x,即y与x的函数关系式是y=﹣2x2+30x;∵墙的长度为18,∴0<30﹣2x≤18,解得,6≤x<15,即x的取值范围是6≤x<15;(2)由(1)知,y=﹣2x2+30x=﹣2(x﹣)2+,而6≤x<15,∴当x=7.5时,y取得最大值,此时y=112.5,即当x=7.5时,y的最大值是112.5.10.解:(1)设甲种水果的单价为x元/千克,乙种水果的单价为(x+2)元/千克,根据题意得,=,解得:x=6,经检验,x=6是方程的根,∴x+2=8,答:甲、乙两种水果的单价分别为6元/千克、8元/千克;(2)由(1)知每听罐头的水果成本为:6×0.5+8×0.5=7元,每听罐头的总成本为:7+7×+3=15元,设降价m元,则利润W=(28﹣m﹣15)(3000+1000m)=﹣1000m2+10000m+39000=﹣1000(m﹣5)2+64000,∵﹣1000<0,∴当m=5时,W有最大值为64000,∴当售价为23元时,利润最大,最大利润为64000元;(3)由(2)知,W=﹣1000(m﹣5)2+64000=60000,解得:m=7或m=3,但是降价的幅度不超过定价的15%,即最多下降28×15%=4.2元,∴m=3,∴售价为28﹣3=25(元),答:每听罐头的价钱应为25元.。

2021年九年级数学中考复习——方程专题:不等式与不等式组实际应用(一)

2021年九年级数学中考复习——方程专题:不等式与不等式组实际应用(一)

2021年九年级数学中考复习——方程专题:不等式与不等式组实际应用(一)1.南雅中学小卖部推出了新款的校园文化衫和校园风景明信片.小南购买2件文化衫和2套明信片花了66元,小雅购买1件文化衫和3套明信片花了49元.(1)一件文化衫和一套明信片各多少元?(2)学校规定,每位同学每天在小卖部消费不能超过100元,小美购买文化衫和明信片两种商品共5件,且文化衫的件数大于明信片的套数,请问她购买文化衫多少件?明信片多少套?2.某公司为员工配备办公用品,计划购买A、B两种计算器共100个,要求A种计算器数量不低于B种的,且不高于B种的.已知A、B两种计算器的单价分别是150元/个、100元/个,设购买A种计算器x个.(1)用含x的代数式表示购买这两种计算器所需费用y=(元);(2)请求出A种计算器可购买的最大数量;(3)由于市场行情波动,实际购买时,A种计算器单价下调了3m(m>0)元/个,同时B种计算器单价上调了2m元/个,公司预计用12000元至12500元购买这100个计算器,在(2)的结论下,当A种计算器购买最多时,求整数m的最大值.3.按图中程序进行计算(1)若运算进行一次就停止,求出x的取值范围;(2)若运算进行二次才停止,求出x的取值范围.4.为应对新冠肺炎疫情,某服装厂决定转型生产口罩,根据现有厂房大小决定购买10条口罩生产线,现有甲、乙两种型号的口罩生产线可供选择.经调查:购买3台甲型口罩生产线比购买2台乙型口罩生产线多花14万元,购买4条甲型口罩生产线与购买5条乙型口罩生产线所需款数相同.(1)求甲、乙两种型号口罩生产线的单价;(2)已知甲型口罩生产线每天可生产口罩9万只,乙型口罩生产线每天可生产口罩7万只,若每天要求产量不低于75万只,预算购买口罩生产线的资金不超过90万元,该厂有哪几种购买方案?哪种方案最省钱?最少费用是多少?5.某学校准备购买体育教学用的器材A和B,下表是这两种器材的价格信息:A B总费用3件1件500元1件2件250元(1)求每件器材A、器材B的销售价格;(2)若该学校准备用不多于2700元的金额购买这两种器材共25件,且购买器材A不少于12件,则有哪几种购买方案,并求出最少费用是多少元?6.某工程用如图甲所示的长方形和正方形纸板,做成如图乙所示的竖式与横式两种长方体形状的无盖纸盒.有正方形纸板162张,长方形纸板340张,要做两种纸盒共100个,有哪几种生产方案?7.某商场计划用7.8万元从同一供应商处购进A,B两种商品,供应商负责运输.已知A种商品的进价为120元/件,B种商品的进价为100元/件.如果售价定为:A种商品135元/件,B种商品120元/件,那么销售完后可获得利润1.2万元.(1)该商场计划购进A,B两种商品各多少件?(2)供应商计划租用甲、乙两种货车共16辆,一次性将A,B两种商品运送到商场,已知甲种货车可装A种商品30件和B种商品12件,乙种货车可装A种商品20件和B种商品30件,试通过计算帮助供应商设计几种运输用车方案?8.把一些图书分给几名同学,如果每人3本,那么余9本;如果前面的每名同学分5本,那么最后一人就分不到4本,共有多少人,共有图书多少本?9.某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少万元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,且A型号车不少于2辆,购车费不少于124万元,请通过求解给出所有的购车方案.10.疫情无情,人间有爱,为扎实做好复学工作,某市教育局做好防疫物资调配发放工作,租用A、B两种型号的车给全市各个学校配送消毒液.已知用2辆A型车和1辆B型车装满货物一次可运货10吨;用1辆A型车和2辆B型车装满货物一次可运货11吨;教育局现有21吨消毒液需要配送,计划租用A、B两种型号车6辆一次配送完消毒液,且A车至少1辆.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?(2)请你帮助教育局设计租车方案完成一次配送完21吨消毒液;(3)若A型车每辆需租金80元/次,B型车每辆需租金100元/次.请选出最省钱的租车方案,并求出最少租车费.参考答案1.解:(1)设一件文化衫x元,一套明信片y元,依题意,得:,解得:.答:一件文化衫25元,一套明信片8元.(2)设购买文化衫a件,则购买明信片(5﹣a)套,依题意,得:,解得:,又∵a为整数,∴a=3,∴5﹣a=2.答:购买文化衫3件,明信片2套.2.解:(1)设购买A种计算器x个,则购买B种计算器(100﹣x)个,∴购买这两种计算器所需费用y=150x+100(100﹣x)=50x+10000.故答案为:50x+10000.(2)依题意,得:,解得:20≤x≤25.答:A种计算器可购买的最大数量为25个.(3)依题意,得:,解得:10≤m≤16.又∵m为正整数,∴m可以取的最大值为16.答:整数m的最大值为16.3.解:(1)依题意,得:2x﹣2>10,解得:x>6.答:x的取值范围为x>6.(2)依题意,得:,解得:4<x≤6.答:x的取值范围为4<x≤6.4.解:(1)设甲型号口罩生产线的单价为x万元,乙型号口罩生产线的单价为y万元,由题意得:,解得:,答:甲型号口罩生产线的单价为10万元,乙型号口罩生产线的单价为8万元.(2)设购买甲型号口罩生产线m条,则购买乙型号口罩生产线(10﹣m)条,由题意得:,解得:2.5≤m≤5,又∵m为整数,∴m=3,或m=4,或m=5,因此有三种购买方案:①购买甲型3条,乙型7条;②购买甲型4条,乙型6条;③购买甲型5条,乙型5条.当m=3时,购买资金为:10×3+8×7=86(万元),当m=4时,购买资金为:10×4+8×6=88(万元),当m=5时,购买资金为:10×5+8×5=90(万元),∵86<88<90,∴最省钱的购买方案为:选购甲型3条,乙型7条,最少费用为86万元.5.解:(1)设每件器材A的销售价格为x元,每件器材B的销售价格为y元,依题意,得:,解得:.答:每件器材A的销售价格为150元,每件器材B的销售价格为50元.(2)设购买m件器材A,则购买(25﹣m)件器材B,依题意,得:,解得:12≤m≤14,∵m为正整数,∴m可以取12,13,14,∴共有3种购买方案,方案1:购买12件器材A,13件器材B;方案2:购买13件器材A,12件器材B;方案3:购买14件器材A,11件器材B.方案1所需费用为150×12+50×13=2450(元);方案2所需费用为150×13+50×12=2550(元);方案3所需费用为150×14+50×11=2650(元).∵2450<2550<2650,∴最少费用是2450元.答:共有3种购买方案,方案1:购买12件器材A,13件器材B;方案2:购买13件器材A,12件器材B;方案3:购买14件器材A,11件器材B.最少费用是2450元.6.解:设生产竖式纸盒x个,则生产横式纸盒(100﹣x)个.由题意得:,解得38≤x≤40.又x是正整数.故x=38或39或40.答:共有三种生产方案,方案一:生产竖式纸盒38个,横式纸盒62个;方案二:生产竖式纸盒39个,横式纸盒61个;方案三:生产竖式纸盒40个,横式纸盒60个.7.解:(1)设购进A种商品x件,B种商品y件.根据题意得:,解得:.答:购进A种商品400件,B种商品300件.(2)设租用甲种货车a辆,则租用乙种货车(16﹣a)辆,则.解得8≤a≤10.∵a为整数,∴a=8,9,10.故有3种用车方案:①A种车8辆,B种车8辆;②A种车9辆,B种车7辆;③A种车10辆,B种车6辆.答:有3种用车方案:①A种车8辆,B种车8辆;②A种车9辆,B种车7辆;③A种车10辆,B种车6辆.8.解:设共有x名学生,则图书共有(3x+9)本,由题意得,0≤3x+9﹣5(x﹣1)<4,解得:5<x≤7,∵x为非负整数,∴x=6或7,x=6时,书的本数为3×6+9=27;x=7时,书的本数为3×7+9=30;答:学生共有6或7人,共有图书27或30本.9.解:(1)设每辆A型车和B型车的售价分别是x万元、y万元.则,解得.答:每辆A型车的售价为18万元,每辆B型车的售价为26万元;(2)设购买A型车a辆,则购买B型车(6﹣a)辆,则依题意得18a+26(6﹣a)≥124,解得a≤4∴2≤a≤4.∵a是正整数,∴a=2或a=3或a=4.共有三种方案:方案一:购买2辆A型车和4辆B型车;方案二:购买3辆A型车和3辆B型车;方案三:购买4辆A型车和2辆B型车.10.解:(1)设1辆A型车装满货物一次可运货x吨,1辆B型车装满货物一次可运货y吨,依题意,得:,解得:.答:1辆A型车装满货物一次可运货3吨,1辆B型车装满货物一次可运货4吨.(2)设租用m辆A型车,则租用(6﹣m)辆B型车,依题意,得:,解得:1≤m≤3.∵m为正整数,∴m可以取1,2,3,∴共有3种租车方案,方案1:租用A型车1辆,B型车5辆;方案2:租用A型车2辆,B型车4辆;方案3:租用A型车3辆,B型车3辆.(3)方案1的租车费为1×80+100×5=580(元);方案2的租车费为2×80+100×4=560(元);方案3的租车费为3×80+100×3=540(元).∵580>560>540,∴方案3最省钱,即租用A型车3辆,B型车3辆,最少租车费用为540元.。

2021年九年级数学中考复习——函数专题:反比例函数实际应用【有答案】

2021年九年级数学中考复习——函数专题:反比例函数实际应用【有答案】

2021年九年级数学中考复习——函数专题:反比例函数实际应用(五)1.已知蓄电池的电压为定值.使用此蓄电池作为电源时,电流Ⅰ(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.(1)求这个反比例函数的表达式;(2)如果以此蓄电池为电源的用电器的电流不能超过8A,那么该用电器的可变电阻至少是多少?2.某游泳池有900立方米水,每次换水前后水的体积保持不变.设放水的平均速度为v立方米/小时,将池内的水放完需t小时,(1)求v关于t的函数表达式,并写出自变量t的取值范围;(2)若要求在2.5小时至3小时内(包括2.5小时与3小时)把游泳池内的水放完,求放水速度的范围.3.某气球内充满了一定量的气体,当温度不变时,气球内气体的气压P(kPa)是气球体积V(m3)的反比例函数,且当V=0.8m3时,P=120kPa.(1)求P与V之间的函数表达式;(2)当气球内的气压大于100kPa时,气球将爆炸,为确保气球不爆炸,气球的体积应不小于多少?4.我们知道函数y=a(x﹣m)2+n(a≠0,m>0,n>0)的图象是由二次函数y=ax2的图象向右平移m个单位,再向上平移n个单位得到:类似地,函数y=+n(k≠0,m>0,n>0)的图象是由反比例函数y=的图象向右平移m个单位,再向上平移n个单位得到,其对称中心坐标为(m,n).例如:函数y=+1的图象可由函数y=的图象向右平移3个单位,再向上平移1个单位得到,其对称中心坐标(3,1),请根据以上材料解决下列问题:(1)函数y=﹣2的对称中心是,在平面直角坐标系xOy中,请根据所给的y=的图象画出函数y=﹣2的图象,并根据图象指出,x在什么范围内变化时,y≥﹣1?(2)某老师对一位学生的学习情况进行跟踪研究,假设刚学完新知识时的记忆存留量为1,新知识学习后经过的时间为x,发现该生的记忆存留量随x变化的函数关系为y 1=;若该生在某一时刻进行了第一次复习,发现他复习后的记忆存留量是复习前的2倍(复习的时间忽略不计),且复习后的记忆存留量随x变化的函数关系为y 2=,如果记忆存留量为时是复习的“最佳时机点”,且他第一次复习是在“最佳时机点”进行的,那么当x为何值时,是他第二次复习的“最佳时机点”?5.教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃停止加热,水温开始下降,此时水温y(℃)与开机后用时x(min)成反比例关系,直至水温降至30℃,饮水机关机,饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时接通电源,水温y(℃)与时间x(min)的关系如图所示:(1)分别写出水温上升和下降阶段y与x之间的函数关系式;(2)怡萱同学想喝高于50℃的水,请问她最多需要等待多长时间?6.某厂今年1月的利润为600万元,从2月初开始适当限产,并投入资金进行设备更新升级,升级期间利润明显下降.设今年1月为第1个月,第x个月的利润为y万元,从1月到5月,y与x满足反比例关系,到5月底,设备更新升级完成,从这时起,y与x满足一次函数关系,如图所示.(1)分别求该厂设备更新升级期间及升级完成后y与x之间的函数关系式;(2)问该厂今年有几个月的利润低于200万元?7.老李想利用一段5米长的墙(图中EF),建一个面积为32平方米的矩形养猪圈,另外三面(图中AB,BC,CD)需要自己建筑.老李准备了可以修建20米墙的材料(可以不用完).(1)设AB=y,BC=x,求y关于x的函数关系式.(2)对于(1)中的函数y的值能否取到8.5?请说明理由.8.据报道,从2018年8月以来,“非洲猪瘟”给生猪养殖户带来了不可估量的损失.某养殖户为了预防“非洲猪瘟”的侵袭,每天对猪场进行药熏消毒.一瓶药物在释放过程中,一个圈舍内每立方米空气中含药量y(毫克)与时间x(分钟)之间满足正比例函数关系;已知一个圈舍内一瓶药物打开后10分钟释放完毕,此时圈舍内每立方米的空气中含药量为30毫克,药物释放完后,y与x之间满足反比例函数关系.(1)分别求当0≤x≤10和x>10时,y与x之间满足的函数关系式;(2)请补全函数图象;(3)据测定,当空气中每立方米的含药量不低于15毫克时,消毒才有效.根据函数图象,你知道这次熏药的有效消毒时间大约是多少分钟?9.为了做好校园疫情防控工作,校医每天早上对全校办公室和教室进行药物喷洒消毒,她。

通用版2022年九年级中考数学专题复习:中点坐标在函数中的应用

通用版2022年九年级中考数学专题复习:中点坐标在函数中的应用

A(2,-3),B(-1,0),M(m,m2-2m﹣3),N(1,n)
N
MM
N
M
A
B
A
B
xA+xM=xB+xN yA+yM=yB+yN
A
B
xA+xN=xB+xM yA+yN=yB+yM
N
xA+xB=xM+xN yA+yB=yM+yN
课程小结
中点坐标公式(已知两端点,求中点) 在平面直角坐标系中,已知A为(x1, y1)、B为(x2,y2), 则AB的中点P的坐标为 中点坐标公式逆用(已知一端点和中点,求另一端点) 在平面直角坐标系中,已知A为(x1, y1)、 AB的P中点的 坐标为(xP, yP),则B为 (2xP- x1 ,2yP- y1 )
课后作业
m3 m2
已知在平面直角坐标系中,A为反比例函数 y x (x>0,m>1)图象上的一点,A点的横坐标为m,B为(0,-m),
连接AB,AC⊥AB交y轴于点C,延长CA至点D使AC=AD,过
点A作AE∥x轴,过点D作DE⊥AE于点E。
(1)用含m的式子表示点A的坐标 (2)DE= ;设点D为(x,y),求y关于x的
坐标为(xP, yP),则B为 (2xP- x1 ,2yP- y1 )
角度 2 中点坐标在中心对称(旋转)中的应用
知识 (1)点C(1,-4)关于原点对称得到的C′坐标为(-1,4)。 预备 (2)点C(1,-4)关于点(2,0)对称得到的C′坐标
为(3,4)。 (3)点C(1,-4)关于点(m,n)对称得到的C′ 坐标为(2m-1,2n+4) 。
角度 2 中点坐标在中心对称(旋转)中的应用

人教版九年级上册数学专题复习(九个专题)

人教版九年级上册数学专题复习(九个专题)

九年级上册数学专题复习(九个专题)专题一 解一元二次方程1、直接开方解法方程(1)2(6)30x -+= (2) 21(3)22x -=2、用配方法解方程(1)2210x x +-= (2) 2430x x -+=3、用公式法解方程(1)03722=+-x x (2) 210x x --=4、用因式分解法解方程(1)3(2)24x x x -=- (2)22(24)(5)x x -=+5、用十字相乘法解方程(1)2900x x --= (2)22100x x +-=专题二 化简求值1、先化简,再求值:x2+y2-2xy x -y÷(x y -yx ),其中x =2+1,y =2-1.2、先化简:先化简:12164--÷⎪⎭⎫ ⎝⎛---x x x x x ,再任选一个你喜欢的数x 代入求值.专题三 根与系数的关系1、已知关于x 的一元二次方程24280x x k --+=有两个实数根1x ,2x . (1)求k 的取值范围;(2)若33121224x x x x +=,求k 的值.2、已知关于x 的一元二次方程26250x x a -++=有两个不相等的实数根1x ,2x . (1)求a 的取值范围;(2)若221212x x x x +-≤30,且a 为整数,求a 的值.3、已知关于x 的方程0)1()12(2=-+--m m x m x ,(1)求证:不论m 为何值,方程总有两个不相等的实数根;(2)若方程的两实数根分别为1x ,2x ,且满足11)(21221-⋅=-x x x x ,求实数m 的值.专题四 统计与概率1、现有A 、B 、C 三个不透明的盒子,A 盒中装有红球、黄球、蓝球各1个,B 盒中装有红球、黄球各1个,C 盒中装有红球、蓝球各1个,这些球除颜色外都相同.现分别从A 、B 、C 三个盒子中任意摸出一个球.(1)从A 盒中摸出红球的概率为_________;(2)用画树状图或列表的方法,求摸出的三个球中至少有一个红球的概率.2、现有A 、B 两个不透明袋子,分别装有3个除颜色外完全相同的小球.其中,A 袋装有2个白球,1个红球;B 袋装有2个红球,1个白球.(1)将A 袋摇匀,然后从A 袋中随机取出一个小球,求摸出小球是白色的概率; (2)小华和小林商定了一个游戏规则:从摇匀后的A ,B 两袋中随机摸出一个小球,摸出的这两个小球,若颜色相同,则小林获胜;若颜色不同,则小华获胜.请用列表法或画出树状图的方法说明这个游戏规则对双方是否公平.3、2019年中国北京世界园艺博览会(以下简称“世园会”)于4月29日至10月7日在北京延庆区举行.世园会为满足大家的游览需求,倾情打造了4条各具特色的趣玩路线,分别是:A.“解密世园会”、B.“爱我家,爱园艺”、C.“园艺小清新之旅”和D.“快速车览之旅”.李欣和张帆都计划暑假去世园会,他们各自在这4条线路中任意选择一条线路游览,每条线路被选择的可能性相同.(1)李欣选择线路C.“园艺小清新之旅”的概率是多少?(2)用画树状图或列表的方法,求李欣和张帆恰好选择同一线路游览的概率.专题五圆知识点一:证切线,求半径1、如图所示,已知⊙O为四边形ABCD的外接圆,O为圆心,若∠BCD=120°,AB=AD=2,则⊙O的半径长为 .2、如图所示,AB 是⊙O的直径,EF,EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF,若∠AOF=40°,则∠F的度数是 .3、如图所示,AB为半圆O的直径,C为半圆O上一点,AD与过点C的切线垂直,垂足为D,AD交半圆O于点E.(1)求证:AC平分∠DAB;(2)若AE=2DE,试判断以O,A,E,C为顶点的四边形的形状,并说明理由.4、如图所示,△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,点E为AC延长线上一点,且∠CDE=12∠BAC.(1)求证:DE是⊙O的切线;(2)若AB=3BD,CE=2,求⊙O的半径.5、如图所示,AB是⊙O的直径,OC⊥AB,弦CD与OB交于点F,过圆心O作OG∥BD,交过点A所作⊙O的切线于点G,连结GD并延长与AB的延长线交于点E.(1)求证:GD是⊙O的切线;(2)若OF:OB=1:3,⊙O的半径为3,求AG的长.知识点二求不规则图形的阴影面积1、如图所示,AC是半圆O的一条弦,以弦AC为折线将弧AC折叠后过圆心O,⊙O的半径为2,则圆中阴影部分的面积为.EDBOAC2、如图所示,在Rt △ABC 中,∠ABC =90°,AB =23,BC =2,以AB 的中点O 为圆心,OA 的长为半径作半圆交AC 于点D,则图中阴影部分的面积为___________.3、如图所示,∠AOB =90°,∠B =30°,以点O 为圆心,OA 为半径作弧交AB 于点A,点C,交OB 于点D,若OA =3,则阴影部分的面积为________.4、如图所示,AB 为⊙O 的直径,AC 平分∠BAE 交⊙O 于点C ,AE ⊥EC 于点E .(1)试判断CE 与⊙O 的位置关系,并说明理由;(2)若D 为AC 的中点,⊙O 的半径为2,求图中阴影部分的面积.专题六 二次函数实际应用1、一茶叶专卖店经销某种品牌的茶叶,该茶叶的成本价是80元/kg ,销售单价不低于120元/kg .且不高于180元/kg ,经销一段时间后得到如下数据:销售单价x (元/kg ) 120 130 ... 180 每天销量y (kg ) 100 95 (70)设y 与x 的关系是我们所学过的某一种函数关系.(1)直接写出y 与x 的函数关系式,并指出自变量x 的取值范围; (2)当销售单价为多少时,销售利润最大?最大利润是多少?2、传统的端午节即将来临,我县某企业接到一批粽子生产任务,约定这批粽子的出厂价为每只4元,按要求在20天内完成.为了按时完成任务,该企业招收了新工人,设新工人李明第x 天生产的粽子数量为y 只,y 与x 满足如下关系:⎩⎨⎧≤≤+≤≤=)()(20680206034x x x x y ,请解答以下问题:(1)李明第几天生产的粽子数量为280只?(2)如图所示,设第x 天生产的每只粽子的成本是p 元,p 与x 之间的关系可用图中的函数图象来刻画,求p 与x 之间的函数关系式;(3)若李明第x 天创造的利润为w 元,求w 与x 之间的函数表达式,并求出第几天的利润最大?最大利润是多少元?(利润=出厂价-成本)3、如图所示,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有两道篱笆的长方形花圃,设花圃的宽AB为x米,面积为S平方米.(1)求S与x的函数关系式及自变量的取值范围;(2)当x取何值时所围成的花圃面积最大,最大值是多少?(3)若墙的最大可用长度为8米,求围成的最大面积.专题七反比例函数的相关计算1、如图4,一次函数y=-x+3的图像与反比例函数y=kx(k≠0)在第一象限的图像交于A(1,a)和B两点,与x轴交于点C.(1)求反比例函数的解析式;(2)若点P在x轴上,且△APC的面积为6,求点P的坐标.2、已知反比例函数y=5mx(m为常数,且m≠5).(1)若在其图象的每个分支上,y随x的增大而增大,求m的取值范围;(2)若其图象与一次函数y=-x+1图象的一个交点的纵坐标是3,求m的值.3、如图所示,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直于x轴,垂足为点B,反比例函数kyx(x>0)的图象经过AO的中点C,且与AB相交于点D,OB=4,AD=3,则k值为()A.4B.3C.2D.1专题八 三角形全等与旋转的综合应用1、如图1所示,已知△ABC ≌△EBD ,∠ACB =∠EDB =90°,点D 在AB 上,连接CD 并延长交AE 于点F .(1)猜想:线段AF 与EF 的数量关系为______;(2)探究:若将图1所示的△EBD 绕点B 顺时针方向旋转,当∠CBE 小于180°时,得到图2所示,连接CD 并延长交AE 于点F ,则(1)中的结论是否还成立?若成立,请证明;若不成立,请说明理由;(3)拓展:图1中所示,过点E 作EG ⊥CB ,垂足为点G .当∠ABC 的大小发生变化,其它条件不变时,若∠EBG =∠BAE ,BC =6,直接写出AB 的长.F EDC BAFDEBC A(图1) (图2)专题九 二次函数的综合应用1、已知抛物线22y ax ax c =-+过点A (-1,0)和C (0,3),与x 轴交于另一点B ,顶点为D . (1)求抛物线的解析式,并写出D 点的坐标;(2)如图1所示,E 为线段BC 上方的抛物线上一点,EF ⊥BC ,垂足为F ,EM ⊥x 轴,垂足为M ,交BC 于点G .当BG=CF 时,求△EFG 的面积;(3)如图2所示,AC 与BD 的延长线交于点H ,在x 轴上方的抛物线上是否存在点P ,使∠OPB =∠AHB ?若存在,求出点P 的坐标;若不存在,请说明理由.xyCH D BA O yx M D CG FBA O E(图1) (图2)2.(满分3+4+5=12分)如图所示,抛物线y=ax 2+bx-3与轴交于A ,B 两点(A 点在B 点左侧),A(-1,0),B(3,0),直线L 与抛物线交于,两点,其中点的横坐标为. (1)求抛物线的函数解析式; (2)是线段AC 上的一个动点,过点作y 轴的平行线交抛物线于点,求线段PE 长度的最大值;(3)点是抛物线上的动点,在x 轴上是否存在点,使,,,这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的点坐标;如果不存在,请说明理由.。

实际问题与二次函数 应用题专题训练 2021—2022学年人教版数学九年级上册

实际问题与二次函数 应用题专题训练 2021—2022学年人教版数学九年级上册

人教版九年级上册数学22.3实际问题与二次函数应用题专题训练1.某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量w(千克)随销售单价x(元/千克)的变化而变化,具体关系式为:w=−2x+240.设这种绿茶在这段时间内的销售利润为y(元),解答下列问题:(1) 求y与x的关系式;(2) 当x取何值时,y的值最大?(3) 如果物价部门规定这种绿茶的销售单价不得高于90元/千克,公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元?2.如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.(1) 若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;(2) 求矩形菜园ABCD面积的最大值.3.某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系:(1) 求出y与x之间的函数关系式;(2) 如果商店销售这种商品,每天要获得1500元利润,那么每件商品的销售价应定为多少元?(3) 写出每天的利润W与销售单价x之间的函数关系式;若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?4.某商店经销一种双肩包,已知这种双肩包的成本价为每个30元,市场调查发现,这种双肩包每天的销售量y(单位:个)与销售单价x(单位:元)有如下关系:y=−x+ 60(30≤x≤60).设这种双肩包每天的销售利润为ω元.(1) 求ω与x之间的函数表达式;(2) 这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3) 如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?5.某商店经销一种双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(单位:个)与销售单价x(单位:元)有如下关系:y=−x+60(30≤x≤60).设这种双肩包每天的销售利润为ω元.(1) 求ω与x之间的函数表达式;(2) 这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3) 如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?6.某商场试销售一种成本为每件60元的服装,规定试销售期间单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数y= kx+b的关系,且当x=65时,y=55;x=75时,y=45.(1) 求一次函数关系式并写出x的取值范围;(2) 若该商场获得利润为w,试写出w与销售单价x之间的函数关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?7.某商店经营一种小商品,进价为3元,据市场调查,销售单价是13元时平均每天销售量是400件,而销售价每降低一元,平均每天就可以多售出100件.(1) 假定每件商品降低x元,商店每天销售这种小商品的利润y元,请写出y与x之间的函数关系.(注:销售利润=销售收入−购进成本)(2) 当每件小商品降低多少元时,该商店每天能获利4800元?(3) 每件小商品销售价为多少时,商店每天销售这种小商品的利润最大?最大利润是多少?8.某公司推销一种产品,公司付给推销员的月报酬有两种方案如图所示:其中方案一所示图形是顶点B在原点的抛物线的一部分,方案二所示图形是射线.设推销员推销产品的数量为x(件),付给推销员的月报酬为y(元).(1) 分别求两种方案中y关于x的函数关系式;(2) 当销售达到多少件时,两种方案月报酬差额将达到3800元?(3) 若公司决定改进“方案二”:保持基本工资不变,每件报酬增加m元,使得当销售员销售产量达到40件时,两种方案的报酬差额不超过1000元.求m的取值范围.9.为了扶持大学生自主创业,我市政府提供了80万元无息贷款,用于某大学生开办公司生产并销售自主研发的一种电子产品,并约定用该公司经营的利润逐步偿还无息贷款.已知该产品的生产成本为每件40元,员工每人每月的工资为2500元,公司每月需支付其他费用15万元.该产品每月销售量(万件)与销售单价(元)之间的函数关系如图所示.(1) ①当40≤x≤60时,y与x的函数关系式为;②当x>60时,y与x的函数关系式为.(2) 当销售单价定为50元时,为保证公司月利润达到5万元,该公司可安排员工多少人?(利润=销售额−生产成本−员工工资−其他费用)(3) 若该公司有80名员工,则该公司最早可在几个月后还清无息贷款?10.某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程,如图的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与时间t(月)之间的关系(即前t个月的利润总和s与t之间的关系).根据图象提供的信息,解答下列问题:(1) 求累积利润s(万元)与时间t(月)之间的函数关系式.(2) 求截止到几月末公司累积利润可达30万元.(3) 求第8个月公司所获利润是多少万元?11.如图是某隧道截面示意图,它是由抛物线和长方形构成,已知OA=12米,OB=4米,抛物线顶点D到地面OA的垂直距离为10米,以OA所在直线为x轴,以OB所在直线为y轴建立直角坐标系.(1) 求抛物线的解析式;(2) 由于隧道较长,需要在抛物线型拱壁上需要安装两排灯,使它们到地面的高度相同,如果灯离地面的高度不超过8米,那么两排灯的水平距离最小是多少米?(3) 一辆特殊货运汽车载着一个长方体集装箱,集装箱宽为4m,最高处与地面距离为6m,隧道内设双向行车道,双向行车道间隔距离为0.5m,交通部门规定,车载货物顶部距离隧道壁的竖直距离不少于0.5m,才能安全通行,问这辆特殊货车能否安全通过隧道?12.青岛市某大酒店豪华间实行淡季、旺季两种价格标准,旺季每间比淡季上涨13,下表是去年该酒店豪华间某两天的相关记录:淡季旺季未入住房间数100日总收入(元)2400040000(1) 该酒店豪华间有多少间?旺季每间价格为多少元?(2) 今年旺季来临,豪华间的间数不变.经市场调查发现,如果豪华间仍旧实行去年旺季价格,那么每天都客满;如果价格继续上涨,那么每增加25元,每天未入住房间数增加1间.不考虑其他因素,该酒店将豪华间的价格上涨多少元时,豪华间的日总收入最高?最高日总收入是多少元?13.某商店经销一种健身球,已知这种健身球的成本价为每个20元,市场调查发现,该种健身球每天的销售量y(个)与销售单价x(元)有如下关系:y=−2x+80(20≤x≤40) , 设这种健身球每天的销售利润为w元.(1) 求w与x之间的函数关系式;(2) 该种健身球销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3) 如果物价部门规定这种健身球的销售单价不高于28元,该商店销售这种健身球每天要获得150元的销售利润,销售单价应定为多少元?14.某商店销售面向中考生的计数跳绳,每根成本为20元,销售的前40天内的日销售量m(根)与时间t(天)的关系如表.时间t(天)1381026⋯日销售量m(件)5149444226⋯前40天每天的价格y(元/件)与时间t(天)的函数关系式为:y=14t+25(1≤t≤40且t为整数).(1) 认真分析表中的数据,用所学过的知识确定m(件)与t(天)之间是满足一次函数的关系还是二次函数的关系?并利用这些数据求m(件)与t(天)之间得函数关系式;(2) 请计算40天中哪一天的日销售利润最大,最大日销售利润是多少?15.某网店准备销售某种品牌的笔筒,成本为30元/件,试营销阶段发现:当销售单价是40元时,每天的销售量为300件,销售单价每上涨1元,每天的销售量就减少10件.(1) 写出销售量y(件)与销售单价x(元)之间的函数关系式;(2) 该笔筒销售单价定为多少元时,每天获取的利润最大,最大利润是多少?(3) 该网店店主热心公益事业,决定从该笔筒每天的销售利润中拿出150元捐给希望工程,为了保证捐款后销售该笔筒每天剩余利润不低于3600元,试确定该笔筒销售单价的范围.16.某商场要经营一种新上市的文具,进价为20元/件.试营销阶段发现:当销售单价是25元时,每天的销售量为250件;销售单价每上涨1元,每天的销售量就减少10件.(1) 写出商场销售这种文具,每天所得的销售利润w(元)与销售单价x(元)之间的函数表达式.(2) 求销售单价为多少元时,该文具每天的销售利润最大.(3) 商场的营销部结合上述情况,提出了A,B两种营销方案:方案A:该文具的销售单价高于进价且不超过30元;方案B:每天销售量不少于10件,且每件文具的利润至少为25元.请比较哪种方案的最大利润更高,并说明理由.17.某商品交易会上,一商人将每件进价为5元的纪念品,按每件9元出售,每天可售出32件.他想采用提高售价的办法来增加利润,经试验,发现这种纪念品每件提价2元,每天的销售量会减少8件.(1) 当售价定为多少元时,每天的利润为140元?(2) 写出每天所得的利润y(元)与售价x(元/件)之间的函数关系式,每件售价定为多少元,才能使一天所得的利润最大?最大利润是多少元?(利润=(售价−进价)×售出件数)18.小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆.售后统计,盆景的平均每盆利润是150元,花卉的平均每盆利润是17元.调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元).(1) 用含x的代数式分别表示W1,W2.(2) 当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?19.一名大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价为24元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于32元/件,市场调查发现,该产品每天的销售量y(件)与x(元/件)之间的函数关系如图所示.(1) 求y与x之间的函数关系式,并写出自变量x的取值范围;(2) 求每天的销售利润W(元)与销售单价x(元/件)之间的函数关系式,并求出每天销售价为多少元时,每天的销售利润最大?最大利润是多少?20.某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1) 假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式.(不要求写自变量的取值范围)(2) 商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3) 每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?答案一、解答题(共20题)1. 【答案】(1) y =(x −50)⋅w =(x −50)⋅(−2x +240)=−2x 2+340x −12000,∴y 与 x 的关系式为 y =−2x 2+340x −12000.(2) y =−2x 2+340x −12000=−2(x −85)2+2450,∴ 当 x =85 时,y 的值最大.(3) 当 y =2250 时,可得方程 −2(x −85)2+2450=2250. 解这个方程,得 x 1=75,x 2=95. 根据题意,x 2=95 不合题意应舍去.∴ 当销售单价为 75 元时,可获得销售利润 2250 元.2. 【答案】(1) 设 AB =t m ,则 BC =(100−2t )m ,根据题意得t (100−2t )=450.解得t 1=5,t 2=45.当 t =5 时,100−2t =90>20,不合题意舍去;当 t =45 时,100−2t =10, 答:AD 的长为 10 m . (2) 设 AD =x m ,∴S =−12x (100−x )=12(x −50)2+1250,当 a ≥50 时,则 x =50 时,S 的最大值为 1250;当 0<a <50 时,则当 0<x ≤a 时,S 随 x 的增大而增大,当 x =a 时,S 的最大值为 50a −12a 2,综上所述,当 a ≥50 时,S 的最大值为 1250 m 2;当 0<a <50 时,S 的最大值为 (50a −12a 2)m 2.3. 【答案】(1) 设 y 与 x 之间的函数关系式为 y =kx +b (k ≠0),由所给函数图象可知:{130k +b =50,150k +b =30,解得:{k =−1,b =180,故 y 与 x 的函数关系式为 y =−x +180.(2) 根据题意,得:(x −100)(−x +180)=1500.整理,得:x 2−280x +19500=0.解得:x =130.或x =150.答:每件商品的销售价应定为 130 元或 150 元.(3) ∵y =−x +180,∴W =(x −100)y =(x −100)(−x +180)=−x 2+280x −18000=−(x −140)2+1600,∴ 当 x =140 时,W 最大=1600,∴ 售价定为 140 元/件时,每天最大利润 W =1600 元.4. 【答案】(1) ω=(x−30)⋅y=(−x+60)(x−30)=−x2+30x+60x−1800=−x2+90x−1800.ω与x之间的函数表达式为ω=−x2+90x−1800.(2) 根据题意得,ω=−x2+90x−1800=−(x−45)2+225.∵−1<0,当x=45时,ω有最大值,最大值是225.即这种双肩包销售单价定为45元时,每天的销售利润最大,最大利润是225元.(3) 当ω=200时,−x2+90x−1800=200,解得x1=40,x2=50.∵50>48,∴x2=50不符合题意,舍去.故该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元.5. 【答案】(1) ω=(x−30)⋅y=(−x+60)(x−30)=−x2+30x+60x−1800=−x2+90x−1800.ω与x之间的函数表达式为ω=−x2+90x−1800.(2) 根据题意得,ω=−x2+90x−1800=−(x−45)2+225.∵−1<0,当x=45时,ω有最大值,最大值是225.即这种双肩包销售单价定为45元时,每天的销售利润最大,最大利润是225元.(3) 当ω=200时,−x2+90x−1800=200,解得x1=40,x2=50.∵50>48,∴x2=50不符合题意,舍去,故该商品销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元.6. 【答案】(1) y=−x+120(60≤x≤87).(2) w=−x2+180x−7200.当售价定为87元时,获得最大利润891元.7. 【答案】(1) y=(13−3−x)(400+100x)=−100x2+600x+4000.(2) 根据题意得−100x2+600x+4000=4800,整理得x2−6x+8=0,解得x1=2,x2=4.答:当每件小商品降低2元或4元时,该商店每天能获利4800元.(3) y=−100x2+600x+4000=−100(x−3)2+4900,∵a=−100<0,∴当x=3时,y有最大值,最大值为4900.答:每件小商品销售价为3元时,商店每天销售这种小商品的利润最大,最大利润是4900元.8. 【答案】(1) 设y1=ax2,把(30,2700)代入得,900a=2700,解得a=3.∴y1=3x2.设 y 2=kx +1200,把 (30,2700) 代入得,30k +1200=2700,解得 k =50. ∴y 2=50x +1200.(2) 由题意得,3x 2−(50x +1200)=3800.解得 x 1=50,x 2=−1003(舍去). 答:当销售达到 50 件时,按现行方案月报酬差额达到 3800 元. (3) 当销售员销售产量达到 40 件时,方案一的月报酬为 (50+m )×40+1200=40m +3200. 方案二的月报酬为 3×402=4800.由题意得 {4800−(40m +3200)≤1000,40m +3200−4800≤1000.解得 15≤m ≤65.9. 【答案】(1) ① y =−110x +8;② y =−120x +5(2) 设安排 a 名员工,当单价定为 50 元时,销售量为 3 万件,(50−40)×3−15−0.25a =5.所以a =40.(3) 当 40≤x ≤60 时,利润W =(x −40)×(−110x +8)−15−20=−110(x −60)2+5, 所以 x =60 时,W max =5(万元); 当 60<x <100 时,利润W =(x −40)×(−120x +5)−15−20=−120(x −70)2+10,所以 x =70 时,W max =10(万元). 所以要尽早还清贷款,只有当单价 x =70 元时,获得最大月利润 10 万元, 设该公司 n 个月后还清贷款,则 10n ≥80. 所以 n ≥8,即 n =8 为所求.10. 【答案】(1) 由图象可知:s 与 t 函数图象的顶点坐标为 (2,−2),过点 (0,0), 设:s 与 t 间的函数关系为 s =a (x −2)2−2.将点 (0,0) 代入,得:a =12,∴s 与 t 之间的函数关系式为:s =12(t −2)2−2. (2) 令 s =30,得:12(x −2)2−2=30,解得 x 1=10,x 2=−6(舍去).∴ 截止到 10 月末公司累积利润可达 30 万元.(3) 令 t =8,s 1=12(8−2)2−2=16, 令 t =7,s 2=12×(7−2)2−2=10.5.∴ 第 8 个月所获利润为 s 1−s 2=5.5 万元.11. 【答案】(1) 根据题意,顶点 D 的坐标为 (6,10),点 B 的坐标为 (0,4), 设抛物线的解析式为 y =a (x −6)2+10,把点B(0,4)代入得:36a+10=4,解得:a=−16,即所求抛物线的解析式为:y=−16(x−6)2+10.(2) 由图象可知,高度越高,两排等间的距离越近,把y=8代入y=−16(x−6)2+10得:−16(x−6)2+10=8,解得:x1=6+2√3,x2=6−2√3,所求最小距离为:x1−x2=4√3,答:两排灯的水平距离最小是4√3米.(3) 根据题意,当x=6.25+4=10.25时,y=−16(10.25−6)2+10=67196>6.5,∴能安全通过隧道,答:这辆特殊货车能安全通过隧道.12. 【答案】(1) 设有x间豪华间,由题可得24000x−10(1+13)=40000x.解得x=50.经检验x=50是原方程的根,且符合题意.则:4000050=800(元/间).答:该酒店豪华间有50间,旺季每间价格为800元.(2) 设上涨m元,日总收入为w,则w=(800+m)(50−m25)=−125m2+18m+40000,因为a=−125<0,所以抛物线开口向下,所以当m=−b2a =225时,w最大=42025(元).答:该酒店豪华间价格上涨225元时,豪华间日总收入最高,为42025元.13. 【答案】(1) 根据题意可得:w=(x−20)⋅y,=(x−20)(−2x+80),=−2x2+120x−1600.w与x之间的函数关系为w=−2x2+120x−1600.(2) 根据题意可得:w=−2x2+120x−1600,=−2(x−30)2+200.∵−2<0,∴当x=30时,w有最大值,w最大值为200.答:销售单价定为30元时,每天销售利润最大,最大销售利润200元.(3) 当w=150时,可得方程−2(x−30)2+200=150.解得x1=25,x2=35.∵35>28,∴x2=35不符合题意,应舍去.答:该商店销售这种健身球每天想要获得150元的销售利润,销售单价定为25元.14. 【答案】(1) 由表格中数据可知,当时间t每增加1天,日销售量相应减少1件,∴m 与 t 满足一次函数关系.设 m =kt +b ,将 (1,51),(3,49) 代入,得:{k +b =51,3k +b =49, 解得:{k =−1,b =52.∴m 与 t 的函数关系为 m =−t +52.(2) 设日销售利润为 P ,则 P =(−t +52)(14t +25−20)=−14(t −16)2+324, ∴ 当 t =16 时,P 有最大值,最大值为 324 元. 答:第 16 天时,销售利润最大,最大利润为 324 元.15. 【答案】(1) y =300−10(x −40)=−10x +700. (2) 设每天的利润为 w ,w =(x −30)y =(x −30)(−10x +700)=−10x 2+1000x +21000, ∵w =−10(x −50)2+4000,当时 x =50,w 的最大值为 4000,答:该笔筒销售单价定为 50 元时,每月获取的利润最大,最大利润是 4000 元; (3) 捐款后销售利润为 wʹ,则 wʹ=−10(x −50)2+4000−150=−10(x −50)2+3850,当 wʹ=3600 时,−10(x −50)2+3850=3600,解得 x 1=45,x 2=55, ∴ 该笔筒销售单价的范围为 45≤x ≤55.16. 【答案】(1) w =(x −20)[250−10×(x −25)]=(x −20)(250−10x +250)=−10x 2+700x −10000,∴w 与 x 之间的函数表达式是 w =−10x 2+700x −10000. (2) w =−10x 2+700x −10000=−10(x 2−70x +1000)=−10(x 2−70x +352−1225+1000)=−10(x −35)2+2250. ∵a =−10<0,∴w 有最大值,当 x =35 时,w 最大=2250.∴ 当销售单价为 35 元时,该文具每天的销售利润最大. (3) 方案 A :由题意可知 20<x ≤30. ∵a =−10<0,对称轴是 x =35,∴ 抛物线开口向下,在对称轴左侧 w 随 x 的增大而增大, ∴ 当 x =30 时,w 取最大值.w A 最大=−10×(30−35)2+2250=2000(元). 方案 B :由题意得 x ≥45, 250−10×(x −25)≥10, 解得 45≤x ≤49.在对称轴右侧 w 随 x 的增大而减小, ∴ 当 x =45 时,w 取最大值.w B 最大=−10×(45−35)2+2250=1250(元), ∵2000元>1250元,∴ 方案 A 的最大利润更高.17. 【答案】(1) 设售价定为 x 元时,每天的利润为 140 元,根据题意得:(x −5)[32−12×8(x −9)]=140,解得:x 1=12,x 2=10,答:售价定为 12 元或 10 元时,每天的利润为 140 元.(2) 根据题意得:y =(x −5)[32−12×8(x −9)], 即 y =−4x 2+88x −340,y =−4(x −11)2+144, 故当 x =11 时,y 最大=144 元,答:售价为 11 元时,利润最大,最大利润是 144 元.18. 【答案】(1) 设培植的盆景比第一期增加 x 盆,则第二期盆景有 (50+x ) 盆,花卉有 (50−x ) 盆. 根据题意,得:W 1=(50+x )(150−2x )=−2x 2+50x +7500. W 2=17×(50−x )=−17x +850.(2) 根据题意,得: W =W 1+W 2=−2x 2+50x +7500−17x +850=−2x 2+33x +8350.∴ 对称轴 x =8.25,∵−2<0,且 x 为整数.∴ 当 x =8 时,W 取得最大值,最大值为 8486.答:当 x =8 时,第二期培植的盆景与花卉售完后获得的总利润 W 最大,最大总利润是 8486 元.19. 【答案】(1) 设 y 与 x 的函数解析式为 y =kx +b ,由题意得:{24k +b =30,32k +b =22, 解得:{k =−1,b =54.∴y 与 x 的函数解析式为 y =−x +54(24≤x ≤32).(2) W =(x −24)(−x +54)=−x 2+78x −1296=−(x −39)2+225. ∵a =−1<0,∴ 当 24≤x ≤32 时,W 随 x 的增大而增大.∴ 当 x =32 时,W 最大,最大利润为 −(32−39)2+225=176 元. ∴ 当销售价为 32 元时,每天的销售利润最大,最大利润为 176 元.20. 【答案】(1) 根据题意,得 y =(2400−2000−x )(8+4×x50), 即 y =−225x 2+24x +3200.(2) 由题意,得 −225x 2+24x +3200=4800.整理,得x2−300x+20000=0.解这个方程,得x1=100,x2=200.要使百姓得到实惠,取x=200.∴每台冰箱应降价200元.(3) 对于y=−225x2+24x+3200,当x=−242×(−225)=150时,y最大值=(2400−2000−150)(8+4×15050)=250×20=5000.∴每台冰箱的售价降价150元时,商场的利润最大,最大利润是5000元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题九函数的实际应用类型一图象型1.农技人员对培育的某一品种桃树进行研究,发现桃子成熟后一棵树上每个桃子质量大致相同.设每棵树上桃子的数量为x(个),桃子的平均质量为y(克/个),y与x之间有一次函数关系.(1)求y与x之间的函数关系式;(2)市场调研发现:这个品种每个桃子的平均价格w(元)与平均质量y(克/个)满足函数表达式w=1100y+2.在(1)的情形下,求一棵树上桃子数量为多少时,该树上的桃子销售额最大?第1题图2. 某商家计划在某短视频直播平台上直播销售当地特产,将其中一种特产在网上进行试销售,该特产成本价为每千克2元.该商家在试销售期间调查发现,每天销售量y(kg)与销售单价x(元)之间满足如图所示的函数关系(其中2<x≤10).(1)求y与x之间的函数关系式;(2)销售单价x为多少元时,每天的销售利润最大?最大利润是多少元?第2题图3. 某企业销售某商品,以“线上”与“线下”相结合的方式一共销售了100件.设该商品线下的销售量为x(10≤x≤90)件,线下销售的每件利润为y1元,线上销售的每件利润为y2元.如图中折线ABC、线段DE分别表示y1、y2与x之间的函数关系.(1)求y1与x之间的函数表达式;(2)若70≤x≤90,问线下的销售量为多少时,售完这100件商品所获得的总利润最大?最大利润是多少?第3题图类型二表格型1. 某商场把一批糖果分装成小袋出售,小袋糖果成本为3元/袋.试销发现:每天的销售量y(袋)与销售单价x(元)之间满足一次函数关系,部分数据如表所示,其中3.5≤x≤5.5,另外每天还需支出其它费用80元.(1)y与x之间的函数关系式为________;(2)如果每天销售获得160元的利润,销售单价为多少元?(3)设每天所获利润为W元,当销售单价定为多少元时,每天获得的利润最大?最大利润是多少元?2. 为支持国家南水北调工程建设,小王家由原来养殖户变为种植户,经市场调查得知,当种植樱桃的面积x不超过15亩时,每亩可获得利润y=1900元;超过15亩时,每亩获得利润y(元)与种植面积x(亩)之间满足一次函数关系,部分数据如下表:(1)求种植樱桃的面积超过15亩时每亩获得利润y与x的函数关系式;(2)如果小王家计划承包荒山种植樱桃,受条件限制种植樱桃面积x不超过50亩,设小王家种植x亩樱桃所获得的总利润为W元,求小王家承包多少亩荒山获得的总利润最大,并求总利润W(元)的最大值.3. 人工智能(Artificial Intelligence),简称AI,是指由人制造出来的机器所表现出来的智能,人工智能在“大智慧”时代扮演着越来越重要的角色,其技术广泛渗透到交通、医疗、教育、物流、养老、文化、体育等方面,正深刻改变着人们的传统生活方式.某AI公司为扩大生产规模,在原有5条生产线的基础上,计划增加生产线来生产新研究开发出的AI智能芯片,因技术和原料供给等原因,增加生产线会影响生产量,且总生产线不能超过15条,该公司在试验阶段,将生产AI智能芯片的生产线数量和平均每条生产线的日产量统计如下表:设新增x条生产线,平均每条生产线的日产量为y片,已知y与x满足一次函数关系.(1)求y与x的函数解析式,并直接写出x的取值范围;(2)设公司每天可以生产w个芯片,当新增多少条生产线时,该公司每天生产的芯片数量最多?最多为多少个?类型三文字型1.某超市以每千克20元的价格购进了一种面包,规定销售单价不低于成本价,且获利不高于70%.经市场调查,每天的销售量y(千克)与销售单价x(元/千克)满足一次函数关系,且当销售单价为25元/千克时,每天可以卖出120千克;当销售单价为30元/千克时,每天可以卖出100千克.(1)求y与x的函数关系式;(2)当面包的销售单价定为多少元时,超市每天获得的利润最大?最大利润是多少元?2. 某运动品牌公司生产一种运动服,每件成本为150元,零售商家到该公司批发该种运动服,该公司规定:批发件数不少于200件;当批发件数在200至600之间时,若批发件数为200,批发单价为300元,若批发件数增加100件,批发单价就下降25元;当批发件数超过600时,批发单价为200元.设批发件数为x,批发单价为y元.(1)求y关于x的函数关系式;(2)由于零售商家流动资金有限,批发该种运动服的总费用不超过140000元,请问:当x为何值时,该运动品牌公司的利润最大,最大利润是多少?3. 国家推行“节能减排,低碳经济”政策后,电动汽车非常畅销,某汽车经销商购进A、B两种型号的电动汽车,其中A型汽车的进货单价比B型汽车的进货单价多4万元,花100万元购进A型汽车的数量与花60万元购进B型汽车的数量相同,在销售中发现:每天A型号汽车销量y A=2(台),B型号汽车的每天销量y B(台)与售价x(万元/台)满足关系式y B=-x+10.(1)求A、B两种型号的汽车的进货单价;(2)若A型汽车的售价比B型汽车的售价高2万元/台,且两款汽车的售价均不低于进货价,设B型汽车售价为x万元/台,每天销售这两种车的总利润为W万元,当B型汽车售价定为多少时,每天销售这两种车的总利润最大?最大总利润是多少万元?类型四几何图形1. 如图,某小区决定要在一块一边靠墙(墙长10米)的空地上用栅栏围成一个矩形绿化带ABCD,中间用栅栏隔成两个小矩形,所用栅栏总长为36米,AB的长为x米,矩形绿化带的面积为S平方米.(1)求S与x之间的函数关系式,并直接写出x的取值范围;(2)求围成矩形绿化带ABCD面积S的最大值.第1题图2. 为了美化校园,某校计划在如图所示的一块边长为40 m的正方形区域ABCD上建造花坛,其中E、F、G、H分别为正方形区域各边中点,铺灰区域为四个全等的矩形,在四边形EFGH区域种植甲种花,在铺灰区域种植草坪,剩余部分种植乙种花.设AM的长为x米,种植草坪的区域面积为y平方米.(1)求y关于x的函数关系式;(2)种植甲种花的价格为20元/m2,种植乙种花的价格为30元/m2,种植草坪的价格为10元/m2,绿化花坛的总费用为W元,求W的最小值.第2题图3. 有一块矩形地块ABCD,AB=20米,BC=30米.为美观,拟种植不同的花卉,如图所示,将矩形ABCD分割成四个等腰梯形及一个矩形,其中梯形的高相等,均为x米.现决定在等腰梯形AEHD 和BCGF 中种植甲种花卉;在等腰梯形ABFE 和CDHG 中种植乙种花卉;在矩形EFGH 中种植丙种花卉.甲、乙、丙三种花卉的种植成本分别为20元/米2、60元/米2、40元/米2,设三种花卉的种植总成本为y 元.(1)求种植总成本y 与x 的函数表达式,并写出自变量x 的取值范围;(2)若甲、乙两种花卉的种植面积之差不超过120平方米,求三种花卉的最低种植总成本.第3题图专题九 函数的实际应用类型一 图象型1. 解:(1)设y 与x 之间的函数关系式为y =kx +b (k ≠0), 把A (120,300)和B (240,100)代入y =kx +b 中,得⎩⎪⎨⎪⎧120k +b =300240k +b =100,解得⎩⎪⎨⎪⎧k =-53b =500, ∴y 与x 之间的函数关系式为y =-53x +500; (2)设该树上的桃子销售额为z 元,由题意,得;z =wx =(1100y +2)x =1100yx +2x =1100(-53x +500)x +2x =-160x 2+7x =-160(x -210)2+735, ∵-160<0,抛物线开口向下, ∴有最大值,∴当x =210时,桃子的销售额最大,最大值为735元. 答:一棵树上桃子数量为210时,该树上的桃子销售额最大. 2. 解:(1)当2<x ≤5时,y =10000;当5<x ≤10时,设y 与x 之间的函数关系式为y =kx +b (k ≠0), 把(5,10000),(10,8000)代入得:⎩⎪⎨⎪⎧5k +b =1000010k +b =8000,解得⎩⎪⎨⎪⎧k =-400b =12000, ∴y =-400x +12000, ∴y 与x 之间的函数关系式为:y =⎩⎪⎨⎪⎧10000(2<x ≤5)-400x +12000(5<x ≤10); (2)设每天的销售利润为w 元,当2<x ≤5时,w =10000(x -2)=10000x -20000, ∵10000>0,∴w 随x 的增大而增大, ∴当x =5时,w 最大=30000(元);当5<x ≤10时,w =(-400x +12000)(x -2)=-400(x -16)2+78400, ∵-400<0,∴在对称轴左侧,y 随x 的增大而增大, 当x =10时,w 最大=64000(元). ∵30000<64000,∴综上所述,当销售单价x 为10元时,每天的销售利润最大,最大利润是64000元. 3. 解:(1)当10≤x <70时,设y 1与x 之间的函数表达式是y 1=kx +b (k ≠0), 将点(10,160),(70,130)代入y 1=kx +b 中,得⎩⎪⎨⎪⎧10k +b =16070k +b =130,解得⎩⎪⎨⎪⎧k =-12b =165, ∴当10≤x <70时,y 1与x 之间的函数表达式是y 1=-12x +165; 当70≤x ≤90时,设y 1与x 之间的函数表达式是y 1=ax +c (k ≠0), 将点(70,130),(90,110)代入y 1=ax +c 中,得⎩⎪⎨⎪⎧70a +c =13090a +c =110,解得⎩⎪⎨⎪⎧a =-1c =200, ∴当70≤x ≤90时,y 1与x 之间的函数表达式为y 1=-x +200; ∴y 1与x 之间的函数表达式为y 1=⎩⎪⎨⎪⎧-12x +165(10≤x <70)-x +200(70≤x ≤90); (2)设总利润为w 元,当70≤x ≤90时,w =x (-x +200)+100(100-x )=-(x -50)2+12500,∵-1<0,抛物线开口向下,∴w 有最大值, 且当x >50时,w 随x 的增大而减少,∴当x =70时,w 取得最大值,此时w =12100;答:线下的销售量为70件时,售完这100件商品所获得的总利润最大,最大利润是12100元.类型二 表格型1. 解:(1)设y =kx +b (k ≠0),将x =3.5,y =280;x =5.5,y =120代入,得⎩⎪⎨⎪⎧3.5k +b =2805.5k +b =120,解得⎩⎪⎨⎪⎧k =-80b =560, ∴y 与x 之间的函数关系式为y =-80x +560;(2)由题意,得(x -3)(-80x +560)-80=160,整理得x 2-10x +24=0,解得x 1=4,x 2=6,∵3.5≤x ≤5.5,∴x =4,答:如果每天获得160元的利润,销售单价为4元;(3)由题意得:w =(x -3)(-80x +560)-80=-80x 2+800x -1760=-80(x -5)2+240,∵-80<0,∴w 有最大值,∵3.5≤x ≤5.5,∴当x =5时,w 有最大值为240,答:当销售单价定为5元时,每天获得的的利润最大,最大利润是240元.2. 解:(1)设y =kx +b (k ≠0),将(20,1800)和(30、1600)代入得:⎩⎪⎨⎪⎧20k +b =180030k +b =1600,解得⎩⎪⎨⎪⎧k =-20b =2200, ∴y =-20x +2200;(2)当0<x ≤15时,W =1900x ,∴当x =15时,W 最大=28500元;当15<x ≤50时,W =(-20x +2200)x=-20x 2+2200x=-20(x -55)2+60500,∵-20<0,∴W 有最大值,∵x ≤50,∴当x =50时,W 最大=60000元.∵28500<60000,∴小王家承包50亩荒山获得的总利润最大,总利润W 的最大值为60000元.3. 解:(1)设y 与x 的函数解析式为y =kx +b (k ≠0),由题意得,每增加1条生产线,平均每条生产线的日产量降低500片,∴k =-500,当x =0时,y =8500,∴b =8500,∴y 与x 的函数解析式为y =-500x +8500(0≤x ≤10);(2)所有生产线的日总产量为w =(x +5)(-500x +8500)=-500x 2+6000x +42500=-500(x -6)2+60500,∵-500<0,0≤x ≤10,∴当x =6时,w 有最大值60500,答:当新增6条生产线时,该公司每天生产的芯片数量最多,最多为60500个.类型三 文字型1. 解:(1)设y 与x 的函数关系式为y =kx +b (k ≠0),由题意得⎩⎪⎨⎪⎧120=25k +b100=30k +b ,解得⎩⎪⎨⎪⎧k =-4b =220, ∵销售单价不低于成本价,且获利不高于70%,∴20≤x ≤20×(1 + 70%),即20≤x ≤34,∴y 与x 的函数关系式为y = -4x +220(20≤x ≤34);(2)设超市每天获得的利润为w 元,根据题意得:w =(x -20)(-4x +220)=-4(x -752)2+1225,∵a = -4<0,对称轴为直线x =752,∴x ≤752时,w 随x 的增大而增大.∵20≤x ≤34,∴当x =34时,w 有最大值,最大值为-4×(34 -752)2+ 1225 =1176(元).答:当面包的销售单价定为34元时,超市每天获得的利润最大,最大利润是1176元. 2. 解:(1)当200≤x ≤600时,设y 与x 的函数关系式为y =kx +b (k ≠0),根据题意得:⎩⎪⎨⎪⎧200k +b =300600k +b =200,解得⎩⎪⎨⎪⎧k =-14b =350, ∴y =-14x +350,当x >600时,y =200,∴y 与x 的函数关系式为y =⎩⎪⎨⎪⎧-14x +350(200≤x ≤600)200(x >600); (2)设利润为w 元,当x >600时,批发单价最低为200元.总费用为200x ≤140000,解得x ≤700,∴w =(200-150)x =50x (600<x ≤700),当x =700时,w 有最大值,最大值为50×700=35000(元),当200≤x ≤600时,w =(y -150)x =-14x 2+200x=-14(x -400)2+40000(200≤x ≤600),∵-14<0,∴抛物线开口向下,w 有最大值,当x =400时,w 有最大值,最大值为40000元,∵40000>35000,∴当x =400时,有最大利润40000元,答:当x 为400时,该运动品牌公司的利润最大,最大利润是40000元.3. 解:(1)设B 型汽车进货单价为t 元,则A 型汽车进货单价为(t +4)元由题意得:100t +4=60t ,解得:t =6,经检验:t =6为原分式方程的根,答:A 型汽车进货单价10万元,B 型汽车进货单价6万元;(2)由题意得W =(x -6)(-x +10)+2(x +2-10),∴W =-x 2+18x -76=-(x -9)2+5,∵a =-1<0,抛物线开口向下,∴当x =9时,W 取得最大值,最大值为5万元.答:B 型汽车售价为9万元时,总利润最大,最大总利润为5万元.类型四 几何图形1. 解:(1)∵栅栏总长为36米,AB 的长为x 米,∴BC =(36-3x )米,∴S =x (36-3x )=-3x 2+36x ,∴S 与x 之间的函数关系式∴S =-3x 2+36x (263<x <12); 【解法提示】由题意可得:0<36-3x <10,解得263<x <12,(2)S =-3x 2+36x=-3(x -6)2+108,∵-3<0,∴S 有最大值,对称轴为直线x =6,∴当x >6时,y 随x 的增大而减小,又∵263<x <12,∴当x =263时,S 有最大值,其最大值为2603.答:围成矩形绿化带ABCD 面积S 的最大值为2603平方米.2. 解:(1)∵E 、F 、G 、H 分别为正方形区域各边中点,铺灰部分为四个全等的矩形,∴AE =AF =12AB =20,PE =PQ .∵AM =x ,∴PQ =PE =x ,AP =20-x ,∴y =4x (20-x )=-4x 2+80x (0<x <20);(2)由题意得四边形EFGH 为正方形,其面积为4022=800 m 2,∴W =800×20+10y +30(402-800-y )=-20y +40000=-20(-4x 2+80x )+40000=80(x -10)2+32000,∵80>0,0<x <20,∴当x =10时,W 取最小值,最小值为32000元,答:绿化花坛的总费用W 的最小值为32000元.3. 解:(1)EF =(20-2x )米,EH =(30-2x )米,由题意得:y =(30+30-2x )·x ·20+(20+20-2x )·x ·60+(30-2x )(20-2x )·40=-400x +24000(0<x <10),∴种植总成本y 与x 的函数表达式为y =-400x +24000(0<x <10);(2)S 甲=2×12(EH +AD )x =(30-2x +30)x =-2x 2+60x ,同理S 乙=-2x 2+40x ,∵甲、乙两种花卉的种植面积之差不超过120米2,∴-2x 2+60x -(-2x 2+40x )≤120,解得:x ≤6,∴0<x ≤6,∵y =-400x +24000随x 的增大而减小,∴当x =6时,y 的值最小,最小值为21600, 答:三种花卉的最低种植总成本为21600元.。

相关文档
最新文档