研究生高等代数复习题

合集下载

名校高等代数考研《830高等代数》考研真题解析库

名校高等代数考研《830高等代数》考研真题解析库

名校高等代数考研《830高等代数》考研真题解析库北大重大第一部分名校考研真题第1章多项式一、判断题1.设Q是有理数域,则P={α+βi|α,β∈Q}也是数域,其中.()[南京大学研]【答案】对查看答案【解析】首先0,1∈P,故P非空;其次令a=α1+β1i,b=α2+β2i其中α1,α2,β1,β2为有理数,故a±b=(α1+β1i)±(α2+β2i)=(α1±α2)+(β1±β2)i∈Pab=(α1+β1i)(α2+β2i)=(α1α2-β1β2)+(α1β2+α2β1)i∈P又令c=α3+β3i,d=α4+β4i,其中α3,α4,β3,β4为有理数且d≠0,即α4≠0,β4≠0,有综上所述得P为数域.2.设f(x)是数域P上的多项式,a∈P,如果a是f(x)的三阶导数f‴(x)的k 重根(k≥1)并且f(a)=0,则a是f(x)的k+3重根.()[南京大学研] 【答案】错查看答案【解析】反例是f(x)=(x-a)k+3+(x-a)2,这里f(a)=0,并且f‴(x)=(k+3)(k+2)(k+1)(x-a)k满足a是f(x)的三阶导数f‴(x)的k重根(k≥1).3.设f(x)=x4+4x-3,则f(x)在有理数域上不可约.()[南京大学研] 【答案】对查看答案【解析】令x=y+1,则f(y)=y4+4y3+6y2+8y+2,故由艾森斯坦因判别法知,它在有理数域上不可约.二、计算题1.f(x)=x3+6x2+3px+8,试确定p的值,使f(x)有重根,并求其根.[清华大学研]解:f′(x)=3(x2+4x+p).且(f(x),f′(x))≠1,则(1)当p=4时,有(f(x),f′(x))=x2+4x+4所以x+2是f(x)的三重因式,即f(x)(x+2)3,这时f(x)的三个根为-2,-2,-2.(2)若p≠4,则继续辗转相除,即当p=-5时,有(f(x),f′(x))=x-1即x-1是f(x)的二重因式,再用(x-1)2除f(x)得商式x+8.故f(x)=x3+bx2-15x+8=(x-1)2(x+8)这时f(x)的三个根为1,1,-8.2.假设f1(x)与f2(x)为次数不超过3的首项系数为1的互异多项式,且x4+x2+1整除f1(x3)+x4f2(x3),试求f1(x)与f2(x)的最大公因式.[上海交通大学研]解:设6次单位根分别为由于x6-1=(x2)3-1=(x2-1)(x4+x2+1),所以ε1,ε2,ε4,ε5是x4+x2+1的4个根.由于ε13=ε53=-1,且x4+x2+1∣f1(x3)+x4f2(x3),所以,分别将ε1,ε5代入f1(x3)+x4f2(x3)可得从而f1(-1)=f2(-1)=0即x+1是f1(x)与f2(x)的一个公因式.同理,将ε2,ε4代入f1(x3)+x4f2(x3)可得f1(1)=f2(1)=0,即x-1是f1(x)与f2(x)的一个公因式.所以(x-1)(x+1)是f1(x)与f2(x)的一个公因式.又因为f1(x),f2(x)为次数不超过3的首项系数为1的互异多项式,所以(f(x),g(x))=x2-1三、证明题1.设不可约的有理分数p/q是整系数多项式f(x)=a0x n+a1x n-1+…+a n-1x+a n的根,证明:q∣a0,p∣a n[华中科技大学研]证明:因为p/q是f(x)的根,所以(x-p/q)∣f(x),从而(qx-p)∣f(x).又因为p,q互素,所以qx-p是本原多项式[即多项式的系数没有异于±l的公因子],且f(x)=(qx-p)(b n-1x n-1+…+b0,b i∈z比较两边系数,得a0=qb n-1,a n=-pb0⇒q∣a0,p∣a n2.设f(x)和g(x)是数域P上两个一元多项式,k为给定的正整数.求证:f (x)∣g(x)的充要条件是f k(x)∣g k(x)[浙江大学研]证明:(1)先证必要性.设f(x)∣g(x),则g(x)=f(x)h(x),其中h (x)∈P(x),两边k次方得g k(x)=f k(x)h k(x),所以f k(x)∣g k(x)(2)再证充分性.设f k(x)∣g k(x)(i)若f(x)=g(x)=0,则f(x)∣g(x)(ii)若f(x),g(x)不全为0,则令d(x)=(f(x),g(x)),那么f(x)=d(x)f1(x),g(x)=d(x)g1(x),且(f1(x),g1(x))=1①所以f k(x)=d k(x)f1k(x),g k(x)=d k(x)g1k(x)因为f k(x)∣g k(x),所以存在h(x)∈P[x](x),使得g k(x)=f k(x)·h(x)所以d k(x)g1k(x)=d k(x)f1k(x)·h(x),两边消去d k(x),得g1k(x)=f1k(x)·h(x)②由②得f1(x)∣g1k(x),但(f1(x),g1(x))=1,所以f1(x)∣g1k-1(x)这样继续下去,有f1(x)∣g1(x),但(f1(x),g1(x))=1故f l(x)=c,其中c为非零常数.所以f(x)=d(x)f1(x)=cd(x)⇒f(x)∣g(x)3.设f(x),g(x)都是P[x]中的非零多项式,且g(x)=s m(x)g1(x),这里m≥1.又若(s(x),g1(x))=1,s(x)∣f(x).证明:不存在f1(x),r(x)∈P[x],且r(x)≠0,∂(r(x))<∂(s(x))使①[浙江大学研]证明:用反证法,若存在f1(x),r(x)使①式成立,则用g(x)乘①式两端,得f(x)=r(x)g1(x)+f1(x)s(x)②因为s(x)∣f(x),s(x)∣f1(x)s(x),由②式有s(x)∣r(x)g1(x).但(s(x),g1(x))=1,所以s(x)∣r(x).这与∂(r(x))<∂(s(x))矛盾.4.设f(x)是有理数域上n次[n≥2]多项式,并且它在有理数域上不可约,但知f (x)的一根的倒数也是f(x)的根.证明:f(x)每一根的倒数也是f(x)的根.[南开大学研]证明:设b是f(x)的一根,1/b也是f(x)的根.再设c是f(x)的任一根.下证1/c也是f(x)的根.令g(x)=f(x)/d,其中d为f(x)的首项系数,不难证明:g(x)与f(x)有相同的根,其中g(x)是首项系数为l的有理系数不可约多项式.设g(x)=x n+a n-1x n-1+…+a1x+a0,(a0≠0).由于b n+a n-1b n-1+…+a1b+a0=0①(1/b)n+a n-1(1/b)n-1+…+a1(1/b)+a0=0⇒a0b n+a1b n-1+…+a n-1b+1=0⇒b n+(a1/a0)b n-1+…+(a n-1/a0)b+1/ a0=0 ②由g(x)不可约及①,②两式可得1/a0=a0,a i/a0=a n-i(i=1,2,…,n-1).故a0=±1,a i=±a n-i(i=1,2,…,n-1)③由③式可知,当f(c)=0时,有f(c)=0,且g(1/c)=0,从而f(1/c)=0.5.设f(x)是复系数一元多项式,对任意整数n有f(n)都是整数.证明:f(x)的系数都是有理数.举例说明存在不是整系数的多项式,满足对任意整数n,有f (n)是整数.[浙江大学研]证明:设f(x)=g(x)+ih(x),g(x),h(x)∈R[x]由于∀n∈Z,f(n)=g(n)+ih(n)∈Z,所以h(x)=0.下证g(x)∈Q[x].事实上,令g(x)=a0+a1x+…+a m x m,a m≠0,a i∈R,i=1,2,…,m则有a0+a1+…+a m=g(1)∈Z,a0+a1·2+…+a m·2m=g(2)∈Z,⋮a0+a1(m+1)+…+a m(m+1)m=g(m+1)∈Z.记则有(a0,a1,…,a m)T=(g(1),g(2),…,g(m+1))①又显见∣T∣=m!(m-1)!…2!1!≠0,由①式得(a0,a1,…,a m)=(g(1),g(2),…,g(m+1))T-1这里T-1是有理数域上的矩阵,g(1),g(2),…,g(m+1)均为整数,所以a0,a1,…,a m∈Q.因此f(x)=g(x)∈Q[x].取f(x)=x2/2-1/2,有f(x)=(x-n)(x/2+n/2)+(n2-1)/2可见存在不是整系数的多项式f(x),对任一整数n,有f(n)=(n2-1)/2∈Z.第6章线性空间一、选择题1.下面哪一种变换是线性变换().[西北工业大学研]A.B. C.【答案】C查看答案【解析】不一定是线性变换,比如则也不是线性变换,比如给而不是惟一的.2.在n维向量空间取出两个向量组,它们的秩().[西北工业大学研] A.必相等B.可能相等亦可能不相等C.不相等【答案】B查看答案【解析】比如在中选三个向量组(I):0(Ⅱ)(Ⅲ).若选(I)(II),秩秩(II),从而否定A,若选(Ⅱ)(Ⅲ),秩(Ⅲ)=秩(Ⅱ),从而否定C,故选B.二、填空题1.若则V对于通常的加法和数乘,在复数域C上是______维的,而在实数域R上是______维的.[中国人民大学研]【答案】2;4.查看答案【解析】在复数域上令;则是线性无关的.则此即证可由线性表出.在实数域上,令若,其中,则此即在R上线性关.可由线性表出,所以在实数域R上,有三、分析计算题1.设V是复数域上n维线性空间,V 1和V2各为V的r1维和r2维子空间,试求之维数的一切可能值.[南京大学研]解:取的一组基,再取的一组基则=秩2.设U是由生成的的子空间,W是由生成的的子空间,求(1)U+W:(2)L∩W的维数与基底.[同济大学研]解:(1)令可得.所以由于为的一个极大线性无关组,因此又可得且,故为U+W的一组基.(2)令因为秩=3.所以齐次方程组①的基础解系由一个向量组成:再令,则故ζ为U∩W的一组基.3.设A是数域K上的一个m×n,矩阵,B是一个m维非零列向量.令(1)证明:W关于K n的运算构成K n的一个子空间;(2)设线性方程组AX=B的增广矩阵的秩为r.证明W的维数dimW=n-r+1:(3)对于非齐次线性方程组求W的一个基.[华东师范大学研]证明:(1)显然W≠,又因为存在t1,t2使Aα=t1B,Aβ=t2B.所以即kα+lβ∈W,此说明W是K n的子空间.(2)对线性方程组(A,B)X n+1=0,由题设,其解空间V的维数为(n+1)-r (A,B)=n-r+1.任取α∈W,存在t∈K,使所以是线性方程组(A,B)X n+1=0的解.这样,存在W到V的映射,显然,这是W形到V的一个双射.又α1,α2∈W,k∈K,存在t1,t2∈K,使Aα1=t1B,Aα2=t2B,则所以且可见W与V同构,从而有dim W=dim V=n-r+1.(3)由(2)W与如下齐次线性方程组解空间同构.该方程组的一个基础解系为:其在σ之下原像即为W的一组基.4.设V 1,V2均为有限维线性空间V的子空间,且,则和空间与另一个重合.[上海交通大学研]证明:因为所以由题设所以即当时,由得此时当时因为,所以,此时5.设V是数域K上n维线性空间,V1,…,Vs是V的s个真子空间,证明:(1)存在,使得(2)存在V中一组基,使[北京大学研]证明:(1)因V 1,…,Vs是V的真子空间,由上例,存在(2)令,同样有且显然,线性无关.令,则存在,且线性无关,如此继续下去,可得线性无关向量组(构成V的基),且有6.设V是定义域为实数集R的所有实值函数组成的集合,对于f,g∈V,a∈R,分别用下列式子定义f+g与af:则V成为实数域上的一个线性空间.设f0(x)=1,f1(x)=cosx,,f2(x)=cos2x,f3(x)=cos3x,(1)判断f0,f1,f2,f3是否线性相关,写出理由;(2)用<f,g>表示f,g生成的线性子空间,判断<f0,f1>+<f2,f3>是否为直和,写出理由.[北京大学研]解:(1)令k0f0+k1f1+k2f2+k3f3=0,分别取x=0,得解之得k0=k1=k2=k2=0,说明f0,f1,f2,f3线性无关.(2)因为<f,g>=L(f,g),所以从而又,故L(f0,f1,f2,f3)是<f0,f1>与<f2,f3>的直和.。

高等代数贵师大考研题库

高等代数贵师大考研题库

高等代数贵师大考研题库高等代数是数学专业研究生入学考试中的一个重要科目,它涵盖了线性代数、多项式代数、群论、环论和域论等基础数学理论。

以下是一份模拟的高等代数考研题库,供同学们复习和练习。

一、选择题1. 给定线性空间 \( V \) 上的线性变换 \( T \),若 \( T \) 的特征多项式等于其最小多项式,则 \( T \) 被称为:A. 可对角化B. 幂零C. 循环D. 正规2. 在复数域 \( \mathbb{C} \) 上,多项式 \( f(x) = x^3 - 6x^2 + 11x - 6 \) 的根的个数是:A. 1B. 2C. 3D. 43. 以下哪个选项不是群的公理:A. 封闭性B. 结合律C. 存在单位元D. 存在逆元二、填空题1. 若矩阵 \( A \) 可逆,则 \( \det(A) \neq ________ \)。

2. 线性空间 \( V \) 的维数定义为 \( V \) 的一个基的________。

3. 给定一个多项式 \( f(x) \),若 \( f(x) \) 可以表示为 \( (x - a)^n \) 的形式,则称 \( f(x) \) 为________。

三、简答题1. 简述线性空间的定义及其性质。

2. 解释什么是特征值和特征向量,并给出一个具体的例子。

3. 描述群的拉格朗日定理,并说明其在群论中的重要性。

四、计算题1. 给定矩阵 \( A = \begin{bmatrix} 1 & 2 \\ 3 & 4\end{bmatrix} \),求 \( A \) 的行列式和逆矩阵。

2. 证明多项式 \( f(x) = x^3 - 3x^2 + 2 \) 在 \( \mathbb{R} \) 上恰有两个实根。

3. 给定群 \( G \) 和其子群 \( H \),证明 \( H \) 在 \( G \) 中的左陪集和右陪集是等价的。

五、论述题1. 论述环和域的区别,并给出具体的例子。

考研高等代数真题答案

考研高等代数真题答案

考研高等代数真题答案一、选择题1. 根据线性空间的定义,下列哪个选项不是线性空间的子空间?- A. 所有零向量组成的集合- B. 线性空间中的非零向量集合- C. 线性空间中的任意向量集合- D. 线性空间中满足特定线性组合的向量集合答案:B2. 矩阵A的特征值是λ1, λ2, ..., λn,矩阵B的特征值是μ1,μ2, ..., μn。

若AB=BA,那么矩阵A+B的特征值是什么?- A. λ1+μ1, λ2+μ2, ..., λn+μn- B. λ1*μ1, λ2*μ2, ..., λn*μn- C. λ1+μ1, λ1+μ2, ..., λn+μn(无规律)- D. 不能确定答案:A二、填空题1. 若线性变换T: V → W,其中V和W是有限维向量空间,且dim(V) = n,dim(T(V)) = r,则T的核的维数是_________。

答案:n-r2. 设A是一个3×3的矩阵,且|A| = 2,矩阵A的特征多项式为f(λ)= (λ-1)^2(λ-3),则矩阵A的迹是_________。

答案:4三、解答题1. 证明:若矩阵A可逆,则A的伴随矩阵A*的行列式等于|A|^(n-1),其中n是A的阶数。

证明:设矩阵A是一个n×n的可逆矩阵,其伴随矩阵记为A*。

根据伴随矩阵的定义,我们有:A * A* = |A| * I,其中I是单位矩阵。

两边同时乘以A的逆矩阵A^(-1),得到:A^(-1) * A * A* = |A| * A^(-1) * I,即 A* = |A|^(n-1) * A^(-1)。

由此可知,A*的行列式是|A|^(n-1)。

2. 解线性方程组:x + 2y + 3z = 14x + 5y + 6z = 27x + 8y + 9z = 3解:首先写出增广矩阵:[1 2 3 | 1][4 5 6 | 2][7 8 9 | 3]通过初等行变换,将增广矩阵化为行最简形式:[1 0 -1 | -1][0 1 3 | 4][0 0 0 | 0]根据行最简形式,我们可以得到y = 4 - 3z,x = 1 + z。

研究生高等代数复习题完整版

研究生高等代数复习题完整版
(2)求 的一组标准正交基,(3)求矩阵 ,使得 .
32.设 的两个子空间为: ,
.求 与 的基与维数.
33.设 是3维线性空间, 为它的一个基.线性变换 ,
求(1) 在基 下的矩阵; (2)求核 和值域 .
34.设 是实数域上所有 阶对称阵所构成的线性空间,对任意 ,定义 ,其中 表示 的迹.(1)证明: 构成一欧氏空间;(2)求使 的子空间 的维数;(3)求 的正交补 的维数.
17.设 是5维的欧几里得空间 的一组标准正交基, ,其中 ,求 的一组标准正交基.
18.设 是 矩阵,其中
(1)求 的值;(2)设 ,求W的维数及W的一组基.
19.设?是线性空间 上的线性变换,满足 ,求?在基 下的矩阵.
20.设?是 维线性空间 上的线性变换, 是 的一组基.
如果?是单射,则 也是一组基.
研究生高等代数复习题
1.设?是数域 上线性空间 的线性变换且 ,证明:
(1)?的特征值为1或0;(2) ;(3) .
2.已知?是n维欧氏空间的正交变换,证明:?的不变子空间 的正交补 也是?的不变子空间.
3.已知复系数矩阵 , (1) 求矩阵 的行列式因子、不变因子和初等因子;(2)若当标准形.(15分)
35.试找出全体实2级矩阵 所构成的线性空间到 的一个线性同构.
36.求由向量 生成的子空间 与由向量 生成的子空间 的交的基和维数.
37.设 ,求(1) 的不变因子、行列式因子、初等因子.(2) 的 标准形.
38.设 是数域 上 矩阵关于矩阵加法和数乘作成的线性空间,
定义变换 , .(1)证明: 是 上的对合线性变换,即 是满足 (恒等变换)的线性变换;(2)求 的特征值和特征向量.
58.设 是4维空间 的一组基,已知线性变换 在这组基下的矩阵为

全国名校高等代数考研真题汇编(含部分答案)

全国名校高等代数考研真题汇编(含部分答案)

考生注意: 1.本 试 卷 满 分 为 150 分,共计10道题,每题满分15 分,考试时间总计180 分钟;
2.答案必须写在答题纸上,写在试题纸上或草稿纸 上均无效。
一、设 是 阶单位矩阵, ,证明 的行列式等于 .
,矩阵 满足
二、设 是 阶幕零矩阵满足

.证明所有的 都相似于一个对角矩阵,
的特征值之和等于矩阵 的秩.
3.南开大学高等代数考研真题 2012年南开大学804高等代数考研真题 2011年南开大学802高等代数考研真题
4.厦 门 大 学 825高等代数考研真题 2014年厦门大学825高等代数考研真题 2013年厦门大学825高等代数考研真题 2012年厦门大学825高等代数考研真题 2011年厦门大学825高等代数考研真题

证明:
(1)
.
(2) 是 的不变子空间,则 也是的 不变子空间.
10.四川大学高等代数考研真题及 详解
2013年四川大学931高等代数考研真 题及详解
2011年四川大学高等代数考研真题
11.浙江大学高等代数考研真题
2012年浙江大学601高等代数考研真题
浙江大学2012年攻读硕士学位研究生入学试题 考试科目:高等代数(601)
5.中 山 大 学 877高等代数考研真题
2015年中山大学877高等代数考研真题 2014年中山大学874高等代数考研真题 2013年中山大学869高等代数考研真题 2012年中山大学869高等代数考研真题 2011年中山大学875高等代数考研真题 6.中南大学高等代数考研真题 2011年中南大学883高等代数考研真题 7.湖南大学高等代数考研真题 2013年湖南大学813高等代数考研真题 8.华 东 师 范 大 学 817高等代数考研真题 2013年华东师范大学817高等代数考研真题 2012年华东师范大学817高等代数考研真题 2011年华东师范大学817高等代数考研真题 9.华中科技大学高等代数考研真题及详解 2013年华中科技大学高等代数考研真题 2012年华中科技大学高等代数考研真题及详解 2011年华中科技大学高等代数考研真题 10.四川大学高等代数考研真题及详解 2013年四川大学931高等代数考研真题及详解 2011年四川大学高等代数考研真题 11.浙江大学高等代数考研真题 2012年浙江大学601高等代数考研真题

中国科学院大学《高等代数》《数学分析》考研真题汇总(2009-2018年汇编)

中国科学院大学《高等代数》《数学分析》考研真题汇总(2009-2018年汇编)

|z| ≤ na, |x| ≤ nh, |y| ≤ nk.
(2) 求证: Hermite 矩阵的特征值都是实数.
(3) 求证:反对称矩阵的非零特征值都是纯虚数.
六、 ( 15 分) 设 A 是 n 维实线性空间 V 的线性变换, n ≥ 1. 求证: A 至少存在一个一维或者二维的不变 子空间.
七、 ( 20 分) 设循环矩阵 C 为
01
生成的子空间. 求 W ⊥ 的一组标准正交基.
00
11
八、 ( 18 分) 设 T1, T2, · · · , Tn 是数域 F 上线性空间 V 的非零线性变换, 试证明存在向量 α ∈ V , 使得 Ti(α) = 0, i = 1, 2, · · · , n.
7
5. 2013年中国科学院大学《高等代数》研究生入学考试试题
三、 ( 20 分) 已知 n 阶方阵

a21
a1a2 + 1 · · · a1an + 1

A
=

a2a1 + 1
a22
···
a2an + 1


,
···
··· ··· ···


ana1 + 1 ana2 + 1 · · ·
a2n
n
n
其中 ai = 1, a2i = n.
i=1
八、 ( 15 分) 设 A 是 n 阶实方阵, 证明 A 为实对称阵当且仅当 AAT = A2, 其中 AT 表示矩阵 A 的转置.
6
4. 2012年中国科学院大学《高等代数》研究生入学考试试题
一、 ( 15 分) 证明:多项式 f (x) = 1 + x + x2 + · · · + xn 没有重根.

历届高等代数研究生试题50套2006高等代数考研题

历届高等代数研究生试题50套2006高等代数考研题

一. 填空题(本题共10小题,每小题4分,满分40分,标明题号,不写过程,直接将答案写在答题纸上)1.若⎪⎪⎪⎭⎫ ⎝⎛=143412321A ,)(λf 是A 的特征多项式,则)(λf 除以1-λ所得的余式=r 。

2.多项式x x x x xx g 43214321432432)(=中3x 的系数是 。

3.若二次型Ax x x f T =)(经过正交变换Py x =后化为22221n y y y +++ ,那么矩阵=A 。

4.已知B A ,是同阶实对称矩阵,则BA AB -的特征值λ的实部=)Re(λ 。

5.若)(V L 表示n 维线性空间V 上全体线性变换所构成的线性空间,则)(V L 的维数是 。

6.三元二次方程022********=+++x x x x x 的一切解=⎪⎪⎪⎭⎫ ⎝⎛321x x x 。

7.若⎪⎪⎪⎭⎫ ⎝⎛----=031251233A ,则A 的最小多项式=)(λm 。

8.命题“欧氏空间nR 上保持内积不变的变换是一个线性变换”是 。

9.若c b a ,,是互不相同的实数,则方程组⎪⎩⎪⎨⎧=++=++=++332213322133221c x c cx x b x b bx x a x a ax x 中的=1x 。

10.已知T 是线性空间2R 上的一个线性变换,并且⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛2121T ,⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛1232T ,那么=⎪⎪⎭⎫ ⎝⎛54T 。

二.解答题(本题共8小题,满分110分,标明题号,要求写出必要的解题步骤,解答写在答题纸上)11.(10分)设)(),(x g x f 都是数域P 上的多项式。

如果)()(),()(x f x g x g x f ,证明存在非零常数c 使得)()(x cg x f =。

12.(10分)讨论常数b a ,为何值时,方程组⎩⎨⎧=-=+004221x x x ax 与⎩⎨⎧=+-=+-00432321bx x x x x x 有非零公共解,并将它们全部求出。

高等代数第三版考研题库

高等代数第三版考研题库

高等代数第三版考研题库一、线性代数部分1. 矩阵理论- 矩阵的运算:加法、乘法、转置、求逆等。

- 矩阵的秩:证明矩阵秩的性质,求解矩阵的秩。

- 线性方程组:解线性方程组,证明解的存在性与唯一性。

2. 向量空间- 向量空间的定义与性质。

- 基和维数:确定向量空间的基,计算维数。

- 线性变换:定义线性变换,计算线性变换的矩阵表示。

3. 特征值与特征向量- 特征值和特征向量的概念。

- 特征多项式:计算矩阵的特征多项式。

- 对角化:证明矩阵对角化的条件,求解对角化后的矩阵。

二、多项式代数部分1. 多项式的基本性质- 多项式的定义,次数,系数。

- 多项式的运算:加法、乘法、除法。

2. 多项式的根- 根的概念,实根与复根。

- 韦达定理:应用韦达定理求解多项式的系数与根的关系。

3. 多项式的因式分解- 因式分解的方法:配方法、公式法、分组法等。

- 多项式的最大公因式。

三、群论部分1. 群的定义与性质- 群的定义,单位元,逆元,封闭性,结合律。

2. 子群与陪集- 子群的定义,判定子群的方法。

- 陪集的概念,拉格朗日定理。

3. 群的同态与同构- 群同态的定义,同构群的概念。

四、环论部分1. 环的定义与性质- 环的定义,加法和乘法的运算规则。

2. 理想与商环- 理想的定义,主理想与零理想。

- 商环的概念,构造商环的方法。

3. 环的同态与同构- 环同态的定义,同构环的概念。

五、域论部分1. 域的定义与性质- 域的定义,域的加法和乘法运算。

2. 多项式在域上的根- 多项式在域上的分解,有限域与无限域。

3. 域的扩张- 域扩张的概念,代数扩张与超越扩张。

结束语本题库覆盖了高等代数的核心概念和理论,旨在帮助考生系统复习和深入理解高等代数的知识点,为考研做好充分准备。

希望考生能够通过练习这些题目,提高解题能力和数学思维。

请注意,这只是一个示例题库,实际的考研题库可能会根据具体的教材版本和考试大纲有所不同。

大连理工大攻读硕士研究生入学考试高等代数试题及参考解答

大连理工大攻读硕士研究生入学考试高等代数试题及参考解答

大连理工大攻读硕士研究生入学考试高等代数试题及参考解答一、填空题(每小题4分)设a 、P 均为n 维列向量:a 'P =2,则A = E +aP '可逆,A" = E -^aP '3飞"2 +5+川+5h=^1 +口3 +)丨|+5P r =% + t||+^r _1 P r +=«1+«2+H|+«rX S ,川,P r, P r 十线性相关.5.设A 是n 阶矩阵,秩A = r ,非齐次线性方程组 Ax = P 有解,则Ax = P 的解向量组的秩为n —r +1.6.设a 、b 均为实数,二次型f(X 1,X 2,小,X n ) =(ax 1 +bx 2)2 +(ax 2 +bx 3)2+'" + (aX n4 + bX n )2 +(aX n +以)2a 、b 满足条件a n+(—1)n^b nH0时,f 为正定二次型.7.设V 是由矩阵A 的全体实系数多项式组成的线性空间,其中了10 ©2/则V 的一组基是E,A,A 2.取定V 的一个非零向量a ,则V = L(a)的全部线性变换形女口1. 设f(X)是有理数域上的不可约多项式 ,Ot 为f(X)在复数域内的一个根,Ot 的重数为1 2.n 阶行列式1 II I1 3II I1II III I II1IIIn+1n1 =[1+送 1]n!.k4k3. 4. 设向量组%,(/2,|||,%线性无关,8.设V 是数域P维线性空间,写出V 上的所有线性变换f a : x a T a(x a),其中a是P中任一取定的数■9.正交矩阵的实特征值为±1.10.设G为群,H、N分别是G的子群,H、N的阶分别是m、n,且m、n互素,令a H c N ,则元素a的阶为_1:二、(10分)设f(x),g(x)是数域P上的多项式,证明:在数域P上,若f3(x)|g3(x).则f(x)|g(x).参考解答:若f (x), g(x)中有一个是零多项式或零次多项式,则结论显然成立.下设戲(X)A O,0(X) A O,且g(x^a^ri(x)p2r2(x^|p s rs(x)是g(x)的标准分解式,其中p i(x), P2(X),IH, p s(x)是互不相同的最高次项系数为1的不可约多项式,「1,「2,111,1都是正整数.任取f (x)的一个不可约因式q(x),由于q(x)| f(x), f(x)| f3(x), f3(x)|g3(x)3利用多项式整除的传递性,得q(x)|g (x).由于q(x)是不可约多项式,故q(x)|g(x),进一步可知,q(x) =cp i(x),对某个1兰i兰s及c忘P.于是我们可以设f(X)= bp,1(X)pJWlll P s ts(x),其中t1,t2,HI,t s是非负整数.从f 3(x) |g3(x)知,存在多项式h(x卢P[x],使得3 3g(X)= f (X) | h(x),即a3 P13r1(x) P23r2(x) 111P s3rs(x) =b3pi3t1(x) P23t2(x)HI P s3ts(x)h(x).由此推出3r i >3t i ,即r i >t i , ^1,2j|l,s.因此g(x)=bpi t1(x) P2t2(X)川p s ts(X)*7 p/ T (x) P2r2主(x)liI P s rs」s (x)b= f(x) €口心&) P s r H(X)b由多项式整除的定义知,f(x)|g(x).2 k三、(15分)设A为n级矩阵,且秩A=秩A ,证明:对任意自然数k ,有秩A =秩A.参考解答:对k作数学归纳法.当k =1,2时结论显然成立.假设k -1时结论成立,即rank A =rank A k丄.令V ={X€=0}, i =1,2,m那么显然有V i匸V2匸从rank A =rank A k-知. k 1dim V, = n-rankA = n — rank A =dim V k』于是V i=V k」.任取X。

高等代数825考研真题

高等代数825考研真题

高等代数825考研真题高等代数是数学中的一门重要课程,对于提高数学建模能力和解决实际问题具有重要作用。

本文将针对高等代数825考研真题展开讨论。

第一部分:选择题(1)设V是数域K上的线性空间,S是V的子空间,则下列命题中正确的是()A. V⊂SB. V⊂VC. V=VD. V≠V(2)设A,B都是n阶方阵,则下列命题中正确的是()A. VV(VV+VV)≤VV V+VV VB. VVV V+VVV V=VV(VV+VV)C. VV(VV+VV)≥VV V+VV VD. VVV V+VVV V≥VV(VV+VV)第二部分:解答题1. 证明引理:设V={V1, V2,..., VV} ,V是V的一个非零子空间,则V(V1+V2+V+VV)≥2。

其中,V(V) 表示向量V的秩。

解:假设V1+V2+V+VV= V0 ,其中V0≠V为一线性组合等于零向量,需要证明线性相关,即证明存在VV≠V使得VV是线性相关向量。

首先,假设V1+V2+V+VV= V0 成立,则可以得到其中至少有一项VV=0。

其次,如果保持原假设成立,那么对于其他项V j ∈V中的向量V j,可以写成V j= −(V1+V2+V+VV)+2V i ,可知V j 是线性相关向量。

综上所述,线性空间V中至少存在两个线性相关的向量。

2. 设V,V,V是V阶方阵。

证明:如果V,V是可逆的,则VV和VV也是可逆的,并且特征值λ(VV) = 特征值λ(VV)。

解:首先,V,V是可逆的,则存在V的逆矩阵V^-1 和V的逆矩阵V^-1 。

其次,考虑矩阵VV,假设存在非零向量V使得 (VV)V= 0 ,则有V(VV)=0。

由于V是可逆的,所以V^-1 存在,因此可以得到VV=0。

由于V是可逆的,所以只有V为零向量才能使等式成立,即零向量是唯一解。

综上所述,矩阵VV是可逆的。

类似地,可以证明矩阵VV也是可逆的。

在特征值方面,由于可逆矩阵与其逆矩阵存在相同的特征值,所以特征值λ(VV) = 特征值λ(VV)。

高等代数考研习题

高等代数考研习题

《高等代数》试题库一、 选择题1.在[]F x 里能整除任意多项式的多项式是()。

A .零多项式B .零次多项式C .本原多项式D .不可约多项式2.设()1g x x =+是6242()44f x x k x kx x =-++-的一个因式,则=k ()。

A .1B .2C .3D .43.以下命题不正确的是()。

A .若()|(),()|()f x g x f x g x 则;B .集合{|,}F a bi a b Q =+∈是数域;C .若((),'())1,()f x f x f x =则没有重因式;D .设()'()1p x f x k -是的重因式,则()()p x f x k 是的重因式4.整系数多项式()f x 在Z 不可约是()f x 在Q 上不可约的()条件。

A .充分B .充分必要C .必要D .既不充分也不必要5.下列对于多项式的结论不正确的是()。

A .如果)()(,)()(x f x g x g x f ,那么)()(x g x f =B .如果)()(,)()(x h x f x g x f ,那么))()(()(x h x g x f ±C .如果)()(x g x f ,那么][)(x F x h ∈∀,有)()()(x h x g x fD .如果)()(,)()(x h x g x g x f ,那么)()(x h x f6.对于“命题甲:将(1)n >级行列式D 的主对角线上元素反号,则行列式变为D -;命题乙:对换行列式中两行的位置,则行列式反号”有()。

A .甲成立,乙不成立;B .甲不成立,乙成立;C .甲,乙均成立;D .甲,乙均不成立7.下面论述中,错误的是()。

A .奇数次实系数多项式必有实根;B .代数基本定理适用于复数域;C .任一数域包含Q ;D .在[]P x 中,()()()()()()f x g x f x h x g x h x =⇒=8.设ij D a =,ij A 为ij a 的代数余子式,则112111222212.....................n n n n nn A A A A A A A A A =()。

高等代数考研试题及答案

高等代数考研试题及答案

高等代数考研试题及答案一、选择题(每题3分,共30分)1. 下列矩阵中,哪个不是可逆矩阵?A. [1, 2; 3, 4]B. [2, 0; 0, 1]C. [1, 1; 1, 1]D. [1, -1; 2, 2]2. 设线性变换 \( T: \mathbb{R}^3 \rightarrow \mathbb{R}^3 \) 由矩阵 \( A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \) 给出,那么 \( T(1, 2, 3) \) 的结果是:A. (3, 5, 3)B. (5, 3, 3)C. (1, 2, 3)D. (2, 3, 1)3. 多项式 \( p(x) = x^3 - 6x^2 + 11x - 6 \) 的根的个数是:A. 1B. 2C. 3D. 44. 设 \( V \) 是所有 \( n \) 次多项式的向量空间,\( T: V\rightarrow V \) 是一个线性变换,且 \( T(p(x)) = p'(x) \)。

如果 \( T \) 的特征值为 \( k \),那么 \( k \) 等于:A. 0B. 1C. -1D. \( n \)5. 下列哪个命题是正确的?A. 每个线性映射都可以用一个矩阵来表示。

B. 矩阵的乘积总是可交换的。

C. 两个相似矩阵必定是同阶矩阵。

D. 行列式的值总是正数或零。

6. 设 \( A \) 是一个 \( n \) 阶方阵,如果 \( A \) 的所有特征值的和等于 \( 0 \),那么 \( A \) 必定是:A. 正交矩阵B. 对角矩阵C. 零矩阵D. 反对称矩阵7. 如果一个 \( n \) 阶方阵 \( A \) 的所有元素都等于 \( 1 \),那么 \( A^n \) 的迹(trace)是:A. \( n \)B. \( n^n \)C. \( n! \)D. \( 0 \)8. 对于任意 \( n \) 阶方阵 \( A \),下列哪个选项是正确的?A. \( \det(A^2) = (\det A)^2 \)B. \( \det(A^T) = \det A \)C. \( \det(A + I) = \det A + 1 \)D. \( \det(A) = \det(A^T) \)9. 设 \( V \) 是一个向量空间,\( T: V \rightarrow V \) 是一个线性变换,如果 \( T \) 的一个特征向量 \( v \) 满足 \( T(v) = \lambda v \),那么 \( T \) 的逆变换 \( T^{-1} \)(如果存在)将 \( v \) 映射到:A. \( \lambda^{-1} v \)B. \( \frac{1}{\lambda} v \)C. \( v \)D. \( v + \lambda v \)10. 下列哪个矩阵是正交矩阵?A. \( \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \)B. \( \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \)C. \( \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \)D. \( \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \)二、填空题(每题4分,共20分)11. 矩阵 \( A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \) 的行列式 \( \det A \) 等于 _______。

河南大学考研高等代数真题

河南大学考研高等代数真题

河南大学考研高等代数真题河南大学2023年研究生招生入学考试业务课试卷考试科目及代码:高等代数 839n,ns和s t的三个矩阵,且ABC=0,其中A的秩为一.(15分)设A,B,C分别为m创n,C的秩为s.证明:B=0.二.(15分)若4级方针A的每一个行向量、每一个列向量的分量均由两个0和两个1组成,那么A的行列式等于0.三.(15分)设A为n阶实对称矩阵,证明:V={x,x\'Ax=0}是n维欧式空间Rn的一个子空间。

四.(20分)若以f(x)表示实系数多项式,试证: 2W={f(x),f(1)=0,叮(f(x))是实数域上的一个线性空间,并求出它的一组基。

n}五.(20分)设A,B为两个幂等矩阵,即A=A,B=B。

证明:若秩(A)=秩(B),则A与B相似。

六.(20分)设A,B为两个实对称矩阵,且A正定。

证明:复方阵A+iB为可逆矩阵。

七.(20分)设A,B为数域P上两个不同的n阶对称矩阵,且r(B-A)=r,这里r(A)表示矩阵A的秩。

证明:存在r-1个n阶对称矩阵C1,C2,,Cr-1,使得 22 r(C1-A)=r(Ci+1-Ci)=r(B-Cr-1)=1,i=1,2,,r-2八.(25分)设P,Q是数域P上任意两个n阶可逆方阵,Mn表示数域P上全体n³2阶方阵的集合。

在Mn上定义变换s(P,Q):s(P,Q)(X)=PXQ,\"x Mn。

若将Mn看做数域P上的线性空间,则s(P,Q)是此线性空间的一个线性变换。

进一步令骣1琪琪2Q=琪,琪琪琪n桫试求线性变换s(Q,Q)的所有特征值和特征向量。

-1《河南大学考研高等代数真题.doc》。

华东师范大学2023年高等代数考研试题

华东师范大学2023年高等代数考研试题

华东师范大学2023年高等代数考研试题## 2023华东师范大学高等代数考研试题### 一、选择题1. 集合P是实数集,则“∃x∈P,x+2<7”的否定形式是A. ∀x∈P,x+2<7B. ∀x∈P,x+2≥7C. ∃x∈P,x+2≥7D.∃x∈P,x+2>72. 下列命题中,属于广义算子*的特征是A. x*y=x+yB. x*x=xC. x*1=xD. x*0=13. 已知αβγ三个元素的秩为3,由α+β=γ 知下面最小的空间维数是A. 0B.1C. 2D. 34. 对于一个n阶矩阵A,若所有元素都为0,那么A的行列式的值是A. nB. n!C. 0D. 1### 二、填空题5. 多项式f(x)=2x<sup>2</sup>-3x+5在x=1处的值是 _________。

6. 有限集P={2, 3, 4, 7, n}中n的最小可能值是 _________。

### 三、解答题7. 设m、n是自然数,证明对任意(m,n)∈N*×N*,都有m+n大于等于mn+1。

证明:由算术基本定理知,对于任意非负整数m,都有m!+1>m,将m 及n分别代入m!+1>m及m+n≥mn+1,化简后有(m+1)!>m+n,发现左右两边同乘以(m+1),可以得出(m+1)m!>m(m+1)+m(n−1),即mn+m>m(m+1),减去m(m+1)得mn>0,同时减去m+n< mn+1得负,此仅在m > 0时成立,故该式成立。

由例出可知m,n都大于等于0,因此该式成立,即m+n≥mn+1成立,证毕。

8. 已知线性代数空间V、W和线性映射T:V→W,请回答下列问题:(1)V和W是否都有双重自反?(2)V和W是否都有对称?(3)T是否具有线性特性?(1)双重自反:V和W均需要满足双重自反的性质才可以。

(2)对称:若存在T:V→W的线性映射,则V和W均需要满足对称性质。

高等代数每日一题考研真题

高等代数每日一题考研真题

高等代数每日一题考研真题高等代数是数学中的重要分支之一,对于考研学生来说,掌握高等代数的知识是非常重要的。

为了帮助考生更好地备考,下面将为大家介绍一道高等代数的考研真题,并给出详细的解答过程。

考研高等代数题目如下:已知矩阵A = [a11, a12, a13; a21, a22, a23; a31, a32, a33]其中,a11, a12, a13, a21, a22, a23, a31, a32, a33均为非零实数。

(1)若|A| = -6,求a33的值。

(2)设矩阵B = (A^-1)^T,其中(A^-1)^T表示矩阵A的逆矩阵的转置矩阵,求B。

解答如下:(1)根据题目已知条件,我们可以使用行列式的性质进行求解。

由于|A| = -6,根据行列式的性质可知:|A| = a11(a22a33 - a23a32) - a12(a21a33 - a23a31) + a13(a21a32 -a22a31) = -6根据上述等式,可以得到一个关于a33的二次方程,进一步求解该二次方程,即可得到a33的值。

(2)根据题目已知条件,我们需要先求解矩阵A的逆矩阵,然后再对其进行转置。

首先,求解矩阵A的逆矩阵。

设A的逆矩阵为A^-1,根据矩阵的性质可知:AA^-1 = I,其中I为单位矩阵,即I = [1, 0, 0; 0, 1, 0; 0, 0, 1]。

根据上述等式,我们可以得到以下方程组:a11x11 + a12x21 + a13x31 = 1a11x12 + a12x22 + a13x32 = 0a11x13 + a12x23 + a13x33 = 0a21x11 + a22x21 + a23x31 = 0a21x12 + a22x22 + a23x32 = 1a21x13 + a22x23 + a23x33 = 0a31x11 + a32x21 + a33x31 = 0a31x12 + a32x22 + a33x32 = 0a31x13 + a32x23 + a33x33 = 1解上述方程组,即可得到逆矩阵A^-1的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.设 是数域P 上线性空间V 的线性变换且=,证明:(1) 的特征值为1或0;(2){}1(0)()A V ααα-=-∈;(3)(0)()V V =⊕.2.已知 是n 维欧氏空间的正交变换,证明: 的不变子空间W 的正交补W ⊥也是的不变子空间.3.已知复系数矩阵=A 123401230012001⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭, (1) 求矩阵A 的行列式因子、不变因子和初等因子;(2)若当标准形.(15分)4.已知二次型22212312323(,,)2332f x x x x x x ax x =+++,(0)a >通过某个正交变换可化为标准形22212325f y y y =++,(1)写出二次型对应的矩阵A 及A 的特征多项式,并确定a 的值; (2)求出作用的正交变换.6.设A为n阶方阵,{}|0W x RAx =∈=,{}|()0W x RA E x =∈-=证明A 为幂等矩阵,则RW W =⊕.7.若设W={}()(1)0,()[]f x f f x R x =∈,证明:W 是[]R x 的子空间,并求出W 的一组基及维数.8.设V 是一个n 维欧氏空间,,,,ααα为V 中的正交向量组,令{}(,)0,,1,2,,W V i m αααα==∈=(1)证明:W 是V 的一个子空间;(2)证明:(),,,WL ααα=.9.试求矩阵3100110030534131A -=---⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭的特征多项式、最小多项式.10.在线性空间n P 中定义变换σ:(,,,)(0,,,)xx x x x σ=(1)证明:σ是P 的线性变换.(2)求值域()P σ及核(0)σ的基和维数.11.证明二次型22111(,,)()2nnn i i i i f x x n x x n ===-≥∑∑ ()是半正定的.12.求λ的值,使222123412321223134(,,,)()222f x x x x x x x x x x x x x x λ=+++-++是正定二次型. (12分)13.设111333222A -=----⎛⎫ ⎪ ⎪ ⎪⎝⎭(1)求A 的不变因子.(2)求A 的若当标准形.14.设4R的线性变换 在标准基下的矩阵为2111121111211112A ----=----⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭, (1)求 的特征值和特征向量, (2)求4R 的一组标准正交基,使 在此基下的矩阵为对角矩阵.15.设,,,εεεε是四维线性空间V 的一组基,线性变换 在这组基下的矩阵为1021121312552212A -=--⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦(1)求线性变换 的秩,(2)求线性变换 核与值域.16.求正交变换使二次型244x x x x x x -+-化为标准形,并判定该二次型是否正定.17.设,,,e e e 是5维的欧几里得空间5R的一组标准正交基,(,,)V L ααα=,其中,,45e e e e e e e eααα=+=-++=-+,求V 的一组标准正交基.18. 设()A a =是n n ⨯矩阵,其中{,1,a i j a iji j≠== (1)求det A 的值;(2)设}{0W X AX ==,求W 的维数及W 的一组基.19.设是线性空间3R 上的线性变换,满足(,,),()(,,)x y z R x y y z z x αα'∀=∈=+++,求在基{}(0,1,1),(1,0,1),(1,1,0)'''下的矩阵.20.设 是n 维线性空间V上的线性变换,,,,εεε是V 的一组基.如果 是单射,则,,,εεε也是一组基.21.二次型(,,)222f x x x x x x x x x =+-,1)写出二次型的矩阵A ;2)求出A 的特征值与特征向量;3)求一正交变换,将化为标准形.f f22.求方阵31113122A -=-⎛⎫ ⎪ ⎪ ⎪⎝⎭的不变因子、初等因子和若当标准形.23.设V 是n 维欧氏空间,n≥3, 给定非零向量Vα∈,令(,)::2(,)V V βαϕββααα→-证明:(1)αφ是正交变换;(2)如果,,,,αααα是正交基,则存在不全为零实数,,k k k 使得k k k φφφ+++是V 上的恒等变换.24.12,V V 是120n x x x +++=和10,1,2,,1i i x x i n --==-的解空间,则P V V =⊕.25.设σ和τ是线性空间[]P x 中依据如下方式定义的两个线性变换: (())()f x f x σ'=,(())()f x xf x τ=,求σττσ-.26.设欧氏空间中有12,,,,n βααα,0β≠.112(,,,)n W L ααα=,212(,,,,)n W L βααα=,证明:如果(,)0βα=,那么12dim dim W W ≠.27.求实二次型 (,,,)2242f x x x x x x x x x x x x =+++的规范形及符号差.(15分)28.设A 是一个8阶方阵,它的8个不变因子为1,1,1,1,1,1λ+,1λ+,23(1)(2)(3)λλλ+-+,求A 的所有的初等因子及A 的若当标准形.29.设V 为数域P上的n 维线性空间,且12(,,,)n VL ααα=(1)证明:11212{,,,}n αααααα++++是V的一组基;(2) 若V α∈在基12{,,,}n ααα下的坐标为(,1,,21)n n -,求α在基11212{,,,}n αααααα++++下的坐标. (14分)30.在三维空间3P中,已知线性变换T在基123(1,1,1),(1,0,1),(0,1,1)ηηη=-=-=下的矩阵是101110121-⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,求T在基(1,0,0),(0,1,0),(0,0,1)e e e ===下的矩阵.31.在线性空间nR 中,定义(,)x y xAy '=,21212(,),(,)x x x y y y R∀==∈,其中2336A -=-⎛⎫ ⎪⎝⎭。

(1)证明:(,)x y 是2R 的内积,因而2R 按此内积构成一个欧氏空间,(2)求2R的一组标准正交基,(3)求矩阵P,使得A P P '=.32.设4R 的两个子空间为:(){}112341234,,,0V x x x x x x x x =-+-=,{}212341234(,,,)0V x x x x x x x x =+++=.求12V V +与12V V的基与维数.33.设V是3维线性空间,123,,ααα为它的一个基.线性变换:V Vτ→,112233112233234x x x x x x αααααα++++求(1)τ在基123,,ααα下的矩阵;(2)求核ker τ和值域Im τ.34.设V 是实数域上所有n 阶对称阵所构成的线性空间,对任意,A B V ∈,定义(,)A B trAB =,其中trAB 表示AB 的迹.(1)证明:V构成一欧氏空间;(2)求使0trA=的子空间S 的维数;(3)求S 的正交补S ⊥的维数.35.试找出全体实2级矩阵2()M R 所构成的线性空间到4R 的一个线性同构.36.求由向量(1,2,1,0),(1,1,1,1)αα==-生成的子空间1V 与由向量(2,1,0,1),(1,1,3,7)ββ=-=-生成的子空间2V 的交的基和维数.37.设122336224A -=--⎡⎤⎢⎥⎢⎥⎣⎦,求(1)A 的不变因子、行列式因子、初等因子.(2)A 的Jordan 标准形.38.设n nP⨯是数域P上n n ⨯矩阵关于矩阵加法和数乘作成的线性空间,定义变换()A A σ'=,A V ∀∈.(1)证明:σ是n nP⨯上的对合线性变换,即σ是满足2Iσ=(恒等变换)的线性变换;(2)求σ的特征值和特征向量.39.已知实二次型(,,)444444f x x x x x x x x x x tx x =-----+(1)假设(,,)f x x x 是负定二次型,求t 的值;(2)当1t =-时,试用非退化线性变换化此二次型为标准形并写出所用的线性变换的矩阵.40.设123,,ααα是3维欧氏空间V 的一组基,这组基的度量矩阵为112121216----⎛⎫⎪ ⎪ ⎪⎝⎭(1)令γαα=+,证明γ是个单位向量;(2)若k βααα=++与γ正交,求k .41.已知|,00ab W a b R =∈⎧⎛⎫⎫⎨⎬⎪⎩⎝⎭⎭,0|,0aW a cR c=∈⎧⎛⎫⎫⎨⎬ ⎪⎩⎝⎭⎭是22R ⨯的两个子空间,求1212,WW W W ⋂+的一个基和维数.42. V 为定义在实数域上的函数构成的线性空间,令{()(),()()},{()(),()()}W f x f x V f x f x W f x f x V f x f x =∈=-=∈=--证明:W 1、W 2皆为V 的子空间,且12VW W =⊕.43.由三个函数1,cos ,sin t t 生成的实线性空间记为V ,求线性变换T:VV,()()3f t f t π+的迹,行列式和特征多项式.44.求λ-矩阵11λλλλλλλλλ--+-⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦的初等因子和不变因子.45.设β为n 维欧氏空间V 中一个单位向量,定义V 的线性变换 如下:2(,),.V ααβαβα=-∀∈证明: 为第二类的正交变换47.在线性空间P 2×2中,121212112111,,,10110137A A B B ---⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭(1)求1212(,)(,)L A A L B B 的维数与一组基; (2)求1212(,)(,)L A A L B B +的维数与一组基.47’.设为n 维线性空间V 的一个线性变换,且2=(恒等变换),证明:(1)的特征值只能是1或 -1;(2)11-⊕=V V V .48.已知二次型22212312323(,,)2332(0)f x x x x x x ax x a =+++>通过正交变换化为标准形22212325f y y y =++,求a 的值及所作的正交变换.49.3P 中,线性变换σ关于基)1,1,1(1-=α,)1,0,1(2-=α,)1,1,0(3=α的矩阵为⎪⎪⎪⎭⎫⎝⎛-=121011101A (1)求σ关于标准基321,,εεε的矩阵;(2)设3216αααα-+=,321εεεβ+-=,求)(),(βσασ关于基},,{321ααα的坐标.50.设σ是3R 的线性变换,12312323123(,,)(2,,2)x x x x x x x x x x x σ=+-++-(1)求值域)Im(σ的一个基和维数;(2)求核)(σKer 的一个基和维数.51.(1)实数域上3阶对称矩阵按合同关系可分为几类;(2)某四元二次型有标准形24232221432y y y y ++-,求其规范形.52.设300014113A ⎛⎫⎪=- ⎪ ⎪--⎝⎭(1)求A 的最小多项式;(2)求A 的初等因子;(3)求A 的若当标准形.53.设123(1,1,1,1),(1,1,1,1),(1,1,1,1)ααα=--=--=--,在4R 中求与123,,ααα同时正交的单位向量(内积按通常的定义).54.已知n n P ⨯的两个子空间1n n V A A A P ⎧⎫⨯⎨⎬⎩⎭'==∈,2n n V A A A P ⎧⎫⨯⎨⎬⎩⎭'==-∈, 证明:12n nPV V ⨯=⊕.55.求下面矩阵A 的列空间在4R 中的正交补的一个标准正交基.(15分)56.设A 为n 阶方阵,{}1|0nW x R Ax =∈=,{}2|()0nW x RA E x =∈-=证明:A 为幂等矩阵当且仅当12nR W W =⊕.57.设是数域P 上线性空间V 的线性变换,1λ,2λ是A 的特征值,且12λλ≠,1V λ,2V λ分别是对应于1λ,2λ的特征子空间,试证:1V λ+2V λ是直和.58.设,,,1234εεεε是4维空间V的一组基,已知线性变换在这组基下的矩阵为1021121312552212⎛⎫⎪- ⎪⎪⎪--⎝⎭,求的核和值域.59.已知向量()()()()TTTT7,2,1,1,9,2,1,2,6,6,1,1,3,4,2,14321-=---=--==αααα,()Ta ,4,2,4=β,(1)求线性子空间),,,(4321ααααL W=的维数与一个基;(2)求a 的值,使得β∈W ,并求β在(1)所选基下的坐标.。

相关文档
最新文档