高中数学必修一第一章_集合与函数概念综合素能检测及答案
高中数学必修1第一章集合与函数概念专项练习题(附答案)
高中数学必修1第一章集合与函数概念专项练习题一、单选题1.若函数f(x)= |x +2| 的单调递增区间是( )A. (0,+∞)B. (−∞,+∞)C. [2,+∞)D. [−2,+∞)2.设全集 U ={-2,-1,0,1,2} , A ={−2,−1,0} , B ={0,1,2} ,则图中阴影部分所表示的集合为( )A. {0}B. {−2,−1}C. {1,2}D. {0,1,2} 3.函数 f(x)=2xe x +e −x 的大致图像是( )A. B. C. D.4.已知集合A={x|y= √(1−x)(x +3) },B={x|log 2x≤1},则A∩B=( ) A. {x|﹣3≤x≤1} B. {x|0<x≤1} C. {x|﹣3≤x≤2} D. {x|x≤2}5.设函数 f(x)={|x +1|,x ≤0,|log 4x|,x〉0, 若关于 x 的方程 f(x)=a 有四个不同的解 x 1,x 2,x 3,x 4, 且 x 1<x 2<x 3<x 4, 则 x 3(x 1+x 2)+1x32x 4 的取值范围是( )A. (−1,72] B. (−1,72) C. (−1,+∞) D. (−∞,72]6.已知全集U=N ,集合P ={1,2,3,4,6},P ={1,2,3,5,9}则P ∩(C U Q )=( )A. {1,2,3}B. {5,9}C. {4,6}D. {1,2,3,4,6} 7.函数 y =√−x 2−3x+4的定义域为( )A. (−4,−1)B. (−4,1)C. (−1,1)D. (−1,1]8.已知实数 a >0 , a ≠1 ,函数 f(x)=log a |x| 在 (−∞,0) 上是减函数,又 g(x)=a x +1a x ,则下列选项正确的是( )A. g(−2)<g(1)<g(3)B. g(1)<g(−2)<g(3)C. g(3)<g(−2)<g(1)D. g(−2)<g(3)<g(1)9.已知奇函数 y =f(x) 在 (−∞,0) 上单调递减,且 f(1)=0 ,若 a =f(log 318) , b =f(log 214) , c =f(log 23) ,则 a,b,c 的大小关系是( )A. c <b <aB. a <b <cC. a <c <bD. c <a <b10.设a=√2+√3 , M={x|x≤√10},给出下列关系:①a ⊂M ; ②M ⊇{a}; ③{a}∈M ; ④{Ф}⊆{a}; ⑤2a ∉M ; 其中正确的关系式共有( )A. 2个B. 3个C. 4个D. 5个 11.集合 A ={−1,0,1,2,3} , B ={x|log 2(x +1)<2} ,则 A ∩B 等于( )A. {−1,0,1,2}B. {0,1,2}C. {−1,0,1,2,3}D. {0,1,2,3} 12.函数 y =xe cosx (−π≤x ≤π) 的大致图象为( )A. B. C. D.13.若定义在R 上的偶函数f (x )在[0,+∞)上是减函数,则有( )A. f (3)<f (﹣2)<f (1)B. f (1)<f (﹣2)<f (3)C. f (﹣2)<f (1)<f (3)D. f (3)<f (1)<f (﹣2) 14.设f (x )的定义域为D ,若f (x )满足下面两个条件,则称f (x )为闭函数.①f (x )在D 内是单调函数;②存在[a,b ]⊆D , 使f (x )在[a,b ]上的值域为[a,b ] , 如果f (x )=√2x +1+k 为闭函数,那么k 的取值范围是( )A. −1<k ≤−12 B. 12≤k <1 C. k >−1 D. k <1 15.如果若干个函数的图象经过平移后能够重合,则称这些函数为“同簇函数”.给出下列函数:①f (x )=sinxcosx ; ②f (x )=2sin (x+π4);③f (x )=sinx+√3cosx ; ④f (x )=√2sin2x+1. 其中“同簇函数”的是( )A. ①②B. ①④C. ②③D. ③④ 16.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是( )A. y =−x 2+1B. y =lg |x |C. y =1x D. y =e −x 17.下列函数中,是偶函数且在区间 (0,+∞) 上为增函数的是( ) A. y =2ln x B. y =|x 3| C. y =x −1x D. y =cosx18.已知 f(12x −1)=2x +3,f(m)=6 ,则 m 等于( ) A. −14 B. 14 C. 32 D. −32 19.若函数y=x 2﹣3x ﹣4的定义域为[0,m],值域为 [−254,−4] ,则m 的取值范围是( )A. (0,4]B. [−254,−4] C. [32,3] D. [32,+∞)20.下列函数中,既是偶函数又存在零点的是( )A. y=x 2+1B. y=|lgx|C. y=cosxD. y=e x ﹣1二、填空题21.已知集合A={1,m+2,m 2+4},且5∈A ,则m=________.22.已知函数 f(x)={x +1,x ≤1f(log 2x),x >1 ,则 f(4)= ________; f(x) 的零点为________.23.函数f (x )=lg (2sinx ﹣1)的定义域为________.24.已知函数 f(x) 是定义在R 上的奇函数,当 x ≥0 时, f(x)=2x −c ,则 f(−2)= ________ 25.已知集合 A ={x|x 2−3x +2=0,x ∈R},B ={x|0<x <5,x ∈N} ,则满足条件 A ⊆C ⊆B 的集合 C 的个数为________.26.若函数 f(x)=lnx −kx 在区间 [1,+∞) 上单调递减,则实数 k 的取值范围是________ 27.设集合A={x|x 2﹣2ax+a=0,x ∈R},B={x|x 2﹣4x+a+5=0,x ∈R},若A 和B 中有且仅有一个是∅,则实数a 的取值范围是________.28.已知函数f (x )满足f (x ﹣1)=x 2﹣x+1,则f (3)=________. 29.函数 f(x)=lg(x −3)+(x−2)0x+1的定义域是________30.函数 y =√5+4x −x 2 的值域是________.31.已知函数f (x )= {log 2(1−x),x ≤0f(x −1)−f(x −2),x >0,则f (2016)=________32.已知定义在R 上的奇函数f (x ),当x≥0时,f (x )=x 2﹣3x .则关于x 的方程f (x )=x+3的解集为________. 33.如果对定义在R 上的函数f (x ),对任意两个不相等的实数x 1 , x 2 , 都有x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2f (x 1),则称函数f (x )为“H 函数”.给出下列函数①y=x 2;②y=e x +1;③y=2x ﹣sinx ;④f (x )={ln |x |,x ≠00,x =0.以上函数是“H 函数”的所有序号为 ________. 34.已知函数f (x )= {(2−a)x +1(x <1)a x (x ≥1) 在(﹣∞,+∞)上单调递增,则实数a 的取值范围是________.35.函数 y =√3−xlog2(x+1)的定义域是________ .三、解答题36.设f (x )=x 2﹣2|x|+3(﹣3≤x≤3) (1)证明f (x )是偶函数; (2)指出函数f (x )的单调增区间; (3)求函数f (x )的值域.37.已知函数f(x)=(x+1)(x+a)x为奇函数. (1)求实数a的值;(2)当x∈[1m ,1n](m>0,n>0)时,若函数f(x)的值域为[3−3m,3−3n],求m,n的值.38.某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(Ⅰ)当每辆车的月租金定为3600元时,能租出多少辆车?(Ⅱ)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?39.设函数f(x)=x2−2|x−a|+3,x∈R.(1)王鹏同学认为,无论a取何值,f(x)都不可能是奇函数,你同意他的观点吗?请说明你的理由;(2)若f(x)是偶函数,求a的值;(3)在(2)的情况下,画出y=f(x)的图象并指出其单独递增区间.40.已知集合A={a,b,2},B={2,b2,2a},若A=B,求实数a,b的值.41.设f(x)=14x+2,先分别求f(0)+f(1),f(﹣1)+f(2),f(﹣2)+f(3),然后归纳猜想一般性结论,并给出证明.42.已知函数f(x)=log a(x+1),g(x)=log a(4−2x)(a>0,且a≠1),设F(x)=f(x)−g(x).(1)求函数F(x)的定义域;(2)求使函数F(x)的值为正数的x的取值范围.43.求函数y=2x﹣3+ √13−4x的值域.44.某通讯公司需要在三角形地带OAC 区域内建造甲、乙两种通信信号加强中转站,甲中转站建在区域BOC 内,乙中转站建在区域AOB 内.分界线OB 固定,且OB=(1+ √3 )百米,边界线AC 始终过点B ,边界线OA 、OC 满足∠AOC=75°,∠AOB=30°,∠BOC=45°.设OA=x (3≤x≤6)百米,OC=y 百米.(1)试将y 表示成x 的函数,并求出函数y 的解析式;(2)当x 取何值时?整个中转站的占地面积S △OAC 最小,并求出其面积的最小值.45.已知由方程kx 2-8x +16=0的根组成的集合A 只有一个元素,试求实数k 的值.46.已知 y =f(x) 为二次函数,其图象顶点为 (1,−3) ,且过坐标原点. (1)求 y =f(x) 的解析式;(2)求 y =f(x) 在区间 [0,m] 上的最大值.47.设全集U=R ,集合A={x|﹣2<x <2},集合B={x|x 2﹣4x+3>0} 求A∩B ,A ∪B ,A∩∁U B .48.已知函数 f(x)=√x , g(x)=|x −2| . (1)求方程 f(x)=g(x) 的解集;(2)定义: max{a,b}={a,a ≥bb,a <b .已知定义在 [0,+∞) 上的函数 ℎ(x)=max{f(x),g(x)} . ①求 ℎ(x) 的单调区间;②若关于 x 的方程 ℎ(x)=m 有两个实数解,求 m 的取值范围.49.已知函数f(x)是定义在R上的偶函数,且当x≤0时,f(x)=x2+2x.(1)现已画出函数f(x)在y轴左侧的图象,如图所示,请补全函数f(x)的图象,并根据图象写出函数f(x)(x∈R)的递增区间;(2)写出函数f(x)(x∈R)的值域;(3)写出函数f(x)(x∈R)的解析式.50.已知函数f(x)=|x+1|−|x|.(1)解关于x的不等式f(x)+f(x−1)<1;(2)若关于x的不等式f(x)−f(x−1)<m−2|x|有解,求m的取值范围.答案解析部分一、单选题1.【答案】D2.【答案】C3.【答案】D4.【答案】B5.【答案】A6.【答案】C7.【答案】C8.【答案】B9.【答案】D10.【答案】A11.【答案】B12.【答案】A13.【答案】A14.【答案】A15.【答案】C16.【答案】A17.【答案】B18.【答案】A19.【答案】C20.【答案】C二、填空题21.【答案】3或122.【答案】2;-123.【答案】(π6+2kπ,5π6+2kπ),k∈Z24.【答案】25.【答案】426.【答案】[1,+∞)27.【答案】(﹣1,0]∪[1,+∞)28.【答案】1329.【答案】(3,+∞)30.【答案】[0,3]31.【答案】032.【答案】{2+ √7,﹣1,﹣3}33.【答案】②③34.【答案】 [ 32 ,2) 35.【答案】 (−1,0)∪(0,3] 三、解答题36.【答案】 (1)证明:f (x )的定义域为{x|﹣3≤x≤3},关于原点对称 又f (﹣x )=(﹣x )2﹣2|﹣x|+3=x 2﹣2|x|+3=f (x ),∴f (x )是偶函数;(2)解: f(x)={x 2+2x +3=(x +1)2+2(−3≤x ≤0)x 2−2x +3=(x −1)2+2(0<x ≤3) 作出函数的图象,如图,可知:f (x )的单调增区间为[﹣1,0]和[1,3](3)解:由(2)知,x=±1时,函数取得最小值;x=±3时,函数取得最大值 ∴函数f (x )的值域为[2,6].37.【答案】 (1)解:函数f (x )的定义域为: {x ∈R|x ≠0} , f(x)=(x+1)(x+a)x=x +ax+1+a ,∴ f(−x)+f(x)=−x −ax +1+a +x +ax +1+a =0 , ∴ a =−1 ;(2)解:由(1)可知: f(x)=x −1x , 显然 f(x)=x −1x 在 [1m ,1n ] 上单调递增,∴{1m −m =3−3m 1n−n =3−3n,∴ m , n 是方程 2x 2−3x +1=0 的两个实根,且 m >n , ∴ m =1,n =12 .38.【答案】 解:(Ⅰ)当每辆车的月租金定为3600元时, 未租出的车辆数为 ,所以这时租出了88辆车.(Ⅱ)设每辆车的月租金定为x 元, 则租赁公司的月收益为,整理得.所以,当x=4050时,f (x )最大,最大值为f (4050)=307050,即当每辆车的月租金定为4050元时,租赁公司的月收益最大,最大月收益为307050元 39.【答案】 (1)解:我同意王鹏同学的看法,理由如下: f(a)=a 2+3,f(−a)=a 2−4|a|+3若 f(x) 为奇函数,则有 f(a)+f(−a)=0 , ∴a 2−2|a|+3=0显然 a 2−2|a|+3=0 无解, 所以 f(x) 不可能是奇函数(2)解:若 f(x) 为偶函数,则有 f(x)=f(−x) ∴2|a|=0 , 解得 a =0 ,此时 f(x)=x 2−2|x|+3 ,是偶函数.(3)解:由(2)知 f(x)=x 2−2|x|+3 ,其图象如图所示其单调递增区间是 (−1,0) 和 (1,+∞) .40.【答案】 解:由已知 A =B ,得 {a =2a b =b 2 (1)或 {a =b 2b =2a .(2) 解(1)得 {a =0b =0 或 {a =0b =1 , 解(2)得 {a =0b =0 或 {a =14b =12,又由集合中元素的互异性 得 {a =0b =1 或 {a =14b =12 . 41.【答案】解:f (0)+f (1)= , 同理可得:f (﹣1)+f (2)= ,f (﹣2)+f (3)=.一般性结论:或写成“若x 1+x 2=1,则f (x 1)+f (x 2)=.”证明: ==42.【答案】 (1)解:∵函数 f(x)=log a (x +1) , g(x)=log a (4−2x) ∴ F(x)=f(x)−g(x)=log a (x +1)−log a (4−2x) ∴其定义域满足: {x +1>04−2x >0 ,解得 −1<x <2∴函数 F(x) 的定义域为 (−1,2)(2)解:要使函数 F(x) 的值为正数,等价于 f(x)>g(x) ,即 log a (x +1)>log a (4−2x) . ①当 a >1 时,可得 x +1>4−2x ,解得 x >1 . ∵定义域为 (−1,2)∴实数 x 的取值范围是 (1,2)②当 0<a <1 时,可得 x +1<4−2x ,解得 x <1 . ∵定义域为 (−1,2)∴实数 x 的取值范围是 (−1,1)综上,当 a >1 时,解集为 (1,2) ;当 0<a <1 ,解集为 (−1,1) 43.【答案】解:令则,t≥0 ∴y=﹣3+t=﹣t 2+t+=﹣ (t ﹣1)2+4(t≥0)根据二次函数的性质可知,当t=1即x=3时,函数有最大值4 故答案为:(﹣∞,4]44.【答案】 (1)解:结合图形可知,S △BOC +S △AOB =S △AOC .于是, 12 x (1+ √3 )sin30°+ 12 y (1+ √3 )sin45°= 12 xysin75°,解得:y= √2xx−2 ,(其中3≤x≤6)(2)解:由(1)知,y= √2x x−2 (3≤x≤6),因此,S △AOC = 12 xysin75°= 1+√34 • x 2x−2= 1+√34[(x ﹣2)+ 4x−2 +4] ≥2+2 √3 (当且仅当x ﹣2= 4x−2 ,即x=4时,等号成立).∴当x=400米时,整个中转站的占地面积S △OAC 最小,最小面积是(2+2 √3 )×104平方米. 45.【答案】解:当k =0时,原方程变为-8x +16=0,所以x =2,此时集合A 中只有一个元素2.当k≠0时,要使一元二次方程kx 2-8x +16=0有一个实根,需Δ=64-64k =0,即k =1.此时方程的解为x 1=x 2=4,集合A 中只有一个元素4.综上可知k =0或146.【答案】 (1)解:设 f(x) 解析式为: f(x)=a(x −1)2−3 ∵f(x) 过坐标原点 ∴f(0)=a −3=0 ,解得: a =3∴f(x)=3(x −1)2−3=3x 2−6x(2)解:由(1)知: f(x) 为开口方向向上,对称轴为 x =1 的二次函数 ①当 0<m <2 时, f(x)max =f(0)=0 ,当 m =2 时, f(x)max =f(0)=f(m)=0 , ②当 m >2 时, f(x)max =f(m)=3m 2−6m47.【答案】解:全集U=R ,集合A={x|﹣2<x <2},集合B={x|x 2﹣4x+3>0}={x|x <1或x >3},所以A∩B={x|﹣2<x <1},A ∪B={x|x <2或x >3},∁U B={x|1≤x≤3},所以A∩∁U B={x|1≤x <2}48.【答案】 (1)解:当 x ≥2 时,方程 f(x)=g(x) 为 √x =x −2 ,即 (√x −2)(√x +1)=0 ,解得 x =4 ,当 0≤x <2 时,方程 f(x)=g(x) 为 √x =2−x ,即 (√x +2)(√x −1)=0 ,解得 x =1 , 综上,方程 f(x)=g(x) 的解集为 {1,4} .(2)解:① f(x)≥g(x)⇒1≤x ≤4 , f(x)<g(x)⇒0≤x <1 或 x >4所以 ℎ(x)=max{f(x),g(x)}={2−x,0≤x <1√x,1≤x ≤4x −2,x >4 ,所以, ℎ(x) 的单调递增区间为 [1,+∞) ,单调递减区间为 [0,1) .②由①知 ℎ(x)min =ℎ(1)=1 , ℎ(0)=2 ,当 1<m ≤2 时,方程 ℎ(x)=m 有两个实数解, 综上,实数 m 的取值范围为 (1,2] .49.【答案】 (1)解:根据偶函数的图象关于y 轴对称,作出函数在R 上的图象, 结合图象可得函数的增区间为(﹣1,0)、减区间为(1,+∞)(2)解:结合函数的图象可得,当x=1,或 x=﹣1时,函数取得最小值为﹣1, 函数没有最大值,故函数的值域为[﹣1,+∞)(3)解:当x >0时,﹣x <0,再根据x≤0时,f (x )=x 2+2x ,可得f (﹣x )=(﹣x )2+2(﹣x )=x 2﹣2x .再根据函数f (x )为偶函数,可得f (x )=x 2﹣2x .综上可得,f (x )= {x 2+2x,x ≤0x 2−2x,x >050.【答案】 (1)解: f(x)+f(x −1)<1⇔|x +1|−|x −1|<1⇔{x ⩽−1−x −1−1+x <1 或 {−1<x <1x +1−1+x <1 或 {x ⩾1x +1−x +1<1⇔x ⩽−1 或 −1<x <12⇔x <12所以,原不等式的解集为 (−∞,12)(2)解: f(x)−f(x −1)<m −2|x| 有解即 |x +1|+|x −1|<m 有解则 m >(|x +1|+|x −1|)min 即可.由于 |x +1|+|x −1|⩾|(x +1)−(x −1)|=2 ,当且仅当 (x +1)(x −1)≤0 ,即当 −1≤x ≤1 时等号成立,故 m >2 . 所以, m 的取值范围是 (2,+∞) .。
人教版高一数学必修1第一章集合与函数概念单元测试及答案解析
高一数学必修一单元测试一、 选择题1.会合 { a,b} 的子集有 ()A .2 个B .3 个C .4 个D .5 个2.设会合 Ax | 4 x 3 , Bx | x2 ,则AI B( )A . ( 4,3)B . ( 4,2]C . ( ,2]D . ( ,3)3.已知 f x 1 x 2 4 x 5 ,则 f x 的表达式是( )A . x 2 6xB . x 2 8x 7C . x 2 2x 3D . x 2 6x 104.以下对应关系:( )① A {1,4,9}, B { 3, 2, 1,1,2,3}, f : xx 的平方根② A R, B R, f : x x 的倒数 ③ A R, B R, f : x x 2 2④ A1,0,1 , B1,0,1 , f : A 中的数平方此中是 A 到 B 的映照的是A .①③B .②④C .③④D .②③5.以下四个函数:① y1x ( x 0)3 x ;② y;③ y x 2 2x 10 ;④ y1. 21 x( x 0)x此中值域为 R 的函数有 ()A .1 个B .2 个C .3 个D .4 个6.已知函数 yx 2 1 (x 0) ,使函数值为 5 的 x 的值是()2 x(x0)A .-2B .2或52C . 2 或-2D .2 或-2 或 527.以下函数中,定义域为 [0,∞)的函数是()A . y xB . y 2x 2C . y 3x 1D . y (x 1)2 8.若 x, yR ,且 f ( x y) f ( x) f ( y) ,则函数 f ( x)()A . f ( 0) 0 且 f (x) 为奇函数B . f ( 0) 0且 f (x) 为偶函数C.f ( x)为增函数且为奇函数D.f (x)为增函数且为偶函数9.以下图象中表示函数图象的是()yy y y0 0 0x 0x x x(A)(B)(C )(D)10.若H nx R, n N *,规定:H x x( x 1)(x 2) (x n 1) ,比如:()4 4( 4) ( 3) ( 2) ( 1) 24 ,则 f ( x) x H 5x 2的奇偶性为A.是奇函数不是偶函数B.是偶函数不是奇函数C.既是奇函数又是偶函数D.既不是奇函数又不是偶函数二、填空题11.若A0,1,2,3 , B x | x 3a, a A ,则 A I B.12 .已知会合M={( x , y)|x + y=2} , N={( x , y)|x - y=4} ,那么会合M ∩N =.13.函数f x x 1, x 1,则 f f 4 .x 3, x 1,14.某班 50 名学生参加跳远、铅球两项测试,成绩及格人数分别为40 人和 31 人,两项测试均不及格的人数是 4 人,两项测试都及格的有人.15 .已知函数f(x)满足f(xy)=f(x)+f(y),且f(2)=p,f(3)=q,那么f(36)=.三、解答题16.已知会合 A= x1 x 7,B={x|2<x<10} ,C={x|x< a} ,全集为实数集R.(Ⅰ)求 A ∪B,(C R A)∩B;(Ⅱ)假如 A∩C≠φ,求 a 的取值范围.17.会合 A={ x|x2-ax+a2-19=0},B={ x|x2-5x+6=0},C={ x|x2+2x-8=0}.(Ⅰ)若 A=B,求 a 的值;(Ⅱ)若A∩B,A∩C=,求a的值.18.已知方程x2px q 0 的两个不相等实根为,.会合A{ , } ,B{2 ,4,5,6} ,C{1 ,2,3,4} ,A ∩C=A ,A∩B=,求p, q的值?19.已知函数 f ( x) 2x21.(Ⅰ)用定义证明 f ( x) 是偶函数;(Ⅱ)用定义证明 f (x) 在 ( ,0] 上是减函数;(Ⅲ)作出函数 f (x) 的图像,并写出函数 f ( x) 当 x [ 1,2] 时的最大值与最小值.yo x20.设函数f (x)ax2bx 1(a0 、b R ),若f ( 1)0,且对随意实数 x(x R )不等式 f ( x)0 恒建立.(Ⅰ)务实数 a 、b的值;(Ⅱ )当x[ -2, 2]时,g(x) f (x) kx 是单一函数,务实数k 的取值范围.高一数学必修一单元测试题(一)参照答案一、选择题CBACB AAACB二、填空题11.0,312. {(3 ,- 1)}13. 014. 2515. 2( p q)三、解答题16.解:(Ⅰ) A∪B={x|1 ≤x<10}(C R A)∩B={x|x<1 或 x≥7} ∩{x|2<x<10}={x|7 ≤x<10}(Ⅱ)当 a>1 时知足 A∩C≠φ17.解:由已知,得 B={ 2,3},C={ 2,- 4}( Ⅰ )∵A=B 于是 2,3 是一元二次方程x2-ax+a2-19=0 的两个根,由韦达定理知:2 3 a解之得 a=5.2 3 a219(Ⅱ)由 A∩B A∩B,又A∩C=,得 3∈A,2 A,- 4 A,由 3∈A,得 32-3a+a2-19=0,解得 a=5 或 a=-2当 a=5 时, A={ x|x2-5x+6=0}={ 2,3},与 2 A 矛盾;当a=-2 时, A={x|x2+2x-15=0}={ 3,- 5},切合题意 .∴a=- 2.5又A { , },则C , C .而A ∩B = ,故 B ,B明显即属于 C 又不属于 B 的元素只有 1 和 3.不仿设 =1, =3. 关于方程 x 2px q 0 的两根 ,应用韦达定理可得 p4, q 3 .19.(Ⅰ)证明: 函数 f ( x) 的定义域为 R ,关于随意的 xR ,都有f ( x) 2( x)2 1 2x 2 1 f ( x) ,∴ f ( x) 是偶函数. (Ⅱ)证明: 在区间 ( ,0] 上任取 x , x x x12,且 12,则有f ( x 1 ) f ( x 2 ) (2 x 12 1) (2 x 2 2 1) 2( x 12 x 22 ) 2( x 1 x 2 ) ( x 1 x 2 ) , ∵ x 1, x 2 ( ,0] , x 1 x 2 ,∴ x 1 x 2 x 1 x 2 0, 即 ( x 1 x 2 ) ( x 1 x 2 ) 0∴ f ( x 1 ) f ( x 2 ) 0 ,即 f ( x) 在 ( ,0] 上是减函数.(Ⅲ)解: 最大值为 f (2)7 ,最小值为 f (0)1 .20.解:(Ⅰ) ∵ f ( 1) 0 ∴ a b 1 0∵随意实数 x 均有 f (x)a 00 建立∴b 2 4a 0解得: a 1 , b 2 (Ⅱ)由( 1)知 f (x) x 2 2x 1∴ g(x)f (x) kx x 2(2 k )x1 的对称轴为 x k 2∵当 x [ -2,2]时, g( x) 是单一函数2∴ k 22 或 k 2 2 22∴实数 k 的取值范围是 (, 2] [6,) .21.解: ( Ⅰ) 令 m n 1 得 f (1)f (1) f (1)因此 f (1) 0f (1) f (21) f (2)f ( 1) 1 f ( 1)1 ) 222因此 f ( 12( Ⅱ) 证明:任取 0x 1 x 2 ,则x 21x 1由于当 x 1时, f (x)0 ,因此 f (x 2)x 1因此 ( x 2 )( x2)( x 1 )( x2 )( x 1 )ffx1x 1ff x 1f因此 f (x) 在 0, 上是减函数.高一数学必修一单元测试题(二)一、选择题 (每题 3 分,共 36 分)1.设会合 A {1,3}, 会合 B {1,2,4,5} ,则会合A B () A .{1 ,3,1,2,4,5} B .{1} C .{1,2,3,4,5}D . {2,3,4,5}2.设会合 A { x |1 x 2}, B { x | x a}. 若 AB, 则 a 的范围是 () A . a 2B . a 1C . a 1D . a 23.与 y | x | 为同一函数的是()。
高中数学必修一集合与函数的概念知识点+练习题含答案解析(非常详细)
第一部分集合与函数的概念知识点整理第一章集合与函数概念一:集合的含义与表示1、集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个整体。
把研究对象统称为元素,把一些元素组成的总体叫集合,简称为集。
2、集合的中元素的三个特性:(1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。
(2)元素的互异性:一个给定集合中的元素是唯一的,不可重复的。
(3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合3、集合的表示:{…}(1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2)集合的表示方法:列举法与描述法。
a、列举法:将集合中的元素一一列举出来 {a,b,c……}b、描述法:①区间法:将集合中元素的公共属性描述出来,写在大括号内表示集合。
{x R| x-3>2} ,{x| x-3>2}②语言描述法:例:{不是直角三角形的三角形}③Venn图:画出一条封闭的曲线,曲线里面表示集合。
4、集合的分类:(1)有限集:含有有限个元素的集合(2)无限集:含有无限个元素的集合(3)空集:不含任何元素的集合5、元素与集合的关系:(1)元素在集合里,则元素属于集合,即:a∈A(2)元素不在集合里,则元素不属于集合,即:a¢A注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+整数集Z有理数集Q实数集R6、集合间的基本关系(1).“包含”关系(1)—子集定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集。
记作:BA⊆(或B⊇A)注意:BA⊆有两种可能(1)A是B的一部分;(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊆/ B或B⊇/A(2).“包含”关系(2)—真子集如果集合BA⊆,但存在元素x∈B且x¢A,则集合A是集合B的真子集如果A⊆B,且A≠B那就说集合A是集合B的真子集,记作A B(或B A)读作A真含与B(3).“相等”关系:A=B“元素相同则两集合相等”如果A⊆B 同时 B⊆A 那么A=B(4). 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
高一数学必修1第一章集合与函数的概念单元测试题(含答案)
一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合M={x|x2+2x=0,x∈R},N={x|x2-2x=0,x∈R},则M∪N=()A.{0} B.{0,2}C.{-2,0} D.{-2,0,2}解析M={x|x(x+2)=0.,x∈R}={0,-2},N={x|x(x-2)=0,x∈R}={0,2},所以M ∪N={-2,0,2}.答案 D2.设f:x→|x|是集合A到集合B的映射,若A={-2,0,2},则A∩B=()A.{0} B.{2}C.{0,2} D.{-2,0}解析依题意,得B={0,2},∴A∩B={0,2}.答案 C3.f(x)是定义在R上的奇函数,f(-3)=2,则下列各点在函数f(x)图象上的是() A.(3,-2) B.(3,2)C.(-3,-2) D.(2,-3)解析∵f(x)是奇函数,∴f(-3)=-f(3).又f(-3)=2,∴f(3)=-2,∴点(3,-2)在函数f(x)的图象上.答案 A4.已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是()A.1 B.3C.5 D.9解析逐个列举可得.x=0,y=0,1,2时,x-y=0,-1,-2;x=1,y=0,1,2时,x-y=1,0,-1;x=2,y=0,1,2时,x-y=2,1,0.根据集合中元素的互异性可知集合B的元素为-2,-1,0,1,2.共5个.答案 C6.设f(x)=x+3(x>10),f(x+5)(x≤10),则f(5)的值为()A.16 B.18C.21 D.24解析f(5)=f(5+5)=f(10)=f(15)=15+3=18.答案 B7.设T={(x,y)|ax+y-3=0},S={(x,y)|x-y-b=0},若S∩T={(2,1)},则a,b的值为()A.a=1,b=-1 B.a=-1,b=1C.a=1,b=1 D.a=-1,b=-1解析依题意可得方程组2a+1-3=0,2-1-b=0,⇒a=1,b=1.答案 C8.已知函数f(x)的定义域为(-1,0),则函数f(2x+1)的定义域为()A.(-1,1) B.-1,-12C.(-1,0) D.12,1解析由-1<2x+1<0,解得-1<x<-12,故函数f(2x+1)的定义域为-1,-12.答案 B9.已知A={0,1},B={-1,0,1},f是从A到B映射的对应关系,则满足f(0)>f(1)的映射有()A.3个B.4个C.5个D.6个解析当f(0)=1时,f(1)的值为0或-1都能满足f(0)>f(1);当f(0)=0时,只有f(1)=-1满足f(0)>f(1);当f(0)=-1时,没有f(1)的值满足f(0)>f(1),故有3个.答案 A10.定义在R上的偶函数f(x)满足:对任意的x1,x2∈(-∞,0](x1≠x2),有(x2-x1)[f(x2)-f(x1)]>0,则当n∈N*时,有()A.f(-n)<f(n-1)<f(n+1)B.f(n-1)<f(-n)<f(n+1)C.f(n+1)<f(-n)<f(n-1)D.f(n+1)<f(n-1)<f(-n)解析由题设知,f(x)在(-∞,0]上是增函数,又f(x)为偶函数,∴f(x)在[0,+∞)上为减函数.∴f(n+1)<f(n)<f(n-1).又f(-n)=f(n),∴f(n+1)<f(-n)<f(n-1).答案 C11.函数f(x)是定义在R上的奇函数,下列说法:①f(0)=0;②若f(x)在[0,+∞)上有最小值为-1,则f(x)在(-∞,0]上有最大值为1;③若f(x)在[1,+∞)上为增函数,则f(x)在(-∞,-1]上为减函数;④若x>0时,f(x)=x2-2x,则x<0时,f(x)=-x2-2x.其中正确说法的个数是()A.1个B.2个C.3个D.4个解析①f(0)=0正确;②也正确;③不正确,奇函数在对称区间上具有相同的单调性;④正确.12.f(x)满足对任意的实数a,b都有f(a+b)=f(a)•f(b)且f(1)=2,则f(2)f(1)+f(4)f(3)+f(6)f(5)+…+f(2014)f(2013)=()A.1006 B.2014C.2012 D.1007解析因为对任意的实数a,b都有f(a+b)=f(a)•f(b)且f(1)=2,由f(2)=f(1)•f(1),得f(2)f(1)=f(1)=2,由f(4)=f(3)•f(1),得f(4)f(3)=f(1)=2,……由f(2014)=f(2013)•f(1),得f(2014)f(2013)=f(1)=2,∴f(2)f(1)+f(4)f(3)+f(6)f(5)+…+f(2014)f(2013)=1007×2=2014.答案 B二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.函数y=x+1x的定义域为________.解析由x+1≥1,x≠0得函数的定义域为{x|x≥-1,且x≠0}.答案{x|x≥-1,且x≠0}14.f(x)=x2+1(x≤0),-2x(x>0),若f(x)=10,则x=________.解析当x≤0时,x2+1=10,∴x2=9,∴x=-3.当x>0时,-2x=10,x=-5(不合题意,舍去).∴x=-3.答案-315.若函数f(x)=(x+a)(bx+2a)(常数a,b∈R)是偶函数,且它的值域为(-∞,4],则该函数的解析式f(x)=________.解析f(x)=(x+a)(bx+2a)=bx2+(2a+ab)x+2a2为偶函数,则2a+ab=0,∴a=0,或b=-2.又f(x)的值域为(-∞,4],∴a≠0,b=-2,∴2a2=4.∴f(x)=-2x2+4.答案-2x2+416.在一定范围内,某种产品的购买量y吨与单价x元之间满足一次函数关系,如果购买1000吨,每吨为800元,购买2000吨,每吨为700元,那么客户购买400吨,单价应该是________元.解析设一次函数y=ax+b(a≠0),把x=800,y=1000,和x=700,y=2000,代入求得a=-10,b=9000.∴y=-10x+9000,于是当y=400时,x=860.三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.(1)求A∪B,(∁UA)∩B;(2)若A∩C≠∅,求a的取值范围.解(1)A∪B={x|2≤x≤8}∪{x|1<x<6}={x|1<x≤8}.∁UA={x|x<2,或x>8}.∴(∁UA)∩B={x|1<x<2}.(2)∵A∩C≠∅,∴a<8.18.(本小题满分12分)设函数f(x)=1+x21-x2.(1)求f(x)的定义域;(2)判断f(x)的奇偶性;(3)求证:f1x+f(x)=0.解(1)由解析式知,函数应满足1-x2≠0,即x≠±1.∴函数f(x)的定义域为{x∈R|x≠±1}.(2)由(1)知定义域关于原点对称,f(-x)=1+(-x)21-(-x)2=1+x21-x2=f(x).∴f(x)为偶函数.(3)证明:∵f1x=1+1x21-1x2=x2+1x2-1,f(x)=1+x21-x2,∴f1x+f(x)=x2+1x2-1+1+x21-x2=x2+1x2-1-x2+1x2-1=0.19.(本小题满分12分)已知y=f(x)是定义在R上的偶函数,当x≥0时,f(x)=x2-2x.(1)求当x<0时,f(x)的解析式;(2)作出函数f(x)的图象,并指出其单调区间.解(1)当x<0时,-x>0,∴f(-x)=(-x)2-2(-x)=x2+2x.又f(x)是定义在R上的偶函数,∴f(-x)=f(x).∴当x<0时,f(x)=x2+2x.(2)由(1)知,f(x)=x2-2x(x≥0),x2+2x(x<0).作出f(x)的图象如图所示:由图得函数f(x)的递减区间是(-∞,-1],[0,1].f(x)的递增区间是[-1,0],[1,+∞).20.(本小题满分12分)已知函数f(x)=2x+1x+1,(1)判断函数在区间[1,+∞)上的单调性,并用定义证明你的结论.(2)求该函数在区间[1,4]上的最大值与最小值.解(1)函数f(x)在[1,+∞)上是增函数.证明如下:任取x1,x2∈[1,+∞),且x1<x2,f(x1)-f(x2)=2x1+1x1+1-2x2+1x2+1=x1-x2(x1+1)(x2+1),∵x1-x2<0,(x1+1)(x2+1)>0,所以f(x1)-f(x2)<0,即f(x1)<f(x2),所以函数f(x)在[1,+∞)上是增函数.(2)由(1)知函数f(x)在[1,4]上是增函数,最大值f(4)=95,最小值f(1)=32.21.(本小题满分12分)已知函数f(x)的定义域为(0,+∞),且f(x)为增函数,f(x•y)=f(x)+f(y).(1)求证:fxy=f(x)-f(y);(2)若f(3)=1,且f(a)>f(a-1)+2,求a的取值范围.解(1)证明:∵f(x)=fxy•y=fxy+f(y),(y≠0)∴fxy=f(x)-f(y).(2)∵f(3)=1,∴f(9)=f(3•3)=f(3)+f(3)=2.∴f(a)>f(a-1)+2=f(a-1)+f(9)=f[9(a-1)].又f(x)在定义域(0,+∞)上为增函数,∴a>0,a-1>0,a>9(a-1),∴1<a<98.22.(本小题满分12分)某商场经销一批进价为每件30元的商品,在市场试销中发现,此商品的销售单价x(元)与日销售量y(件)之间有如下表所示的关系:x 30 40 45 50y 60 30 15 0(1)在所给的坐标图纸中,根据表中提供的数据,描出实数对(x,y)的对应点,并确定y与x的一个函数关系式.(2)设经营此商品的日销售利润为P元,根据上述关系,写出P关于x的函数关系式,并指出销售单价x为多少元时,才能获得最大日销售利润?解(1)由题表作出(30,60),(40,30),(45,15),(50,0)的对应点,它们近似地分布在一条直线上,如图所示.设它们共线于直线y=kx+b,则50k+b=0,45k+b=15,⇒k=-3,b=150.∴y=-3x+150(0≤x≤50,且x∈N*),经检验(30,60),(40,30)也在此直线上.∴所求函数解析式为y=-3x+150(0≤x≤50,且x∈N*).(2)依题意P=y(x-30)=(-3x+150)(x-30)=-3(x-40)2+300.∴当x=40时,P有最大值300,故销售单价为40元时,才能获得最大日销售利润.。
高一数学必修1《集合与函数概念》测试卷(含答案)
高一数学必修1《集合与函数概念》测试卷(含答案)第一章(一)《集合与函数概念》测试卷考试时间:120分钟满分:150分一.选择题(本大题共12小题,每小题5分,共60分)1.下列叙述正确的是()A.函数的值域就是其定义中的数集BB.函数y=f(x)的图像与直线x=m至少有一个交点C.函数是一种特殊的映射D.映射是一种特殊的函数2.如果A={x|x>-1},则下列结论正确的是()A.XXXB.{}⊆AC.{}∈AD.∅∈A3.设f(x)=(2a-1)x+b在R上是减函数,则有()A.a≥1/2B.a≤1/2C.a>1/2D.a<1/24.定义在R上的偶函数f(x),对任意x1,x2∈[0,+∞)(x1≠x2),有|x1-x2|<π/2,则有()A.f(3)<f(-2)<f(1)B.f(1)<f(-2)<f(3)C.f(-2)<f(1)<f(3)D.f(3)<f(1)<f(-2)5.若奇函数f(x)在区间[1,3]上为增函数,且有最小值,则它在区间[-3,-1]上()A.是减函数,有最小值0B.是增函数,有最小值0C.是减函数,有最大值0D.是增函数,有最大值06.设f:x→x是集合A到集合B的映射,若A={-2,0,2},则AB等于()A.{}B.{2}C.{0,2}D.{-2,0}7.定义两种运算:a⊕b=ab,a⊗b=a²+b²,则函数f(x⊗3-3)为()A.奇函数B.偶函数C.既不是奇函数又不是偶函数D.既是奇函数又是偶函数8.若函数f(x)是定义域在R上的偶函数,在(-∞,0)上是减函数,且f(-2)=1/4,则使f(x)<1/4的x的取值范围为()A.(-2,2)B.(-2,0)∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-∞,-2]∪[2,+∞)9.函数f(x)=x+(x|x|)的图像是()10.设f(x)是定义域在R上的奇函数,f(x+2)=-f(x),当|x|<1时,f(x)=x,则f(7.5)的值为()A.-0.5B.0.5C.-5.5D.7.511.已知f(-2x+1)=x²+1,且-1/2≤x≤1/2,则f(x)的值域为()A.[1,5/4]B.[1/4,5/4]C.[0,5/4]D.[1/4,2]12.设f(x)是定义在R上的奇函数,且f(x)在[-2,2]上单调递增,则f(x)在(-∞,-2)∪(2,+∞)上()A.单调递减B.单调不增也不减C.单调递增D.无法确定第一章(一)《集合与函数概念》测试卷考试时间:120分钟满分:150分一、选择题(本大题共12小题,每小题5分,共60分)1.下列叙述正确的是()A。
新课标高一数学必修1第一章集合与函数概念单元测试题及答案
数学必修一单元测试题集合与函数概念一、选择题1.集合},{b a 的子集有 ( )A .2个B .3个C .4个D .5个2. 设集合{}|43A x x =-<<,{}|2B x x =≤,则A B = ( )A .(4,3)-B .(4,2]-C .(,2]-∞D .(,3)-∞3.已知()5412-+=-x x x f ,则()x f 的表达式是( )A .x x 62+B .782++x xC .322-+x xD .1062-+x x4.下列对应关系:( )①{1,4,9},{3,2,1,1,2,3},A B ==---f :x x →的平方根②,,A R B R ==f :x x →的倒数③,,A R B R ==f :22x x →-④{}{}1,0,1,1,0,1,A B f =-=-:A 中的数平方其中是A 到B 的映射的是A .①③B .②④C .③④D .②③5.下列四个函数:①3y x =-;②211y x =+;③2210y x x =+-;④(0)1(0)xx y x x⎧-≤⎪=⎨->⎪⎩.其中值域为R 的函数有 ( )A .1个B .2个C .3个D .4个6. 已知函数212x y x ⎧+=⎨-⎩ (0)(0)x x ≤>,使函数值为5的x 的值是()A .-2B .2或52- C . 2或-2 D .2或-2或52-7.下列函数中,定义域为[0,∞)的函数是 ( )A .x y =B .22x y -=C .13+=x yD .2)1(-=x y8.若R y x ∈,,且)()()(y f x f y x f +=+,则函数)(x f ( )A . 0)0(=f 且)(x f 为奇函数B .0)0(=f 且)(x f 为偶函数C .)(x f 为增函数且为奇函数D .)(x f 为增函数且为偶函数9(A ) (B) (C ) (D)10.若*,x R n N ∈∈,规定:(1)(2)(1)n x x x x x n H =++⋅⋅⋅⋅⋅+-,例如:( ) 44(4)(3)(2)(1)24H -=-⋅-⋅-⋅-=,则52()x f x x H -=⋅的奇偶性为A .是奇函数不是偶函数B .是偶函数不是奇函数C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数二、填空题11.若{}{}0,1,2,3,|3,A B x x a a A ===∈,则AB = .12.已知集合M={(x ,y )|x +y =2},N={(x ,y )|x -y =4},那么集合M ∩N = .13.函数()1,3,x f x x +⎧=⎨-+⎩1,1,x x ≤>则()()4f f = .14.某班50名学生参加跳远、铅球两项测试,成绩及格人数分别为40人和31人,两项测试均不及格的人数是4人,两项测试都及格的有 人.15.已知函数f(x)满足f(xy)=f(x)+f(y),且f(2)=p,f(3)=q ,那么f(36)= .三、解答题16.已知集合A={}71<≤x x ,B={x|2<x<10},C={x|x<a },全集为实数集R .(Ⅰ)求A ∪B ,(C R A)∩B ;(Ⅱ)如果A ∩C ≠φ,求a 的取值范围.17.集合A ={x |x 2-ax +a 2-19=0},B ={x |x 2-5x +6=0},C ={x |x 2+2x -8=0}.(Ⅰ)若A =B,求a 的值;(Ⅱ)若∅A ∩B ,A ∩C =∅,求a 的值. x y 0 x y 0 x y 0 x y 018.已知方程02=++q px x 的两个不相等实根为βα,.集合},{βα=A , =B {2,4,5,6},=C {1,2,3,4},A ∩C =A ,A ∩B =φ,求q p ,的值?19.已知函数2()21f x x =-.(Ⅰ)用定义证明()f x 是偶函数;(Ⅱ)用定义证明()f x 在(,0]-∞上是减函数;(Ⅲ)作出函数()f x 的图像,并写出函数()f x 当[1,2]x ∈-时的最大值与最小值. yox20.设函数1)(2++=bx ax x f (0≠a 、R b ∈),若0)1(=-f ,且对任意实数x (R x ∈)不等式)(x f ≥0恒成立.(Ⅰ)求实数a 、b 的值;(Ⅱ)当∈x [-2,2]时,kx x f x g -=)()(是单调函数,求实数k 的取值范围.2010级高一数学必修一单元测试题(一)参考答案一、选择题 CBACB AAACB二、填空题 11. {}0,3 12. {(3,-1)} 13. 0 14. 25 15. 2()p q +三、解答题16.解:(Ⅰ)A ∪B={x|1≤x<10}(C R A)∩B={x|x<1或x ≥7}∩{x|2<x<10}={x|7≤x<10}(Ⅱ)当a >1时满足A ∩C ≠φ17.解: 由已知,得B ={2,3},C ={2,-4}(Ⅰ)∵A =B 于是2,3是一元二次方程x 2-ax +a 2-19=0的两个根, 由韦达定理知:⎩⎨⎧-=⨯=+1932322a a 解之得a =5. (Ⅱ)由A ∩B ∅A ⇒∩≠B Φ,又A ∩C =∅,得3∈A ,2∉A ,-4∉A ,由3∈A ,得32-3a +a 2-19=0,解得a =5或a =-2当a =5时,A ={x |x 2-5x +6=0}={2,3},与2∉A 矛盾; 当a =-2时,A ={x |x 2+2x -15=0}={3,-5},符合题意.∴a =-2.18.解:由A ∩C=A 知A ⊆C又},{βα=A ,则C ∈α,C ∈β. 而A ∩B =φ,故B ∉α,B ∉β 显然即属于C 又不属于B 的元素只有1和3.不仿设α=1,β=3. 对于方程02=++q px x的两根βα, 应用韦达定理可得3,4=-=q p .19.(Ⅰ)证明:函数()f x 的定义域为R ,对于任意的x R ∈,都有22()2()121()f x x x f x -=--=-=,∴()f x 是偶函数.(Ⅱ)证明:在区间(,0]-∞上任取12,x x ,且12x x <,则有 22221212121212()()(21)(21)2()2()()f x f x x x x x x x x x -=---=-=-⋅+, ∵12,(,0]x x ∈-∞,12x x <,∴12120,x x x x -<0,+<即1212()()0x x x x -⋅+>∴12()()0f x f x ->,即()f x 在(,0]-∞上是减函数. (Ⅲ)解:最大值为(2)7f =,最小值为(0)1f =-.20.解:(Ⅰ)∵0)1(=-f ∴01=+-b a∵任意实数x 均有)(x f ≥0成立∴⎩⎨⎧≤-=∆>0402a b a 解得:1=a ,2=b(Ⅱ)由(1)知12)(2++=x x x f ∴1)2()()(2+-+=-=x k x kx x f x g 的对称轴为22-=k x ∵当∈x [-2,2]时,)(x g 是单调函数 ∴222-≤-k 或222≥-k ∴实数k 的取值范围是),6[]2,(+∞--∞ .21.解:(Ⅰ)令1==n m 得 )1()1()1(f f f +=所以0)1(=f0)21(1)21()2()212()1(=+-=+=⨯=f f f f f 所以1)21(=f (Ⅱ)证明:任取210x x <<,则112>x x 因为当1>x 时,0)(<x f ,所以0)(12<x x f 所以)()()()()(11211212x f x x f x f x x x f x f <+=⋅= 所以)(x f 在()+∞,0上是减函数.。
人教版高一数学必修一第一章单元检测试题及答案
高一数学第一章集合与函数概念单元检测试题一、选择题:共12题每题5分共60分1.已知函数的图象如下图所示,则函数的图象为2.下列各组函数为相等函数的是A. B.C. D.==3.函数的定义域为若对于任意的当时,都有则称函数在上为非减函数.设函数的上为非减函数,且满足以下三个条件:①②③=则等于A. B. C. D.4.设函数,则的最小值为A. B. C. D.5.函数f(x)=x2-4x+6(x∈[1,5))的值域是A.(3,11]B.[2,11)C.[3,11)D.(2,11]6.若函数在区间上单调,则实数的取值范围为A. B.C. D.7.定义运算:a*b=,如1*2=1,则函数f(x)=2x*2-x的值域为A.RB.(0,+∞)C.(0,1]D.[1,+∞)8.已知集合E={x|2-x≥0},若F⊆E,则集合F可以是A.{x|x<1}B.{x|x>2}C.{x|x>3}D.{x|1<x<3}9.已知偶函数f(x)在区间[0,+∞)上单调递增,则满足f(2x-1)<f()的x的取值范围是() A.(,) B.[,) C.(,) D.[,)10.某部队练习发射炮弹,炮弹的高度与时间(秒)的函数关系式是,则炮弹在发射几秒后最高呢?A. B. C. D.11.已知,且,则等于A. B. C. D.12.已知集合和集合,则两个集合间的关系是A. B. C. D.M,P互不包含试卷第2页,总4页二、填空题:共4题每题5分共20分13.已知函数f(x)=a﹣x2(1≤x≤2)与的图象上存在关于轴对称的点,则实数的取值范围是A. C.14.设集合M={x|0≤x≤2},N={y|0≤y≤2}.给出下列四个图,其中能构成从集合M到集合N 的函数关系的是.15.给出下列二次函数,将其图象画在同一平面直角坐标系中,则图象的开口按从小到大的顺序排列为.(1)f(x)=-x2;(2)f(x)=(x+5)2;(3)f(x)=x2-6;(4)f(x)=-5(x-8)2+9.16.若函数的图像关于y轴对称,则的单调减区间为 .三、解答题:共6题共70分17.(本题10分)如果对函数f(x)定义域内任意的x1,x2都有|f(x1)-f(x2)|≤|x1-x2|成立,就称函数f(x)是定义域上的“平缓函数”.(1)判断函数f(x)=x2-x,x∈[0,1]是否为“平缓函数”;(2)若函数f(x)是闭区间[0,1]上的“平缓函数”,且f(0)=f(1),证明:对任意的x1,x2∈[0,1],都有|f(x1)-f(x2)|≤成立.(注:可参考绝对值的基本性质①|ab|≤|a||b|,②|a+b|≤|a|+|b|)18.(本题12分)记函数的定义域为集合,集合.(1)求和;(2) 若,求实数的取值范围.19.(本题12分)设全集U={x|0<x<9,且x∈Z},集合S={1,3,5},T={3,6},求:(1)S∩T;(2).20.(本题12分)已知函数f(x)=.(1)用定义证明f(x)在区间[1,+∞)上是增函数;(2)求该函数在区间[2,4]上的最大值与最小值.21.(本题12分)定义在非零实数集上的函数对任意非零实数满足:,且当时.(Ⅰ)求及的值;(Ⅱ)求证:是偶函数;(Ⅲ)解不等式:.22.(本题12分)(1)证明:函数f(x )=在(-∞,0)上是减函数;(2)证明:函数f(x)=x3+x在R上是增函数.试卷第4页,总4页参考答案1.B【解析】本试题主要考查函数的图象.根据题意,由于函数图象可知,函数在y 轴右侧图象在x 轴上方,在y轴左侧的图象在x轴的下方,而函数在x>0时图象保持不变,因此排除C,D,对于选项A,由于在时偶函数,故在y轴左侧的图象与y轴右侧的图象关于y轴对称,故选B.【备注】无2.C【解析】本题主要考查相等函数、函数的定义域、值域与对应关系.A.因为这两个函数的值域不同,所以这两个函数不是相等函数;B.这两个函数的定义域不同,所以这两个函数不是相等函数;C.这两个函数的定义域、值域与对应关系均相同,所以这两个函数为相等函数;D.这两个函数的定义域不同,所以这两个函数不是相等函数.【备注】无3.D【解析】本题主要考查新定义问题、函数的性质及其综合应用.由题意,令x=0,由=可得由可得令则=同理=====令则==同理====. 非减函数的性质:当时,都有.因为所以所以=.【备注】无4.A【解析】本题主要考查分段函数的最值问题.由题意,函数的图象如图所示:红色图象即为所求解的函数的图象,可知最小值为0.【备注】无5.B【解析】f(x)=x2-4x+6=(x-2)2+2.∵f(x)图象的对称轴是直线x=2,∴f(x)在[1,2]上单调递减,在(2,5)上单调递增,∴f(x)的值域是[2,11).故选B.【备注】无6.C【解析】本题主要考查二次函数.依题意,函数在区间上单调,则函数的对称轴或,得或,故选C.【备注】无7.C【解析】本题主要考查在新型定义的前提下函数值域的求解.根据题目定义知f(x)=2x*2-x=,结合图象知其值域为(0,1].故选C.【备注】无8.A【解析】由题意知E={x|2-x≥0}={x|x≤2},F⊆E,观察选项知应选A.【备注】无9.A【解析】偶函数f(x)在区间[0,+∞)上单调递增,所以函数f(x)在区间(-∞,0]上单调递减.由于f(x)是偶函数,所以f(-x)=f(x),则f(-)= f().由f(2x-1)<f()得①或②,解①得≤x<,解②得<x<.综上可得<x<,故x的取值范围是(,).【备注】无10.C【解析】本题主要考查二次函数.依题意,根据二次函数得性质,函数的开口向下,对称轴为,故炮弹在发射后最高,故选C.【备注】无11.B【解析】本题主要考查函数的解析式与求值.因为,设,则,所以,因为,所以,解得,故选B.【备注】无12.D【解析】无【备注】无13.D【解析】本题主要考查二次函数的图像与性质,考查了逻辑推理能力与计算能力.因为函数f(x)=a ﹣x2(1≤x ≤2)与的图象上存在关于轴对称的点,所以函数f(x)=a﹣x2(1≤x≤2)与的图象上存在交点,所以有解,令,则,求解可得,故答案为D.【备注】无14.④【解析】图①中函数的定义域是[0,1];图②中函数的定义域是[-1,2];图③中对任意的x∈(0,2],其对应的y值不唯一.故①②③均不能构成从集合M到集合N 的函数,图④满足题意.【备注】无15.(4)(3)(2)(1)【解析】因为二次函数y=ax2+bx+c(a≠0)的图象在同一平面直角坐标系中|a|越小,图象开口越大,又|-|<||<||<|-5|,所以图象开口按从小到大的顺序排列为(4)(3)(2)(1).【备注】无16.【解析】本题考查函数的图象. 若函数的图像关于y轴对称,则a=0,,所以f(x)的单调减区间为.【备注】无17.(1)对任意的x1,x2∈[0,1],有-1≤x1+x2-1≤1,即|x1+x2-1|≤1.从而|f(x1)-f(x2)|=|(-x 1)-(-x2)|=|x1-x2||x1+x2-1|≤|x1-x2|,所以函数f(x )=x2-x,x∈[0,1]是“平缓函数”.(2)当|x1-x2|<时,由已知,得|f(x1)-f(x2)|≤|x1-x2|<;当|x1-x2|≥时,因为x1,x2∈[0,1],不妨设0≤x1<x2≤1,所以x2-x1≥.因为f(0)=f(1),所以|f(x1)-f(x2)|=|f(x 1)-f(0)+f(1)-f(x2)|≤|f(x1)-f(0)|+|f(1)-f (x2)|≤|x1-0|+|1-x2|=x1-x2+1≤-+1=.所以对任意的x1,x2∈[0,1],都有|f(x1)-f(x2)|≤成立.【解析】无 【备注】无18.由条件可得{|2}A x x =>, (1)={|23}x x <≤,{|3}A B x x ⋃=≥-;(2) {|}C x x p =>,由可得2p ≥.【解析】本题考查函数的定义域与集合的运算.(1)先求出函数的定义域,再进行运算即可;(2)利用数轴进行分析即可得出结论.【备注】与不等式有关的集合运算或集合之间的关系问题通常可以借助数轴进行求解.19.U ={1,2,3,4,5,6,7,8} (1)S ∩T ={3} (2)S ∪T ={1,3,5,6}={2,4,7,8}【解析】本题主要考查集合的基本运算.(1)由交集的定义求解;(2)由并集与补集的定义求解. 【备注】无20.(1)任取x 1,x 2∈[1,+∞),且x 1<x 2,则f(x 1)-f(x 2)=-=.∵1≤x 1<x 2,∴x 1-x 2<0,(x 1+1)(x 2+1)>0, ∴f(x 1)-f(x 2)<0,即f(x 1)<f(x 2), ∴函数f(x)在区间[1,+∞)上是增函数. (2)由(1)知函数f(x)在区间[2,4]上是增函数, ∴f(x)max =f(4)==, f(x)min =f(2)==.【解析】无 【备注】无21.(1)f (1)=0,f (-1)=0;(2)f (-x )=f (x )+f (-1)=f (x )∴f (-x )=f (x ),所以函数是偶函数;(3)据题意可知,f(2)+f(x2-1/2)=f(2x2-1)≤0∴-1≤2x2-1<0或0<2x2-1≤1∴0≤x2<1/2或<x2≤1,所以不等式的解集为【解析】本题主要考查特殊函数的性质的判断与应用以及一元二次不等式的解法.(1)分别令x=1与x=—1即可求出结果;(2)利用函数奇偶性的定义即可证明;(3)根据题意与f(1)=0,f(-1)=0,原不等式可化为-1≤2x2-1<0或0<2x2-1≤1然后求解即可.【备注】无22.(1)设x1,x2是(-∞,0)上的任意两个实数,且x1<x2,则f (x1)-f(x2)=-.因为x1,x2∈(-∞,0),所以x1x2>0,又因为x1<x2,所以x2-x1>0,则>0.于是f(x1)-f(x2)>0,即f(x1)>f(x2).因此函数f(x )=在(-∞,0)上是减函数.(2)设x1,x2是R上的任意两个实数,且x1<x2,则x2-x1>0,而f(x2)-f(x1)=(+x2)-(+x1)=(x 2-x1)(+x2x1+)+(x2-x 1)=(x2-x1)(+x2x1++1)=(x2-x1)[(x2+)2++1].因为(x2+)2++1>0,x2-x1>0,所以f(x2)-f(x1)>0,即f(x2)>f(x1).因此函数f(x)=x3+x在R上是增函数.【解析】用定义证明函数f(x)在给定区间D上的单调性的一般步骤:①取值——任取x1,x2∈D,且x1<x2;②作差——f(x1)-f(x2);③变形——通过因式分解、配方、通分、有理化等方法,向有利于判断差值的符号的方向变形;④定号——判断f(x1)-f(x2)的正负;⑤下结论——指出函数f(x)在给定区间D上的单调性.【备注】无。
高中数学必修一第一章 集合与函数概念综合素能检测及答案.doc
第一章集合与函数概念综合素能检测及答案本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间120分钟。
第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符号题目要求的。
)1.已知集合A={0,1,2,3,4,5},B={1,3,6,9},C={3,7,8},则(A∩B)∪C等于()A.{0,1,2,6,8}B.{3,7,8}C.{1,3,7,8} D.{1,3,6,7,8}[答案] C[解析]A∩B={1,3},(A∩B)∪C={1,3,7,8},故选C.2.(09·陕西文)定义在R上的偶函数f(x)满足:对任意的x1,x2∈[0,+∞)(x1≠x2),有f(x2)-f(x1)<0,则()x2-x1A.f(3)<f(-2)<f(1) B.f(1)<f(-2)<f(3)C.f(-2)<f(1)<f(3) D.f(3)<f(1)<f(-2)[答案] A[解析]若x2-x1>0,则f(x2)-f(x1)<0,即f(x2)<f(x1),∴f(x)在[0,+∞)上是减函数,∵3>2>1,∴f(3)<f(2)<f(1),又f(x)是偶函数,∴f(-2)=f(2),∴f(3)<f(-2)<f(1),故选A.3.已知f(x),g(x)对应值如表.则f (g (1))的值为( ) A .-1 B .0 C .1D .不存在[答案] C[解析] ∵g (1)=0,f (0)=1,∴f (g (1))=1.4.已知函数f (x +1)=3x +2,则f (x )的解析式是( ) A .3x +2 B .3x +1 C .3x -1D .3x +4[答案] C[解析] 设x +1=t ,则x =t -1, ∴f (t )=3(t -1)+2=3t -1,∴f (x )=3x -1.5.已知f (x )=⎩⎪⎨⎪⎧2x -1 (x ≥2)-x 2+3x (x <2),则f (-1)+f (4)的值为( )A .-7B .3C .-8D .4[答案] B[解析] f (4)=2×4-1=7,f (-1)=-(-1)2+3×(-1)=-4,∴f (4)+f (-1)=3,故选B.6.f (x )=-x 2+mx 在(-∞,1]上是增函数,则m 的取值范围是( ) A .{2}B .(-∞,2]C .[2,+∞)D .(-∞,1][答案] C[解析] f (x )=-(x -m 2)2+m 24的增区间为(-∞,m 2],由条件知m2≥1,∴m ≥2,故选C.7.定义集合A 、B 的运算A *B ={x |x ∈A ,或x ∈B ,且x ∉A ∩B },则(A *B )*A 等于( ) A .A ∩B B .A ∪B C .AD .B[答案] D[解析] A *B 的本质就是集合A 与B 的并集中除去它们的公共元素后,剩余元素组成的集合.因此(A *B )*A 是图中阴影部分与A 的并集,除去A 中阴影部分后剩余部分即B ,故选D. [点评] 可取特殊集合求解.如取A ={1,2,3},B ={1,5},则A *B ={2,3,5},(A *B )*A ={1,5}=B . 8.(广东梅县东山中学2009~2010高一期末)定义两种运算:a b =a 2-b 2,a ⊗b =(a -b )2,则函数f (x )= 为( )A .奇函数B .偶函数C .奇函数且为偶函数D .非奇函数且非偶函数 [答案] A[解析] 由运算与⊗的定义知, f (x )=4-x 2(x -2)2-2,∵4-x 2≥0,∴-2≤x ≤2, ∴f (x )=4-x 2(2-x )-2=-4-x 2x ,∴f (x )的定义域为{x |-2≤x <0或0<x ≤2}, 又f (-x )=-f (x ),∴f (x )为奇函数.9.(08·天津文)已知函数f (x )=⎩⎪⎨⎪⎧x +2, x ≤0,-x +2, x >0,则不等式f (x )≥x 2的解集为( )A .[-1,1]B .[-2,2]C .[-2,1]D .[-1,2][答案] A[解析] 解法1:当x =2时,f (x )=0,f (x )≥x 2不成立,排除B 、D ;当x =-2时,f (x )=0,也不满足f (x )≥x 2,排除C ,故选A.解法2:不等式化为⎩⎪⎨⎪⎧ x ≤0x +2≥x 2或⎩⎪⎨⎪⎧x >0-x +2≥x 2,解之得,-1≤x ≤0或0<x ≤1,即-1≤x ≤1.10.调查了某校高一一班的50名学生参加课外活动小组的情况,有32人参加了数学兴趣小组,有27人参加了英语兴趣小组,对于既参加数学兴趣小组,又参加英语兴趣小组的人数统计中,下列说法正确的是( )A .最多32人B .最多13人C .最少27人D .最少9人[答案] D[解析] ∵27+32-50=9,故两项兴趣小组都参加的至多有27人,至少有9人. 11.设函数f (x )(x ∈R )为奇函数,f (1)=12,f (x +2)=f (x )+f (2),则f (5)=( )A .0B .1 C.52D .5[答案] C[解析] f (1)=f (-1+2)=f (-1)+f (2)=12,又f (-1)=-f (1)=-12,∴f (2)=1,∴f (5)=f (3)+f (2)=f (1)+2f (2)=52.12.已知f (x )=3-2|x |,g (x )=x 2-2x ,F (x )=⎩⎪⎨⎪⎧g (x ),若f (x )≥g (x ),f (x ),若f (x )<g (x ).则F (x )的最值是( )A .最大值为3,最小值-1B .最大值为7-27,无最小值C .最大值为3,无最小值D .既无最大值,又无最小值 [答案] B[解析] 作出F (x )的图象,如图实线部分,知有最大值而无最小值,且最大值不是3,故选B.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.(2010·江苏,1)设集合A ={-1,1,3},B ={a +2,a 2+4},A ∩B ={3},则实数a =________.[答案] -1[解析] ∵A ∩B ={3},∴3∈B , ∵a 2+4≥4,∴a +2=3,∴a =-1.14.已知函数y =f (n )满足f (n )=⎩⎪⎨⎪⎧2 (n =1)3f (n -1) (n ≥2),则f (3)=________.[答案] 18[解析] 由条件知,f (1)=2,f (2)=3f (1)=6,f (3)=3f (2)=18.15.已知函数f (x )=2-ax (a ≠0)在区间[0,1]上是减函数,则实数a 的取值范围是________.[答案] (0,2][解析] a <0时,f (x )在定义域上是增函数,不合题意,∴a >0. 由2-ax ≥0得,x ≤2a ,∴f (x )在(-∞,2a ]上是减函数,由条件2a≥1,∴0<a ≤2.16.国家规定个人稿费的纳税办法是:不超过800元的不纳税;超过800元而不超过4000元的按超过800元的14%纳税;超过4000元的按全部稿酬的11%纳税.某人出版了一本书,共纳税420元,则这个人的稿费为________.[答案] 3800元[解析] 由于4000×11%=440>420,设稿费x 元,x <4000,则(x -800)×14%=420, ∴x =3800(元).三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤)17.(本题满分12分)设集合A ={x |a ≤x ≤a +3},集合B ={x |x <-1或x >5},分别就下列条件求实数a 的取值范围:(1)A ∩B ≠∅,(2)A ∩B =A .[解析] (1)因为A ∩B ≠∅,所以a <-1或a +3>5,即a <-1或a >2. (2)因为A ∩B =A ,所以A ⊆B ,所以a >5或a +3<-1,即a >5或a <-4. 18.(本题满分12分)二次函数f (x )的最小值为1,且f (0)=f (2)=3. (1)求f (x )的解析式;(2)若f (x )在区间[2a ,a +1]上不单调,求a 的取值范围. [解析] (1)∵f (x )为二次函数且f (0)=f (2), ∴对称轴为x =1.又∵f (x )最小值为1,∴可设f (x )=a (x -1)2+1 (a >0) ∵f (0)=3,∴a =2,∴f (x )=2(x -1)2+1, 即f (x )=2x 2-4x +3.(2)由条件知2a <1<a +1,∴0<a <12.19.(本题满分12分)图中给出了奇函数f (x )的局部图象,已知f (x )的定义域为[-5,5],试补全其图象,并比较f (1)与f (3)的大小.[解析] 奇函数的图象关于原点对称,可画出其图象如图.显见f (3)>f (1).20.(本题满分12分)一块形状为直角三角形的铁皮,直角边长分别为40cm 与60cm 现将它剪成一个矩形,并以此三角形的直角为矩形的一个角,问怎样剪法,才能使剩下的残料最少?[解析] 如图,剪出的矩形为CDEF ,设CD =x ,CF =y ,则AF =40-y .∵△AFE ∽△ACB .∴AF AC =FEBC 即∴40-y 40=x 60∴y =40-23x .剩下的残料面积为:S =12×60×40-x ·y =23x 2-40x +1 200=23(x -30)2+600 ∵0<x <60∴当x =30时,S 取最小值为600,这时y =20.∴在边长60cm 的直角边CB 上截CD =30cm ,在边长为40cm 的直角边AC 上截CF =20cm 时,能使所剩残料最少.21.(本题满分12分)(1)若a <0,讨论函数f (x )=x +ax ,在其定义域上的单调性;(2)若a >0,判断并证明f (x )=x +ax 在(0,a ]上的单调性.[解析] (1)∵a <0,∴y =ax 在(-∞,0)和(0,+∞)上都是增函数,又y =x 为增函数,∴f (x )=x +ax 在(-∞,0)和(0,+∞)上都是增函数.(2)f (x )=x +ax 在(0,a ]上单调减,设0<x 1<x 2≤a ,则f (x 1)-f (x 2)=(x 1+a x 1)-(x 2+ax 2)=(x 1-x 2)+a (x 2-x 1)x 1x 2=(x 1-x 2)(1-ax 1x 2)>0, ∴f (x 1)>f (x 2),∴f (x )在(0,a ]上单调减.22.(本题满分14分)设函数f (x )=|x -a |,g (x )=ax . (1)当a =2时,解关于x 的不等式f (x )<g (x ).(2)记F (x )=f (x )-g (x ),求函数F (x )在(0,a ]上的最小值(a >0). [解析] (1)|x -2|<2x ,则⎩⎪⎨⎪⎧ x ≥2,x -2<2x .或⎩⎪⎨⎪⎧x <2,2-x <2x .∴x ≥2或23<x <2.即x >23.(2)F (x )=|x -a |-ax ,∵0<x ≤a , ∴F (x )=-(a +1)x +a . ∵-(a +1)<0,∴函数F (x )在(0,a ]上是单调减函数,∴当x =a 时,函数F (x )取得最小值为-a 2.。
【师说】高中数学 第一章 集合与函数概念质量评估检测 新人教A版必修1
【师说】2015-2016学年高中数学第一章集合与函数概念质量评估检测新人教A版必修1时间:120分钟满分:150分一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合A={x∈R|ax2+ax+1=0}中只有一个元素,则a=( )A.4 B.2C.0 D.0或4解析:当a=0时,方程化为1=0,无解,集合A为空集,不符合题意;当a≠0时,由Δ=a2-4a=0,解得a=4.答案:A2.已知集合A,B均为全集U={1,2,3,4}的子集,且∁U(A∪B)={4},B={1,2},则A∩∁U B=( )A.{3} B.{4}C.{3,4} D.∅解析:∵U={1,2,3,4},∁U(A∪B)={4},∴A∪B={1,2,3}.又∵B={1,2},∴{3}⊆A⊆{1,2,3}.又∁U B={3,4},∴A∩∁U B={3}.答案:A3.衡水高一检测下列各组中的两个函数是同一函数的为( )(1)y=x+x-x+3,y=x-5.(2)y=x+1x-1,y=x+x-.(3)y=x,y=x2.(4)y=x,y=3x3.(5)y=(2x-5)2,y=2x-5. A.(1),(2) B.(2),(3) C.(3),(5) D.(4)解析:(1)中的y=x+x-x+3与y=x-5定义域不同.(2)中两个函数的定义域不同.(3)中第1个函数的定义域、值域都为R,而第2个函数的定义域是R,但值域是{y|y≥0}.(5)中两个函数的定义域不同,值域也不同.(4)中显然是同一函数.答案:D4.福州高一检测下列函数是偶函数的是( )A.y=2x2-3 B.y=x3C.y=x2,x∈[0,1] D.y=x解析:由函数奇偶性定义可知B、D均为奇函数,C定义域不关于原点对称,为非奇非偶函数,A为偶函数.答案:A5.洛阳高一检测若函数f(x)满足f(3x+2)=9x+8,则f(x)的解析式是( )A.f(x)=9x+8B.f(x)=3x+2C.f(x)=-3x-4D.f(x)=3x+2或f(x)=-3x-4解析:令3x+2=t,则3x=t-2,故f(t)=3(t-2)+8=3t+2.答案:B 6.大庆高一检测设f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2x 2-x ,则f (1)=( )A .-3B .-1C .1D .3解析:∵x ≤0时,f (x )=2x 2-x ,∴f (-1)=2-(-1)=3.又f (x )为R 上的奇函数,故f (-1)=-f (1),所以f (1)=-3.答案:A7.设集合S ={x |x >-2},T ={x |-4≤x ≤1},则S ∩T =( )A .[-4,+∞) B.(-2,+∞)C .[-4,1]D .(-2,1]解析:S ∩T ={x |x >-2}∩{x |-4≤x ≤1}={x |-2<x ≤1}.答案:D8.函数f (x )=1+x +1x的定义域是( ) A .[-1,∞)B .(-∞,0)∪(0,+∞)C .[-1,0)∪(0,+∞)D .R解析:要使函数有意义,需满足⎩⎪⎨⎪⎧ 1+x ≥0,x ≠0,即x ≥-1且x ≠0,故选C.答案:C9.已知f (x )是奇函数,g (x )是偶函数,且f (-1)+g (1)=2,f (1)+g (-1)=4,则g (1)等于( )A .4B .3C .2D .1解析:∵f (x )是奇函数,∴f (-1)=-f (1).又g (x )是偶函数,∴g (-1)=g (1).∵f (-1)+g (1)=2,∴g (1)-f (1)=2.①又f (1)+g (-1)=4,∴f (1)+g (1)=4.②由①②,得g (1)=3.答案:B 10.浏阳高一检测已知偶函数y =f (x )在[0,4]上是增函数,则一定有( )A .f (-3)>f (π)B .f (-3)<f (π)C .f (3)>f (-π)D .f (-3)>f (-π)解析:∵f (x )是偶函数,∴f (-3)=f (3),f (-π)=f (π).又f (x )在[0,4]上是增函数,∴f (3)<f (π).∴f (-3)<f (π).答案:B11.(2014·昆明高一检测)已知f (x )是定义在R 上的奇函数,当x <0时,f (x )=x -x 2,则当x >0时,f (x )=( )A .x -x 2B .-x -x 2C .-x +x 2D .x +x 2解析:当x >0时,-x <0,∴f (-x )=-x -(-x )2=-x -x 2,又f (-x )=-f (x ),故f (x )=x +x 2.答案:D 12.安阳高一检测一个偶函数定义在[-7,7]上,它在[0,7]上的图象如图所示,下列说法正确的是( )A .这个函数仅有一个单调增区间B .这个函数有两个单调减区间C .这个函数在其定义域内有最大值是7D .这个函数在其定义域内有最小值是-7解析:结合偶函数图象关于y 轴对称可知,这个函数在[-7,7]上有三个单调递增区间,三个单调递减区间,且定义域内有最大值7,无法判断最小值是多少.答案:C二、填空题:本大题共4小题,每小题5分,共20分.13.已知函数f (x )=x -1.若f (a )=3,则实数a =__________.解析:因为f (a )=a -1=3,所以a -1=9,即a =10.答案:1014.用列举法表示集合:A ={x |2x +1∈Z ,x ∈Z }=__________. 解析:因为x ∈Z ,所以当x =-3时,有-1∈Z ;当x =-2时,有-2∈Z ;当x =0时,有2∈Z ;当x =1时,有1∈Z ,所以A ={-3,-2,0,1}.答案:{-3,-2,0,1}15.函数f (x )=-x 2+b 在[-3,-1]上的最大值是4,则它的最小值是__________.解析:函数f (x )=-x 2+b 在[-3,-1]上是增函数,当x =-1时取最大值,所以b=5,当x =-3时,取最小值f (-3)=-9+5=-4.答案:-416.已知函数y =f (x )在(-∞,0)∪(0,+∞)上为奇函数,且在(0,+∞)上为增函数,f (-2)=0,则不等式x ·f (x )<0的解集为________.解析:根据题意画出f (x )由图象可知-2<x <0或0<x 答案:(-2,0)∪(0,2)三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.2014·武昌高一检测,10分已知函数f (x )=x +m x ,且f (1)=3.(1)求m ;(2)判断函数f (x )的奇偶性.解析:(1)∵f (1)=3,即1+m =3,∴m =2.4分(2)由(1)知,f (x )=x +2x,其定义域是{x |x ≠0},关于原点对称,7分 又f (-x )=-x +2-x =-⎝ ⎛⎭⎪⎫x +2x =-f (x ),所以此函数是奇函数.10分 18.杭州高一检测,12分已知集合A ={x |3≤x <6},B ={x |2<x <9}. (1)分别求∁R (A ∩B ),(∁R B )∪A ;(2)已知C ={x |a <x <a +1},若C ⊆B ,求实数a 的取值范围.解析:(1)∵A ∩B ={x |3≤x <6},∴∁R (A ∩B )={x |x <3或x ≥6},∵∁R B ={x |x ≤2或x ≥9},∴(∁R B )∪A ={x |x ≤2或3≤x <6或x ≥9}.6分(2)∵C ⊆B ,∴⎩⎪⎨⎪⎧ a ≥2,a +1≤9,∴2≤a ≤8.∴实数a 的取值范围为:2≤a ≤8.12分 19.郑州高一检测,12分已知函数f (x )=x 2+2ax +2,x ∈[-5,5]. (1)当a =-1时,求函数f (x )的最大值和最小值;(2)求实数a 的取值范围,使y =f (x )在区间[-5,5]上是单调函数.解析:(1)当a =-1时,f (x )=x 2-2x +2=(x -1)2+1.∵x ∈[-5,5],故当x =1时,f (x )的最小值为1,当x =-5时,f (x )的最大值为37.6分(2)函数f (x )=(x +a )2+2-a 2的图象的对称轴为x =-a .∵f (x )在[-5,5]上是单调的,∴-a ≤-5或-a ≥5.即实数a 的取值范围是a ≤-5或a ≥5.12分 20.德州高一检测,12分设函数f (x )=x 2-2|x |-1(-3≤x ≤3), (1)证明:f (x )是偶函数;(2)画出这个函数的图象;(3)指出函数f (x )的单调区间,并说明在各个单调区间上f (x )是增函数还是减函数;(4)求函数的值域.解析:(1)∵f (-x )=(-x )2-2|-x |-1=x 2-2|x |-1=f (x ),即f (-x )=f (x ),∴f (x )是偶函数.3分(2)当x ≥0时,f (x )=x 2-2x -1=(x -1)2-2,当x <0时,f (x )=x 2+2x -1=(x +1)2-2,即f (x )=⎩⎪⎨⎪⎧x -2-2,0≤x ≤3,x +2-2,-3≤x <0. 根据二次函数的作图方法,可得函数图象如图.6分(3)函数f (x )的单调区间为[-3,-1),[-1,0),[0,1),[1,3].f (x )在区间[-3,-1),[0,1)上为减函数,在区间[-1,0),[1,3]上为增函数.9分(4)当x ≥0时,函数f (x )=(x -1)2-2的最小值为-2,最大值f (3)=2;当x <0时,函数f (x )=(x +1)2-2的最小值为-2,最大值f (-3)=2.故函数f (x )的值域为[-2,2].12分 21.临沂高一检测,12分已知函数f (x )=mx 2+23x +n 是奇函数,且f (2)=53. (1)求实数m 和n 的值;(2)判断函数f (x )在(-∞,-1]上的单调性,并加以证明.解析:(1)∵f (x )是奇函数,∴f (-x )=-f (x ).即mx 2+2-3x +n =-mx 2+23x +n =mx 2+2-3x -n, 比较得n =-n ,n =0,又f (2)=53,∴4m +26=53,m =2, 即实数m 和n 的值分别是2和0.6分(2)函数f (x )在(-∞,-1]上为增函数.证明如下:由(1)知f (x )=2x 2+23x =2x 3+23x, 设x 1<x 2≤-1,则f (x 1)-f (x 2)=23(x 1-x 2)⎝ ⎛⎭⎪⎫1-1x 1x 2 =23(x 1-x 2)·x 1x 2-1x 1x 2, 23(x 1-x 2)<0,x 1x 2>0,x 1x 2-1>0, ∴f (x 1)-f (x 2)<0,∴f (x 1)<f (x 2),即函数f (x )在(-∞,-1]上为增函数.12分 22.济宁高一检测,12分函数f (x )=ax +b 1+x 2是定义在(-1,1)上的奇函数,且f ⎝ ⎛⎭⎪⎫12=25. (1)确定函数f (x )的解析式;(2)用定义证明:f (x )在(-1,1)上是增函数;(3)解不等式f (t -1)+f (t )<0.解析:(1)∵f (x )是定义在(-1,1)上的奇函数,∴f (-x )=-f (x ),即-ax +b 1+x 2=-ax -b 1+x 2. ∴b =-b ,b =0.∵f ⎝ ⎛⎭⎪⎫12=25,∴12a 1+14=25, ∴a =1.3分∴函数解析式为f (x )=x1+x 2(-1<x <1). (2)证明:任取x 1,x 2∈(-1,1),且x 1<x 2, f (x 1)-f (x 2)=x 11+x 21-x 21+x 22=x 1-x 2-x 1x 2+x 21+x 22, ∵-1<x 1<x 2<1,∴x 1-x 2<0,1-x 1x 2>0,(1+x 21)(1+x 22)>0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).∴f (x )在(-1,1)上为增函数.6分(3)∵f (t -1)+f (t )<0,∴f (t -1)<-f (t ).∵f (-t )=-f (t ),∴f (t -1)<f (-t ).∴f (x )为(-1,1)上的增函数. ∴⎩⎪⎨⎪⎧ -1<t -1<1,-1<-t <1,t -1<-t .解得0<t <12.∴不等式的解集为{t |0<t <12}.12分。
人教版高一数学必修一第一章单元检测试题及参考答案
高一数学第一章集合与函数概念单元检测试题一、选择题:共12题每题5分共60分1.已知函数的图象如下图所示,则函数的图象为2.下列各组函数为相等函数的是A. B.C. D.==3.函数的定义域为若对于任意的当时,都有则称函数在上为非减函数.设函数的上为非减函数,且满足以下三个条件:①②③=则等于A. B. C. D.4.设函数,则的最小值为A. B.C. D.5.函数f(x)=x2-4x+6(x∈[1,5))的值域是A.(3,11]B.[2,11)C.[3,11)D.(2,11]6.若函数在区间上单调,则实数的取值范围为A. B.C. D.7.定义运算:a*b=,如1*2=1,则函数f(x)=2x*2-x的值域为A.RB.(0,+∞)C.(0,1]D.[1,+∞)8.已知集合E={x|2-x≥0},若F?E,则集合F可以是A.{x|x<1}B.{x|x>2}C.{x|x>3}D.{x|1<x<3}9.已知偶函数f(x)在区间[0,+∞)上单调递增,则满足f(2x-1)<f()的x的取值范围是() A.(,) B.[,) C.(,) D.[,)10.某部队练习发射炮弹,炮弹的高度与时间(秒)的函数关系式是,则炮弹在发射几秒后最高呢?A. B. C. D.11.已知,且,则等于A. B. C. D.12.已知集合和集合,则两个集合间的关系是A. B. C. D.M,P互不包含二、填空题:共4题每题5分共20分13.已知函数f(x)=a﹣x2(1≤x≤2)与的图象上存在关于轴对称的点,则实数的取值范围是A. C.14.设集合M={x|0≤x≤2},N={y|0≤y≤2}.给出下列四个图,其中能构成从集合M到集合N 的函数关系的是.?15.给出下列二次函数,将其图象画在同一平面直角坐标系中,则图象的开口按从小到大的顺序排列为.?(1)f(x)=-x2;(2)f(x)=(x+5)2;(3)f(x)=x2-6;(4)f(x)=-5(x-8)2+9.16.若函数的图像关于y轴对称,则的单调减区间为.三、解答题:共6题共70分17.(本题10分)如果对函数f(x)定义域内任意的x1,x2都有|f(x1)-f(x2)|≤|x1-x2|成立,就称函数f(x)是定义域上的“平缓函数”.(1)判断函数f(x)=x2-x,x∈[0,1]是否为“平缓函数”;(2)若函数f(x)是闭区间[0,1]上的“平缓函数”,且f(0)=f(1),证明:对任意的x1,x2∈[0,1],都有|f(x1)-f(x2)|≤成立.(注:可参考绝对值的基本性质①|ab|≤|a||b|,②|a+b|≤|a|+|b|)18.(本题12分)记函数的定义域为集合,集合.(1)求和;(2)若,求实数的取值范围. 19.(本题12分)设全集U={x|0<x<9,且x∈Z},集合S={1,3,5},T={3,6},求:(1)S∩T;(2).20.(本题12分)已知函数f(x)=.(1)用定义证明f(x)在区间[1,+∞)上是增函数;(2)求该函数在区间[2,4]上的最大值与最小值.21.(本题12分)定义在非零实数集上的函数对任意非零实数满足:,且当时.(Ⅰ)求及的值;(Ⅱ)求证:是偶函数;(Ⅲ)解不等式:.22.(本题12分)(1)证明:函数f(x)=在(-∞,0)上是减函数;(2)证明:函数f(x)=x3+x在R上是增函数.参考答案1.B【解析】本试题主要考查函数的图象.根据题意,由于函数图象可知,函数在y轴右侧图象在x 轴上方,在y轴左侧的图象在x轴的下方,而函数在x>0时图象保持不变,因此排除C,D,对于选项A,由于在时偶函数,故在y轴左侧的图象与y轴右侧的图象关于y轴对称,故选B.【备注】无2.C【解析】本题主要考查相等函数、函数的定义域、值域与对应关系.A.因为这两个函数的值域不同,所以这两个函数不是相等函数;B.这两个函数的定义域不同,所以这两个函数不是相等函数;C.这两个函数的定义域、值域与对应关系均相同,所以这两个函数为相等函数;D.这两个函数的定义域不同,所以这两个函数不是相等函数.【备注】无3.D【解析】本题主要考查新定义问题、函数的性质及其综合应用.由题意,令x=0,由=可得由可得令则=同理=====令则==同理====.非减函数的性质:当时,都有.因为所以所以=. 【备注】无4.A【解析】本题主要考查分段函数的最值问题.由题意,函数的图象如图所示:红色图象即为所求解的函数的图象,可知最小值为0.【备注】无5.B【解析】f(x)=x2-4x+6=(x-2)2+2.∵f(x)图象的对称轴是直线x=2,∴f(x)在[1,2]上单调递减,在(2,5)上单调递增,∴f(x)的值域是[2,11).故选B.【备注】无6.C【解析】本题主要考查二次函数.依题意,函数在区间上单调,则函数的对称轴或,得或,故选C.【备注】无7.C【解析】本题主要考查在新型定义的前提下函数值域的求解.根据题目定义知f(x)=2x*2-x=,结合图象知其值域为(0,1].故选C.【备注】无8.A【解析】由题意知E={x|2-x≥0}={x|x≤2},F?E,观察选项知应选A.【备注】无9.A【解析】偶函数f(x)在区间[0,+∞)上单调递增,所以函数f(x)在区间(-∞,0]上单调递减.由于f(x)是偶函数,所以f(-x)=f(x),则f(-)=f().由f(2x-1)<f()得①或②,解①得≤x<,解②得<x<.综上可得<x<,故x的取值范围是(,).【备注】无10.C【解析】本题主要考查二次函数.依题意,根据二次函数得性质,函数的开口向下,对称轴为,故炮弹在发射后最高,故选C.【备注】无11.B【解析】本题主要考查函数的解析式与求值.因为,设,则,所以,因为,所以,解得,故选B.【备注】无12.D【解析】无【备注】无13.D【解析】本题主要考查二次函数的图像与性质,考查了逻辑推理能力与计算能力.因为函数f(x)=a ﹣x2(1≤x≤2)与的图象上存在关于轴对称的点,所以函数f(x)=a﹣x2(1≤x≤2)与的图象上存在交点,所以有解,令,则,求解可得,故答案为D. 【备注】无14.④【解析】图①中函数的定义域是[0,1];图②中函数的定义域是[-1,2];图③中对任意的x∈(0,2],其对应的y值不唯一.故①②③均不能构成从集合M到集合N的函数,图④满足题意.【备注】无15.(4)(3)(2)(1)【解析】因为二次函数y=ax2+bx+c(a≠0)的图象在同一平面直角坐标系中|a|越小,图象开口越大,又|-|<||<||<|-5|,所以图象开口按从小到大的顺序排列为(4)(3)(2)(1).【备注】无16.【解析】本题考查函数的图象.若函数的图像关于y轴对称,则a=0,,所以f(x)的单调减区间为.【备注】无17.(1)对任意的x1,x2∈[0,1],有-1≤x1+x2-1≤1,即|x1+x2-1|≤1.从而|f(x1)-f(x2)|=|(-x1)-(-x2)|=|x1-x2||x1+x2-1|≤|x1-x2|,所以函数f(x)=x2-x,x∈[0,1]是“平缓函数”.(2)当|x1-x2|<时,由已知,得|f(x1)-f(x2)|≤|x1-x2|<;当|x1-x2|≥时,因为x1,x2∈[0,1],不妨设0≤x1<x2≤1,所以x2-x1≥.因为f(0)=f(1),所以|f(x1)-f(x2)|=|f(x1)-f(0)+f(1)-f(x2)|≤|f(x1)-f(0)|+|f(1)-f(x2)|≤|x1-0|+|1-x2|=x1-x2+1≤-+1=.所以对任意的x1,x2∈[0,1],都有|f(x1)-f(x2)|≤成立.【解析】无【备注】无18.由条件可得{|2}A x x =>, (1)={|23}x x <≤,{|3}A B x x ⋃=≥-;(2){|}C x x p =>,由可得2p ≥.【解析】本题考查函数的定义域与集合的运算.(1)先求出函数的定义域,再进行运算即可;(2)利用数轴进行分析即可得出结论.【备注】与不等式有关的集合运算或集合之间的关系问题通常可以借助数轴进行求解. 19.U ={1,2,3,4,5,6,7,8} (1)S ∩T ={3} (2)S ∪T ={1,3,5,6}={2,4,7,8}【解析】本题主要考查集合的基本运算.(1)由交集的定义求解;(2)由并集与补集的定义求解. 【备注】无20.(1)任取x 1,x 2∈[1,+∞),且x 1<x 2,则 f(x 1)-f(x 2)=-=.∵1≤x 1<x 2,∴x 1-x 2<0,(x 1+1)(x 2+1)>0, ∴f(x 1)-f(x 2)<0,即f(x 1)<f(x 2), ∴函数f(x)在区间[1,+∞)上是增函数. (2)由(1)知函数f(x)在区间[2,4]上是增函数, ∴f(x)max =f(4)==, f(x)min =f(2)==.【解析】无 【备注】无 21.(1)f (1)=0,f (-1)=0;(2)f (-x )=f (x )+f (-1)=f (x )∴f (-x )=f (x ),所以函数是偶函数;(3)据题意可知,f (2)+f (x 2-1/2)=f (2x 2-1)≤0∴-1≤2x 2-1<0或0<2x 2-1≤1∴0≤x 2<1/2或<x 2≤1,所以不等式的解集为【解析】本题主要考查特殊函数的性质的判断与应用以及一元二次不等式的解法.(1)分别令x =1与x=—1即可求出结果;(2)利用函数奇偶性的定义即可证明;(3)根据题意与f (1)=0,f (-1)=0,原不等式可化为-1≤2x 2-1<0或0<2x 2-1≤1然后求解即可. 【备注】无22.(1)设x 1,x 2是(-∞,0)上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=-.因为x1,x2∈(-∞,0),所以x1x2>0,又因为x1<x2,所以x2-x1>0,则>0.于是f(x1)-f(x2)>0,即f(x1)>f(x2).因此函数f(x)=在(-∞,0)上是减函数.(2)设x1,x2是R上的任意两个实数,且x1<x2,则x2-x1>0,而f(x2)-f(x1)=(+x2)-(+x1)=(x2-x1)(+x2x1+)+(x2-x1)=(x2-x1)(+x2x1++1)=(x2-x1)[(x2+)2++1].因为(x2+)2++1>0,x2-x1>0,所以f(x2)-f(x1)>0,即f(x2)>f(x1).因此函数f(x)=x3+x在R上是增函数.【解析】用定义证明函数f(x)在给定区间D上的单调性的一般步骤:①取值——任取x1,x2∈D,且x1<x2;②作差——f(x1)-f(x2);③变形——通过因式分解、配方、通分、有理化等方法,向有利于判断差值的符号的方向变形;④定号——判断f(x1)-f(x2)的正负;⑤下结论——指出函数f(x)在给定区间D上的单调性.【备注】无。
人教版高中数学必修一第一章《集合与函数》精选习题(含答案解析)
人教版高中数学必修一第一章《集合与函数》单元检测精选(含答案解析)(时间:120分钟 满分:150分) 第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.集合A ={0,2,a },B ={1,a 2},若A ∪B ={0,1,2,4,16},则a 的值为( ) A .0 B .1 C .2D .42.设函数f (x )=,则f (f(31)的值为( )A.128127B .-128127C.81D.1613.若函数y =f (x )的定义域是[0,2],则函数g (x )=x -1f(2x的定义域是( ) A .[0,1]B .[0,1)C .[0,1)∪(1,4]D .(0,1)4.已知f (x )=(m -1)x 2+3mx +3为偶函数,则f (x )在区间(-4,2)上为( ) A .增函数B .减函数C .先递增再递减D .先递减再递增5.三个数a =0.32,b =log 20.3,c =20.3之间的大小关系是( ) A .a <c <b B .a <b <c C .b <a <cD .b <c <a6.若函数f (x )唯一的一个零点同时在区间(0,16)、(0,8)、(0,4)、(0,2)内,那么下列命题中正确的是( )A .函数f (x )在区间(0,1)内有零点B .函数f (x )在区间(0,1)或(1,2)内有零点C .函数f (x )在区间[2,16)内无零点D .函数f (x )在区间(1,16)内无零点7.已知0<a <1,则方程a |x |=|log a x |的实根个数是( ) A .2 B .3C .4D .与a 值有关8.函数y =1+ln(x -1)(x >1)的反函数是( ) A .y =e x +1-1(x >0)B .y =e x -1+1(x >0)C .y =e x +1-1(x ∈R )D .y =e x -1+1(x ∈R )9.函数f (x )=x 2-2ax +1有两个零点,且分别在(0,1)与(1,2)内,则实数a 的取值范围是( )A .-1<a <1B .a <-1或a >1C .1<a <45D .-45<a <-110.若一系列函数的解析式和值域相同,但其定义域不同,则称这些函数为“同族函数”,例如函数y =x 2,x ∈[1,2]与函数y =x 2,x ∈[-2,-1]即为“同族函数”.请你找出下面函数解析式中能够被用来构造“同族函数”的是( )A .y =xB .y =|x -3|C .y =2xD .y =11.下列4个函数中: ①y =2008x -1;②y =log a 2 009+x 2 009-x(a >0且a ≠1); ③y =x +1x2 009+x2 008;④y =x (a -x -11+21)(a >0且a ≠1). 其中既不是奇函数,又不是偶函数的是( ) A .①B .②③C .①③D .①④12.设函数的集合P ={f (x )=log 2(x +a )+b |a =-21,0,21,1;b =-1,0,1},平面上点的集合Q ={(x ,y )|x =-21,0,21,1;y =-1,0,1},则在同一直角坐标系中,P 中函数f (x )的图象恰好经过Q 中两个点的函数的个数是( )A .4B .6C .8D .10第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上)13.已知函数f (x ),g (x )分别由下表给出:x 1 2 3 f (x )131x 1 2 3 g (x )321则不等式f [g (x )]>g [f (x )]的解为________. 14.已知log a 21>0,若≤a 1,则实数x 的取值范围为______________.15.直线y =1与曲线y =x 2-+a 有四个交点,则a 的取值范围为________________.16.已知下表中的对数值有且只有一个是错误的.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)设全集为R,A={x|3≤x<7},B={x|2<x<10}.求:A∪B,∁R(A∩B),(∁R A)∩B.18.(本小题满分12分)(1)已知全集U=R,集合M={x|≤0},N={x|x2=x+12},求(∁U M)∩N;(2)已知全集U=R,集合A={x|x<-1或x>1},B={x|-1≤x<0},求A∪(∁U B).19.(本小题满分12分)已知集合A={x|-2<x<-1或x>1},B={x|a≤x<b},A∪B={x|x>-2},A ∩B={x|1<x<3},求实数a,b的值.20.(本小题满分12分)已知集合A={x|x≤a+3},B={x|x<-1或x>5}.(1)若a=-2,求A∩∁R B;(2)若A⊆B,求a的取值范围.21.(本小题满分12分)设集合A={x|x2-8x+15=0},B={x|ax-1=0}.(1)若a=51,判断集合A与B的关系;(2)若A∩B=B,求实数a组成的集合C.22.(本小题满分12分)已知集合A={x|(a-1)x2+3x-2=0},B={x|x2-3x+2=0}.(1)若A≠∅,求实数a的取值范围;(2)若A∩B=A,求实数a的取值范围.参考答案与解析1.D [∵A ∪B ={0,1,2,a ,a 2}, 又∵A ∪B ={0,1,2,4,16}, ∴a2=16,a =4,即a =4. 否则有a2=4a =16矛盾.]2.A [∵f (3)=32+3×3-2=16, ∴f(31=161,∴f (f(31)=f (161)=1-2×(161)2=1-2562=128127.] 3.B [由题意得:x ≠10≤2x ≤2,∴0≤x <1.] 4.C [∵f (x )=(m -1)x 2+3mx +3是偶函数,∴m =0,f (x )=-x 2+3,函数图象是开口向下的抛物线,顶点坐标为(0,3),f (x )在(-4,2)上先增后减.]5.C [20.3>20=1=0.30>0.32>0=log 21>log 20.3.]6.C [函数f (x )唯一的一个零点在区间(0,2)内,故函数f (x )在区间[2,16)内无零点.] 7.A [分别画出函数y =a |x |与y =|log a x |的图象,通过数形结合法,可知交点个数为2.]8.D [∵函数y =1+ln(x -1)(x >1),∴ln(x -1)=y -1,x -1=e y -1,y =e x -1+1(x ∈R ).] 9.C [∵f (x )=x 2-2ax +1, ∴f (x )的图象是开口向上的抛物线.由题意得:f(2>0.f(1<0,即4-4a +1>0,1-2a +1<0,解得1<a <45.] 10.B11.C [其中①不过原点,则不可能为奇函数,而且也不可能为偶函数;③中定义域不关于原点对称,则既不是奇函数,又不是偶函数.] 12.B [当a =-21,f (x )=log 2(x -21)+b , ∵x >21,∴此时至多经过Q 中的一个点;当a =0时,f (x )=log 2x 经过(21,-1),(1,0), f (x )=log 2x +1经过(21,0),(1,1);当a =1时,f (x )=log 2(x +1)+1经过(-21,0),(0,1), f (x )=log 2(x +1)-1经过(0,-1),(1,0); 当a =21时,f (x )=log 2(x +21)经过(0,-1),(21,0) f (x )=log 2(x +21)+1经过(0,0),(21,1).]13.x =2解析 ∵f (x )、g (x )的定义域都是{1,2,3},∴当x =1时,f [g (1)]=f (3)=1,g [f (1)]=g (1)=3,不等式不成立; 当x =2时,f [g (2)]=f (2)=3,g [f (2)]=g (3)=1,此时不等式成立; 当x =3时,f [g (3)]=f (1)=1,g [f (3)]=g (1)=3, 此时,不等式不成立. 因此不等式的解为x =2. 14.(-∞,-3]∪[1,+∞) 解析 由log a 21>0得0<a <1. 由≤a 1得≤a -1,∴x 2+2x -4≥-1,解得x ≤-3或x ≥1. 15.1<a <45解析 y =x2+x +a ,x <0,x2-x +a ,x ≥0,作出图象,如图所示.此曲线与y 轴交于(0,a )点,最小值为a -41,要使y =1与其有四个交点,只需a -41<1<a ,∴1<a <45. 16.lg1.5解析 ∵lg9=2lg3,适合,故二者不可能错误,同理:lg8=3lg2=3(1-lg5),∴lg8,lg5正确.lg6=lg2+lg3=(1-lg5)+lg3=1-(a +c )+(2a -b )=1+a -b -c ,故lg6也正确.17.解:∵全集为R ,A ={x |3≤x <7},B ={x |2<x <10}, ∴A ∪B ={x |2<x <10},A ∩B ={x |3≤x <7}, ∴∁R (A ∩B )={x |x ≥7或x <3}. ∵∁R A ={x |x ≥7或x <3},∴(∁R A )∩B ={x |2<x <3或7≤x <10}.18.解:(1)M ={x |x +3=0}={-3},N ={x |x 2=x +12}={-3,4}, ∴(∁U M )∩N ={4}.(2)∵A ={x |x <-1或x >1},B ={x |-1≤x <0}, ∴∁U B ={x |x <-1或x ≥0}. ∴A ∪(∁U B )={x |x <-1或x ≥0}. 19.解:∵A ∩B ={x |1<x <3},∴b =3,又A∪B={x|x>-2},∴-2<a≤-1,又A∩B={x|1<x<3},∴-1≤a<1,∴a=-1.20.解:(1)当a=-2时,集合A={x|x≤1},∁R B={x|-1≤x≤5},∴A∩∁R B={x|-1≤x≤1}.(2)∵A={x|x≤a+3},B={x|x<-1或x>5},A⊆B,∴a+3<-1,∴a<-4.解题技巧:本题主要考查了描述法表示的集合的运算,集合间的关系,解决本题的关键是借助于数轴求出符合题意的值.在解决(2)时,特别注意参数a是否取到不等式的端点值.21.解:A={x|x2-8x+15=0}={3,5}.(1)若a=51,则B={5},所以B A.(2)若A∩B=B,则B⊆A.当a=0时,B=∅,满足B⊆A;当a≠0时,B=a1,因为B⊆A,所以a1=3或a1=5,即a=31或a=51;综上所述,实数a组成的集合C为51.22.解:(1)①当a=1时,A=32≠∅;②当a≠1时,Δ≥0,即a≥-81且a≠1,综上,a≥-81;(2)∵B={1,2},A∩B=A,∴A=∅或{1}或{2}或{1,2}.①A=∅,Δ<0,即a<-81;②当A={1}或{2}时,Δ=0,即a=0且a=-81,不存在这样的实数;③当A={1,2},Δ>0,即a>-81且a≠1,解得a=0.综上,a<-81或a=0.11。
高一数学人教版必修一第一章《集合与函数概念》综合测试题(含答案)
第一章集合与函数概念综合测试题、选择题1函数讨二2x -1的定义域是()2•已知集合 A 到B 的映射f:x T y=2x+1,那么集合A 中元素2在B 中对应的元素是( )A • 2B • 6C • 5D • 83•设集合 A 二{x|1 ::: x ::: 2}, B 二{x|x ::: a}.若 A B,则 a 的范围是()A • a_2B • a < 1C • a - 1D . a 乞 24•函数y =(k • 2)x • 1在实数集上是减函数,则 k 的范围是()A • k l :—2B • k z ;—2C • k ^ -2D • k-25•全集 U ={ 0,1,3,5,6,8},集合 A = { 1 , 5, 8 }, B ={2},则(6 A ) B =()A (2,;)B.[];)2 2—1 C.(「2) -1D.( =,2]B • { 0,3,6} {2,1,5,8} D • {0,2,3,6}F列各组函数中,表示同一函数的是(0 x y =x ,y =A •xB y = .x -1 . x 1, y = . x2 -1—2Dy=|x|,y = (、x)F列函数是奇函数的是(1A • y =x2B • y =2x2 3 (一“)若奇函数f x在1,3】上为增函数,且有最小值0,则它在1-3,-1】上A •是减函数,有最小值C •是减函数,有最大值设集合M = X - 2乞x -2 :f,B •是增函数,D •是增函数,N 二:y0 -有最小值有最大值y乞2:,给出下列四个图形,其中能表示集合M为定义域,N为值域的函数关系的是()x2 x 010. 已知f (x) X=0,则 f [ f (-3)]等于( )0 x cO2A . 0 B. n C. n D. 9二. 填空题r X +5(XA 1) nt211. 已知f(x—1)=x2,贝y f(x)= .14.已知f (x) = 2 ,则2x +1(x 兰1)f[f(1)> _______________________ .212. 函数y = x -6x的减区间是_____________ .13•设偶函数f (x)的定义域为R,当x・[0, •::)时f(x)是增函数,则f (2), f (二),f (-3)的大小关系是_________________________三、解答题14.设U =R, A x _1[ B J x 0 :: x :: 5?,求C u 切B 和A C U B .15. 求下列函数的定义域(4)f(X)x —22(2) f(x)|x| -216.集合A = 'xx2• 4x = 0; B -汉x2• 2 a T x • a2-1 = 0若A B = B求a 的取值范围。
高中数学人教版必修1第一章集合与函数概念单元测试卷(A)(含答案)
第一章 集合与函数概念 单元测试卷(A )时间:120分钟 分值:150分第Ⅰ卷(选择题,共60分)1.已知集合A ={1,2},B ={2,4},则A ∪B =( ) A .{2} B .{1,2,2,4} C .{1,2,4}D .∅2.设全集U =R ,集合M ={y |y =x 2+2,x ∈U },集合N ={y |y =3x ,x ∈U },则M ∩N 等于( ) A .{1,3,2,6} B .{(1,3),(2,6)} C .MD .{3,6}3.如图1所示,阴影部分表示的集合是( ) A .(∁U B )∩A B .(∁U A )∩B C .∁U (A ∩B )D .∁U (A ∪B )图14.设全集U ={x |0<x <10,x ∈Z },A ,B 是U 的两个真子集,(∁U A )∩(∁U B )={1,9},A ∩B ={2},(∁U A )∩B ={4,6,8},则( )A .5∈A ,且5∉B B .5∉A ,且5∉B C .5∈A ,且5∈BD .5∉A ,且5∈B5.下列各图中,可表示函数y =f (x )的图象的只可能是( )6.下表表示y 是x 的函数,则函数的值域是( )A .[2,5] C .(0,20)D .N7.图中给出的对应是从A 到B 的映射的是( )8.已知函数f (x )=⎩⎪⎨⎪⎧x ,x ≥0,x 2,x <0,则f [f (-2)]的值是( )A .2B .-2C .4D .-49.函数y =x 2-2x +3,-1≤x ≤2的值域是( )A .RB .[3,6]C .[2,6]D .[2,+∞)10.已知函数f (x )是(-∞,0)∪(0,+∞)上的奇函数,且当x <0时,函数的部分图象如图4所示,则不等式xf (x )<0的解集是( )图4A .(-2,-1)∪(1,2)B .(-2,-1)∪(0,1)∪(2,+∞)C .(-∞,-2)∪(-1,0)∪(1,2)D .(-∞,-2)∪(-1,0)∪(0,1)∪(2,+∞)11.定义在R 上的偶函数f (x )在[0,7]上是增函数,在[7,+∞)上是减函数,f (7)=6,则f (x )( )A .在[-7,0]上是增函数,且最大值是6B .在[-7,0]上是减函数,且最大值是6C .在[-7,0]上是增函数,且最小值是6D .在[-7,0]上是减函数,且最小值是612.定义在R 上的偶函数f (x )满足:对任意x 1,x 2∈(-∞,0](x 1≠x 2),都有x 2-x 1f (x 2)-f (x 1)>0,则( )A .f (-5)<f (4)<f (6)B .f (4)<f (-5)<f (6)C .f (6)<f (-5)<f (4)D .f (6)<f (4)<f (-5)第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.设P 和Q 是两个集合,定义集合P -Q ={x |x ∈P ,且x ∉Q },若P ={1,2,3,4},Q ={x |x +12<2,x ∈R },则P -Q =________.14.函数y =x 2+2x -3的单调递减区间是________.15.若函数f (x )=kx 2+(k -1)x +2是偶函数,则f (x )的递减区间是________.16.设函数f (x )=⎩⎪⎨⎪⎧|x -1|(0<x <2),2-|x -1|(x ≤0,或x ≥2),则函数y =f (x )与y =12的图象的交点个数是________.三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)已知集合A ={x |2≤x ≤8},B ={x |1<x <6},C ={x |x >a },U =R . (1)求A ∪B ,(∁U A )∩B ;(2)若A ∩C ≠∅,求a 的取值范围.18.(12分)设A ={x |x 2+2(a +1)x +a 2-1=0},B ={x |x (x +4)(x -12)=0,x ∈Z }.若A ∩B =A ,求a 的取值范围.19.(12分)已知函数f (x )=-2x +m ,其中m 为常数. (1)求证:函数f (x )在R 上是减函数; (2)当函数f (x )是奇函数时,求实数m 的值.20.(12分)某公司生产的水笔上年度销售单价为0.8元,年销售量为1亿支.本年度计划将销售单价调至0.55~0.75元(含端点值),经调查,若销售单价调至x元,则本年度新增销售量y(亿支)与x-0.4成反比,且当x=0.65时,y=0.8.(1)求y与x的函数关系式;(2)若每支水笔的成本价为0.3元,则水笔销售单价调至多少时,本年度该公司的收益比上年度增加20%?21.(12分)已知函数f(x)是正比例函数,函数g(x)是反比例函数,且f(1)=1,g(1)=2,(1)求函数f(x)和g(x);(2)判断函数f(x)+g(x)的奇偶性.(3)求函数f(x)+g(x)在(0,2]上的最小值.22.(12分)函数f(x)=ax+b1+x2是定义在(-1,1)上的奇函数,且f(12)=25.(1)求f(x)的解析式;(2)证明f(x)在(-1,1)上为增函数;(3)解不等式f(t-1)+f(t)<0.第一章集合与函数概念单元综合测试一答案第Ⅰ卷(选择题,共60分)一、选择题(每小题5分,共60分)1.答案:C2.解析:M=[2,+∞),N=R.答案:C3.解析:因为阴影部分既在集合∁U B中又在集合A中,所以阴影部分为(∁B)∩A.U答案:A4.解析:可借助V enn图(如图2)解决,数形结合.图2答案:A5.解析:根据函数的概念知,只有“一对一”或“多对一”对应才能构成函数关系.答案:A6.答案:B7.解析:根据映射定义,A中每一个元素在B中仅有1个元素与之对应,仅D适合.答案:D8.解析:∵x =-2,而-2<0, ∴f (-2)=(-2)2=4. 又4>0,∴f [f (-2)]=f (4)=4. 答案:C9.解析:画出函数y =x 2-2x +3,-1≤x ≤2的图象,如图3所示,观察函数的图象可得图象上所有点的纵坐标的取值范围是[2,6],所以值域是[2,6].图3答案:C10.解析:xf (x )<0⇔x 与f (x )异号,由函数图象及奇偶性易得结论. 答案:D11.解析:∵f (x )是偶函数,∴f (x )的图象关于y 轴对称.∴f (x )在[-7,0]上是减函数,且最大值为6. 答案:B12.解析:∵对任意x 1,x 2∈(-∞,0](x 1≠x 2),都有x 2-x 1f (x 2)-f (x 1)>0,∴对任意x 1,x 2∈(-∞,0],若x 1<x 2,总有f (x 1)<f (x 2),∴f (x )在(-∞,0]上是增函数.∴f (-4)>f (-5)>f (-6).又∵函数f (x )是偶函数,∴f (-6)=f (6), f (-4)=f (4),∴f (6)<f (-5)<f (4). 答案:C第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.解析:因为x ∉Q ,所以x ∈∁R Q ,又Q ={x |-12≤x <72}, 故∁R Q ={x |x <-12,或x ≥72},故P -Q ={4}. 答案:{4}14.解析:由x 2+2x -3≥0,得x ≥1或x ≤-3, ∴函数减区间为(-∞,-3]. 答案:(-∞,-3]15.解析:∵f (x )是偶函数,∴f (-x )=kx 2-(k -1)x +2=kx 2+(k -1)x +2=f (x ). ∴k =1.∴f (x )=x 2+2,其递减区间为(-∞,0]. 答案:(-∞,0]16.解析:函数y =f (x )的图象如图5所示,则函数y =f (x )与y =12的图象的交点个数是4.图5答案:4三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分) 17.解:(1)A ∪B ={x |2≤x ≤8}∪{x |1<x <6}={x |1<x ≤8}. ∁U A ={x |x <2或x >8}. ∴(∁U A )∩B ={x |1<x <2}. (2)∵A ∩C ≠∅,∴a <8.18.解:由B ={x |x (x +4)(x -12)=0,x ∈Z },得B ={-4,0}.由A ∩B =A ,得A ⊆B .于是,A 有四种可能,即A =∅,A ={-4},A ={0},A ={-4,0}.以下对A 分类讨论:(1)若A =∅,则Δ=4(a +1)2-4a 2+4=8a +8<0,解得a <-1; (2)若A ={-4},则Δ=8a +8=0,解得a =-1.此时x 2+2(a +1)x +a 2-1=0可化为x 2=0,所以x =0,这与x =-4是矛盾的;(3)若A ={0},则由(2)可知,a =-1; (4)若A ={-4,0},则⎩⎪⎨⎪⎧Δ=8a +8>0,-2(a +1)=-4,a 2-1=0,解得a =1.综上可知,a 的取值范围是{a |a ≤-1,或a =1}.19.解:(1)证明:设x 1,x 2是R 上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=(-2x 1+m )-(-2x 2+m )=2(x 2-x 1),∵x 1<x 2,∴x 2-x 1>0. ∴f (x 1)>f (x 2).∴函数f (x )在R 上是减函数. (2)∵函数f (x )是奇函数,∴对任意x ∈R ,有f (-x )=-f (x ). ∴2x +m =-(-2x +m ).∴m =0.20.解:(1)设y =kx -0.4,由x =0.65,y =0.8,得k =0.2,所以y =15x -2(0.55≤x ≤0.75).(2)依题意,(1+15x -2)·(x -0.3)=1×(0.8-0.3)×(1+20%),解得x =0.6或x =0.5(舍去),所以水笔销售单价应调至0.6元. 21.解:(1)设f (x )=k 1x ,g (x )=k 2x ,其中k 1k 2≠0. ∵f (1)=1,g (1)=2,∴k 1×1=1,k 21=2. ∴k 1=1,k 2=2.∴f (x )=x ,g (x )=2x . (2)设h (x )=f (x )+g (x ),则h (x )=x +2x , ∴函数h (x )的定义域是(-∞,0)∪(0,+∞). ∵h (-x )=-x +2-x=-(x +2x )=-h (x ),∴函数h (x )是奇函数,即函数f (x )+g (x )是奇函数.(3)由(2)知h (x )=x +2x ,设x 1,x 2是(0,2]上的任意两个实数,且x 1<x 2, 则h (x 1)-h (x 2)=(x 1+2x 1)-(x 2+2x 2)=(x 1-x 2)+(2x 1-2x 2)=(x 1-x 2)(1-2x 1x 2)=(x 1-x 2)(x 1x 2-2)x 1x 2,∵x 1,x 2∈(0,2],且x 1<x 2,∴x 1-x 2<0,0<x 1x 2<2. ∴x 1x 2-2<0,(x 1-x 2)(x 1x 2-2)>0. ∴h (x 1)>h (x 2).∴函数h (x )在(0,2]上是减函数,函数h (x )在(0,2]上的最小值是h (2)=2 2.即函数f (x )+g (x )在(0,2]上的最小值是2 2.22.解:(1)由题意得⎩⎨⎧f (0)=0,f (12)=25,解得⎩⎪⎨⎪⎧a =1,b =0.所以f (x )=x 1+x 2. (2)证明:任取两数x 1,x 2,且-1<x 1<x 2<1,则f (x 1)-f (x 2)=x 11+x 21-x 21+x 22=(x 1-x 2)(1-x 1x 2)(1+x 21)(1+x 22).因为-1<x 1<x 2<1,所以x 1-x 2<0,x 1x 2<1,故1-x 1x 2>0,所以f (x 1)-f (x 2)<0,故f (x )在(-1,1)上是增函数.(3)因为f (x )是奇函数,所以由f (t -1)+f (t )<0,得f (t -1)<-f (t )=f (-t ).由(2)知, f (x )在(-1,1)上是增函数,所以-1<t -1<-t <1,解得0<t <12,所以原不等式的解集为{t |0<t <12}.。
高一数学必修一集合及函数概念单元测试题附答案解析
高一数学必修一集合与函数的概念单元测试附答案解析(时间:120分钟总分值:150分)一、选择题(本大题共12个小题,每题5分,共60分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的).设集合M=xx2+x=,x∈},N=xx2-x=,x∈R},那么M∪N=(){|20{|20 A.{0} B .{0,2} C .{-2,0} D .{-2,0,2}.设f:x→|x 是集合A到集合B的映射,假设A=-2,0,2},那么A∩B=()|{ A.{0} B .{2} C .{0,2} D .{-2,0}fx是定义在上的奇函数,f-3)=,那么以下各点在函数x图象上的是()3.()2)A.(3,-2)B.(3,2)C.(-3,-2)D.(2,-3).集合A ={0,1,2},那么集合 B = -yx∈A,y∈A中元素的个数是)4{}A .1B .3C .5D .9.假设函数fx 满足f (3x + )=x +,那么fx 的解析式是(5()9 8().fx =x+8B.x =x + 2C .f x =-x -4D.f x =x +或fxA )9 ()3 ()3)3(x - 4=-3.设fx x +3x>10,的值为=那么f(5)()6() f x +x≤,10A.16B .18C.21D.24.设T=(x,|ax+y-=,S=(x,y|x-y-b=},假设S∩T={(2,1)},那么73 0}a,b的值为()A .a=,b=-1.a=-,b=1 1B1C.a=1,b =1D.a=-1,b=-18.函数f(x)的定义域为(-1,0),那么函数f(2x+1)的定义域为(A.(-1,1)C.(-1,0)9.A={0,1},B={-1,0,1},f是从A到B映射的对应关系,那么满足f(0)>f(1)的映射有(A.3个B.4个C.5个D.6个10.定义在R上的偶函数)满足:对任意的x12∈(-∞,0](x12),有(2-[2,≠-f(x1)]>0,那么当n∈N*时,有().fnfn-1)<n+1)B.fn-1)<-nfn+)A(-)<)<.fn+1)<-nfn-1)D.fn+1)<n-1)<-nC)<)11.函数f(x)是定义在R上的奇函数,以下说法:①f(0)=0;②假设f(x)在[0,+∞)上有最小值为-1,那么f(x)在(-∞,0]上有最大1;③假设f(x)在[1,+∞)上增函数,f(x)在(-∞,-1]上减函数;④假设x>0,f)=x2-x,<,f x=-x2-x其中正确法的个数是() 2() 2.A.1个 B .2个C.3个 D .4个.f x足任意的数a,b都有fa+b=f a·f b且f f2f4f61 2())()()(1)=2,f1+f3+f5 f2021+⋯+f2021=( )A.1006 B .2021 C .2021 D .1007二、填空(本大共4小,每小5分,共20分.把答案填在中横上)x+113.函数y=的定域________.x.f xx2+1x≤0,x=,x==假设f(________.1 4()x x,)10-2>.假设函数f=x+abx+a常数a,b∈)是偶函数,且它的域-∞,]15()()(2)(函数的解析式f(x)=________.16.在一定范内,某种品的量y吨与价x元之足一次函数关系,如果1000吨,每吨800元,2000吨,每吨700元,那么客 400吨,价是________元.三、解答(本大共6小,共70分.解答写出必要的文字明、明程或演算步)17.(本小题总分值10分)集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.求A∪B,(U A)∩B;假设A∩C≠,求a的取值范围.21+x求f(x)的定义域;判断f(x)的奇偶性;1(3)求证:f x+f(x)=0.19.(本小题总分值12分)y=f(x)是定义在R上的偶函数,当x≥0时,f(x)=x2 2x.求当x<0时,f(x)的解析式;作出函数f(x)的图象,并指出其单调区间.2x+120.(本小题总分值12分)函数f(x)=x+1,(1)判断函数在区间[1,+∞)上的单调性,并用定义证明你的结论.(2)求该函数在区间[1,4]上的最大值与最小值.21.(本小题总分值12分)函数f(x)的定义域为(0,+∞),且f(x)为增函数,f(x·y)f(x)+f(y).x求证:f y=f(x)-f(y);假设f(3)=1,且f(a)>f(a-1)+2,求a的取值范围.22.(本小题总分值12分)某商场经销一批进价为每件30元的商品,在市场试销中发现,此商品的销售单价x(元)与日销售量y(件)之间有如下表所示的关系:x 30 40 45 50y 60 30 15 0在所给的坐标图纸中,根据表中提供的数据,描出实数对(x,y)的对应点,并确定y与x的一个函数关系式.设经营此商品的日销售利润为P元,根据上述关系,写出P关于x的函数关系式,并指出销售单价x为多少元时,才能获得最大日销售利润1 .解析M=x xx+2)=.,x∈R}={,-2},N=x xx-2)=,x∈R}={0,2},所{|({|(0以M∪N={-2,0,2}.答案D2. 解析依题意,得B={0,2},∴A∩B={0,2}.答案C3. 解析∵f(x)是奇函数,∴f(-3)=-f(3).又f(-3)=2,∴f(3)=-2,∴点(3,-2)在函数f(x)的图象上.答案 A解析逐个列举可得.x=0,y=0,1,2时,x-y=0,-1,-2;x=1,y=0,1,2时,x-y=1,0,-;x=,y=,1,2时,x-y=2,1,0.根据集合中元素的互异性可知集合B12的元素为-2,-1,0,1,2.共5个.答案C5 .解析(3x+)=x+=x+2)+,∴f x=x+.答案∵983(32()36 .解析f(5)=f(5+5)=f(10)=f(15)=+=18.答案1537.解析2a+1-3=0,a=1,答案C依题意可得方程组b=,b=1.2-1-018.解析由-1<2x+1<0,解得-1<x<-2,故函数f(2x+1)的定义域为-1,-.答案B9. 解析当f(0)=1时,f(1)的值为0或-1都能满足f(0)>f(1);当f(0)=0时,只有f(1)=-1满足f(0)>f(1);当f(0)=-1时,没有f(1)的值满足f(0)>f(1),故有3个.答案 A∴10.解析由题设知,f(x)在(-∞,0]上是增函数,又 f(x)为偶函数,∴∴∴f(x)在[0,+∞)上为减函数.∴∴∴f(n+1)<f(n)<f(n-1).又f(-n)=f(n),∴f(n+1)<f(-n)<f(n-1).答案 C11. 解析①f(0)=0正确;②也正确;③不正确,奇函数在称区上具有相同的性;④正确.答案 C1 2.解析因任意的数a,b都有fa+b=f a·f b且f(1)=,由f(2)=)()()2f(2)f(1)·f(1),得f(1)=f(1)=2,f(4)由f(4)=f(3)·f(1),得f(3)=f(1)=2,⋯⋯由f(2021)=f(2021)·f(1),f(2021)得f(2021)=f(1)=2,f(2) f(4) f(6) f(2021)f(1)+f(3)+f(5)+⋯+f(2021)=1007×2=2021.答案 Bx+1≥1,13. 解析由得函数的定域{x|x≥-1,且x≠0}.x≠0答案xx≥-,且x≠} {|114. 解析当x≤0,x2+1=10,∴x2=9,∴x=-3.当x>0时,-2x=10,x=-5(不合题意,舍去).∴x=-3.答案-315.解析x=x+abx+=bx2+(2a+abx+a2为偶函数,那么a+ab=,∴a=)()(2)200,或b=-2.又f(x)的值域为(-∞,4],∴a≠0,b=-2,∴2a2=4.f(x)=-2x2+4.答案-2x2+4x=800,16. 解析设一次函数y=ax+b(a≠0),把y=1000,x=700,a=-10,和,代入求得y =b=9000. 2000y=-10x+9000,于是当y=400时,x=860. 答案860解(1)A∪B={x|2≤x≤8}∪{x|1<x<6}={x|1<x≤8}.UA={x|x<2,或x>8}.(U A)∩B={x|1<x<2}.∵A∩C≠,∴a<8.解(1)由解析式知,函数应满足1-x 2≠0,即x≠±1.∴函数f(x)的定义域为{x∈R|x≠±1}.由(1)知定义域关于原点对称,1+(-x)21+x 2(-x)=1-(-x)2=1-x 2=f(x).∴f(x)为偶函数.12(3)证明:∵f=1+x2+1,12 =-11-x1+x 2f(x)=1-x 2,1x2+1+x21f x+f(x)=x2-1+1-x2x2+1 x2+1=x2-1-x2-1=0.19.解(1)当x<0时,-x>0,∴∴∴f(-x)=(-x)2-2(-x)=x2+2x.又f(x)是定义在R上的偶函数,f(-x)=f(x).∴当x<0时,f(x)=x2+2x.(2)由(1)知,f(x)=x2-2x (x≥0),x2+2x (x<0).作出f(x)的图象如下列图:由图得函数f(x)的递减区间是(-∞,-1],[0,1].f(x)的递增区间是[-1,0],[1,+∞).解(1)函数f(x)在[1,+∞)上是增函数.证明如下:任取x1,x2∈[1,+∞),且x1<x2,x1+1x2+1x1-x222(x1)-f(x2)=x1+1-x2+1=(x1+1)(x2+1),∵x1-x2<0,(x1+1)(x2+1)>0,所以f(x1)-f(x2)<0,即f(x1)<f(x2),所以函数f(x)在[1,+∞)上是增函数.93(2)由(1)知函数f(x)在[1,4]上是增函数,最大值f(4)=5,最小值f(1)=2.21.解 (1)证明:∵f(x)=f x ·y =f +f(y),(y≠0)yxf y =f(x)-f(y).(2)∵f(3)=1,∴f(9)=f(3·3)=f(3)+f(3)=2.f(a)>f(a -1)+2=f(a -1)+f(9)=f[9(a -1)].又f(x)在定义域(0,+∞)上为增函数,a ,>a 9∴a -1>0, ∴ 1<<8.a>9(a -1),22. 解(1)由题表作出(30,60),(40,30),(45,15),(50,0)的对应点,它们近似地分布在一条直线上,如下列图.50k +b =0, k =-3,设它们共线于直线 y =kx +b ,那么45k+b=15,b=150.∴y=-3x+150(0≤x≤50,且x∈N*),经检验(30,60),(40,30)也在此直线上.*∴所求函数解析式为y=-3x+150(0≤x≤50,且x∈N).(2)依题意P=y(x-30)=(-3x+150)(x-30)=-3(x-40)2+300.∴当x=40时,P有最大值300,故销售单价为40元时,才能获得最大日销售利润.。
高中数学必修一第一章《集合与函数概念》单元测试卷及答案
高中数学必修一第一章《集合与函数概念》单元测试卷及答案(2套)单元测试题一一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}1,0,1A =-,{}2,0,2B =-,则集合A B =( )A .0B .∅C .{}0D .{}12.设全集U =R ,集合22{|}M y y x x U ∈==+,,集合3{|}N y y x x U ∈==,,则M N 等于( )A .{1,3,2,6}B .{(1,3),(2,6)}C .MD .{3,6}3.如图1所示,阴影部分表示的集合是( ) A .()UB AB .()UA BC .()UABD .()UAB图14.设全集U ={x |0<x <10,x ∈Z },A ,B 是U 的两个真子集,()(){}1,9UUA B =,A ∩B ={2},(){}4,6,8UA B =,则( )A .5A ∈,且5∉B B .5∉A ,且5∉BC .5A ∈,且5B ∈D .5∉A ,且5B ∈5.下列各图中,可表示函数y =f (x )的图象的只可能是( )6.函数()132f x x x =+++的定义域是( ) A .[)3,-+∞B .[)3,2--C .[)()3,22,---+∞D .()2,-+∞7.数()f x ,()g x 由下列表格给出,则()3f g =⎡⎤⎣⎦( )A .4B .3C .2D .18.已知函数()2,0,0x x f x x x ≥⎧⎪⎨<⎪⎩=,则2[()]f f -的值是( )A .2B .2-C .4D .4-9.函数223y x x -=+,12x -≤≤的值域是( ) A .RB .[3,6]C .[2,6]D .[2,)+∞10.已知函数f (x )()()00,∞∞-,+上的奇函数,且当x <0时,函数的部分图象如图4所示,则不等式xf (x )<0的解集是( )图4A .()2,112(),--B .()2,10,)(2,(1)--+∞C .()(),21,01(,2)--∞-D .(),21,00,12,()()()∞-+∞--11.定义在R 上的偶函数f (x )在[0,7]上是增函数,在[7,)+∞上是减函数,f (7)=6,则f (x )( ) A .在[]7,0-上是增函数,且最大值是6 B .在[]7,0-上是减函数,且最大值是6 C .在[]7,0-上是增函数,且最小值是6 D .在[]7,0-上是减函数,且最小值是612.定义在R 上的偶函数f (x )满足:对任意12(,]0x x -∈∞, (x 1≠x 2),都有2121>0x x f x f x -()-(),则( ) A .5()f -<f (4)<f (6) B .f (4)<5()f - <f (6) C .f (6)<5()f -<f (4)D .f (6)<f (4)<5()f -二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.设P 和Q 是两个集合,定义集合{|}P Q x x P x Q -=∈∉,且,若P ={1,2,3,4},Q=x ⎧⎫⎪⎪∈⎨⎬⎪⎪⎩⎭R ,则P Q -=________.14.函数y =的单调递减区间是________.15.若函数()2(12)f x kx k x -=++是偶函数,则f (x )的递减区间是________.16.设函数()1,0221,02x x x x f x x ⎧-<<⎪=⎨--≤≥⎪⎩或,则函数y =f (x ),y =12的图象的交点个数是________.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知集合A ={x |2≤x ≤8},B ={x |1<x <6},C ={x |x >a },U =R . (1)求A ∪B ,()UA B ;(2)若A C ≠∅,求a 的取值范围.18.(12分)设A ={x |x 2+2(a +1)x +a 2-1=0},{|(02)14B x x x x ⎛⎫ ⎪⎝-⎭=+=,x ∈Z}.若A ∩B =A ,求a 的取值范围.19.(12分)已知函数f (x )=-2x +m ,其中m 为常数. (1)求证:函数f (x )在R 上是减函数; (2)当函数f (x )是奇函数时,求实数m 的值.20.(12分)某公司生产的水笔上年度销售单价为08.元,年销售量为1亿支.本年度计划将销售单价调至055075.~.元(含端点值),经调查,若销售单价调至x 元,则本年度新增销售量y (亿支)与04x -.成反比,且当065x =.时,08y =.. (1)求y 与x 的函数关系式;(2)若每支水笔的成本价为03.元,则水笔销售单价调至多少时,本年度该公司的收益比上年度增加20%?21.(12分)已知函数f (x )是正比例函数,函数g (x )是反比例函数,且f (1)=1,g (1)=2, (1)求函数f (x )和g (x );(2)判断函数f (x )+g (x )的奇偶性.(3)求函数f (x )+g (x )在(上的最小值.22.(12分)函数f (x )=21ax bx ++是定义在()1,1-上的奇函数,且1225f ⎛⎫= ⎪⎝⎭. (1)求f (x )的解析式;(2)证明f (x )在()1,1-上为增函数; (3)解不等式f (t -1)+f (t )<0.答 案一、选择题 1.【答案】C【解析】因为集合{}1,0,1A =-,{}2,0,2B =-,所以{}0A B =,故选C .2.【答案】C【解析】,[)2M ∞=+,N =R ..故选C . 3.【答案】A【解析】因为阴影部分既在集合UB 中又在集合A 中,所以阴影部分为()UB A ,故选A .4.【答案】A【解析】可借助Venn 图(如图2)解决,数形结合.故选A .图25.【答案】A【解析】根据函数的概念知,只有“一对一”或“多对一”对应才能构成函数关系. 故选A . 6.【答案】C【解析】由题可得:30320x x x ⎧⎨≥≠⎩+⇒≥-+且2x ≠-,故选C . 7.【答案】A【解析】由表可知()32g =,()()324f g f ==⎡⎤⎣⎦,故选A . 8.【答案】C【解析】∵2x =-,而20-<,∴2()(224)f --==. 又4>0,∴()[()244]f f f -==.故选C . 9.【答案】C【解析】画出函数223y x x -=+,12x -≤≤的图象,如图3所示,观察函数的图象可得图象上所有点的纵坐标的取值范围是[2,6],所以值域是[2,6].故选C . 10.【答案】D【解析】xf (x )<0⇔x 与f (x )异号,由函数图象及奇偶性易得结论.故选D . 11.【答案】B【解析】∵f (x )是偶函数,∴f (x )的图象关于y 轴对称. ∴f (x )在[]7,0-上是减函数,且最大值为6.故选B . 12.【答案】C【解析】∵对任意12(,]0x x -∈∞,(x 1≠x 2),都有2121>0x x f x f x -()-(),∴对任意12(,]0x x -∈∞,,若x 1<x 2,总有f (x 1)<f (x 2), ∴f (x )在(]0-∞,上是增函数.∴()()()456f f f --->>. 又∵函数f (x )是偶函数,∴()()66f f -=,()()44f f -=, ∴f (6)<5()f -<f (4).故选C .二、填空题 13.【答案】{4}【解析】因为x Q ∉,所以x Q ∈R,又17Q=x|x<22⎧⎫≤⎨⎬⎩⎭, 故∁17|22Qx x x ⎧⎫=<≥⎨⎬⎩⎭R ,或,故P Q -={4}.14.【答案】(],3-∞-【解析】由2230x x +-≥,得x ≥1或3x ≤-, ∴函数减区间为(],3-∞-. 15.【答案】(]0-∞,【解析】∵f (x )是偶函数,∴()2212()(12)()f x kx k x kx k x f x -+=-+-==-+. ∴1k =.∴f (x )=x 2+2,其递减区间为(]0-∞,. 16.【答案】4【解析】函数y =f (x )的图象如图5所示, 则函数y =f (x )与y =12的图象的交点个数是4.图5三、解答题 17.【答案】(1){}|18AB x x =<≤,()UA B ={x |1<x <2};(2)a <8.【解析】(1)A ∪B ={x |2≤x ≤8}∪{x |1<x <6}={x |1<x ≤8}.UA ={x |x <2或x >8}.∴()UA B ={x |1<x <2}.(2)∵A C ≠∅,∴a <8. 18.【答案】1,{}1|a a a ≤-或=.【解析】由{|(02)14B x x x x ⎛⎫ ⎪⎝-⎭=+=,x ∈Z},得,0{}4B =-.由A ∩B =A ,得A ⊆B .于是,A 有四种可能, 即A ∅=,4{-}A =,A ={0},,{}40A -=. 以下对A 分类讨论:(1)若A ∅=,则Δ=4(a +1)2-4a 2+4=8a +8<0,解得a <-1; (2)若4{-}A =,则Δ=8a +8=0,解得a =-1. 此时x 2+2(a +1)x +a 2-1=0可化为x 2=0, 所以x =0,这与x =-4是矛盾的; (3)若A ={0},则由(2)可知,a =-1;(4)若A ={-4,0},则()288021410a a a ∆⎧=+>⎪-+=-⎨⎪-=⎩,解得a =1.综上可知,a 的取值范围1,{}1|a a a ≤-或=. 19.【答案】(1)见解析;(2)0.【解析】(1)证明:设x 1,x 2是R 上的任意两个实数,且x 1<x 2, 则f (x 1)-f (x 2)=(-2x 1+m )-2()2x m -+=2(x 2-x 1), ∵x 1<x 2,∴x 2-x 1>0.∴f (x 1)>f (x 2) ∴函数f (x )在R 上是减函数. (2)∵函数f (x )是奇函数, ∴对任意x ∈R ,有f (-x )=-f (x ). ∴2x +m =-(-2x +m ).∴m =0. 20.【答案】(1)y =152x -00)555(7x ≤≤..;(2)06.元.【解析】(1)设y =0.4kx -,由065x =.,08y =.,得02k =., 所以y =152x -00)555(7x ≤≤... (2)依题意,1()1031()(0)8031202%5x x ⎛⎫+⋅-⨯-⨯ ⎪⎝⎭--.=.., 解得x =06.或x =05.(舍去),所以水笔销售单价应调至06.元.21.【答案】(1)f (x )=x ,g (x )=2x;(2)奇函数;(3) 【解析】(1)设()1f x k x =,g (x )=2k x,其中k 1k 2≠0. ∵f (1)=1,g (1)=2,∴111k ⨯=,221k =. ∴k 1=1,k 2=2.∴f (x )=x ,g (x )=2x. (2)设h (x )=f (x )+g (x ),则()2h x x x+=, ∴函数h (x )的定义域是()()0,,0∞-∞+.∵h (-x )=-x +2x -=-2x x ⎛⎫+ ⎪⎝⎭=-h (x ),∴函数h (x )是奇函数,即函数f (x )+g (x )是奇函数. (3)由(2)知()2h x x x+=,设x 1,x 2是(上的任意两个实数,且x 1<x 2,则h (x 1)-h (x 2)=112x x ⎛⎫+ ⎪⎝⎭-222x x ⎛⎫+ ⎪⎝⎭=(x 1-x 2)+1222x x ⎛⎫- ⎪⎝⎭=(x 1-x 2)1221x x ⎛⎫- ⎪⎝⎭=()()1212122x x x x x x --, ∵x 1,x 2∈(,且x 1<x 2, ∴x 1-x 2<0,0<x 1x 2<2.∴x 1x 2-2<0,(x 1-x 2)(x 1x 2-2)>0. ∴h (x 1)>h (x 2).∴函数h (x )在(上是减函数,函数h (x )在(上的最小值是h=即函数f (x )+g (x )在(上的最小值是22.【答案】(1)f (x )=21xx+;(2)见解析;(3)1t|0<t<2⎧⎫⎨⎬⎩⎭. 【解析】(1)由题意得001225f f ()=⎧⎪⎨⎛⎫= ⎪⎪⎝⎭⎩,解得10a b =⎧⎨=⎩,所以f (x )=21x x+. (2)证明:任取两数x 1,x 2,且-1<x 1<x 2<1,则12121212222212121()()=1111x x x x x x f x f x x x x x (-)(-)--=++(+)(+). 因为-1<x 1<x 2<1,所以x 1-x 2<0,x 1x 2<1,故1-x 1x 2>0, 所以f (x 1)-f (x 2)<0,故f (x )在()1,1-上是增函数.(3)因为f (x )是奇函数,所以由f (t -1)+f (t )<0,得f (t -1)<-f (t )=f (-t ). 由(2)知,f (x )在()1,1-上是增函数, 所以-1<t -1<-t <1,解得0<t <12, 所以原不等式的解集为1t|0<t<2⎧⎫⎨⎬⎩⎭.单元测试题二一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{|20}A x x =-<,{}1,2,3B =,则A B =( )A .{}1,2,3B .{}1C .{}3D .∅2.设集合{}=1,2M ,则满足条件{}=1,2,3,4M N 的集合N 的个数是( )A .1B .3C .2D .43.下列函数中,在()0,2上为增函数的是( ) A .32y x =-+B .3y x=C .245y x x -=+D .23810y x x +=-4.若奇函数()f x 在[]3,7上是增函数,且最小值是1,则它在[7,3]--上是( ) A .增函数且最小值是1- B .增函数且最大值是1- C .减函数且最大值是1-D .减函数且最小值是1-5.已知集合{|P x y =,集合{|Q y y =,则P 与Q 的关系是( ) A .P Q = B .P Q ⊆ C .P Q ⊇D .P Q =∅6.设()()()F x f x f x =+-,x ∈R ,若,2π⎡⎤-π-⎢⎥⎣⎦是函数F (x )的单调递增区间,则一定是()F x 单调递减区间的是( ) A .,02π⎡⎤-⎢⎥⎣⎦B .,2π⎡⎤π⎢⎥⎣⎦C .23π⎡⎤π,⎢⎥⎣⎦D .,223π⎡⎤π⎢⎥⎣⎦。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 集合与函数概念综合素能检测
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符号题目要求的。
)
1.已知集合A ={0,1,2,3,4,5},B ={1,3,6,9},C ={3,7,8},则(A ∩B )∪C 等于( ) A .{0,1,2,6,8} B .{3,7,8} C .{1,3,7,8}
D .{1,3,6,7,8}
2.(09·陕西文)定义在R 上的偶函数f (x )满足:对任意的x 1,x 2∈[0,+∞)(x 1≠x 2),有f (x 2)-f (x 1)
x 2-x 1
<0,则( )
A .f (3)<f (-2)<f (1)
B .f (1)<f (-2)<f (3)
C .f (-2)<f (1)<f (3)
D .f (3)<f (1)<f (-2)
3.已知f (x ),g (x )对应值如表.
则f (g (1))的值为( ) A .-1 B .0 C .1
D .不存在
4.已知函数f (x +1)=3x +2,则f (x )的解析式是( ) A .3x +2 B .3x +1 C .3x -1
D .3x +4
∴f (t )=3(t -1)+2=3t -1,∴f (x )=3x -1.
5.已知f (x )=⎩
⎪⎨⎪⎧
2x -1 (x ≥2)
-x 2+3x (x <2),则f (-1)+f (4)的值为( )
A .-7
B .3
C .-8
D .4
6.f (x )=-x 2
+mx 在(-∞,1]上是增函数,则m 的取值范围是( ) A .{2}
B .(-∞,2]
C .[2,+∞)
D .(-∞,1]
7.定义集合A 、B 的运算A *B ={x |x ∈A ,或x ∈B ,且x ∉A ∩B },则(A *B )*A 等于( ) A .A ∩B B .A ∪B C .A
D .B
8.已知函数f (x )=⎩
⎪⎨⎪⎧
x +2, x ≤0,
-x +2, x >0,则不等式f (x )≥x 2的解集为( )
A .[-1,1]
B .[-2,2]
C .[-2,1]
D .[-1,2]
9.设函数f (x )(x ∈R )为奇函数,f (1)=1
2,f (x +2)=f (x )+f (2),则f (5)=( )
A .0
B .1 C.5
2
D .5
10、二次函数245y x mx =-+的对称轴为2x =-,则当1x =时,y 的值为 ( ) A 、7- B 、1 C 、17 D 、25 11、下列四个图像中,是函数图像的是 ( )
A 、(1)
B 、(1)、(3)、(4)
C 、(1)、(2)、(3)
D 、(3)、(4) 12、)(x f 是定义在R 上的奇函数,下列结论中,不正确...
的是(
)
(1) (2) (3)
(4)
A 、()()0f x f x -+=
B 、()()2()f x f x f x --=-
C 、()()0f x f x - ≤
D 、()1()
f x f x =--
13、定义在R 上的函数f x 对任意两个不相等实数,a b ,总有()()0f a f b a b
->-成立,则必
有( )
A 、函数()f x 是先增加后减少
B 、函数()f x 是先减少后增加
C 、()f x 在R 上是增函数
D 、()f x 在R 上是减函数
二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.(2010·江苏,1)设集合A ={-1,1,3},B ={a +2,a 2+4},A ∩B ={3},则实数a =________.
14.已知函数y =f (n )满足f (n )=⎩⎪⎨
⎪
⎧
2 (n =1)3f (n -1) (n ≥2)
,则f (3)=________.
15、已知
(0)1,()(1)()f f n nf n n N +==-∈,则(4)f = 。
16、已知()y f x =在定义域(1,1)-上是减函数,且(1)(21)f a f a -<-,则a 的取值范围是 。
17、设2
2 (1)
() (12)2 (2)x x f x x x x x +-⎧⎪=-<<⎨⎪⎩
≤≥,若()3f x =,则x = 。
三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤)
18、证明:函数2()1f x x =+是偶函数,且在[)0,+∞上是增加的。
19.(本题满分12分)图中给出了奇函数f(x)的局部图象,已知f(x)的定义域为[-5,5],试补全其图象,并比较f(1)与f(3)的大小.
20、对于二次函数2
=-+-,
483
y x x
(1)求函数的最大值或最小值;
(2)分析函数的单调性。