2017年中考数学试题分项版解析汇编第03期专题13操作性问题Word版含解析

合集下载

中考数学试题分项版解析汇编(第03期)专题13 操作性问题(含解析)(2021年整理)

中考数学试题分项版解析汇编(第03期)专题13 操作性问题(含解析)(2021年整理)

2017年中考数学试题分项版解析汇编(第03期)专题13 操作性问题(含解析)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年中考数学试题分项版解析汇编(第03期)专题13 操作性问题(含解析))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年中考数学试题分项版解析汇编(第03期)专题13 操作性问题(含解析)的全部内容。

专题13 操作性问题一、选择题1.(2017广西四市)如图,△ABC中,AB>AC,∠CAD为△ABC的外角,观察图中尺规作图的痕迹,则下列结论错误的是()A.∠DAE=∠B B.∠EAC=∠C C.AE∥BC D.∠DAE=∠EAC 【答案】D.考点:1.作图-复杂作图;2.平行线的判定与性质;3.三角形的外角性质.2.(2017河北省)已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB边重合,如图所示,按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C 顺时针旋转,使MN边与CD边重合,完成第二次旋转;…在这样连续6次旋转的过程中,点B,M间的距离可能是()A.1。

4 B.1.1 C.0.8 D.0。

5【答案】C.【解析】试题分析:如图,在这样连续6次旋转的过程中,点M的运动轨迹是图中的红线,观察图象可知点B,M间的距离大于0。

5小于等于1,故选C.考点:1.正多边形和圆;2.旋转的性质;3.操作型;4.综合题.3.(2017湖北省襄阳市)如图,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于12BD的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,则AF的长为()A.5 B.6 C.7 D.8【答案】B.考点:1.作图—基本作图;2.含30度角的直角三角形.二、填空题4.(2017山东省济宁市)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧在第二象限内交于点P(a,b),则a与b的数量关系是.【答案】a+b=0.考点:1.作图—基本作图;2.坐标与图形性质;3.点到直线的距离.5.(2017河北省)如图,依据尺规作图的痕迹,计算∠α=°.【答案】56.【解析】试题分析:∵四边形ABCD的矩形,∴AD∥BC,∴∠DAC=∠ACB=68°.∵由作法可知,AF是∠DAC的平分线,∴∠EAF=12∠DAC=34°.∵由作法可知,EF是线段AC的垂直平分线,∴∠AEF=90°,∴∠AFE=90°﹣34°=56°,∴∠α=56°.故答案为:56.考点:1.作图—基本作图;2.操作型.6.(2017浙江省绍兴市)以Rt△ABC的锐角顶点A为圆心,适当长为半径作弧,与边AB、AC 各相交于一点,再分别以两个交点为圆心,适当长为半径作弧,过两弧的交点与点A作直线,与边BC交于点D.若∠ADB=60°,点D到AC的距离为2,则AB的长为.【答案】23.考点:1.作图-尺规作图的定义;2.角平分线的性质.三、解答题7.(2017四川省眉山市)在如图的正方形网格中,每一个小正方形的边长为1.格点三角形ABC (顶点是网格线交点的三角形)的顶点A、C的坐标分别是(﹣4,6),(﹣1,4).(1)请在图中的网格平面内建立平面直角坐标系;(2)请画出△ABC关于x轴对称的△A1B1C1;(3)请在y轴上求作一点P,使△PB1C的周长最小,并写出点P的坐标.【答案】(1)答案见解析;(2)答案见解析;(3)P(0,2).【解析】试题分析:(1)根据A点坐标建立平面直角坐标系即可;(2)分别作出各点关于x轴的对称点,再顺次连接即可;(3)作出点B关于y轴的对称点B2,连接B2交y轴于点P,则P点即为所求.试题解析:(1)如图所示;(2)如图,即为所求;考点:1.作图﹣轴对称变换;2.勾股定理;3.轴对称﹣最短路线问题;4.最值问题.8.(2017山东省枣庄市)如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A (2,2),B(4,0),C(4,﹣4).(1)请在图中,画出△ABC向左平移6个单位长度后得到的△A1B1C1;(2)以点O为位似中心,将△ABC缩小为原来的12,得到△A2B2C2,请在图中y轴右侧,画出△A 2B2C2,并求出∠A2C2B2的正弦值.【答案】(1)作图见解析;(2)作图见解析,sin∠A2C2B2=10 10.【解析】试题分析:(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用位似图形的性质得出对应点位置,再利用锐角三角三角函数关系得出答案.试题解析:(1)如图所示:△A1B1C1,即为所求;考点:1.作图﹣位似变换;2.作图﹣平移变换;3.解直角三角形.9.(2017广东省)如图,在△ABC中,∠A>∠B.(1)作边AB的垂直平分线DE,与AB,BC分别相交于点D,E(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE,若∠B=50°,求∠AEC的度数.【答案】(1)作图见见解析;(2)100°.【解析】试题分析:(1)根据题意作出图形即可;(2)由于DE是AB的垂直平分线,得到AE=BE,根据等腰三角形的性质得到∠EAB=∠B=50°,由三角形的外角的性质即可得到结论.试题解析:(1)如图所示;(2)∵DE是AB的垂直平分线,∴AE=BE,∴∠EAB=∠B=50°,∴∠AEC=∠EAB+∠B=100°.考点:1.作图—基本作图;2.线段垂直平分线的性质.10.(2017广西四市)如图,在平面直角坐标系中,△ABC的三个顶点分别为A(﹣1,﹣2),B (﹣2,﹣4),C(﹣4,﹣1).(1)把△ABC向上平移3个单位后得到△A1B1C1,请画出△A1B1C1并写出点B1的坐标;(2)已知点A与点A2(2,1)关于直线l成轴对称,请画出直线l及△ABC关于直线l对称的△A 2B2C2,并直接写出直线l的函数解析式.【答案】(1)作图见解析;(2)y=﹣x.【解析】试题分析:(1)根据图形平移的性质画出△A1B1C1并写出点B1的坐标即可;(2)连接AA2,作线段AA2的垂线l,再作△ABC关于直线l对称的△A2B2C2即可.试题解析:(1)如图,△A1B1C1即为所求,B1(﹣2,﹣1);(2)如图,△A2B2C2即为所求,直线l的函数解析式为y=﹣x.考点:1.作图﹣轴对称变换;2.待定系数法求一次函数解析式;3.作图﹣平移变换.11.(2017江苏省盐城市)如图,△ABC是一块直角三角板,且∠C=90°,∠A=30°,现将圆心为点O的圆形纸片放置在三角板内部.(1)如图①,当圆形纸片与两直角边AC、BC都相切时,试用直尺与圆规作出射线CO;(不写作法与证明,保留作图痕迹)(2)如图②,将圆形纸片沿着三角板的内部边缘滚动1周,回到起点位置时停止,若BC=9,圆形纸片的半径为2,求圆心O运动的路径长.【答案】(1)作图见解析;(2)153.(2)如图2,圆心O 的运动路径长为12OO O C ∆,过点O 1作O 1D ⊥BC 、O 1F ⊥AC 、O 1G ⊥AB ,垂足分别为点D 、F 、G ,过点O 作OE ⊥BC ,垂足为点E ,连接O 2B ,过点O 2作O 2H ⊥AB ,O 2I ⊥AC ,垂足分别为点H 、I ,在Rt △ABC 中,∠ACB =90°、∠A =30°,∴AC =tan 30BC=3=93,AB =2BC =18,∠ABC =60°,∴C △ABC =9+93+18=27+93,∵O 1D ⊥BC 、O 1G ⊥AB ,∴D 、G 为切点,∴BD =BG ,在Rt △O 1BD 和Rt △O 1BG 中,∵BD =BG ,O 1B =O 1B ,∴△O 1BD ≌△O 1BG (HL),∴∠O 1BG =∠O 1BD =30°,在Rt △O 1BD 中,∠O 1DB =90°,∠O 1BD =30°,∴BD =1tan 30O D =3=23,∴OO 1=9﹣2﹣23=7﹣23,∵O 1D =OE =2,O 1D ⊥BC ,OE ⊥BC ,∴O 1D ∥OE ,且O 1D =OE ,∴四边形OEDO 1为平行四边形,∵∠OED =90°,∴四边形OEDO 1为矩形,同理四边形O 1O 2HG 、四边形OO 2IF 、四边形OECF 为矩形,又OE =OF ,∴四边形OECF 为正方形,∵∠O 1GH =∠CDO 1=90°,∠ABC =60°,∴∠GO 1D =120°,又∵∠FO 1D =∠O 2O 1G =90°,∴∠OO 1O 2=360°﹣90°﹣90°=60°=∠ABC ,同理,∠O 1OO 2=90°,∴△OO 1O 2∽△CBA ,∴1212OO O ABCC O O C BC ∆∆=1272392793C -=+,∴12OO O C ∆ =153+即圆心O 运动的路径长为153+考点:1.轨迹;2.切线的性质;3.作图—复杂作图;4.综合题.12.(2017浙江省台州市)在平面直角坐标系中,借助直角三角板可以找到一元二次方程的实数根.比如对于方程2520-+=,操作步骤是:x x第一步:根据方程的系数特征,确定一对固定点A(0,1),B(5,2);第二步:在坐标平面中移动一个直角三角板,使一条直角边恒过点A,另一条直角边恒过点B;第三步:在移动过程中,当三角板的直角顶点落在x轴上点C处时,点C的横坐标m即为该方程的一个实数根(如图1);第四步:调整三角板直角顶点的位置,当它落在x轴上另一点D处时,点D的横坐标n即为该方程的另一个实数根.(1)在图2中,按照“第四步”的操作方法作出点D(请保留作出点D时直角三角板两条直角边的痕迹);(2)结合图1,请证明“第三步”操作得到的m就是方程2520-+=的一个实数根;x x(3)上述操作的关键是确定两个固定点的位置,若要以此方法找到一元二次方程20++=ax bx c (a≠0,24-≥0)的实数根,请你直接写出一对固定点的坐标;b ac(4)实际上,(3)中的固定点有无数对,一般地,当m1,n1,m2,n2与a,b,c之间满足怎样的关系时,点P(m1,n1),Q(m2,n2)就是符合要求的一对固定点?【答案】(1)作图见解析;(2)证明见解析;(3)A(0,1),B(﹣ba,ca)或A(0,1a),B(﹣ba,c)等;(4)12bm ma+=-,1212m m n n+=ca.【解析】试题分析:(1)根据“第四步"的操作方法作出点D即可;(3)方程20ax bx c++=(a≠0)可化为20b cx xa a++=,模仿研究小组作法可得一对固定点的坐标;(4)先设方程的根为x,根据三角形相似可得1212n m xx m n-=-,进而得到2121212()0x m m x m m n n-+++=,再根据20ax bx c++=,可得20b cx xa a++=,最后比较系数可得m1,n1,m2,n2与a,b,c之间的关系.试题解析:(1)如图所示,点D即为所求;(2)如图所示,过点B作BD⊥x轴于点D,根据∠AOC=∠CDB=90°,∠ACO=∠CBD,可得△AOC∽△CDB,∴AO OCCD BD=,∴152mm=-,∴m(5﹣m)=2,∴2520m m-+=,∴m是方程2520x x-+=的实数根;(3)方程20ax bx c ++=(a ≠0)可化为20b cx x a a++= ,模仿研究小组作法可得:A(0,1),B(﹣b a ,c a )或A (0,1a ),B (﹣b a,c )等;(4)如图,P (m 1,n 1),Q (m 2,n 2),设方程的根为x ,根据三角形相似可得1212n m xx m n -=-,上式可化为2121212()0x m m x m m n n -+++=,又∵20ax bx c ++=,即20b cx x a a++=,∴比较系数可得12b m m a +=-,1212m m n n +=ca.考点:1.三角形综合题;2.一元二次方程的解;3.相似三角形的判定与性质;4.阅读型;5.操作型;6.压轴题.。

2017年中考数学试题分类汇编-13操作性问题(第2部分)(word原题及解析版)

2017年中考数学试题分类汇编-13操作性问题(第2部分)(word原题及解析版)

专题内容:操作性问题(第2部分)一、选择题1.(2017年贵州省毕节地区第11题)把直线y=2x﹣1向左平移1个单位,平移后直线的关系式为()A.y=2x﹣2 B.y=2x+1 C.y=2x D.y=2x+22.(2017年贵州省毕节地区第14题)如图,在正方形ABCD中,点E,F分别在BC,CD上,且∠EAF=45°,将△ABE绕点A顺时针旋转90°,使点E落在点E'处,则下列判断不正确的是()A.△AEE′是等腰直角三角形B.AF垂直平分EE'C.△E′EC∽△AFD D.△AE′F是等腰三角形3.(2017年湖北省十堰市第8题)如图,已知圆柱的底面直径BC=6π,高AB=3,小虫在圆柱表面爬行,从C点爬到A点,然后再沿另一面爬回C点,则小虫爬行的最短路程为()A.B.C.D.4.(2017年湖北省宜昌市第8题)如图,在AEF∆中,尺规作图如下:分别以点E,点F为圆心,大于12EF的长为半径作弧,两弧相交于,G H两点,作直线GH,交EF于点O,连接AO,则下列结论正确的是()A.AO平分EAF∠B.AO垂直平分EF C. GH垂直平分EF D.GH平分AF 5.(2017年山东省东营市第7题)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=8,AB=5,则AE的长为()A.5 B.6 C.8 D.126.(2017年山东省潍坊市第5题)用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于()之间.A.B与CB.C与D C、E与F D、A与B二、填空题1.(2017年湖北省荆州市第17题)如图,在5×5的正方形网格中有一条线段AB,点A与点B均在格点上.请在这个网格中作线段AB的垂直平分线. 要求:①仅用无刻度直尺,且不能用直尺中的直角;②保留必要的作图痕迹.2.(2017年湖北省荆州市第18题)如图,在平面直角坐标系中,矩形OABC的顶点A、C分别在x轴的负半轴、y轴的正半轴上,点B在第二象限.将矩形OABC绕点O顺时针旋转,使点B落在y轴上,得到矩形ODEF,BC与OD相交于点M.若经过点M的反比例函数y=kx(x<0)的图象交AB于点N,的图象交AB于点N, S矩形OABC=32,tan∠DOE=12,,则BN的长为______________.3.(2017年江西省第10题)如图,正三棱柱的底面周长为9,截去一个底面周长为3的正三棱柱,所得几何体的俯视图的周长是.三、解答题 1.(2017年江西省第16题)如图,已知正七边形ABCDEFG ,请仅用无刻度的直尺,分别按下列要求画图.(1)在图1中,画出一个以AB 为边的平行四边形; (2)在图2中,画出一个以AF 为边的菱形.2. (2017年内蒙古通辽市第25题)邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又余下一个四边形,称为第二次操作;……依次类推,若第n 次操作余下的四边形是菱形,则称原平行四边形为n 阶准菱形,如图1,□ABCD 为1阶准菱形. (1)猜想与计算邻边长分别为3和5的平行四边形是 阶准菱形;已知□ABCD 的邻边长分别为b a ,(b a >),满足r b a +=8,r b 5=,请写出□ABCD 是 阶准菱形. (2)操作与推理小明为了剪去一个菱形,进行如下操作:如图2,把□ABCD 沿BE 折叠(点E 在AD 上),使点A 落在BC 边上的点F 处,得到四边形ABEF .请证明四边形ABEF 是菱形.3. (2017年贵州省六盘水市第22题)如图,在边长为1的正方形网格中,ABC △的顶点均在格点上.(1)画出ABC △关于原点成中心对称的'''A B C △,并直接写出'''A B C △各顶点的坐标. (2)求点B 旋转到点'B 的路径(结果保留).参考答案与解析一、选择题1.(2017年贵州省毕节地区第11题)把直线y=2x﹣1向左平移1个单位,平移后直线的关系式为()A.y=2x﹣2 B.y=2x+1 C.y=2x D.y=2x+2【答案】B.【解析】试题分析:根据题意,将执行y=2x-1向左平移1个单位后得到的解析式为:y=2(x+1)-1,即y=2x+1,故选B.考点:一次函数图象与几何变换2.(2017年贵州省毕节地区第14题)如图,在正方形ABCD中,点E,F分别在BC,CD上,且∠EAF=45°,将△ABE绕点A顺时针旋转90°,使点E落在点E'处,则下列判断不正确的是()A.△AEE′是等腰直角三角形B.AF垂直平分EE'C.△E′EC∽△AFD D.△AE′F是等腰三角形【答案】D.【解析】试题分析:因为将△ABE绕点A顺时针旋转90°,使点E落在点E'处,∴AE′=AE,∠E′AE=90°,∴△AEE′是等腰直角三角形,故A正确;∵将△ABE绕点A顺时针旋转90°,使点E落在点E'处,∴∠E′AD=∠BAE,∵四边形ABCD是正方形,∴∠DAB=90°,∵∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠E′AD+∠FAD=45°,∴∠E′AF=∠EAF,∵AE′=AE,∴AF垂直平分EE',故B正确;。

2017年全国中考数学真题分类动态型问题2017(解答题)

2017年全国中考数学真题分类动态型问题2017(解答题)

2017年全国中考数学真题分类动态型问题 解答题三、解答题1. (2017四川广安,26,10分)如图,已知抛物线y =-x ²+bx +c 与y 轴相交于点A (0,3),与x正半轴相交于点B ,对称轴是直线x =1.(1)求此抛物线的解析式以及点B 的坐标.(3分)(2)动点M 从点O 出发,以每秒2个单位长度的速度沿x 轴正方向运动,同时动点N 从点O 出发,以每秒3个单位长度的速度沿y 轴正方向运动,当N 点到达A 点时,M 、N 同时停止运动.过支点M 作x 轴的垂线交线段AB 于点Q ,交抛物线于点P ,设运动的时间为t 秒.①当t 为何值时,四边形OMPN 为矩形.(3分)②当t >0时,△BOQ 能否为等腰三角形?若能,求出t 的值;若不能,请说明理由.(4分)思路分析:(1)把A 点的坐标代入y =c bx x ++-2,求出c 的值,由对称轴是直线x =1可求出b 的值,即可求出抛物线的解析式;令y =0,求出方程x 的两个值,然后根据题意舍去不合题意的解,即可求得点B 的坐标;(2)①当四边形OMPN 为矩形时,满足条件PM =ON ,据此列一元二次方程求解;②△BOQ 为等腰三角形时,可能存在OQ =BQ ,OQ =OB ,OB =BQ 三种情形,需要分类讨论,逐一进行判断计算.解:(1)∵知抛物线y =c bx x ++-2与y 轴交于点A (0,3), ∴c =3,∵对称轴是直线x =1, ∴1)1(2=-⨯-b,解得b =2,∴抛物线的解析式为:y =322++-x x ; 令y =0,得322++-x x =0,解得1x =3,2x =-1(不合题意,舍去), ∴点B 的坐标为(3,0).(2)①由题意得ON =3t ,OM =2t ,则点P (2t ,3442++-t t ), ∵四边形OMPN 为矩形,∴PM =ON ,即3442++-t t =3t , 解得1t =1,2t =43-(不合题意,舍去), ∴当t =1秒时,四边形OMPN 为矩形;②能,在Rt △AOB 中OA =3,OB =3,∴∠B =45°, 若△BOQ 为等腰三角形,有三种情况: (I)若OQ =BQ ,如答图1所示: 则M 为OB 中点,OM =21OB =23, ∴t =23÷2=43;(II)若OQ =OB 时, ∵OA =3,OB =3,∴点Q 与点A 重合,即t =0(不合题意,舍去); (III)若OB =BQ 时,如答图2所示: ∴BQ =3,∴BM =BQ ·cos 45°=3×22=223,∴OM =OB -BM =3-223=2236-, ∴t =2236-÷2=4236-. 综上所述,当t 为43秒或4236-秒时,△BOQ 为等腰三角形.2.(2017浙江丽水·23·10分)如图1,在Rt△ABC中,∠A=30°,点P从点A出发以2cm/s的速度沿折线A-C-B运动,点Q从点A出发以a(cm/s)的速度沿AB运动.P,Q两点同时出发,当某一点运动到点B时,两点同时停止运动.设运动时间为x(s),△APQ的面积为y(cm2),y关于x的函数图象由C,C2两段组成,如图2所示.1(1)求a的值;(2)求图2中图象C2段的函数表达式;(3)当点P运动到线段BC上某一段时△APQ的面积,大于当点P在线段AC上任意一点时△APQ 的面积,求x的取值范围.思路分析:过点P作PD⊥AB于点D.(1)先用含x的代数式表示PD,再根据三角形的面积公式确定y与x之间的函数表达式,由函数的图象得到x,y的一组对应值代入可求a的值;(2)在Rt△PBD中,由解直角三角形知识,用含x和sinB的式子表示PD,同样根据三角形面积公式建立y与x的关系,由函数图形得到x,y的一组对应值,求得sinB,进而确定图2中图象C段的函数2表达式;(3)先求出图象C1段与图象C2段函数值相等时对应的x的值,得到图象C1段函数的最大值,并求出图象C1段函数的最大值在图象C2段对应的x的值,结合函数图象可得到x的取值范围. 解:过点P作PD⊥AB于点D.(1)在图1中,∵∠A =300,PA =2x ,∴PD =PA ·sin 300=2x ·21=x ,∴y =2212121ax x ax PD AQ =⋅=⋅.由图象得,当x =1时,y =21,则211212=⋅a ,∴a =1.(2)当点P 在BC 上时(如图2),PB =5×2-2x =10-2x .∴PD =PB ·sinB =(10-2x )·sin B .∴·y=B x x PD AQ sin )210(2121⋅-⋅=⋅.由图象得,当x =4时,y =34,∴144(108)sin 23B ⨯⨯-=,∴sinB =31,∴y =x x x x 353131)210(212+-=⋅-⋅.(3)由C 1,C 2的函数表达式,得x x x 35312122+-=,解得x 1=0(舍去),x 2=2.由图象得,当x =2时,函数y =221x 的最大值为y =22⨯21=2.将y =2代入函数y =x x 35312+-,得2=x x 35312+-,解得x 1=2,x 2=3,∴由图象得,x 的取值范围是2<x <3.3. (2017浙江丽水·24·12分)如图,在矩形ABCD 中,点E 是AD 上的一个动点,连结BE ,作点A 关于BE 的对称点F ,且点F 落在矩形ABCD 的内部.连结AF ,BF ,EF ,过点F 作GF ⊥AF 交AD 于点G ,设AEAD=n . (1)求证:AE =GE ;(2)当点F 落在AC 上时,用含n 的代数式表示ABAD的值; (3)若AD =4AB ,且以点F ,C ,G 为顶点的三角形是直角三角形,求n 的值.思路分析:设AE =a ,则AD =n A .(1)由轴对称性质得到AE =FE ,结合“等边对等角”得到∠EAF =∠EF A .由垂直得到两个角的互余关系,根据“等角的余角相等”可得到结论;(2)由对称性质得BE ⊥AF ,先证∠ABE =∠DAC ,进而证得△ABE ∽△DAC ,根据相似三角形的对应边成比例建立关系式,通过适当变形求解;(3)由特例点F 落在线段BC 上,确定n =4,根据条件点F 落在矩形内部得到n >4,判断出∠FCG <90°.然后分∠CFG =90°和∠CGF =90°两种情况,由(2)的结论和相似三角形的性质分别建立关于n 的等式,求得n 的值.解:设AE =a ,则AD =n A .(1)由对称得AE =FE ,∴∠EAF =∠EF A .∵GF ⊥AF ,∴∠EAF +∠FGA =∠EFA +∠EFG =900.∴∠FGA =∠EFG ,∴FG =EF .∴AE =EG .(2)当点F 落在AC 上时(如图1),由对称得BE ⊥AF ,∴∠ABE +∠BAC =900,∵∠DAC +∠BAC =90°,∴∠ABE =∠DA C .又∵∠BAE =∠D =90°,∴△ABE ∽△DAC ,∴DCAEDA AB =.∵AB =D C .∴AB 2=AD ·AE =na ·a =na 2.∵AB >0,∴AB =n a ,∴n an naAB AD ==.(3)若AD =4AB ,则AB =a n 4.当点F 落在线段BC 上时(如图2),EF =AE =AB =A .此时an4=a ,∴n =4.∴当点F 落在矩形内部时,n >4.∵点F 落在矩形的内部,点G 在AD 上,∴∠FCG <∠BCD ,∴∠FCG <90°.①若∠CFG =900,则点F 落在AC 上,由(2)得n ABABn AB AD ==4,即,∴n =16. ②若∠CGF =900(如图3),则∠CGD +∠AGF =90°.∵∠FAG +∠AGF =90°,∴∠CGD =∠FAG =∠ABE ,∵∠BAE =∠D =90°,∴△ABE ∽△DG C .∴DCAEDG AB =.∴AB ·DC =DG ·AE ,即a a n a n⋅-=)2()4(2,解得n 1=8+42,n 2=8-42<4(不合题意,舍去).∴当n =16或n =8+42时,以点F ,C ,G 为顶点的三角形是直角三角形.4. (2017山东枣庄25,10分) 如图,抛物线212y x bx c =-++与x 轴交于点A 和点B ,与y 轴交于点C ,点B 坐标为(6,0),点C 坐标为(0,6),点D 是抛物线的顶点,过点D 作x 轴的垂线,垂足为E ,连接BD .(1)求抛物线的解析式及点D 的坐标;(2)点F 是抛物线上的动点,当∠FBA =∠BDE 时,求点F 的坐标(3)若点M 是抛物线上的动点,过点M 作MN ∥x 轴与抛物线交于点N ,点P 在x 轴上,点Q 在平面内,以线段MN 为对角线作正方形MPNQ ,请直接写出点Q 的坐标.思路分析:(1)由点B 、C 的坐标利用待定系数法即可求出抛物线的解析式,再利用配方法将抛物线解析式变形成顶点式即可得出结论;(2)设线段BF 与y 轴交点为点F ′,设点F ′的坐标为(0,m ),由相似三角形的判定及性质可得出点F ′的坐标,根据点B 、F ′的坐标利用待定系数法可求出直线BF 的解析式,联立直线BF 和抛物线的解析式成方程组,解方程组即可求出点F 的坐标;(3)设对角线MN 、PQ 交于点O ′,如图2所示.根据抛物线的对称性结合正方形的性质可得出点P 、Q 的位置,设出点Q 的坐标为(2,2n ),由正方形的性质可得出点M 的坐标为(2-n ,n ).由点M 在抛物线图象上,即可得出关于n 的一元二次方程,解方程可求出n 值,代入点Q 的坐标即可得出结论.解:(1)将点B (6,0)、C (0,6)代入212y x bx c =-++中,得:0=-18+66b c c +⎧⎨=⎩,解得:26b c =⎧⎨=⎩,∴抛物线的解析式为21262y x x =-++.∵221126=-2)822y x x x =-++-+(,∴点D的坐标为(2,8).(2)设线段BF与y轴交点为点F′,设点F′的坐标为(0,m),如图1所示.∵∠F′BO=∠FBA=∠BDE,∠F′OB=∠BED=90°,∴△F′BO∽△BDE,∴'OF BEOB DE=.∵点B(6,0),点D(2,8),∴点E(2,0),BE=6-2=4,DE=8-0=8,OB=6,∴OF′3BEOBDE⨯=∴点F′(0,3)或(0,-3).设直线BF的解析式为y=k x±3,则有0=6k+3或0=6k-3,解得:k=-12或k=12,∴直线BF的解析式为y=-12x+3或y=12x-3.联立直线BF与抛物线的解析式得:21321262y xy x x⎧=-+⎪⎪⎨⎪=-++⎪⎩①或21321262y xy x x⎧=+⎪⎪⎨⎪=-++⎪⎩②,解方程组①得:172xy=-⎧⎪⎨=⎪⎩或6xy=⎧⎨=⎩(舍去),∴点F的坐标为(-1,72);解方程组②得:392xy=-⎧⎪⎨=⎪⎩或(舍去),∴点F的坐标为(-3,-92).综上可知:点F 的坐标为(-1,72)或(-3,-92). (3)设对角线MN 、PQ 交于点O ′,如图2所示.∵点M 、N 关于抛物线对称轴对称,且四边形MPNQ 为正方形, ∴点P 为抛物线对称轴与x 轴的交点,点Q 在抛物线对称轴上, 设点Q 的坐标为(2,2n ),则点M 的坐标为(2-n ,n ).∵点M 在抛物线21262y x x =-++的图象上,∴n =21-2-)2(2)62n n +-+(,即22160n n +==,解得:1171n =-,1-171n =-.∴点Q 的坐标为(2,217-2)或(2,-217-2).5. (2017四川泸州,25,12分)如图,已知二次函数y =ax ²+bx +c (a ≠0)的图象经过A (-1,0),B (4,0),C (0,2)三点. (1)求该二次函数的解析式;(2)点D 是该二次函数图象上的一点,且满足∠DBA =∠CAO (O 是坐标原点),求点D 的坐标; (3)点P 是该二次函数图象上位于一象限上的一动点,连接PA 分别交BC ,y 轴与点E ,F ,若△PEB ,△CEF 的面积分别为S 1,S 2,求S 1-S 2的最大值.思路分析:(1)根据待定系数法求解;(2) 设BD 直线与y 轴的交点为M (0,t ).根据tan ∠MBA =tan ∠CAO 列关于t 的方程求解t ,从而可确定直线BD 解析式,再求直线BD 与抛物线交点坐标即可,注意分类讨论;(3) 过点P 作PH //y 轴交直线BC 于点H ,设P (t ,at ²+bt +c ),表示出根据直线BC 表达式点H 的坐标,计算线段PH 长度;用t 表示直线AP 表达式,解出点E 、F 坐标从而可表示出线段CF ,将S 1-S 2用t 表示,根据二次函数性质求最值.解:(1)由题意得:设抛物线的解析式为:y =a (x +1)(x -4); 因为抛物线图像过点C (0,2), ∴-4a =2,解得a =-12.所以抛物线的解析式为:y =-12 (x +1)(x -4),即:y =-12 x 2+32x +2.(2)设BD 直线与y 轴的交点为M (0,t ). ∵∠DBA =∠CAO ,∴∠MBA =∠CAO ; ∴tan ∠MBA =tan ∠CAO =2; ∴||4t =2,即:t =±8. 当t =8时,直线BD 解析式为:y =-2x +8.联立,228,132.22y x y x x =-+⎧⎪⎨=-++⎪⎩ 解得:114,0;x y =⎧⎨=⎩ 223,2.x y =⎧⎨=⎩所以,点D (3,2).当t =-8时,直线BD 解析式为:y =2x -8.联立228,132.22y x y x x =-⎧⎪⎨=-++⎪⎩ 解得:114,0;x y =⎧⎨=⎩225,18.x y =-⎧⎨=-⎩ 所以,点D (-5,-18).综上:满足条件的点D有:D1(3,2),D2(-5,-18).(3)过点P作PH//y轴交直线BC于点H,设P(t,-12t2+32t+2),BC直线的解析式为y=-12x+2,故:H(t,-12t+2),∴PH=y P-y H=-12t2+2t;AP直线的解析式为:y=(-12t+2)(x+1),取x=0得:y=2-12t;故:F(0,2-12t),CF=2-(2-12t)=12t;联立(2)(1),212.2ty xy x⎧=-+⎪⎪⎨⎪=-+⎪⎩解之得:x E=5tt-;∴S1=12(y P-y H)(x B-x E)=12(-12t2+2t)(5-5tt-);S2=12•2t•5tt-.∴S1-S2=12(-12t2+2t)(5-5tt-)-12•2t•5tt-,即:S1-S2=-32t2+5t=-32(t-53)2+256.所以,当t=53时,S1-S2有最大值,最大值为256.6.(2017四川成都,28.12分)如图1,在平面直角坐标系xOy中,抛物线2:C y ax bx c=++与x轴相交于,A B 两点,顶点为()0,4D ,42AB =,设点(),0F m 是x 轴的正半轴上一点,将抛物线C 绕点F 旋转180°,得到新的抛物线C '. (1)求抛物线C 的函数表达式;(2)若抛物线C '与抛物线C 在y 轴的右侧有两个不同的公共点,求m 的取值范围;(3)如图2,P 是第一象限内抛物线C 上一点,它到两坐标轴的距离相等,点P 在抛物线C ′上的对应点为P ′,设M 是C 上的动点,N 是C ′上的动点,试探究四边形PMP ′N 能否成为正方形,若能,求出m 的值;若不能,请说明理由.解:(1)∵抛物线2:C y ax bx c =++与x 轴相交于,A B 两点,顶点为()0,4D ,42AB =, ∴抛物线C 的对称轴是y 轴,A (22,0),(22,0),B -设抛物线C 的解析式为(22)(22)y a x x =+-,即,28y ax a =-,∴84a -=,∴12a =-,抛物线C 的解析式为2142y x =-+;(2)如图,∵点(),0F m 是x 轴的正半轴上一点,将抛物线C绕点F 旋转180°,得到新的抛物线C ',∴(2,4)D m '-,∴设抛物线C '的解析式为21(2)42y x m =--.令抛物线C '过点D (0,4),有214442m =⋅-,∴24m =,∴2m =(舍去负值); 由221(2)42142y x m y x ⎧=--⎪⎪⎨⎪=-+⎪⎩,有22114(2)422x x m -+=--,即222280x mx m -+-=,当抛物线C '与抛物线C 有唯一交点时,有2222444(28)4320b ac m m m ∆=-=--=-+=, ∴22m =(舍去负值). ∴m 的取值范围是2<m <22.(3)∵P 是第一象限内抛物线C 上一点,它到两坐标轴的距离相等,∴点P 在y =x 上,由2142x x =-+,解得122,4x x ==-(不合题意,舍去),∴点P 的坐标为(2,2).∵抛物线C '的解析式为21(2)42y x m =--,F (m ,0),由对称性可知,四边形PMP ′N 能成为正方形,即△PMF 为以F 为顶点的等腰直角三角形.①若0<m ≤2时,如图2①,过点F 、P 、M 分别向坐标轴作垂线交点分别为K 、L ,易得△KPF ≌△LFM , ∴KF =LM =2,KP =FL =2-m ,∴M (m +2,m -2),代入2142y x =-+中,得2680m m +-=,解得,12317,317m m =-+=--(不合题意,舍去).②若m >2,如图2②过点F 、P 、M 分别向坐标轴作垂线交点分别为K 、L ,易得△KPF ≌△LFM ,∴KP =FL =2-m ,∴M (m -2,2-m ),代入2142y x =-+中,得260m m -=,解得,126,0m m ==(不合题意,舍去).综上,m 的值为317-+或6.7. (2017浙江金华,24,12分)如图1,在平面直角坐标系中,四边形OABC 各顶点的坐标分别为O (0,0),A (3,33),B (9,53),C (14,0),动点P 与Q 同时从O 点出发,运动时间为t 秒,点P 沿OC 方向以1单位长度/秒的速度向点C 运动,点Q 沿折线OA —AB —BC 运动,在OA ,AB ,BC 上运动的速度分别为3,3,25(单位长度/秒).当P ,Q 中的一点到达C 点时,两点同时停止运动. (1)求AB 所在直线的函数表达式.(2)如图2,当点Q 在AB 上运动时,求△CPQ 的面积S 关于t 的函数表达式及S 的最大值. (3)在P ,Q 的运动过程中,若线段PQ 的垂直平分线经过四边形OABC 的顶点,求相应的t 值.图1 图2思路分析:(1)用待定系数法可直接即可;(2)由题意知,OP =t ,PC =14-t ,PC 边上的高线为23x +23,可得S 与t 二次函数表达式,用配方法或公式法求得S 的最大值;(3)本小题应注意t 的取值范围,分4种情况分类讨论,得到有关t 的有关方程,求得相应的t 值.解:(1)设AB 所在直线的函数表达式为y =kx +b ,把A(3,33),B(9,53)代入y=kx+b,得⎪⎩⎪⎨⎧=+=+.359,333bkbk解得⎪⎩⎪⎨⎧==.32,33bk∴AB所在直线的函数表达式为y=33x+23.(2)由题意知,OP=t,PC=14-t,PC边上的高线为23t+23,∴S=21(14-t)(23t+23)=-43t2+235t+143(2≤t≤6) .当t=5时,S有最大值为4381.(3)①当0<t≤2时,线段PQ的中垂线经过点C(如图3),可得方程()222142314233ttt-=⎪⎭⎫⎝⎛-+⎪⎪⎭⎫⎝⎛.解得t1=47,t2=0(舍去),此时t=47.②当2<t≤6时,线段PQ的中垂线经过点A(如图4),可得方程()()[]222)23333-=-+tt(.解得t1=2573+,t2=2573-(舍去),此时t=2573+.③当6<t≤10时,10线段PQ的中垂线经过点C(如图5),可得方程14-t=25-25t,解得t=322.图3 图4 图5 20线段PQ的中垂线经过点B(如图6),可得方程()()222)625935⎥⎦⎤⎢⎣⎡-=-+tt(.解得t 1=722038+,t 2=722038-(舍去),此时t =722038+. 综合上述,t 的值为47,2573+,322,722038+.图68. (2017浙江衢州,24,12分)在直角坐标系中,过原点O 及点A (8,0)C (0,6)作矩形OABC .连结OB ,点D 为OB 的中点,点E 时线段AB 上的动点,连结DE ,作DF ⊥DE ,交OA 于点F ,连结EF .已知点E 从A 点出发,以每秒1个单位长度的速度在线段AB 上移动,设移动时间为t 秒. (1)如图1,当t =3时,求DF 的长.(2)如图2,当点E 在线段AB 上移动的过程中,∠DEF 的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan ∠DEF 的值.(3)连结AD ,当AD 将△DEF 分成的两部分面积之比为1∶2时,求相应t 的值.xy DFE CB A Oxy第24题 图2A BCEF DOxyDF E CB A Oxy ODF E CB A 图2M N xy OG 1N MA B CE F Dxy OG 2DFE CB A M N思路分析:(1)当t =3时,点E 为AB 中点.DE 为△ABO 的中位线.(2)过D 作DM ⊥OA ,DN ⊥AB ,垂足分别为M 、N .利用△DMF ∽△DNE 即可求解.(3)AD将△DEF分成的两部分面积之比为1∶2即可转化为AD与EF交点G为EF的三等分点,注意讨论G点所处的位置.解:(1)当t=3时,如图1,点E为AB中点.∵点D为中点,∴DE∥OA,DE=12OA=4.∵OA⊥AB,∴DE⊥AB.∴∠OAB=∠DEA=90°又∵DF⊥DE,∴∠EDF=90°.∴四边形DFAE是矩形,∴DF=AE=3.(2)∠DEF的大小不变.如图2:过D作DM⊥OA,DN⊥AB,垂足分别为M、N.∵四边形OABC是矩形,∴OA⊥AB,∴四边形DMAN是矩形,∴∠MDN=90°,DM∥AB,DN∥OA,∴BDDO =BNNA,ODDB=OMMA.∵点D为OB中点,∴M,N分别是OA,AB中点.∴DM=12AB=3,DN=12OA=4,∵∠EDF=90°,∴∠FDM=∠EDN.又∵∠DMF=∠DNE=90°,∴△DMF∽△DNE,∴DFDE =DMDN=34.∵∠EDF=90°,∴tan∠DEF=34.(3)过D作DM⊥OA,DN⊥AB,垂足分别为M、N.若AD将△DEF的面积分成1∶2的两部分,设AD交EF于点G,则易得点G为EF的三等分点.①当E到达中点之前时,NE=3-t,由△DMF∽△DNE得MF=34(3-t).∴AF=4+MF=-34t+254.∵G1为EF的三等分点,∴G1(37112t+,23t)由点A(8,0),D(4,3)得直线AD的解析式为y=-34x+6.G 1(37112t+,23t)代入,得t=7541.②当E越过中点之后,NE=t-3,由△DMF∽△DNE得MF=34(t-3).∴AF=4-MF=-34t+254.∵G2为EF的三等分点,∴G2(3236t+,13t).代入直线AD解析式y=-34x+6,得t=7541.9.(2017山东德州)(本小题满分10分)如图1,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使B点落在边AD上的E处,折痕为PQ.过点E作EF∥AB交PQ于F,连接BF.(1)求证:四边形BFEP为菱形;(2)当点E 在AD 边上移动时,折痕的端点P 、Q 也随之移动. ①当点Q 与点C 重合时(如图2),求菱形BFEP 的边长;②若限定P 、Q 分别在边BA 、BC 上移动,求出点E 在边AD 上移动的最大距离.思路分析:(1)由折叠知PB =PE ,BF =EF ,结合平行线的性质,易得∠EPF =∠BPF =∠EFP ,故有EP =EF ,从而可得四边相等,则四边形BFEP 为菱形;(2)①在Rt △CDE 中,已知CD 长,CE =CB ,利用勾股定理计算DE 的长,进而可得AE 的长;又知AB 的长,且BP =PE ,故Rt △APE 中,利用勾股定理构建方程求解PE 的长.②点Q 与点C 重合时,点E 离A 点最近,①中已求此时AE 的长.当点P 与点A 重合时,则点E 离A 点最远,此时四边形ABQE 为正方形,AE =AB .两者之差就是点E 在边AD 上移动的最大距离.解:(1)证明:∵折叠纸片使B 点落在边AD 上的E 处,折痕为PQ ,∴点B 与点E 关于PQ 对称.∴PB =PE ,BF =EF ,∠BPF =∠EPF . 又∵EF ∥AB ,∴∠BPF =∠EFP . ∴∠EPF =∠EFP .∴EP =EF . ∴BP =BF =FE =EP . ∴四边形BFEP 为菱形.(2)①如图2,∵四边形ABCD 为矩形,∴BC =AD =5cm ,CD =AB =3cm ,∠A =∠D =90°. ∵点B 与点E 关于PQ 对称, ∴CE =BC =5cm .在Rt △CDE 中,DE 2=CE 2-CD 2,即DE 2=52-32,∴DE =4cm .A B C D PFQ E 图1 A BDC PF(Q )E图2A B C D PFQ E 图1 A BDC PF(Q )E图2∴AE =AD -DE =5cm -4cm =1cm .∴在Rt △APE 中,AE =1,AP =3-PB =3-PE ,∴EP 2=12+(3-EP )2,解得EP =35cm .∴菱形BFEP 边长为35cm .②当点Q 与点C 重合时,如图2,点E 离A 点最近,由①知,此时AE =1cm . 当点P 与点A 重合时,如图3,点E 离A 点最远,此时四边形ABQE 为正方形,AE =AB =3cm ,∴点E 在边AD 上移动的最大距离为2cm .10. (2017山东威海,23,10分)已知:AB 为⊙O 的直径,2=AB ,弦1=DE ,直线AD 与BE 相交于点C ,弦DE 在⊙O 上运动且保持长度不变,⊙O 的切线DF 交BC 于点F . (1)如图1,若AB DE //,求证:EF CF =;(2)如图2,当点E 运动至与点B 重合时,试判断CF 与BF 是否相等,并说明理由.思路分析:(1)连接OD ,OE 先根据三边相等说明△ODE 是等边三角形,再分别说明△AOD 、△OEB 、△ADE 是等边三角形,最后计算∠3、∠4度数利用三线合一说明结论;(2)先说明BC 是切线,由切线长定理知∠1=∠2,再根据∠3+∠2=∠1+∠C =90°说明∠3=∠C ,可证明DF =CF =BF .证明:连接OD ,OE ,图3EDBQA (P )∵AB=2,∴OA=OD=OE=1.∵DE=1,∴△ODE为等边三角形.∴∠1=60°.∵DE∥OB,∴∠1=∠2=60°.∴∠3=90°, ∠1=30°.∵OA=OD,∴△OAD为等边三角形.∴∠A=60°.∵DE∥AB,∴∠CDE=∠A=60°.同理,∠5=60°.∴△CDE为等边三角形∵DF切⊙O于点D,∴OD⊥DF.∴∠3=90°-∠1=30°.∴∠4=30°.∴∠3=∠4.∴CF=EF.(2)相等.当点E与点B重合时,直线BC与⊙O只有一个公共点,所以BC为⊙O的切线.∵DF切⊙O于点D,∴BF=DF.∴∠1=∠2.∴AB为直径,∴∠ADB=∠BDC=90°.∴∠3=∠C.∴DF=CF.∴CF=BF.11.(2017山东菏泽,23,10分)(本题10分)正方形ABCD的边长为6cm,点E、M分别是线段BD、AD上的动点,连接AE并延长,交边BC 于F,过M作MN⊥AF,垂足为H,交边AB于点N.(1)如图1,若点M与点D重合,求证:AF=MN;(2)如图2,若点M从点D出发,以1cm/s的速度沿DA向点A运动,同时点E从点B出发,以2cm/s的速度沿BD向点D运动,设运动时间为t s.①设BF=y cm,求y关于t的函数表达式;②当BN=2AN时,连接FN,求FN的长.图1 图2思路分析:(1)由正方形性质和垂直的性质就可以得出∠ADN=∠BAF ,利用“AAS ”可以得出△ADN ≌△ABF 就可以得到结论AF =MN ;(2)①由AD ∥BF 可得△ADE ∽△FBE ,利用AD DEBF BE=可以构造y 关于t 的函数表达式;②由(1)可知△MAN ∽△ABF ,所以MA ABAN BF=,又BN =2AN ,所以662t BF-=,用含t 的代数式表示BF ,结合①中的关系式,可以构造关于t 的方程求出t 的值,从而求出BN 、BF ,最后利用勾股定理求FN 的长. 解:(1)证明:如图1,∵四边形ABCD 是正方形, ∴AD=DC=AB=BC ,∠DAB=∠ABC=∠BCD=∠ADC=90°. ∵MN ⊥AF ,∴∠DHA=∠NHA=90°∴∠ADH+∠HAD=90°,∠NHA+∠HAD=90°, ∴∠ADH=∠NAH . 在△ADN 与△ABF 中,,,,ADN BAF AD AB DAN ABF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADN ≌△ABF , ∴AF =MN .(2)①∵正方形的边长为6cm , ∴,∵设运动时间为t s ,根据题意得BE=cm , ∴DE= BD -BE=(6) cm , ∵AD ∥BF , ∴△ADE ∽△FBE , ∴AD DEBF BE=, ∵BF =y cm ,∴6y=,即66ty t=-,∴y 关于t 的函数表达式为66ty t=-. ②∵BN =2AN ,AB=6cm , ∴AN=2cm ,BN=4cm,由(1)得△MAN ∽△ABF ,又DM=t cm ,AM=(6-t) cm , ∴MA AB AN BF =,即662t BF-=, ∴36BF t =-,又66ty t=-, ∴36t -=66t t- 解得t=2s , 当t=2时,BF=66ty t=-=3cm,在Rt △NBF 中,5=, ∴当BN =2AN 时, FN 的长为5.12. (2017年四川绵阳,25,14分)(本题满分14分)如图,已知△ABC 中,∠C =90°,点M 从点C 出发沿CB 方向以1cm /s 的速度匀速运动,到达点B 停止运动,在点M 的运动过程中,过点M 作直线MN 交AC 于点N ,且保持∠NMC =45°,再过点N 作AC 的垂线交AB 于点F ,连接MF ,将△MNF 关于直线NF 对称后得到△ENF ,已知AC =8cm ,BC =4cm ,设点M 运动时间为t (s ),△ENF 与△ANF 重叠部分的面积为y (cm 2).(1)在点M 的运动过程中,能否使得四边形MNEF 为正方形?如果能,求出相应的t 值;如果不能,说明理由;(2)求y 关于t 的函数解析式及相应t 的取值范围; (3)求y 取最大值时,求sin ∠NEF 的值.25.(1)能,……………………………………………………………………1分如图,四边形MNEF为正方形时,过F作FD⊥BC于点D,则∠FMD=∠NMC=45°,所以CN=ND=DF=t,易证△FDB∽△ACB,所以AC FD=BC BD,………………2分即8t=44-2t,解得t=58.……………………………………4分(2)当点E恰好落在AB上时,连接ME,同(1),易证△EMB∽△ACB,所以AC EM=BC BM,即82t=44-t,解得t=2.……………………………………5分当0<t<2时,连接EM,易证△ANF∽△ACB,所以BC NF=AC AN,即4NF=88-t,解得NF=4-2t.…………………………6分所以,…………………………………7分当时,如图,设NE与AB交于点K,过K作KL⊥NF,垂足为L,连接EM,交直线NF于点H.易证△KLF∽△ANF,所以NF LF=AN KL,因为NF=4-2t,所以,解得NL=38-3t,即KL=38-3t,………………………………………9分所以,综上所述,.……………………………………10分(3)由题意知,当t=2,y取得最大值,此时,点E恰好落在AB上,…………………………11分由(2)知,NM==2,NF=4-2t=3,由勾股定理,得MF=,又因为,所以,△NMF为锐角三角形,…………………12分所以,即,所以sin∠NMF=1010,即sin∠NEF=1010.………………………………14分思路分析:(1)若四边形MNEF为正方形时,过F作FD⊥BC于点D,则∠FMD=∠NMC=45°,所以CN=ND=DF=t,易证△FDB∽△ACB,所以AC FD=BC BD,代入求解;(2)当点E恰好落在AB上时,连接ME,同(1),易证△EMB∽△ACB,所以AC EM=BC BM,即82t=44-t,解得t=2.当0<t<2时,连接EM,易证△ANF ∽△ACB,所以BC NF=AC AN,即4NF=88-t,解得NF=4-2t.所以,当时,如图,设NE与AB交于点K,过K作KL⊥NF,垂足为L,连接EM,交直线NF于点H.易证△KLF∽△ANF,所以NF LF=AN KL,因为NF=4-2t,所以,解得NL=38-3t,即KL=38-3t,所以,(3)由题意知,当t=2,y取得最大值,此时,点E恰好落在AB上,由(2)知,NM==2,NF=4-2t=3,由勾股定理,得MF=,又因为,所以,△NMF为锐角三角形,所以,即,所以sin∠NMF=1010,即sin∠NEF=1010.13. (2017四川南充,25,12分)如图(1),已知二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)的图象过点O (0,0)和点A (4,0),函数图象最低点M 的纵坐标为-83,直线l 的解析式为y =x .(1)求二次函数的解析式;(2)直线l 沿x 轴向右平移,得直线l ′,l ′与线段OA 相交于点B ,与x 轴下方的抛物线相交于点C ,过点C 作CE ⊥x 轴于点E ,把△BCE 沿直线l ′折叠,当点E 恰好落在抛物线上点E ′时,如图(2),求直线l ′的解析式;(3)在(2)的条件下,l ′与y 轴交于点N ,把△BON 绕点O 逆时针旋转135°得到△B ′ON ′.P 为l ′上的动点,当△PB ′N ′为等腰三角形时,求符合条件的点P 的坐标.【思路分析】(1)根据点O ,A 的坐标以及顶点M 的纵坐标,建立三元一次方程组求解.(2)直线l 是一、三象限的角平分线,因此可知四边形BECE ′是正方形.设点E 的横坐标为m ,根据对称性用m 表示点B 的横坐标,根据点C 在抛物线上,用m 表示点C 的纵坐标.根据EC =EB 建立关于m 的方程并求解,由此可知直线l 平移的距离.再利用平移的规律(或待定系数法)求出l ′的解析式.(3)易知△OB ′N ′是等腰直角三角形.分以下三种情形①PN ′=PB ′;②N ′P =N ′B ′;③B ′P =N ′B ′讨论点P 的存在性.其中情形①直接用对称性求解;第②种情形通过比较N ′B ′与点N ′到直线l ′的大小,推断出此种情形不存在,第③种情形根据两腰相等建立方程求解. 解:(1)∵抛物线过点(0,0),(4,0),顶点纵坐标为-83,得20,0164,84.34c a b c ac b a ⎧=⎪⎪=++⎨⎪-⎪-=⎩解得2,38,30.a b c ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩∴所求二次函数表达式为y =23x 2-83x .(2)∵直线l 的解析式为y =x ,∴直线l 与x 轴成45°的角. ∵l ∥l ′,∴∠CBE =45°.又CE ⊥x 轴,∴△BCE 是等腰直角三角形.图#备用题′图(1)图(2)∵△BCE′是由△BCE沿直线l′折叠得到,∴四边形BECE′是正方形.∵点C在y=23x2-83x的图象上,∴设C(m,23m2-83m).则E(m,0).∵点E与点B关于对称轴x=2对称,∴点B的坐标为(4-m,0).∵EC=EB,∴-(23m2-83m)=4-m-m,即m2-7m+6=0.解得m1=1,m2=6.∵点C在x轴下方的抛物线上,∴m=1(舍去m=6),因此点B的坐标为(3,0).∴将直线y=x向右平移3个单位得直线l′.∴l′的解析式为y=x-3.(3)∵△BON是等腰直角三角形,∴旋转后△B′ON′顶点的坐标为O(0,0),B′(,N′.①当PB′=PN′时,由对称性可知,当P(0,-3)时,△PB′N′是等腰三角形.②当B′P=B′N′时,延长B′O交BN于点F,得B′F⊥BN,B′F=3又B′N′=BN=B′F>B′N′.∵B′P≥B′F,∴这种情况不存在.③当PN′=B′N′时,因点P在l′上,所以设P(m,m-3),则(m2+(m-32=18.解得m1=,m2.图#∴当P或)时,△PB ′N ′为等腰三角形.综上所述,符合条件的点P 的坐标为P 1(0,-3),P 2,P 3).14. (2017四川攀枝花,23,12分)如图13,在平面直角坐标系中,直线MN 分别与x 轴,y 轴交于点M (6,0),N (0,2 3 ),等边△ABC 的顶点B 与原点O 重合,BC 边落在x 轴正半轴上,点A 恰好落在线段MN 上,将等边△ABC 从图13的位置沿x 正方向以每秒1个单位长度的速度平移,边AB ,AC 分别与线段MN 交于点E ,F (如图14所示),设△ABC 平移的时间为t (s ), (1)等边△ABC 的边长 ;(2)在运动过程中,当t = 时,MN 垂直平分AB ;(3)若在△ABC 开始平移的同时,点P 从△ABC 的顶点B 出发,以每秒2个单位长度的速度沿折线BA →AC 运动,当点P 运动到C 时即停止运动,△ABC 也随之停止平移. ①当点P 在线段BA 上运动时,若△PEF 与△MNO 相似,求t 的值;②当点P 在线段AC 上运动时,设PEF S S ∆=,求S 与t 的函数关系式,并求出S 最大值及此时点P的坐标.图13 图14思路分析:(1)由题易知OM =6,ON =2 3 ,∴MN =4 3 ,∴∠NMO =30°,∵∠ABC =60°,∴∠BAM =90°,即AB ⊥MN ,∴AB =12OM =3,即等边三角形边长为3;(2)由等边三角形的性质易知当MN 垂直平分AB 时,C 点与M 点重合,∴OB =OM -MC =3,即t =3.(3)①当P 点在线段AB 上运动时,则OB =t ,PB =2t 则BM =6-t ,PA =3-2t ,△PEF 与△MNO 相似分为△PEF ∽△MON 或△PEF ∽△NOM 两种对应情况思考;②当点P在线段AC上运动时,11332222PEFt S EF PH t∆-==288=-+23823232t⎫=-+≤⎪⎝⎭(332t≤≤)∴当t=32时,maxS=解析:(1)3;(2)3(3)①当P点在线段AB上运动时,则OB=t,BP=2t则BM=6-t,32PA t=-,△PEF与△MNO相似分为△PEF∽△MNO或△PEF∽△NOM两种对应情况,当△PEF∽△MON时,则∠EPF=∠EFA=∠EMB=30°,∴AE=12AF=14AP=324t-,BE=12BM=62t-.又BE=AB-AE=3-324t-,∴3-32642t t--=,解得t=34;当△PEF∽△NOM时,若点P在线段BE上,则∠PFE=∠NMO=30°,即PF∥OM,∴△PAF是等边三角形,∴EF垂直平分PA,∴BE=BP+12PA=32+t,又BE=12MB=62t-,∴3622tt-+=,解得1t=;当△PEF∽△NOM时,若点P在线段AE上,则P点与A点重合,即32t=;综上所述:t=34或1或32;②当点P在线段AC上运动时,则BM=6-t,PC=6-2t,3 2≤t≤3.∴BE=12BM=3-2t,即AE=2t,∴EF= 3 AE=32t,AF=2AE=t,∴CF=AC-AF=3-t,∴PF=PC-CF=3-t.作PH⊥EF于H点,由∠AFE=30°,可知PH=12PF=32t-.xyFEANMO CBPH11332222PEFtS EF PH t∆-==233388t t=-+23393932t⎛⎫=--+≤⎪⎝⎭(332t≤≤)∴当t=32时,max9332S=.15.(2017四川达州1,7分)如图,在△ABC中,点O是边AC上一个动点,过点O作直线EF∥BC分别交∠ACB、外角∠ACD的平分线于点E,F.(1)若86CE CF==,,求OC的长;(2)连接AE AF、.问:当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.思路分析:(1)根据平行线的性质以及角平分线的性质得出∠1=∠2,∠3=∠4,所以有OC=OE=OF,再求出∠2+∠4=∠5+∠6=90°,进而利用勾股定理求出EF的长,即可得出CO的长;(2)这个四边形已经有一个角是90°,只要证明出它是平行四边形即可,如果它是平行四边形,则它的对角线互相平分,由此可得点O的位置.解:(1)证明:∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,∴∠2=∠5,∠4=∠6,∵MN∥BC,∴∠1=∠5,∠3=∠6,∴∠1=∠2,∠3=∠4,∴EO=CO,FO=CO,∴OE=OF;∵∠2=∠5,∠4=∠6,∴∠2+∠4=∠5+∠6=90°,∵CE=8,CF=6,∴EF=228+6=10,∴OC=12EF=5;(2)答:当点O在边AC上运动到AC中点时,四边形AECF是矩形.证明:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形,∵∠ECF=90°,∴平行四边形AECF是矩形.16.(2017江苏无锡,28,8分)如图,已知矩形ABCD中,AB=4,AD=m,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E.设点P 的运动时间为t(s).(1)若m=6,求当P、E、B三点在同一直线上时对应的t的值.(2)已知m满足:在动点P从点D到点A的整个过程中,有且只有一个时刻t,使点E到直线BC的距离等于3.求所有这样的m的取值范围.D思路分析:(1))如图,P、E、B三点在同一直线上,连接EC.①在Rt△BEC中,计算BE的值;②在Rt△ABP中,利用勾股定理列出关于的方程,解之t值可求;(2)如图,P、E、B三点在同一直线上,连接EC,过点E作EF⊥BC于F.①在Rt△EFC中,利用勾股定理求出CF;②利用相似三角形的判定与性质求得BF;③根据m=BC=BF+CF计算m的值解:(1)如图,P、E、B三点在同一直线上,连接EC.D∵四边形ABCD是矩形,∴AB=CD,AD=BC.∵PD=t,m=6,∴PA=6-t.∵点D,点E关于直线PC的对称.∴PE=t,EC=DC=AB=4,∠CEP=∠CDP=90°.在Rt△BCE中,∵BC=6,CE=4,∴BE在Rt△ABP中,∵AB2+AP2=BP2,即42+(6-t)2=(t)2,∴t=6-2(2)如图,连接EC,过点E作EF⊥BC于F.D 当P、E、B三点在同一直线上时, m有最大值.∵点D,点E关于直线PC的对称.∴EC=DC=AB=4,∠CEP=∠CEB=90°.在Rt△EFC中,∵EF2+CF2=EC2,即32+CF2=42,∴CF=7.在Rt△EFC中,EF⊥BC,∴△BFE∽△EFC.∴BFEF=EFCF,∴ EF2=BF·CF,即32=BF·7,∴BF=97.∴m=BC=BF+CF=977+7=1677.当点E在AB时,m有最小值,此时. m=7.综上,所以满足条件的m的取值范围是7≤m≤1677.17.(2017山东潍坊)(本小题满分12分)边长为6的等边△ABC中,点D、E分别在AC、BC边上,DE∥AB,EC=23.(1)如图1,将△DEC沿射线EC方向平移,得到△D′E′C′,边D′E′与AC的交点为M,边C′D′与∠ACC′的角平分线交于点N.当CC′多大时,四边形MCND′为菱形?并说明理由.(2)如图2,将△DEC绕点C旋转α(0°<α<360°),得到△D′E′C,连接AD′、BE′,边D′E′的中点为P.①在旋转过程中,AD′和BE′有怎样的数量关系?并说明理由.②连接AP,当AP最大时,求AD′的值.(结果保留根号)思路分析:(1)由平移性质及特殊角度,易知四边形MCND ′的两组对边分别平行,即为平行四边形.显然,△MCE ′和△NCC ′均为等边三角形,故要使□MCND ′再为菱形,只需E ′C =CC ′,此时CC ′=3;(2)①分两种情况讨论:当α≠180°时,根据旋转性质易证△ACD ′≌△BCE ′,故有AD ′=BE ′;当α=180°时,显然两线段长均为两等边三角形的边长之和,故也有结论AD ′=BE ′;②根据三角形的三边关系先确定AP 最长时情况,即A 、C 、P 三点共线,然后画出示意图,根据等边三角形的性质得AP ⊥D ′E ′,最后在Rt △APD ′中利用勾股定理计算AD ′的长. 解:(1)当CC ′=3时,四边形MCND ′为菱形. 理由:由平移的性质得CD ∥C ′D ′,DE ∥D ′E ′.∵△ABC 为等边三角形,∴∠B =∠ACB =60°. ∴∠ACC ′=180°-60°=120°.∵CN 为∠ACC ′的角平分线,∴∠NCC ′=60°. ∵AB ∥DE ,DE ∥D ′E ′,∴AB ∥D ′E ′. ∴∠D ′E ′C ′=∠B =60°.∴∠D ′E ′C ′=∠NCC ′,∴D ′E ′∥CN . ∴四边形MCND ′为平行四边形.∵∠ME ′C ′=∠MCE ′=60°,∠NCC ′=∠NC ′C =60°, ∴△MCE ′和△NCC ′为等边三角形,故MC = CE ′,NC =CC ′. 又E ′C ′=23,CC ′=3,∴CC ′=CE ′. ∴MC =CN ,∴四边形MCND ′为菱形.(2)AD ′=BE ′.理由:当α≠180°时,由旋转的性质得∠ACD ′=∠BCE ′. 由(1)知AC =BC ,CD ′=CE ′,。

中考化学专题13 综合计算(第02期)-2016年中考化学试题分项版解析汇编(原卷版)

中考化学专题13  综合计算(第02期)-2016年中考化学试题分项版解析汇编(原卷版)

专题13 综合计算1、【2016年北京市】(3分)为测定21.2g某变质氢氧化钠固体中碳酸钠的含量,将其配置成500mL溶液,分别取出50mL用两种方法进行测定。

已知:Na2CO3+BaCl2=BaCO3↓+2NaCl请任选1种方法的数据,计算该固体中碳酸钠的质量分数(写出计算过程及结果)。

2、【2016年四川省资阳市】(5分)某食用纯碱中含有少量的氯化钠,为测定该纯碱中碳酸钠(Na2CO3)的含量,现取该纯碱样品12.5g,加入150.0g稀盐酸溶液恰好完全反应,测得反应后溶液总质量变成158.1g。

计算:(1)反应中产生二氧化碳的质量为;(2)纯碱样品中Na2CO3的质量分数。

3、【2016年四川省宜宾市】(10分)某铁矿粉,主要成分为铁的氧化物(Fe X Oy),一学生利用实验作进一步分析,过程及数据如下。

(注:铁矿粉中杂质不参与下列过程中的反应)ⅰ.取29g该铁矿粉在CO气流中充分加热,将反应后的气体用烧碱溶液充分吸收,烧碱溶液增重17.6gⅱ.将上述加热后的固体取出后,再向固体逐滴加入稀硫酸,测得产生气体与滴入稀硫酸的质量关系如下图:通过计算回答下列问题:(1)过程ⅰ中生成气体的质量 g,过程ⅱ中固体充分反应后,产生气体的质量为 g。

(2)所用稀硫酸溶液的溶质质量分数为。

(3)29g铁矿粉所含铁的氧化物中,铁元素的质量为 g,氧元素的质量为 g。

(4)该铁的氧化物化学式中,x、y的最简整数比x︰y=。

4、【2016年四川省泸州市】海洋是人类千万年来赖以生存的重要资源宝库,图1是海水中化学资源的图示。

请结合图示回答相关问题。

(1)取海水滴加AgNO3溶液的现象是。

(2)下列有关海水及其开发的说法正确的是。

a.图2中海水所含化学资源都是化合物b.蒸馏法淡化海水是化学变化c.海水资源的开发不需要考虑环境保护问题d.海水中含有NaCl和MgCl2(3)海水中含有10个电子的微粒有H2O、Mg2+和。

中考化学试题分项版解析汇编(第02期)专题13 综合计算(含解析)-人教版初中九年级全册化学试题

中考化学试题分项版解析汇编(第02期)专题13  综合计算(含解析)-人教版初中九年级全册化学试题

专题13 综合计算1.【2017年某某省眉山市】(6分)某化学兴趣小组为测定某有机物(含C、H、O三种元素)中各元素的质量比,用下图实验装置(部分夹持装置略去)进行探究。

提示:装置C中发生的反应为2Na2O2+2CO2=2Na2CO3+O2实验数据:读数反应前质量/g 反应后质量/g电子天平a电子天平b请计算该有机物中各元素的质量比(写出计算过程)。

【答案】6:1:8有机物中碳、氢、氧三种元素质量比为3.6g:0.6g:4.8g=6:1:8第34题图2.【2017年某某省某某市】有一种管道疏通剂,主要成分为铝粉和氢氧化钠混合粉末。

工作原理是:利用铝和氢氧化钠遇水反应放出大量的热,加快氢氧化钠对毛发等淤积物的腐蚀,同时产生氢气增加管道内的气压,利于疏通。

小柯利用如图装置测定疏通剂中铝的质量分数。

Ⅰ.取样品20g,倒入容积为200ml的锥形瓶中,然后在分流漏斗中加入水,置于电子天平上测出总质量m1。

Ⅱ.打开活塞,加入足量的水充分反应,直到没有固体剩余,静置一段时间,测出总质量m2。

Ⅲ.实验数据如下表:反应前总质量m1反应后总质量m2回答下列问题:(1)配平化学方程式:2Al+2NaOH+2H2O_______NaAlO2+3H2↑(2)根据化学方程式计算样品中铝的质量分数。

(3)以下情形会导致样品中铝的质量分数测量结果偏高的原因可能有__________。

A.向锥形瓶中倒入样品时,撒出了部分粉末 B.在反应过程中有水蒸气逸出C.没有等装置中氢气全部排尽就称量【答案】(1)2 (2) 27%。

(3)BC54/x=6/ 解得x=Al%=m铝/m样品×100%=/20g×100%=27%答:该样品中铝的质量分数为27%。

(3)A.向锥形瓶中倒入样品时,撒出了部分粉末,不影响测定结果; B.在反应过程中有水蒸气逸出,导致氢气的质量偏多,计算的铝的质量偏大;样品中铝的含量偏高;C.没有等装置中氢气全部排尽就称量,导致氢气的质量偏少,计算得出铝的质量比实际偏低,样品中铝的含量偏低。

2017年深圳市中考数学试卷含答案解析(Word版)

2017年深圳市中考数学试卷含答案解析(Word版)

2017年广东省深圳市中考数学试卷'、选择题1.-2的绝对值是(A. - 2 B . 2 C. - D.2.图中立体图形的主视图是(3.随看“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000吨,将8200000用科学记数法表示为(5 A . 8.2 X 1055 6 7B . 82 X 105C . 8.2 X 106D . 82X1074.观察下列图形,其中既是轴对称又是中心对称图形的是(5.下列选项中,哪个不可以得到11 // 12?( )B .D. C.D.A. / 1= Z 2B. Z 2= Z 3C .Z 3= Z 5D . Z 3+ Z 4=180 °6.不等式组1Sift MJb... 的解集为7.—球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程()A. 10%x=330B.(1 —10%)x=330C. (1 —10%)2x=330 D . (1+10% )x=3308如图,已知线段AB,分别以A、B为圆心,大于AB为半径作弧,连接弧,dpql的交点得到直线I,在直线I上取一点C,使得/ CAB=25 ° ,延长AC至M,求/ BCM的度数为()A. 40 °B. 50 ° C . 60 ° D . 70 °9 •下列哪一个是假命题()A •五边形外角和为360 °B•切线垂直于经过切点的半径C.(3, —2)关于y轴的对称点为(-3, 2)D .抛物线y=x2—4x+2017对称轴为直线x=210 .某共享单车前a公里1元,超过a公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a应该要取什么数()A .平均数B .中位数C .众数D .方差11•如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点CB 60 ° D B 30 °处测得树顶的仰角为,然后在坡顶测得树顶的仰角为,已知斜坡CD的长度为20m,DE的长为10cm,则树AB的高度是()m .A. 20豳・B. 30C. 30 逐D. 4012 •如图,正方形ABCD的边长是3, BP=CQ,连接AQ , DP交于点O,并分别与边CD , BC交于点F , E,连接AE,下列结论:①AQ丄DP :②OA 2=OE?OP ;③S△ AOD=S四边形OECF;④当BP=1时,tan Z OAE= ,其中正确结论的个数是()二、填空题313 .因式分解:a - 4a=14 .在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部相同,任意摸两个球,摸到1黑1白的概率是15 •阅读理解:引入新数i,新数i满足分配律,结合律,交换律,已知i2=- 1,那么(1+i) ? (1 - i)=16 .如图,在Rt△ ABC 中,Z ABC=90 ° , AB=3 , BC=4 , Rt△ MPN , Z MPN=90点P在AC上,PM交AB于点E, PN交BC于点F,当PE=2PF时,AP=二、解答题17 •计算:一 -2 - 2cos45 ° (- 1)—2+ _ .裨| +诉:18.先化简,再求值:(,其中x= - 1 .19 .深圳市某学校抽样调查,A类学生骑共享单车,B类学生坐公交车、私家车等,C类学生步行,D类学生(其它),根据调查结果绘制了不完整的统计图.类型频数频率A30xB180.15C m0.40D n y20 .一个矩形周长为56厘米.(1) 当矩形面积为180平方厘米时,长宽分别为多少?(2) 能围成面积为200平方米的矩形吗?请说明理由.21 .如图,一次函数y=kx +b与反比例函数y= ' (x>0)交于A (2, 4), B (a, X1), 与x轴,y轴分别交于点C , D.(1)直接写出一次函数y=kx +b的表达式和反比例函数y= (x>0)的表达式;CD丄AB于点H,点M是i上任意一(1 )求。

中考数学专题03方程(组)和不等式(组)(第01期)-2017年中考数学试题分项版解析汇编(原卷版)

中考数学专题03方程(组)和不等式(组)(第01期)-2017年中考数学试题分项版解析汇编(原卷版)

专题3 方程(组)和不等式(组)一、选择题目1. (2017浙江衢州第6题)二元一次方程组的解是A. B. C. D. 2.(2017山东德州第8题)不等式组的解集为( )学科网A .x≥3B .-3≤x<4 C.-3≤x<2 D.x> 43.(2017山东德州第10题)某美术社团为练习素描,他们第一次用120元买了买了若干本资料,第二次用240元在同一家商店买同一样的资料,这次商家每本优惠4元,结果比上次多买了20本。

求第一次买了多少本资料?若设第一次买了x 本资料,列方程正确的是( )A. B.C. D.4.(2017重庆A 卷第12题)若数a 使关于x 的分式方程2411y ax x ++=--的解为正数,且使关于y的不等式组12()y 2320y a y⎧+->-≤⎪⎨⎪⎩的解集为y <﹣2,则符合条件的所有整数a 的和为( )A .10B .12C .14D .165.(2017甘肃庆阳第9题)如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m 2.若设道路的宽为xm ,则下面所列方程正确的是⎩⎨⎧-=-=+236y x y x ⎩⎨⎧==15y x ⎩⎨⎧==24y x ⎩⎨⎧-=-=15y x ⎩⎨⎧-=-=24y x 31+2-132+9x xx ⎧≥>⎪⎨⎪⎩240120-=4-20x x 240120-=4+20x x 120240-=4-20xx 120240-=4+20x x( )A .(32-2x )(20-x )=570B .32x+2×20x=32×20-570C .(32-x )(20-x )=32×20-570D .32x+2×20x -2x 2=5706.(2017贵州安顺第8题)若关于x 的方程x 2+mx+1=0有两个不相等的实数根,则m 的值可以是( ) A .0B .﹣1C .2D .﹣37.(2017湖南怀化第7题)若12,x x 是一元二次方程2230x x 的两个根,则12x x 的值是( )A.2B.2C.4D.38. (2017江苏无锡第7题)某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是( ) A .20% B .25% C .50% D .62.5%9.(2017甘肃兰州第6题)如果一元二次方程2230x x m 有两个相等的实数根,那么是实数m 的取值为( ) A.98mB.89mC.98mD.89m10. (2017甘肃兰州第10题)王叔叔从市场上买一块长80cm ,宽70cm 的矩形铁皮,准备制作一个工具箱,如图,他将矩形铁皮的四个角各剪掉一个边长cm x 的正方形后,剩余的部分刚好能围成一个底面积为23000cm 的无盖长方形工具箱,根据题意列方程为( )A.80703000x xB.2807043000xC.8027023000x xD.28070470803000x x11.(2017贵州黔东南州第6题)已知一元二次方程x 2﹣2x ﹣1=0的两根分别为x 1,x 2,则1211x x +的值为( ) A .2B .﹣1C .-12D .﹣2 12.(2017贵州黔东南州第7题)分式方程331x (1)1x x =-++的根为( )A .﹣1或3B .﹣1C .3D .1或﹣313.(2017山东烟台第10题)若是方程的两个根,且,则的值为( )A .或2B .1或 C. D .114.(2017四川宜宾第4题)一元二次方程4x 2﹣2x+=0的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法判断15.(2017四川自贡第4题)不等式组23-42+1x x >≤⎧⎨⎩的解集表示在数轴上正确的是( )16.(2017新疆建设兵团第7题)已知关于x 的方程x 2+x ﹣a=0的一个根为2,则另一个根是( ) A .﹣3 B .﹣2 C .3D .617. (2017新疆建设兵团第8题)某工厂现在平均每天比原计划多生产40台机器,现在生产600台机器所需的时间与原计划生产480台机器所用的时间相同,设原计划每天生产x 台机器,根据题意,下面列出的方程正确的是( )A .60048040x x =- B .600480+40x x =C .600480+40xx =D .600480-40xx =18. (2017浙江嘉兴第6题)若二元一次方程组3,354x y x y +=⎧⎨-=⎩的解为,,x a y b =⎧⎨=⎩则a b -=( )21,x x 01222=--+-m m mx x 21211x x x x -=+m 1-2-2-14A .1B .3C .14-D .7419.(2017浙江嘉兴第8题)用配方法解方程2210x x +-=时,配方结果正确的是( )A .2(2)2x += B .2(1)2x += C .2(2)3x += D .2(1)3x += 二、填空题目1.(2017山东德州第15题)方程3x(x-1)=2(x-1)的根是2.(2017浙江宁波第14题)分式方程21332x x的解是 .3.(2017甘肃庆阳第15题)若关于x 的一元二次方程(k-1)x 2+4x+1=0有实数根,则k 的取值范围是 4.(2017江苏盐城第13题)若方程x 2-4x+1=0的两根是x 1,x 2,则x 1(1+x 2)+x 2的值为 5.(2017山东烟台第15题)运行程序如图所示,从“输入实数”到“结果是否”为一次程序操作,若输入后程序操作仅进行了一次就停止,则的取值范围是 .6.(2017四川泸州第15题)若关于x 的分式方程x 2322m mx x ++=--的解为正实数,则实数m 的取值范围是 .7.(2017四川宜宾第13题)若关于x 、y 的二元一次方程组的解满足x+y >0,则m 的取值范围是 .8.(2017四川宜宾第14题)经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x ,根据题意可列方程是 .9.(2017四川自贡第15题)我国明代数学家程大位的名著《直接算法统宗》里有一道著名算题: “一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,正好分完;如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各几人?设大、小和尚各有x ,y 人,则可以列方程组 .10. (2017新疆建设兵团第13题)一台空调标价2000元,若按6折销售仍可获利20%,则这台空调的进价是元.x 18<x x 2m 133x y x y ⎧-=+⎨+=⎩三、解答题1.(2017浙江衢州第18题)解下列一元一次不等式组:2.(2017浙江衢州第20题)根据衢州市统计局发布的统计数据显示,衢州市近5年国民生产总值数据如图1所示,2016年国民生产总值中第一产业、第二产业、第三产业所占比例如图2所示。

中考数学专题01实数-(第01期)-2017年中考数学试题分项版解析汇编(解析版)

中考数学专题01实数-(第01期)-2017年中考数学试题分项版解析汇编(解析版)

专题01 实数问题一、选择题目1.(2017浙江衢州市第1题)-2的倒数是A.B. C. -2 D. 2【答案】A 【解析】试题解析:根据倒数的定义得:﹣2的倒数是﹣. 故选A . 考点:倒数.2.(2017山东德州市第1题)-2的倒数是( )A .B .C .-2D .2【答案】A 【解析】试题分析:性质符号相同,分子分母位置颠倒的两个数称为互为倒数,所以-2的倒数是考点:互为倒数的定义.3.(2017山东德州市第2题)2016年,我市“全面改薄”和改变大班额工程成绩突出,两项工程累计开工面积达477万平方米,各项指标均居全省前列。

477万用科学记数法表示正确的是( )学*科网 A .4.77×105B . 47.7×105C .4.77×106D .0.477×105【答案】C 【解析】21211-2121-2试题分析:选项B 和D 中,乘号前面的a 都不对,应该1≤a<10;选项A 中指数错误,当原数当绝对值>1时,应该为原数的整数位数减去1。

考点:科学记数法的表示方法4.(2017浙江宁波市第112,0,2这四个数中,为无理数的是( )B.12 C.0 D.2-【答案】A. 【解析】12,0,2故选A. 考点:无理数.5.(2017浙江宁波市第3题) 2017年2月13日,宁波舟山港45万吨原油码头首次挂靠全球最大油轮——“泰欧”轮,其中45万吨用科学记数法表示为( )A.60.4510吨B.54.510吨C.44510吨D.44.510吨【答案】B.考点:科学记数法----表示较大的数.6.(2017浙江宁波市第4x 的取值范围是( ) A.3xB.3xC.3xD.3x【答案】D 【解析】试题解析:根据二次根式有意义的条件得:x-3≥0 解得:x≥3. 故选D.考点:二次根式有意义的条件.7.(2017重庆市A 卷第1题)在实数﹣3,2,0,﹣4中,最大的数是( )A .﹣3B .2C .0D .﹣4【答案】B. 【解析】试题解析:∵﹣4<﹣3<0<2, ∴四个实数中,最大的实数是2. 故选B .考点:有理数的大小比较.8.(2017重庆市A 卷第5+1的值应在( ) A .3和4之间 B .4和5之间C .5和6之间D .6和7之间【答案】B . 【解析】<4,+1<5. 故选B .考点:无理数的估算.9.(2017江苏徐州市第1题)的倒数是( )A .B .C .D .【答案】D . 【解析】试题解析:-5的倒数是-15;故选D . 考点:倒数10.(2017江苏徐州市第3题) 肥皂泡的泡壁厚度大约是米,数字用科学记数法表示为( )A .B .C .D .5-5-51515-0.000000710.0000007177.110⨯60.7110-⨯77.110-⨯87110-⨯【答案】C.【解析】试题解析:数字0.00000071用科学记数法表示为7.1×10-7,故选C.考点:科学记数法—表示较小的数.11.(2017甘肃平凉市第2题)据报道,2016年10月17日7时30分28秒,神舟十一号载人飞船在甘肃酒泉发射升空,与天宫二号在距离地面393000米的太空轨道进行交会对接,而这也是未来我国空间站运行的轨道高度.393000用科学记数法表示为()A.39.3×104 B.3.93×105 C.3.93×106 D.0.393×106【答案】B.考点:科学记数法—表示较大的数.12.(2017甘肃平凉市第3题)4的平方根是()A.16 B.2 C【答案】C【解析】试题解析:∵(±2)2=4,∴4的平方根是±2,故选C.考点:平方根.13.(2017广西贵港市第1题)7的相反数是()A.7 B.7- C.17 D.17-【答案】B 【解析】试题解析:7的相反数是﹣7, 故选:B . 考点:相反数.14.(2017广西贵港市第4题)下列二次根式中,最简二次根式是( )A. BD【答案】A考点:最简二次根式.15.(2017贵州安顺市第1题)﹣2017的绝对值是( )A .2017B .﹣2017C .±2017 D.﹣【答案】A .学科网 【解析】试题解析:﹣2017的绝对值是2017. 故选A . 考点:绝对值.16.(2017贵州安顺市第2题)我国是世界上严重缺水的国家之一,目前我国每年可利用的淡水资源总量为27500亿米3,人均占有淡水量居全世界第110位,因此我们要节约用水,27500亿用科学记数法表示为( ) A .275×104B .2.75×104C .2.75×1012D .27.5×1011【答案】C . 【解析】试题解析:将27500亿用科学记数法表示为:2.75×1012.12017故选C .考点:科学记数法—表示较大的数.17.(2017湖北武汉市第1) A .6 B .-6 C .18 D .-18 【答案】A. 【解析】故选A.考点:算术平方根.18.(2017湖南怀化市第1题)2的倒数是( ) A.2B.2C.12D.12【答案】C 【解析】试题解析:﹣2得到数是12,故选C . 考点:倒数.19.(2017湖南怀化市第3题)为了贯彻习近平总书记提出的“精准扶贫”战略构想,怀化市2016年共扶贫149700人,将149700用科学记数法表示为( )A.51.49710B.414.9710C.60.149710D.61.49710【答案】A. 【解析】试题解析:将149700用科学记数法表示为1.497×105, 故选A .考点:科学记数法—表示较大的数.20.(2017江苏无锡市第1题)﹣5的倒数是( )A .B .±5C .5D .﹣1515【解析】试题解析:∵﹣5×(﹣)=1,∴﹣5的倒数是﹣.故选D.考点:倒数21.(2017江苏盐城市第1题)-2的绝对值是()A.2 B.-2 C.D.−【答案】A.【解析】试题解析:-2的绝对值是2,即|-2|=2.故选A.考点:绝对值.22.(2017贵州黔东南州第1题)|﹣2|的值是()A.﹣2 B.2 C.﹣12D.12【答案】B.【解析】试题解析:∵﹣2<0,∴|﹣2|=2.故选B.考点:绝对值.23.(2017四川泸州市第1题)-7的绝对值是()A.7 B.-7 C.17 D.-1715151 21 2【解析】试题解析:|-7|=7.故选A.考点:绝对值.24.(2017四川泸州市第2题)“五一”期间,某市共接待海内外游客约567000人次,将567000用科学记数法表示为()A.567×103 B.56.7×104 C.5.67×105 D.0.567×106【答案】C.【解析】试题解析:567000=5.67×105,故选C.考点:科学记数法—表示较大的数.25.(2017四川省宜宾市第1题)9的算术平方根是()A.3 B.﹣3 C.±3【答案】A.【解析】试题解析:∵32=9,∴9的算术平方根是3.故选A.考点:算术平方根.26.(2017四川省宜宾市第2题)据相关报道,开展精准扶贫工作五年以来,我国约有55000000人摆脱贫困,将55000000用科学记数法表示是()A.55×106B.0.55×108C.5.5×106D.5.5×107【答案】D.【解析】试题解析:55000000=5.5×107,故选D.考点:科学记数法—表示较大的数27.(2017四川省自贡市第1题)计算(﹣1)2017的结果是()A.﹣1 B.1 C.﹣2017 D.2017【答案】A【解析】试题解析:(﹣1)2017=﹣1,故选A.考点:有理数的乘方.28.(2017四川省自贡市第3题)380亿用科学记数法表示为()A.38×109B.0.38×1013C.3.8×1011 D.3.8×1010【答案】D【解析】试题解析:380亿=38 000 000 000=3.8×1010.故选D.考点:科学计数法----表示较大的数.29.(2017新疆建设兵团第1题)下列四个数中,最小的数是()A.﹣1 B.0 C. D.3【答案】A.【解析】试题解析:∵﹣1<0<<3,∴四个数中最小的数是﹣1.故选A.考点:有理数大小比较30.(2017浙江省嘉兴市第1题)2-的绝对值为()A.2B.2-C.12D.12-【答案】A. 【解析】1 21 2试题解析:-2的绝对值是2, 即|-2|=2. 故选A . 考点:绝对值.31.(2017山东烟台市第1题)下列实数中的无理数是( )A. B . C .0 D .【答案】B . 【解析】0,13是有理数,π是无理数,故选:B . 考点:无理数.32.(2017山东烟台市第3题)我国推行“一带一路”政策以来,已确定沿线有65个国家加入,共涉及总人口约达46亿人,用科学记数法表示该总人口为( )A .B .C .D .【答案】A . 【解析】试题解析:46亿=4600 000 000=4.6×109, 故选A .考点:科学记数法—表示较大的数.33.(2017山东烟台市第6题)如图,若用我们数学课本上采用的科学计算器进行计算,其按键顺序如下:9π319106.4⨯81046⨯101046.0⨯10106.4⨯则输出结果为( )A. B . C. D .【答案】C . 【解析】17=2.故选:C .考点:计算器—数的开方.二、填空题目1.(2017浙江衢州市第11题)二次根式中字母的取值范围是__________ 【答案】a≥2.考点:二次根式有意义的条件. 2.(2017山东德州市第2题) 计算:【答案】【解析】. 考点:无理数运算3.(2017浙江宁波市第4题)实数8的立方根是 . 【答案】-2 【解析】试题分析:∵(-2)3=-8212132172252 a a∴-8的立方根是-2.考点:立方根4.(2017重庆市A卷第13题)“渝新欧”国际铁路联运大通道全长11000千米,成为服务“一带一路”的大动脉之一,将数11000用科学记数法表示为.【答案】【解析】试题解析:11000=1.1×104.考点:科学记数法---表示较大的数.5.(2017重庆市A卷第14题)计算:|﹣3|+(﹣1)2= .【答案】4.【解析】试题解析:|﹣3|+(﹣1)2=4考点:有理数的混合运算.6.(2017江苏徐州市第9题)的算术平方根是.【答案】2【解析】试题解析:∵22=4,∴4的算术平方根是2.考点:算术平方根.7.(2017江苏徐州市第11的取值范围是.【答案】x≥6.考点:二次根式有意义的条件.8.(2017甘肃平凉市第12与0.50.5.(填“>”、“=”、“<”)4x【答案】> 【解析】1-2, >0,>0. 考点:实数大小比较.9.(2017广西贵港第13题)计算:35--= . 【答案】-8 【解析】试题解析:﹣3﹣5=﹣8. 考点:有理数的减法.10.(2017广西贵港第14题)中国的领水面积为2370000km ,把370000用科学记数法表示为 . 【答案】3.7×105. 【解析】试题解析:370 000=3.7×105. 考点:科学记数法—表示较大的数.11.(2017湖北武汉市第11题)计算23(4)⨯+-的结果为 . 【答案】2. 【解析】试题解析:23(4)⨯+-=6-4=2. 考点:有理数的混合运算.12.(2017江苏无锡市第11的值是 .【答案】6. 【解析】⨯=6.考点:二次根式的乘除法.13.(2017江苏无锡市第13题)贵州FAST 望远镜是目前世界第一大单口径射电望远镜,反射面总面积约250000m 2,这个数据用科学记数法可表示为 . 【答案】2.5×105. 【解析】试题解析:将250000用科学记数法表示为:2.5×105. 考点:科学记数法—表示较大的数.14.(2017江苏无锡市第14题)如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是 ℃.【答案】11.考点:1.有理数大小比较;2.有理数的减法.15.(2017江苏盐城市第7题)请写出一个无理数 【解析】考点:无理数.⨯=16.(2017江苏盐城市第9题)2016年12月30日,盐城市区内环高架快速路网二期工程全程全线通车,至此,已通车的内环高架快速路里程达57000米,用科学记数法表示数57000为 【答案】5.7×104. 【解析】试题解析:将57000用科学记数法表示为:5.7×104. 考点:科学记数法—表示较大的数.17.(2017江苏盐城市第10在实数范围内有意义,则x的取值范围是 【答案】x≥3. 【解析】试题解析:根据题意得x-3≥0, 解得x≥3.考点:二次根式有意义的条件.18.(2017四川泸州市第17题)计算:(-3)2+20170 【答案】7. 【解析】考点:1.实数的运算;2.零指数幂;3.特殊角的三角函数值.19.(2017四川省自贡市第13题)计算(﹣12)﹣1= .【答案】-2 【解析】试题解析:原式=11-2=﹣2.考点:负整数指数幂.20.(2017山东省烟台市第13题) .【答案】6. 【解析】试题解析:原式=1×4+2 =4+2 =6.考点:实数的运算;零指数幂;负整数指数幂.三、解答题1.(2017浙江衢州市第17题)计算:【答案】 【解析】试题分析:按照实数的运算法则依次进行计算即可得解. 试题解析:原式.考点:1.实数的运算;2.零指数幂;3.特殊角的三角函数值.2.(2017江苏徐州市第19(1)题)计算:;【答案】3.考点:1..实数的运算;2.零指数幂;3.负整数指数幂.3.(2017甘肃平凉市第193tan30°+(π-4)0-()-1.=-+⨯-|2|)21(320︒--⨯-+60tan 2)1(120π1201(2)20172-⎛⎫--+ ⎪⎝⎭121-.【解析】试题分析:本题涉及零指数幂、负整数指数幂、特殊角的三角函数值、二次根式化简四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则计算.试题解析:原式=312+-=12+-1-.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.二次根式的性质与化简;5.特殊角的三角函数值.4.(2017广西贵港市第19(1))计算:)20132cos602π-⎛⎫-+---⎪⎝⎭;【答案】-1.【解析】试题分析:根据零指数幂的意义、特殊角的锐角三角函数以及负整数指数幂的意义即可求出答案;试题解析:原式=3+1-(-2)2-2×12=4-4-1=-1考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.5.(2017贵州安顺市第19题)|+(13)﹣1﹣(3﹣π)0﹣(﹣1)2017.【答案】3.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.6.(2017湖南怀化市第171031120173tan3084°.【答案】-2【解析】1是正数,所以它的绝对值是本身,任何不为0的零次幂都是1,11()4=4,tan30°=8的立方根,是2,分别代入计算可得结果.试题解析:原式1+1﹣4+2,4+2,=﹣2.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.7.(2017江苏无锡市第19(1)题)计算:|﹣6|+(﹣2)3+)0;【答案】-1.【解析】试题分析:(1)根据零指数幂的意义以及绝对值的意义即可求出答案;(2)根据平方差公式以及单项式乘以多项式法则即可求出答案.试题解析:原式=6﹣8+1=﹣1学*科网考点:实数的运算;单项式乘多项式;零指数幂.8.(江苏盐城市第17+()-1-20170.【答案】3.【解析】试题分析:首先计算开方,乘方、然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.试题解析:原式=2+2-1=3.考点:实数的运算;零指数幂;负整数指数幂.9.(2017贵州黔东南州第17题)计算:﹣1﹣2(π﹣3.14)012【答案】【解析】试题分析:原式利用零指数幂、负整数指数幂法则,特殊角的三角函数值,以及绝对值的代数意义化简,计算即可得到结果.试题解析:原式=1++1考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.10.(2017四川省宜宾市第17题(1))计算(2017﹣π)0﹣()﹣1+|﹣2|【答案】-1.【解析】试题分析:根据零指数幂、负整数指数幂、绝对值分别求出每个部分的值,再代入求出即可. 试题解析:原式=1﹣4+2=﹣1;考点:实数的运算;零指数幂;负整数指数幂.11.(2017四川省自贡市第19题)计算:4sin45°+|﹣2|+(13)0.【答案】3.【解析】考点:1.实数的运算;2.特殊角三角函数值;3.零指数幂.12.(2017新疆建设兵团第16题)计算:(12)﹣1﹣||(1﹣π)0.14【答案】【解析】试题分析:根据负整数指数幂,去绝对值,二次根式的化简以及零指数幂的计算法则计算.试题解析:原式=2考点:实数的运算;零指数幂;负整数指数幂.13.(2017浙江省嘉兴市第17题(1))计算:212(4)--⨯-.【答案】5.【解析】试题分析:首先计算乘方和负指数次幂,计算乘法,然后进行加减即可.试题解析:原式=3-12×(-4)=3+2=5.考点:实数的运算;负整数指数幂.祝你考试成功!祝你考试成功!。

中考数学专题11圆(第03期)-2017年中考数学试题分项版解析汇编(解析版)

中考数学专题11圆(第03期)-2017年中考数学试题分项版解析汇编(解析版)

一、选择题目1.(2017四川省南充市)如图,在Rt △ABC 中,AC =5cm ,BC =12cm ,∠ACB =90°,把Rt △ABC 所在的直线旋转一周得到一个几何体,则这个几何体的侧面积为( )A .60πcm 2B .65πcm 2C .120πcm 2D .130πcm 2 【答案】B .考点:1.圆锥的计算;2.点、线、面、体.2.(2017四川省广安市)如图,AB 是⊙O 的直径,且经过弦CD 的中点H ,已知cos ∠CDB =45,BD =5,则OH 的长度为( )A .32B .65C .1D .67【答案】D . 【解析】试题分析:连接OD ,如图所示:∵AB 是⊙O 的直径,且经过弦CD 的中点H ,∴AB ⊥CD ,∴∠OHD =∠BHD =90°,∵cos ∠CDB =DHBD=45,BD =5,∴DH =4,∴BH3,设OH =x ,则OD =OB =x +3,在Rt △ODH 中,由勾股定理得:x 2+42=(x +3)2,解得:x =67,∴OH =67;故选D .考点:1.圆周角定理;2.解直角三角形.3.(2017四川省眉山市)如图,在△ABC 中,∠A =66°,点I 是内心,则∠BIC 的大小为( )A .114°B .122°C .123°D .132° 【答案】C . 【解析】试题分析:∵∠A =66°,∴∠ABC +∠ACB =114°,∵点I 是内心,∴∠IBC =12∠ABC ,∠ICB =12∠ACB ,∴∠IBC +∠ICB =57°,∴∠BIC =180°﹣57°=123°,故选C .学*科网 考点:三角形的内切圆与内心.4.(2017四川省绵阳市)“赶陀螺”是一项深受人们喜爱的运动,如图所示是一个陀螺的立体结构图,已知底面圆的直径AB =8cm ,圆柱体部分的高BC =6cm ,圆锥体部分的高CD =3cm ,则这个陀螺的表面积是( )A .68πcm 2B .74πcm 2C .84πcm 2D .100πcm 2【答案】C.【解析】试题分析:∵底面圆的直径为8cm,高为3cm,∴母线长为5cm,∴其表面积=π×4×5+42π+8π×6=84πcm2,故选C.考点:1.圆锥的计算;2.几何体的表面积.5.(2017四川省达州市)以半径为2的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是()A B C.D【答案】A.考点:正多边形和圆.6.(2017山东省枣庄市)如图,在网格(每个小正方形的边长均为1)中选取9个格点(格线的交点称为格点),如果以A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内,则r的取值范围为()A.r << Br << C5r << D.5r <<【答案】B . 【解析】试题分析:给各点标上字母,如图所示. AB==,AC =AD==,AE==,AF==,AG =AM =AN5r <<A 为圆心,r 为半径画圆,选取的格点中除点A 外恰好有3个在圆内.故选B .考点:1.点与圆的位置关系;2.勾股定理;3.推理填空题目.7.(2017山东省济宁市)如图,在Rt △ABC 中,∠ACB =90°,AC =BC =1,将Rt △ABC 绕点A 逆时针旋转30°后得到Rt △ADE ,点B 经过的路径为,则图中阴影部分的面积是( )A . 6πB . 3πC .122π-D . 12【答案】A.【解析】试题分析:∵∠ACB=90°,AC=BC=1,∴AB,∴S扇形ABD=6π.又∵Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,∴Rt△ADE≌Rt△ACB,∴S阴影部分=S△ADE+S扇形ABD﹣S△ABC=S扇形ABD=6π.故选A.考点:1.扇形面积的计算;2.等腰直角三角形;3.旋转的性质.学科*网8.(2017广东省)如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为()A.130°B.100°C.65°D.50°【答案】C.考点:圆内接四边形的性质.9.(2017广西四市)如图,⊙O是△ABC的外接圆,BC=2,∠BAC=30°,则劣弧BC的长等于()A.2π3B.π3C.2√3π3D.√3π3【答案】A.【解析】试题分析:如图,连接OB 、OC ,∵∠BAC =30°,∴∠BOC =2∠BAC =60°,又OB =OC ,∴△OBC 是等边三角形,∴BC =OB =OC =2,∴劣弧BC 的长为:602180π⨯ =2π3.故选A .考点:1.弧长的计算;2.圆周角定理. 二、填空题目10.(2017四川省眉山市)如图,AB 是⊙O 的弦,半径OC ⊥AB 于点D ,且AB =8cm ,DC =2cm ,则OC = cm .【答案】5. 【解析】试题分析:连接OA ,∵OC ⊥AB ,∴AD =12AB =4cm ,设⊙O 的半径为R ,由勾股定理得,OA 2=AD 2+OD 2,∴R 2=42+(R ﹣2)2,解得R =5,∴OC =5cm .故答案为:5.考点:1.垂径定理;2.勾股定理.11.(2017四川省达州市)如图,矩形ABCD 中,E 是BC 上一点,连接AE ,将矩形沿AE 翻折,使点B 落在CD 边F 处,连接AF ,在AF 上取点O ,以O 为圆心,OF 长为半径作⊙O 与AD 相切于点P.若AB =6,BC=F 是CD 的中点;②⊙O 的半径是2;③AE =92CE;④S =阴影.其中正确结论的序号是 .【答案】. 【解析】试题分析:①∵AF 是AB 翻折而来,∴AF =AB =6,∵AD =BC=DF=3,∴F 是CD中点;∴①正确;②连接OP ,∵⊙O 与AD 相切于点P ,∴OP ⊥AD ,∵AD ⊥DC ,∴OP ∥CD ,∴AO OP AF DF =,设OP =OF =x ,则636x x -=,解得:x =2,∴②正确;③∵RT △ADF 中,AF =6,DF =3,∴∠DAF =30°,∠AFD =60°,∴∠EAF =∠EAB =30°,∴AE =2EF ; ∵∠AFE =90°,∴∠EFC =90°﹣∠AFD =30°,∴EF =2EC ,∴AE =4CE ,∴③错误;④连接OG ,作OH ⊥FG ,∵∠AFD =60°,OF =OG ,∴△OFG 为等边△;同理△OPG 为等边△;∴∠POG =∠FOG =60°,OHOG,S 扇形OPG =S 扇形OGF ,∴S 阴影=(S 矩形OPDH ﹣S 扇形OPG ﹣S △OGH )+(S 扇形OGF ﹣S △OFG )=S 矩形OPDH ﹣32S △OFG=312(222-⨯⨯.∴④正确;故答案为:①②④.考点:1.切线的性质;2.矩形的性质;3.扇形面积的计算;4.翻折变换(折叠问题);5.综合题.12.(2017山东省枣庄市)如图,在▱ABCD中,AB为⊙O的直径,⊙O与DC相切于点E,与AD相交于点F,已知AB=12,∠C=60°,则FE的长为.【答案】π.考点:1.切线的性质;2.平行四边形的性质;3.弧长的计算.学&科网13.(2017山东省济宁市)如图,正六边形A1B1C1D1E1F1的边长为1,它的六条对角线又围成一个正六边形A2B2C2D2E2F2,如此继续下去,则正六边形A4B4C4D4E4F4的面积是.考点:1.正多边形和圆;2.规律型;3.综合题.14.(2017四川省南充市)如图,在Rt △ABC 中,∠ACB =90°,以AC 为直径作⊙O 交AB 于点D ,E 为BC 的中点,连接DE 并延长交AC 的延长线于点F . (1)求证:DE 是⊙O 的切线;(2)若CF =2,DF =4,求⊙O 直径的长.【答案】(1)证明见解析;(2)6. 【解析】试题分析:(1)连接OD 、CD ,由AC 为⊙O 的直径知△BCD 是直角三角形,结合E 为BC的中点知∠CDE=∠DCE,由∠ODC=∠OCD且∠OCD+∠DCE=90°可得答案;(2)设⊙O的半径为r,由OD2+DF2=OF2,即r2+42=(r+2)2可得r=3,即可得出答案.试题解析:(1)如图,连接OD、CD.∵AC为⊙O的直径,∴△BCD是直角三角形,∵E为BC的中点,∴BE=CE=DE,∴∠CDE=∠DCE,∵OD=OC,∴∠ODC=∠OCD,∵∠ACB=90°,∴∠OCD+∠DCE=90°,∴∠ODC+∠CDE=90°,即OD⊥DE,∴DE是⊙O的切线;(2)设⊙O的半径为r,∵∠ODF=90°,∴OD2+DF2=OF2,即r2+42=(r+2)2,解得:r=3,∴⊙O的直径为6.考点:切线的判定与性质.15.(2017四川省广安市)如图,已知AB是⊙O的直径,弦CD与直径AB相交于点F.点E在⊙O外,做直线AE,且∠EAC=∠D.(1)求证:直线AE是⊙O的切线.(2)若∠BAC=30°,BC=4,cos∠BAD=34,CF=103,求BF的长.【答案】(1)证明见解析;(2【解析】试题分析:(1)由直径所对的圆周角是直角得:∠ADB=90°,则∠ADC+∠CDB=90°,所以∠EAC+∠BAC=90°,则直线AE是⊙O的切线;(2)分别计算AC和BD的长,证明△DFB∽△AFC,列比例式得:BF BDFC AC,得出结论.试题解析:(1)连接BD,∵AB是⊙O的直径,∴∠ADB=90°,即∠ADC+∠CDB=90°,∵∠EAC=∠ADC,∠CDB=∠BAC,∴∠EAC+∠BAC=90°,即∠BAE=90°,∴直线AE是⊙O的切线;(2)∵AB是⊙O的直径,∴∠ACB=90°,Rt△ACB中,∠BAC=30°,∴AB=2BC=2×4=8,由勾股定理得:AC=,Rt△ADB中,cos∠BAD=34=ADAB,∴34=8AD,∴AD=6,∴BD=,∵∠BDC=∠BAC,∠DFB=∠AFC,∴△DFB∽△AFC,∴BF BDFC AC=,∴103BF=,∴BF=考点:1.切线的判定与性质;2.解直角三角形.16.(2017四川省绵阳市)如图,已知AB是圆O的直径,弦CD⊥AB,垂足为H,与AC平行的圆O的一条切线交CD的延长线于点M,交AB的延长线于点E,切点为F,连接AF交CD于点N.(1)求证:CA=CN;(2)连接DF,若cos∠DF A=45,AN=,求圆O的直径的长度.【答案】(1)证明见解析;(2)503.学&科网【解析】试题分析:(1)连接OF,根据切线的性质结合四边形内角和为360°,即可得出∠M+∠FOH=180°,由三角形外角结合平行线的性质即可得出∠M=∠C=2∠OAF,再通过互余利用角的计算即可得出∠CAN=90°﹣∠OAF=∠ANC,由此即可证出CA=CN;(2)连接OC,如图2所示.∵cos∠DF A=45,∠DF A=∠ACH,∴CHAC=45.设CH=4a,则AC=5a,AH=3a,∵CA=CN,∴NH=a,∴AN=a=,∴a=2,AH=3a=6,CH=4a=8.设圆的半径为r,则OH=r﹣6,在Rt△OCH中,OC=r,CH=8,OH=r﹣6,∴OC2=CH2+OH2,r2=82+(r﹣6)2,解得:r=253,∴圆O的直径的长度为2r=503.考点:1.切线的性质;2.勾股定理;3.圆周角定理;4.解直角三角形.17.(2017四川省达州市)如图,△ABC内接于⊙O,CD平分∠ACB交⊙O于D,过点D作PQ∥AB分别交CA、CB延长线于P、Q,连接BD.(1)求证:PQ是⊙O的切线;(2)求证:BD2=AC•BQ;(3)若AC、BQ的长是关于x的方程4x mx+=的两实根,且tan∠PCD=13,求⊙O的半径.【答案】(1)证明见解析;(2)证明见解析;(3).【解析】试题分析:(1)根据平行线的性质和圆周角定理得到∠ABD=∠BDQ=∠ACD,连接OB,OD,交AB于E,根据圆周角定理得到∠OBD=∠ODB,∠O=2∠DCB=2∠BDQ,根据三角形的内角和得到2∠ODB+2∠O=180°,于是得到∠ODB+∠O=90°,根据切线的判定定理即可得到结论;(2)证明:连接AD,根据等腰三角形的判定得到AD=BD,根据相似三角形的性质即可得到结论;试题解析:(1)证明:∵PQ∥AB,∴∠ABD=∠BDQ=∠ACD,∵∠ACD=∠BCD,∴∠BDQ=∠ACD,如图1,连接OB,OD,交AB于E,则∠OBD=∠ODB,∠O=2∠DCB=2∠BDQ,在△OBD中,∠OBD+∠ODB+∠O=180°,∴2∠ODB+2∠O=180°,∴∠ODB+∠O=90°,∴PQ是⊙O的切线;(2)证明:如图2,连接AD,由(1)知PQ是⊙O的切线,∴∠BDQ=∠DCB=∠ACD=∠BCD=∠BAD,∴AD=BD,∵∠DBQ=∠ACD,∴△BDQ∽△ACD,∴AD ACBQ BD=,∴BD2=AC•BQ;(3)解:方程4x mx+=可化为x2﹣mx+4=0,∵AC、BQ的长是关于x的方程4x mx+=的两实根,∴AC•BQ=4,由(2)得BD2=AC•BQ,∴BD2=4,∴BD=2,由(1)知PQ是⊙O的切线,∴OD⊥PQ,∵PQ∥AB,∴OD⊥AB,由(1)得∠PCD=∠ABD,∵tan∠PCD=13,∴tan∠ABD=13,∴BE=3DE,∴DE 2+(3DE )2=BD 2=4,∴DE=,∴BE=,设OB =OD =R ,∴OE =R﹣,∵OB 2=OE 2+BE 2,∴R 2=(R)2+2,解得:R=,∴⊙O的半径为.考点:1.相似三角形的判定与性质;2.分式方程的解;3.圆周角定理;4.切线的判定与性质;5.解直角三角形;6.压轴题.18.(2017山东省枣庄市)如图,在△ABC 中,∠C =90°,∠BAC 的平分线交BC 于点D ,点O 在AB 上,以点O 为圆心,OA 为半径的圆恰好经过点D ,分别交AC ,AB 于点E ,F . (1)试判断直线BC 与⊙O 的位置关系,并说明理由; (2)若BD=BF =2,求阴影部分的面积(结果保留π).【答案】(1)BC 与⊙O 相切;(2)23π.【解析】试题分析:(1)连接OD ,证明OD ∥AC ,即可证得∠ODB =90°,从而证得BC 是圆的切线;(2)设OF =OD =x ,则OB =OF +BF =x +2,由勾股定理得:OB 2=OD 2+BD 2,即(x +2)2=x 2+12,解得:x =2,即OD =OF =2,∴OB =2+2=4,∵Rt △ODB 中,OD =12OB ,∴∠B =30°,∴∠DOB =60°,∴S扇形AOB =604360π⨯ =23π,则阴影部分的面积为S △ODB ﹣S 扇形DOF =12×2×﹣23π=23π-.故阴影部分的面积为23π.考点:1.直线与圆的位置关系;2.扇形面积的计算;3.探究型.19.(2017山东省济宁市)如图,已知⊙O 的直径AB =12,弦AC =10,D 是BC 的中点,过点D 作DE ⊥AC ,交AC 的延长线于点E . (1)求证:DE 是⊙O 的切线; (2)求AE 的长.【答案】(1)证明见解析;(2)11. 【解析】试题分析:(1)连接OD ,由D 为弧BC 的中点,得到两条弧相等,进而得到两个同位角相等,确定出OD与AE 平行,利用两直线平行同旁内角互补得到OD 与DE 垂直,即可得证;(2)解:过点O 作OF ⊥AC ,∵AC =10,∴AF =CF=12AC =5,∵∠OFE =∠DEF =∠ODE =90°,∴四边形OFED 为矩形,∴FE =OD =12AB ,∵AB =12,∴FE =6,则AE =AF +FE =5+6=11.考点:1.切线的判定与性质;2.勾股定理;3.垂径定理.20.(2017广东省)如图,AB 是⊙O 的直径,AB =E 为线段OB 上一点(不与O ,B 重合),作CE ⊥OB ,交⊙O 于点C ,垂足为点E ,作直径CD ,过点C 的切线交DB 的延长线于点P ,AF ⊥PC 于点F ,连接CB .(1)求证:CB 是∠ECP 的平分线; (2)求证:CF =CE ;(3)当34CF CP =时,求劣弧BC 的长度(结果保留π)【答案】(1)证明见解析;(2)证明见解析;(3.【解析】试题分析:(1)根据等角的余角相等证明即可; (2)欲证明CF =CE ,只要证明△ACF ≌△ACE 即可;(3)作BM ⊥PF 于M .则CE =CM =CF ,设CE =CM =CF =4a ,PC =4a ,PM =a ,利用相似三角形的性质求出BM ,求出tan ∠BCM 的值即可解决问题;试题解析:(1)证明:∵OC =OB ,∴∠OCB =∠OBC ,∵PF 是⊙O 的切线,CE ⊥AB ,∴∠OCP =∠CEB =90°,∴∠PCB +∠OCB =90°,∠BCE +∠OBC =90°,∴∠BCE =∠BCP ,∴BC 平分∠PCE .(2)证明:连接AC .∵AB 是直径,∴∠ACB =90°,∴∠BCP +∠ACF =90°,∠ACE +∠BCE =90°,∵∠BCP =∠BCE ,∴∠ACF =∠ACE ,∵∠F =∠AEC =90°,AC =AC ,∴△ACF ≌△ACE ,∴CF =CE .(3)解:作BM ⊥PF 于M .则CE =CM =CF ,设CE =CM =CF =4a ,PC =4a ,PM =a ,∵△BMC ∽△PMB ,∴BM CMPM BM =,∴BM 2=CM •PM =3a 2,∴BM=a ,∴tan ∠BCM=BM CM =,∴∠BCM =30°,∴∠OCB =∠OBC =∠BOC =60°,∴BC 的长.考点:1.相似三角形的判定与性质;2.垂径定理;3.切线的性质;4.弧长的计算.21.(2017江苏省盐城市)如图,△ABC 是一块直角三角板,且∠C =90°,∠A =30°,现将圆心为点O 的圆形纸片放置在三角板内部.(1)如图①,当圆形纸片与两直角边AC 、BC 都相切时,试用直尺与圆规作出射线CO ;(不写作法与证明,保留作图痕迹)(2)如图②,将圆形纸片沿着三角板的内部边缘滚动1周,回到起点位置时停止,若BC =9,圆形纸片的半径为2,求圆心O 运动的路径长.【答案】(1)作图见解析;(2)15+ 【解析】试题分析:(1)作∠ACB 的平分线得出圆的一条弦,再作此弦的中垂线可得圆心O ,作射线CO 即可; (2)添加如图所示辅助线,圆心O 的运动路径长为12OO O C ∆,先求出△ABC 的三边长度,得出其周长,证四边形OEDO 1、四边形O 1O 2HG 、四边形OO 2IF 均为矩形、四边形OECF 为正方形,得出∠OO 1O 2=60°=∠ABC 、∠O 1OO 2=90°,从而知△OO 1O 2∽△CBA ,利用相似三角形的性质即可得出答案. 试题解析:(1)如图①所示,射线OC 即为所求;(2)如图2,圆心O 的运动路径长为12OO O C ∆,过点O 1作O 1D ⊥BC 、O 1F ⊥AC 、O 1G ⊥AB ,垂足分别为点D 、F 、G ,过点O 作OE ⊥BC ,垂足为点E ,连接O 2B ,过点O 2作O 2H ⊥AB ,O 2I ⊥AC ,垂足分别为点H 、I ,在Rt △ABC 中,∠ACB =90°、∠A =30°,∴AC =tan 30BC==,AB =2BC =18,∠ABC =60°,∴C △ABC =9++18=27+,∵O 1D ⊥BC 、O 1G ⊥AB ,∴D 、G 为切点,∴BD =BG ,在Rt △O 1BD 和Rt △O 1BG 中,∵BD =BG ,O 1B =O 1B ,∴△O 1BD ≌△O 1BG (HL ),∴∠O 1BG =∠O 1BD=30°,在Rt△O1BD中,∠O1DB=90°,∠O1BD=30°,∴BD=1tan 30O D==,∴OO1=9﹣2﹣=7﹣O1D=OE=2,O1D⊥BC,OE⊥BC,∴O1D∥OE,且O1D=OE,∴四边形OEDO1为平行四边形,∵∠OED=90°,∴四边形OEDO1为矩形,同理四边形O1O2HG、四边形OO2IF、四边形OECF为矩形,又OE=OF,∴四边形OECF为正方形,∵∠O1GH=∠CDO1=90°,∠ABC=60°,∴∠GO1D=120°,又∵∠FO1D=∠O2O1G=90°,∴∠OO1O2=360°﹣90°﹣90°=60°=∠ABC,同理,∠O1OO2=90°,∴△OO1O2∽△CBA,∴1212OO OABCC O OC BC∆∆==,∴12OO OC∆=15+,即圆心O运动的路径长为15+考点:1.轨迹;2.切线的性质;3.作图—复杂作图;4.综合题.学科*网22.(2017江苏省连云港市)如图,在平面直角坐标系xOy中,过点A(﹣2,0)的直线交y轴正半轴于点B,将直线AB绕着点顺时针旋转90°后,分别与x轴、y轴交于点D.C.(1)若OB=4,求直线AB的函数关系式;(2)连接BD,若△ABD的面积是5,求点B的运动路径长.【答案】(1)y=2x+4;(21112.【解析】试题分析:(1)依题意求出点B坐标,然后用待定系数法求解析式;(2)设OB=m,则AD=m+2,根据三角形面积公式得到关于m的方程,解方程求得m的值,然后根据弧长公式即可求得.试题解析:(1)∵OB=4,∴B(0,4).∵A(﹣2,0),设直线AB的解析式为y=kx+b,则420bk b,解得24kb,∴直线AB的解析式为y=2x+4;(2)设OB=m,则AD=m+2,∵△ABD的面积是5,∴12AD•OB=5,∴12(m+2)•m=5,即22100m m+-=,解得111m 或111m(舍去),∵∠BOD=90°,∴点B 的运动路径长为:1111211142.考点:1.一次函数图象与几何变换;2.轨迹;3.弧长的计算.学#科网23.(2017河北省)如图,AB=16,O为AB中点,点C在线段OB上(不与点O,B重合),将OC绕点O 逆时针旋转270°后得到扇形COD,AP,BQ分别切优弧CD于点P,Q,且点P,Q在AB异侧,连接OP.(1)求证:AP=BQ;(2)当BQ=QD的长(结果保留π);(3)若△APO的外心在扇形COD的内部,求OC的取值范围.【答案】(1)见解析;(2)143π;(3)4<OC<8.(2)∵Rt △APO ≌Rt △BQO ,∴∠AOP =∠BOQ ,∴P 、O 、Q 三点共线,∵在Rt △BOQ 中,cos B =43382QB OB==,∴∠B =30°,∠BOQ =60°,∴OQ =12OB =4,∵∠COD =90°,∴∠QOD =90°+60°=150°,∴优弧QD 的长=2104180π⨯=143π;(3)∵△APO 的外心是OA 的中点,OA =8,∴△APO 的外心在扇形COD 的内部时,OC 的取值范围为4<OC <8.考点:1.切线的性质;2.弧长的计算;3.旋转的性质.24.(2017河北省)平面内,如图,在ABCD 中,AB =10,AD =15,tan A =43.点P 为AD 边上任意一点,连接PB ,将PB 绕点P 逆时针旋转90°得到线段PQ .(1)当∠DPQ =10°时,求∠APB 的大小;(2)当tan∠A tan A=3:2时,求点Q与点B间的距离(结果保留根号);(3)若点Q恰好落在ABCD的边所在的直线上,直接写出PB旋转到PQ所扫过的面积(结果保留π).【答案】(1)100°或80°;(2)(3)16π或20π或32π.【解析】试题分析:(1)根据点Q与点B和PD的位置关系分类讨论;(2)因为△PBQ是等腰直角三角形,所以求BQ的长,只需求PB,过点P作PH⊥AB于点H,确定BH,求得AH和BH,解直角△APH求PH,由勾股定理求PB;(2)如图2,过点P作PH⊥AB于点H,连接BQ.∵tan∠A tan A=:3:2PH PHHB AH=,∴HB=3:2.而AB=10,∴AH=6,HB=4.在Rt△PHA中,PH=AH·tan A=8,∴PQ=PB==Rt△PQB中,QBPB=(3)①点Q在AD上时,如图3,由tan A=43得,PB=AB·sin A=8,∴扇形面积为16π.②点A 在CD 上时,如图4,过点P 作PH ⊥AB 于点H ,交CD 延长线于点K ,由题意∠K =90°,∠KDP =∠A .设AH =x ,则PH =AH ·tan A =43x .∵∠BPH =∠KQP =90°-∠KPQ ,PB =QP ,∴Rt △HPB ≌Rt △KQP .∴KP =HB =10-x ,∴AP =53x,PD =()5104x -,AD =15=()551034x x +-,解得x =6.∵22280PB PH HB =+=,∴扇形的面积为20π.③点Q 在BC 延长线上时,如图5,过点B 作BM ⊥AD 于点M ,由①得BM =8.又∠MPB =∠PBQ =45°,∴PB =,∴扇形面积为32π. 所以扇形的面积为16π或20π或32π.考点:1.解直角三角形;2.勾股定理;3.扇形面积的计算;4.分类讨论;5.压轴题.25.(2017浙江省丽水市)如图,在Rt △ABC 中,∠C =Rt ∠,以BC 为直径的⊙O 交AB 于点D ,切线DE 交AC 于点E .(1)求证:∠A =∠ADE ;(2)若AD =16,DE =10,求BC 的长.【答案】(1)证明见解析;(2)15. 【解析】试题分析:(1)只要证明∠A +∠B =90°,∠ADE +∠B =90°即可解决问题;(2)连接CD .∵∠ADE =∠A ,∴AE =DE ,∵BC 是⊙O 的直径,∠ACB =90°,∴EC 是⊙O 的切线,∴ED =EC ,∴AE =EC ,∵DE =10,∴AC =2DE =20,在Rt △ADC 中,DC 12,设BD =x ,在Rt △BDC 中,BC 2=x 2+122,在Rt △ABC 中,BC 2=(x +16)2﹣202,∴x 2+122=(x +16)2﹣202,解得x =9,∴BC 15.考点:1.切线的性质;2.勾股定理.26.(2017浙江省台州市)如图,已知等腰直角三角形ABC ,点P 是斜边BC 上一点(不与B ,C 重合),PE 是△ABP 的外接圆⊙O 的直径. (1)求证:△APE 是等腰直角三角形; (2)若⊙O 的直径为2,求22PC PB +的值.【答案】(1)证明见解析;(2)4. 【解析】试题分析:(1)只要证明∠AEP =∠ABP =45°,∠P AB =90°即可解决问题;(2)作PM⊥AC于M,PN⊥AB于N,则四边形PMAN是矩形,∴PM=AN,∵△PCM,△PNB都是等腰直角三角形,∴PC=2PM,PB=2PN,∴22PC PB+=222()PM PN+ =222()AN PN+=22PA =2PE =22 =4.考点:1.三角形的外接圆与外心;2.等腰直角三角形.27.(2017湖北省襄阳市)如图,AB为⊙O的直径,C、D为⊙O上的两点,∠BAC=∠DAC,过点C做直线EF⊥AD,交AD的延长线于点E,连接BC.(1)求证:EF是⊙O的切线;(2)若DE=1,BC=2,求劣弧BC的长l.【答案】(1)证明见解析;(2)23π.【解析】试题分析:(1)连接OC,根据等腰三角形的性质得到∠OAC=∠DAC,求得∠DAC=∠OCA,推出AD∥OC,得到∠OCF=∠AEC=90°,于是得到结论;(2)连接OD,DC,∵∠DAC=12∠DOC ,∠OAC=12∠BOC,∴∠DAC=∠OAC,∵ED=1,DC=2,∴sin∠ECD=12DEDC=,∴∠ECD=30°,∴∠OCD=60°,∵OC=OD,∴△DOC是等边三角形,∴∠BOC=∠COD=60°,OC=2,∴l=602180π⨯=23π.考点:1.切线的判定与性质;2.弧长的计算.祝你考试成功!祝你考试成功!。

中考数学专题12探索性问题(第03期)-2017年中考数学试题分项版解析汇编(原卷版)

中考数学专题12探索性问题(第03期)-2017年中考数学试题分项版解析汇编(原卷版)

一、选择题目1.(2017四川省绵阳市)如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a1,第2幅图形中“●”的个数为a2,第3幅图形中“●”的个数为a3,…,以此类推,则1a1+1a2+1a3+⋯+1a19的值为()A.2021B.6184C.589840D.4217602.(2017四川省达州市)如图,将矩形ABCD绕其右下角的顶点按顺时针方向旋转90°至图①位置,继续绕右下角的顶点按顺时针方向旋转90°至图②位置,以此类推,这样连续旋转2017次.若AB=4,AD=3,则顶点A在整个旋转过程中所经过的路径总长为()A.2017πB.2034πC.3024πD.3026π3.(2017江苏省连云港市)如图所示,一动点从半径为2的⊙O上的A0点出发,沿着射线A0O方向运动到⊙O上的点A1处,再向左沿着与射线A1O夹角为60°的方向运动到⊙O上的点A2处;接着又从A2点出发,沿着射线A2O方向运动到⊙O上的点A3处,再向左沿着与射线A3O夹角为60°的方向运动到⊙O上的点A4处;…按此规律运动到点A2017处,则点A2017与点A0间的距离是()A.4B.C.2D.04.(2017重庆市B 卷)下列图象都是由相同大小的按一定规律组成的,其中第①个图形中一共有4颗,第②个图形中一共有11颗,第③个图形中一共有21颗,…,按此规律排列下去,第⑨个图形中的颗数为( )A .116B .144C .145D .150 二、填空题目 5.(2017山东省济宁市)请写出一个过点(1,1),且与x 轴无交点的函数解析式: .6.(2017山东省济宁市)如图,正六边形A 1B 1C 1D 1E 1F 1的边长为1,它的六条对角线又围成一个正六边形A 2B 2C 2D 2E 2F 2,如此继续下去,则正六边形A 4B 4C 4D 4E 4F 4的面积是 .三、解答题7.(2017四川省南充市)如图,在正方形ABCD 中,点E 、G 分别是边AD 、BC 的中点,AF =14AB .(1)求证:EF ⊥AG ;(2)若点F 、G 分别在射线AB 、BC 上同时向右、向上运动,点G 运动速度是点F 运动速度的2倍,EF ⊥AG 是否成立(只写结果,不需说明理由)?(3)正方形ABCD 的边长为4,P 是正方形ABCD 内一点,当PAB OABS S ∆∆=,求△P AB 周长的最小值.8.(2017四川省达州市)如图,在△ABC中,点O是边AC上一个动点,过点O作直线EF∥BC分别交∠ACB、外角∠ACD的平分线于点E、F.(1)若CE=8,CF=6,求OC的长;(2)连接AE、AF.问:当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.9.(2017四川省达州市)探究:小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系内任意两点P1(x1,y1),P2(x2,y2),可通过构造直角三角形利用图1得到结论:()()22 122121 PP x x y y =-+-他还利用图2证明了线段P1P2的中点P(x,y)P的坐标公式:122x xx+=,122y yy+=.(1)请你帮小明写出中点坐标公式的证明过程;运用:(2)①已知点M(2,﹣1),N(﹣3,5),则线段MN长度为;②直接写出以点A(2,2),B(﹣2,0),C(3,﹣1),D为顶点的平行四边形顶点D的坐标:;拓展:(3)如图3,点P(2,n)在函数43y x=(x≥0)的图象OL与x轴正半轴夹角的平分线上,请在OL、x轴上分别找出点E、F,使△PEF的周长最小,简要叙述作图方法,并求出周长的最小值.10.(2017山东省枣庄市)如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC,AB于点E,F.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=BF=2,求阴影部分的面积(结果保留π).11.(2017山东省枣庄市)已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F 在线段CB的延长线上,连接EA,EC.(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;(2)如图2,若点P在线段AB的中点,连接AC,判断△ACE的形状,并说明理由;(3)如图3,若点P在线段AB上,连接AC,当EP平分∠AEC时,设AB=a,BP=b,求a:b及∠AEC 的度数.12.(2017山西省)如图,△ABC内接于⊙O,且AB为⊙O的直径,OD⊥AB,与AC交于点E,与过点C 的⊙O的切线交于点D.(1)若AC=4,BC=2,求OE的长.(2)试判断∠A与∠CDE的数量关系,并说明理由.13.(2017江苏省盐城市)如图,矩形ABCD中,∠ABD、∠CDB的平分线BE、DF分别交边AD、BC于点E、F.(1)求证:四边形BEDF是平行四边形;(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.14.(2017江苏省盐城市)如图,在平面直角坐标系中,Rt△ABC的斜边AB在y轴上,边AC与x轴交于点D,AE平分∠BAC交边BC于点E,经过点A、D、E的圆的圆心F恰好在y轴上,⊙F与y轴相交于另一点G.(1)求证:BC是⊙F的切线;(2)若点A、D的坐标分别为A(0,﹣1),D(2,0),求⊙F的半径;(3)试探究线段AG、AD、CD三者之间满足的等量关系,并证明你的结论.15.(2017江苏省盐城市)(探索发现】如图①,是一张直角三角形纸片,∠B=60°,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为.【拓展应用】如图②,在△ABC中,BC=a,BC边上的高AD=h,矩形PQMN的顶点P、N分别在边AB、AC上,顶点Q、M在边BC上,则矩形PQMN面积的最大值为.(用含a,h的代数式表示)【灵活应用】如图③,有一块“缺角矩形”ABCDE ,AB =32,BC =40,AE =20,CD =16,小明从中剪出了一个面积最大的矩形(∠B 为所剪出矩形的内角),求该矩形的面积. 【实际应用】如图④,现有一块四边形的木板余料ABCD ,经测量AB =50cm ,BC =108cm ,CD =60cm ,且tan B =tan C =43,木匠徐师傅从这块余料中裁出了顶点M 、N 在边BC 上且面积最大的矩形PQMN ,求该矩形的面积.16.(2017江苏省连云港市)如图,已知等腰三角形ABC 中,AB =AC ,点D 、E 分别在边AB .AC 上,且AD =AE ,连接BE 、CD ,交于点F .(1)判断∠ABE 与∠ACD 的数量关系,并说明理由; (2)求证:过点A 、F 的直线垂直平分线段BC .17.(2017江苏省连云港市)问题呈现:如图1,点E 、F 、G 、H 分别在矩形ABCD 的边AB 、BC 、CD 、DA 上,AE =DG ,求证:2ABCDEFGHS S 矩形四边形.(S 表示面积)实验探究:某数学实验小组发现:若图1中AH ≠BF ,点G 在CD 上移动时,上述结论会发生变化,分别过点E 、G 作BC 边的平行线,再分别过点F 、H 作AB 边的平行线,四条平行线分别相交于点A 1、B 1、C 1、D 1,得到矩形A 1B 1C 1D 1.如图2,当AH >BF 时,若将点G 向点C 靠近(DG >AE ),经过探索,发现:2S四边形EFGH =S矩形ABCD +S.如图3,当AH >BF 时,若将点G 向点D 靠近(DG <AE ),请探索S四边形EFGH 、S矩形ABCD与S之间的数量关系,并说明理由.迁移应用:请直接应用“实验探究”中发现的结论解答下列问题:(1)如图4,点E 、F 、G 、H 分别是面积为25的正方形ABCD 各边上的点,已知AH >BF ,AE >DG ,S四边形EFGH=11,HF,求EG 的长.(2)如图5,在矩形ABCD中,AB=3,AD=5,点E、H分别在边AB、AD上,BE=1,DH=2,点F、G分别是边BC、CD上的动点,且FG=10,连接EF、HG,请直接写出四边形EFGH面积的最大值.18.(2017湖北省襄阳市)如图,在△ABC中,∠ACB=90°,CD是中线,AC=BC,一个以点D为顶点的45°角绕点D旋转,使角的两边分别与AC、BC的延长线相交,交点分别为点E,F,DF与AC交于点M,DE与BC交于点N.(1)如图1,若CE=CF,求证:DE=DF;(2)如图2,在∠EDF绕点D旋转的过程中:①探究三条线段AB,CE,CF之间的数量关系,并说明理由;②若CE=4,CF=2,求DN的长.祝你考试成功!祝你考试成功!。

中考数学试题分项版解析汇编(第04期)专题15 应用题(含解析)-人教版初中九年级全册数学试题

中考数学试题分项版解析汇编(第04期)专题15 应用题(含解析)-人教版初中九年级全册数学试题

专题15 应用题一、选择题1. (2017某某某某第7题)志远要在报纸上刊登广告,一块cm cm 510⨯的长方形版面要付广告费180元,他要把该版面的边长都扩大为原来的3倍,在每平方厘米版面广告费相同的情况下,他该付广告费( )A .540元B .1080元 C.1620元 D .1800元【答案】C考点:相似三角形的应用2. (2017某某某某第5题)为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买( )A .16个B .17个C .33个D .34个 【答案】A【解析】试题分析:设买篮球m 个,则买足球(50﹣m )个,根据题意得:80m+50(50﹣m )≤3000,解得:m ≤1623, ∵m 为整数,∴m 最大取16,∴最多可以买16个篮球.故选A .考点:一元一次不等式的应用.3. (2017某某某某第9题)某楼梯的侧面如图所示,已测得BC 的长约为,BCA ∠约为29,则该楼梯的高度AB 可表示为( )A.3.5sin29米 B.3.5cos29米 C.3.5tan29米 D.3.5cos29米【答案】A考点:解直角三角形的应用﹣坡度坡角问题.4. (2017某某某某第9题)某某市创建全国x小时,根据题意可列出方程为()A.1.2 1.216x+= B.1.2 1.2162x+= C.1.2 1.2132x+= D.1.2 1.213x+=【答案】B【解析】试题分析:由题意可得,1.2 1.2162x+=,故选B.考点:分式方程的应用.5. (2017某某乌鲁木齐第7题)2017年,在创建文明城市的进程中,乌鲁木齐市为美化城市环境,计划种植树木30万棵,由于志愿者的加入,实际每天植树比原计划多0020,结果提前5天完成任务,设原计划每天植树x万棵,可列方程是()A.()0030305120x x-=+B.3030520x x-=C.3030520x x+=D.()0030305120x x-=+【答案】A.【解析】试题解析:设原计划每天植树x万棵,需要30x天完成,∴实际每天植树(x+0.2x)万棵,需要30(120%)x+天完成,∵提前5天完成任务,∴30x﹣30(120%)x+=5,故选A.考点:由实际问题抽象出分式方程.二、填空题1. (2017某某某某第16题)明代数学家程大位的《算法统宗》中有这样一个问题(如图),其大意为:有一群人分银子,如果每人分七两,则剩余四两;如果每人分九两,则还差八两,请问:所分的银子共有_ 两.(注:明代时1斤=16两,故有“半斤八两”这个成语)【答案】46两.考点:一元一次方程的应用.2.x X,乙种票买了y X,依据题意,可列方程组为.【答案】36, 3020860x yx y+=⎧⎨+=⎩.【解析】试题分析:设甲种票买了xX,乙种票买了yX,根据“36名学生购票恰好用去860元”作为相等关系列方程组.设甲种票买了xX ,乙种票买了yX ,根据题意,得:36,3020860x y x y +=⎧⎨+=⎩,故答案为36,3020860x y x y +=⎧⎨+=⎩. 考点:由实际问题抽象出二元一次方程组.3. (2017某某乌鲁木齐第13题)一件衣服售价为200元,六折销售,仍可获利0020,则这件衣服的进价是元.【答案】100.考点:一元一次方程的应用.三、解答题1. (2017某某某某第25题)为厉行节能减排,倡导绿色出行,今年3月以来.“共享单车”(俗称“小黄车”)公益活动登陆我市中心城区,某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A 、B 两种不同款型,请回答下列问题:问题1:单价该公司早期在甲街区进行了试点投放,共投放A 、B 两型自行车各50辆,投放成本共计7500元,其中B 型车的成本单价比A 型车高10元,A 、B 两型自行车的单价各是多少?问题2:投放方式该公司决定采取如下投放方式:甲街区每1000人投放a 辆“小黄车”,乙街区每1000人投放8240a a+ 辆“小黄车”,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有15万人,试求a 的值.【答案】问题1:A 、B 两型自行车的单价分别是70元和80元;问题2:a 的值为15.【解析】试题分析:问题1:设A 型车的成本单价为x 元,则B 型车的成本单价为(x+10)元,根据成本共计7500元,列方程求解即可;问题2:根据两个街区共有15万人,列出分式方程进行求解并检验即可. 试题解析:问题1设A型车的成本单价为x元,则B型车的成本单价为(x+10)元,依题意得50x+50(x+10)=7500,解得x=70,∴x+10=80,答:A、B两型自行车的单价分别是70元和80元;问题2由题可得,1500a×1000+12008240aa×1000=150000,解得a=15,经检验:a=15是所列方程的解,故a的值为15.考点:分式方程的应用;二元一次方程组的应用.2. (2017某某株洲第23题)如图示一架水平飞行的无人机AB的尾端点A测得正前方的桥的左端点P的俯角为α其中tanα=23,无人机的飞行高度AH为5003米,桥的长度为1255米.①求点H到桥左端点P的距离;②若无人机前端点B测得正前方的桥的右端点Q的俯角为30°,求这架无人机的长度AB.【答案】①求点H到桥左端点P的距离为250米;②无人机的长度AB为5米.②设BC ⊥HQ 于C .在Rt △BCQ 中,∵BC=AH=5003,∠BQC=30°,∴CQ=tan 30BC=1500米,∵PQ=1255米,∴CP=245米, ∵HP=250米,∴AB=HC=250﹣245=5米.答:这架无人机的长度AB 为5米.考点:解直角三角形的应用﹣仰角俯角问题.3. (2017某某某某第20题)一汽车从甲地出发开往相距240km 的乙地,出发后第一小时内按原计划的匀速行驶,1小时后比原来的速度加快41,比原计划提前min 24到达乙地,求汽车出发后第1小时内的行驶速度.【答案】汽车出发后第1小时内的行驶速度是120千米/小时考点:分式方程的应用4. (2017某某某某第22题)如图,物理老师为同学们演示单摆运动,单摆左右摆动中,在OA 的位置时俯角030=⊥EOA ,在OB 的位置时俯角060=∠FOB .若EF OC ⊥,点A 比点B 高cm 7. 求(1)单摆的长度(7.13≈);(2)从点A 摆动到点B 经过的路径长(1.3≈π).【答案】(1)单摆的长度约为(2)从点A 摆动到点B 经过的路径长为则在Rt△AOP中,OP=OAcos∠AOP=12x,在Rt△BOQ中,OQ=OBcos∠BOQ=32x,由PQ=OQ﹣OP可得3x﹣12x=7,解得:x=7+73≈18.9(cm),答:单摆的长度约为;(2)由(1)知,∠AOP=60°、∠BOQ=30°,且OA=OB=7+73,∴∠AOB=90°,则从点A摆动到点B经过的路径长为903180π⨯()≈29.295,答:从点A摆动到点B经过的路径长为.考点:1、解直角三角形的应用﹣仰角俯角问题;2、轨迹5. (2017某某第21题)某工厂有甲种原料130kg,乙种原料144kg,现用两种原料生产处,A B两种产品共30件,已知生产每件A产品需甲种原料5kg,乙种原料4kg,且每件A产品可获得700元;生产每件B 产品甲种原料3kg,乙种原料6kg,且每件B产品可获利润900元,设生产A产品x件(产品件数为整数件),根据以上信息解答下列问题:(1)生产,A B两种产品的方案有哪几种?(2)设生产这30件产品可获利y元,写出关于x的函数解析式,写出(1)中利润最大的方案,并求出最大利润.【答案】(1)共有三种方案:方案一:A产品18件,B产品12件,方案二:A产品19件,B产品11件,方案三:A产品20件,B产品10件;(2)利润最大的方案是方案一:A产品18件,B产品12件,最大利润为23400元.方案三:A产品20件,B产品10件;(2)根据题意得:y=:700x+900(30﹣x)=﹣200x+27000,∵﹣200<0,∴y随x的增大而减小,∴x=18时,y有最大值,y最大=﹣200×18+27000=23400元.答:利润最大的方案是方案一:A产品18件,B产品12件,最大利润为23400元.考点:一元一次不等式组的应用;一次函数的应用.6. (2017某某某某第22题)某公司开发出一款新的节能产品,该产品的成本价位6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试销售,售价为8元/件.工作人员对销售情况进行了跟踪记录,并将记录情况绘制成图象,图中的折线ODE表示日销售量y(件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.⑴第24天的日销售量是件,日销售利润是元;⑵求y与x之间的函数关系式,并写出x的取值X围;⑶日销售利润不低于640元的天数共有多少天?试销售期间,日销售最大利润是多少元?【答案】(1)330,660;(2)y=20(018)5450(1830)y x xy x x=≤≤⎧⎨=-+≤⎩;(3)720元.(3)当0≤x≤18时,根据题意得:(8﹣6)×20x≥640,解得:x≥16;当18<x≤30时,根据题意得:(8﹣6)×(﹣5x+450)≥640,解得:x≤26.∴16≤x≤26.26﹣16+1=11(天),∴日销售利润不低于640元的天数共有11天.∵点D的坐标为(18,360),∴日最大销售量为360件,360×2=720(元),∴试销售期间,日销售最大利润是720元.考点:一次函数的应用.7. (2017某某某某第23题)收发微信红包已成为各类人群进行交流联系,增强感情的一部分,下面是甜甜和她的双胞胎妹妹在六一儿童节期间的对话.请问:(1)2015年到2017年甜甜和她妹妹在六一收到红包的年增长率是多少?(2)2017年六一甜甜和她妹妹各收到了多少钱的微信红包?【答案】(1)10%;(2)甜甜在2017年六一收到微信红包为150元,则她妹妹收到微信红包为334元.考点:一元一次方程的应用;一元二次方程的应用;增长率问题.8. (2017某某某某第24题)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC=,底座BC与支架AC所成的角∠ACB=75°,支架AF的长为,篮板顶端F点到篮框D的距离FD=,篮板底部支架HE与支架AF所成的角∠FHE=60°,求篮框D到地面的距离(精确到)(参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.7323≈1.7322≈1.414)【答案】.考点:解直角三角形的应用.9. (2017某某某某第24题)某校九年级10个班师生举行毕业文艺汇演,每班2个节目,有歌唱与舞蹈两类节目,年级统计后发现歌唱类节目数比舞蹈类节目数的2倍少4个.(1)九年级师生表演的歌唱与舞蹈类节目数各有多少个?(2)该校七、八年级师生有小品节目参与,在歌唱、舞蹈、小品三类节目中,每个节目的演出平均用时分别是5分钟、6分钟、8分钟,预计所有演出节目交接用时共花15分钟.若从20:00开始,22:30之前演出结束,问参与的小品类节目最多能有多少个?【答案】(1)九年级师生表演的歌唱类节目有12个,舞蹈类节目有8个;(2)参与的小品类节目最多能有3个.考点:1.一元一次不等式的应用;2.二元一次方程组的应用.10. (2017某某第25题)威丽商场销售A、B两种商品,售出1件A种商品和4件B种商品所得利润为600元;售出3件A种商品和5件B种商品所得利润为1100元.(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元?(2)由于需求量大,A、B两种商品很快售完,威丽商场决定再一次购进A、B两种商品共34件,如果将这34件商品全部售完后所得利润不低于4000元,那么威丽商场至少需购进多少件A种商品?【答案】(1)A种商品售出后所得利润为200元,B种商品售出后所得利润为100元.(2)威丽商场至少需购进6件A种商品.【解析】试题分析:(1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y元.由售出1件A种商品和4件B种商品所得利润为600元,售出3件A种商品和5件B种商品所得利润为1100元建立两个方程,构成方程组求出其解就可以;考点:1.一元一次不等式的应用;2.二元一次方程组的应用.11. (2017某某某某第25题)“低碳环保、绿色出行”的理念得到广大群众的接受,越来越多的人喜欢选择自行车作为出行工具.小军和爸爸同时从家骑自行车去图书馆,爸爸先以150米/分的速度骑行一段时间,休息了5分钟,再以m米/分的速度到达图书馆.小军始终以同一速度骑行,两人行驶的路程y(米)与时间x(分钟)的关系如图.请结合图象,解答下列问题:(1)a=;b=;m=;(2)若小军的速度是120米/分,求小军在图中与爸爸第二次相遇时,距图书馆的距离;(3)在(2)的条件下,爸爸自第二次出发至到达图书馆前,何时与小军相距100米?(4)若小军的行驶速度是v米/分,且在图中与爸爸恰好相遇两次(不包括家、图书馆两地),请直接写出v的取值X围.【答案】(1)10;15;200;(2)小军在途中与爸爸第二次相遇时,距图书馆的距离是750米100米;(4)00<v<4003(2)线段BC所在直线的函数解析式为y=1500+200(x﹣15)=200x﹣1500;线段OD所在的直线的函数解析式为y=120x.联立两函数解析式成方程组,200150120y xy x=-⎧⎨=⎩,解得:7542250xy⎧=⎪⎨⎪=⎩,∴3000﹣2250=750(米).答:小军在途中与爸爸第二次相遇时,距图书馆的距离是750米.(3)根据题意得:|200x﹣1500﹣120x|=100,解得:x1=352=17.5,x2=20.100米.(4)当线段OD过点B时,小军的速度为1500÷15=100(米/分钟);当线段OD过点C时,小军的速度为3000÷22.5=4003(米/分钟).结合图形可知,当100<v<4003时,小军在途中与爸爸恰好相遇两次(不包括家、图书馆两地).考点:一次函数的应用.12. (2017某某某某第25题)甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?【答案】(1)甲每天修路,则乙每天修路1千米;(2)甲工程队至少修路8天.答:甲工程队至少修路8天.考点:1.分式方程的应用;2.一元一次不等式的应用.13. (2017某某某某第27题)一辆轿车从甲城驶往乙城,同时一辆卡车从乙城驶往甲城,两车沿相同路线匀速行驶,轿车到达乙城停留一段时间后,按原路原速返回甲城;卡车到达甲城比轿车返回甲城早0.5小时,轿车比卡车每小时多行驶60千米,两车到达甲城后均停止行驶.两车之间的路程y(千米)与轿车行驶时间t(小时)的函数图象如图所示.请结合图象提供的信息解答下列问题:(1)请直接写出甲城和乙城之间的路程,并求出轿车和卡车的速度;(2)求轿车在乙城停留的时间,并直接写出点D的坐标;(3)请直接写出轿车从乙城返回甲城过程中离甲城的路程s(千米)与轿车行驶时间t(小时)之间的函数关系式.(不要求写出自变量的取值X围)【答案】(1)甲城和乙城之间的路程为180千米,轿车和卡车的速度分别为120千米/时和60千米/时;(2)轿车在乙城停留了0.5小时,点D的坐标为(2,120);(3)s=180﹣120×(t﹣0.5﹣0.5)=﹣120t+420.(2)卡车到达甲城需180÷60=3(小时)轿车从甲城到乙城需180÷120=1.5(小时)3+×2=0.5(小时)∴轿车在乙城停留了0.5小时,点D的坐标为(2,120);(3)s=180﹣120×(t﹣0.5﹣0.5)=﹣120t+420.考点:一次函数的应用.14. (2017某某某某第22题)为满足社区居民健身的需要,市政府准备采购若干套健身器材免费提供给社区,经考察,劲松公司有,A B两种型号的健身器可供选择.(1)劲松公司2015年每套A型健身器的售价为2.5万元,经过连续两年降价,2017年每套售价为1.6万元,求每套A型健身器年平均下降率n;(2)2017年市政府经过招标,决定年内采购并安装劲松公司,A B两种型号的健身器材共80套,采购专项费总计不超过112万元,采购合同规定:每套A 型健身器售价为1.6万元,每套B 型健身器售价我()1.51n -万元.①A 型健身器最多可购买多少套?②安装完成后,若每套A 型和B 型健身器一年的养护费分别是购买价的005和0015 .市政府计划支出10计划支出能否满足一年的养护需要?【答案】(1)每套A 型健身器材年平均下降率n 为20%;(2)①A 型健身器材最多可购买40套;②该计划支出不能满足养护的需要.所以n 1=0.2=20%,n 2=1.8(不合题意,舍去).答:每套A 型健身器材年平均下降率n 为20%;(2)①设A 型健身器材可购买m 套,则B 型健身器材可购买(80﹣m )套,依题意得:+×(1﹣20%)×(80﹣m )≤112,整理,得+96﹣≤1.2,解得m ≤40,即A 型健身器材最多可购买40套;②设总的养护费用是y 元,则×5%m+×(1﹣20%)×15%×(80﹣m ),∴y=﹣+14.4.∵<0,∴y 随m 的增大而减小,∴m=40时,y 最小.∵m=40时,y 最小值=﹣01×40+14.4=10.4(万元).又∵10万元<10.4万元,∴该计划支出不能满足养护的需要.考点:1.一次函数的应用;2.一元一次不等式的应用;3.一元二次方程的应用.15. (2017某某呼和浩特第20题)某专卖店有A ,B 两种商品.已知在打折前,买60件A 商品和30件B 商品用了1080元,买50件A 商品和10件B 商品用了840元;A ,B 两种商品打相同折以后,某人买500件A 商品和450件B 商品一共比不打折少花1960元,计算打了多少折?【答案】打了八折.根据题意得:603010805010840x y x y +=⎧⎨+=⎩ ,解得:164x y =⎧⎨=⎩ ,500×16+450×4=9800(元), 980019609800- =0.8. 答:打了八折.考点:二元一次方程组的应用.“一带一路”沿线国家和地区的经贸合作、人文交流具有十分重要的意义.试运行期间,一列动车从某某开往某某,一列普通列车从某某开往某某,两车同时出发,设普通列车行驶的时间为x (小时),两车之间的距离为y (千米),如图中的折线表示y 与x 之间的函数关系.根据图象进行以下探究:【信息读取】(1)某某到某某两地相距_________千米,两车出发后___________小时相遇;(2)普通列车到达终点共需__________小时,普通列车的速度是___________千米/小时.【解决问题】(3)求动车的速度;(4)普通列车行驶t小时后,动车的达终点某某,求此时普通列车还需行驶多少千米到达某某?【答案】(1)1000,3;(2)12,2503;(3)动车的速度为250千米/小时;(4)此时普通列车还需行驶20003千米到达某某.考点:一次函数的应用.17. (2017某某第22题)甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.甲公司方案:每月的养护费用y(元)与绿化面积x(平方米)是一次函数关系,如图所示.乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500 元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元.(1)求如图所示的y与x的函数解析式:(不要求写出定义域);(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.【答案】(1)y=5x+400;(2)选择乙公司的服务,每月的绿化养护费用较少.考点:一次函数的应用.18. (2017某某某某第18题)某校组织“大手拉小手,义卖献爱心”活动,购买了黑白两种颜色的文化衫共140件,进行手绘设计后了出售,所获利润全部捐给山区困难孩子.每件文化衫的批发价和零售价如下表:批发价(元)零售价(元)黑色文化衫1025白色文化衫820假设文化衫全部售出,共获利1860元,求黑白两种文化衫各多少件?【答案】黑色文化衫60件,白色文化衫80件.【解析】试题分析:设黑色文化衫x件,白色文化衫y件,依据黑白两种颜色的文化衫共140件,文化衫全部售出共获利1860元,列二元一次方程组进行求解.试题解析:设黑色文化衫x 件,白色文化衫y 件,依题意得:140(2510)(208)1860x y x y +=⎧⎨-+-=⎩,解得:6080x y =⎧⎨=⎩. 答:黑色文化衫60件,白色文化衫80件.考点:二元一次方程组的应用.19. (2017某某某某第19题)位于某某核心景区的贺龙铜像,是我国近百年来最大的铜像.铜像由像体AD 和底座CD 两部分组成.如图,在Rt △ABC 中,∠ABC =70.5°,在Rt △DBC 中,∠DBC =45°,且CD =,求像体AD 的高度(最后结果精确到,参考数据:sin70.5°≈0.943,co s70.5°≈0.334,tan70.5°≈2.824)【答案】m .考点:解直角三角形的应用.20. (2017某某某某第21题)某工厂现在平均每天比原计划多生产25个零件,现在生产600个零件所需时间与原计划生产450个零件所需时间相同,原计划每天生产多少个零件?【答案】75.【解析】试题分析:设原计划平均每天生产x个零件,现在平均每天生产(x+25)个零件,根据现在生产600个零件所需时间与原计划生产450个零件所需时间相同,即可得出关于x的分式方程,解之经检验后即可得出结论.试题解析:设原计划平均每天生产x个零件,现在平均每天生产(x+25)个零件,根据题意得:60045025x x=+,解得:x=75,经检验,x=75是原方程的解.答:原计划平均每天生产75个零件.考点:分式方程的应用.21. (2017某某第20题)在某市“棚户区改造”建设工程中,有甲、乙两种车辆参加运土,已知5辆甲种车和2辆乙种车一次共可运土64立方米,3辆甲种车和1辆乙种车一次共可运土36立方米,求甲、乙两种车每辆一次分别可运土多少立方米.【答案】甲种车辆一次运土8立方米,乙种车辆一次运土12立方米.考点:二元一次方程组的应用.22. (2017某某第22题)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度BC.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)【答案】水坝原来的高度为12米..考点:解直角三角形的应用,坡度.23.30元,用500元购得的排球数量与用800元购得的足球数量相等.⑴排球和足球的单价各是多少元?⑵若恰好用去1200元,有哪几种购买方案?【答案】(1)排球单价是50元,则足球单价是80元;(2)有两种方案:①购买排球5个,购买足球16个.②购买排球10个,购买足球8个.【解析】试题分析:(1)设排球单价是x元,则足球单价是(x+30)元,根据题意可得等量关系:500元购得的排球数量=800元购得的足球数量,由等量关系可得方程,再求解即可;(2)设恰好用完1200元,可购买排球m个和购买足球n个,根据题意可得排球的单价×排球的个数m+足球的单价×足球的个数n=1200,再求出整数解.试题解析:设排球单价为x元,则足球单价为(x+30)元,由题意得:考点:分式方程的应用;二元一次方程的应用.24. (2017某某六盘水第24题)甲乙两个施工队在某某(六盘水——某某)城际高铁施工中,每天甲队比乙队多铺设100米钢轨,甲队铺设5天的距离刚好等于乙队铺设6天的距离,若设甲队每天铺设米,乙队每天铺设y米.(1)依题意列出二元一次方程组;(2)求出甲乙两施工队每天各铺设多少米?【答案】试题分析:(1)利用每天甲队比乙队多铺设100米钢轨,得x-y=100;利用甲队铺设5天的距离刚好等于乙队铺设6天的距离,得5x=6y(2)解方程组.试题解析:(1)100 56x yx y-=⎧⎨=⎩(2)100 56x yx y-=⎧⎨=⎩解得,600500 xy=⎧⎨=⎩答:甲施工队每天各铺设600米,乙施工队每天各铺设500米.考点:列二元一次方程组解应用题.25. (2017某某乌鲁木齐第18题)我国古代数学名著《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”,意思是:鸡和兔关在一个笼子里,从上面看有35个头,从下面看有94条腿,问笼中鸡或兔各有多少只?【答案】笼中鸡有23只,兔有12只.考点:二元一次方程组的应用.26. (2017某某乌鲁木齐第21题)一艘渔船位于港口A的北偏东60方向,距离港口20海里B处,它沿北偏西37方向航行至C处突然出现故障,在C处等待救援,,B C之间的距离为10海里,救援船从港口A≈≈≈,结果取整数)出发20分钟到达C处,求救援的艇的航行速度.(sin370.6,cos370.8,3 1.732【答案】救援的艇的航行速度大约是64海里/小时.【解析】试题分析:辅助线如图所示:BD⊥AD,BE⊥CE,CF⊥AF,在Rt△ABD中,根据勾股定理可求AD,在Rt△BCE中,根据三角函数可求CE,EB,在Rt△AFC中,根据勾股定理可求AC,再根据路程÷时间=速度求解即可.试题解析:辅助线如图所示:答:救援的艇的航行速度大约是64海里/小时.考点:解直角三角形的应用﹣方向角问题27. (2017某某乌鲁木齐第22题)一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y (千米)与行驶时间x (小时)的对应关系如图所示:(1)甲乙两地相距多远?(2)求快车和慢车的速度分别是多少?(3)求出两车相遇后y 与x 之间的函数关系式;(4)何时两车相距300千米.【答案】(1)600千米;(2)快车速度为90千米/小时,慢车速度为60千米/小时;(3)2032060(1506010)30(4y x x y x x <⎧=-≤⎪⎪⎨=≤≤⎪⎪⎩;(4)两车2小时或6小时时,两车相距300千米.考点:一次函数的应用.。

2019年中考化学试题分项版解析:专题13_综合计算(含解析)

2019年中考化学试题分项版解析:专题13_综合计算(含解析)

专题13 综合计算1.【2018年甘肃省平凉市】用溶质质量分数为5%的NaOH溶液中和73g的稀盐酸,反应过程中溶液的酸碱度变化如下图所示。

请计算:(1)用质量分数为10%的氢氧化钠溶液配制5%的氢氧化钠溶液100g,需要水__________克.(2)当a为80g时,所得溶液中溶质的质量分数是___________(结果精确到0.1%)?【答案】 50 3.8%2.【2018年四川省德阳市】某工厂利用废硫酸与废铁屑反应制取硫酸亚铁。

现取废硫酸4.9 t 与足量的废铁屑反应,得到FeSO4 1.52 t。

计算废硫酸中H2SO4的质量分数为_______________。

【答案】20%【解析】设4.9t的废硫酸中溶质的质量为xFe+H2SO4=FeSO4+H298 152x 1.52t=,解x=0.98t废硫酸中H2SO4的质量分数为=20%答:废硫酸中H2SO4的质量分数为20%。

3.【2018年四川省达州市】实验室用碳酸钠溶液与氯化钙溶液反应制取高纯度碳酸钙粉末,烧杯中现有100g碳酸钠溶液,将150g氯化钙溶液分四次加入,充分反应,四次测量所得数据如下表所示:(1)恰好完全反应时,生成沉淀的总质量为____g(2)第四次测量时,所得溶液中的溶质有_______(填化学式)。

(3)计算氯化钙溶液的溶质质量分数为______________(写出计算过程)。

【答案】 18 NaCl、CaCl2 16.7%【解析】(1)由图可知,加入120g的氯化钙溶液后氯化钙与碳酸钠恰好完全反应,生成沉淀的质量为120g+100g-202g=18g(2)第四次数据中氯化钙溶液过剩,故溶液中有生成的氯化钠和过量的氯化钙。

化学式为NaCl、CaCl2;(3)设120g氯化钙溶液中氯化钙的质量为xNa2CO3+ CaCl2=2NaCl+ CaCO3↓111 100x 18g=,解得x=19.98g氯化钙溶液中氯化钙的质量分数为=16.7%。

2017年青岛市中考数学试卷含答案解析版

2017年青岛市中考数学试卷含答案解析版

2017年省市中考数学试卷一、选择题〔本大题共8小题,每题3分,共24分〕1.〔3分〕〔2017•〕﹣的相反数是〔〕A.8 B.﹣8 C.D.﹣【考点】14:相反数.【分析】根据一个数的相反数就是在这个数前面添上“﹣〞号,求解即可.【解答】解:﹣的相反数是,应选:C.【点评】此题考察了相反数的意义,一个数的相反数就是在这个数前面添上“﹣〞号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.〔3分〕〔2017•〕以下四个图形中,是轴对称图形,但不是中心对称图形的是〔〕A.B.C.D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,符合题意;B、是轴对称图形,也是中心对称图形,不合题意;C、是轴对称图形,也是中心对称图形,不合题意;D、不是轴对称图形,是中心对称图形,不合题意.应选:A.【点评】此题主要考察了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两局部折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两局部重合.3.〔3分〕〔2017•〕小明家1至6月份的用水量统计如下图,关于这组数据,以下说法中错误的〔〕A.众数是6吨B.平均数是5吨C.中位数是5吨D.方差是【考点】W7:方差;W1:算术平均数;W4:中位数;W5:众数.【分析】根据众数、平均数、中位数和方差的定义计算各量,然后对各选项进展判断.【解答】解:这组数据的众数为6吨,平均数为5吨,中位数为5.5吨,方差为.应选C.【点评】此题考察了方差:方差是反映一组数据的波动大小的一个量.方差越大,那么平均值的离散程度越大,稳定性也越小;反之,那么它与其平均值的离散程度越小,稳定性越好.也考察了平均数、众数、中位数.4.〔3分〕〔2017•〕计算6m6÷〔﹣2m2〕3的结果为〔〕A.﹣m B.﹣1 C.D.﹣【考点】4H:整式的除法;47:幂的乘方与积的乘方.【分析】根据整式的除法法那么即可求出答案.【解答】解:原式=6m6÷〔﹣8m6〕=﹣应选〔D〕【点评】此题考察整式的除法,解题的关键是熟练运用整式的除法法那么,此题属于根底题型.5.〔3分〕〔2017•〕如图,假设将△ABC绕点O逆时针旋转90°,那么顶点B的对应点B1的坐标为〔〕A.〔﹣4,2〕B.〔﹣2,4〕C.〔4,﹣2〕D.〔2,﹣4〕【考点】R7:坐标与图形变化﹣旋转.【分析】利用网格特征和旋转的性质,分别作出A、B、C的对应点A1、B1、C1,于是得到结论.【解答】解:如图,点B1的坐标为〔﹣2,4〕,应选B.【点评】此题考察了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等.6.〔3分〕〔2017•〕如图,AB是⊙O的直径,点C,D,E在⊙O上,假设∠AED=20°,那么∠BCD的度数为〔〕A.100°B.110°C.115°D.120°【考点】M5:圆周角定理.【分析】连接AC,根据圆周角定理,可分别求出∠ACB=90°,∠ACD=20°,即可求∠BCD的度数.【解答】解:连接AC,∵AB为⊙O的直径,∴∠ACB=90°,∵∠AED=20°,∴∠ACD=20°,∴∠BCD=∠ACB+∠ACD=110°,应选B.【点评】此题主要考察了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.7.〔3分〕〔2017•〕如图,▱ABCD的对角线AC与BD相交于点O,AE⊥BC,垂足为E,AB=,AC=2,BD=4,那么AE的长为〔〕A.B.C.D.【考点】L5:平行四边形的性质.【分析】由勾股定理的逆定理可判定△BAO是直角三角形,所以平行四边形ABCD 的面积即可求出.【解答】解:∵AC=2,BD=4,四边形ABCD是平行四边形,∴AO=AC=1,BO=BD=2,∵AB=,∴AB2+AO2=BO2,∴∠BAC=90°,∵在Rt△BAC中,BC===S=×AB×AC=×BC×AE,△BAC∴×2=AE,∴AE=,应选D.【点评】此题考察了勾股定理的逆定理和平行四边形的性质,能得出△BAC是直角三角形是解此题的关键.8.〔3分〕〔2017•〕一次函数y=kx+b〔k≠0〕的图象经过A〔﹣1,﹣4〕,B〔2,2〕两点,P为反比例函数y=图象上一动点,O为坐标原点,过点P作y轴的垂线,垂足为C,那么△PCO的面积为〔〕A.2 B.4 C.8 D.不确定【考点】G5:反比例函数系数k的几何意义;F8:一次函数图象上点的坐标特征.【分析】根据待定系数法,可得k,b,根据反比例函数图象上的点垂直于坐标轴得到的三角形的面积等于|k|的一半,可得答案.【解答】解:将A〔﹣1,﹣4〕,B〔2,2〕代入函数解析式,得,解得,P为反比例函数y=图象上一动点,反比例函数的解析式y=,P为反比例函数y=图象上一动点,O为坐标原点,过点P作y轴的垂线,垂足为C,那么△PCO的面积为|k|=2,应选:A.【点评】此题考察了反比例函数图象上点的坐标特征,利用反比例函数图象上的点垂直于坐标轴得到的三角形的面积等于|k|的一半二、填空题〔本大题共6小题,每题3分,共18分〕9.〔3分〕〔2017•〕近年来,国家重视精准扶贫,收效显著,据统计约65000000人脱贫,65000000用科学记数法可表示为 6.5×107.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数一样.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:65000000=6.5×107,故答案为:6.5×107.【点评】此题考察科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.〔3分〕〔2017•〕计算:〔+〕×= 13 .【考点】79:二次根式的混合运算.【专题】11 :计算题.【分析】先把各二次根式化简为最简二次根式,然后把括号合并后进展二次根式的乘法运算即可.【解答】解:原式=〔2+〕×=×=13.故答案为13.【点评】此题考察了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进展二次根式的乘除运算,再合并即可.11.〔3分〕〔2017•〕假设抛物线y=x2﹣6x+m与x轴没有交点,那么m的取值围是m>9 .【考点】HA:抛物线与x轴的交点.【分析】利用根的判别式△<0列不等式求解即可.【解答】解:∵抛物线y=x2﹣6x+m与x轴没有交点,∴△=b2﹣4ac<0,∴〔﹣6〕2﹣4×1•m<0,解得m>9,∴m的取值围是m>9.故答案为:m>9.【点评】此题考察了抛物线与x轴的交点问题,利用根的判别式列出不等式是解题的关键.12.〔3分〕〔2017•〕如图,直线AB,CD分别与⊙O相切于B,D两点,且AB⊥CD ,垂足为P ,连接BD ,假设BD=4,那么阴影局部的面积为 2π﹣4 .【考点】MC :切线的性质;MO :扇形面积的计算.【分析】连接OB 、OD ,根据切线的性质和垂直得出∠OBP=∠P=∠ODP=90°,求出四边形BODP 是正方形,根据正方形的性质得出∠BOD=90°,求出扇形BOD 和△BOD 的面积,即可得出答案.【解答】解:连接OB 、OD , ∵直线AB ,CD 分别与⊙O 相切于B ,D 两点,AB ⊥CD ,∴∠OBP=∠P=∠ODP=90°,∵OB=OD ,∴四边形BODP 是正方形,∴∠BOD=90°,∵BD=4,∴OB==2, ∴阴影局部的面积S=S 扇形BOD ﹣S △BOD =﹣=2π﹣4,故答案为:2π﹣4.【点评】此题考察了切线的性质、扇形的面积计算等知识点,能分别求出扇形BOD和△BOD的面积是解此题的关键.13.〔3分〕〔2017•〕如图,在四边形ABCD中,∠ABC=∠ADC=90°,E为对角线AC的中点,连接BE,ED,BD.假设∠BAD=58°,那么∠EBD的度数为32 度.【考点】KP:直角三角形斜边上的中线.【分析】根据条件得到点A,B,C,D在以E为圆心,AC为直径的同一个圆上,根据圆周角定理得到∠DEB=116°,根据直角三角形的性质得到DE=BE=AC,根据等腰三角形的性质即可得到结论.【解答】解:∵∠ABC=∠ADC=90°,∴点A,B,C,D在以E为圆心,AC为直径的同一个圆上,∵∠BAD=58°,∴∠DEB=116°,∵DE=BE=AC,∴∠EBD=∠EDB=32°,故答案为:32.【点评】此题考察了直角三角形斜边上的中线的性质,圆周角定理,推出A,B,C,D四点共圆是解题的关键.14.〔3分〕〔2017•〕某几何体的三视图如下图,其中俯视图为正六边形,那么该几何体的外表积为48+12.【考点】U3:由三视图判断几何体.【分析】观察该几何体的三视图发现该几何体为正六棱柱,然后根据提供的尺寸求得其外表积即可.【解答】解:观察该几何体的三视图发现该几何体为正六棱柱,其底面边长为2,高为4,故其边心距为,所以其外表积为2×4×6+2××6×2×=48+12,故答案为:48+12.【点评】此题考察了由三视图判断几何体的知识,解题的关键是能够根据三视图判断几何体的形状及各局部的尺寸,难度不大.三、解答题〔本大题共4分〕15.〔4分〕〔2017•〕:四边形ABCD.求作:点P,使∠PCB=∠B,且点P到边AD和CD的距离相等.【考点】N2:作图—根本作图;KF:角平分线的性质.【分析】根据角平分线上的点到角两边的距离相等可知:到边AD和CD的距离相等的点在∠ADC的平分线上,所以第一步作∠ADC的平分线DE,要想满足∠PCB=∠B,那么作CP∥AB,得到点P.【解答】解:作法:①作∠ADC的平分线DE,②过C作CP∥AB,交DE于点P,那么点P就是所求作的点;【点评】此题是作图题,考察了角平分线的性质、平行线的性质,熟练掌握角平分线上的点到角两边距离相等是关键.三、解答题〔本大题共9小题,共74分〕16.〔8分〕〔2017•〕〔1〕解不等式组:〔2〕化简:〔﹣a〕÷.【考点】6C:分式的混合运算;CB:解一元一次不等式组.【分析】〔1〕先求出每个不等式的解集,再求出不等式组的解集即可;〔2〕先算减法,把除法变成乘法,再根据分式的乘法法那么进展计算即可.【解答】解:〔1〕∵解不等式①得:x<﹣,解不等式②得:x<﹣10,∴不等式组的解集为x<﹣10;〔2〕原式=÷=•=.【点评】此题考察了分式的混合运算和解一元一次不等式组,能根据不等式的解集找出不等式组的解集是解〔1〕的关键,能灵活运用分式的运算法那么进展化简是解〔2〕的关键,注意运算顺序.17.〔6分〕〔2017•〕小华和小军做摸球游戏:A袋装有编号为1,2,3的三个小球,B袋装有编号为4,5,6的三个小球,两袋中的所有小球除编号外都一样.从两个袋子中分别随机摸出一个小球,假设B袋摸出小球的编号与A袋摸出小球的编号之差为偶数,那么小华胜,否那么小军胜,这个游戏对双方公平吗?请说明理由.【考点】X7:游戏公平性;X6:列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与数字的差为偶数的情况,再利用概率公式求解即可求得答案.【解答】解:不公平,画树状图得:∵共有9种等可能的结果,数字的差为偶数的有4种情况,∴P〔小华胜〕=,P〔小军胜〕=,∵≠,∴这个游戏对双方不公平.【点评】此题考察的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.18.〔6分〕〔2017•〕某中学开展了“手机伴我安康行〞主题活动,他们随机抽取局部学生进展“使用手机目的〞和“每周使用手机的时间〞的问卷调查,并绘制成如图①,②的统计图,“查资料〞的人数是40人.请你根据以上信息解答以下问题:〔1〕在扇形统计图中,“玩游戏〞对应的圆心角度数是126 度;〔2〕补全条形统计图;〔3〕该校共有学生1200人,估计每周使用手机时间在2小时以上〔不含2小时〕的人数.【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【专题】11 :计算题;541:数据的收集与整理.【分析】〔1〕由扇形统计图其他的百分比求出“玩游戏〞的百分比,乘以360即可得到结果;〔2〕求出3小时以上的人数,补全条形统计图即可;〔3〕由每周使用手机时间在2小时以上〔不含2小时〕的百分比乘以1200即可得到结果.【解答】解:〔1〕根据题意得:1﹣〔40%+18%+7%〕=35%,那么“玩游戏〞对应的圆心角度数是360°×35%=126°;故答案为:126;〔2〕根据题意得:40÷40%=100〔人〕,∴3小时以上的人数为100﹣〔2+16+18+32〕=32〔人〕,补全条形统计图,如下图:〔3〕根据题意得:1200×64%=768〔人〕,那么每周使用手机时间在2小时以上〔不含2小时〕的人数约有768人.【点评】此题考察了条形统计图,扇形统计图,以及用样本估计总体,弄清题中的数据是解此题的关键.19.〔6分〕〔2017•〕如图,C地在A地的正向,因有大山阻隔,由A地到C地需绕行B地,B地位于A地北偏东67°方向,距离A地520km,C地位于B地南偏东30°方向,假设打通穿山隧道,建成两地直达高铁,求A地到C地之间高铁线路的长.〔结果保存整数〕〔参考数据:sin67°≈,cos67°≈,tan67°≈,≈1.73〕【考点】TB:解直角三角形的应用﹣方向角问题.【分析】过点B作BD⊥AC于点D,利用锐角三角函数的定义求出AD及CD的长,进而可得出结论.【解答】解:过点B作BD⊥AC于点D,∵B地位于A地北偏东67°方向,距离A地520km,∴∠ABD=67°,∴AD=AB•sin67°=520×==480km,BD=AB•cos67°=520×==200km.∵C地位于B地南偏东30°方向,∴∠CBD=30°,∴CD=BD•tan30°=200×=,∴AC=AD+CD=480+≈480+115=595〔km〕.答:A地到C地之间高铁线路的长为595km.【点评】此题考察的是解直角三角形的应用﹣方向角问题,熟记锐角三角函数的定义是解答此题的关键.20.〔8分〕〔2017•〕A,B两地相距60km,甲、乙两人从两地出发相向而行,甲先出发,图中l1,l2表示两人离A地的距离s〔km〕与时间t〔h〕的关系,请结合图象解答以下问题:〔1〕表示乙离A地的距离与时间关系的图象是l2〔填l1或l2〕;甲的速度是30 km/h,乙的速度是20 km/h;〔2〕甲出发多少小时两人恰好相距5km?【考点】FH:一次函数的应用.【分析】〔1〕观察图象即可知道乙的函数图象为l2,根据速度=,利用图息即可解决问题;〔2〕分相遇前或相遇后两种情形分别列出方程即可解决问题;【解答】解:〔1〕由题意可知,乙的函数图象是l,2甲的速度是=30km/h,乙的速度是=20km/h.,30,20.故答案为l2〔2〕设甲出发多少小时两人恰好相距5km.由题意30x+20〔x﹣0.5〕+5=60或30x+20〔x﹣0.5〕﹣5=60解得x=1.3或1.5,答:甲出发1.3小时或1.5小时两人恰好相距5km.【点评】此题考察了一次函数的应用,解题的关键是读懂图象信息,灵活应用速度、路程、时间之间的关系解决问题.21.〔8分〕〔2017•〕:如图,在菱形ABCD中,点E,O,F分别为AB,AC,AD 的中点,连接CE,CF,OE,OF.〔1〕求证:△BCE≌△DCF;〔2〕当AB与BC满足什么关系时,四边形AEOF是正方形?请说明理由.【考点】LF:正方形的判定;KD:全等三角形的判定与性质;L8:菱形的性质.【分析】〔1〕由菱形的性质得出∠B=∠D,AB=BC=DC=AD,由和三角形中位线定理证出AE=BE=DF=AF,OF=DC,OE=BC,OE∥BC,由SAS证明△BCE≌△DCF 即可;〔2〕由〔1〕得:AE=OE=OF=AF,证出四边形AEOF是菱形,再证出∠AEO=90°,四边形AEOF是正方形.【解答】〔1〕证明:∵四边形ABCD是菱形,∴∠B=∠D,AB=BC=DC=AD,∵点E,O,F分别为AB,AC,AD的中点,∴AE=BE=DF=AF,OF=DC,OE=BC,OE∥BC,在△BCE和△DCF中,,∴△BCE≌△DCF〔SAS〕;〔2〕解:当AB⊥BC时,四边形AEOF是正方形,理由如下:由〔1〕得:AE=OE=OF=AF,∴四边形AEOF是菱形,∵AB⊥BC,OE∥BC,∴OE⊥AB,∴∠AEO=90°,∴四边形AEOF是正方形.【点评】此题考察了正方形的判定、菱形的性质与判定、全等三角形的判定与性质、三角形中位线定理等知识;熟练掌握菱形的性质和全等三角形的判定是解决问题的关键.22.〔10分〕〔2017•〕市某大酒店豪华间实行淡季、旺季两种价格标准,旺季每间价格比淡季上涨.下表是去年该酒店豪华间某两天的相关记录:淡季旺季未入住房间数100日总收入〔元〕2400040000〔1〕该酒店豪华间有多少间?旺季每间价格为多少元?〔2〕今年旺季降临,豪华间的间数不变.经市场调查发现,如果豪华间仍旧实行去年旺季价格,那么每天都客满;如果价格继续上涨,那么每增加25元,每天未入住房间数增加1间.不考虑其他因素,该酒店将豪华间的价格上涨多少元时,豪华间的日总收入最高?最高日总收入是多少元?【考点】HE:二次函数的应用.【分析】〔1〕根据题意可以列出相应的方程组,进而求得该酒店豪华间的间数和旺季每间的价格;〔2〕根据题意可以求得总收入和上涨价格之间的函数解析式,然后化为顶点式即可解答此题.【解答】解:〔1〕设淡季每间的价格为x元,酒店豪华间有y间,,解得,,∴x+x=600+=800,答:该酒店豪华间有50间,旺季每间价格为800元;〔2〕设该酒店豪华间的价格上涨x元,日总收入为y元,y=〔800+x〕〔50﹣〕=42025,∴当x=225时,y取得最大值,此时y=42025,答:该酒店将豪华间的价格上涨225元时,豪华间的日总收入最高,最高日总收入是42025元.【点评】此题考察二次函数的应用,解答此题的关键是明确题意,找出所求问题需要的条件,利用二次函数的性质解答.23.〔10分〕〔2017•〕数和形是数学的两个主要研究对象,我们经常运用数形结合、数形转化的方法解决一些数学问题.下面我们来探究“由数思形,以形助数〞的方法在解决代数问题中的应用.探究一:求不等式|x﹣1|<2的解集〔1〕探究|x﹣1|的几何意义如图①,在以O为原点的数轴上,设点A′对应的数是x﹣1,有绝对值的定义可知,点A′与点O的距离为|x﹣1|,可记为A′O=|x﹣1|.将线段A′O向右平移1个单位得到线段AB,此时点A对应的数是x,点B对应的数是1.因为AB=A′O,所以AB=|x﹣1|,因此,|x﹣1|的几何意义可以理解为数轴上x所对应的点A与1所对应的点B之间的距离AB.〔2〕求方程|x﹣1|=2的解因为数轴上3和﹣1所对应的点与1所对应的点之间的距离都为2,所以方程的解为3,﹣1.〔3〕求不等式|x﹣1|<2的解集因为|x﹣1|表示数轴上x所对应的点与1所对应的点之间的距离,所以求不等式解集就转化为求这个距离小于2的点对应的数x的围.请在图②的数轴上表示|x﹣1|<2的解集,并写出这个解集.探究二:探究的几何意义〔1〕探究的几何意义如图③,在直角坐标系中,设点M的坐标为〔x,y〕,过M作MP⊥x轴于P,作MQ⊥y轴于Q,那么P点坐标为〔x,0〕,Q点坐标为〔0,y〕,OP=|x|,OQ=|y|,在Rt△OPM中,PM=OQ=|y|,那么MO===,因此,的几何意义可以理解为点M〔x,y〕与点O〔0,0〕之间的距离MO.〔2〕探究的几何意义如图④,在直角坐标系中,设点A′的坐标为〔x﹣1,y﹣5〕,由探究二〔1〕可知,A′O=,将线段A′O先向右平移1个单位,再向上平移5个单位,得到线段AB,此时点A的坐标为〔x,y〕,点B的坐标为〔1,5〕,因为AB=A′O,所以AB=,因此的几何意义可以理解为点A〔x,y〕与点B〔1,5〕之间的距离AB.〔3〕探究的几何意义请仿照探究二〔2〕的方法,在图⑤中画出图形,并写出探究过程.〔4〕的几何意义可以理解为:点〔x,y〕与点〔a,b〕之间的距离.拓展应用:〔1〕+的几何意义可以理解为:点A〔x,y〕与点E〔2,﹣1〕的距离和点A〔x,y〕与点F 〔﹣1,﹣5〕〔填写坐标〕的距离之和.〔2〕+的最小值为 5 〔直接写出结果〕【考点】RB:几何变换综合题.【分析】探究一〔3〕由于|x﹣1|表示数轴上x所对应的点与1所对应的点之间的距离,所以求不等式解集就转化为求这个距离小于2的点对应的数x的围,从而画出数轴即可.探究二〔3〕由于的几何意义是:点A〔x,y〕与B〔﹣3,4〕之间的距离,所以构造直角三角形利用勾股定理即可得出答案.〔4〕根据前面的探究可知的几何意义是表示点〔x,y〕与点〔a,b〕之间的距离;拓展研究〔1〕根据探究二〔4〕可知点F的坐标;〔2〕根据三角形的三边关系即可求出答案.【解答】解:探究一:〔3〕如下图,∴|x﹣1|<2的解集是﹣1<x<3,探究二:〔3〕的几何意义是:点A〔x,y〕与B〔﹣3,4〕之间的距离,∴过点B作BD⊥x轴于D,过点A作AC⊥BD于点C,∴AC=|x+3|,BC=|y﹣4|,∴由勾股定理可知:AB2=AC2+BC2,∴AB=,〔4〕根据前面的探究可知的几何意义是表示点〔x,y〕与点〔a,b〕之间的距离;拓展研究:〔1〕由探究二〔4〕可知表示点〔x,y〕与〔﹣1,﹣5〕之间的距离,故F〔﹣1,﹣5〕,〔2〕由〔1〕可知:+表示点A〔x,y〕与点E〔2,﹣1〕的距离和点A〔x,y〕与点F〔﹣1,﹣5〕的距离之和,当A〔x,y〕位于直线EF外时,此时点A、E、F三点组成△AEF,∴由三角形三边关系可知:EF<AF+AE,当点A位置线段EF之间时,此时EF=AF+AE,∴+的最小值为EF的距离,∴EF==5故答案为:探究二〔4〕点〔x,y〕与点〔a,b〕之间的距离;拓展研究〔1〕〔﹣1,﹣5〕;〔2〕5.【点评】此题考察学生的阅读理解能力,解题的关键是正确理解题意,仿照题意求出答案,此题考察学生综合能力,属于中等题型.24.〔12分〕〔2017•〕:Rt△EFP和矩形ABCD如图①摆放〔点P与点B重合〕,点F,B〔P〕,C在同一直线上,AB=EF=6cm,BC=FP=8cm,∠EFP=90°,如图②,△EFP从图①的位置出发,沿BC方向匀速运动,速度为1cm/s,EP与AB交于点G;同时,点Q从点C出发,沿CD方向匀速运动,速度为1cm/s.过点Q作QM ⊥BD,垂足为H,交AD于点M,连接AF,FQ,当点Q停顿运动时,△EFQ也停顿运动.设运动时间为t〔s〕〔0<t<6〕,解答以下问题:〔1〕当t为何值时,PQ∥BD?〔2〕设五边形AFPQM的面积为y〔cm2〕,求y与t之间的函数关系式;〔3〕在运动过程中,是否存在某一时刻t,使S五边形AFPQM :S矩形ABCD=9:8?假设存在,求出t的值;假设不存在,请说明理由.〔4〕在运动过程中,是否存在某一时刻t,使点M在线段PG的垂直平分线上?假设存在,求出t的值;假设不存在,请说明理由.【考点】LO:四边形综合题.【分析】〔1〕如图1中,当PQ∥BD时,=,可得=,解方程即可;〔2〕如图2中,当0<t<6时,S五边形AFPQM =S梯形AFCD﹣S△DMQ﹣S△PQC,由此计算即可解决问题;〔3〕假设存在,根据题意列出方程即可解决问题;〔4〕如图3中,连接MG、MP,作MK⊥BC于K.理由勾股定理,根据MG=MP,列出方程即可解决问题;【解答】解:〔1〕如图1中,当PQ∥BD时,=,∴=,∴t=,∴t=s时,PQ∥BD.〔2〕如图2中,当0<t<6时,S五边形AFPQM =S梯形AFCD﹣S△DMQ﹣S△PQC=〔8+8﹣t+8〕•6﹣•〔6﹣t〕•〔6﹣t〕﹣•〔8﹣t〕•t=t2﹣t+.〔3〕如图2中,假设存在,那么有〔t2﹣t+.〕:48=9:8,解得t=2或18〔舍弃〕,∴t=2s时,S五边形AFPQM :S矩形ABCD=9:8.〔4〕存在.理由:如图3中,连接MG、MP,作MK⊥BC于K.易知:AG=6﹣t.DQ=6﹣t,DM=KC=〔6﹣t〕,PK=8﹣t﹣〔6﹣t〕,MK=CD=6,∵点M在PG的垂直平分线上,∴MG=MP,∴AG2+AM2=PK2+MK2,∴〔6﹣t〕2+[8﹣〔6﹣t〕]2=62+[8﹣t﹣〔6﹣t〕]2,解得t=或0〔舍弃〕,∴t=s时,点M在线段PG的垂直平分线上【点评】此题考察四边形综合题、平行线分线段成比例定理、勾股定理、多边形的面积等知识,解题的关键是学会理由分割法求多边形面积,学会用方程的思想思考问题,属于中考压轴题.。

2017年中考数学试题分类汇编-13操作性问题(第1部分)(word原题及解析版)

2017年中考数学试题分类汇编-13操作性问题(第1部分)(word原题及解析版)

专题内容:操作性问题(第1部分)一、选择题1.(2017福建第10题)如图,网格纸上正方形小格的边长为1.图中线段AB 和点P 绕着同一个点做相同的旋转,分别得到线段A B ''和点P ',则点P '所在的单位正方形区域是( )A .1区B .2区C .3区D .4区2.(2017广东广州第2题)如图2,将正方形ABCD 中的阴影三角形绕点A 顺时针旋转90°后,得到图形为 ( )3.(2017湖南长沙第12题)如图,将正方形ABCD 折叠,使顶点A 与CD 边上的一点H 重合(H 不与端点D C ,重合),折痕交AD 于点E ,交BC 于点F ,边AB 折叠后与边BC 交于点G ,设正方形ABCD 的周长为m ,CHG ∆的周长为n ,则mn 的值为( ) A .22 B .21 C .215- D .随H 点位置的变化而变化4.(2017山东青岛第5题)如图,若将△ABC 绕点O 逆时针旋转90°则顶点B 的对应点B 1的坐标为( )A. B.C. D.二、填空题 1.(2017北京第15题)如图,在平面直角坐标系xOy 中,AOB ∆可以看作是OCD ∆经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一中由OCD ∆得到AOB ∆的过程: .2. (2017北京第16题)下图是“作已知直角三角形的外接圆”的尺规作图过程已知:0,90Rt ABC C ∆∠=,求作Rt ABC ∆的外接圆.作法:如图.(1)分别以点A 和点B 为圆心,大于12AB 的长为半径作弧,两弧相交于,P Q 两点; (2)作直线PQ ,交AB 于点O ;(3)以O 为圆心,OA 为半径作O .O 即为所求作的圆.请回答:该尺规作图的依据是 .3.(2017天津第18题)如图,在每个小正方形的边长为1的网格中,点C B A ,,均在格点上.(1)AB 的长等于 ;(2)在ABC ∆的内部有一点P ,满足2:1:::=∆∆∆PCA PBC PAB S S S ,请在如图所示的网格中,用无.刻度..的直尺,画出点P ,并简要说明点P 的位置是如何找到的(不要求证明) .4.(2017山东滨州第15题)在平面直角坐标系中,点C 、D 的坐标分别为C (2,3)、D (1,0).现以原点为位似中心,将线段CD 放大得到线段AB ,若点D 的对应点B 在x 轴上且OB =2,则点C 的对应点A 的坐标为_______.5.(2017山东滨州第16题)如图,将矩形ABCD 沿GH 对折,点C 落在Q 处,点D 落在AB 边上的E 处,EQ 与BC 相交于点F .若AD =8,AB =6,AE =4,则△EBF 周长的大小为___________.6.(2017辽宁沈阳第16题)如图,在矩形ABCD 中,53AB BC ==,,将矩形ABCD 绕点B 按顺时针方向旋转得到矩形GBEF ,点A 落在矩形ABCD 的边CD 上,连接CE ,则CE 的长是.A B C DH Q GFE7.(2017浙江台州第8题)如图,已知等腰三角形,若以点为圆心,长为半径画弧,交腰于点,则下列结论一定正确的是( )A .B . C. D .8.(2017浙江湖州第9题)七巧板是我国祖先的一项卓越创造.下列四幅图中有三幅是小明用如图所示的七巧板拼成的,则不是小明拼成的那副图是( )9.(2017浙江舟山第9题)一张矩形纸片ABCD ,已知2,3==AD AB ,小明按下图步骤折叠纸片,则线段DG 长为( )A .2B .22 C.1 D .2三、解答题1.(2017广东广州第20题) 如图12,在Rt ABC ∆中,0090,30,B A AC ∠=∠==.,ABC AB AC =B BC ACE AE EC =AE BE =EBC BAC ∠=∠EBC ABE ∠=∠(1)利用尺规作线段AC 的垂直平分线DE ,垂足为E ,交AB 于点D ;(保留作图痕迹,不写作法)(2)若ADE ∆的周长为a ,先化简()()211T a a a =+--,再求T 的值.2.(2017山东青岛第15题)已知:四边形ABCD .求作:点P .使∠PCB =∠B ,且点P 到AD 和CD 的距离相等。

2017年中考数学试题分项版解析汇编第04期专题13 操作性问题(原卷版)

2017年中考数学试题分项版解析汇编第04期专题13 操作性问题(原卷版)

专题13 操作性问题一、选择题1. (2017贵州遵义第3题)把一张长方形纸片按如图①,图②的方式从右向左连续对折两次后得到图③,再在图③中挖去一个如图所示的三角形小孔,则重新展开后得到的图形是( )A .B .C .D .2. (2017海南第13题)已知△ABC 的三边长分别为4、4、6,在△ABC 所在平面内画一条直线,将△ABC 分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画( )条. A .3B .4C .5D .63. (2017河池第11题)如图,在ABCD 中,用直尺和圆规作BAD ∠的平分线AG ,若6,5==DE AD ,则AG 的长是( )A .6B .8 C. 10 D .124. (2017新疆乌鲁木齐第9题)如图,在矩形ABCD 中,点F 在AD 上,点E 在BC 上,把这个矩形沿EF 折叠后,使点D 恰好落在BC 边上的G 点处,若矩形面积为43且60,2AFG GE BG ∠==,则折痕EF 的长为( )A .1B .3 C. 2 D .235.(2017青海西宁第10题)如图,在正方形ABCD 中,3AB cm =,动点M 自A 点出发沿AB 方向以每秒1cm 的速度运动,同时动点N 自D 点出发沿折线DC CB -以每秒2cm 的速度运动,到达B 点时运动同时停止,设AMN ∆的面积为()2y cm ,运动时间为x (秒),则下列图象中能大致反映y 与x 之间的函数关系的是( )A .B . C.D . 6. (2017新疆乌鲁木齐第10题)如图,点()(),3,,1A a B b 都在双曲线3y x =上,点,C D ,分别是x轴,y 轴上的动点,则四边形ABCD 周长的最小值为( )A .52B .62 C. 21022+ D .82 二、填空题1. (2017内蒙古通辽第15题)在平行四边形ABCD 中,AE 平分BAD ∠交边BC 于E ,DF 平分ADC ∠交边BC 于F .若11=AD ,5=EF ,则=AB .2. (2017湖南常德第16题)如图,有一条折线A 1B 1A 2B 2A 3B 3A 4B 4…,它是由过A 1(0,0),B 1(2,2),A 2(4,0)组成的折线依次平移4,8,12,…个单位得到的,直线y =kx +2与此折线恰有2n (n ≥1,且为整数)个交点,则k 的值为 .3. (2017黑龙江齐齐哈尔第16题)如图,在等腰三角形纸片ABC 中,10AB AC ==,12BC =,沿底边BC 上的高AD 剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是 .4. (2017黑龙江齐齐哈尔第17题)经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD 是ABC ∆的“和谐分割线”,ACD ∆为等腰三角形,CBD ∆和ABC ∆相似,46A ∠=︒,则ACB ∠的度数为 .5. (2017黑龙江齐齐哈尔第18题)如图,菱形OABC 的一边OA 在x 轴的负半轴上,O 是坐标原点,4tan 3AOC ∠=,反比例函数ky x=的图像经过点C ,与AB 交于点D ,若COD ∆的面积为20,则k 的值等于 .6. (2017黑龙江齐齐哈尔第19题)如图,在平面直角坐标系中,等腰直角三角形12OA A 的直角边1OA 在y 轴的正半轴上,且1121OA A A ==,以2OA 为直角边作第二个等腰直角三角形23OA A ,以3OA 为直角边作第三个等腰直角三角形20172018OA A ,则点2017A 的坐标为 .7. (2017黑龙江绥化第20题)在等腰ABC ∆中,AD BC ⊥交直线BC 于点D ,若12AD BC =,则ABC ∆的顶角的度数为 .三、解答题1. (2017贵州遵义第22题)乌江快铁大桥是快铁渝黔线的一项重要工程,由主桥AB 和引桥BC 两部分组成(如图所示),建造前工程师用以下方式做了测量;无人机在A 处正上方97m 处的P 点,测得B 处的俯角为30°(当时C 处被小山体阻挡无法观测),无人机飞行到B 处正上方的D 处时能看到C 处,此时测得C 处俯角为80°36′.(1)求主桥AB的长度;(2)若两观察点P、D的连线与水平方向的夹角为30°,求引桥BC的长.(长度均精确到1m,参考数据:3≈1.73,sin80°36′≈0.987,cos80°36′≈0.163,tan80°36′≈6.06)2. (2017贵州遵义第26题)边长为22的正方形ABCD中,P是对角线AC上的一个动点(点P 与A、C不重合),连接BP,将BP绕点B顺时针旋转90°到BQ,连接QP,QP与BC交于点E,QP 延长线与AD(或AD延长线)交于点F.(1)连接CQ,证明:CQ=AP;(2)设AP=x,CE=y,试写出y关于x的函数关系式,并求当x为何值时,CE=38 BC;(3)猜想PF与EQ的数量关系,并证明你的结论.3. (2017湖南株洲第24题)如图所示,Rt△PAB的直角顶点P(3,4)在函数y=kx(x>0)的图象上,顶点A、B在函数y=tx(x>0,0<t<k)的图象上,PA∥x轴,连接OP,OA,记△OPA的面积为S△OPA ,△PAB的面积为S△PAB,设w=S△OPA﹣S△PAB.①求k的值以及w关于t的表达式;②若用wmax 和wmin分别表示函数w的最大值和最小值,令T=wmax+a2﹣a,其中a为实数,求Tmin.4. (2017内蒙古通辽第22题)如图,物理老师为同学们演示单摆运动,单摆左右摆动中,在OA 的位置时俯角060∠FOB.若EF=30=⊥EOA,在OB的位置时俯角07.OC⊥,点A比点B高cm求(1)单摆的长度(7.13≈);π).(2)从点A摆动到点B经过的路径长(1.3≈5. (2017内蒙古通辽第25题)邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又余下一个四边形,称为第二次操作;……依次类推,若第n次操作余下的四边形是菱形,则称原平行四边形为n阶准菱形,如图1,□ABCD为1阶准菱形.(1)猜想与计算邻边长分别为3和5的平行四边形是阶准菱形;已知□ABCD的邻边长分别为ba,(bb5=8,r=,请写出□ABCD是阶准菱形.a>),满足rba+(2)操作与推理小明为了剪去一个菱形,进行如下操作:如图2,把□ABCD沿BE折叠(点E在AD上),使点A 落在BC边上的点F处,得到四边形ABEF.请证明四边形ABEF是菱形.6. (2017郴州第22题)如图所示,C城市在A城市正东方向,现计划在,A C两城市间修建一条高速铁路(即线段AC),经测量,森林保护区的中心P在城市A的北偏东060方向上,在线段AC 上距A城市120km的B处测得P在北偏东030方向上,已知森林保护区是以点P为圆心,100km为半径的圆形区域,请问计划修建的这条高速铁路是否穿越保护区,为什么?(参考数据:3 1.732=)7. (2017郴州第25题)如图,已知抛物线28 5y ax x c=++与x轴交于,A B两点,与y轴交于C点,且(2,0),(0,4)A C-,直线1:42l y x=--与x轴交于D点,点P是抛物线285y ax x c=++上的一动点,过点P作PE x⊥轴,垂足为E,交直线l于点F.(1)试求该抛物线的表达式;(2)如图(1),若点P在第三象限,四边形PCOF是平行四边形,求P点的坐标;(3)如图(2),过点P作PH x⊥轴,垂足为H,连接AC,①求证:ACD ∆是直角三角形;②试问当P 点横坐标为何值时,使得以点,,P C H 为顶点的三角形与ACD ∆相似?8. (2017郴州第26题)如图,ABC ∆是边长为4cm 的等边三角形,边AB 在射线OM 上,且6OA cm =,点D 从点O 出发,沿OM 的方向以1/cm s 的速度运动,当D 不与点A 重合是,将ACD∆绕点C 逆时针方向旋转060得到BCE ∆,连接DE .(1)求证:CDE ∆是等边三角形;(2)当610t <<时,的BDE ∆周长是否存在最小值?若存在,求出BDE ∆的最小周长; 若不存在,请说明理由.(3)当点D 在射线OM 上运动时,是否存在以,,D E B 为顶点的三角形是直角三角形? 若存在,求出此时t 的值;若不存在,请说明理由.9. (2017湖北咸宁第20题)小慧根据学习函数的经验,对函数|1|-=x y 的图象与性质进行了研究,下面是小慧的研究过程,请补充完成:⑴函数|1|-=x y 的自变量x 的取值范围是 ; ⑵列表,找出y 与x 的几组对应值.x1- 0 1 2 3yb 10 12其中,=b ;⑶在平面直角坐标系xOy 中,描出以上表中各队对应值为坐标的点,并画出该函数的图象; ⑷写出该函数的一条性质: .10. (2017湖北咸宁第23题)定义:数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称三角形为“智慧三角形”.理解:⑴如图1,已知B A ,是⊙O 上两点,请在圆上找出满足条件的点C ,使AB C ∆为“智慧三角形”(画出点C 的位置,保留作图痕迹);⑵如图2,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且CD CF 41=,试判断AEF ∆是否为“智慧三角形”,并说明理由; 运用:⑶如图3,在平面直角坐标系xOy 中,⊙O 的半径为1,点Q 是直线3=y 上的一点,若在⊙O 上存在一点P ,使得OPQ ∆为“智慧三角形”,当其面积取得最小值时,直接写出此时点P 的坐标.11. (2017湖北咸宁第24题)如图,抛物线c bx x y ++=221与x 轴交于B A 、两点,与y 轴交于点C ,其对称轴交抛物线于点D ,交x 轴于点E ,已知6==OC OB .⑴求抛物线的解析式及点D 的坐标;⑵连接F BD ,为抛物线上一动点,当EDB FAB ∠=∠时,求点F 的坐标;⑶平行于x 轴的直线交抛物线于N M ,两点,以线段MN 为对角线作菱形MPNQ ,当点P 在x 轴上,且MN PQ 21=时,求菱形对角线MN 的长.12. (2017广西百色第25题)已知ABC 的内切圆O 与,,AB BC AC 分别相切于点,,D E F ,若EF DE =,如图1.(1)判断ABC 的形状,并证明你的结论;(2)设AE 与DF 相交于点M ,如图2,24,AF FC ==求AM 的长.13. (2017广西百色第26题)以菱形ABCD的对角线交点O为坐标原点,AC所在的直线为x轴,已知(4,0)M,P为折线BCD上一动点,内行PE y⊥轴于点E,设点P的纵B-,(0,4)A-,(0,2)坐标为.a(1)求BC边所在直线的解析式;(2)设22=+,求y关于a的函数关系式;y MP OP(3)当OPM为直角三角形,求点P的坐标.14. (2017哈尔滨第27题)如图,在平面直角坐标系中,点O为坐标原点,抛物线2=++交y x bx cx轴于A、B两点,交y轴于点C,直线3=-经过B、C两点.y x(1)求抛物线的解析式;(2)过点C作直线CD y^轴交抛物线于另一点D,点P是直线CD下方抛物线上的一个动点,且在抛物线对称轴的右侧,过点P作PE x^轴于点E,PE交CD于点F,交BC于点M,连接AC,过点M 作MN AC^于点N,设点P的横坐标为t,线段MN的长为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,连接PC,过点B作BQ PC^于点Q(点Q在线段PC上),BQ交CD于点T,连接OQ交CD于点S,当ST TD=时,求线段MN的长.15. (2017黑龙江齐齐哈尔第26题)如图,在平面直角坐标系中,把矩形OABC沿对角线AC所在的直线折叠,点B落在点D处,DC与y轴相交于点E.矩形OABC的边OC,OA的长是关于x 的一元二次方程212320-+=的两个根,且OA OCx x>.(1)求线段OA,OC的长;(2)求证:ADE COE∆≅∆∆,并求出线段OE的长;(3)直接写出点D的坐标;(4)若F是直线AC上一个动点,在坐标平面内是否存在点P,使以点E,C,P,F为顶点的四边形是菱形?若存在,请直接写出P点的坐标;若不存在,请说明理由.16. (2017黑龙江绥化第22题)如图,,,A B C 为某公园的三个景点,景点A 和景点B 之间有一条笔直的小路,现要在小路上建一个凉亭P ,使景点B 、景点C 到凉亭P 的距离之和等于景点B 到景点A 的距离.请用直尺和圆规在所给的图中作出点P .(不写作法和证明,只保留作图痕迹)17. (2017黑龙江绥化第29题)在平面直角坐标系中,直线314y x =-+交y 轴于点B ,交x 轴于点A ,抛物线212y x bx c =-++经过点B ,与直线314y x =-+交于点(4,2)C -.(1)求抛物线的解析式;(2)如图,横坐标为m 的点M 在直线BC 上方的抛物线上,过点M 作//ME y 轴交直线BC 于点E ,以ME 为直径的圆交直线BC 于另一点D .当点E 在x 轴上时,求DEM V 的周长;(3)将AOB ∆绕坐标平面内的某一点按顺时针方向旋转90o ,得到111AO B ∆,点,,A O B 的对应点分别是111,,A O B .若111AO B ∆的两个顶点恰好落在抛物线上,请直接写出点1A 的坐标.18. (2017湖北孝感第20题)如图,已知矩形()ABCD AB AD < .(1)请用直尺和圆规按下列步骤作图,保留作图痕迹:①以点A 为圆心,以AD 的长为半径画弧交边BC 于点E ,连接AE ;②作DAE∠的平分线交CD于点F;③连接EF;(2)在(1)作出的图形中,若8,10AB AD==,则tan FEC∠的值为 .19. (2017内蒙古呼和浩特第24题)如图,点A,B,C,D是直径为AB的O上的四个点,C 是劣弧BD的中点,AC与BD交于点E.(1)求证:2DC CE AC=⋅;(2)若2AE=,1EC=,求证:AOD∆是正三角形;(3)在(2)的条件下,过点C作O的切线,交AB的延长线于点H,求ACH∆的面积.20. (2017内蒙古呼和浩特第25题)在平面直角坐标系xOy中,抛物线2y ax bx c=++与y轴交于点C,其顶点记为M,自变量1x=-和5x=对应的函数值相等.若点M在直线l:1216y x=-+上,点(3,4)-在抛物线上.(1)求该抛物线的解析式;(2)设2y ax bx c=++对称轴右侧x轴上方的图象上任一点为P,在x轴上有一点7(,0)2A-,试比较锐角PCO∠与ACO∠的大小(不必证明),并写出相应的P点横坐标x的取值范围;(3)直线l与抛物线另一点记为B,Q为线段BM上一动点(点Q不与M重合).设Q点坐标为(,)t n,过Q 作QH ⊥x 轴于点H ,将以点Q ,H ,O ,C 为顶点的四边形的面积S 表示为t 的函数,标出自变量t 的取值范围,并求出S 可能取得的最大值.21. (2017青海西宁第28题)如图,在平面直角坐标系中,矩形OABC 的顶点,A C 分别在x 轴,y 轴的正半轴上,且4,3OA OC ==.若抛物线经过,O A 两点,且顶点在BC 边上,对称轴交BE 于点F ,点,D E 的坐标分别为()()3,0,0,1.(1)求抛物线的解析式;(2)猜想EDB ∆的形状并加以证明;(3)点M 在对称轴右侧的抛物线上,点N 在x 轴上,请问是否存在以点,,,A F M N 为顶点的四边形是平行四边形?若存在,请求出所有符合条件的点M 的坐标;若不存在,请说明理由.22. (2017湖南张家界第23题)已知抛物线c 1的顶点为A (﹣1,4),与y 轴的交点为D (0,3).(1)求c 1的解析式;(2)若直线l 1:y =x +m 与c 1仅有唯一的交点,求m 的值;(3)若抛物线c 1关于y 轴对称的抛物线记作c 2,平行于x 轴的直线记作l 2:y =n .试结合图形回答:当n 为何值时,l 2与c 1和c 2共有:①两个交点;②三个交点;③四个交点;(4)若c 2与x 轴正半轴交点记作B ,试在x 轴上求点P ,使△PAB 为等腰三角形.23. (2017辽宁大连第26题)在平面直角坐标系xOy 中,抛物线c bx ax y ++=2的开口向上,且经过点)23,0(A . (1)若此抛物线经过点)21,2(-B ,且与x 轴相交于点F E ,. ①填空:=b (用含a 的代数式表示);②当EF 的值最小时,求抛物线的解析式;(2)若21=a ,当10≤≤x ,抛物线上的点到x 轴距离的最大值为3时,求b 的值.24. (2017海南第23题)如图,四边形ABCD 是边长为1的正方形,点E 在AD 边上运动,且不与点A 和点D 重合,连结CE ,过点C 作CF ⊥CE 交AB 的延长线于点F ,EF 交BC 于点G .(1)求证:△CDE ≌△CBF ;(2)当DE=12时,求CG 的长;(3)连结AG ,在点E 运动过程中,四边形CEAG 能否为平行四边形?若能,求出此时DE 的长;若不能,说明理由.25. (2017海南第24题)抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0).(1)求该抛物线所对应的函数解析式;(2)该抛物线与直线335y x=+相交于C、D两点,点P是抛物线上的动点且位于x轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N.①连结PC、PD,如图1,在点P运动过程中,△PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;②连结PB,过点C作CQ⊥PM,垂足为点Q,如图2,是否存在点P,使得△CNQ与△PBM相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.26. (2017河池第25题)如图,AB为⊙O的直径,CDCB,分别切⊙O于点CDDB,,交BA的延长线于点E,CO的延长线交⊙O于点OGEFG⊥,于点F.⑴求证ECFFEB∠=∠;⑵若46==DEBC,,求EF的长.27. (2017河池第26题) 抛物线322++-=x x y 与x 轴交于点B A ,(A 在B 的左侧),与y 轴交于点C .⑴求直线BC 的解析式;⑵抛物线的对称轴上存在点P ,使ABC APB ∠=∠,利用图1求点P 的坐标;⑶点Q 在y 轴右侧的抛物线上,利用图2比较OCQ ∠与OCA ∠的大小,并说明理由.28. (2017贵州六盘水第25题)如图,MN 是O ⊙的直径,4MN =,点A 在O ⊙上,30AMN =∠°,B 为AN 的中点,P 是直径MN 上一动点.(1)利用尺规作图,确定当PA PB +最小时P 点的位置(不写作法,但要保留作图痕迹).(2)求PA PB +的最小值.29. (2017贵州六盘水第26题)已知函数y kx b =+,k y x=,k 、b 为整数且1bk =.(1)讨论b,k 的取值.(2)分别画出两种函数的所有图象.(不需列表)(3)求y kx b =+与ky x=的交点个数.30. (2017新疆乌鲁木齐第24题)如图,抛物线()20y ax bx c a =++≠与直线1y x =+相交于()()1,0,4,A B m -两点,且抛物线经过点()5,0C .(1)求抛物线的解析式;(2)点P 是抛物线上的一个动点(不与点A 、点B 重合),过点P 作直线PD x ⊥轴于点D ,交直线AB 于点E .①当2PE ED =时,求P 点坐标;② 是否存在点P 使BEC ∆为等腰三角形,若存在请直接写出点P 的坐标,若不存在,请说明理由.。

中考数学试题分项版解析(第03期)专题15 应用题-人教版初中九年级全册数学试题

中考数学试题分项版解析(第03期)专题15 应用题-人教版初中九年级全册数学试题

专题15 应用题1.(2016某某省某某市第22题)“六一”期间,小X购进100只两种型号的文具进行销售,其进价和售价之间的关系如下表:型号进价(元/只)售价(元/只)A型10 12B型15 23(1)小X如何进货,使进货款恰好为1300元?(2)要使销售文具所获利润最大,且所获利润不超过进货价格的40%,请你帮小X设计一个进货方案,并求出其所获利润的最大值.【答案】(1)A文具为40只,B文具60只;(2)各进50只,最大利润为500元.【解析】试题分析:(1)设A文具为x只,则B文具为(100﹣x)只,根据题意列出方程解答即可;(12﹣10)x+(23﹣15)(100﹣x)≤40%[10x+15(100﹣x)],解得:x≥50,设利润为y,则可得:y=(12﹣10)x+(23﹣15)(100﹣x)=2x+800﹣8x=﹣6x+800,因为是减函数,所以当x=50时,利润最大,即最大利润=﹣50×6+800=500元.考点:1.一次函数的应用;2.一元一次方程的应用;3.一元一次不等式的应用.2.(2016某某省某某市第23题)某书店为了迎接“读书节”制定了活动计划,以下是活动计划书的部分信息:“读书节”活动计划书书本类别A类B类进价(单位:元)18 12备注1、用不超过16800元购进A、B两类图书共1000本;2、A类图书不少于600本;…(1)陈经理查看计划数时发现:A类图书的标价是B类图书标价的1.5倍,若顾客用540元购买的图书,能单独购买A类图书的数量恰好比单独购买B类图书的数量少10本,请求出A、B两类图书的标价;(2)经市场调查后,陈经理发现他们高估了“读书节”对图书销售的影响,便调整了销售方案,A类图书每本标价降低a元(0<a<5)销售,B类图书价格不变,那么书店应如何进货才能获得最大利润?【答案】(1)、A类图书的标价为27元,B类图书的标价为18元;(2)、当A类图书每本降价少于3元时,A类图书购进800本,B类图书购进200本时,利润最大;当A类图书每本降价大于等于3元,小于5元时,A类图书购进600本,B类图书购进400本时,利润最大.【解析】试题解析:(1)、设B类图书的标价为x元,则A类图书的标价为1.5x元,根据题意可得﹣10=,化简得:540﹣10x=360,解得:x=18,经检验:x=18是原分式方程的解,且符合题意,×18=27(元),答:A类图书的标价为27元,B类图书的标价为18元;(2)、设购进A类图书t本,总利润为w元,A类图书的标价为(27﹣a)元(0<a<5),由题意得,,解得:600≤t≤800,则总利润w=(27﹣a﹣18)t+(18﹣12)(1000﹣t)=(9﹣a)t+6(1000﹣t)=6000+(3﹣a)t,故当0<a<3时,3﹣a>0,t=800时,总利润最大;当3≤a<5时,3﹣a<0,t=600时,总利润最大;答:当A 类图书每本降价少于3元时,A 类图书购进800本,B 类图书购进200本时,利润最大;当A 类图书每本降价大于等于3元,小于5元时,A 类图书购进600本,B 类图书购进400本时,利润最大. 考点:(1)、一次函数的应用;(2)、分式方程的应用;(3)、一元一次不等式组的应用3.(2016某某省某某市第21题)(8分)荔枝是某某特色水果,小明的妈妈先购买了2千克桂味和3千克糯米糍,共花费90元;后又购买了1千克桂味和2千克糯米糍,共花费55元.(每次两种荔枝的售价都不变)(1)、求桂味和糯米糍的售价分别是每千克多少元;(2)、如果还需购买两种荔枝共12千克,要求糯米糍的数量不少于桂味数量的两倍,请设计一种购买方案,使所需总费用最低.【答案】(1)、桂味售价为每千克15元,糯米味售价为每千克20元;(2)、购买桂味4千克,糯米味8千克是,总费用最少.试题解析:(1)、设桂味售价为每千克x 元,糯米味售价为每千克y 元,根据题意得:⎩⎨⎧=+=+5529032y x y x解得:⎩⎨⎧==2015y x答:桂味售价为每千克15元,糯米味售价为每千克20元。

推荐2017年中考数学试题分项版解析汇编第01期专题13操作性问题含解析

推荐2017年中考数学试题分项版解析汇编第01期专题13操作性问题含解析

专题13 操作性问题一、选择题1.(2017浙江衢州第7题)下列四种基本尺规作图分别表示:①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点P 作已知直线的垂线,则对应选项中作法错误的是( )A .①B .②C .③D .④【答案】C.考点:基本作图.2. (2017湖北武汉第10题)如图,在Rt ABC ∆中,90C ∠=,以ABC ∆的一边为边画等腰三角形,使得它的第三个顶点在ABC ∆的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A .4B .5C . 6D .7【答案】C【解析】试题解析:①以B 为圆心,BC 长为半径画弧,交AB 于点D ,△BCD 就是等腰三角形;②以A 为圆心,AC 长为半径画弧,交AB 于点E ,△ACE 就是等腰三角形;③以C为圆心,BC长为半径画弧,交AC于点F,△BCF就是等腰三角形;④作AC的垂直平分线交AB于点H,△ACH就是等腰三角形;⑤作AB的垂直平分线交AC于G,则△AGB是等腰三角形;⑥作BC的垂直平分线交AB于I,则△BCI是等腰三角形.故选C.考点:画等腰三角形.3.(2017甘肃兰州第13题)如图,小明为了测量一凉亭的高度AB(顶端A到水平地面BD的距离),在凉亭的旁边放置一个与凉亭台阶BC等高的台阶DE(0.5DE BC==米,,,A B C三点共线),把一面镜子水平放置在平台上的点G处,测得15CG=米,然后沿直线CG后退到点E处,这时恰好在镜子里看到凉亭的顶端A,测得3CG=米,小明身高 1.6EF=米,则凉亭的高度AB约为( )A.8.5米B.9米C.9.5米D.10米【答案】A.【解析】试题解析:由题意∠AGC=∠FGE,∵∠ACG=∠FEG=90°,∴△ACG∽△FEG,∴AC CG EF GD=∴15 1.53 AC=∴AC=8,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题13 操作性问题一、选择题1.(2017广西四市)如图,△ABC中,AB>AC,∠CAD为△ABC的外角,观察图中尺规作图的痕迹,则下列结论错误的是()A.∠DAE=∠B B.∠EAC=∠C C.AE∥BC D.∠DAE=∠EAC【答案】D.考点:1.作图—复杂作图;2.平行线的判定与性质;3.三角形的外角性质.2.(2017河北省)已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB边重合,如图所示,按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转;…在这样连续6次旋转的过程中,点B,M间的距离可能是()A.1.4 B.1.1 C.0.8 D.0.5【答案】C.【解析】试题分析:如图,在这样连续6次旋转的过程中,点M的运动轨迹是图中的红线,观察图象可知点B,M间的距离大于0.5小于等于1,故选C.考点:1.正多边形和圆;2.旋转的性质;3.操作型;4.综合题.3.(2017湖北省襄阳市)如图,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于12BD的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,则AF的长为()A.5 B.6 C.7 D.8 【答案】B.考点:1.作图—基本作图;2.含30度角的直角三角形.二、填空题4.(2017山东省济宁市)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧在第二象限内交于点P(a,b),则a与b的数量关系是.【答案】a+b=0.考点:1.作图—基本作图;2.坐标与图形性质;3.点到直线的距离.5.(2017河北省)如图,依据尺规作图的痕迹,计算∠α= °.【答案】56.【解析】试题分析:∵四边形ABCD的矩形,∴AD∥BC,∴∠DAC=∠ACB=68°.∵由作法可知,AF是∠DAC的平分线,∴∠EAF=12∠DAC=34°.∵由作法可知,EF是线段AC的垂直平分线,∴∠AEF=90°,∴∠AFE=90°﹣34°=56°,∴∠α=56°.故答案为:56.考点:1.作图—基本作图;2.操作型.6.(2017浙江省绍兴市)以Rt△ABC的锐角顶点A为圆心,适当长为半径作弧,与边AB、AC各相交于一点,再分别以两个交点为圆心,适当长为半径作弧,过两弧的交点与点A作直线,与边BC交于点D.若∠ADB=60°,点D到AC的距离为2,则AB的长为.【答案】考点:1.作图—尺规作图的定义;2.角平分线的性质.三、解答题7.(2017四川省眉山市)在如图的正方形网格中,每一个小正方形的边长为1.格点三角形ABC(顶点是网格线交点的三角形)的顶点A、C的坐标分别是(﹣4,6),(﹣1,4).(1)请在图中的网格平面内建立平面直角坐标系;(2)请画出△ABC关于x轴对称的△A1B1C1;(3)请在y轴上求作一点P,使△PB1C的周长最小,并写出点P的坐标.【答案】(1)答案见解析;(2)答案见解析;(3)P(0,2).【解析】试题分析:(1)根据A点坐标建立平面直角坐标系即可;(2)分别作出各点关于x轴的对称点,再顺次连接即可;(3)作出点B关于y轴的对称点B2,连接B2交y轴于点P,则P点即为所求.试题解析:(1)如图所示;(2)如图,即为所求;考点:1.作图﹣轴对称变换;2.勾股定理;3.轴对称﹣最短路线问题;4.最值问题.8.(2017山东省枣庄市)如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(2,2),B(4,0),C(4,﹣4).(1)请在图中,画出△ABC向左平移6个单位长度后得到的△A1B1C1;(2)以点O为位似中心,将△ABC缩小为原来的12,得到△A2B2C2,请在图中y轴右侧,画出△A2B2C2,并求出∠A2C2B2的正弦值.【答案】(1)作图见解析;(2)作图见解析,sin∠A2C2B2【解析】试题分析:(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用位似图形的性质得出对应点位置,再利用锐角三角三角函数关系得出答案.试题解析:(1)如图所示:△A1B1C1,即为所求;考点:1.作图﹣位似变换;2.作图﹣平移变换;3.解直角三角形.9.(2017广东省)如图,在△ABC中,∠A>∠B.(1)作边AB的垂直平分线DE,与AB,BC分别相交于点D,E(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE,若∠B=50°,求∠AEC的度数.【答案】(1)作图见见解析;(2)100°.【解析】试题分析:(1)根据题意作出图形即可;(2)由于DE是AB的垂直平分线,得到AE=BE,根据等腰三角形的性质得到∠EAB=∠B=50°,由三角形的外角的性质即可得到结论.试题解析:(1)如图所示;(2)∵DE是AB的垂直平分线,∴AE=BE,∴∠EAB=∠B=50°,∴∠AEC=∠EAB+∠B=100°.考点:1.作图—基本作图;2.线段垂直平分线的性质.10.(2017广西四市)如图,在平面直角坐标系中,△ABC的三个顶点分别为A(﹣1,﹣2),B(﹣2,﹣4),C(﹣4,﹣1).(1)把△ABC向上平移3个单位后得到△A1B1C1,请画出△A1B1C1并写出点B1的坐标;(2)已知点A与点A2(2,1)关于直线l成轴对称,请画出直线l及△ABC关于直线l对称的△A2B2C2,并直接写出直线l的函数解析式.【答案】(1)作图见解析;(2)y=﹣x.【解析】试题分析:(1)根据图形平移的性质画出△A1B1C1并写出点B1的坐标即可;(2)连接AA2,作线段AA2的垂线l,再作△ABC关于直线l对称的△A2B2C2即可.试题解析:(1)如图,△A1B1C1即为所求,B1(﹣2,﹣1);(2)如图,△A2B2C2即为所求,直线l的函数解析式为y=﹣x.考点:1.作图﹣轴对称变换;2.待定系数法求一次函数解析式;3.作图﹣平移变换.11.(2017江苏省盐城市)如图,△ABC是一块直角三角板,且∠C=90°,∠A=30°,现将圆心为点O的圆形纸片放置在三角板内部.(1)如图①,当圆形纸片与两直角边AC、BC都相切时,试用直尺与圆规作出射线CO;(不写作法与证明,保留作图痕迹)(2)如图②,将圆形纸片沿着三角板的内部边缘滚动1周,回到起点位置时停止,若BC=9,圆形纸片的半径为2,求圆心O运动的路径长.【答案】(1)作图见解析;(2)15(2)如图2,圆心O 的运动路径长为12OO O C ∆,过点O 1作O 1D ⊥BC 、O 1F ⊥AC 、O 1G ⊥AB ,垂足分别为点D 、F 、G ,过点O 作OE ⊥BC ,垂足为点E ,连接O 2B ,过点O 2作O 2H ⊥AB ,O 2I ⊥AC ,垂足分别为点H 、I ,在Rt △ABC中,∠ACB =90°、∠A =30°,∴AC =tan 30BC==,AB =2BC =18,∠ABC =60°,∴C △ABC=9+O 1D ⊥BC 、O 1G ⊥AB ,∴D 、G 为切点,∴BD =BG ,在Rt △O 1BD 和Rt △O 1BG 中,∵BD =BG ,O 1B =O 1B ,∴△O 1BD ≌△O 1BG (HL ),∴∠O 1BG =∠O 1BD =30°,在Rt △O 1BD 中,∠O 1DB =90°,∠O 1BD =30°,∴BD =1tan 30OD=OO 1=9﹣2﹣﹣O 1D =OE =2,O 1D ⊥BC ,OE ⊥BC ,∴O 1D ∥OE ,且O 1D =OE ,∴四边形OEDO 1为平行四边形,∵∠OED =90°,∴四边形OEDO 1为矩形,同理四边形O 1O 2HG 、四边形OO 2IF 、四边形OECF 为矩形,又OE =OF ,∴四边形OECF 为正方形,∵∠O 1GH =∠CDO 1=90°,∠ABC =60°,∴∠GO 1D =120°,又∵∠FO 1D =∠O 2O 1G =90°,∴∠OO 1O 2=360°﹣90°﹣90°=60°=∠ABC ,同理,∠O 1OO 2=90°,∴△OO 1O 2∽△CBA ,∴1212OO O ABCC O O C BC ∆∆=C =12OO O C ∆=15O 运动的路径长为15考点:1.轨迹;2.切线的性质;3.作图—复杂作图;4.综合题.12.(2017浙江省台州市)在平面直角坐标系中,借助直角三角板可以找到一元二次方程的实数根.比如对于方程2520x x -+=,操作步骤是:第一步:根据方程的系数特征,确定一对固定点A (0,1),B (5,2);第二步:在坐标平面中移动一个直角三角板,使一条直角边恒过点A ,另一条直角边恒过点B ;第三步:在移动过程中,当三角板的直角顶点落在x 轴上点C 处时,点C 的横坐标m 即为该方程的一个实数根(如图1);第四步:调整三角板直角顶点的位置,当它落在x 轴上另一点D 处时,点D 的横坐标n 即为该方程的另一个实数根.(1)在图2中,按照“第四步”的操作方法作出点D (请保留作出点D 时直角三角板两条直角边的痕迹);(2)结合图1,请证明“第三步”操作得到的m 就是方程2520x x -+=的一个实数根;(3)上述操作的关键是确定两个固定点的位置,若要以此方法找到一元二次方程20ax bx c ++= (a ≠0,24b ac -≥0)的实数根,请你直接写出一对固定点的坐标;(4)实际上,(3)中的固定点有无数对,一般地,当m 1,n 1,m 2,n 2与a ,b ,c 之间满足怎样的关系时,点P (m 1,n 1),Q (m 2,n 2)就是符合要求的一对固定点?【答案】(1)作图见解析;(2)证明见解析;(3)A (0,1),B (﹣b a ,c a )或A (0,1a ),B (﹣b a ,c )等;(4)12b m m a +=-,1212m m n n +=c a. 【解析】试题分析:(1)根据“第四步”的操作方法作出点D 即可;(3)方程20ax bx c ++=(a ≠0)可化为20b c x x a a++=,模仿研究小组作法可得一对固定点的坐标; (4)先设方程的根为x ,根据三角形相似可得1212n m x x m n -=-,进而得到 2121212()0x m m x m m n n -+++=,再根据20ax bx c ++=,可得20b c x x a a ++=,最后比较系数可得 m 1,n 1,m 2,n 2与a ,b ,c 之间的关系.试题解析:(1)如图所示,点D 即为所求;(2)如图所示,过点B 作BD ⊥x 轴于点D ,根据∠AOC =∠CDB =90°,∠ACO =∠CBD ,可得△AOC ∽△CDB ,∴AO OC CD BD =,∴152m m =-,∴m (5﹣m )=2,∴2520m m -+=,∴m 是方程2520x x -+=的实数根;(3)方程20ax bx c ++=(a ≠0)可化为20b c x x a a ++= ,模仿研究小组作法可得:A (0,1),B (﹣b a ,c a )或A (0,1a ),B (﹣b a,c )等; (4)如图,P (m 1,n 1),Q (m 2,n 2),设方程的根为x ,根据三角形相似可得1212n m x x m n -=-,上式可化为2121212()0x m m x m m n n -+++=,又∵20ax bx c ++=,即20b c x x a a++=,∴比较系数可得12b m m a +=-,1212m m n n +=c a .考点:1.三角形综合题;2.一元二次方程的解;3.相似三角形的判定与性质;4.阅读型;5.操作型;6.压轴题.。

相关文档
最新文档