06_IQWetendMD_Models[美卓扫描架培训资料]

合集下载

美卓公司振动筛培训资料

美卓公司振动筛培训资料

CVB1020 P CVB1330 P CVB1540 P CVB1845 P CVB2050 P CVB2060 P DF 1210 S DF 1210 P DF 2012 S DF 2012 H DF 2012 P
Those values are indicative and can vary more or less depending on real application data (gradation curve, bulk density, moisture, …)
- 2 or 3 scalping steps - Cassette or individual grizzly bars sections - Fingers (vibrating rods) - Closed bottom
Nordberg Primary Feeders
B Feeders
B 10 42 B 10 52 B 13 44 B 13 50 B 13 56 B 16 50 B 16 56 B 20 66
Nordberg secondary screens
Nordberg secondary screens
Max Feed capacity (t/h) 150 250 300 350 400 500 500 500 500 600 600 700 700 Max Feed Size (mm) 150 150 150 150 150 150 150 150 150 150 150 150 150
KS 12x30 KS 14x30 KS 14x50 CVB1540 KS 16x40 CVB1845 KS 18x50 CVB2050 KS 20x50 CVB2060 KS 22x60 KS 25x60 KS 25x70

扫描架培训讲义资料重点

扫描架培训讲义资料重点
电机报警一般都可以从扫描架操作面板进行复位,有的报警需要到 传动侧变频器上进行复位。如果在变频器上不能复位,或者刚复位又 立即出现的,就需要检查变频器和控制器是否故障。在施胶扫描架上 出现过 七 水分传感器,涂布量传感器报lamp fault,即为卤素灯故障
该报警的出现,就意味着灯泡坏了。可到现场将扫描头错开,正常 时灯泡都是亮的,如果不亮就需要更换灯泡。 八 当扫描架开启时,报photocell sheet break。
IQCOLOR Overview Display
扫描架前期故障
一 各传感器温度高 1 检查外部冷却水过滤器是否堵塞 2 检查外部冷却水电磁阀是否正常,通常电磁阀在工作时线圈时发热的,
另外可以看回水管有没有水出来 二 纸幅跑偏,造成扫描架自动离纸 1 修改扫描架的扫描方式,由Photocell模式改为fix point模式 2 修改扫描头过边的距离 三 rail wiper过期 更换滑块,或将滑块的使用距离改大,详见97.5.1.2画面 四 扫描横幅不完整 扫描横幅不完整一般是由于扫描头没有全幅扫描,到现场观察扫描头在

V轮

Platform rail
Power tracks
• 打开横梁 盖板之后 的扫描架
Platform electric
• 扫描头控制接 线部分
• 分别有信号转换器,保 险,电源电缆,通信电 缆,水管,气管
• 注:上头和下头的结构 式相同的
Platform drive system
• 该图的内容是扫描头的传动部分,包括编码器,变频器, 传动电机。更换编码器之后要对扫描头的位置进行校准。 变频器的参数需要厂家用专用的软件导入,手动输入的 参数在扫描架断电之后会自动消除。所以在购买该变频 器时必须注明让厂家导入对应的参数。同样冷却水泵的 变频器一样

《扫描仪培训内容》课件

《扫描仪培训内容》课件
虚拟展示。
展品扫描
将博物馆、展览馆的展 品进行扫描,转换为数 字格式,方便观众远程
参观和学习。
05
扫描仪与其他设备的配 合使用
与打印机的配合使用
打印机的选择
根据扫描需求选择合适的打印 机,如彩色打印机、黑白打印
机等。
打印参数设置
了解如何设置打印参数,如纸 张大小、打印质量等,以确保 扫描后的文档能够清晰打印。
复印机与扫描仪的比较
了解复印机与扫描仪在功能和使用上的区别 ,以便根据需求选择合适的设备。
复印机的保养与维护
了解如何保养和维护复印机,以延长其使用 寿命。
复印机与扫描仪的连接
了解如何将复印机与电脑或扫描仪进行连接 ,以便实现数据共享和远程控制。
06
案例分析Biblioteka 企业文档管理案例总结词
企业文档管理案例主要展示如何高效 地使用扫描仪进行大量文档数字化。
扫描与打印的连接
掌握如何将扫描仪与打印机正 确连接,包括USB连接、无线 网络连接等。
扫描与打印的同步
了解如何实现扫描与打印的同 步,即扫描完成后自动将文件
发送到打印机进行打印。
与电脑的配合使用
安装与连接 学会如何正确安装扫描仪驱动程 序,并将其与电脑进行连接。
数据安全与保密 学会如何保护扫描后的文件数据 安全,如加密、设置访问权限等 。
采用专业级扫描仪和无损扫描技术,确保艺术品在扫描过程中 不受损伤。
高分辨率和精细的色彩捕捉能力,展现艺术品丰富的细节和色 彩。
结合专业图像处理软件,对扫描图像进行色彩校正、对比度调 整等后期处理,以呈现艺术品的最佳效果。
将合同、协议等重要文件进行扫 描,以便存档和查阅。
发票扫描
将发票、收据等票据进行扫描, 方便报销和财务处理。

Geomagic培训三

Geomagic培训三

图5
点击下一步按钮,就可以进入曲线编辑对话框,(图6为曲线编辑 对话框)在此对话框里有五个编辑曲线的命令,常用的是移动顶点。 单选移动顶点,勾选显示编辑顶点选项,曲线将显示出来许多控制 点如(图7),然后调整影响里的数值后,来一个个拖动控制点的 位置,以实现对曲线的更好的拟合。另外也可以利用删除曲线命令 来删除不对的曲线。曲线编辑完成后,再点击下一步按钮,将会 进入一个新的对话框。那是调整相切线的对话框。
砂纸命令是针对小面积小区域的一种平滑方式,而下面减少噪音和 松弛命令则是对整个数据进行的平滑处理。
多边形——平滑——减少噪音进入减少噪音命令框。
减少噪音里有三种参数类型分别是自由曲面形状、棱柱形(保守)、棱柱形(积极)。 大多数平滑都用自由曲面形状,对于特别尖锐的数据,可以选用后两种类型进行平滑。 平滑极别可以调到第二档,迭代次数可以调整到1,偏差限制到0.2mm。尤其是偏差 限制非常重要,影响到数据的真实性。 选中显示偏差项目框,将会显示三角形的移动量,这个移动量是相对于使用这个命令 之前的位置。
多边形——平滑——砂纸进入砂纸命令框
砂纸对话框的可选项目只有松弛和清除两项,松弛是将表面三角面片 数据移动位置与其它面片数据曲率连续。而清除是将表面数据删除, 并且改变区域内数据形状来实现数表据表面的曲率连续。具体操作方 法就是用光标在粗造区域上涂沫。清除和松驰在平缓区域进行平滑时 驱别不太,而在死角,拐点位置平滑时,清除命令更优于松弛命令
填充按扭:选择这个按扭(选中后图标承红色背景)。点击孔的红边上的任 何地方,这个命令将会基于曲率、切线、平面的方式,来填充孔。边界整 齐平滑的孔,如下图状态,都适合用填充孔命令。
因为真实扫描数据所得的每一个孔,不可能是完全理想状态的孔,所以经常

大屏幕产品培训资料

大屏幕产品培训资料
拼缝像素消隐 隐藏拼缝像素
未隐藏拼缝像素
外观无撕裂感,但会隐藏拼缝信息
不会隐藏拼缝信息,但整体会有撕裂感
10
产品特性
智能温控调节功能
可根据现场环境设定风扇的开关以及开关的温度设定
11
产品特性
支持7x24小时工作 支持7x24小时连续工作,寿命可达60000小时
12
产品特性
开机延时功能
确保用电安全,防止同时开机产生大电流,产生过大负载
支持 支持(RS485)
支持 支持 60000H 支持 支持
精灵系列产品2Q将停产,由D系列产品代替
产品特性
多尺寸可供选择
LG 面板
47
55
Samsung 面板
55 46
47 寸:1920x1080,500/800nit,4.9mm拼缝 55 寸:1920x1080,500/700nit,3.5mm拼缝
DS-70IRP-A DS-84IRP-A DS-98IRP-A
大尺寸电容工程一体机
DS-65CSP-A DS-70CSP-A
16年5月上市
工程自主产品产品介绍-单显
型号 DU-M32BUA DU-M42BUA DU-M50BUA DU-M55BUA DU-M65BUA DU-M70BUA DU-M84BUA
工程自主产品产品介绍-信息发布系统
功能
A.支持MPEG4、AVI等多种主流视频播放格式;支持JPEG、PNG等主流图片格式; B.支持1080p全高清播放,支持视频图片硬解码; C.详细的日志搜集和分析功能; D.支持屏幕水平、90°、270°、180°旋转; E.支持手动播放和自动播放模式 F.支持视频、文字、图片等内容的分区显示,同时播放; 支持视频、图片、滚动字幕的播放 G.支持多种播放控制方式:循环播放、分组播放、定时播放、插播等多种播放模式; H.支持Donview终端的分组、分级管理 I.支持流媒体广播,包括IP摄像头监控和计算机的IP编码流 J.支持会议录播功能; K.支持终端互动操作

APM 3D物位扫描仪培训

APM 3D物位扫描仪培训

10 20
© 2007 APM Automation Solutions Ltd. All rights reserved. Contact Rubi Dan: +972 54 7747289
测量特性
频率: 光束角度: 精确度(垂直): 测量范围: 盲区: 温度精度: 2.6- 7 KHz 30-70 degrees 15 mm (0.6‖) 0.5-70 m (1.6’-230’)
© 2007 APM Automation Solutions Ltd. All rights reserved. Contact Rubi Dan: +972 54 7747289
竞争优势 - 续
自主清洗功能 在市场上最精确的传感器
三维可视化映射工具,以帮助在筒仓何处进行灌装。
测量范围可达70米
市场
主要行业有:化工,食品,电力站,金 属(钢铁工业),水泥,塑料,聚合和 挖掘。
© 2007 APM Automation Solutions Ltd. All rights reserved. Contact Rubi Dan: +972 54 7747289
市场需求
准确和连续容积(存货)测量(据VDC调查 ,70%的用户认为测量设备的准确度是测量 过程中选择测量产品最重要的标准。) 在超宽筒仓和开放式容积箱内的体积测量。 在恶劣环境的物料体积测量。
© 2007 APM Automation Solutions Ltd. All rights reserved. Contact Rubi Dan: +972 54 7747289
自主清洗举例
© 2007 APM Automation Solutions Ltd. All rights reserved. Contact Rubi Dan: +972 54 7747289

ABB QCS 培训讲义

ABB QCS 培训讲义

部门培训讲义标准格式一、课程名称:ABB SP700扫描架操作与维护二、培训对象:六期仪表运行班三、培训目的:使受训者掌握扫描架基本的操作与维护技能四、主讲人(部门、职务、姓名):设备部彭翔宇五、培训讲义大纲:1、扫描架的类型2、扫描架外围设备3、扫描架联锁信号4、Smart Platform 700(SP700)可装配的传感器5、扫描架操作6、扫描架上电顺序7、放射安全六、培训讲义具体内容:1、(1) Smart Platform 1200(SP1200)可测纸幅宽度:4-12米,最多可装9个传感器。

材质为10mm太空钢。

±25度的倾斜度(可选±45度)。

(2) Smart Platform 700(SP700)可测纸幅宽度:4-7米,最多可装6个传感器。

材质为10mm太空铝。

±25度的倾斜度。

2、(1) 风机:吹入扫描架中形成正压,防止外界灰尘进入扫描架( 风机过滤网要保持清洁)。

有一触点在背板上,用于风机开停报警,一般手动封死。

(2) 电源分配器:输入220V或380V,输出220V。

接地十分重要,若接地不良容易烧板。

(3) 水冷器:主要为水份传感器冷却用。

水冷器上有一流量开关,若无流量则将传感器灯开关打掉。

a.有两种水冷器:一种带压缩机(价格贵,温度自控),一种用工厂循环冷却水(手调流量控制温度)b.水温应调到:33ºC±2ºC(4) 压缩空气:要求洁净、无杂质、无水、无油,气源压力4-6bar(60-80psi),到扫描架的压力为40-60 psi(现调到50 psi)。

3、(1) 断纸信号:扫描架接到断纸信号后自动离纸,避免测量错误或被纸页划伤。

在引纸上卷后,若无断纸信号则可投入扫描。

(2) 换卷信号:该信号用于生产统计,例如每卷的重量、每班下卷的数量等等。

(3) 水冷器流量信号: 若无流量则将传感器灯开关打掉。

(4) 风机开关信号:已短接,认为风机常开。

04_IQWetendMD_Application[美卓扫描架培训资料]

04_IQWetendMD_Application[美卓扫描架培训资料]

Alarms, tracking, cascade logic.
Main tuning parameters for MPC algorithm
14
IQWetendMD
Application Structure
15
Controller parameters (for Add-on controls)
Ret aid flow (RAF1)
(CSWW)
Steam pressure (STPR)
Moisture at reel (PMRL)
Dry end optimization
4
IQWetendMD
Set of process models is needed for the IQWetendMD to operate. There are ‘ direct’ models between main input-output pairs, but as well the cross coupling models between those pairs. These cross connection models connect the separate MPC cores.
批注本地保存成功开通会员云端永久保存去开通
IQWetendMD Application
Please Refer to IQWetendMD -manual Section 2 & 3
Application Structure
2
IQWetendMD
MPC Core 1: “ Wet End Optimization”
Application Structure
4
IQWetEndMD Process models

扫描架使用说明书

扫描架使用说明书

扫描架使用说明书一慨述扫描架是定量水分自动控制系统的重要组成部分,是一台高精度的机电一体化产品,它的稳定运转关系整个系统的正常工作。

浙大双元科技开发有限公司生产的扫描架已实现完全智能化,它的先进机构提供了目前同类扫描架中最小的体积,可在有限的空间完成低成本的安装。

SMART3000系统扫描架采用先进的测量技术,通过微机处理从而实现快速的,高分辩力的过程测量。

同时,为准确地实现从纸边到纸边的测量,光电码盘保证传感器的准确定位。

扫描架外表面采用全密封设计,确保系统在造纸企业环境下的可靠运行,扫描架导轨出厂前经严格的质量检测,已保证探头架往返运动的稳定性。

扫描架控制系统的操作习惯,功能与国外高档次同类产品一致,它与控制站之间实现了真正的数字通讯,只有一根通讯线和一根电源连接。

扫描架并可单独运行,结果可显示在操作面板上的PLC液晶显示盘上,而无须依靠控制站。

二结构原理扫描架机构简图参见图1电机2带动减速箱3将动力传到转动轴9上,通过手动离合器4的操作杆上拉可暂停扫描架的运行,转动轴9通过两对同步带轮B 6和同步带轮C30带动上下小车17,21作循环往返运动,光电转换器7和数码盘8可准确控制上下小车17,21的定位,一对同步皮带12同样保证定位的精度,行程开关15可保证上下小车17,21在规定的范围内安全运行,探头25,28通过探头连接座29,探头底板18,和探头侧板26固定在上下小车17,21上并同它们一起作作循环往返运动。

上下探头25,28可相对探头侧板26转动一个角度,以适应纸线的斜度,而探头侧板26可相对探头底板18作上下调整,以调整上下探头25,28间的间隙,上下小车17,21上的上轮24是固定的,而下轮23是弹性连接的,侧轮22一边是固定的,而另一边是弹性连接的,毛刷20是用来清洁润滑导轨的。

三技术规格1. 扫描速度50-300毫米/秒2. 位置精度±3毫米3. 测量速度1000个测量值/秒4. 探头架转动角度±20度5. 导轨精度:平行精度≦±0.05毫米侧向精度≦±0.35毫米同步精度≦±0.35毫米6. 电机:YS7124,370W 380V 50Hz 1400转/分7. 外形尺寸:长×宽×高(8跨) 4200×320×1650毫米8.整机质量 1400千克四安装1. 搬运开箱扫描架搬运必须用铲车从箱底铲起,不得采用其他有损机件的方式起吊及搬运,开箱必须有我公司安装调试人员在场,开箱后,须完全拆除箱底固定扫描架的螺栓,然后利用扫描架上梁的吊环起吊。

09a_IQWetendMD_Ash[美卓扫描架培训资料]

09a_IQWetendMD_Ash[美卓扫描架培训资料]

In normal production, TARL gets scanner measurement and is in control mode: ---> MPC is controlling FIF setpoint.Machine speed and stock consistency feedforward take place through unit conversions, so no separate ash feedforward control (like ODFF) is needed .In sheet break HB ash (TAHB) is switch to Control mode and TARL is put to Prediction mode. This is shown with arrows in the operator/maintenance picture.Machine speed and stock consistency feedforwards take place through unit conversions:The mass flow value used by MPC (aqbp in g/l) is the “MPC-scaled” value of RMi measurementWhen the output of MPC (=fiaq) is scaled to mill units (l/min), filler consistency or density value is used. So if cons/dens measurement changes, the filler flow setpoint is changed immediately.‘Saturated control handling’Puts TARL into prediction mode if ash error is negative and control output is less than ‘Satur.control limit’.Break recovery time (Min/Max)After sheet break, headbox ash control TAHB is active over certain time.The time is calculated and You can enter min max limits for thecalculation. Calculated time is visible in the right panelTAHB measurement is directly in g/l, so speed information is not needed.When the output of MPC (=fiaq) is scaled to mill units (l/min), filler consistency or density value is used. So if cons/dens measurement changes, the filler flow setpoint is changed immediately. (This is the same calculation as in TARL)Measurement filterConsistency measurement is time domain filtered, before it is used in the control. User can select different filter techniques and set up the filter.Setpoint filterSetpoint changes are smootheded with filter, Purpose is to avoid large setpoint teps in HB ash control (sheet break situation)Setpoint tracking filterWhen no sheet break, ACHB is in prediction mode and setpoint is tracking the measurement. This tracking is smoothed with this exponential filter.TS Ash measurementThick stock ash content is measured with Kajaani RMi in thick stock line.Difference between raw and filtered = derivative controlIn steady state (no TS ash changes) raw and filtered measuremens are the same ---> no correction to FIF setpoint.When raw measurement changes, filtered lacks behind and a correction is made to FIF setpoint.。

10C_COORDINATED SPEED[美卓扫描架培训资料]

10C_COORDINATED SPEED[美卓扫描架培训资料]

metsoDNA i COORDINATED SPEED FOR IQWETENDMDCONTENTS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1GENERAL CONTROL DESCRIPTION1 2NAMING CONVENTIONS2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .3ENGINEERING/MAINTENANCE INTERFACE3. . . . . . . . . . . . . . . . . . . .3.1COORDINATED SPEED TUNING DISPLAY33.2COORDINATED SPEED DEPENDENT LOOP TUNING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .DISPLAY63.3COORDINATED SPEED DEPENDENT LOOP WITH PSEUDO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .SPEED TUNING DISPLAY8 4DETAILED CONTROL DESCRIPTION11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4.1OPERATION11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4.2CONTROL MODE SWITCHING114.3SETPOINT TRAJECTORIES12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4.3.1Trajectory Calculations13. . . . . . . . . . . . . .4.4EVALUATION AND TUNING OF PSEUDO RAMPS144.5ABNORMAL CONDITION HANDLING AND ALARM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .MESSAGES14. . . . . . . . . . . . . . . . . . . . . . . . . . . . .4.5.1Backout Speed Calculations16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5MODULE LIST17. . . . . . . . . . . . . . . . . . . . . .5.1MODULES FOR COORDINATED SPEED175.2APPLICATION STRUCTURE FOR TRAJECTORYCALCULATION18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . .5.3APPLICATION STRUCTURE FOR COORDINATED SPEED18. . . . . . . . . . . . . . . . . . .6REQUIRED CONFIGURATION IN OTHER LOOPS19ii Coordinated Speed for IQWetendMD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7APPLICATION NOTES20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8TUNING GUIDELINES21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9REFERENCES22General Control Description11GENERAL CONTROL DESCRIPTION Machine Speed is the primary operating parameter on a paper machine. A change in themachine speed causes an upset to the majority of control loops on and around the papermachine. There are several quality control loops, which require immediate adjustment whenthe speed of a paper machine is changed. Typically, the variables to be adjusted are the stockflow, the headbox pressure and the steam pressure. Sometimes also the filler and retention aidflow needs some adjustment.To maintain a constant weight as the speed is increased, the stock flow must be increased. Thespeed of the wire must start to increase at the moment when the increased mass flow of fiber isabout to emerge from the headbox. The increased fiber flow into the dryers will also result inan increased flow of water. Once the web enters the dryers it will require an additional dryingcapacity to evaporate the additional water that will be present. Similarly, to maintain forma-tion, the headbox pressure must increase at the same time as the wire speed. Due to differ-ences in the delay when these variables affect the sheet, the variables need to be adjusted atdifferent times in response to a speed change.IQWetendMD uses predefined setpoint trajectories in Coordinated speed changes. When theCoordinated Speed control becomes active, the setpoint trajectory calculation builds targettrajectories, which are read to the MPC optimization. The multivariable predictive controluses the process models of each manipulated variable to each controlled variable. On thebasis of the process models and controlled variable setpoints or setpoint trajectories the MPCcontroller regulates all manipulated variables simultaneously by considering the processinteraction, and finds a good combination of the movements of all manipulated variables todrive the coupled process outputs to follow the setpoints. Loops which are not controlled withthe MPC, such as the Jet/Wire control, use ”pseudo speeds” to ensure that controlled vari-ables change at the appropriate time.2Coordinated Speed for IQWetendMD2NAMING CONVENTIONSThe primary loop tag designation is created from:MID 3 character machine identifierMPCID4–5 character MPC control identifier (MPWE)CSC1 4 character Coordinated Speed identifierMSC1 4 character Thick Stock flow identifierMost parameters can be accessed via direct access ports created by combining the primaryloop tag, pr: MID–CSC1.P:, with the parameter name (i.e., pr:PM1–CSC1.P:rate). The spe-cific input/output tag names may be system configuration dependent and should be refer-enced from the appropriate function block diagrams.Dependent controller parameters can be accessed via direct access ports created by combin-ing the main coordinated speed loop tag and 4 character designator, pr:MID1–CSC1–LIDn:with the line item id (i.e. pr:PM1–CSC1–ODRL:noman).Parameters from the operator interface pid block are accessible using the standard qualitycontrol tag pid format (i.e., pr:PM1–CSC1.opr:me).Engineering/Maintenance Interface 33ENGINEERING/MAINTENANCE INTERFACE3.1COORDINATED SPEED TUNING DISPLAYFigure 1IQWetendMD Coordinated Speed tuning displayHeaderTexts Name Type UnitDefault DescriptionEnabled/Disabledenablebin1=enableCoordinated speed enabled/dis-abled.Setup ParametersTexts Name Type UnitDefault DescriptionAbort if sheet break abobrkbin1 = ONFlag that indicates the Coordi-nated Machine Speed should abort if a sheet break occurs.Abort if GC active prwsp bin 1 = ONFlag that indicates the Coordi-nated Machine Speed should abort if a grade change starts.Issue alarmsissalm bin 1 = ONFlag that indicates if coordi-nated speed change alarms are to be issued.4Coordinated Speed for IQWetendMDTexts DescriptionDefaultUnitTypeNameActivation SP change coordb ana Cust.unit0 2.5Minimum setpoint change thatactivates a coordinated speedchange.Ramp over deadband rdbnd ana Cust.unit0 0.1Ramp declared over the dead-band.Ramp rate (unit/min)rate ana Cust.unit0 1.0Speed ramp rate machinespeed.Wait time for MPWE wbias ana sec0 300Additional wait time, which isused in the trajectory calcula-tion. Total wait time is wbias +dependent control’s longestdelay. Wait time should at leastbe longer than dependent con-trol’s longest time constant.StatusesText Name Type DescriptionPossible poss bin A signal indicating that coordination ispossible.1 = possibleCoord. active coord bin A signal indicating that coordination isactive.1 = coordination activeAborted abort bin Flag indicating that coordination is abort-ing.1 = abortSpeedstartedramp bin Machine speed started.Speed ended over bin Machine speed ended.AlarmsText Name Type DescriptionSP change CSC1–opr.F:slg bin Alarm, when the change in the setpointexceeds the tunable limit. SP change limit:spchg is shown in the tuning window ofCoordinated speed.SP limit CSC1–opr.F:slm bin Alarm, when the requested setpointexceeds the tunable setpoint maximum(:spmax) or minimum (:spmin) limits. Set-point limits SP maximum and SP minimumare shown in the Coordinated speed tuningwindow.Engineering/Maintenance Interface5 Text DescriptionTypeNameMV change CSC1–opr.F:ral bin Alarm, when the process measurementchanges faster than the tunable rate limit(MV change alarm limit :ralm) in the tun-ing window of Coordinated speed.Not possible alm1bin Message binary signal indicating that acoordinated speed change not possible,used if alarm messages are enabled. 1 =alarm.Aborted alm2bin Message binary signal indicating that acoordinated speed change must be aborted,used if alarm messages are enabled. 1 =alarm.Calculated ResultsTexts Name Type DescriptionSpeedrampwait (sec)delay ana Dependent variable’s maximum delay.Backout time left btime-leftana Wait time for the backout speed start up. NOTUSEDBackout speed target backout ana Calculated backout speed. NOT USED (Backoutspeed target is the current Machine Speed).Waittime forMPC_ID lefttimeleft ana Wait time for the machine speed start up.OutputsText Name type DescriptionCoordinationtargettarget ana Coordinated speed target value.Control out-put out ana Control output to the Machine speed con-trol.Coordinated Speed trendsThe trend window shows the Coordinated Speed’s setpoint (dashed), measurement (solid) and trajectory (dashed) values, as well as the machine speed’s setpoint (dashed) and measure-ment (solid) values.6Coordinated Speed for IQWetendMD3.2COORDINATED SPEED DEPENDENT LOOP TUNING DISPLAYFigure 2IQWetendMD Coordinated Speed dependent loop displayHeaderTexts Name Type UnitDefault DescriptionEnabled/Disabledenablebin1=enableCoordinated speed enabled/dis-abled.Setup ParametersTexts Name Type UnitDefault DescriptionPossible when loop noman bin 1 = ON No coordination unless this loop is in automatic mode.Process delay slope dmult ana 0 1.0Process control delay multi-plier.Process delay offsetdbiasanaSec.0 0.0Process control delay bias.StatusesText Name Type DescriptionPossiblepossbinA signal indicating that coordination is possible.1 = possibleCoord.activecoordbinA signal indicating that coordination is active.1 = coordination activeEngineering/Maintenance Interface7 Text DescriptionTypeNameAborted abort bin Flag indicating that coordination is abort-ing.1 = abortSpeedstartedramp bin Machine speed started.Speed ended over bin Machine speed ended.Local possible auto bin Coordination is possible with a dependentloop.AlarmsText Name Type DescriptionSP change CSC1–opr.F:slg bin Alarm, when the change in the setpointexceeds the tunable limit. SP change limit:spchg is shown in the tuning window ofCoordinated speed.SP limit CSC1–opr.F:slm bin Alarm, when the requested setpointexceeds the tunable setpoint maximum(:spmax) or minimum (:spmin) limits. Set-point limits SP maximum and SP minimumare shown in the Coordinated speed tuningwindow.MV change CSC1–opr.F:ral bin Alarm, when the process measurementchanges faster than the tunable rate limit(MV change alarm limit :ralm) in the tun-ing window of Coordinated speed.Not possible alm1bin Message binary signal indicating that acoordinated speed change not possible,used if alarm messages are enabled.1 = alarmAborted alm2bin Message binary signal indicating that acoordinated speed change must be aborted,used if alarm messages are enabled.1 = alarmCalculated ResultsTexts Name Type DescriptionProcessdelaydelay ana Dependent variable delay.Backout speed target backout ana Calculated backout speed. NOT USED (Backoutspeed target is the current Machine Speed).8Coordinated Speed for IQWetendMDDependent variable trendsThe trend window shows the Dependent variable’s setpoint (dash–dot), measurement (solid),trajectory (dash–dot) and predicted values (dashed), and the reel speed’s setpoint (dash–dot),measurement (solid) and trajectory (dash–dot) values. The dependent variable is shown inmpc internal units, e.g. kg/s, and the reel speed is shown in SI–units, i.e. m/min.3.3COORDINATED SPEED DEPENDENT LOOP WITH PSEUDOSPEED TUNING DISPLAYFigure 3IQWetendMD Coordinated Speed dependent loop with pseudo speedtuning displayHeaderTexts Name Type Unit Default DescriptionEnabled/ Disabled enable bin1=enable Coordinated speed enabled/dis-abled.Setup ParametersTexts Name Type Unit Default DescriptionPossible when loop noman bin 1 = ON No coordination unless thisloop is in automatic mode.Wait offset(sec)wbias sec.0 0.0Wait time bias.Process delay slope dmult ana0 1.0Process control delay multi-plier.Engineering/Maintenance Interface9 Texts DescriptionDefaultUnitTypeNameProcessdelay offsetdbias ana sec.0 0.0Process control delay bias.Ramp rateslopermult ana0 1.0Local ramp rate multiplier.Ramp rate offset rbias ana Cust.unit0 0.0Local ramp rate bias.StatusesText Name Type DescriptionPossible poss bin A signal indicating that coordination ispossible.1 = possibleCoord. active coord bin A signal indicating that coordination isactive.1 = coordination activeAborted abort bin Flag indicating that coordination is abort-ing.1 = abortSpeedstartedCSC1–MSC1:ramp bin Machine speed started.Speed ended CSC1–MSC1:over bin Machine speed ended.Local pos-sible auto bin Coordination is possible with a dependentloop.Local started ramp bin Local speed started.Local ended over bin Local speed ended.AlarmsText Name Type DescriptionSP change CSC1–opr.F:slg bin Alarm, when the change in the setpointexceeds the tunable limit. SP change limit:spchg is shown in the tuning window ofCoordinated speed.SP limit CSC1–opr.F:slm bin Alarm, when the requested setpointexceeds the tunable setpoint maximum(:spmax) or minimum (:spmin) limits. Set-point limits SP maximum and SP minimumare shown in the Coordinated speed tuningwindow.10Coordinated Speed for IQWetendMDText DescriptionTypeNameMV change CSC1–opr.F:ral bin Alarm, when the process measurementchanges faster than the tunable rate limit(MV change alarm limit :ralm) in the tun-ing window of Coordinated speed.Not possible alm1bin Message binary signal indicating that acoordinated speed change is not possible,used if alarm messages are enabled. 1 =alarmAborted alm2bin Message binary signal indicating that acoordinated speed change must be aborted,used if alarm messages are enabled. 1 =alarmCalculated ResultsTexts Name Type DescriptionSpeed mea-surementspeed ana Local speed measured value.Speed target target ana Local speed setpoint value.Ramp rate(unit/min)rate ana Local ramp rate.Processdelaydelay ana Local delay time.Backout speed target backout ana Calculated backout speed. NOT USED (Backoutspeed target is the current Machine Speed).Speed ramp wait (sec)maxdel ana Maximum delay between adjusting a manipulatedvariable and its effect at the reel.OutputsText Name type Description Wait time wait ana Local wait time.Coordinated speed ms ana The local pseudo speed target or measuredvalue as required.Detailed Control Description11 4DETAILED CONTROL DESCRIPTION4.1OPERATIONTo avoid unnecessary variation in the sheet quality during a significant speed change, thestock flow, the headbox pressure, and the steam pressure need to be adjusted at correct times.To maintain a constant weight as the speed is increased, the stock flow must be increased. Thespeed of the wire must start to increase at the moment when the increased mass flow of fiber isabout to emerge from the headbox. Similarly, to maintain formation, the headbox pressuremust increase at the same time as the wire speed.The increased fiber flow into the dryers will also result in an increased flow of water. Once theweb enters the dryers it will require an additional drying capacity to evaporate the additionalwater that will be present. The residence time of the sheet in the dryers will also be reducedrequiring a further increase in the drying capacity. This will typically be provided by increas-ing the steam pressure in a single section of dryers (unless the dryers are cascaded).The additional water in the web entering the dryers will require an additional drying capacityat the moment when it enters the section providing moisture control. The effect of the reducedresidence time will require an extra drying capacity at the moment when the machine actu-ally speeds up. The different delays would indicate that the steam pressure is increased in twosteps. However, of these two effects, the additional water in the web has a larger effect and isthe only dynamics, which the IQWetendMD Coordinated Machine Speed will support.IQWetendMD uses predefined setpoint trajectories in the Coordinated speed changes. Whenthe Coordinated Speed control becomes active, the setpoint trajectory calculation builds tar-get trajectories, which are read to the MPC optimization. The multivariable predictive con-trol uses the process models of each manipulated variable to each controlled variable. On thebasis of the process models and the setpoint trajectories, the MPC controller regulates allmanipulated variables simultaneously by considering the process interaction, and finds agood combination of the movements of all manipulated variables to drive the coupled pro-cess outputs to follow the setpoints. Loops which are not controlled with the MPC, such as theJet/Wire control, use ”pseudo speeds” to ensure that controlled variables change at theappropriate time.4.2CONTROL MODE SWITCHINGStandard mode switching strategies will be implemented for the Coordinated Speed Change.The Coordinated speed control is controlling when the following conditions are met:D MPC optimization (e.g. MPWE) is enabled,D Coordinated speed control is in auto mode,D Coordinated speed control is Enabled,D If Abort if sheet break is on and no paper brake in the scannerD If Abort if Grade Change is on and no Grade Change is active. Usually the Auto-matic Grade change is controlling the machine speed directly, and during a gradechange, the Coordinated speed is switched to manual mode, when Grade Change isactivated.V ery little quality improvement is gained by using the Coordinated Machine Speed for smallspeed changes (e.g. less than 1.0 <m/min>). Thus, in order for the Coordinated MachineSpeed to become ”active”, its setpoint must be changed by an amount that is greater than thetunable parameter Activation SP change. Once the Coordinated Machine Speed has becomeactive, it will set the status Coord. Active on, indicating that a coordinated speed change isunderway. The coordinated speed change is synchronized with trajectory calculations, sothat the actual Coord. Active status is switched on prior to the MPC control interval.12Coordinated Speed for IQWetendMDCoordinated speed synchronizationMPC control cycle (n2one, n2one ≥3)Actionn2one – 3Coordinated speed activatesn2one – 2Trajectory calculation executionn2one – 1MPC optimization executionThe Coordinated Machine Speed will remain in an active status until the actual ramping ofthe machine speed setpoint is complete and all pseudo speeds have ended, (if pseudo speedsare used). This condition will be determined by the absolute value for the difference betweenthe Coordinated Machine Speed setpoint and the corresponding deadband parameter Rampover deadband. Once the machine speed setpoint and all pseudo speeds are within this dead-band, the Coordinated Machine Speed will become inactive.4.3SETPOINT TRAJECTORIESWith the help of the MPC controlled controls, the Coordinated Machine Speed changes arehandled as setpoint changes to controlled variables. Normally these Controlled variables areOven Dry Weight, Paper Ash and Paper Moisture. A machine speed change is converted to amass flow change, which is used in the calculation of future setpoint trajectories for Con-trolled variables. By means of these calculated setpoint trajectories, the MPC optimizationknows about the incoming changes in a setpoint beforehand, and optimizes the future controlactions, so that the speed change will not have an effect on the quality variables, such as ovendry weight and moisture. Manipulated variables, like the amount of dry stock, will change atthe correct time according to the identified process models.When coordination starts, the MPC optimization parameters may have new values, like anew horizon and weights (Parameters used during a Grade Change). Therefore, in this changesituation, it is possible to use more/less aggressive controls than in a normal run. Every MPCCore part has its own trajectory module and all required calculations (waiting time, ramptime and new setpoint) are carried out before trajectory modules.Detailed Control Description 134.3.1Trajectory CalculationsWhen the Coordinated speed becomes active, the setpoint trajectory module reads the total waiting time, the ramping time and the new Controlled variable setpoint, and calculates the static setpoint trajectory.Figure 4DQBP setpoint trajectory calculation during Coordinated speedThe total waiting time W.time for MPWE left is calculated when coordination becomes active using the formula (1) with the tunable parameter Wait time for MPWE and using the longest process delay in controlled variables Speedramp wait (sec). The wait time is required so that the optimization part knows about the incoming changes in the setpoint early enough.W.time for MPWE left = Wait time for MPWE + Speedramp wait (sec).(1)The ramping time is calculated using the formulas (2), (3) and (4).The desired reel speed change is calculated 60)(_convReel SPA speed Speed Speed draw diffspeed .−.=,(2)where speed_diff = Reel speed difference [m/s], (MID–CSC1.P:dspeed)draw = reel speed [m/min] / wire speed [m/min], (MID–CSC1.P:draw)Speed SP A = new speed setpoint from the coordinated speed [Cust. Unit], (MID–CSC1.opr:spa)Speed Reel = filtered speed at reel [Cust. Unit], (MID–MPCID.P:rs–fme)Speed conv= speed conversion constant, (MID–MPWE.P:cmsucf)14Coordinated Speed for IQWetendMD The desired ramp rate is calculated3600convCustomer MPC Speedratedrawrate ..=,(3) whererateMPC= Ramp rate [(m/s)/s]draw= reel speed [m/min] / wire speed [m/min], (MID–CSC1.P:draw)rateCustomer= Ramp rate [Cust. Unit/min]Speedconv= speed conversion constant, (MID–MPWE.P:cmsucf)Finally, the ramping time is calculatedMPC )( rate diffspeed_abstimeRamping_=(4),whereRamping_time= Ramping time [s]speed_diff= Reel speed difference [m/s], (MID–CSC1.P:dspeed)rateMPC= Ramp rate [(m/s)/s]The Reel speed is used in calculations instead of the Wire speed, because the quality mea-surements are normally located near the reel and the amount of “dry paper” in the reel (kg/s)is required in such calculations.Setpoint target calculations are described in the manual for Controlled variables, e.g. OvenDry Weight Control, Setpoint target calculation for Oven Dry Weight.4.4EV ALUATION AND TUNING OF PSEUDO RAMPSIf pseudo ramps are used (normally only Jet/Wire needs pseudo ramp) see PaperIQ – PaperMachine MD Controls, Coordinated Machine Speed.4.5ABNORMAL CONDITION HANDLING AND ALARM MESSAGESAlarm messages are available to provide status and diagnostic information on the status ofthe Coordinated Machine Speed. These alarm messages may be disabled by setting theparameter Issue alarms to off status.For a coordinated speed change to be possible, all of the configured interlocks must be satis-fied. Usually this means that the machine speed and all of the dependent controllers are in anappropriate control mode, the coordinated speed is Enabled, and no configured abort condi-tions are present. If any of the interlocks are on, the following alarm will be issued to indicatethe operator that some interlock is on:MP2–CSC1.poss Coord. Speed Change Not PossibleThe alarm will appear on the alarm display and will not clear until the proper mode conditionsare met.Detailed Control Description15 Usually, the dependent controllers must be in automatic mode. In rare circumstances, this may be overridden by setting the parameter Possible when loop to Manual/Auto mode for a dependent loop.If a dependent controller is preventing the coordinated speed change from occurring, the fol-lowing alarm will appear on the alarm display and will not clear until the appropriate loop is put into automatic:MP2–CSC1–ODRL Coord. Speed Change PreventedThis alarm is only issued if the Coordinated Machine Speed loop is in automatic mode. When the modes of all relevant controllers are set satisfactorily, the global monitor output Possible will become on. If coordination is disabled or interlocks in dependent loops prevent the coordination Possible from becoming active, a change to the coordinated speed setpoint will result in an immediate ramp of the machine speed setpoint. The pseudo speeds of all dependent controllers will immediately receive a new target value, without any ramp. Another occurrence related to controller modes involves a situation where modes are satis-factorily set to start a coordinated speed change, but are subsequently changed. Since the modes were initially set correctly and the waiting time has expired, the MPC has already started to change manipulated variables.There are different kinds of situations that need to be considered in an abnormal condition handling.1If coordination is Disabled, a change to a coordinated speed target will result in an immediate ramp of the machine speed setpoint to the coordinated speed target. 2If the Speed coordination switches to manual, the backout speed is the current speed. The worst situation to arise would be if the operator or drive interlocks took the Machine Speed Control out of COMPUTER. Under these conditions, the Coor-dinated Machine Speed would not be able to adjust the machine speed. Thus, the effects of a pending speed change needed to be reversed (or partially reversed if the Machine Speed had already changed). With the help of the MPC control this situa-tion could be handled without any special calculation measures and the MPC would correct any changes already occurred in the manipulated variables after this abnor-mal situation. The worst case that can happen is a sheet break and to avoid that, there is a need to have constrains limits (Maximum action in GC) in the low–level loops so that the MPC cannot control low level loops too fast.3It is also possible that one of the control loops using the machine speed or the wire speed may be placed to MANUAL or their slave loops placed to LOCAL after a coordinated speed change has begun. Since the change has begun, there will be some effects upon the paper quality, either as a result of changes already made which may be reversed, or from changes that could not be made if the coordinated speed change was to continue. In cases where one or more dependent controllers are placed into manual, the new speed setpoint will be calculated using the backout cal-culation. The hidden parameter MID–CSC1.P:bsused (0 = not used) identifies whether to use or not to use the backout calculation. Normally, this parameter is set to zero (backout calculation not used), and in backout situations, the current machine speed is the backout speed. The MPC will correct the changes that have already taken place in the manipulated variables after this abnormal situation.4If coordination is Disabled during coordinatation or if a grade change starts or a sheet break occurs and the coordination abort on a grade change is ON, the backout target is the coordinated speed target. Normally, an Automatic grade change switches the Coordinated Speed to manual, and abort is not needed.。

三维扫描仪操作培训

三维扫描仪操作培训
5. 按[开始扫描]键
2、掌握三维扫描仪的基本操作 方法
6. 按[确定]键。
2、掌握三维扫描仪的基本操作 方法
浏览 SD 卡中的数据
3.利用Scanmaster软件和T3D软 件进行数据处理
1.Scanmaster软件使用说明 1.1打开Scanmaster软件
1.2新建项目:点击表头“文件”选项,点击新建项目
3.利用Scanmaster软件和T3D软 件进行数据处理
1.6缩放(点击放大镜的位置) 1.7选择数据:点击全部选择 1.8点云处生成点云 1.9生成点云重新取样,生成点云2 2.0点云2导出
3.利用Scanmaster软件和T3D软 件进行数据处理
T3D软件使用说明: 1.主页 1.1.新建项目 点击“主页”选项卡中--“新建项目”,弹出新建项目对话框,输入项目名称,选 择文件路径,点“确定”新建项目。具体如下图:
2.2 输入断面参数 点击“线路参数”选项卡中的“断面参数”按钮,打开断面参数输入对话框。
3.利用Scanmaster软件和T3D软 件进行数据处理
3.利用Scanmaster软件和T3D软 件进行数据处理
3.利用Scanmaster软件和T3D软 件进行数据处理
3.利用Scanmaster软件和T3D软 件进行数据处理
3.利用Scanmaster软件和T3D软 件进行数据处理
Hale Waihona Puke 3.利用Scanmaster软件和T3D软 件进行数据处理
3.利用Scanmaster软件和T3D软 件进行数据处理
2.输入线路参数 2.1 输入断链表参数:点击“线路参数”选项卡中“断链表”,弹出断链表参 数输入对话框,
3.利用Scanmaster软件和T3D软 件进行数据处理
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

tell the controller how the process behaves
IQWetendMD
A) MPC optimization minimizes the the future error integral
-----> whole optimization is done on PREDICTED VALUES.
B) When fresh real measurement is not available, the controller runs on predicted measurement.This is produced by the model.
is used
trivial things!
The final process model (transfer function) is composed of TWO
IQWetendMD
Transfer Function
parameters Current model
Select INPUT and OUTPUT variables by checking the boxes.
For modeling: 1 INPUT & 1 OUTPUT
The whole bump test data is read to memory (= several bumps).
Start’ and ‘End’ sliders You can cut out the “dummy” data in the beginning or end of your test, but NO NOT USE THE “START” & “
Selected / Total
IQWetendMD
In the beginning, the whole bump test data is shown. From the menu: ---> ‘Data Region Selection’lets You cut the individual bump from IMPORTANT HINT! Remember to leave enough ’pre-bump’ data in Your selection. There must be only one bump in the ‘Input’ curve!
IQWetendMD
Transfer Function
parameters Current model
DOES YOUR CURVE LOOK OK?
Typical problem is the curve is too short/window is too long. Play Step response samples number’ (This is related to‘Step response samples’in previous window).
SAVE YOUR BUMP CURVE AS REFERENCE
IQWetendMD
When You have a good ‘Averaged bump’(=green curve), fit the model (=blue curve) on top of it! ‘Fit error’ tells how good You are doing!
You options are:
Auto model construction’ (=Good for 1st order modeling)
NOT DYNAMICS1 * DYNAMICS2 !!!!
Model parameters Current model Adapted parameters
•1. Enter machine running parameters in top of the window
Current values’ to ‘Pending values’
This is not needed if there are no models in Current!
3. Edit Your model parameters to: ‘Pending values’.
Make sure all 3 models are OK!
into library.
You can test the save by selecting the model into ‘Next’:
parameters are read from library to Pending. Are they OK?
‘Save’ saves the ‘to library ---> it is vice to enter new
Current value¨’.
Current model
Manually entered bump
test point
Manually entered bump test point= those machine running parameters。

相关文档
最新文档