高三数学寒假作业冲刺培训班之历年真题汇编复习实战7772

合集下载

高三数学寒假作业冲刺培训班之历年真题汇编复习实战30732

高三数学寒假作业冲刺培训班之历年真题汇编复习实战30732

一、选择题(每小题5分,共50分)1.(5分)已知i是虚数单位,a,b∈R,则“a=b=1”是“(a+bi)2=2i”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.(5分)设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁UA=()A.∅B.{2}C.{5}D.{2,5}3.(5分)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是()A.90cm2B.129cm2C.132cm2D.138cm24.(5分)为了得到函数y=sin3x+cos3x的图象,可以将函数y=cos3x的图象()A.向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位5.(5分)在(1+x)6(1+y)4的展开式中,记xmyn项的系数为f(m,n),则f(3,0)+f(2,1)+f(1,2)+f(0,3)=()A.45B.60C.120D.2106.(5分)已知函数f(x)=x3+ax2+bx+c.且0<f(﹣1)=f(﹣2)=f(﹣3)≤3,则()A.c≤3B.3<c≤6C.6<c≤9D.c>97.(5分)在同一直角坐标系中,函数f(x)=xa(x>0),g(x)=logax的图象可能是()A. B. C. D.8.(5分)记max{x,y}=,min{x,y}=,设,为平面向量,则()A.min{|+|,|﹣|}≤min{||,||}B.min{|+|,|﹣|}≥min{||,||}C.max{|+|2,|﹣|2}≤||2+||2D.max{|+|2,|﹣|2}≥||2+||29.(5分)已知甲盒中仅有1个球且为红球,乙盒中有m个红球和n个蓝球(m≥3,n≥3),从乙盒中随机抽取i(i=1,2)个球放入甲盒中.(a)放入i个球后,甲盒中含有红球的个数记为ξi(i=1,2);(b)放入i个球后,从甲盒中取1个球是红球的概率记为pi(i=1,2).则()A.p1>p2,E(ξ1)<E(ξ2)B.p1<p2,E(ξ1)>E(ξ2)C.p1>p2,E(ξ1)>E(ξ2)D.p1<p2,E(ξ1)<E(ξ2)10.(5分)设函数f1(x)=x2,f2(x)=2(x﹣x2),,,i=0,1,2,…,99.记Ik=|fk(a1)﹣fk(a0)|+|fk(a2)﹣fk(a1)丨+…+|fk(a99)﹣fk (a98)|,k=1,2,3,则()A.I1<I2<I3B.I2<I1<I3C.I1<I3<I2D.I3<I2<I1二、填空题11.(4分)在某程序框图如图所示,当输入50时,则该程序运算后输出的结果是.12.(4分)随机变量ξ的取值为0,1,2,若P(ξ=0)=,E(ξ)=1,则D(ξ)=.13.(4分)当实数x,y满足时,1≤ax+y≤4恒成立,则实数a的取值范围是.14.(4分)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有种(用数字作答).15.(4分)设函数f(x)=,若f(f(a))≤2,则实数a的取值范围是.16.(4分)设直线x﹣3y+m=0(m≠0)与双曲线=1(a>0,b>0)的两条渐近线分别交于点A,B.若点P(m,0)满足|PA|=|PB|,则该双曲线的离心率是.17.(4分)如图,某人在垂直于水平地面ABC的墙面前的点A处进行射击训练.已知点A 到墙面的距离为AB,某目标点P沿墙面上的射线CM移动,此人为了准确瞄准目标点P,需计算由点A观察点P的仰角θ的大小.若AB=15m,AC=25m,∠BCM=30°,则tanθ的最大值是.(仰角θ为直线AP与平面ABC所成角)三、解答题18.(14分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a≠b,c=,cos2A ﹣cos2B=sinAcosA﹣sinBcosB(1)求角C的大小;(2)若sinA=,求△ABC的面积.19.(14分)已知数列{an}和{bn}满足a1a2a3…an=(n∈N*).若{an}为等比数列,且a1=2,b3=6+b2.(Ⅰ)求an和bn;(Ⅱ)设cn=(n∈N*).记数列{cn}的前n项和为Sn.(i)求Sn;(ii)求正整数k,使得对任意n∈N*均有Sk≥Sn.20.(15分)如图,在四棱锥A﹣BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC=.(Ⅰ)证明:DE⊥平面ACD;(Ⅱ)求二面角B﹣AD﹣E的大小.21.(15分)如图,设椭圆C:(a>b>0),动直线l与椭圆C只有一个公共点P,且点P在第一象限.(Ⅰ)已知直线l的斜率为k,用a,b,k表示点P的坐标;(Ⅱ)若过原点O的直线l1与l垂直,证明:点P到直线l1的距离的最大值为a﹣b.22.(14分)已知函数f(x)=x3+3|x﹣a|(a∈R).(Ⅰ)若f(x)在[﹣1,1]上的最大值和最小值分别记为M(a),m(a),求M(a)﹣m(a);(Ⅱ)设b∈R,若[f(x)+b]2≤4对x∈[﹣1,1]恒成立,求3a+b的取值范围.高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)(12)参考答案与试题解析一、选择题(每小题5分,共50分)1.(5分)已知i是虚数单位,a,b∈R,则“a=b=1”是“(a+bi)2=2i”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】利用复数的运算性质,分别判断“a=b=1”⇒“(a+bi)2=2i”与“a=b=1”⇐“(a+bi)2=2i”的真假,进而根据充要条件的定义得到结论.【解答】解:当“a=b=1”时,“(a+bi)2=(1+i)2=2i”成立,故“a=b=1”是“(a+bi)2=2i”的充分条件;当“(a+bi)2=a2﹣b2+2abi=2i”时,“a=b=1”或“a=b=﹣1”,故“a=b=1”是“(a+bi)2=2i”的不必要条件;综上所述,“a=b=1”是“(a+bi)2=2i”的充分不必要条件;故选:A.【点评】本题考查的知识点是充要条件的定义,复数的运算,难度不大,属于基础题.2.(5分)设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁UA=()A.∅B.{2}C.{5}D.{2,5}【分析】先化简集合A,结合全集,求得∁UA.【解答】解:∵全集U={x∈N|x≥2},集合A={x∈N|x2≥5}={x∈N|x≥3},则∁UA={2},故选:B.【点评】本题主要考查全集、补集的定义,求集合的补集,属于基础题.3.(5分)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是()A.90cm2B.129cm2C.132cm2D.138cm2【分析】几何体是直三棱柱与直四棱柱的组合体,根据三视图判断直三棱柱的侧棱长与底面的形状及相关几何量的数据,判断四棱柱的高与底面矩形的边长,把数据代入表面积公式计算.【解答】解:由三视图知:几何体是直三棱柱与直四棱柱的组合体,其中直三棱柱的侧棱长为3,底面是直角边长分别为3、4的直角三角形,四棱柱的高为6,底面为矩形,矩形的两相邻边长为3和4,∴几何体的表面积S=2×4×6+3×6+3×3+2×3×4+2××3×4+(4+5)×3=48+18+9+24+12+27=138(cm2).故选:D.【点评】本题考查了由三视图求几何体的表面积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.4.(5分)为了得到函数y=sin3x+cos3x的图象,可以将函数y=cos3x的图象()A.向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位【分析】利用两角和与差的三角函数化简已知函数为一个角的一个三角函数的形式,然后利用平移原则判断选项即可.【解答】解:函数y=sin3x+cos3x=,故只需将函数y=cos3x的图象向右平移个单位,得到y==的图象.故选:C.【点评】本题考查两角和与差的三角函数以及三角函数的平移变换的应用,基本知识的考查.5.(5分)在(1+x)6(1+y)4的展开式中,记xmyn项的系数为f(m,n),则f(3,0)+f(2,1)+f(1,2)+f(0,3)=()A.45B.60C.120D.210【分析】由题意依次求出x3y0,x2y1,x1y2,x0y3,项的系数,求和即可.【解答】解:(1+x)6(1+y)4的展开式中,含x3y0的系数是:=20.f(3,0)=20;含x2y1的系数是=60,f(2,1)=60;含x1y2的系数是=36,f(1,2)=36;含x0y3的系数是=4,f(0,3)=4;∴f(3,0)+f(2,1)+f(1,2)+f(0,3)=120.故选:C.【点评】本题考查二项式定理系数的性质,二项式定理的应用,考查计算能力.6.(5分)已知函数f(x)=x3+ax2+bx+c.且0<f(﹣1)=f(﹣2)=f(﹣3)≤3,则()A.c≤3B.3<c≤6C.6<c≤9D.c>9【分析】由f(﹣1)=f(﹣2)=f(﹣3)列出方程组求出a,b,代入0<f(﹣1)≤3,即可求出c的范围.【解答】解:由f(﹣1)=f(﹣2)=f(﹣3)得,解得,则f(x)=x3+6x2+11x+c,由0<f(﹣1)≤3,得0<﹣1+6﹣11+c≤3,即6<c≤9,故选:C.【点评】本题考查方程组的解法及不等式的解法,属于基础题.7.(5分)在同一直角坐标系中,函数f(x)=xa(x>0),g(x)=logax的图象可能是()A. B. C. D.【分析】结合对数函数和幂函数的图象和性质,分当0<a<1时和当a>1时两种情况,讨论函数f(x)=xa(x≥0),g(x)=logax的图象,比照后可得答案.【解答】解:当0<a<1时,函数f(x)=xa(x≥0),g(x)=logax的图象为:此时答案D满足要求,当a>1时,函数f(x)=xa(x≥0),g(x)=logax的图象为:无满足要求的答案,综上:故选D,故选:D.【点评】本题考查的知识点是函数的图象,熟练掌握对数函数和幂函数的图象和性质,是解答的关键.8.(5分)记max{x,y}=,min{x,y}=,设,为平面向量,则()A.min{|+|,|﹣|}≤min{||,||}B.min{|+|,|﹣|}≥min{||,||}C.max{|+|2,|﹣|2}≤||2+||2D.max{|+|2,|﹣|2}≥||2+||2【分析】将,平移到同一起点,根据向量加减法的几何意义可知,+和﹣分别表示以,为邻边所做平行四边形的两条对角线,再根据选项内容逐一判断.【解答】解:对于选项A,取⊥,则由图形可知,根据勾股定理,结论不成立;对于选项B,取,是非零的相等向量,则不等式左边min{|+|,|﹣|}=0,显然,不等式不成立;对于选项C,取,是非零的相等向量,则不等式左边max{|+|2,|﹣|2}=|+|2=4,而不等式右边=||2+||2=2,故C不成立,D选项正确.故选:D.【点评】本题在处理时要结合着向量加减法的几何意义,将,,,放在同一个平行四边形中进行比较判断,在具体解题时,本题采用了排除法,对错误选项进行举反例说明,这是高考中做选择题的常用方法,也不失为一种快速有效的方法,在高考选择题的处理上,未必每一题都要写出具体解答步骤,针对选择题的特点,有时“排除法”,“确定法”,“特殊值”代入法等也许是一种更快速,更有效的方法.9.(5分)已知甲盒中仅有1个球且为红球,乙盒中有m个红球和n个蓝球(m≥3,n≥3),从乙盒中随机抽取i(i=1,2)个球放入甲盒中.(a)放入i个球后,甲盒中含有红球的个数记为ξi(i=1,2);(b)放入i个球后,从甲盒中取1个球是红球的概率记为pi(i=1,2).则()A.p1>p2,E(ξ1)<E(ξ2)B.p1<p2,E(ξ1)>E(ξ2)C.p1>p2,E(ξ1)>E(ξ2)D.p1<p2,E(ξ1)<E(ξ2)【分析】首先,这两次先后从甲盒和乙盒中拿球是相互独立的,然后分两种情况:即当ξ=1时,有可能从乙盒中拿出一个红球放入甲盒,也可能是拿到一个蓝球放入甲盒;ξ=2时,则从乙盒中拿出放入甲盒的球可能是两蓝球、一红一蓝、或者两红;最后利用概率公式及分布列知识求出P1,P2和E(ξ1),E(ξ2)进行比较即可.【解答】解析:,,,所以P1>P2;由已知ξ1的取值为1、2,ξ2的取值为1、2、3,所以,==,E(ξ1)﹣E(ξ2)=.故选:A.【点评】正确理解ξi(i=1,2)的含义是解决本题的关键.此题也可以采用特殊值法,不妨令m=n=3,也可以很快求解.10.(5分)设函数f1(x)=x2,f2(x)=2(x﹣x2),,,i=0,1,2,…,99.记Ik=|fk(a1)﹣fk(a0)|+|fk(a2)﹣fk(a1)丨+…+|fk(a99)﹣fk (a98)|,k=1,2,3,则()A.I1<I2<I3B.I2<I1<I3C.I1<I3<I2D.I3<I2<I1【分析】根据记Ik=|fk(a1)﹣fk(a0)|+|fk(a2)﹣fk(a1)丨+…+|fk(a99)﹣fk (a98)|,分别求出I1,I2,I3与1的关系,继而得到答案【解答】解:由,故==1,由,故×=×<1,+=,故I2<I1<I3,故选:B.【点评】本题主要考查了函数的性质,关键是求出这三个数与1的关系,属于难题.二、填空题11.(4分)在某程序框图如图所示,当输入50时,则该程序运算后输出的结果是 6 .【分析】根据框图的流程模拟运行程序,直到满足条件S>50,跳出循环体,确定输出的i 的值.【解答】解:由程序框图知:第一次循环S=1,i=2;第二次循环S=2×1+2=4,i=3;第三次循环S=2×4+3=11,i=4;第四次循环S=2×11+4=26,i=5;第五次循环S=2×26+5=57,i=6,满足条件S>50,跳出循环体,输出i=6.故答案为:6.【点评】本题考查了直到型循环结构的程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法.12.(4分)随机变量ξ的取值为0,1,2,若P(ξ=0)=,E(ξ)=1,则D(ξ)=.【分析】结合方差的计算公式可知,应先求出P(ξ=1),P(ξ=2),根据已知条件结合分布列的性质和期望的计算公式不难求得.【解答】解析:设P(ξ=1)=p,P(ξ=2)=q,则由已知得p+q=,,解得,,所以.故答案为:【点评】本题综合考查了分布列的性质以及期望、方差的计算公式.13.(4分)当实数x,y满足时,1≤ax+y≤4恒成立,则实数a的取值范围是[].【分析】由约束条件作出可行域,再由1≤ax+y≤4恒成立,结合可行域内特殊点A,B,C的坐标满足不等式列不等式组,求解不等式组得实数a的取值范围.【解答】解:由约束条件作可行域如图,联立,解得C(1,).联立,解得B(2,1).在x﹣y﹣1=0中取y=0得A(1,0).要使1≤ax+y≤4恒成立,则,解得:1.∴实数a的取值范围是.解法二:令z=ax+y,当a>0时,y=﹣ax+z,在B点取得最大值,A点取得最小值,可得,即1≤a≤;当a<0时,y=﹣ax+z,在C点取得最大值,①a<﹣1时,在B点取得最小值,可得,解得0≤a≤(不符合条件,舍去)②﹣1<a<0时,在A点取得最小值,可得,解得1≤a≤(不符合条件,舍去)综上所述即:1≤a≤;故答案为:.【点评】本题考查线性规划,考查了数形结合的解题思想方法,考查了数学转化思想方法,训练了不等式组得解法,是中档题.14.(4分)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有 60 种(用数字作答).【分析】分类讨论,一、二、三等奖,三个人获得;一、二、三等奖,有1人获得2张,1人获得1张.【解答】解:分类讨论,一、二、三等奖,三个人获得,共有=24种;一、二、三等奖,有1人获得2张,1人获得1张,共有=36种,共有24+36=60种.故答案为:60.【点评】本题考查排列、组合及简单计数问题,考查学生的计算能力,属于基础题.15.(4分)设函数f(x)=,若f(f(a))≤2,则实数a的取值范围是(﹣∞,].【分析】画出函数f(x)的图象,由 f(f(a))≤2,可得 f(a)≥﹣2,数形结合求得实数a的取值范围.【解答】解:∵函数f(x)=,它的图象如图所示:由 f(f(a))≤2,可得 f(a)≥﹣2.当a<0时,f(a)=a2+a=(a+)2﹣≥﹣2恒成立;当a≥0时,f(a)=﹣a2≥﹣2,即a2≤2,解得0≤a≤,则实数a的取值范围是a≤,故答案为:(﹣∞,].【点评】本题主要考查分段函数的应用,其它不等式的解法,体现了数形结合的数学思想,属于中档题.16.(4分)设直线x﹣3y+m=0(m≠0)与双曲线=1(a>0,b>0)的两条渐近线分别交于点A,B.若点P(m,0)满足|PA|=|PB|,则该双曲线的离心率是.【分析】先求出A,B的坐标,可得AB中点坐标为(,),利用点P (m,0)满足|PA|=|PB|,可得=﹣3,从而可求双曲线的离心率.【解答】解:双曲线(a>0,b>0)的两条渐近线方程为y=±x,则与直线x﹣3y+m=0联立,可得A(,),B(﹣,),∴AB中点坐标为(,),∵点P(m,0)满足|PA|=|PB|,∴=﹣3,∴a=2b,∴=b,∴e==.故答案为:.【点评】本题考查双曲线的离心率,考查直线的位置关系,考查学生的计算能力,属于中档题.17.(4分)如图,某人在垂直于水平地面ABC的墙面前的点A处进行射击训练.已知点A 到墙面的距离为AB,某目标点P沿墙面上的射线CM移动,此人为了准确瞄准目标点P,需计算由点A观察点P的仰角θ的大小.若AB=15m,AC=25m,∠BCM=30°,则tanθ的最大值是.(仰角θ为直线AP与平面ABC所成角)【分析】过P作PP′⊥BC,交BC于P′,连接AP′,则tanθ=,求出PP′,AP′,利用函数的性质,分类讨论,即可得出结论.【解答】解:∵AB=15m,AC=25m,∠ABC=90°,∴BC=20m,过P作PP′⊥BC,交BC于P′,连接AP′,则tanθ=,设BP′=x,则CP′=20﹣x,由∠BCM=30°,得PP′=CP′tan30°=(20﹣x),在直角△ABP′中,AP′=,∴tanθ=•,令y=,则函数在x∈[0,20]单调递减,∴x=0时,取得最大值为=.若P′在CB的延长线上,PP′=CP′tan30°=(20+x),在直角△ABP′中,AP′=,∴tanθ=•,令y=,则y′=0可得x=时,函数取得最大值,故答案为:.【点评】本题考查利用数学知识解决实际问题,考查函数的单调性,考查学生分析解决问题的能力,属于中档题.三、解答题18.(14分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a≠b,c=,cos2A ﹣cos2B=sinAcosA﹣sinBcosB(1)求角C的大小;(2)若sinA=,求△ABC的面积.【分析】(1)利用倍角公式、两角和差的正弦公式可得,由a≠b得,A≠B,又A+B∈(0,π),可得,即可得出.(2)利用正弦定理可得a,利用两角和差的正弦公式可得sinB,再利用三角形的面积计算公式即可得出.【解答】解:(1)由题意得,,∴,化为,由a≠b得,A≠B,又A+B∈(0,π),得,即,∴;(2)由,利用正弦定理可得,得,由a<c,得A<C,从而,故,∴.【点评】本题考查了正弦定理、倍角公式、两角和差的正弦公式、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题.19.(14分)已知数列{an}和{bn}满足a1a2a3…an=(n∈N*).若{an}为等比数列,且a1=2,b3=6+b2.(Ⅰ)求an和bn;(Ⅱ)设cn=(n∈N*).记数列{cn}的前n项和为Sn.(i)求Sn;(ii)求正整数k,使得对任意n∈N*均有Sk≥Sn.【分析】(Ⅰ)先利用前n项积与前(n﹣1)项积的关系,得到等比数列{an}的第三项的值,结合首项的值,求出通项an,然后现利用条件求出通项bn;(Ⅱ)(i)利用数列特征进行分组求和,一组用等比数列求和公式,另一组用裂项法求和,得出本小题结论;(ii)本小题可以采用猜想的方法,得到结论,再加以证明.【解答】解:(Ⅰ)∵a1a2a3…an=(n∈N*)①,当n≥2,n∈N*时,②,由①②知:,令n=3,则有.∵b3=6+b2,∴a3=8.∵{an}为等比数列,且a1=2,∴{an}的公比为q,则=4,由题意知an>0,∴q>0,∴q=2.∴(n∈N*).又由a1a2a3…an=(n∈N*)得:,,∴bn=n(n+1)(n∈N*).(Ⅱ)(i)∵cn===. ∴Sn=c1+c2+c3+…+cn====;(ii)因为c1=0,c2>0,c3>0,c4>0;当n≥5时,,而=>0,得,所以,当n≥5时,cn<0,综上,对任意n∈N*恒有S4≥Sn,故k=4.【点评】本题考查了等比数列通项公式、求和公式,还考查了分组求和法、裂项求和法和猜想证明的思想,证明可以用二项式定理,还可以用数学归纳法.本题计算量较大,思维层次高,要求学生有较高的分析问题解决问题的能力.本题属于难题.20.(15分)如图,在四棱锥A﹣BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC=.(Ⅰ)证明:DE⊥平面ACD;(Ⅱ)求二面角B﹣AD﹣E的大小.【分析】(Ⅰ)依题意,易证AC⊥平面BCDE,于是可得AC⊥DE,又DE⊥DC,从而DE⊥平面ACD;(Ⅱ)作BF⊥AD,与AD交于点F,过点F作FG∥DE,与AE交于点G,连接BG,由(Ⅰ)知DE⊥AD,则FG⊥AD,所以∠BFG就是二面角B﹣AD﹣E的平面角,利用题中的数据,解三角形,可求得BF=,AF=AD,从而GF=,cos∠BFG==,从而可求得答案.【解答】证明:(Ⅰ)在直角梯形BCDE中,由DE=BE=1,CD=2,得BD=BC=,由AC=,AB=2得AB2=AC2+BC2,即AC⊥BC,又平面ABC⊥平面BCDE,从而AC⊥平面BCDE,所以AC⊥DE,又DE⊥DC,从而DE⊥平面ACD;(Ⅱ)作BF⊥AD,与AD交于点F,过点F作FG∥DE,与AE交于点G,连接BG,由(Ⅰ)知DE⊥AD,则FG⊥AD,所以∠BFG就是二面角B﹣AD﹣E的平面角,在直角梯形BCDE中,由CD2=BC2+BD2,得BD⊥BC,又平面ABC⊥平面BCDE,得BD⊥平面ABC,从而BD⊥AB,由于AC⊥平面BCDE,得AC⊥CD.在Rt△ACD中,由DC=2,AC=,得AD=;在Rt△AED中,由ED=1,AD=得AE=;在Rt△ABD中,由BD=,AB=2,AD=得BF=,AF=AD,从而GF=,在△ABE,△ABG中,利用余弦定理分别可得cos∠BAE=,BG=.在△BFG中,cos∠BFG==,所以,∠BFG=,二面角B﹣AD﹣E的大小为.【点评】本题主要考查空间点、线、面位置关系,二面角等基础知识,同时考查空间想象能力,推理论证能力和运算求解能力.22.(14分)已知函数f(x)=x3+3|x﹣a|(a∈R).(Ⅰ)若f(x)在[﹣1,1]上的最大值和最小值分别记为M(a),m(a),求M(a)﹣m(a);(Ⅱ)设b∈R,若[f(x)+b]2≤4对x∈[﹣1,1]恒成立,求3a+b的取值范围.【分析】(Ⅰ)利用分段函数,结合[﹣1,1],分类讨论,即可求M(a)﹣m(a);(Ⅱ)令h(x)=f(x)+b,则h(x)=,h′(x)=,则[f(x)+b]2≤4对x∈[﹣1,1]恒成立,转化为﹣2≤h(x)≤2对x∈[﹣1,1]恒成立,分类讨论,即可求3a+b的取值范围.【解答】解:(Ⅰ)∵f(x)=x3+3|x﹣a|=,∴f′(x)=,①a≤﹣1时,∵﹣1≤x≤1,∴x≥a,f(x)在(﹣1,1)上是增函数,∴M(a)=f(1)=4﹣3a,m(a)=f(﹣1)=﹣4﹣3a,∴M(a)﹣m(a)=8;②﹣1<a<1时,x∈(a,1),f(x)=x3+3x﹣3a,在(a,1)上是增函数;x∈(﹣1,a),f(x)=x3﹣3x+3a,在(﹣1,a)上是减函数,∴M(a)=max{f(1),f(﹣1)},m(a)=f(a)=a3,∵f(1)﹣f(﹣1)=﹣6a+2,∴﹣1<a≤时,M(a)﹣m(a)=﹣a3﹣3a+4;<a<1时,M(a)﹣m(a)=﹣a3+3a+2;③a≥1时,有x≤a,f(x)在(﹣1,1)上是减函数,∴M(a)=f(﹣1)=2+3a,m(a)=f(1)=﹣2+3a,∴M(a)﹣m(a)=4;(Ⅱ)令h(x)=f(x)+b,则h(x)=,h′(x)=,∵[f(x)+b]2≤4对x∈[﹣1,1]恒成立,∴﹣2≤h(x)≤2对x∈[﹣1,1]恒成立,由(Ⅰ)知,①a≤﹣1时,h(x)在(﹣1,1)上是增函数,最大值h(1)=4﹣3a+b,最小值h(﹣1)=﹣4﹣3a+b,则﹣4﹣3a+b≥﹣2且4﹣3a+b≤2矛盾;②﹣1<a≤时,最小值h(a)=a3+b,最大值h(1)=4﹣3a+b,∴a3+b≥﹣2且4﹣3a+b≤2,令t(a)=﹣2﹣a3+3a,则t′(a)=3﹣3a2>0,t(a)在(0,)上是增函数,∴t(a)>t(0)=﹣2,∴﹣2≤3a+b≤0;③<a<1时,最小值h(a)=a3+b,最大值h(﹣1)=3a+b+2,则a3+b≥﹣2且3a+b+2≤2,∴﹣<3a+b≤0;④a≥1时,最大值h(﹣1)=3a+b+2,最小值h(1)=3a+b﹣2,则3a+b﹣2≥﹣2且3a+b+2≤2,∴3a+b=0.综上,3a+b的取值范围是﹣2≤3a+b≤0.【点评】本题考查导数的综合运用,考查函数的最值,考查分类讨论、化归与转化的数学思想,难度大.21.(15分)如图,设椭圆C:(a>b>0),动直线l与椭圆C只有一个公共点P,且点P在第一象限.(Ⅰ)已知直线l的斜率为k,用a,b,k表示点P的坐标;(Ⅱ)若过原点O的直线l1与l垂直,证明:点P到直线l1的距离的最大值为a﹣b.【分析】(Ⅰ)设直线l的方程为y=kx+m(k<0),由,消去y得(b2+a2k2)x2+2a2kmx+a2m2﹣a2b2=0,利用△=0,可求得在第一象限中点P的坐标;(Ⅱ)由于直线l1过原点O且与直线l垂直,设直线l1的方程为x+ky=0,利用点到直线间的距离公式,可求得点P到直线l1的距离d=,整理即可证得点P到直线l1的距离的最大值为a﹣b..【解答】解:(Ⅰ)设直线l的方程为y=kx+m(k<0),由,消去y得(b2+a2k2)x2+2a2kmx+a2m2﹣a2b2=0.由于直线l与椭圆C只有一个公共点P,故△=0,即b2﹣m2+a2k2=0,此时点P的横坐标为﹣,代入y=kx+m得点P的纵坐标为﹣k•+m=,∴点P的坐标为(﹣,),又点P在第一象限,故m>0,故m=,故点P的坐标为P(,).(Ⅱ)由于直线l1过原点O且与直线l垂直,故直线l1的方程为x+ky=0,所以点P到直线l1的距离d=,整理得:d=,因为a2k2+≥2ab,所以≤=a﹣b,当且仅当k2=时等号成立.所以,点P到直线l1的距离的最大值为a﹣b.【点评】本题主要考查椭圆的几何性质、点到直线间的距离、直线与椭圆的位置关系等基础知识,同时考查解析几何的基本思想方法、基本不等式应用等综合解题能力.(第7题图)一、填空题1、(宝山区高三上学期期末)抛物线212y x =-的准线与双曲线22193x y -=的两条渐近线所围成的三角形的面积等于.2、(崇明县高三上学期期末)在△ABC 中,AN=4,BC =∠CBA =4π,.若双曲线Γ以AB 为实轴,且过点C ,则Γ的焦距为3、(奉贤区高三上学期期末)若抛物线22(0)y px p =>的准线经过双曲线221x y -=的一个焦点,则p =________4、(虹口区高三上学期期末)如图,已知双曲线C 的右焦点为F 的右顶点A 作实轴的垂线,与其一条渐近线相交于点B ;若双曲线C 距为4,OFB ∆为等边三角形(O 为坐标原点,即双曲线 C 的中心),则双曲线C 的方程为_________________.5、(黄浦区高三上学期期末)已知k ∈Z ,若曲线222x y k +=与曲线无交点,则k =.6、(金山区高三上学期期末)以椭圆1162522=+y x 椭圆的右焦点为焦点的抛物线方程是7、(静安区高三上学期期末)已知抛物线2y ax =的准线方程是14y =-,则a =. 8、(闵行区高三上学期期末)点P 、Q 均在椭圆2222:11x y a a Γ+=-(1)a >上运动,12F F 、是椭圆Γ的左、右焦点,则122PF PF PQ +-的最大值为.9、(普陀区高三上学期期末)设P 是双曲线22142x y -=上的动点,若P 到两条渐近线的距离分别为12,d d ,则12d d ⋅=_________.10、(松江区高三上学期期末)已知抛物线2:4C y x =的准线为l ,过(1,0)M 且斜率为k 的直线与l 相交于点A ,与抛物线C 的一个交点为B .若2AM MB =,则 k = ▲ .11、(杨浦区高三上学期期末)抛物线C 的顶点为原点O ,焦点F 在x 轴正半轴,过焦点且倾斜角为4π的直线l 交抛物线于点,A B ,若AB 中点的横坐标为3,则抛物线C 的方程为_______________.填空题参考答案:1、 2、8 3、 4、2213y x -= 5、1± 6、y2=12x 7、1 8、2a 9、4310、± 11、x 4y 2= 12、 13、 14、 15、 16、 17、 二、选择题1、(嘉定区高三上学期期末)已知圆M 过定点)0,2(,圆心M 在抛物线x y 42=上运动,若y 轴截圆M 所得的弦为AB ,则||AB 等于( )A .4B .3C .2D .12、(青浦区高三上学期期末)已知抛物线22(0)y px p =>与双曲线22221(0,0)x y a b a b-=>>有相同的焦点F ,点A 是两曲线的一个交点,且AF x ⊥轴,若l 为双曲线一、三象限的一条渐近线,则l 的倾斜角所在的区间可能是………………………(). (A )0,6π⎛⎫ ⎪⎝⎭(B ),64ππ⎛⎫ ⎪⎝⎭(C ),43ππ⎛⎫ ⎪⎝⎭(D ),32ππ⎛⎫⎪⎝⎭3、(松江区高三上学期期末)已知双曲线2215x y m -=的右焦点与抛物线212y x =的焦点相同,则此双曲线的渐近线方程为.A y x =.B y x =.C y x =.D y = 选择题参考答案:1、A2、D3、A 三、解答题1、(宝山区高三上学期期末)已知椭圆2212x y +=上两个不同的点A,B 关于直线1(0)2y mx m =+≠对称.(1)若已知)21,0(C ,M 为椭圆上动点,证明:210≤MC ; (2)求实数m 的取值范围;(3)求AOB ∆面积的最大值(O 为坐标原点). 22(),x y 对应点的曲线方程是C .(1)、求C 的标准方程;(第23题图)(2)、直线1:0l x y m -+=与曲线C 相交于不同两点,M N ,且满足MON ∠为钝角,其中O 为直角坐标原点,求出m 的取值范围. 3、(虹口区高三上学期期末)已知椭圆2222:1(0)x y C a b a b +=>>的左焦点为,F 短轴的两个端点分别为,A B 、且2,AB =ABF ∆为等边三角形 .(1) 求椭圆C 的方程;(2) 如图,点M 在椭圆C 上且位于第一象 限内,它关于坐标原点O 的对称点为N ; 过点 M 作x 轴的垂线,垂足为H ,直线NH 与椭圆C 交于另一点J ,若12HM HN ⋅=-,试求以线段NJ 为直径的圆的方程;(3)已知12l l 、是过点A 的两条互相垂直的直线,直线1l 与圆22:4O x y +=相交于P Q 、两点,直线2l 与椭圆C 交于另一点R ;求PQR ∆面积取最大值时,直线1l 的方程.4、(黄浦区高三上学期期末)已知椭圆Γ:22221x y a b+=(0a b >>),过原点的两条直线1l 和2l 分别与Γ交于点A 、B 和C 、D ,得到平行四边形ACBD .(1)当ACBD 为正方形时,求该正方形的面积S .(2)若直线1l 和2l 关于y 轴对称,Γ上任意一点P 到1l 和2l 的距离分别为1d 和2d ,当2212d d +为定值时,求此时直线1l 和2l 的斜率及该定值.(3)当ACBD 为菱形,且圆221x y +=内切于菱形ACBD 时,求a ,b 满足的关系式. 5、(嘉定区高三上学期期末)在平面直角坐标系xOy 内,动点P 到定点)0,1(-F 的距离与P 到定直线4-=x 的距离之比为21. (1)求动点P 的轨迹C 的方程;(2)若轨迹C 上的动点N 到定点)0,(m M (20<<m )的距离的最小值为1,求m 的值. (3)设点A 、B 是轨迹C 上两个动点,直线OA 、OB 与轨迹C 的另一交点分别为1A 、1B ,且直线OA 、OB 的斜率之积等于43-,问四边形11B ABA 的面积S 是否为定值?请说明理由.椭圆C 上一点,从原点O 向圆()()8:2020=-+-y y x x R 作两条切线,切点分别为Q P ,.(1)若直线OQ OP ,互相垂直,且点R 在第一象限内,求点R 的坐标; (2) 若直线OQ OP ,的斜率都存在,并记为21,k k ,求证:01221=+k k .7、(静安区高三上学期期末)设P1和P2是双曲线22221x y a b-=上的两点,线段P1P2的中点为M ,直线P1P2不经过坐标原点O.(1)若直线P1P2和直线OM 的斜率都存在且分别为k1和k2,求证:k1k2=22ab ;(2)若双曲线的焦点分别为1(F 、2F ,点P1的坐标为(2,1),直线OM 的斜率为32,求由四点P1、 F1、P2、F2所围成四边形P1 F1P2F2的面积. 8、(闵行区高三上学期期末)已知椭圆Γ的中心在坐标原点,且经过点3(1,)2,它的一个焦点与抛物线2:4y x E =的焦点重合. (1)求椭圆Γ的方程;(2)斜率为k 的直线l 过点()1,0F ,且与抛物线E 交于A B 、两点,设点(1,)P k -,PAB △的面积为k 的值;(3)若直线l 过点()0,M m (0m ≠),且与椭圆Γ交于C D 、两点,点C 关于y 轴的对称点为Q ,直线QD 的纵截距为n ,证明:mn 为定值.9、(浦东新区高三上学期期末)在平面直角坐标系xOy 中,对于点),(00y x P 、直线:l 0=++c by ax ,我们称δ=为点),(00y x P 到直线:l 0=++c by ax 的方向距离。

高三数学寒假作业冲刺培训班之历年真题汇编复习实战77256

高三数学寒假作业冲刺培训班之历年真题汇编复习实战77256

一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)复数的模长为()A.B. C.D.22.(5分)已知集合A={x|0<log4x<1},B={x|x≤2},则A∩B=()A.(0,1)B.(0,2] C.(1,2)D.(1,2]3.(5分)已知点A(1,3),B(4,﹣1),则与向量同方向的单位向量为()A. B. C. D.4.(5分)下列关于公差d>0的等差数列{an}的四个命题:p1:数列{an}是递增数列;p2:数列{nan}是递增数列;p3:数列是递增数列;p4:数列{an+3nd}是递增数列;其中真命题是()A.p1,p2 B.p3,p4 C.p2,p3 D.p1,p45.(5分)某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[20,40),[40,60),[60,80),[80,100).若低于60分的人数是15人,则该班的学生人数是()A.45 B.50 C.55 D.606.(5分)在△ABC,内角A,B,C所对的边长分别为a,b,c.asinBcosC+csinBcosA=b,且a>b,则∠B=()A.B.C.D.7.(5分)使得(3x+)n(n∈N+)的展开式中含有常数项的最小的n为()A.4 B.5 C.6 D.78.(5分)执行如图所示的程序框图,若输入n=10,则输出的S=()A.B.C.D.9.(5分)已知点O(0,0),A(0,b),B(a,a3),若△OAB为直角三角形,则必有()A.b=a3 B.C.D.10.(5分)已知三棱柱ABC﹣A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为()A.B.C.D.11.(5分)已知函数f(x)=x2﹣2(a+2)x+a2,g(x)=﹣x2+2(a﹣2)x﹣a2+8.设H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)},(max{p,q})表示p,q中的较大值,min{p,q}表示p,q中的较小值),记H1(x)的最小值为A,H2(x)的最大值为B,则A﹣B=()A.16 B.﹣16 C.﹣16a2﹣2a﹣16 D.16a2+2a﹣1612.(5分)设函数f(x)满足x2f′(x)+2xf(x)=,f(2)=,则x>0时,f(x)()A.有极大值,无极小值B.有极小值,无极大值C.既有极大值又有极小值D.既无极大值也无极小值二、填空题:本大题共4小题,每小题5分.13.(5分)某几何体的三视图如图所示,则该几何体的体积是.14.(5分)已知等比数列{an}是递增数列,Sn是{an}的前n项和.若a1,a3是方程x2﹣5x+4=0的两个根,则S6=.15.(5分)已知椭圆的左焦点为F,C与过原点的直线相交于A,B两点,连接AF、BF,若|AB|=10,|AF|=6,cos∠ABF=,则C的离心率e=.16.(5分)为了考察某校各班参加课外小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据,已知样本平均数为7,样本方差为4,且样本数据互不相同,则样本数据中的最大值为.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(12分)设向量,,.(1)若,求x的值;(2)设函数,求f(x)的最大值.18.(12分)如图,AB是圆的直径,PA垂直圆所在的平面,C是圆上的点.(Ⅰ)求证:平面PAC⊥平面PBC;(Ⅱ)若AB=2,AC=1,PA=1,求证:二面角C﹣PB﹣A的余弦值.19.(12分)现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答.(Ⅰ)求张同学至少取到1道乙类题的概率;(Ⅱ)已知所取的3道题中有2道甲类题,1道乙类题.设张同学答对甲类题的概率都是,答对每道乙类题的概率都是,且各题答对与否相互独立.用X表示张同学答对题的个数,求X的分布列和数学期望.20.(12分)如图,抛物线C1:x2=4y,C2:x2=﹣2py(p>0),点M(x0,y0)在抛物线C2上,过M作C1的切线,切点为A,B(M为原点O时,A,B重合于O),当x0=1﹣时,切线MA的斜率为﹣.(Ⅰ)求P的值;(Ⅱ)当M在C2上运动时,求线段AB中点N的轨迹方程(A,B重合于O时,中点为O).21.(12分)已知函数f(x)=(1+x)e﹣2x,g(x)=ax++1+2xcosx,当x∈[0,1]时,(I)求证:;(II)若f(x)≥g(x)恒成立,求实数a的取值范围.请考生在21、22、23题中任选一题作答,如果多做,则按所做的第一题计分。

高三数学寒假作业冲刺培训班之历年真题汇编复习实战57677

高三数学寒假作业冲刺培训班之历年真题汇编复习实战57677

注意事项:1.本试卷分填空题和解答题两部分,共160分,考试用时120分钟.2.答题前,考生务必将自己的班级.姓名.学号写在答题纸的密封线内.答题时,填空题和解答题的答案写在答题纸对应的位置上,答案写在试卷上无效,本卷考试结束后,上交答题纸.一、填空题:本大题共14小题,每小题5分,共70分。

不需要写出解答过程,请把答案直接填空在答题卡相应位置上。

1. 已知全集{}1,2,3,4,5,6U =,集合{}2,3A =,集合{}3,5B =,则()UA B = ▲ .2.复数z 满足(12i)5z +=,则z = ▲ . 3.函数y = ▲ .4.若曲线4()f x x x =-在点P 处的切线平行于直线3x -y =0,则点P 的坐标为 ▲ . 5.已知直线1:(2)10l ax a y +++=,2:20l ax y -+=.则“3a =-”是“1l ∥2l ”的 ▲ 条件. 6.若将函数()sin f x x ω=的图像向右平移6π个单位得到的函数图像与函数4()sin()3g x x ωπ=-的图像重合,则|ω|的最小值为 ▲ .7. 实数x ,y 满足121y y x x y m ≥⎧⎪≤-⎨⎪+≤⎩,如果目标函数z x y =-的最小值为-2,则实数m 的值为▲ .8. 直线10ax+y+=被圆2022x +y ax+a =-截得的弦长为2,则实数a 的值是▲. 9.已知)2,0(,1010)4cos(πθπθ∈=+,则sin(2)3πθ-= ▲ . 10.设{}n a 是正项数列,其前n 项和n S 满足:4(1)(3)n n n S a a =-+,则n a = ▲ . 11.已知平面上三个向量OA ,OB ,OC ,满足1OA =,3OB =,2OC =,0OA OB ⋅=,则CA CB ⋅ 的最大值为 ▲ .12.已知22:1O x y +=,若直线2y kx =+上总存在点P ,使得过点P 的O 的两条切线互相垂直,则实数k 的取值范围是 ▲ .13.函数()f x 是定义域为R 的奇函数,且x≤0时,()122x f x x a =-+,则函数()f x 的零点个数是 ▲ .14.已知实数,,z x y 为正数,则222xy yzx y z +++的最大值为 ▲ .二、解答题:本大题共6小题,共90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)如图,在xOy 平面上,点(1,0)A ,点B 在单位圆上,AOB θ∠=(0θπ<<)(1)若点34(,)55B -,求tan()4πθ+的值;(2)若OA OB OC +=,1813OB OC ⋅=,求cos()3πθ-.16、(本题满分14分)在 ABC ∆中,角,,A B C 所对边分别为,,a b c ,且sin sin cos ,,sin sin cos B C BA A A成等差数列.(1)求角A 的值;(2)若a =,5b c +=时,求ABC ∆的面积. 17.(本小题满分15分)设函数()(0xxf x ka a a -=->且1)a ≠是定义域R 上的奇函数. (1)若(1)0f >,试求不等式2(2)(4)0f x x f x ++->的解集; (2)若3(1)2f =,且22()2()x xg x a a mf x -=+-在[1,)+∞上的最小值为2-,求实数m 的取值集合.18.(本小题满分15分)甲方是一农场,乙方是一工厂,由于乙方生产须占用甲方的资源,因此甲方每年向乙方索赔以弥补经济损失并获得一定净收入.乙方在不赔付甲方的情况下,乙方的年利润x (元)与年产量t (吨)满足函数关系t x 2000=.若乙方每生产一吨产品必须赔付甲方s 元(以下称s 为赔付价格).(1)将乙方的年利润w (元)表示为年产量t (吨)的函数,并求出乙方获得最大利润的年产量;(2)甲方每年受乙方生产影响的经济损失金额2002.0t y =(元),在乙方按照获得最大利润的产量进行生产的前提下,甲方要在索赔中获得最大净收入,应向乙方要求的赔付价格s 是多少?19.(本小题满分16分)设数列{}n a 的各项都是正数,且对任意*n ∈N 都有33332123,n n a a a a S ++++=其中nS 为数列{}n a 的前n 项和.(1)求证:22n n n a S a =-;(2)求数列{}n a 的通项公式;(3)设13(1)2n an n n b λ-=+-⋅(λ为非零整数,*n ∈N )试确定λ的值,使得对任意*n ∈N ,都有1n n b b +>成立.20.(本小题满分16分)已知函数f(x)=ex ,g(x)=x -b ,b ∈R .(1)若函数f(x)的图象与函数g(x)的图象相切,求b 的值; (2)设T(x)=f(x)+ag(x),a ∈R ,求函数T(x)的单调增区间;(3)设h(x)=|g(x)|·f(x),b <1.若存在x1,x2∈,使|h(x1)-h(x2)|>1成立,求b 的取值范围.苏州市第五中学第一学期阶段测试数 学试 题Ⅱ(全卷满分40分,考试时间30分钟).1221.(本小题满分10分)已知矩阵12a A b ⎡⎤=⎢⎥⎣⎦,属于特征值4的一个特征向量为23⎡⎤⎢⎥⎣⎦,求2A . 22.(本小题满分10分)已知直线l的参数方程为12(x ty ⎧=-+⎪⎪⎨⎪=⎪⎩为参数),以坐标原点为极点,x 轴的非半轴为极轴建立极坐标系,曲线C 的极坐标方程为2sin 2cos ρ=θθ-,若直线l 与曲线C 交于A 、B 两点,求线段AB 的长.23.(本小题满分10分)已知某校有甲、乙两个兴趣小组,其中甲组有2名男生、3名女生,乙组有3名男生、1名女生,学校计划从两兴趣小组中随机各选2名成员参加某项活动. (1)求选出的4名选手中恰好有1名女生的选派方法数;(2)记X 为选出的4名选手的人数,求X 的概率分布和数学期望. 24. (本小题满分10分)已知30123(1)(1)(1)(1)...(1),n n n x a a x a x a x a x +=+-+-+-++-(其中*n ∈N ) (1)求0a 及1nni i S a ==∑;(2)试比较n S 与2(2)22n n n -+的大小,并说明理由. 苏州市第五中学第一学期阶段测试高三数学(参考答案)一、填空题:1.{}2 2.12i - 3.1[,)2+∞4.(1,0) 5.充分不必要6.4 7.8 8.2-9 10.21n +11.2+.(,1][1,)-∞-+∞ 13.3 14.二、解答题:15.(1)由于34(,)55B -,AOB θ∠=,所以3cos 5θ=-,4sin 5θ=,4tan 3θ=-,3分所以1tan 1tan()41tan 7πθθθ++==--; 6分(2)由于(1,0)OA =,(cos ,sin )OB θθ=, 所以(1cos ,sin )OC OA OB θθ=+=+, 8分22218cos (1cos )sin cos cos sin 13OC OB θθθθθθ⋅=⨯++=++=. 所以5cos 13θ=,所以12sin 13θ=,12分所以cos()cos cos sin sin 333πππθθθ-=+=分 16、(本题满分14分) (I )、由sin sin cos ,,sin sin cos B C B A A A 成等差数列知sin cos sin 2sin cos sin B B CA A A+= 2分法1sin cos cos sin 2sin cos sin()sin 2sin cos B A B A C A B A C C A ⇒+=⇒+== 所以1cos 23A A π=⇒= 6分 法222222222222222222122a c b b c a c b ac b c b c a bc b c a a a b c a bc+-⎛⎫+-⇒+=⇒+=⇒+-= ⎪+-+-⎝⎭ 所以1cos 23A A π=⇒= 6分 (II)、由余弦定理知()22223a b c bc b c bc =+-=+-8分代入5a b c =+=得5bc =11分所以1sin 2S bc A ==14分 17.解:⑴∵()f x 是定义域为R 上的奇函数, ∴(0)0101f k k =⇒-=⇒=.2分 ∵(1)0f >,∴10a a->,又0a >且1a ≠,∴1a >. 4分 易知()f x 在R 上单调递增,∴原不等式化为:2(2)(4)f x x f x +>-, ∴224x x x +>-,即2340x x +->,解得1x >或4x <-. ∴不等式的解集为(,4)(1,)-∞-⋃+∞.7分 ⑵∵3(1)2f =,∴132a a -=,即22320a a --=, 解得2a =或12a =-(舍去).9分从而222()222(22)(22)2(22)2xx x x x x x x g x m m ----=+--=---+.令22x xt -=-,则2()()22h t g x t mt ==-+.∵1x ≥,∴32t ≥.11分∴2223()22()2()2h t t mt t m m t =-+=--+≥.当32m ≥时,则当t m =时,2min ()22h t m =-+=-,解得2m =;13分 当32m <时,则当32t =时,min 17()324h t m =-=-,解得253122m =>,(舍去).综上所述,2m =.15分18.解:(解:(1)乙方的实际年利润为:st t w -=20000≥t . 3分ss t s st t w 221000)1000(2000+--=-=,当21000⎪⎭⎫ ⎝⎛=s t 时,w 取得最大值. 所以乙方取得最大年利润的年产量21000⎪⎭⎫⎝⎛=s t (吨). 6分(2)设甲方净收入为v 元,则2002.0t st v -=.将21000⎪⎭⎫ ⎝⎛=s t 代入上式,432100021000ss v ⨯-=. 9得:分 又令0='v ,得20=s .当20<s 时,0>'v ;当20>s 时,0<'v ,所以20=s 时,v 取得最大值.14分 因此甲方向乙方要求赔付价格20=s (元/吨)时,获最大净收入.15分19.解:(解:(1)证明:由已知得,当32111,n a a ==时1133332123333321231131112121210,12()()()0,=21,12n n n n n n n n n n n n n n n n n n n n n nn n na a n a a a a S a a a a S a S S S S a S S a a S S S S a a S a n a a S a ------->∴=≥++++=++++==-+=+>∴=+-∴=-==∴=-又当时① ②由①-②得又当时适合上式. 5分(2)解由(1)知:22n n n a S a =-③2111221111112,22()01{}1,1{}n n n n n n n n n n n n n n n n n n n a S a a a S S a a a a a a a a a a a n---------≥=---=--+=++>∴-=∴∴=当时④由③④得数列是以首项为公差为的等差数列数列的通项公式为23232551000810001000(8000)s v s s s ⨯-'=-+=10分(3)1,3(1)2n n n n n a n b λ-=∴=+-⋅11111111,33(1)2(1)2233(1)20(1))n n n n n nn n n n n n n n n b b b b λλλλ++-++--->-=-+-⋅--⋅=⋅--⋅>-<要使恒成立即恒成立3即(恒成立212分11))1,1n n n λλ--<∴<3①当为奇数时,即(恒成立23又(的最小值为2111,)),101,,n n n nn n N b b λλλλλλ--*+>-∴>-<<≠∴=-∈>3②当为偶数时即(恒成立2333又-(的最大值为-2223即-,又且为整数2使得对任意都有 16分20.解:(1)设切点为(t ,et),因为函数f(x)的图象与函数g(x)的图象相切, 所以et =1,且et =t -b ,解得b =-1. ……………………………………4分 (2)T(x)=ex +a(x -b),T′(x)=ex +a . 当a≥0时,T′(x)>0恒成立.当a <0时,由T′(x)>0,得x >ln(-a). …………………………………6分 所以,当a≥0时,函数T(x)的单调增区间为(-∞,+∞);当a <0时,函数T(x)的单调增区间为(ln(-a),+∞). ………………8分(3)h(x)=|g(x)|·f(x)=⎩⎨⎧(x -b)ex , x≥b ,-(x -b)ex , x <b.当x>b 时,h′(x)=(x -b +1)ex >0,所以h(x)在(b ,+∞)上为增函数; 当x<b 时,h′(x)=-(x -b +1)ex ,因为b -1<x <b 时,h′(x)=-(x -b +1)ex <0,所以h(x)在(b -1,b)上是减函数; 因为x <b -1时, h′(x)=-(x -b +1)ex >0,所以h(x)在(-∞,b -1)上是增函数.…………………10分① 当b≤0时,h(x)在(0,1)上为增函数.所以h(x)max =h(1)=(1-b)e ,h(x)min =h(0)=-b .由h(x)max -h(x)min >1,得b <1,所以b≤0. …………………12分 ②当0<b <ee +1时,因为b <x <1时, h′(x)=(x -b +1)ex >0,所以h(x)在(b ,1)上是增函数, 因为0<x <b 时, h′(x)=-(x -b +1)ex <0,所以h(x)在(0,b)上是减函数. 所以h(x)max =h(1)=(1-b)e ,h(x)min =h(b)=0. 由h(x) max -h(x) min >1,得b <e -1e .因为0<b <ee +1,所以0<b <e -1e . ………………14分③当ee +1≤b <1时, 同理可得,h(x)在(0,b)上是减函数,在(b ,1)上是增函数. 所以h(x)max =h(0)=b ,h(x)min =h(b)=0.因为b <1,所以h(x)max -h(x)min >1不成立.综上,b 的取值范围为(-∞,e -1e ). …………………………16分数 学试 题Ⅱ21.由条件,1224233a b ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦∴2382612a b +=⎧⎨+=⎩,解得23a b =⎧⎨=⎩……5分 ∵1232A ⎡⎤=⎢⎥⎣⎦, ∴276910A ⎡⎤=⎢⎥⎣⎦……10分 22.由2sin 2cos ρθθ=-,可得ρ2=2ρsin θ-2ρcos θ,所以曲线C 的直角坐标方程为x2+y2=2y -2x , 标准方程为(x +1)2+(y -1)2=2. 直线l 的方程为化成普通方程为x -y +1=0.……………………4分圆心到直线l 的距离为d ==,所求弦长L == ……………………10分 23.(1)选出的4名选手中恰好有一名女生的选派方法数为1121233321C C C C ⋅⋅+=种.…3分 (2)X 的可能取值为0,1,2,3. ………………5分23225431(0)10620C P X C C ====⨯, 11212333225423337(1)10620C C C C P X C C +⨯⨯+====⨯, 21332254333(3)10620C C P X C C ⨯====⨯,(2)1(0)(1)(3)P X P X P X P X ==-=-=-=920=. ………………8分 X 的概率分布为:179317()01232020202010E X =⨯+⨯+⨯+⨯=. ………………10分 24.(1)令1x =,则02n a =,令2x =, 则3nn ii a==∑,∴32n n n S =-; 3分(2)要比较n S 与2(2)22nn n -+的大小,即比较:3n 与2(1)22nn n -+的大小, 当1n =时,23(1)22nnn n >-+;当2,3n =时,23(1)22nnn n <-+; 当4,5n =时,23(1)22nnn n >-+; 5分猜想:当4n ≥时4n ≥时,23(1)22nnn n >-+,下面用数学归纳法证明: 由上述过程可知,4n =4n =时结论成立,假设当(4)n k k =≥,(4)n k k =≥时结论成立,即23(1)22nnn n >-+, 两边同乘以3 得1212233[(1)22]22(1)[(3)2442]k k k k k k k k k k k ++>-+=+++-+--22(3)2442(3)24(2)6(2)24(2)(1)60k k k k k k k k k k k k -+--=-+--+=-+-++>∴1123[(1)1]22(1)k k k k ++>+-++,即1n k =+时结论也成立,∴当4n ≥时,23(1)22nnn n >-+成立. 综上得,当1n =时,23(1)22nnn n >-+; 当2,3n =时,23(1)22nnn n<-+;当4,n n N*≥∈时,23(1)22n n n n>-+一、选择题:本大题共10小题,每小题5分,共50分.在每个题给出的四个选项中,只有一项是符合要求的.1.(5分)某空间几何体的正视图是三角形,则该几何体不可能是()A.圆柱B.圆锥C.四面体D.三棱柱2.(5分)复数z=(3﹣2i)i的共轭复数等于()A.﹣2﹣3iB.﹣2+3iC.2﹣3iD.2+3i3.(5分)等差数列{an}的前n项和为Sn,若a1=2,S3=12,则a6等于()A.8B.10C.12D.144.(5分)若函数y=logax(a>0,且a≠1)的图象如图所示,则下列函数图象正确的是()A. B. C.D.5.(5分)阅读如图所示的程序框图,运行相应的程序,输出的S的值等于()A.18B.20C.21D.406.(5分)直线l:y=kx+1与圆O:x2+y2=1相交于A,B 两点,则“k=1”是“△OAB的面积为”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分又不必要条件7.(5分)已知函数f(x)=,则下列结论正确的是()A.f(x)是偶函数B.f(x)是增函数C.f(x)是周期函数D.f(x)的值域为[﹣1,+∞)8.(5分)在下列向量组中,可以把向量=(3,2)表示出来的是()A.=(0,0),=(1,2)B.=(﹣1,2),=(5,﹣2)C.=(3,5),=(6,10)D.=(2,﹣3),=(﹣2,3)9.(5分)设P,Q分别为圆x2+(y﹣6)2=2和椭圆+y2=1上的点,则P,Q两点间的最大距离是()A.5B.+C.7+D.610.(5分)用a代表红球,b代表蓝球,c代表黑球,由加法原理及乘法原理,从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a)(1+b)的展开式1+a+b+ab表示出来,如:“1”表示一个球都不取、“a”表示取出一个红球,而“ab”则表示把红球和蓝球都取出来.以此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个无区别的蓝球、5个有区别的黑球中取出若干个球,且所有的蓝球都取出或都不取出的所有取法的是()A.(1+a+a2+a3+a4+a5)(1+b5)(1+c)5B.(1+a5)(1+b+b2+b3+b4+b5)(1+c)5C.(1+a)5(1+b+b2+b3+b4+b5)(1+c5)D.(1+a5)(1+b)5(1+c+c2+c3+c4+c5)二、填空题:本大题共5小题,每小题4分,共20分.把答案填在答题卡的相应位置11.(4分)若变量 x,y满足约束条件,则z=3x+y的最小值为.12.(4分)在△ABC中,A=60°,AC=4,BC=2,则△ABC的面积等于.13.(4分)要制作一个容器为4m3,高为1m的无盖长方形容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是(单位:元)14.(4分)如图,在边长为e(e为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为.15.(4分)若集合{a,b,c,d}={1,2,3,4},且下列四个关系:①a=1;②b≠1;③c=2;④d≠4有且只有一个是正确的,则符合条件的有序数组(a,b,c,d)的个数是.三、解答题:本大题共4小题,共80分.解答应写出文字说明,证明过程或演算步骤16.(13分)已知函数f(x)=cosx(sinx+cosx)﹣.(1)若0<α<,且sinα=,求f(α)的值;(2)求函数f(x)的最小正周期及单调递增区间.17.(13分)在平面四边形ABCD中,AB=BD=CD=1,AB⊥BD,CD⊥BD,将△ABD沿BD折起,使得平面ABD⊥平面BCD,如图.(1)求证:AB⊥CD;(2)若M为AD中点,求直线AD与平面MBC所成角的正弦值.18.(13分)为回馈顾客,某商场拟通过摸球兑奖的方式对1000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求:①顾客所获的奖励额为60元的概率;②顾客所获的奖励额的分布列及数学期望;(2)商场对奖励总额的预算是60000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.19.(13分)已知双曲线E:﹣=1(a>0,b>0)的两条渐近线分别为l1:y=2x,l2:y=﹣2x.(1)求双曲线E的离心率;(2)如图,O点为坐标原点,动直线l分别交直线l1,l2于A,B两点(A,B分别在第一、第四象限),且△OAB的面积恒为8,试探究:是否存在总与直线l有且只有一个公共点的双曲线E?若存在,求出双曲线E的方程,若不存在,说明理由.在2123题中考生任选2题作答,满分21分.如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应题号右边的方框涂黑,并将所选题号填入括号中.选修42:矩阵与变换20.(14分)已知函数f(x)=ex﹣ax(a为常数)的图象与y轴交于点A,曲线y=f(x)在点A处的切线斜率为﹣1.(1)求a的值及函数f(x)的极值;(2)证明:当x>0时,x2<ex;(3)证明:对任意给定的正数c,总存在x0,使得当x∈(x0,+∞)时,恒有x2<cex. 21.(7分)已知矩阵A的逆矩阵A﹣1=().(1)求矩阵A;(2)求矩阵A﹣1的特征值以及属于每个特征值的一个特征向量.五、选修44:极坐标与参数方程22.(7分)已知直线l的参数方程为(t为参数),圆C的参数方程为(θ为常数).(1)求直线l和圆C的普通方程;(2)若直线l与圆C有公共点,求实数a的取值范围.六、选修45:不等式选讲23.已知定义域在R上的函数f(x)=|x+1|+|x﹣2|的最小值为a.(1)求a的值;(2)若p,q,r为正实数,且p+q+r=a,求证:p2+q2+r2≥3.高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案) (2)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每个题给出的四个选项中,只有一项是符合要求的.1.5分)某空间几何体的正视图是三角形,则该几何体不可能是()A.圆柱B.圆锥C.四面体D.三棱柱【分析】直接从几何体的三视图:正视图和侧视图或俯视图判断几何体的形状,即可. 【解答】解:圆柱的正视图为矩形,故选:A.【点评】本题考查简单几何体的三视图,考查逻辑推理能力和空间想象力,是基础题.2.((5分)复数z=(3﹣2i)i的共轭复数等于()A.﹣2﹣3iB.﹣2+3iC.2﹣3iD.2+3i【分析】直接由复数代数形式的乘法运算化简z,则其共轭可求.【解答】解:∵z=(3﹣2i)i=2+3i,∴.故选:C.【点评】本题考查了复数代数形式的乘法运算,考查了复数的基本概念,是基础题.3.(5分)等差数列{an}的前n项和为Sn,若a1=2,S3=12,则a6等于()A.8B.10C.12D.14【分析】由等差数列的性质和已知可得a2,进而可得公差,可得a6【解答】解:由题意可得S3=a1+a2+a3=3a2=12,解得a2=4,∴公差d=a2﹣a1=4﹣2=2,∴a6=a1+5d=2+5×2=12,故选:C.【点评】本题考查等差数列的通项公式和求和公式,属基础题.4.(5分)若函数y=logax(a>0,且a≠1)的图象如图所示,则下列函数图象正确的是()A. B. C.D.【分析】由题意可得a=3,由基本初等函数的图象和性质逐个选项验证即可.【解答】解:由题意可知图象过(3,1),故有1=loga3,解得a=3,选项A,y=a﹣x=3﹣x=()x单调递减,故错误;选项B,y=x3,由幂函数的知识可知正确;选项C,y=(﹣x)3=﹣x3,其图象应与B关于x轴对称,故错误;选项D,y=loga(﹣x)=log3(﹣x),当x=﹣3时,y=1,但图象明显当x=﹣3时,y=﹣1,故错误.故选:B.【点评】本题考查对数函数的图象和性质,涉及幂函数的图象,属基础题.5.(5分)阅读如图所示的程序框图,运行相应的程序,输出的S的值等于()A.18B.20C.21D.40【分析】算法的功能是求S=21+22+…+2n+1+2+…+n的值,计算满足条件的S值,可得答案. 【解答】解:由程序框图知:算法的功能是求S=21+22+…+2n+1+2+…+n的值,∵S=21+22+1+2=2+4+1+2=9<15,S=21+22+23+1+2+3=2+4+8+1+2+3=20≥15.∴输出S=20.故选:B.【点评】本题考查了直到型循环结构的程序框图,根据框图的流程判断算法的功能是解题的关键.6.(5分)直线l:y=kx+1与圆O:x2+y2=1相交于A,B 两点,则“k=1”是“△OAB的面积为”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分又不必要条件【分析】根据直线和圆相交的性质,结合充分条件和必要条件的定义进行判断即可得到结论.【解答】解:若直线l:y=kx+1与圆O:x2+y2=1相交于A,B 两点,则圆心到直线距离d=,|AB|=2,若k=1,则|AB|=,d=,则△OAB的面积为×=成立,即充分性成立.若△OAB的面积为,则S==×2×==,即k2+1=2|k|,即k2﹣2|k|+1=0,则(|k|﹣1)2=0,即|k|=1,解得k=±1,则k=1不成立,即必要性不成立.故“k=1”是“△OAB的面积为”的充分不必要条件.故选:A.【点评】本题主要考查充分条件和必要条件的判断,利用三角形的面积公式,以及半径半弦之间的关系是解决本题的关键.7.(5分)已知函数f(x)=,则下列结论正确的是()A.f(x)是偶函数B.f(x)是增函数C.f(x)是周期函数D.f(x)的值域为[﹣1,+∞)【分析】由三角函数和二次函数的性质,分别对各个选项判断即可.【解答】解:由解析式可知当x≤0时,f(x)=cosx为周期函数,当x>0时,f(x)=x2+1,为二次函数的一部分,故f(x)不是单调函数,不是周期函数,也不具备奇偶性,故可排除A、B、C,对于D,当x≤0时,函数的值域为[﹣1,1],当x>0时,函数的值域为(1,+∞),故函数f(x)的值域为[﹣1,+∞),故正确.故选:D.【点评】本题考查分段函数的性质,涉及三角函数的性质,属基础题.8.(5分)在下列向量组中,可以把向量=(3,2)表示出来的是()A.=(0,0),=(1,2)B.=(﹣1,2),=(5,﹣2)C.=(3,5),=(6,10)D.=(2,﹣3),=(﹣2,3)【分析】根据向量的坐标运算,,计算判别即可.【解答】解:根据,选项A:(3,2)=λ(0,0)+μ(1,2),则3=μ,2=2μ,无解,故选项A不能;选项B:(3,2)=λ(﹣1,2)+μ(5,﹣2),则3=﹣λ+5μ,2=2λ﹣2μ,解得,λ=2,μ=1,故选项B能.选项C:(3,2)=λ(3,5)+μ(6,10),则3=3λ+6μ,2=5λ+10μ,无解,故选项C不能. 选项D:(3,2)=λ(2,﹣3)+μ(﹣2,3),则3=2λ﹣2μ,2=﹣3λ+3μ,无解,故选项D不能.故选:B.【点评】本题主要考查了向量的坐标运算,根据列出方程解方程是关键,属于基础题.9.(5分)设P,Q分别为圆x2+(y﹣6)2=2和椭圆+y2=1上的点,则P,Q两点间的最大距离是()A.5B.+C.7+D.6【分析】求出椭圆上的点与圆心的最大距离,加上半径,即可得出P,Q两点间的最大距离.【解答】解:设椭圆上的点为(x,y),则∵圆x2+(y﹣6)2=2的圆心为(0,6),半径为,∴椭圆上的点(x,y)到圆心(0,6)的距离为==≤5,∴P,Q两点间的最大距离是5+=6.故选:D.【点评】本题考查椭圆、圆的方程,考查学生分析解决问题的能力,属于基础题.10.(5分)用a代表红球,b代表蓝球,c代表黑球,由加法原理及乘法原理,从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a)(1+b)的展开式1+a+b+ab表示出来,如:“1”表示一个球都不取、“a”表示取出一个红球,而“ab”则表示把红球和蓝球都取出来.以此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个无区别的蓝球、5个有区别的黑球中取出若干个球,且所有的蓝球都取出或都不取出的所有取法的是()A.(1+a+a2+a3+a4+a5)(1+b5)(1+c)5B.(1+a5)(1+b+b2+b3+b4+b5)(1+c)5C.(1+a)5(1+b+b2+b3+b4+b5)(1+c5)D.(1+a5)(1+b)5(1+c+c2+c3+c4+c5)【分析】根据“1+a+b+ab表示出来,如:“1”表示一个球都不取、“a”表示取出一个红球,而“ab”则表示把红球和蓝球都取出来”,分别取红球蓝球黑球,根据分步计数原理,分三步,每一步取一种球,问题得以解决.【解答】解:从5个无区别的红球中取出若干个球,可以1个球都不取、或取1个、2个、3个、4个、5个球,共6种情况,则其所有取法为1+a+a2+a3+a4+a5;从5个无区别的蓝球中取出若干个球,由所有的蓝球都取出或都不取出,得其所有取法为1+b5;从5个有区别的黑球中取出若干个球,可以1个球都不取、或取1个、2个、3个、4个、5个球,共6种情况,则其所有取法为1+c+c2+c3+c4+c5=(1+c)5,根据分步乘法计数原理得,适合要求的所有取法是(1+a+a2+a3+a4+a5)(1+b5)(1+c)5.故选:A.【点评】本题主要考查了分步计数原理和归纳推理,合理的利用题目中所给的实例,要遵循其规律,属于中档题.二、填空题:本大题共5小题,每小题4分,共20分.把答案填在答题卡的相应位置11.(4分)若变量 x,y满足约束条件,则z=3x+y的最小值为 1 .【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最小值. 【解答】解:作出不等式对应的平面区域如图,由z=3x+y,得y=﹣3x+z,平移直线y=﹣3x+z,由图象可知当直线y=﹣3x+z,经过点A(0,1)时,直线y=﹣3x+z的截距最小,此时z最小.此时z的最小值为z=0×3+1=1,故答案为:1【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法. 12.(4分)在△ABC中,A=60°,AC=4,BC=2,则△ABC的面积等于 2.【分析】利用三角形中的正弦定理求出角B,再利用三角形的面积公式求出△ABC的面积. 【解答】解:∵△ABC中,A=60°,AC=4,BC=2,由正弦定理得:,∴,解得sinB=1,∴B=90°,C=30°,∴△ABC的面积=.故答案为:.【点评】本题着重考查了给出三角形的两边和其中一边的对角,求它的面积.正余弦定理、解直角三角形、三角形的面积公式等知识,属于基础题.13.(4分)要制作一个容器为4m3,高为1m的无盖长方形容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是 160 (单位:元)【分析】此题首先需要由实际问题向数学问题转化,设池底长和宽分别为a,b,成本为y,建立函数关系式,然后利用基本不等式求出最值即可求出所求.【解答】解:设池底长和宽分别为a,b,成本为y,则∵长方形容器的容器为4m3,高为1m,故底面面积S=ab=4,y=20S+10[2(a+b)]=20(a+b)+80,∵a+b≥2=4,故当a=b=2时,y取最小值160,即该容器的最低总造价是160元,故答案为:160【点评】本题以棱柱的体积为载体,考查了基本不等式,难度不大,属于基础题.14.(4分)如图,在边长为e(e为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为.【分析】利用定积分计算阴影部分的面积,利用几何概型的概率公式求出概率.【解答】解:由题意,y=lnx与y=ex关于y=x对称,∴阴影部分的面积为2(e﹣ex)dx=2(ex﹣ex)=2,∵边长为e(e为自然对数的底数)的正方形的面积为e2,∴落到阴影部分的概率为.故答案为:.【点评】本题考查几何概型,几何概型的概率的值是通过长度、面积、和体积的比值得到.15.(4分)若集合{a,b,c,d}={1,2,3,4},且下列四个关系:①a=1;②b≠1;③c=2;④d≠4有且只有一个是正确的,则符合条件的有序数组(a,b,c,d)的个数是 6 .【分析】利用集合的相等关系,结合①a=1;②b≠1;③c=2;④d≠4有且只有一个是正确的,即可得出结论.【解答】解:由题意,a=2时,b=1,c=4,d=3;b=3,c=1,d=4;a=3时,b=1,c=4,d=2;b=1,c=2,d=4;b=2,c=1,d=4;a=4时,b=1,c=3,d=2;∴符合条件的有序数组(a,b,c,d)的个数是6个.【点评】本题考查集合的相等关系,考查分类讨论的数学思想,正确分类是关键.三、解答题:本大题共4小题,共80分.解答应写出文字说明,证明过程或演算步骤16.(13分)已知函数f(x)=cosx(sinx+cosx)﹣.(1)若0<α<,且sinα=,求f(α)的值;(2)求函数f(x)的最小正周期及单调递增区间.【分析】(1)根据题意,利用sinα求出cosα的值,再计算f(α)的值;(2)化简函数f(x),求出f(x)的最小正周期与单调增区间即可.【解答】解:(1)∵0<α<,且sinα=,∴cosα=,∴f(α)=cosα(sinα+cosα)﹣=×(+)﹣=;(2)∵函数f(x)=cosx(sinx+cosx)﹣=sinxcosx+cos2x﹣=sin2x+﹣=(sin2x+cos2x)=sin(2x+),∴f(x)的最小正周期为T==π;令2kπ﹣≤2x+≤2kπ+,k∈Z,解得kπ﹣≤x≤kπ+,k∈Z;∴f(x)的单调增区间为[kπ﹣,kπ+],k∈Z.【点评】本题考查了三角函数的化简以及图象与性质的应用问题,是基础题目.17.(13分)在平面四边形ABCD中,AB=BD=CD=1,AB⊥BD,CD⊥BD,将△ABD沿BD折起,使得平面ABD⊥平面BCD,如图.(1)求证:AB⊥CD;(2)若M为AD中点,求直线AD与平面MBC所成角的正弦值.【分析】(1)利用面面垂直的性质定理即可得出;(2)建立如图所示的空间直角坐标系.设直线AD与平面MBC所成角为θ,利用线面角的计算公式sinθ=|cos|=即可得出.【解答】(1)证明:∵平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,AB⊂平面ABD,AB⊥BD,∴AB⊥平面BCD,又CD⊂平面BCD,∴AB⊥CD.(2)解:建立如图所示的空间直角坐标系.∵AB=BD=CD=1,AB⊥BD,CD⊥BD,∴B(0,0,0),C(1,1,0),A(0,0,1),D(0,1,0),M.∴=(0,1,﹣1),=(1,1,0),=.设平面BCM的法向量=(x,y,z),则,令y=﹣1,则x=1,z=1.∴=(1,﹣1,1).设直线AD与平面MBC所成角为θ.则sinθ=|cos|===.【点评】本题综合考查了面面垂直的性质定理、线面角的计算公式sinθ=|cos|=,考查了推理能力和空间想象能力,属于中档题.18.(13分)为回馈顾客,某商场拟通过摸球兑奖的方式对1000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求:①顾客所获的奖励额为60元的概率;②顾客所获的奖励额的分布列及数学期望;(2)商场对奖励总额的预算是60000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.【分析】(1)根据古典概型的概率计算公式计算顾客所获的奖励额为60元的概率,依题意得X得所有可能取值为20,60,分别求出P(X=60),P(X=20),画出顾客所获的奖励额的分布列求出数学期望;(2)先讨论,寻找期望为60元的方案,找到(10,10,50,50),(20,20,40,40)两种方案,分别求出数学期望和方差,然后做比较,问题得以解决.【解答】解:(1)设顾客所获取的奖励额为X,①依题意,得P(X=60)=,即顾客所获得奖励额为60元的概率为,②依题意得X得所有可能取值为20,60,P(X=60)=,P(X=20)=,即X的分布列为X 60 20P所以这位顾客所获的奖励额的数学期望为E(X)=20×+60×=40(2)根据商场的预算,每个顾客的平均奖励额为60元,所以先寻找期望为60元的可能方案.对于面值由10元和50元组成的情况,如果选择(10,10,10,50)的方案,因为60元是面值之和的最大值,所以数学期望不可能为60元,如果选择(50,50,50,10)的方案,因为60元是面值之和的最小值,所以数学期望也不可能为60元,因此可能的方案是(10,10,50,50)记为方案1,对于面值由20元和40元的组成的情况,同理可排除(20,20,20,40)和(40,40,40,20)的方案,所以可能的方案是(20,20,40,40),记为方案2,以下是对这两个方案的分析:对于方案1,即方案(10,10,50,50)设顾客所获取的奖励额为X1,则X1的分布列为 X1 60 20 100PX1 的数学期望为E(X1)=.X1 的方差D(X1)==,对于方案2,即方案(20,20,40,40)设顾客所获取的奖励额为X2,则X2的分布列为 X2 40 60 80PX2 的数学期望为E(X2)==60,X2 的方差D(X2)=差D(X1)=. 由于两种方案的奖励额的数学期望都符合要求,但方案2奖励额的方差比方案1小,所以应该选择方案2.【点评】本题主要考查了古典概型、离散型随机变量的分布列、数学期望、方差等基础知识,考查了数据处理能力,运算求解能力,应用意识,考查了必然与或然思想与整合思想.19.(13分)已知双曲线E:﹣=1(a>0,b>0)的两条渐近线分别为l1:y=2x,l2:y=﹣2x.(1)求双曲线E的离心率;(2)如图,O点为坐标原点,动直线l分别交直线l1,l2于A,B两点(A,B分别在第一、第四象限),且△OAB的面积恒为8,试探究:是否存在总与直线l有且只有一个公共点的双曲线E?若存在,求出双曲线E的方程,若不存在,说明理由.【分析】(1)依题意,可知=2,易知c=a,从而可求双曲线E的离心率;(2)由(1)知,双曲线E的方程为﹣=1,设直线l与x轴相交于点C,分l⊥x轴与直线l不与x轴垂直讨论,当l⊥x轴时,易求双曲线E的方程为﹣=1.当直线l不与x轴垂直时,设直线l的方程为y=kx+m,与双曲线E的方程联立,利用由S△OAB=|OC|•|y1﹣y2|=8可证得:双曲线E的方程为﹣=1,从而可得答案.【解答】解:(1)因为双曲线E的渐近线分别为l1:y=2x,l2:y=﹣2x,所以=2.所以=2.。

高三数学寒假作业冲刺培训班之历年真题汇编复习实战42077

高三数学寒假作业冲刺培训班之历年真题汇编复习实战42077

注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答题前,考生务必将自己的姓名、准考证号、座位号、学校、班级等考生信息填写在答题卡上。

2.回答第Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号,写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一.选择题:本大题共12小题,每小题5分。

在每个小题给出的四个选项中,只有一项是符合题目要求的。

1.已知全集为R ,集合{}{}221,320xA xB x x x =≥=-+≤,则R AC B =( )A. {}0x x ≤B. {}1x x ≤≤2 C. {}012x x x ≤<>或 D. {}012x x x ≤<≥或2.若复数z=(a ∈R ,i 是虚数单位)是纯虚数,则|a+2i|等于( )A .2B .2C .4D .83.下列函数中,在其定义域内既是增函数又是奇函数的是( ) A .y=B .y=﹣log2xC .y=3xD . y=x3+x4.在公差不为零的等差数列{an}中,2a3﹣a72+2a11=0,数列{bn}是等比数列,且b7=a7,则log2(b6b8)的值为( )A .1B .2C .4D .8 5. 若2xa =,b x =,12log c x =,则“a b c >>”是“1x >”的A.必要不充分条件B.充分不必要条件C. 充要条件D. 既不充分又不必要条件 6.执行如图所示的程序框图,则输出的结果是( ) A . 14 B . 15 C . 16 D . 177.双曲线tx2﹣y2﹣1=0的一条渐近线与直线x ﹣2y+1=0平行,则双曲线的 离心率为( ) A .B .C .D .8.已知ABC ∆的三个内角,,A B C 所对的边分别是,,a b c ,且3cos 3cos b A a B c -=,则下列结论正确的是( ) A 、tan 2tan B A = B 、tan 2tan A B = C 、tan tan 2B A ⋅= D 、tan tan 2A B += 9.一个几何体的三视图如图所示,则这个几何体的体积为( )A .B .C .D .10.有7张卡片分别写有数字1,1,1,2,2,3,4,从中任取4张,可排出的四位数有( ) A .78种 B .102种 C .114种 D .120种11.已知三棱锥P ﹣ABC 的四个顶点都在球O 的球面上,若PA=AB=2,AC=1,∠BAC=120°,且PA ⊥平面ABC ,则球O 的表面积为( ) A .15πB .12πC .D .12.已知函数f (x )=ln ,若f ()+f ()+…+f ()=503(a+b ),则a2+b2的最小值为( ) A .4B .8 C .12D .16第Ⅱ卷本卷包括必考题和选考题两部分。

高三数学寒假作业冲刺培训班之历年真题汇编复习实战27883

高三数学寒假作业冲刺培训班之历年真题汇编复习实战27883

一、选择题(每题4分,共48分)1、设全集{}6,5,4,3,2,1=U ,集合{}6,4,2=A ,{}3,2=B ,则()=B A C U ( )A 、{}1B 、{}5C 、{}5,1D 、{}6,4,3,22、1>a 是a a >2的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件3、若函数2)1(2)(2+++=x a x x f 在(]2,∞-上是减函数,则a 的取值范围是( )A 、(]3,-∞-B 、[)∞+,1C 、[)∞+-,3D 、(]1,∞-4、若复数i z +=1,则()=⋅+z z 1( )A 、i +3B 、i -3C 、i 31+D 、35、已知向量()3,1=a ,()4,x =b ,若()a b a -⊥2,则x 的值为( )A 、5-B 、6-C 、7-D 、76、已知过点()8,2--A 和()4,m B 的直线与012=-+y x 平行,则m的值为( )A 、22B 、10-C 、12D 、8-7、在ABC ∆中,2=a ,2=b ,︒=∠45B ,则=∠A ( )A 、︒︒12060或B 、︒60C 、︒︒15030或D 、︒308、函数x x y 2cos 2sin 2⋅=是( ) A 、周期为2π的奇函数B 、周期为2π的偶函数 C 、周期为4π的奇函数D 、周期为4π的偶函数9、过点()1,2-M 与圆C :()()53122=++-y x 相切的直线方程为( ) A 、01=-+y x B 、052=--y x C 、042=--y x D 、02=+y x10、有4名男生2名女生共6人排成一排,则女生不相邻的排法种数是( )A 、120B 、720C 、480D 、56011、设a 、b 是两条不同的直线,α、β是两个不同的平面,给出下列四个命题:①若b a ⊥,α⊄b ,α⊥a ,则α//b ;②若α//a ,βα⊥,则β⊥a ;③若β⊥a ,βα⊥,则α//a 或α⊂a ;④若b a ⊥,α⊥a ,β⊥b ,则βα⊥,其中真命题的个数是( )A 、0B 、1C 、2D 、312、定义在R 上的奇函数)(x f y =在[)∞+,0上单调增加,且0)2(=f ,则不等式0)(<⋅x f x 的解集为( )A 、()2,2-B 、()()2,00,2 -C 、()()∞+-∞-,22,D 、()()∞+-,20,2二、填空题(每题4分,共24分)13、数列{}n a 满足11=a ,n n a a 21=+,则数列n a 的前n 项和=n S ____________14、函数()x x y 21-⋅=⎪⎭⎫ ⎝⎛<<210x 的最大值是______________ 15、圆()9122=+-y x 上的点到直线07=+-y x 的最大距离是______________16、已知m 为实数,椭圆13222=+my x 的一个焦点为抛物线x y 42=的焦点,则=m _____17、某篮球运动员在罚球线投中球的概率为32,在某次比赛中罚3球恰好中2球的概率是_____________18、已知抛物线x y 62=,定点()3,2A ,F 为焦点,P 为抛物线上的动点,则PA PF +的最小值为______________三、解答题(本题包括7小题,共78分)19、(本题6分)求函数()2223log xx y --=的定义域20、(本题10分)已知()1tan =-απ,(1)求αtan 的值;(2)求ααα22sin cos 2sin +-的值21、(本题10分)在等差数列{}n a 中,前4项的和204-=S ,前12项的和13212=S ,(1)求数列{}n a 的通项公式;(2)求数列{}n a 前n 项和n S 的最小值22、(本题10分)已知函数22)(2++=ax x x f ,[]5,5-∈x (1)当1-=a 时,求)(x f 的最大值与最小值;(2)求实数a 的取值范围,使)(x f y =在区间[]5,5-上单调增加23、(本题14分)甲袋中装有4个红球,2个白球,乙袋中装有3个红球,3个白球,现从甲袋中取出2个球,从乙袋中取出1个球(1)求从甲袋中取出的2个球中恰有1个白球的概率;(2)记ξ表示抽取的3个球中白球的个数,求ξ的概率分布及数学期望24、(本题14分) 如图,四边形ABCD 是边长为66的正方形,PABCD PA 平面⊥,若106==PD PB(1)求PC 与平面ABCD 所成角的大小(2)求P 到BD 的距离25、(本题14分)设椭圆C :12222=+by a x ()0>>b a 的离心率为22=e ,点A 是椭圆上的一点,且点A 到椭圆C 两焦点的距离之和为4(1)求椭圆C 的方程;(2)椭圆C 上一动点()y x P ,关于直线x y 2=的对称点为()111,y x P ,求1143y x -的取值范围参考答案一、选择题(每题4分,共48分)13、12-n;14、81;15、243+;16、2±;17、94;18、27 三、解答题(共78分)19、()1,3- 20、(1)1-;(2)1-21、(1)154-=n a n ;(2)213-=S22、(1)最小值1,最大值37;(2)5≥a23、(1)158;(2) 67=ξE (2)76;24、(1)︒30;25、(1)12422=+y x ;(2)[]10,10-一、选择题:本大题共10小题,每小题5分,在每小题给出的四个备选项中,只有一项是符合题目要求的.1.(5分)对任意等比数列{an},下列说法一定正确的是()A.a1,a3,a9成等比数列B.a2,a3,a6成等比数列C.a2,a4,a8成等比数列D.a3,a6,a9成等比数列2.(5分)在复平面内复数Z=i(1﹣2i)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)已知变量x与y正相关,且由观测数据算得样本平均数=3,=3.5,则由该观测数据算得的线性回归方程可能是()A.=0.4x+2.3B.=2x﹣2.4C.=﹣2x+9.5D.=﹣0.3x+4.44.(5分)已知向量=(k,3),=(1,4),=(2,1)且(2﹣3)⊥,则实数k=()A.﹣B.0C.3D.5.(5分)执行如图所示的程序框图,若输出k的值为6,则判断框内可填入的条件是()A.s>B.s>C.s>D.s>6.(5分)已知命题p:对任意x∈R,总有2x>0;q:“x>1”是“x>2”的充分不必要条件,则下列命题为真命题的是()A.p∧qB.¬p∧¬qC.¬p∧qD.p∧¬q7.(5分)某几何体的三视图如图所示则该几何体的表面积为()A.54B.60C.66D.728.(5分)设F1,F2分别为双曲线﹣=1(a>0,b>0)的左、右焦点,双曲线上存在一点P使得|PF1|+|PF2|=3b,|PF1|•|PF2|=ab,则该双曲线的离心率为()A. B. C. D.39.(5分)某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()A.72B.120C.144D.16810.(5分)已知△ABC的内角A,B,C满足sin2A+sin(A﹣B+C)=sin(C﹣A﹣B)+,面积S满足1≤S≤2,记a,b,c分别为A,B,C所对的边,在下列不等式一定成立的是()A.bc(b+c)>8B.ab(a+b)>16C.6≤abc≤12D.12≤abc≤24二、填空题:本大题共3小题,每小题5分共15分把答案填写在答题卡相应位置上.11.(5分)设全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},则(∁UA)∩B=.12.(5分)函数f(x)=log2•log(2x)的最小值为.13.(5分)已知直线ax+y﹣2=0与圆心为C的圆(x﹣1)2+(y﹣a)2=4相交于A,B两点,且△ABC为等边三角形,则实数a=.三、选做题:考生注意(14)(15)、(16)三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分14.(5分)过圆外一点P作圆的切线PA(A为切点),再作割线PBC依次交圆于B、C,若PA=6,AC=8,BC=9,则AB=.15.(5分)已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ﹣4cosθ=0(ρ≥0,0≤θ<2π),则直线l与曲线C的公共点的极径ρ=.16.若不等式|2x﹣1|+|x+2|≥a2+a+2对任意实数x恒成立,则实数a的取值范围是.四、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.17.(13分)已知函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ<)的图象关于直线x=对称,且图象上相邻两个最高点的距离为π.(Ⅰ)求ω和φ的值;(Ⅱ)若f()=(<α<),求cos(α+)的值.18.(13分)一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3,从盒中任取3张卡片.(Ⅰ)求所取3张卡片上的数字完全相同的概率;(Ⅱ)X表示所取3张卡片上的数字的中位数,求X的分布列与数学期望.(注:若三个数字a,b,c满足a≤b≤c,则称b为这三个数的中位数.)19.(13分)如图,四棱锥P﹣ABCD,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=,M为BC上的一点,且BM=,MP⊥AP.(Ⅰ)求PO的长;(Ⅱ)求二面角A﹣PM﹣C的正弦值.20.(12分)已知函数f(x)=ae2x﹣be﹣2x﹣cx(a,b,c∈R)的导函数f′(x)为偶函数,且曲线y=f(x)在点(0,f(0))处的切线的斜率为4﹣c.(Ⅰ)确定a,b的值;(Ⅱ)若c=3,判断f(x)的单调性;(Ⅲ)若f(x)有极值,求c的取值范围.21.(12分)如图,设椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,点D在椭圆上.DF1⊥F1F2,=2,△DF1F2的面积为.(Ⅰ)求椭圆的标准方程;(Ⅱ)设圆心在y轴上的圆与椭圆在x轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径.22.(12分)设a1=1,an+1=+b(n∈N*)(Ⅰ)若b=1,求a2,a3及数列{an}的通项公式;(Ⅱ)若b=﹣1,问:是否存在实数c使得a2n<c<a2n+1对所有的n∈N*成立,证明你的结论.高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)(13)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,在每小题给出的四个备选项中,只有一项是符合题目要求的.1.(5分)对任意等比数列{an},下列说法一定正确的是()A.a1,a3,a9成等比数列B.a2,a3,a6成等比数列C.a2,a4,a8成等比数列D.a3,a6,a9成等比数列【分析】利用等比中项的性质,对四个选项中的数进行验证即可.【解答】解:A项中a3=a1•q2,a1•a9=•q8,(a3)2≠a1•a9,故A项说法错误,B项中(a3)2=(a1•q2)2≠a2•a6=•q6,故B项说法错误,C项中(a4)2=(a1•q3)2≠a2•a8=•q8,故C项说法错误,D项中(a6)2=(a1•q5)2=a3•a9=•q10,故D项说法正确,故选:D.【点评】本题主要考查了是等比数列的性质.主要是利用了等比中项的性质对等比数列进行判断.2.(5分)在复平面内复数Z=i(1﹣2i)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据复数乘法的运算法则,我们可以将复数Z化为a=bi(a,b∈R)的形式,分析实部和虚部的符号,即可得到答案.【解答】解:∵复数Z=i(1﹣2i)=2+i∵复数Z的实部2>0,虚部1>0∴复数Z在复平面内对应的点位于第一象限故选:A.【点评】本题考查的知识是复数的代数表示法及其几何意义,其中根据复数乘法的运算法则,将复数Z化为a=bi(a,b∈R)的形式,是解答本题的关键.3.(5分)已知变量x与y正相关,且由观测数据算得样本平均数=3,=3.5,则由该观测数据算得的线性回归方程可能是()A.=0.4x+2.3B.=2x﹣2.4C.=﹣2x+9.5D.=﹣0.3x+4.4【分析】变量x与y正相关,可以排除C,D;样本平均数代入可求这组样本数据的回归直线方程.【解答】解:∵变量x与y正相关,∴可以排除C,D;样本平均数=3,=3.5,代入A符合,B不符合,故选:A.【点评】本题考查数据的回归直线方程,利用回归直线方程恒过样本中心点是关键.4.(5分)已知向量=(k,3),=(1,4),=(2,1)且(2﹣3)⊥,则实数k=()A.﹣B.0C.3D.【分析】根据两个向量的坐标,写出两个向量的数乘与和的运算结果,根据两个向量的垂直关系,写出两个向量的数量积等于0,得到关于k的方程,解方程即可.【解答】解:∵=(k,3),=(1,4),=(2,1)∴2﹣3=(2k﹣3,﹣6),∵(2﹣3)⊥,∴(2﹣3)•=0'∴2(2k﹣3)+1×(﹣6)=0,解得,k=3.故选:C.【点评】本题考查数量积的坐标表达式,是一个基础题,题目主要考查数量积的坐标形式,注意数字的运算不要出错.5.(5分)执行如图所示的程序框图,若输出k的值为6,则判断框内可填入的条件是()A.s>B.s>C.s>D.s>【分析】程序运行的S=××…×,根据输出k的值,确定S的值,从而可得判断框的条件.【解答】解:由程序框图知:程序运行的S=××…×,∵输出的k=6,∴S=××=,∴判断框的条件是S>,故选:C.【点评】本题考查了当型循环结构的程序框图,根据框图的流程判断程序运行的S值是解题的关键.6.(5分)已知命题p:对任意x∈R,总有2x>0;q:“x>1”是“x>2”的充分不必要条件,则下列命题为真命题的是()A.p∧qB.¬p∧¬qC.¬p∧qD.p∧¬q【分析】由命题p,找到x的范围是x∈R,判断p为真命题.而q:“x>1”是“x>2”的充分不必要条件是假命题,然后根据复合命题的判断方法解答.【解答】解:因为命题p对任意x∈R,总有2x>0,根据指数函数的性质判断是真命题;命题q:“x>1”不能推出“x>2”;但是“x>2”能推出“x>1”所以:“x>1”是“x>2”的必要不充分条件,故q是假命题;所以p∧¬q为真命题;故选:D.【点评】判断复合命题的真假,要先判断每一个命题的真假,然后做出判断.7.(5分)某几何体的三视图如图所示则该几何体的表面积为()A.54B.60C.66D.72【分析】几何体是三棱柱消去一个同底的三棱锥,根据三视图判断各面的形状及相关几何量的数据,把数据代入面积公式计算.【解答】解:由三视图知:几何体是直三棱柱消去一个同底的三棱锥,如图:三棱柱的高为5,消去的三棱锥的高为3,三棱锥与三棱柱的底面为直角边长分别为3和4的直角三角形,∵AB⊥平面BEFC,∴AB⊥BC,BC=5,FC=2,AD=BE=5,DF=5∴几何体的表面积S=×3×4+×3×5+×4+×5+3×5=60.故选:B.【点评】本题考查了由三视图求几何体的表面积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.8.(5分)设F1,F2分别为双曲线﹣=1(a>0,b>0)的左、右焦点,双曲线上存在一点P使得|PF1|+|PF2|=3b,|PF1|•|PF2|=ab,则该双曲线的离心率为()A. B. C. D.3【分析】不妨设右支上P点的横坐标为x,由焦半径公式有|PF1|=ex+a,|PF2|=ex﹣a,结合条件可得a=b,从而c==b,即可求出双曲线的离心率.【解答】解:不妨设右支上P点的横坐标为x由焦半径公式有|PF1|=ex+a,|PF2|=ex﹣a,∵|PF1|+|PF2|=3b,|PF1|•|PF2|=ab,∴2ex=3b,(ex)2﹣a2=ab∴b2﹣a2=ab,即9b2﹣4a2﹣9ab=0,∴(3b﹣4a)(3b+a)=0∴a=b,∴c==b,∴e==.故选:B.【点评】本题主要考查了双曲线的简单性质,考查了双曲线的第二定义的灵活运用,属于中档题.9.(5分)某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()A.72B.120C.144D.168【分析】根据题意,分2步进行分析:①、先将3个歌舞类节目全排列,②、因为3个歌舞类节目不能相邻,则分2种情况讨论中间2个空位安排情况,由分步计数原理计算每一步的情况数目,进而由分类计数原理计算可得答案.【解答】解:分2步进行分析:1、先将3个歌舞类节目全排列,有A33=6种情况,排好后,有4个空位,2、因为3个歌舞类节目不能相邻,则中间2个空位必须安排2个节目,分2种情况讨论:①将中间2个空位安排1个小品类节目和1个相声类节目,有C21A22=4种情况,排好后,最后1个小品类节目放在2端,有2种情况,此时同类节目不相邻的排法种数是6×4×2=48种;②将中间2个空位安排2个小品类节目,有A22=2种情况,排好后,有6个空位,相声类节目有6个空位可选,即有6种情况,此时同类节目不相邻的排法种数是6×2×6=72种;则同类节目不相邻的排法种数是48+72=120,故选:B.【点评】本题考查计数原理的运用,注意分步方法的运用,既要满足题意的要求,还要计算或分类简便.10.(5分)已知△ABC的内角A,B,C满足sin2A+sin(A﹣B+C)=sin(C﹣A﹣B)+,面积S满足1≤S≤2,记a,b,c分别为A,B,C所对的边,在下列不等式一定成立的是()A.bc(b+c)>8B.ab(a+b)>16C.6≤abc≤12D.12≤abc≤24【分析】根据正弦定理和三角形的面积公式,利用不等式的性质进行证明即可得到结论. 【解答】解:∵△ABC的内角A,B,C满足sin2A+sin(A﹣B+C)=sin(C﹣A﹣B)+,∴sin2A+sin2B=﹣sin2C+,∴sin2A+sin2B+sin2C=,∴2sinAcosA+2sin(B+C)cos(B﹣C)=,2sinA(cos(B﹣C)﹣cos(B+C))=,化为2sinA[﹣2sinBsin(﹣C)]=,∴sinAsinBsinC=.设外接圆的半径为R,由正弦定理可得:=2R,由S=,及正弦定理得sinAsinBsinC==,即R2=4S,∵面积S满足1≤S≤2,∴4≤R2≤8,即2≤R≤,由sinAsinBsinC=可得,显然选项C,D不一定正确,A.bc(b+c)>abc≥8,即bc(b+c)>8,正确,B.ab(a+b)>abc≥8,即ab(a+b)>8,但ab(a+b)>16,不一定正确,故选:A.【点评】本题考查了两角和差化积公式、正弦定理、三角形的面积计算公式、基本不等式等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题.二、填空题:本大题共3小题,每小题5分共15分把答案填写在答题卡相应位置上.11.(5分)设全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},则(∁UA)∩B={7,9}.【分析】由条件利用补集的定义求得∁UA,再根据两个集合的交集的定义求得(∁UA)∩B.【解答】解:∵全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},∴(∁UA)={4,6,7,9 },∴(∁UA)∩B={7,9},故答案为:{7,9}.【点评】本题主要考查集合的表示方法、集合的补集,两个集合的交集的定义和求法,属于基础题.12.(5分)函数f(x)=log2•log(2x)的最小值为.【分析】利用对数的运算性质可得f(x)=,即可求得f(x)最小值. 【解答】解:∵f(x)=log2•log(2x)∴f(x)=log()•log(2x)=log x•log(2x)=log x(log x+log2)=log x(log x+2)=,∴当log x+1=0即x=时,函数f(x)的最小值是.故答案为:﹣【点评】本题考查对数不等式的解法,考查等价转化思想与方程思想的综合应用,考查二次函数的配方法,属于中档题.13.(5分)已知直线ax+y﹣2=0与圆心为C的圆(x﹣1)2+(y﹣a)2=4相交于A,B两点,且△ABC为等边三角形,则实数a=4±.【分析】根据圆的标准方程,求出圆心和半径,根据点到直线的距离公式即可得到结论. 【解答】解:圆心C(1,a),半径r=2,∵△ABC为等边三角形,∴圆心C到直线AB的距离d=,即d=,平方得a2﹣8a+1=0,解得a=4±,故答案为:4±【点评】本题主要考查点到直线的距离公式的应用,利用条件求出圆心和半径,结合距离公式是解决本题的关键.三、选做题:考生注意(14)(15)、(16)三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分14.(5分)过圆外一点P作圆的切线PA(A为切点),再作割线PBC依次交圆于B、C,若PA=6,AC=8,BC=9,则AB=4.【分析】由题意,∠PAB=∠C,可得△PAB∽△PCA,从而,代入数据可得结论.【解答】解:由题意,∠PAB=∠C,∠APB=∠CPA,∴△PAB∽△PCA,∴,∵PA=6,AC=8,BC=9,∴,∴PB=3,AB=4,故答案为:4.【点评】本题考查圆的切线的性质,考查三角形相似的判断,属于基础题.15.(5分)已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ﹣4cosθ=0(ρ≥0,0≤θ<2π),则直线l与曲线C的公共点的极径ρ=.【分析】直线l的参数方程化为普通方程、曲线C的极坐标方程化为直角坐标方程,联立求出公共点的坐标,即可求出极径.【解答】解:直线l的参数方程为,普通方程为y=x+1,曲线C的极坐标方程为ρsin2θ﹣4cosθ=0的直角坐标方程为y2=4x,直线l与曲线C联立可得(x﹣1)2=0,∴x=1,y=2,∴直线l与曲线C的公共点的极径ρ==.故答案为:.【点评】本题考查直线l的参数方程、曲线C的极坐标方程,考查学生的计算能力,属于中档题.16.若不等式|2x﹣1|+|x+2|≥a2+a+2对任意实数x恒成立,则实数a的取值范围是[﹣1,].【分析】利用绝对值的几何意义,确定|2x﹣1|+|x+2|的最小值,然后让a2+a+2小于等于它的最小值即可.【解答】解:|2x﹣1|+|x+2|=,∴x=时,|2x﹣1|+|x+2|的最小值为,∵不等式|2x﹣1|+|x+2|≥a2+a+2对任意实数x恒成立,∴a2+a+2≤,∴a2+a﹣≤0,∴﹣1≤a≤,∴实数a的取值范围是[﹣1,].故答案为:[﹣1,].【点评】本题考查绝对值不等式的解法,突出考查一元二次不等式的解法及恒成立问题,属于中档题.四、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.17.(13分)已知函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ<)的图象关于直线x=对称,且图象上相邻两个最高点的距离为π.(Ⅰ)求ω和φ的值;(Ⅱ)若f()=(<α<),求cos(α+)的值.【分析】(Ⅰ)由题意可得函数f(x)的最小正周期为π 求得ω=2.再根据图象关于直线x=对称,结合﹣≤φ<可得φ 的值.(Ⅱ)由条件求得sin(α﹣)=.再根据α﹣的范围求得cos(α﹣)的值,再根据cos(α+)=sinα=sin[(α﹣)+],利用两角和的正弦公式计算求得结果.【解答】解:(Ⅰ)由题意可得函数f(x)的最小正周期为π,∴=π,∴ω=2.再根据图象关于直线x=对称,可得 2×+φ=kπ+,k∈z.结合﹣≤φ<可得φ=﹣.(Ⅱ)∵f()=(<α<),∴sin(α﹣)=,∴sin(α﹣)=.再根据 0<α﹣<,∴cos(α﹣)==,∴cos(α+)=sinα=sin[(α﹣)+]=sin(α﹣)cos+cos(α﹣)sin=+=.【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求函数的解析式,两角和差的三角公式、的应用,属于中档题.18.(13分)一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3,从盒中任取3张卡片.(Ⅰ)求所取3张卡片上的数字完全相同的概率;(Ⅱ)X表示所取3张卡片上的数字的中位数,求X的分布列与数学期望.(注:若三个数字a,b,c满足a≤b≤c,则称b为这三个数的中位数.)【分析】第一问是古典概型的问题,要先出基本事件的总数和所研究的事件包含的基本事件个数,然后代入古典概型概率计算公式即可,相对简单些;第二问应先根据题意求出随机变量X的所有可能取值,此处应注意所取三张卡片可能来自于相同数字(如1或2)或不同数字(1和2、1和3、2和3三类)的卡片,因此应按卡片上的数字相同与否进行分类分析,然后计算出每个随机变量所对应事件的概率,最后将分布列以表格形式呈现.【解答】解:(Ⅰ)由古典概型的概率计算公式得所求概率为P=,(Ⅱ)由题意知X的所有可能取值为1,2,3,且P(X=1)=,P(X=2)=,P(X=3)=,所以X的分布列为:X 1 2 3P所以E(X)=.【点评】本题属于中档题,关键是要弄清涉及的基本事件以及所研究的事件是什么才能解答好第一问;第二问的只要是准确记住了中位数的概念,应该说完成此题基本没有问题. 19.(13分)如图,四棱锥P﹣ABCD,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=,M为BC上的一点,且BM=,MP⊥AP.(Ⅰ)求PO的长;(Ⅱ)求二面角A﹣PM﹣C的正弦值.【分析】(Ⅰ)连接AC,BD,以O为坐标原点,OA,OB,OP方向为x,y,z轴正方向建立空间坐标系O﹣xyz,分别求出向量,的坐标,进而根据MP⊥AP,得到•=0,进而求出PO的长;(Ⅱ)求出平面APM和平面PMC的法向量,代入向量夹角公式,求出二面角的余弦值,进而根据平方关系可得:二面角A﹣PM﹣C的正弦值.【解答】解:(Ⅰ)连接AC,BD,∵底面是以O为中心的菱形,PO⊥底面ABCD,故AC∩BD=O,且AC⊥BD,以O为坐标原点,OA,OB,OP方向为x,y,z轴正方向建立空间坐标系O﹣xyz,∵AB=2,∠BAD=,∴OA=AB•cos(∠BAD)=,OB=AB•sin(∠BAD)=1,∴O(0,0,0),A(,0,0),B(0,1,0),C(﹣,0,0),=(0,1,0),=(﹣,﹣1,0),又∵BM=,∴=(﹣,﹣,0),则=+=(﹣,,0),设P(0,0,a),则=(﹣,0,a),=(,﹣,a),∵MP⊥AP,∴•=﹣a2=0,解得a=,即PO的长为.(Ⅱ)由(Ⅰ)知=(﹣,0,),=(,﹣,),=(,0,),设平面APM的法向量=(x,y,z),平面PMC的法向量为=(a,b,c),由,得,令x=1,则=(1,,2),由,得,令a=1,则=(1,﹣,﹣2),∵平面APM的法向量和平面PMC的法向量夹角θ满足:cosθ===﹣故sinθ==【点评】本题考查的知识点是空间二面角的平面角,建立空间坐标系,将二面角问题转化为向量夹角问题,是解答的关键.20.(12分)已知函数f(x)=ae2x﹣be﹣2x﹣cx(a,b,c∈R)的导函数f′(x)为偶函数,且曲线y=f(x)在点(0,f(0))处的切线的斜率为4﹣c.(Ⅰ)确定a,b的值;(Ⅱ)若c=3,判断f(x)的单调性;(Ⅲ)若f(x)有极值,求c的取值范围.【分析】(Ⅰ)根据函数f(x)=ae2x﹣be﹣2x﹣cx(a,b,c∈R)的导函数f′(x)为偶函数,且曲线y=f(x)在点(0,f(0))处的切线的斜率为4﹣c,构造关于a,b的方程,可得a,b的值;(Ⅱ)将c=3代入,利用基本不等式可得f′(x)≥0恒成立,进而可得f(x)在定义域R为均增函数;(Ⅲ)结合基本不等式,分c≤4时和c>4时两种情况讨论f(x)极值的存在性,最后综合讨论结果,可得答案.【解答】解:(Ⅰ)∵函数f(x)=ae2x﹣be﹣2x﹣cx(a,b,c∈R)∴f′(x)=2ae2x+2be﹣2x﹣c,由f′(x)为偶函数,可得2(a﹣b)(e2x﹣e﹣2x)=0,即a=b,又∵曲线y=f(x)在点(0,f(0))处的切线的斜率为4﹣c,即f′(0)=2a+2b﹣c=4﹣c,故a=b=1;(Ⅱ)当c=3时,f′(x)=2e2x+2e﹣2x﹣3≥2=1>0恒成立,故f(x)在定义域R为均增函数;(Ⅲ)由(Ⅰ)得f′(x)=2e2x+2e﹣2x﹣c,而2e2x+2e﹣2x≥2=4,当且仅当x=0时取等号,当c≤4时,f′(x)≥0恒成立,故f(x)无极值;当c>4时,令t=e2x,方程2t+﹣c=0的两根均为正,即f′(x)=0有两个根x1,x2,当x∈(x1,x2)时,f′(x)<0,当x∈(﹣∞,x1)∪(x2,+∞)时,f′(x)>0,故当x=x1,或x=x2时,f(x)有极值,综上,若f(x)有极值,c的取值范围为(4,+∞).【点评】本题考查的知识点是利用导数研究曲线上某点切线方程,利用导数研究函数的单调性,是导数的综合应用,难度中档.22.(12分)设a1=1,an+1=+b(n∈N*)(Ⅰ)若b=1,求a2,a3及数列{an}的通项公式;(Ⅱ)若b=﹣1,问:是否存在实数c使得a2n<c<a2n+1对所有的n∈N*成立,证明你的结论.【分析】(Ⅰ)若b=1,利用an+1=+b,可求a2,a3;证明{(an﹣1)2}是首项为0,公差为1的等差数列,即可求数列{an}的通项公式;(Ⅱ)设f(x)=,则an+1=f(an),令c=f(c),即c=﹣1,解得c=.用数学归纳法证明加强命题a2n<c<a2n+1<1即可.【解答】解:(Ⅰ)∵a1=1,an+1=+b,b=1,∴a2=2,a3=+1;又(an+1﹣1)2=(an﹣1)2+1,∴{(an﹣1)2}是首项为0,公差为1的等差数列;∴(an﹣1)2=n﹣1,∴an=+1(n∈N*);(Ⅱ)设f(x)=,则an+1=f(an),令c=f(c),即c=﹣1,解得c=.下面用数学归纳法证明加强命题a2n<c<a2n+1<1.n=1时,a2=f(1)=0,a3=f(0)=﹣1,∴a2<c<a3<1,成立;设n=k时结论成立,即a2k<c<a2k+1<1∵f(x)在(﹣∞,1]上为减函数,∴c=f(c)>f(a2k+1)>f(1)=a2,∴1>c>a2k+2>a2,∴c=f(c)<f(a2k+2)<f(a2)=a3<1,∴c<a2k+3<1,∴a2(k+1)<c<a2(k+1)+1<1,即n=k+1时结论成立,综上,c=使得a2n<c<a2n+1对所有的n∈N*成立.【点评】本题考查数列递推式,考查数列的通项,考查数学归纳法,考查学生分析解决问题的能力,难度大.21.(12分)如图,设椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,点D在椭圆上.DF1⊥F1F2,=2,△DF1F2的面积为.(Ⅰ)求椭圆的标准方程;(Ⅱ)设圆心在y轴上的圆与椭圆在x轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径.【分析】(Ⅰ)设F1(﹣c,0),F2(c,0),依题意,可求得c=1,易求得|DF1|==,|DF2|=,从而可得2a=2,于是可求得椭圆的标准方程;(Ⅱ)设圆心在y轴上的圆C与椭圆+y2=1相交,P1(x1,y1),P2(x2,y2)是两个交点,依题意,利用圆和椭圆的对称性,易知x2=﹣x1,y1=y2,|P1P2|=2|x1|,由F1P1⊥F2P2,得x1=﹣或x1=0,分类讨论即可求得圆的半径.【解答】解:(Ⅰ)设F1(﹣c,0),F2(c,0),其中c2=a2﹣b2,由=2,得|DF1|==c,从而=|DF1||F1F2|=c2=,故c=1.从而|DF1|=,由DF1⊥F1F2,得=+=,因此|DF2|=,所以2a=|DF1|+|DF2|=2,故a=,b2=a2﹣c2=1,因此,所求椭圆的标准方程为+y2=1;(Ⅱ)设圆心在y轴上的圆C与椭圆+y2=1相交,P1(x1,y1),P2(x2,y2)是两个交点,y1>0,y2>0,F1P1,F2P2是圆C的切线,且F1P1⊥F2P2,由圆和椭圆的对称性,易知x2=﹣x1,y1=y2,|P1P2|=2|x1|,由(Ⅰ)知F1(﹣1,0),F2(1,0),所以=(x1+1,y1),=(﹣x1﹣1,y1),再由F1P1⊥F2P2,得﹣+=0,由椭圆方程得1﹣=,即3+4x1=0,解得x1=﹣或x1=0.当x1=0时,P1,P2重合,此时题设要求的圆不存在;当x1=﹣时,过P1,P2,分别与F1P1,F2P2垂直的直线的交点即为圆心C.由F1P1,F2P2是圆C的切线,且F1P1⊥F2P2,知CP1⊥CP2,又|CP1|=|CP2|,故圆C的半径|CP1|=|P1P2|=|x1|=.【点评】本题考查直线与圆锥曲线的综合问题,考查化归思想、方程思想分类讨论思想的综合应用,考查综合分析与运算能力,属于难题.。

高三数学寒假作业冲刺培训班之历年真题汇编复习实战77847

高三数学寒假作业冲刺培训班之历年真题汇编复习实战77847

本试卷分选择题和非选择题两部分,共4页,满分为150分.考试用时120分钟.注意事项:1、答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和学号填写在答题卡和答卷密封线内相应的位置上,用2B 铅笔将自己的学号填涂在答题卡上。

2、选择题每小题选出答案后,有2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案;不能答在试卷上。

3、非选择题必须用黑色字迹的钢笔或签字笔在答卷纸上作答,答案必须写在答卷纸各题目指定区域内的相应位置上,超出指定区域的答案无效;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4、考生必须保持答题卡的整洁和平整。

第一部分选择题(共 50 分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.函数)421sin(2π+=x y 的周期是( )A .4π B .π4 C .π2D .2π 2.函数)10lg(1)(22x x x x f -+-=的定义域为( )A .RB .[1,10]C .(1,10)D .)10,1()1,(⋃--∞3.一个圆锥的侧面展开图是半径为3,圆心角为120的扇形,则圆锥的体积等于A.π322 B.π22 C.π324 D.π4835 4.下列函数中,在其定义域内既是奇函数又是减函数的是( ) A .3x y -=)(R x ∈B .x y sin =)(R x ∈C .x y tan -=D .xy )21(=)(R x ∈5.若向量)2,1(=a ,)4,3(-=b ,则)()(b a b a +⋅⋅等于( ) A .20 B .),(3010- C .54 D .),(248-6.如图,平面内的两条相交直线1OP 和2OP 将该平面分割成四个部分Ⅰ、Ⅱ、Ⅲ、Ⅳ(不包括边界). 若21OP b OP a OP +=,且点P 落在第Ⅲ部分,则实数b a 、满足( ) A . 0,0>>b a . B. 0,0<>b a . C . 0,0><b a . D. 0,0<<b a .y xO6π 2 512π 7.在ABC ∆中,角2120,tan tan 33C A B =+=则tan tan A B 的值为 ( ) A .41 B .13 C .21 D .538.已知函数()sin()(0,0,||)2f x A x A πωϕωϕ=+>><的部分图象如下图所示.则函数()f x 的解析式为( )A .)621sin(2)(π+=x x fB .)621sin(2)(π-=x x fC .)62sin(2)(π-=x x fD .()2sin(2)6f x x π=+9.在ABC ∆中,有命题①BC AC AB =-;②0=++CA BC AB ;③若0)()(=-⋅+,则ABC ∆为等腰三角形;④若0>⋅AB AC ,则ABC ∆为锐角三角形. 上述命题正确的是 ( )A.①②B.①④C.②③D.②③④100≠=b a ,且关于x 的方程02=⋅++b a a x 有实数根,则a 与b 的夹角的取值范围是 ( ) A.[,]3ππ B.[0,]6π C.2[,]33ππ D.[,]6ππ 第二部分非选择题 (共 100 分)二.填空题:本大题共5小题, 每小题5分, 共25分. 把答案填在答卷的相应位置. 11.=-57sin 333cos 33sin 27sin ;12.已知1:210l x my ++=与2:31l y x =-,若两直线平行,则m 的值为; 13.将函数x y 2sin =的图象按向量)0,6(π-=平移后的图象的函数解析式为;14.函数[]π2,0|,sin |2sin )(∈+=x x x x f 的图象与直线k y =有且仅有两个不同的交点,则k 的取值范围是__________.15.对于任意向量a 、b ,定义新运算“※”:a ※b =||||sin a b θ⋅⋅(其中 θ为a 与b 所的角)。

高三数学寒假作业冲刺培训班之历年真题汇编复习实战48577

高三数学寒假作业冲刺培训班之历年真题汇编复习实战48577

数学(文科).3本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至8页,共150分.考试时间120分钟.考试结束,将本试卷和答题卡一并交回.第Ⅰ卷(选择题共40分)注意事项: 1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案.不能答在试卷上.一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.设全集}4,3,2,1{=U ,集合}2,1{=P ,}3,1{=Q ,则=)(Q C P UA .{1}B .{2}C .{4}D .{1,2,4}2.若向量a=(1,—1),b=(—1,1),c=(5,1),则c+a+b=A .aB .bC .cD .a+b 3.抛物线24y x =的焦点坐标为A .(0,2)B .(2,0)C .(0,1)D .(1,0)4.已知1=a ,复数),()2()1(2R b a i a a z ∈-+-=,则“1=a ”是“z 为纯虚数”的 A .充分非必要条件B .必要非充分条件 C .充要条件D .既非充分又非必要条件5.如图,是CCTV 青年歌手大奖赛上某位选手得分的茎叶图,去掉一个最高分和一个最低分后,所剩数据的平均 数为 A .85 B .86 C .87 D .88 6.右图,是一个简单空间几何体的三视图,其主视图与左视 图都是边长为2的正三角形,俯视图轮廓为正方形,则 其体积是A 342C 43D .837.一只小蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为A .827 B .271 C .2627 D .1527 8.已知数列:1213214321,,,,,,,,,,...,1121231234依它的前10项的规律,这个数列的第项2010a 满足A .20101010a <<B .20101110a ≤< C .2010110a ≤≤ D .201010a >第Ⅱ卷(非选择题 共110分)注意事项:用黑色签字笔将答案写在答题卡上规定的区域内.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上. 9.函数y x=的定义域是__. 10.=8cos8sinππ.11.如图,是计算111124620++++的值的一个程序 框图,其中判断框内应填入的条件是. 12.若函数2)(3++-=cx x x f )(R c ∈,则/3()2f -、/(1)f -、/(0)f 的大小关系是_.13.如图,直角POB ∆中,90=∠PBO ,以O 为圆心、OB 为半径作圆弧交OP 于A 点.若圆弧AB 等分△POB 的面积,且∠AOB=α弧 度,则tan α=α.14.已知函数⎩⎨⎧>-≤++-=0,20,)(2x x c bx x x f ,若1)1(=-f ,2)0(-=f ,则函数x x f x g +=)()(的零点个数为____.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分12分)已知函数)2cos(cos )(x x x f -+=π.(Ⅰ)求)3(πf 的值;(Ⅱ)求)(x f 的单调递减区间.16.(本小题满分14分)如图,在三棱锥A —BPC 中,AP ⊥PC ,AC ⊥BC ,M 为AB 中点,D 为PB 中点,且△PMB 为正 三角形.(Ⅰ)求证:MD//平面APC ;(Ⅱ)求 证:平面ABC ⊥平面APC . 17.(本小题满分13分)已知函数b ax x x f ++=23)(的图象在点)0,1(P 处的切线与直线03=+y x 平行.(Ⅰ)求常数a 、b 的值;(Ⅱ)求函数)(x f 在区间]4,0[上的最小值和最大值.18.(本小题满分13分)某校高三数学竞赛初赛考试后,对90分以上(含90分)的成绩进行统计,其频率分布直方图如图 所示.若130~140分数段的人数为2人.(Ⅰ)估计这所学校成绩在90~140分之间学生的参赛人数;(Ⅱ)现根据初赛成绩从第一组和第五组(从低分段到高分段依次为第一组、第二组、…、第五组)中任意选出两人,形成帮扶学习小组.若选出的两人成绩之差大于20,则称这两人为“黄金搭档组”,试求选出的两人为“黄金搭档组”的概率.19.(本小题满分14分)已知椭圆C 的中心在坐标原点,焦点在x 轴上,离心率为21,椭圆的短轴端点和焦点所组成的四边 形周长等于8.(Ⅰ)求椭圆C 的方程;(Ⅱ)若过点(0,—2)的直线l 与椭圆C 相交于A ,B 两点(A ,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点,求直线l 的方程.20.(本小题满分14分) 当n p p p ,,,21 均为正数时,称np p p n+++ 21为n p p p ,,,21 的“均倒数”.已知数列{}n a 的各项均为正数,且其前n 项的“均倒数”为121+n . (Ⅰ)试求数列{}n a 的通项公式; (Ⅱ)设12+=n a c nn ,试判断并说明()*1n n c c n N +-∈的符号; (Ⅲ)已知(0)n an b t t =>,记数列{}n b 的前n 项和为n S ,试求1n nS S +的值.怀柔区~度第二学期高三数学期中练习参考答案及评分标准(文科).3 一、选择题:本大题共 8 小题,每小题 5 分,共 40 分. 二、填空题:本大题共 6 小题,每小题 5 分,共 30 分.题号 1 2 3 4 5 6 7 8 答案BCDACCBB9. }0{>x x 10.4211. 20n ≤ 12./(0)f >/(1)f ->/3()2f -13. 2 14. 3三、解答题:本大题共 6 小题,共 80 分. 15.(本小题满分12分)解:(Ⅰ)()coscos()3323f ππππ=+-=4分 (Ⅱ) x x x x x f cos sin )2cos(cos )(+=-+=π2()22coscos sin )44)84x x x x x πππ=+=+=+⋅⋅⋅⋅⋅⋅⋅⋅分由232422πππππ+≤+≤+k x k 得45242ππππ+≤≤+k x k∴)(x f 的递减区间为]452,42[ππππ++k k ,)(Z k ∈12分16.(本小题满分14分)解(Ⅰ)∵M 为AB 中点,D 为PB 中点,∴MD//AP ,又MD ⊄平面ABC , ∴MD//平面APC 。

高三数学寒假作业冲刺培训班之历年真题汇编复习实战78677

高三数学寒假作业冲刺培训班之历年真题汇编复习实战78677

注意事项:1.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.答卷前,考生务必先将自己的姓名、准考证号码填写在答题卡上.2.回答第I 卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效. 3.回答第II 卷时,将答案写在答题卡上,写在本试卷上无效. 4.考试结束后,将本试卷和答题卡一并交回.第I 卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{}{=22,x A x B y y <==,则A B =( )A.[)0,1B.()0,2C.()1+∞,D.[)0+∞, 2.已知复数z 满足()z 1i i +=-,则z =( ) A.12C.13.在等比数列{}n a 中,2348a a a =,78a =,则1=a ( ) A.1 B. 1± C.2 D.2±4.如图所示的程序框图的运行结果为( ) A. 1- B.12C.1D.2 5.在区间[]0,4上随机取两个实数,x y ,使得28x y +≤的概率为( )6.在平行四边形ABCD 中,4,3,3AB AD DAB π==∠=,点,E F 分别在,BC DC 边上,且2,BE EC DF FC ==,则AE BF ⋅=( )A.83-B.1-C. 2D. 1037.已知圆C 方程为()()22210x y r r -+=>,若p :13r ≤≤;q :圆C 上至多有3个点到直线+30x -=的距离为1,则p 是q 的( )A.充分不必要条件B. 必要不充分条件C.充要条件D.既不充分也不必要条件(第4题图)(第6题图)8.已知函数()22,0lg ,0x x x f x x x ⎧+⎪=⎨>⎪⎩≤,则函数()()11g x f x =--的零点个数为( )A.1B.2C.3D.49.某空间几何体的三视图如图所示,则该几何体的外接球的表面积是( )A.36πB.52πC. 72πD.100π10.若()()()2cos 2+0f x x ϕϕ=>的图像关于直线3x π=对称,且当ϕ取最小值时,00,2x π⎛⎫∃∈ ⎪⎝⎭,使得()0f x a =,则a 的取值范围是( ) A.(]1,2- B. [)2,1-- C.()1,1- D.[)2,1-11.已知F 是抛物线24x y =的焦点,P 为抛物线上的动点,且A 的坐标为()0,1-,则PF PA的最小值是( )A.14 B. 1212.已知函数()2()e x f x x ax b =++,当1b <时,函数()f x 在(),2-∞-,()1,+∞上均为增函数,则2a ba +-的取值范围是( ) A .22,3⎛⎤- ⎥⎝⎦B .1,23⎡⎫-⎪⎢⎣⎭C .2,3⎛⎤-∞ ⎥⎝⎦D .2,23⎡⎤-⎢⎥⎣⎦第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4个小题,每小题5分,共20分.13.已知()f x 是定义在R 上的奇函数,当0x >时,()2=log 1f x x -,则2f ⎛- ⎝⎭=.14.若244xy+=,则2x y +的最大值是.第二次八校联考文科数学 第 2 页(共6页) 俯视图正视图 侧视图第9题图)15.已知12,l l 分别为双曲线()222210,0x y a b a b-=>>的两条渐近线,且右焦点关于1l 的对称点在2l 上,则双曲线的离心率为.16.数列{}n a 满足1=1a ,()()1=11n n na n a n n ++++,且2=cos 3n n n b a π,记n S 为数列{}n b 的前n 项和,则120S =.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)如图,在平面四边形ABCD 中,AB AD ⊥,1AB =,AC 23ABC π∠=,3ACD π∠=.(Ⅰ)求sin BAC ∠;(Ⅱ)求DC 的长.18.(本小题满分12分)国内某知名大学有男生14000人,女生10000人.该校体育学院想了解本校学生的运动状况,根据性别采取分层抽样的方法从全校学生中抽取120人,统计他们平均每天运动的时间,如下表:(平均每天运动的时间单位:小时,该校学生平均每天运动的时间范围是[]0,3.) (Ⅰ)请根据样本估算该校男生平均每天运动的时间(结果精确到0.1);(Ⅱ)若规定平均每天运动的时间不少于2小时的学生为“运动达人”,低于2小时的学生 为“非运动达人”.①请根据样本估算该校“运动达人”的数量;②请根据上述表格中的统计数据填写下面22⨯列联表,并通过计算判断能否在犯错 误的概率不超过0.05参考公式:()()()()()22=n ad bc K a b c d a c b d -++++,其中.n a b c d =+++A CDB(第17题图)第二次八校联考文科数学 第 3 页(共6页)参考数据:19.(本小题满分12分)如图,在三棱柱111ABC A B C -中,ABC △是等边三角形,14BC CC ==,D 是11A C 中点.(Ⅰ)求证:1A B ∥平面1B CD ;(Ⅱ)当三棱锥11C B C D -体积最大时,求点B 到平面1B CD 的距离.20. (本小题满分12分)定义:在平面内,点P 到曲线Γ上的点的距离的最小值称为点P 到曲线Γ的距离.在平面直角坐标系xOy 中,已知圆M:(2212x y +=及点()A ,动点P 到圆M 的距离与到A 点的距离相等,记P 点的轨迹为曲线W . (Ⅰ)求曲线W 的方程;(Ⅱ)过原点的直线l (l 不与坐标轴重合)与曲线W 交于不同的两点,C D ,点E 在曲线W 上,且CE CD ⊥,直线DE 与x 轴交于点F ,设直线,DE CF 的斜率分别为12,k k ,求12.kk21.(本小题满分12分)已知函数()()ln 4f x ax x a =--∈R .A B 1A C1C D 1B (第19题图) 第二次八校联考文科数学 第 4 页(共6页)(Ⅰ)讨论()f x 的单调性;(Ⅱ)当2a =时,若存在区间[]1,,2m n ⎡⎫⊆+∞⎪⎢⎣⎭,使()f x 在[],m n 上的值域是,11kk m n ⎡⎤⎢⎥++⎣⎦,求k 的取值范围.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分.答题时请用2B 铅笔在答题卡上把所选题目的题号涂黑. 22. (本小题满分10分)41 :几何证明选讲如图,在锐角三角形ABC 中,AB AC =,以AB 为直径的圆O 与边,BC AC 另外的交点分别为,D E ,且DF AC ⊥于.F (Ⅰ)求证:DF 是O ⊙的切线;(Ⅱ)若3CD =,7=5EA ,求AB 的长.23.(本小题满分10分)44 :坐标系与参数方程已知曲线1C 的参数方程为1cos 3sin x t y t αα=-+⎧⎨=+⎩(t 为参数,0απ<≤),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4πρθ⎛⎫=+ ⎪⎝⎭.(Ⅰ)若极坐标为4π⎫⎪⎭的点A 在曲线1C 上,求曲线1C 与曲线2C 的交点坐标;(Ⅱ)若点P 的坐标为()1,3-,且曲线1C 与曲线2C 交于,B D 两点,求.PB PD ⋅24.(本小题满分10分)选修45:不等式选讲 已知函数()+122f x x x =--. (Ⅰ)求不等式()1f x x -≥的解集;(Ⅱ)若()f x 的最大值是m ,且,,a b c 均为正数,a b c m ++=,求222b c a a b c++的最小值.第二次八校联考文科数学 第 5 页(共6页)第二次八校联考文科数学 第 6 页(共6页)BO(第22题图)八校高三第二次联考文科数学参考答案一、选择题答案:题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 A B A A D CACB DC A二、填空题: 13.32; 14.2; 15.2; 16.7280 三、解答题:17.(Ⅰ)在ABC ∆中,由余弦定理得:2222cos AC BC BA BC BA B =+-⋅,即260BC BC +-=,解得:2BC =,或3BC =-(舍), ………………3分由正弦定理得:sin sin sin sin BC AC BC B BAC BAC B AC =⇒∠==∠………………6分(Ⅱ)由(Ⅰ)有:cos sin CAD BAC ∠=∠=sin CAD ∠=,所以1sin sin 32D CAD π⎛⎫=∠+== ⎪⎝⎭, ………………9分由正弦定理得:sin sin sin sin DC AC AC CADDC CAD D D∠=⇒===∠……………12分(其他方法相应给分)18. (Ⅰ)由分层抽样得:男生抽取的人数为14000120=7014000+10000⨯人,女生抽取人数为1207050-=人,故x =5,y =2, ……………2分则该校男生平均每天运动的时间为:0.2520.7512 1.2523 1.7518 2.2510 2.7551.570⨯+⨯+⨯+⨯+⨯+⨯≈, ……………5分故该校男生平均每天运动的时间约为1.5小时; (Ⅱ)①样本中“运动达人”所占比例是201=1206,故估计该校“运动达人”有 ()1140001000040006⨯+=人; ……………8分 ②由表格可知:运动达人 非运动达人总 计 男 生 15 55 70 女 生 5 45 50 总 计20100120……………9分华师一附中 黄冈中学 黄石二中 荆州中学 襄阳四中 襄阳五中 孝感高中 鄂南高中故2K 的观测值()2120154555596=2.7433.841.20100507035k ⨯-⨯=≈<⨯⨯⨯……………11分 故在犯错误的概率不超过0.05的前提下不能认为“是否为‘运动达人’与性别有关”. ……………12分19.(Ⅰ)连结1BC ,交1B C 于O ,连DO .在三棱柱111ABC A B C -中,四边形11BB C C 为平行四边形,则1BO OC =,又D 是11A C 中点,∴1DO A B ∥,而DO ⊂平面1B CD ,1A B ⊄平面1B CD ,∴1A B ∥平面1B CD . ……………4分(Ⅱ)设点C 到平面111A B C 的距离是h,则11111=3C B C D B C D V S h -△,而14h CC =≤,故当三棱锥11C B C D -体积最大时,1=4h CC =,即1CC ⊥平面111A B C . ……………6分 由(Ⅰ)知:1BO OC =,所以B 到平面1B CD 的距离与1C 到平面1B CD 的距离相等. ∵1CC ⊥平面111A B C ,1B D ⊂平面111A B C ,∴11CC B D ⊥,∵ABC △是等边三角形,D 是11A C 中点,∴111AC B D ⊥,又1111=CC AC C ,1CC ⊂平面11AA C C ,11AC ⊂平面11AA C C ,∴1B D ⊥平面11AA C C ,∴1B D CD ⊥,由计算得:1B D CD =1B CD S ∆ ……………9分设1C 到平面1B CD 的距离为h ',由1111=C B C D C B CD V V --得:114=3B CD S h h ''⇒=△B 到平面1B CD……………12分 (其他方法相应给分)20.(Ⅰ)由分析知:点P在圆内且不为圆心,故PA PM AM +=>=, 所以P 点的轨迹为以A 、M 为焦点的椭圆, ……………2分设椭圆方程为()222210x y a b a b +=>>,则22a a c c ⎧⎧=⎪⎪⇒⎨⎨==⎪⎪⎩⎩,所以21b =,故曲线W 的方程为22 1.3x y +=……………5分(Ⅱ)设111122(,)(0),(,)C x y x y E x y ≠,则11(,)D x y --,则直线CD 的斜率为11CD y k x =,又CE CD ⊥,所以直线CE 的斜率是11CE x k y =-,记11xk y -=,设直线CE 的方程为y kx m =+,由题意知0,0k m ≠≠,由2213y kx mx y =+⎧⎪⎨+=⎪⎩得:()222136330k x mkx m +++-=.∴122613mk x x k +=-+,∴121222()213my y k x x m k+=++=+,由题意知,12x x ≠, 所以1211121133y y y k x x k x +==-=+, ……………9分所以直线DE 的方程为1111()3y y y x x x +=+,令0y =,得12x x =,即1(2,0)F x . 可得121y k x =-. ……………11分 所以1213k k =-,即121=.3k k -……………12分 (其他方法相应给分)21.(Ⅰ)函数()f x 的定义域是()0+∞,,()1ax f x x-'=, 当a ≤0时,()0f x '≤,所以()f x 在()0+∞,上为减函数, ……………2分 当a >0时,令()0f x '=,则1x a =,当10x a ⎛⎫∈ ⎪⎝⎭,时,()0f x '<,()f x 为减函数, 当1+x a ⎛⎫∈∞ ⎪⎝⎭,时,()0f x '>,()f x 为增函数, ……………4分 ∴当a ≤0时,()f x 在()0+∞,上为减函数;当a >0时,()f x 在10a ⎛⎫ ⎪⎝⎭,上为减函数,在1+a ⎛⎫∞ ⎪⎝⎭,上为增函数.……………5分(Ⅱ)当2a =时,()2ln 4f x x x =--,由(Ⅰ)知:()f x 在1+2⎛⎫∞ ⎪⎝⎭,上为增函数,而[]1,,2m n ⎡⎫⊆+∞⎪⎢⎣⎭,∴()f x 在[],m n 上为增函数,结合()f x 在[],m n 上的值域是,11kk m n ⎡⎤⎢⎥++⎣⎦知:()(),11k k f m f n m n ==++,其中12m n <≤, 则()1k f x x =+在1,2⎡⎫+∞⎪⎢⎣⎭上至少有两个不同的实数根, ……………7分由()1kf x x =+得()2=221ln 4k x x x x --+-,记()()2=221ln 4x x x x x ϕ--+-,1,2x ⎡⎫∈+∞⎪⎢⎣⎭,则()1=4ln 3x x x x ϕ'---,记()()1=4ln 3F x x x x xϕ'=---,则()()2222213410x x x x F x x x -+-+'==>, ∴()F x 在1,2⎡⎫+∞⎪⎢⎣⎭上为增函数,即()x ϕ'在1,2⎡⎫+∞⎪⎢⎣⎭上为增函数,而()1=0ϕ',∴当1,12x ⎛⎫∈ ⎪⎝⎭时,()0x ϕ'<,当()1,x ∈+∞时,()0x ϕ'>,∴()x ϕ在1,12⎛⎫⎪⎝⎭上为减函数,在()1,+∞上为增函数, ……………10分而13ln 2922ϕ-⎛⎫= ⎪⎝⎭,()1=4ϕ-,当x →+∞时,()x ϕ→+∞,故结合图像得:()13ln 291422k k ϕϕ-⎛⎫<⇒-< ⎪⎝⎭≤≤,∴k 的取值范围是3ln 294,.2-⎛⎤- ⎥⎝⎦……………12分 (其他方法相应给分)22.(Ⅰ)连结,.AD OD 则AD BC ⊥,又AB AC =,∴D 为BC 的中点, ……………2分 而O 为AB 中点,∴OD AC ∥,又DF AC ⊥,∴OD DF ⊥, 而OD 是半径,∴DF 是O ⊙的切线.……………5分(Ⅱ)连DE ,则CED B C ∠=∠=∠,则DCF DEF △△≌,∴CF FE =,…………7分设CF FE x ==,则229DF x =-,由切割线定理得:2DF FE FA =⋅,即279+5x x x ⎛⎫-= ⎪⎝⎭,解得:1295=52x x =-,(舍),∴ 5.AB AC ==……………10分 (其他方法相应给分)23.(Ⅰ)点4π⎫⎪⎭对应的直角坐标为()1,1, ……………1分由曲线1C 的参数方程知:曲线1C 是过点()1,3-的直线,故曲线1C 的方程为20x y +-=,……………2分而曲线2C 的直角坐标方程为22220x y x y +--=,联立得2222020x y x y x y ⎧+--=⎨+-=⎩,解得:12122002x x y y ==⎧⎧⎨⎨==⎩⎩,,故交点坐标分别为()()2,0,0,2.……………5分 (Ⅱ)由判断知:P 在直线1C 上,将1+cos 3sin x t y t αα=-⎧⎨=+⎩代入方程22220x y x y +--=得:()24cos sin 60t t αα--+=,设点,B D 对应的参数分别为12,t t ,则12,PB t PD t ==,而126t t =,所以1212==6.PB PD t t t t ⋅=⋅……………10分(其他方法相应给分)24.(Ⅰ)131x x x <-⎧⎨--⎩≥,或11311x x x -⎧⎨--⎩≤≤≥,或131x x x >⎧⎨-+-⎩≥,解得:02x ≤≤故不等式的解集为[]02,; ……………5分 (Ⅱ)()3,131,113,1x x f x x x x x -<-⎧⎪=--⎨⎪-+>⎩ ≤≤,显然当1x =时,()f x 有大值,()1 2.m f ==∴2a b c ++=, ……………7分 而()()2222222222=b c a a b c a b c a bc ⎡⎤⎛⎫⎡⎤++++++++++⎢⎥ ⎪⎢⎥⎣⎦⎢⎥⎝⎭⎣⎦≥ ∴2222b c a a b c a b c ++++=≥,当且仅当2a b c ⎪++=⎩,即23a b c ===时取等号,故222b c a a b c++的最小值是2.……………10分 (其他方法相应给分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)复数的模长为()A.B. C.D.22.(5分)已知集合A={x|0<log4x<1},B={x|x≤2},则A∩B=()A.(0,1)B.(0,2] C.(1,2)D.(1,2]3.(5分)已知点A(1,3),B(4,﹣1),则与向量同方向的单位向量为()A. B. C. D.4.(5分)下列关于公差d>0的等差数列{an}的四个命题:p1:数列{an}是递增数列;p2:数列{nan}是递增数列;p3:数列是递增数列;p4:数列{an+3nd}是递增数列;其中真命题是()A.p1,p2 B.p3,p4 C.p2,p3 D.p1,p45.(5分)某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[20,40),[40,60),[60,80),[80,100).若低于60分的人数是15人,则该班的学生人数是()A.45 B.50 C.55 D.606.(5分)在△ABC,内角A,B,C所对的边长分别为a,b,c.asinBcosC+csinBcosA=b,且a>b,则∠B=()A.B.C.D.7.(5分)使得(3x+)n(n∈N+)的展开式中含有常数项的最小的n为()A.4 B.5 C.6 D.78.(5分)执行如图所示的程序框图,若输入n=10,则输出的S=()A.B.C.D.9.(5分)已知点O(0,0),A(0,b),B(a,a3),若△OAB为直角三角形,则必有()A.b=a3 B.C.D.10.(5分)已知三棱柱ABC﹣A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为()A.B.C.D.11.(5分)已知函数f(x)=x2﹣2(a+2)x+a2,g(x)=﹣x2+2(a﹣2)x﹣a2+8.设H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)},(max{p,q})表示p,q中的较大值,min{p,q}表示p,q中的较小值),记H1(x)的最小值为A,H2(x)的最大值为B,则A﹣B=()A.16 B.﹣16 C.﹣16a2﹣2a﹣16 D.16a2+2a﹣1612.(5分)设函数f(x)满足x2f′(x)+2xf(x)=,f(2)=,则x>0时,f(x)()A.有极大值,无极小值B.有极小值,无极大值C.既有极大值又有极小值D.既无极大值也无极小值二、填空题:本大题共4小题,每小题5分.13.(5分)某几何体的三视图如图所示,则该几何体的体积是.14.(5分)已知等比数列{an}是递增数列,Sn是{an}的前n项和.若a1,a3是方程x2﹣5x+4=0的两个根,则S6=.15.(5分)已知椭圆的左焦点为F,C与过原点的直线相交于A,B两点,连接AF、BF,若|AB|=10,|AF|=6,cos∠ABF=,则C的离心率e=.16.(5分)为了考察某校各班参加课外小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据,已知样本平均数为7,样本方差为4,且样本数据互不相同,则样本数据中的最大值为.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(12分)设向量,,.(1)若,求x的值;(2)设函数,求f(x)的最大值.18.(12分)如图,AB是圆的直径,PA垂直圆所在的平面,C是圆上的点.(Ⅰ)求证:平面PAC⊥平面PBC;(Ⅱ)若AB=2,AC=1,PA=1,求证:二面角C﹣PB﹣A的余弦值.19.(12分)现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答.(Ⅰ)求张同学至少取到1道乙类题的概率;(Ⅱ)已知所取的3道题中有2道甲类题,1道乙类题.设张同学答对甲类题的概率都是,答对每道乙类题的概率都是,且各题答对与否相互独立.用X表示张同学答对题的个数,求X的分布列和数学期望.20.(12分)如图,抛物线C1:x2=4y,C2:x2=﹣2py(p>0),点M(x0,y0)在抛物线C2上,过M作C1的切线,切点为A,B(M为原点O时,A,B重合于O),当x0=1﹣时,切线MA的斜率为﹣.(Ⅰ)求P的值;(Ⅱ)当M在C2上运动时,求线段AB中点N的轨迹方程(A,B重合于O时,中点为O).21.(12分)已知函数f(x)=(1+x)e﹣2x,g(x)=ax++1+2xcosx,当x∈[0,1]时,(I)求证:;(II)若f(x)≥g(x)恒成立,求实数a的取值范围.请考生在21、22、23题中任选一题作答,如果多做,则按所做的第一题计分。

高三数学寒假作业冲刺培训班之历年真题汇编复习实战57258

高三数学寒假作业冲刺培训班之历年真题汇编复习实战57258

一、选择题:本大题共10小题,每小题5分,共50分.在每个题给出的四个选项中,只有一项是符合要求的.1.(5分)某空间几何体的正视图是三角形,则该几何体不可能是()A.圆柱B.圆锥C.四面体D.三棱柱2.(5分)复数z=(3﹣2i)i的共轭复数等于()A.﹣2﹣3iB.﹣2+3iC.2﹣3iD.2+3i3.(5分)等差数列{an}的前n项和为Sn,若a1=2,S3=12,则a6等于()A.8B.10C.12D.144.(5分)若函数y=logax(a>0,且a≠1)的图象如图所示,则下列函数图象正确的是()A. B. C.D.5.(5分)阅读如图所示的程序框图,运行相应的程序,输出的S的值等于()A.18B.20C.21D.406.(5分)直线l:y=kx+1与圆O:x2+y2=1相交于A,B 两点,则“k=1”是“△OAB的面积为”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分又不必要条件7.(5分)已知函数f(x)=,则下列结论正确的是()A.f(x)是偶函数B.f(x)是增函数C.f(x)是周期函数D.f(x)的值域为[﹣1,+∞)8.(5分)在下列向量组中,可以把向量=(3,2)表示出来的是()A.=(0,0),=(1,2)B.=(﹣1,2),=(5,﹣2)C.=(3,5),=(6,10)D.=(2,﹣3),=(﹣2,3)9.(5分)设P,Q分别为圆x2+(y﹣6)2=2和椭圆+y2=1上的点,则P,Q两点间的最大距离是()A.5B.+C.7+D.610.(5分)用a代表红球,b代表蓝球,c代表黑球,由加法原理及乘法原理,从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a)(1+b)的展开式1+a+b+ab表示出来,如:“1”表示一个球都不取、“a”表示取出一个红球,而“ab”则表示把红球和蓝球都取出来.以此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个无区别的蓝球、5个有区别的黑球中取出若干个球,且所有的蓝球都取出或都不取出的所有取法的是()A.(1+a+a2+a3+a4+a5)(1+b5)(1+c)5B.(1+a5)(1+b+b2+b3+b4+b5)(1+c)5C.(1+a)5(1+b+b2+b3+b4+b5)(1+c5)D.(1+a5)(1+b)5(1+c+c2+c3+c4+c5)二、填空题:本大题共5小题,每小题4分,共20分.把答案填在答题卡的相应位置11.(4分)若变量 x,y满足约束条件,则z=3x+y的最小值为.12.(4分)在△ABC中,A=60°,AC=4,BC=2,则△ABC的面积等于.13.(4分)要制作一个容器为4m3,高为1m的无盖长方形容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是(单位:元)14.(4分)如图,在边长为e(e为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为.15.(4分)若集合{a,b,c,d}={1,2,3,4},且下列四个关系:①a=1;②b≠1;③c=2;④d≠4有且只有一个是正确的,则符合条件的有序数组(a,b,c,d)的个数是.三、解答题:本大题共4小题,共80分.解答应写出文字说明,证明过程或演算步骤16.(13分)已知函数f(x)=cosx(sinx+cosx)﹣.(1)若0<α<,且sinα=,求f(α)的值;(2)求函数f(x)的最小正周期及单调递增区间.17.(13分)在平面四边形ABCD中,AB=BD=CD=1,AB⊥BD,CD⊥BD,将△ABD沿BD折起,使得平面ABD⊥平面BCD,如图.(1)求证:AB⊥CD;(2)若M为AD中点,求直线AD与平面MBC所成角的正弦值.18.(13分)为回馈顾客,某商场拟通过摸球兑奖的方式对1000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求:①顾客所获的奖励额为60元的概率;②顾客所获的奖励额的分布列及数学期望;(2)商场对奖励总额的预算是60000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.19.(13分)已知双曲线E:﹣=1(a>0,b>0)的两条渐近线分别为l1:y=2x,l2:y=﹣2x.(1)求双曲线E的离心率;(2)如图,O点为坐标原点,动直线l分别交直线l1,l2于A,B两点(A,B分别在第一、第四象限),且△OAB的面积恒为8,试探究:是否存在总与直线l有且只有一个公共点的双曲线E?若存在,求出双曲线E的方程,若不存在,说明理由.在2123题中考生任选2题作答,满分21分.如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应题号右边的方框涂黑,并将所选题号填入括号中.选修42:矩阵与变换20.(14分)已知函数f(x)=ex﹣ax(a为常数)的图象与y轴交于点A,曲线y=f(x)在点A处的切线斜率为﹣1.(1)求a的值及函数f(x)的极值;(2)证明:当x>0时,x2<ex;(3)证明:对任意给定的正数c,总存在x0,使得当x∈(x0,+∞)时,恒有x2<cex. 21.(7分)已知矩阵A的逆矩阵A﹣1=().(1)求矩阵A;(2)求矩阵A﹣1的特征值以及属于每个特征值的一个特征向量.五、选修44:极坐标与参数方程22.(7分)已知直线l的参数方程为(t为参数),圆C的参数方程为(θ为常数).(1)求直线l和圆C的普通方程;(2)若直线l与圆C有公共点,求实数a的取值范围.六、选修45:不等式选讲23.已知定义域在R上的函数f(x)=|x+1|+|x﹣2|的最小值为a.(1)求a的值;(2)若p,q,r为正实数,且p+q+r=a,求证:p2+q2+r2≥3.高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案) (2)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每个题给出的四个选项中,只有一项是符合要求的.1.5分)某空间几何体的正视图是三角形,则该几何体不可能是()A.圆柱B.圆锥C.四面体D.三棱柱【分析】直接从几何体的三视图:正视图和侧视图或俯视图判断几何体的形状,即可. 【解答】解:圆柱的正视图为矩形,故选:A.【点评】本题考查简单几何体的三视图,考查逻辑推理能力和空间想象力,是基础题.2.((5分)复数z=(3﹣2i)i的共轭复数等于()A.﹣2﹣3iB.﹣2+3iC.2﹣3iD.2+3i【分析】直接由复数代数形式的乘法运算化简z,则其共轭可求.【解答】解:∵z=(3﹣2i)i=2+3i,∴.故选:C.【点评】本题考查了复数代数形式的乘法运算,考查了复数的基本概念,是基础题.3.(5分)等差数列{an}的前n项和为Sn,若a1=2,S3=12,则a6等于()A.8B.10C.12D.14【分析】由等差数列的性质和已知可得a2,进而可得公差,可得a6【解答】解:由题意可得S3=a1+a2+a3=3a2=12,解得a2=4,∴公差d=a2﹣a1=4﹣2=2,∴a6=a1+5d=2+5×2=12,故选:C.【点评】本题考查等差数列的通项公式和求和公式,属基础题.4.(5分)若函数y=logax(a>0,且a≠1)的图象如图所示,则下列函数图象正确的是()A. B. C.D.【分析】由题意可得a=3,由基本初等函数的图象和性质逐个选项验证即可.【解答】解:由题意可知图象过(3,1),故有1=loga3,解得a=3,选项A,y=a﹣x=3﹣x=()x单调递减,故错误;选项B,y=x3,由幂函数的知识可知正确;选项C,y=(﹣x)3=﹣x3,其图象应与B关于x轴对称,故错误;选项D,y=loga(﹣x)=log3(﹣x),当x=﹣3时,y=1,但图象明显当x=﹣3时,y=﹣1,故错误.故选:B.【点评】本题考查对数函数的图象和性质,涉及幂函数的图象,属基础题.5.(5分)阅读如图所示的程序框图,运行相应的程序,输出的S的值等于()A.18B.20C.21D.40【分析】算法的功能是求S=21+22+…+2n+1+2+…+n的值,计算满足条件的S值,可得答案. 【解答】解:由程序框图知:算法的功能是求S=21+22+…+2n+1+2+…+n的值,∵S=21+22+1+2=2+4+1+2=9<15,S=21+22+23+1+2+3=2+4+8+1+2+3=20≥15.∴输出S=20.故选:B.【点评】本题考查了直到型循环结构的程序框图,根据框图的流程判断算法的功能是解题的关键.6.(5分)直线l:y=kx+1与圆O:x2+y2=1相交于A,B 两点,则“k=1”是“△OAB的面积为”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分又不必要条件【分析】根据直线和圆相交的性质,结合充分条件和必要条件的定义进行判断即可得到结论.【解答】解:若直线l:y=kx+1与圆O:x2+y2=1相交于A,B 两点,则圆心到直线距离d=,|AB|=2,若k=1,则|AB|=,d=,则△OAB的面积为×=成立,即充分性成立.若△OAB的面积为,则S==×2×==,即k2+1=2|k|,即k2﹣2|k|+1=0,则(|k|﹣1)2=0,即|k|=1,解得k=±1,则k=1不成立,即必要性不成立.故“k=1”是“△OAB的面积为”的充分不必要条件.故选:A.【点评】本题主要考查充分条件和必要条件的判断,利用三角形的面积公式,以及半径半弦之间的关系是解决本题的关键.7.(5分)已知函数f(x)=,则下列结论正确的是()A.f(x)是偶函数B.f(x)是增函数C.f(x)是周期函数D.f(x)的值域为[﹣1,+∞)【分析】由三角函数和二次函数的性质,分别对各个选项判断即可.【解答】解:由解析式可知当x≤0时,f(x)=cosx为周期函数,当x>0时,f(x)=x2+1,为二次函数的一部分,故f(x)不是单调函数,不是周期函数,也不具备奇偶性,故可排除A、B、C,对于D,当x≤0时,函数的值域为[﹣1,1],当x>0时,函数的值域为(1,+∞),故函数f(x)的值域为[﹣1,+∞),故正确.故选:D.【点评】本题考查分段函数的性质,涉及三角函数的性质,属基础题.8.(5分)在下列向量组中,可以把向量=(3,2)表示出来的是()A.=(0,0),=(1,2)B.=(﹣1,2),=(5,﹣2)C.=(3,5),=(6,10)D.=(2,﹣3),=(﹣2,3)【分析】根据向量的坐标运算,,计算判别即可.【解答】解:根据,选项A:(3,2)=λ(0,0)+μ(1,2),则3=μ,2=2μ,无解,故选项A不能;选项B:(3,2)=λ(﹣1,2)+μ(5,﹣2),则3=﹣λ+5μ,2=2λ﹣2μ,解得,λ=2,μ=1,故选项B能.选项C:(3,2)=λ(3,5)+μ(6,10),则3=3λ+6μ,2=5λ+10μ,无解,故选项C不能. 选项D:(3,2)=λ(2,﹣3)+μ(﹣2,3),则3=2λ﹣2μ,2=﹣3λ+3μ,无解,故选项D不能.故选:B.【点评】本题主要考查了向量的坐标运算,根据列出方程解方程是关键,属于基础题.9.(5分)设P,Q分别为圆x2+(y﹣6)2=2和椭圆+y2=1上的点,则P,Q两点间的最大距离是()A.5B.+C.7+D.6【分析】求出椭圆上的点与圆心的最大距离,加上半径,即可得出P,Q两点间的最大距离.【解答】解:设椭圆上的点为(x,y),则∵圆x2+(y﹣6)2=2的圆心为(0,6),半径为,∴椭圆上的点(x,y)到圆心(0,6)的距离为==≤5,∴P,Q两点间的最大距离是5+=6.故选:D.【点评】本题考查椭圆、圆的方程,考查学生分析解决问题的能力,属于基础题.10.(5分)用a代表红球,b代表蓝球,c代表黑球,由加法原理及乘法原理,从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a)(1+b)的展开式1+a+b+ab表示出来,如:“1”表示一个球都不取、“a”表示取出一个红球,而“ab”则表示把红球和蓝球都取出来.以此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个无区别的蓝球、5个有区别的黑球中取出若干个球,且所有的蓝球都取出或都不取出的所有取法的是()A.(1+a+a2+a3+a4+a5)(1+b5)(1+c)5B.(1+a5)(1+b+b2+b3+b4+b5)(1+c)5C.(1+a)5(1+b+b2+b3+b4+b5)(1+c5)D.(1+a5)(1+b)5(1+c+c2+c3+c4+c5)【分析】根据“1+a+b+ab表示出来,如:“1”表示一个球都不取、“a”表示取出一个红球,而“ab”则表示把红球和蓝球都取出来”,分别取红球蓝球黑球,根据分步计数原理,分三步,每一步取一种球,问题得以解决.【解答】解:从5个无区别的红球中取出若干个球,可以1个球都不取、或取1个、2个、3个、4个、5个球,共6种情况,则其所有取法为1+a+a2+a3+a4+a5;从5个无区别的蓝球中取出若干个球,由所有的蓝球都取出或都不取出,得其所有取法为1+b5;从5个有区别的黑球中取出若干个球,可以1个球都不取、或取1个、2个、3个、4个、5个球,共6种情况,则其所有取法为1+c+c2+c3+c4+c5=(1+c)5,根据分步乘法计数原理得,适合要求的所有取法是(1+a+a2+a3+a4+a5)(1+b5)(1+c)5.故选:A.【点评】本题主要考查了分步计数原理和归纳推理,合理的利用题目中所给的实例,要遵循其规律,属于中档题.二、填空题:本大题共5小题,每小题4分,共20分.把答案填在答题卡的相应位置11.(4分)若变量 x,y满足约束条件,则z=3x+y的最小值为 1 .【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最小值. 【解答】解:作出不等式对应的平面区域如图,由z=3x+y,得y=﹣3x+z,平移直线y=﹣3x+z,由图象可知当直线y=﹣3x+z,经过点A(0,1)时,直线y=﹣3x+z的截距最小,此时z最小.此时z的最小值为z=0×3+1=1,故答案为:1【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法. 12.(4分)在△ABC中,A=60°,AC=4,BC=2,则△ABC的面积等于 2.【分析】利用三角形中的正弦定理求出角B,再利用三角形的面积公式求出△ABC的面积. 【解答】解:∵△ABC中,A=60°,AC=4,BC=2,由正弦定理得:,∴,解得sinB=1,∴B=90°,C=30°,∴△ABC的面积=.故答案为:.【点评】本题着重考查了给出三角形的两边和其中一边的对角,求它的面积.正余弦定理、解直角三角形、三角形的面积公式等知识,属于基础题.13.(4分)要制作一个容器为4m3,高为1m的无盖长方形容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是 160 (单位:元)【分析】此题首先需要由实际问题向数学问题转化,设池底长和宽分别为a,b,成本为y,建立函数关系式,然后利用基本不等式求出最值即可求出所求.【解答】解:设池底长和宽分别为a,b,成本为y,则∵长方形容器的容器为4m3,高为1m,故底面面积S=ab=4,y=20S+10[2(a+b)]=20(a+b)+80,∵a+b≥2=4,故当a=b=2时,y取最小值160,即该容器的最低总造价是160元,故答案为:160【点评】本题以棱柱的体积为载体,考查了基本不等式,难度不大,属于基础题.14.(4分)如图,在边长为e(e为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为.【分析】利用定积分计算阴影部分的面积,利用几何概型的概率公式求出概率.【解答】解:由题意,y=lnx与y=ex关于y=x对称,∴阴影部分的面积为2(e﹣ex)dx=2(ex﹣ex)=2,∵边长为e(e为自然对数的底数)的正方形的面积为e2,∴落到阴影部分的概率为.故答案为:.【点评】本题考查几何概型,几何概型的概率的值是通过长度、面积、和体积的比值得到.15.(4分)若集合{a,b,c,d}={1,2,3,4},且下列四个关系:①a=1;②b≠1;③c=2;④d≠4有且只有一个是正确的,则符合条件的有序数组(a,b,c,d)的个数是 6 .【分析】利用集合的相等关系,结合①a=1;②b≠1;③c=2;④d≠4有且只有一个是正确的,即可得出结论.【解答】解:由题意,a=2时,b=1,c=4,d=3;b=3,c=1,d=4;a=3时,b=1,c=4,d=2;b=1,c=2,d=4;b=2,c=1,d=4;a=4时,b=1,c=3,d=2;∴符合条件的有序数组(a,b,c,d)的个数是6个.【点评】本题考查集合的相等关系,考查分类讨论的数学思想,正确分类是关键.三、解答题:本大题共4小题,共80分.解答应写出文字说明,证明过程或演算步骤16.(13分)已知函数f(x)=cosx(sinx+cosx)﹣.(1)若0<α<,且sinα=,求f(α)的值;(2)求函数f(x)的最小正周期及单调递增区间.【分析】(1)根据题意,利用sinα求出cosα的值,再计算f(α)的值;(2)化简函数f(x),求出f(x)的最小正周期与单调增区间即可.【解答】解:(1)∵0<α<,且sinα=,∴cosα=,∴f(α)=cosα(sinα+cosα)﹣=×(+)﹣=;(2)∵函数f(x)=cosx(sinx+cosx)﹣=sinxcosx+cos2x﹣=sin2x+﹣=(sin2x+cos2x)=sin(2x+),∴f(x)的最小正周期为T==π;令2kπ﹣≤2x+≤2kπ+,k∈Z,解得kπ﹣≤x≤kπ+,k∈Z;∴f(x)的单调增区间为[kπ﹣,kπ+],k∈Z.【点评】本题考查了三角函数的化简以及图象与性质的应用问题,是基础题目.17.(13分)在平面四边形ABCD中,AB=BD=CD=1,AB⊥BD,CD⊥BD,将△ABD沿BD折起,使得平面ABD⊥平面BCD,如图.(1)求证:AB⊥CD;(2)若M为AD中点,求直线AD与平面MBC所成角的正弦值.【分析】(1)利用面面垂直的性质定理即可得出;(2)建立如图所示的空间直角坐标系.设直线AD与平面MBC所成角为θ,利用线面角的计算公式sinθ=|cos|=即可得出.【解答】(1)证明:∵平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,AB⊂平面ABD,AB⊥BD,∴AB⊥平面BCD,又CD⊂平面BCD,∴AB⊥CD.(2)解:建立如图所示的空间直角坐标系.∵AB=BD=CD=1,AB⊥BD,CD⊥BD,∴B(0,0,0),C(1,1,0),A(0,0,1),D(0,1,0),M.∴=(0,1,﹣1),=(1,1,0),=.设平面BCM的法向量=(x,y,z),则,令y=﹣1,则x=1,z=1.∴=(1,﹣1,1).设直线AD与平面MBC所成角为θ.则sinθ=|cos|===.【点评】本题综合考查了面面垂直的性质定理、线面角的计算公式sinθ=|cos|=,考查了推理能力和空间想象能力,属于中档题.18.(13分)为回馈顾客,某商场拟通过摸球兑奖的方式对1000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求:①顾客所获的奖励额为60元的概率;②顾客所获的奖励额的分布列及数学期望;(2)商场对奖励总额的预算是60000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.【分析】(1)根据古典概型的概率计算公式计算顾客所获的奖励额为60元的概率,依题意得X得所有可能取值为20,60,分别求出P(X=60),P(X=20),画出顾客所获的奖励额的分布列求出数学期望;(2)先讨论,寻找期望为60元的方案,找到(10,10,50,50),(20,20,40,40)两种方案,分别求出数学期望和方差,然后做比较,问题得以解决.【解答】解:(1)设顾客所获取的奖励额为X,①依题意,得P(X=60)=,即顾客所获得奖励额为60元的概率为,②依题意得X得所有可能取值为20,60,P(X=60)=,P(X=20)=,即X的分布列为X 60 20P所以这位顾客所获的奖励额的数学期望为E(X)=20×+60×=40(2)根据商场的预算,每个顾客的平均奖励额为60元,所以先寻找期望为60元的可能方案.对于面值由10元和50元组成的情况,如果选择(10,10,10,50)的方案,因为60元是面值之和的最大值,所以数学期望不可能为60元,如果选择(50,50,50,10)的方案,因为60元是面值之和的最小值,所以数学期望也不可能为60元,因此可能的方案是(10,10,50,50)记为方案1,对于面值由20元和40元的组成的情况,同理可排除(20,20,20,40)和(40,40,40,20)的方案,所以可能的方案是(20,20,40,40),记为方案2,以下是对这两个方案的分析:对于方案1,即方案(10,10,50,50)设顾客所获取的奖励额为X1,则X1的分布列为 X1 60 20 100PX1 的数学期望为E(X1)=.X1 的方差D(X1)==,对于方案2,即方案(20,20,40,40)设顾客所获取的奖励额为X2,则X2的分布列为 X2 40 60 80PX2 的数学期望为E(X2)==60,X2 的方差D(X2)=差D(X1)=. 由于两种方案的奖励额的数学期望都符合要求,但方案2奖励额的方差比方案1小,所以应该选择方案2.【点评】本题主要考查了古典概型、离散型随机变量的分布列、数学期望、方差等基础知识,考查了数据处理能力,运算求解能力,应用意识,考查了必然与或然思想与整合思想.19.(13分)已知双曲线E:﹣=1(a>0,b>0)的两条渐近线分别为l1:y=2x,l2:y=﹣2x.(1)求双曲线E的离心率;(2)如图,O点为坐标原点,动直线l分别交直线l1,l2于A,B两点(A,B分别在第一、第四象限),且△OAB的面积恒为8,试探究:是否存在总与直线l有且只有一个公共点的双曲线E?若存在,求出双曲线E的方程,若不存在,说明理由.【分析】(1)依题意,可知=2,易知c=a,从而可求双曲线E的离心率;(2)由(1)知,双曲线E的方程为﹣=1,设直线l与x轴相交于点C,分l⊥x轴与直线l不与x轴垂直讨论,当l⊥x轴时,易求双曲线E的方程为﹣=1.当直线l不与x轴垂直时,设直线l的方程为y=kx+m,与双曲线E的方程联立,利用由S△OAB=|OC|•|y1﹣y2|=8可证得:双曲线E的方程为﹣=1,从而可得答案.【解答】解:(1)因为双曲线E的渐近线分别为l1:y=2x,l2:y=﹣2x,所以=2.所以=2.故c=a,从而双曲线E的离心率e==.(2)由(1)知,双曲线E的方程为﹣=1.设直线l与x轴相交于点C,当l⊥x轴时,若直线l与双曲线E有且只有一个公共点,则|OC|=a,|AB|=4a,所以|OC|•|AB|=8,因此a•4a=8,解得a=2,此时双曲线E的方程为﹣=1.以下证明:当直线l不与x轴垂直时,双曲线E的方程为﹣=1也满足条件.设直线l的方程为y=kx+m,依题意,得k>2或k<﹣2;则C(﹣,0),记A(x1,y1),B(x2,y2),由得y1=,同理得y2=,由S△OAB=|OC|•|y1﹣y2|得:|﹣|•|﹣|=8,即m2=4|4﹣k2|=4(k2﹣4).由得:(4﹣k2)x2﹣2kmx﹣m2﹣16=0,因为4﹣k2<0,所以△=4k2m2+4(4﹣k2)(m2+16)=﹣16(4k2﹣m2﹣16),又因为m2=4(k2﹣4),所以△=0,即直线l与双曲线E有且只有一个公共点.因此,存在总与直线l有且只有一个公共点的双曲线E,且E的方程为﹣=1.【点评】本题考查双曲线的方程与性质、直线与圆锥曲线的位置关系等基础知识,考查抽象概括能力、推理论证能力、运算求解能力,考查特殊与一般思想、数形结合思想、分类讨论思想、函数与方程思想.在2123题中考生任选2题作答,满分21分.如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应题号右边的方框涂黑,并将所选题号填入括号中.选修42:矩阵与变换20.(14分)已知函数f(x)=ex﹣ax(a为常数)的图象与y轴交于点A,曲线y=f(x)在点A处的切线斜率为﹣1.(1)求a的值及函数f(x)的极值;(2)证明:当x>0时,x2<ex;(3)证明:对任意给定的正数c,总存在x0,使得当x∈(x0,+∞)时,恒有x2<cex. 【分析】(1)利用导数的几何意义求得a,再利用导数的符号变化可求得函数的极值;(2)构造函数g(x)=ex﹣x2,求出导数,利用(1)问结论可得到函数的符号,从而判断g(x)的单调性,即可得出结论;(3)首先可将要证明的不等式变形为x2<ex,进而发现当x>时,x2<x3,因此问题转化为证明当x∈(0,+∞)时,恒有x3<ex.【解答】解:(1)由f(x)=ex﹣ax,得f′(x)=ex﹣a.又f′(0)=1﹣a=﹣1,解得a=2,∴f(x)=ex﹣2x,f′(x)=ex﹣2.由f′(x)=0,得x=ln2,当x<ln2时,f′(x)<0,f(x)单调递减;当x>ln2时,f′(x)>0,f(x)单调递增;∴当x=ln2时,f(x)有极小值为f(ln2)=eln2﹣2ln2=2﹣ln4.f(x)无极大值.(2)令g(x)=ex﹣x2,则g′(x)=ex﹣2x,由(1)得,g′(x)=f(x)≥f(ln2)=eln2﹣2ln2=2﹣ln4>0,即g′(x)>0,∴当x>0时,g(x)>g(0)>0,即x2<ex;(3)首先证明当x∈(0,+∞)时,恒有x3<ex.证明如下:令h(x)=x3﹣ex,则h′(x)=x2﹣ex.由(2)知,当x>0时,x2<ex,从而h′(x)<0,h(x)在(0,+∞)单调递减,所以h(x)<h(0)=﹣1<0,即x3<ex,取x0=,当x>x0时,有x2<x3<ex.因此,对任意给定的正数c,总存在x0,当x∈(x0,+∞)时,恒有x2<cex.【点评】该题主要考查导数的几何意义、导数的运算及导数的应用等基础知识,考查学生的运算求解能力、推理论证能力、抽象概括能力,考查函数与方程思想、有限与无限思想、化归与转化思想.属难题.21.(7分)已知矩阵A的逆矩阵A﹣1=().(1)求矩阵A;(2)求矩阵A﹣1的特征值以及属于每个特征值的一个特征向量.【分析】(1)利用AA﹣1=E,建立方程组,即可求矩阵A;(2)先根据特征值的定义列出特征多项式,令f(λ)=0解方程可得特征值,再由特征值列出方程组即可解得相应的特征向量.【解答】解:(1)设A=,则由AA﹣1=E得=,解得a=,b=﹣,c=﹣,d=,所以A=;(2)矩阵A﹣1的特征多项式为f(λ)==(λ﹣2)2﹣1,令f(λ)=(λ﹣2)2﹣1=0,可求得特征值为λ1=1,λ2=3,设λ1=1对应的一个特征向量为α=,则由λ1α=Mα,得x+y=0得x=﹣y,可令x=1,则y=﹣1,所以矩阵M的一个特征值λ1=1对应的一个特征向量为,同理可得矩阵M的一个特征值λ2=3对应的一个特征向量为.【点评】本题考查逆变换与逆矩阵,考查矩阵特征值与特征向量的计算等基础知识,属于基础题.六、选修45:不等式选讲23.已知定义域在R上的函数f(x)=|x+1|+|x﹣2|的最小值为a.(1)求a的值;(2)若p,q,r为正实数,且p+q+r=a,求证:p2+q2+r2≥3.【分析】(1)由绝对值不等式|a|+|b|≥|a﹣b|,当且仅当ab≤0,取等号;(2)由柯西不等式:(a2+b2+c2)(d2+e2+f2)≥(ad+be+cf)2,即可证得.【解答】(1)解:∵|x+1|+|x﹣2|≥|(x+1)﹣(x﹣2)|=3,当且仅当﹣1≤x≤2时,等号成立,∴f(x)的最小值为3,即a=3;(2)证明:由(1)知,p+q+r=3,又p,q,r为正实数,∴由柯西不等式得,(p2+q2+r2)(12+12+12)≥(p×1+q×1+r×1)2=(p+q+r)2=32=9,即p2+q2+r2≥3.【点评】本题主要考查绝对值不等式、柯西不等式等基础知识,考查运算求解能力,考查化归与转化思想.五、选修44:极坐标与参数方程22.(7分)已知直线l的参数方程为(t为参数),圆C的参数方程为(θ为常数).(1)求直线l和圆C的普通方程;(2)若直线l与圆C有公共点,求实数a的取值范围.【分析】(1)消去参数,把直线与圆的参数方程化为普通方程;(2)求出圆心到直线的距离d,再根据直线l与圆C有公共点⇔d≤r即可求出.【解答】解:(1)直线l的参数方程为,消去t可得2x﹣y﹣2a=0;圆C的参数方程为,两式平方相加可得x2+y2=16;(2)圆心C(0,0),半径r=4.由点到直线的距离公式可得圆心C(0,0)到直线L的距离d=.∵直线L与圆C有公共点,∴d≤4,即≤4,解得﹣2≤a≤2.【点评】熟练掌握点到直线的距离公式和直线与圆有公共点的充要条件是解题的关键.数学(文)一.填空题1.已知全集{}4,3,2,1=U ,集合{}{}3,2,2,1==Q P ,则()UP Q =▲.2.命题“2,220x R x x ∀∈-+>”的否定是▲.3.已知虚数z 满足216i z z -=+,则||z =▲.4.“0<x ”是“0)1ln(<+x ”的▲.条件.(从“充分不必要”、“必要不充分”、“充要”、“既不充分又不必要”中选择填空)5.已知向量(,12),(4,5),(10,),OA k OB OC k ===当,,A B C 三点共线时,实数k 的值为▲..6.在ABC ∆中,角,,A B C 所对的边分别为,,,a b c 若222,sin 3sin ,a b bc C B -==则A =_▲.. 7.设函数)(x f 满足x x f x f sin )()(+=+π,当π≤≤x 0时,0)(=x f ,则)623(πf =▲. 8.已知tan()1αβ+=,tan()2αβ-=,则sin 2cos 2αβ的值为▲.9.已知函数(2)y f x =+的图象关于直线2x =-对称,且当(0,)x ∈+∞时,2()log .x f x =若1(3),(),(2),4a fb fc f =-==则,,a b c 由大到小的顺序是▲.10.若函数()sin cos()(0)6g x x x πωωω=++>的图象关于点(2,0)π对称,且在区间,36ππ⎡⎤-⎢⎥⎣⎦上是单调函数,则ω的值为▲. 11. 已知函数24,0,()5,0.x x x f x e x ⎧-≤⎪=⎨->⎪⎩若关于x 的方程()50f x ax --=恰有三个不同的实数解,则满足条件的所有实数a 的取值集合为▲.12. 已知点O 在ABC ∆所在平面内,且4,3,AB AO ==()0,OA OB AB +=()0,OA OC AC +=则AB AC 取得最大值时线段BC 的长度是▲.13.在ABC ∆中,若tan tan tan tan 5tan tan ,A C A B B C +=则sin A 的最大值为▲.14.已知定义在R 上的函数1()2x f x +=可以表示为一个偶函数()g x 与一个奇函数()h x 之和,设(),()(2)h x t p t g x ==+2()mh x +2m m -A DOM CN1-().m R ∈若方程(())0p p t =无实根,则实数m 的取值范围是▲.二.解答题15.已知命题:p 指数函数()(26)xf x a =-在R 上单调递减,命题:q 关于x 的方程23x ax -2210a ++=的两个实根均大于3.若“p 或q ”为真,“p 且q ”为假,求实数a 的取值范围.16. 函数)0(3sin 32cos 6)(2>-+=ωωωx xx f 在一个周期内的图象如图所示,A 为图象的最高点,B 、C 为图象与x 轴的交点,且ABC ∆为正三角形. (Ⅰ)求ω的值及函数()f x 的值域;(Ⅱ)若083()f x =,且0102(,)33x ∈-,求0(1)f x +的值.17.已知向量(2,1),(sin ,cos()),2Am n B C =-=+角,,A B C 为ABC ∆的内角,其所对的边分别为,,.a b c(1)当.m n 取得最大值时,求角A 的大小;(2)在(1)成立的条件下,当3a =22b c +的取值范围.18.为丰富农村业余文化生活,决定在A,B,N 三个村子的中间地带建造文化中心.通过测量,发现三个村子分别位于矩形ABCD 的两个顶点A,B 和以边AB 的中心M 为圆心,以MC 长为半径的圆弧的中心N 处,且AB =8km ,BC =42.经协商,文化服务中心拟建在与A,B 等距离的O 处,并建造三条道路AO,BO,NO 与各村通达.若道路建设成本AO,BO 段为每公里a 2万元,NO 段为每公里a 万元,建设总费用为w 万元.(1)若三条道路建设的费用相同,求该文化中心离N 村的距离;(2)若建设总费用最少,求该文化中心离N 村的距离. 19. 设2()(f x x bx c b =++、)c R ∈.(1)若()f x 在[2,2]-上不单调,求b 的取值范围; (2)若()||f x x ≥对一切x R ∈恒成立,求证:214b c +≤;(3)若对一切x R ∈,有1()0f x x+≥,且2223()1x f x ++的最大值为1,求b 、c 满足的条件。

高三数学寒假作业冲刺培训班之历年真题汇编复习实战16599

高三数学寒假作业冲刺培训班之历年真题汇编复习实战16599

一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1.356437-⎛⎫⎪⎝⎭; 2.34; 3.(,1)-∞-; 4.4π; 5.(,0)-∞6.(0,2); 7.13b -≤≤; 8.10082017; 9.π32; 10.16; 11.3; 12.(),1n n -+;13.;14.66a -≤≤. 二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15.A ;16. A ; 17.B ;18.D .三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分12分)本题共2小题,第(1)小题6分,第(2)小题6分.19.解:(1)证明:AB PAD ⊥平面,PH PAD ⊆平面,AB PH ⊥又PAD ∆中,PD PA =,点H 为线段AD 的中点,PH AD ⊥PH ADPH ABPH ABCD AD AB A ⊥⎧⎪⊥⇒⊥⎨⎪=⎩平面 (2)1,PH AD AH DH ===,又PH AD ⊥,PA PD ∴== 连结BH ,可得PBH ∠是PB 与平面ABCD 所成角,又PB 与平面ABCD 所成角的大小为45,1BH ∴=,在Rt ABH ∆中,AB =, 1111()3322P ABCDABCD V S PH AB CD AD PH -∴==⨯+⋅⋅=梯形.分 20.(本题满分14分)本题共2小题,第(1)小题6分,第(2)小题8分. 解:(1)因为抛物线24y x =的焦点F 是椭圆M 的一个焦点,即(1,0)F又椭圆M 的对称轴为坐标轴,所以设椭圆方程为22221,0x y a b a b+=>>,且221a b -=又以F 为圆心,以椭圆M的短半轴长为半径的圆与直线20l x -+=:相切即1b ==,所以椭圆M 的方程是2212x y += (2)设11(,)A x y ,22(,)B x y22223422022y x mx mx m x y =+⎧⇒++-=⎨+=⎩ 222(4)12(22)8240m m m ∆=--=-+>m ⇒<<1212,(,)OP OA OB P x x y y =+∴++又121242,33x x m y y m +=-+=, 即42(,)33P m m -在椭圆2212x y +=上,即2242()2()233m m m -+=⇒=21.(本题满分14分)本题共2小题,第(1)小题4分,第(2)小题10分. 解:(1)1212sin12032ABCDS=⨯⨯⨯=当点F 与点D 重合时,由已知134CDEABCDS S ==,又13sin12012CDESCE CD x x =⋅⋅==⇒= ,E 是BC 的中点 (2)①当点F 在CD上,即12x ≤≤时,利用面积关系可得1CF x=, 再由余弦定理可得y =≥1x =时取等号 ②当点F 在DA 上时,即01x ≤<时,利用面积关系可得1DF x =-, (ⅰ)当CE DF <时,过E 作EG ∥CD 交DA 于G ,在EGF ∆中,1,12,60EG GF x EGF ==-∠=,利用余弦定理得y =(ⅱ)同理当CE DF ≥,过E 作EG ∥CD 交DA 于G ,在EGF ∆中,1,21,120EG GF x EGF ==-∠=,利用余弦定理得y =由(ⅰ)、(ⅱ)可得y =,01x ≤<y∴==,01x ≤< ,min y ∴=12x =时取等号 ,由①②可知当12x =时,路EF 的长度最短为2.22.(本题满分16分)本题共3小题,第(1)小题4分,第(2)小题4分,第(3)小题8分.解:(1)因为(,)n n n P a S 、*111(,),n n n P a S n N +++∈都在直线y kx b =+上,所以11n nn nS S k a a ++-=-,即1(1)n n k a ka +-=,又0k ≠,且1k ≠,所以11n n a ka k +=-为非零常数,所以数列{}n a 是等比数列(2)由12log n n b a =得31()22nb n n a -==,即21kk =-得2k =. 由*(,),n n n P a S n N ∈在直线y kx b =+上得n n S ka b =+上,令1n =得111124b S a a =-=-=-(3)由12log n n b a =知1n a >恒成立等价于0n b <恒成立.因为存在*,,t s N s t ∈≠使得点(),s t b 和(),t s b 都在直线在21y x =+上,所以21s b t =+,21t b s =+即2()t s b b s t -=-,另1,2s t t =-≥,易证12(1)2t t b b t t --=--=-,又1(1)(2)21s b b s t =+--=+12()10b t s ⇒=+->,即{}n b 是首项为正,公差为2-的等差数列. 所以一定存在自然数M ,使100M M b b +≥⎧⎨<⎩即2()1(1)(2)02()1(2)0t s M t s M +-+--≥⎧⎨+-+-<⎩,解得1122t s M t s +-<≤++,*M N ∈,M t s ∴=+.存在自然数M ,其最小值为t s +使得当n M >(*n N ∈)时,1n a >恒成立时,1n a >恒成立.23.(本题满分18分)本题共3小题,第(1)小题4分,第(2)小题6分,第(3)小题8分.解:(1) x x x f sin cos )(+=,2πα=∴x x x f sin cos )(-=+α;∴x x g 2cos )(=(2)()2cos (cos )4cos cos()3g x x x x x x π=+=-,若()2cos f x x =,则()()2cos()33f x f x x ππα+=-=-(2)33k ππααπ⇒∴=-=-∈取,k Z 中一个都可以,()2cos f xx =(3)()sin cos f x x x =+,()()()g x f x f x α∴=⋅+=(sin cos )x x +(cos sin )x x -cos 22,2,2sin 212,2,23cos 22,2,2312sin 22,22.2x x k k x x k k k Z x x k k x x k k πππππππππππππππ⎧⎛⎤∈+ ⎪⎥⎝⎦⎪⎪⎛⎤--∈++⎪ ⎥⎪⎝⎦=∈⎨⎛⎤⎪-∈++ ⎥⎪⎝⎦⎪⎛⎤⎪-∈++ ⎥⎪⎝⎦⎩显然,(2)()g x g x π+=即()y g x =的最小正周期是2π,因为存在12,x x R ∈,对任意x R ∈,12()()()g x g x g x ≤≤恒成立, 所以当12x k ππ=+或12,2x k k Z ππ=+∈时,1()()1g x g x ≥=-当272,4x k k Z ππ=+∈时,2()()2g x g x ≤= 所以12121272(2),4x x k k k k Z ππππ-=+-+∈、 或12121272(2),24x x k k k k Z ππππ-=+-+∈、 所以12x x -的最小值是34π. 说明:写出分段函数后画出一个或多个周期上的函数图像,用数形结合的方法解同样给分一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)已知复数z=(5+2i)2(i为虚数单位),则z的实部为.2.(5分)已知集合A={﹣2,﹣1,3,4},B={﹣1,2,3},则A∩B=.3.(5分)如图是一个算法流程图,则输出的n的值是.4.(5分)从1,2,3,6这4个数中一次随机抽取2个数,则所取2个数的乘积为6的概率是.5.(5分)已知函数y=cosx与y=sin(2x+φ)(0≤φ<π),它们的图象有一个横坐标为的交点,则φ的值是.6.(5分)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有株树木的底部周长小于100cm.7.(5分)在各项均为正数的等比数列{an}中,若a2=1,a8=a6+2a4,则a6的值是.8.(5分)设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2,若它们的侧面积相等,且=,则的值是.9.(5分)在平面直角坐标系xOy中,直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为.10.(5分)已知函数f(x)=x2+mx﹣1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是.11.(5分)在平面直角坐标系xOy中,若曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,则a+b的值是.12.(5分)如图,在平行四边形ABCD中,已知AB=8,AD=5,=3,•=2,则•的值是.13.(5分)已知f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f(x)=|x2﹣2x+|,若函数y=f(x)﹣a在区间[﹣3,4]上有10个零点(互不相同),则实数a的取值范围是.14.(5分)若△ABC的内角满足sinA+sinB=2sinC,则cosC的最小值是.二、解答题(本大题共6小题,共计90分)15.(14分)已知α∈(,π),sinα=.(1)求sin(+α)的值;(2)求cos(﹣2α)的值.16.(14分)如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.17.(14分)如图,在平面直角坐标系xOy中,F1,F2分别为椭圆+=1(a>b>0)的左、右焦点,顶点B的坐标为(0,b),连接BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连接F1C.(1)若点C的坐标为(,),且BF2=,求椭圆的方程;(2)若F1C⊥AB,求椭圆离心率e的值.18.(16分)如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区,规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80m,经测量,点A位于点O 正北方向60m处,点C位于点O正东方向170m处(OC为河岸),tan∠BCO=.(1)求新桥BC的长;(2)当OM多长时,圆形保护区的面积最大?19.(16分)已知函数f(x)=ex+e﹣x,其中e是自然对数的底数.(1)证明:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,求实数m的取值范围;(3)已知正数a满足:存在x0∈[1,+∞),使得f(x0)<a(﹣x03+3x0)成立,试比较ea﹣1与ae﹣1的大小,并证明你的结论.20.(16分)设数列{an}的前n项和为Sn,若对任意的正整数n,总存在正整数m,使得Sn=am,则称{an}是“H数列”.(1)若数列{an}的前n项和为Sn=2n(n∈N*),证明:{an}是“H数列”;(2)设{an}是等差数列,其首项a1=1,公差d<0,若{an}是“H数列”,求d的值;(3)证明:对任意的等差数列{an},总存在两个“H数列”{bn}和{cn},使得an=bn+cn (n∈N*)成立.三、附加题(本大题包括选做题和必做题两部分)(一)选择题(本题包括21、22、23、24四小题,请选定其中两个小题作答,若多做,则按作答的前两个小题评分)【选修41:几何证明选讲】21.(10分)如图,AB是圆O的直径,C,D是圆O上位于AB异侧的两点,证明:∠OCB=∠D.【选修42:矩阵与变换】22.(10分)已知矩阵A=,B=,向量=,x,y为实数,若A=B,求x+y的值.【选修43:极坐标及参数方程】23.在平面直角坐标系xOy中,已知直线l的参数方程(t为参数),直线l与抛物线y2=4x相交于AB两点,则线段AB的长为.【选修44:不等式选讲】24.已知x>0,y>0,证明(1+x+y2)(1+x2+y)≥9xy.(二)必做题(本部分包括25、26两题,每题10分,共计20分)25.(10分)盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x1,x2,x3,随机变量X表示x1,x2,x3中的最大数,求X的概率分布和数学期望E(X).26.(10分)已知函数f0(x)=(x>0),设fn(x)为fn﹣1(x)的导数,n∈N*. (1)求2f1()+f2()的值;(2)证明:对任意n∈N*,等式|nfn﹣1()+fn()|=都成立.高考模拟题复习试卷习题资料高考数学试卷(附详细答案)参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)已知集合A={﹣2,﹣1,3,4},B={﹣1,2,3},则A∩B={﹣1,3}.【分析】根据集合的基本运算即可得到结论.【解答】解:∵A={﹣2,﹣1,3,4},B={﹣1,2,3},∴A∩B={﹣1,3},故答案为:{﹣1,3}【点评】本题主要考查集合的基本运算,比较基础.2.(5分)已知复数z=(5+2i)2(i为虚数单位),则z的实部为 21 .【分析】根据复数的有关概念,即可得到结论.【解答】解:z=(5+2i)2=25+20i+4i2=25﹣4+20i=21+20i,故z的实部为21,故答案为:21【点评】本题主要考查复数的有关概念,利用复数的基本运算是解决本题的关键,比较基础.3.(5分)如图是一个算法流程图,则输出的n的值是 5 .【分析】算法的功能是求满足2n>20的最小的正整数n的值,代入正整数n验证可得答案.【解答】解:由程序框图知:算法的功能是求满足2n>20的最小的正整数n的值,∵24=16<20,25=32>20,∴输出n=5.故答案为:5.【点评】本题考查了直到型循环结构的程序框图,根据框图的流程判断算法的功能是解题的关键.4.(5分)从1,2,3,6这4个数中一次随机抽取2个数,则所取2个数的乘积为6的概率是.【分析】首先列举并求出“从1,2,3,6这4个数中一次随机抽取2个数”的基本事件的个数再从中找到满足“所取2个数的乘积为6”的事件的个数,利用概率公式计算即可.【解答】解:从1,2,3,6这4个数中一次随机抽取2个数的所有基本事件有(1,2),(1,3),(1,6),(2,3),(2,6),(3,6)共6个,所取2个数的乘积为6的基本事件有(1,6),(2,3)共2个,故所求概率P=.故答案为:.【点评】本题主要考查了古典概型的概率公式的应用,关键是一一列举出所有的基本事件.5.(5分)已知函数y=cosx与y=sin(2x+φ)(0≤φ<π),它们的图象有一个横坐标为的交点,则φ的值是.【分析】由于函数y=cosx与y=sin(2x+φ),它们的图象有一个横坐标为的交点,可得=.根据φ的范围和正弦函数的单调性即可得出.【解答】解:∵函数y=cosx与y=sin(2x+φ),它们的图象有一个横坐标为的交点,∴=.∵0≤φ<π,∴,∴+φ=,解得φ=.故答案为:.【点评】本题考查了三角函数的图象与性质、三角函数求值,属于基础题.6.(5分)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有 24 株树木的底部周长小于100cm.【分析】根据频率=小矩形的面积=小矩形的高×组距底部求出周长小于100cm的频率,再根据频数=样本容量×频率求出底部周长小于100cm的频数.【解答】解:由频率分布直方图知:底部周长小于100cm的频率为(0.015+0.025)×10=0.4,∴底部周长小于100cm的频数为60×0.4=24(株).故答案为:24.【点评】本题考查了频率分布直方图,在频率分布直方图中频率=小矩形的面积=小矩形的高×组距=.7.(5分)在各项均为正数的等比数列{an}中,若a2=1,a8=a6+2a4,则a6的值是 4 . 【分析】利用等比数列的通项公式即可得出.【解答】解:设等比数列{an}的公比为q>0,a1>0.∵a8=a6+2a4,∴,化为q4﹣q2﹣2=0,解得q2=2.∴a6===1×22=4.故答案为:4.【点评】本题考查了等比数列的通项公式,属于基础题.8.(5分)设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2,若它们的侧面积相等,且=,则的值是.【分析】设出两个圆柱的底面半径与高,通过侧面积相等,推出高的比,然后求解体积的比.【解答】解:设两个圆柱的底面半径分别为R,r;高分别为H,h;∵=,∴,它们的侧面积相等,∴,∴===.故答案为:.【点评】本题考查柱体体积公式以及侧面积公式的直接应用,是基础题目.9.(5分)在平面直角坐标系xOy中,直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为.【分析】求出已知圆的圆心为C(2,﹣1),半径r=2.利用点到直线的距离公式,算出点C 到直线直线l的距离d,由垂径定理加以计算,可得直线x+2y﹣3=0被圆截得的弦长.【解答】解:圆(x﹣2)2+(y+1)2=4的圆心为C(2,﹣1),半径r=2,∵点C到直线直线x+2y﹣3=0的距离d==,∴根据垂径定理,得直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为2=2=故答案为:.【点评】本题给出直线与圆的方程,求直线被圆截得的弦长,着重考查点到直线的距离公式、圆的方程和直线与圆的位置关系等知识,属于基础题.10.(5分)已知函数f(x)=x2+mx﹣1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是(﹣,0) .【分析】由条件利用二次函数的性质可得,由此求得m的范围.【解答】解:∵二次函数f(x)=x2+mx﹣1的图象开口向上,对于任意x∈[m,m+1],都有f(x)<0成立,∴,即,解得﹣<m<0,故答案为:(﹣,0).【点评】本题主要考查二次函数的性质应用,体现了转化的数学思想,属于基础题.11.(5分)在平面直角坐标系xOy中,若曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,则a+b的值是﹣3 .【分析】由曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,可得y|x=2=﹣5,且y′|x=2=,解方程可得答案.【解答】解:∵直线7x+2y+3=0的斜率k=,曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,∴y′=2ax﹣,∴,解得:,故a+b=﹣3,故答案为:﹣3【点评】本题考查的知识点是利用导数研究曲线上某点切线方程,其中根据已知得到y|x=2=﹣5,且y′|x=2=,是解答的关键.12.(5分)如图,在平行四边形ABCD中,已知AB=8,AD=5,=3,•=2,则•的值是 22 .【分析】由=3,可得=+,=﹣,进而由AB=8,AD=5,=3,•=2,构造方程,进而可得答案.【解答】解:∵=3,∴=+,=﹣,又∵AB=8,AD=5,∴•=(+)•(﹣)=||2﹣•﹣||2=25﹣•﹣12=2,故•=22,故答案为:22.【点评】本题考查的知识点是向量在几何中的应用,平面向量数量积的运算,其中根据已知得到=+,=﹣,是解答的关键.13.(5分)已知f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f(x)=|x2﹣2x+|,若函数y=f(x)﹣a在区间[﹣3,4]上有10个零点(互不相同),则实数a的取值范围是(0,) .【分析】在同一坐标系中画出函数的图象与直线y=a的图象,利用数形结合判断a的范围即可.【解答】解:f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f(x)=|x2﹣2x+|,若函数y=f(x)﹣a在区间[﹣3,4]上有10个零点(互不相同),在同一坐标系中画出函数f(x)与y=a的图象如图:由图象可知.故答案为:(0,).【点评】本题考查函数的图象以函数的零点的求法,数形结合的应用.14.(5分)若△ABC的内角满足sinA+sinB=2sinC,则cosC的最小值是.【分析】根据正弦定理和余弦定理,利用基本不等式即可得到结论.【解答】解:由正弦定理得a+b=2c,得c=(a+b),由余弦定理得cosC====≥=,当且仅当时,取等号,故≤cosC<1,故cosC的最小值是.故答案为:.【点评】本题主要考查正弦定理和余弦定理的应用,结合基本不等式的性质是解决本题的关键.二、解答题(本大题共6小题,共计90分)15.(14分)已知α∈(,π),sinα=.(1)求sin(+α)的值;(2)求cos(﹣2α)的值.【分析】(1)通过已知条件求出cosα,然后利用两角和的正弦函数求sin(+α)的值;(2)求出cos2α,然后利用两角差的余弦函数求cos(﹣2α)的值.【解答】解:α∈(,π),sinα=.∴cosα=﹣=(1)sin(+α)=sin cosα+cos sinα==﹣;∴sin(+α)的值为:﹣.(2)∵α∈(,π),sinα=.∴cos2α=1﹣2sin2α=,sin2α=2sinαcosα=﹣∴cos(﹣2α)=cos cos2α+sin sin2α==﹣.cos(﹣2α)的值为:﹣.【点评】本题考查两角和与差的三角函数,三角函数的基本关系式的应用,考查计算能力.16.(14分)如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.【分析】(1)由D、E为PC、AC的中点,得出DE∥PA,从而得出PA∥平面DEF;(2)要证平面BDE⊥平面ABC,只需证DE⊥平面ABC,即证DE⊥EF,且DE⊥AC即可. 【解答】证明:(1)∵D、E为PC、AC的中点,∴DE∥PA,又∵PA⊄平面DEF,DE⊂平面DEF,∴PA∥平面DEF;(2)∵D、E为PC、AC的中点,∴DE=PA=3;又∵E、F为AC、AB的中点,∴EF=BC=4;∴DE2+EF2=DF2,∴∠DEF=90°,∴DE⊥EF;∵DE∥PA,PA⊥AC,∴DE⊥AC;∵AC∩EF=E,∴DE⊥平面ABC;∵DE⊂平面BDE,∴平面BDE⊥平面ABC.【点评】本题考查了空间中的平行与垂直问题,解题时应明确空间中的线线、线面、面面之间的垂直与平行的互相转化关系,是基础题目.17.(14分)如图,在平面直角坐标系xOy中,F1,F2分别为椭圆+=1(a>b>0)的左、右焦点,顶点B的坐标为(0,b),连接BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连接F1C.(1)若点C的坐标为(,),且BF2=,求椭圆的方程;(2)若F1C⊥AB,求椭圆离心率e的值.【分析】(1)根据椭圆的定义,建立方程关系即可求出a,b的值.(2)求出C的坐标,利用F1C⊥AB建立斜率之间的关系,解方程即可求出e的值.【解答】解:(1)∵C的坐标为(,),∴,即,∵,∴a2=()2=2,即b2=1,则椭圆的方程为+y2=1.(2)设F1(﹣c,0),F2(c,0),∵B(0,b),∴直线BF2:y=﹣x+b,代入椭圆方程+=1(a>b>0)得()x2﹣=0,解得x=0,或x=,∵A(,﹣),且A,C关于x轴对称,∴C(,),则=﹣=,∵F1C⊥AB,∴×()=﹣1,由b2=a2﹣c2得,即e=.【点评】本题主要考查圆锥曲线的综合问题,要求熟练掌握椭圆方程的求法以及直线垂直和斜率之间的关系,运算量较大.18.(16分)如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区,规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80m,经测量,点A位于点O 正北方向60m处,点C位于点O正东方向170m处(OC为河岸),tan∠BCO=.(1)求新桥BC的长;(2)当OM多长时,圆形保护区的面积最大?【分析】(1)在四边形AOCB中,过B作BE⊥OC于E,过A作AF⊥BE于F,设出AF,然后通过解直角三角形列式求解BE,进一步得到CE,然后由勾股定理得答案;(2)设BC与⊙M切于Q,延长QM、CO交于P,设OM=xm,把PC、PQ用含有x的代数式表示,再结合古桥两端O和A到该圆上任意一点的距离均不少于80m列式求得x的范围,得到x取最小值时圆的半径最大,即圆形保护区的面积最大. 【解答】解:(1)如图,过B作BE⊥OC于E,过A作AF⊥BE于F,∵∠ABC=90°,∠BEC=90°,∴∠ABF=∠BCE,∴.设AF=4x(m),则BF=3x(m).∵∠AOE=∠AFE=∠OEF=90°,∴OE=AF=4x(m),EF=AO=60(m),∴BE=(3x+60)m.∵,∴CE=(m).∴(m).∴,解得:x=20.∴BE=120m,CE=90m,则BC=150m;(2)如图,设BC与⊙M切于Q,延长QM、CO交于P,∵∠POM=∠PQC=90°,∴∠PMO=∠BCO.设OM=xm,则OP=m,PM=m.∴PC=m,PQ=m.设⊙M半径为R,∴R=MQ=m=m.∵A、O到⊙M上任一点距离不少于80m,则R﹣AM≥80,R﹣OM≥80,∴136﹣﹣(60﹣x)≥80,136﹣﹣x≥80.解得:10≤x≤35.∴当且仅当x=10时R取到最大值.∴OM=10m时,保护区面积最大.【点评】本题考查圆的切线,考查了直线与圆的位置关系,解答的关键在于对题意的理解,是中档题.19.(16分)已知函数f(x)=ex+e﹣x,其中e是自然对数的底数.(1)证明:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,求实数m的取值范围;(3)已知正数a满足:存在x0∈[1,+∞),使得f(x0)<a(﹣x03+3x0)成立,试比较ea﹣1与ae﹣1的大小,并证明你的结论.【分析】(1)根据函数奇偶性的定义即可证明f(x)是R上的偶函数;(2)利用参数分离法,将不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,进行转化求最值问题即可求实数m的取值范围;(3)构造函数,利用函数的单调性,最值与单调性之间的关系,分别进行讨论即可得到结论.【解答】解:(1)∵f(x)=ex+e﹣x,∴f(﹣x)=e﹣x+ex=f(x),即函数:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,即m(ex+e﹣x﹣1)≤e﹣x﹣1,∵x>0,∴ex+e﹣x﹣1>0,即m≤在(0,+∞)上恒成立,设t=ex,(t>1),则m≤在(1,+∞)上恒成立,∵=﹣=﹣,当且仅当t=2时等号成立,∴m.(3)令g(x)=ex+e﹣x﹣a(﹣x3+3x),则g′(x)=ex﹣e﹣x+3a(x2﹣1),当x>1,g′(x)>0,即函数g(x)在[1,+∞)上单调递增,故此时g(x)的最小值g(1)=e+﹣2a,由于存在x0∈[1,+∞),使得f(x0)<a(﹣x03+3x0)成立,故e+﹣2a<0,即a>(e+),令h(x)=x﹣(e﹣1)lnx﹣1,则h′(x)=1﹣,由h′(x)=1﹣=0,解得x=e﹣1,当0<x<e﹣1时,h′(x)<0,此时函数单调递减,当x>e﹣1时,h′(x)>0,此时函数单调递增,∴h(x)在(0,+∞)上的最小值为h(e﹣1),注意到h(1)=h(e)=0,∴当x∈(1,e﹣1)⊆(0,e﹣1)时,h(e﹣1)≤h(x)<h(1)=0,当x∈(e﹣1,e)⊆(e﹣1,+∞)时,h(x)<h(e)=0,∴h(x)<0,对任意的x∈(1,e)成立.①a∈((e+),e)⊆(1,e)时,h(a)<0,即a﹣1<(e﹣1)lna,从而ea﹣1<ae﹣1,②当a=e时,ae﹣1=ea﹣1,③当a∈(e,+∞)⊆(e﹣1,+∞)时,当a>e﹣1时,h(a)>h(e)=0,即a﹣1>(e ﹣1)lna,从而ea﹣1>ae﹣1.【点评】本题主要考查函数奇偶性的判定,函数单调性和最值的应用,利用导数是解决本题的关键,综合性较强,运算量较大.20.(16分)设数列{an}的前n项和为Sn,若对任意的正整数n,总存在正整数m,使得Sn=am,则称{an}是“H数列”.(1)若数列{an}的前n项和为Sn=2n(n∈N*),证明:{an}是“H数列”;(2)设{an}是等差数列,其首项a1=1,公差d<0,若{an}是“H数列”,求d的值;(3)证明:对任意的等差数列{an},总存在两个“H数列”{bn}和{cn},使得an=bn+cn (n∈N*)成立.【分析】(1)利用“当n≥2时,an=Sn﹣Sn﹣1,当n=1时,a1=S1”即可得到an,再利用“H”数列的意义即可得出.(2)利用等差数列的前n项和即可得出Sn,对∀n∈N*,∃m∈N*使Sn=am,取n=2和根据d<0即可得出;(3)设{an}的公差为d,构造数列:bn=a1﹣(n﹣1)a1=(2﹣n)a1,cn=(n﹣1)(a1+d),可证明{bn}和{cn}是等差数列.再利用等差数列的前n项和公式及其通项公式、“H”的意义即可得出.【解答】解:(1)当n≥2时,an=Sn﹣Sn﹣1=2n﹣2n﹣1=2n﹣1,当n=1时,a1=S1=2.当n=1时,S1=a1.当n≥2时,Sn=an+1.∴数列{an}是“H”数列.(2)Sn==,对∀n∈N*,∃m∈N*使Sn=am,即,取n=2时,得1+d=(m﹣1)d,解得,∵d<0,∴m<2,又m∈N*,∴m=1,∴d=﹣1.(3)设{an}的公差为d,令bn=a1﹣(n﹣1)a1=(2﹣n)a1,对∀n∈N*,bn+1﹣bn=﹣a1,cn=(n﹣1)(a1+d),对∀n∈N*,cn+1﹣cn=a1+d,则bn+cn=a1+(n﹣1)d=an,且数列{bn}和{cn}是等差数列.数列{bn}的前n项和Tn=,令Tn=(2﹣m)a1,则.当n=1时,m=1;当n=2时,m=1.当n≥3时,由于n与n﹣3的奇偶性不同,即n(n﹣3)为非负偶数,m∈N*.因此对∀n∈N*,都可找到m∈N*,使Tn=bm成立,即{bn}为H数列.数列{cn}的前n项和Rn=,令cm=(m﹣1)(a1+d)=Rn,则m=.∵对∀n∈N*,n(n﹣3)为非负偶数,∴m∈N*.因此对∀n∈N*,都可找到m∈N*,使Rn=cm成立,即{cn}为H数列.因此命题得证.【点评】本题考查了利用“当n≥2时,an=Sn﹣Sn﹣1,当n=1时,a1=S1”求an、等差数列的前n项和公式及其通项公式、新定义“H”的意义等基础知识与基本技能方法,考查了推理能力和计算能力、构造法,属于难题.三、附加题(本大题包括选做题和必做题两部分)(一)选择题(本题包括21、22、23、24四小题,请选定其中两个小题作答,若多做,则按作答的前两个小题评分)【选修41:几何证明选讲】21.(10分)如图,AB是圆O的直径,C,D是圆O上位于AB异侧的两点,证明:∠OCB=∠D.【分析】利用OC=OB,可得∠OCB=∠B,利用同弧所对的圆周角相等,即可得出结论.【解答】证明:∵OC=OB,∴∠OCB=∠B,∵∠B=∠D,∴∠OCB=∠D.【点评】本题考查同弧所对的圆周角相等,考查学生分析解决问题的能力,属于基础题. 【选修42:矩阵与变换】22.(10分)已知矩阵A=,B=,向量=,x,y为实数,若A=B,求x+y的值.【分析】利用矩阵的乘法,结合A=B,可得方程组,即可求x,y的值,从而求得x+y 的值.【解答】解:∵矩阵A=,B=,向量=,A=B,∴,∴x=﹣,y=4,∴x+y=【点评】本题考查矩阵的乘法,考查学生的计算能力,属于基础题.【选修43:极坐标及参数方程】23.在平面直角坐标系xOy中,已知直线l的参数方程(t为参数),直线l与抛物线y2=4x相交于AB两点,则线段AB的长为.【分析】直线l的参数方程化为普通方程,与抛物线y2=4x联立,求出A,B的坐标,即可求线段AB的长.【解答】解:直线l的参数方程为(t为参数),化为普通方程为x+y=3,与抛物线y2=4x联立,可得x2﹣10x+9=0,∴交点A(1,2),B(9,﹣6),∴|AB|==8.故答案为:8.【点评】本题主要考查了直线与抛物线的位置关系:相交关系的应用,考查学生的计算能力,属于基础题.【选修44:不等式选讲】24.已知x>0,y>0,证明(1+x+y2)(1+x2+y)≥9xy.【分析】由均值不等式可得1+x+y2≥3,1+x2+y≥,两式相乘可得结论.【解答】证明:由均值不等式可得1+x+y2≥3,1+x2+y≥分别当且仅当x=y2=1,x2=y=1时等号成立,∴两式相乘可得(1+x+y2)(1+x2+y)≥9xy.【点评】本题考查不等式的证明,正确运用均值不等式是关键.(二)必做题(本部分包括25、26两题,每题10分,共计20分)26.(10分)已知函数f0(x)=(x>0),设fn(x)为fn﹣1(x)的导数,n∈N*. (1)求2f1()+f2()的值;(2)证明:对任意n∈N*,等式|nfn﹣1()+fn()|=都成立.【分析】(1)由于求两个函数的相除的导数比较麻烦,根据条件和结论先将原函数化为:xf0(x)=sinx,然后两边求导后根据条件两边再求导得:2f1(x)+xf2(x)=﹣sinx,把x=代入式子求值;(2)由(1)得,f0(x)+xf1(x)=cosx和2f1(x)+xf2(x)=﹣sinx,利用相同的方法再对所得的式子两边再求导,并利用诱导公式对所得式子进行化简、归纳,再进行猜想得到等式,用数学归纳法进行证明等式成立,主要利用假设的条件、诱导公式、求导公式以及题意进行证明,最后再把x=代入所给的式子求解验证.【解答】解:(1)∵f0(x)=,∴xf0(x)=sinx,则两边求导,[xf0(x)]′=(sinx)′,∵fn(x)为fn﹣1(x)的导数,n∈N*,∴f0(x)+xf1(x)=cosx,两边再同时求导得,2f1(x)+xf2(x)=﹣sinx,将x=代入上式得,2f1()+f2()=﹣1,(2)由(1)得,f0(x)+xf1(x)=cosx=sin(x+),恒成立两边再同时求导得,2f1(x)+xf2(x)=﹣sinx=sin(x+π),再对上式两边同时求导得,3f2(x)+xf3(x)=﹣cosx=sin(x+),同理可得,两边再同时求导得,4f3(x)+xf4(x)=sinx=sin(x+2π),猜想得,nfn﹣1(x)+xfn(x)=sin(x+)对任意n∈N*恒成立,下面用数学归纳法进行证明等式成立:①当n=1时,成立,则上式成立;②假设n=k(k>1且k∈N*)时等式成立,即,∵[kfk﹣1(x)+xfk(x)]′=kfk﹣1′(x)+fk(x)+xfk′(x)=(k+1)fk(x)+xfk+1(x)又===,∴那么n=k+1(k>1且k∈N*)时.等式也成立,由①②得,nfn﹣1(x)+xfn(x)=sin(x+)对任意n∈N*恒成立,令x=代入上式得,nfn﹣1()+fn()=sin(+)=±cos=±,所以,对任意n∈N*,等式|nfn﹣1()+fn()|=都成立.【点评】本题考查了三角函数、复合函数的求导数公式和法则、诱导公式,以及数学归纳法证明命题、转化思想等,本题设计巧妙,题型新颖,立意深刻,是一道不可多得的好题,难度很大,考查了学生观察问题、分析问题、解决问题的能力,以及逻辑思维能力. 25.(10分)盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x1,x2,x3,随机变量X表示x1,x2,x3中的最大数,求X的概率分布和数学期望E(X).【分析】(1)先求出取2个球的所有可能,再求出颜色相同的所有可能,最后利用概率公式计算即可;(2)先判断X的所有可能值,在分别求出所有可能值的概率,列出分布列,根据数学期望公式计算即可.【解答】解(1)一次取2个球共有=36种可能,2个球颜色相同共有=10种可能情况∴取出的2个球颜色相同的概率P=.(2)X的所有可能值为4,3,2,则P(X=4)=,P(X=3)=于是P(X=2)=1﹣P(X=3)﹣P(X=4)=,X的概率分布列为X 2 3 4P故X数学期望E(X)=.【点评】本题考查了排列组合,概率公式以概率的分布列和数学期望,知识点比较多,属基础题.。

高三数学寒假作业冲刺培训班之历年真题汇编复习实战77739

高三数学寒假作业冲刺培训班之历年真题汇编复习实战77739

一、选择题1.在长为12 cm的线段AB上任取一点M,并以线段AM为边长作正方形,这个正方形的面积介于36 cm2与81 cm2之间的概率为( )A.3681B.1236C.1281D.14答案:D2.(辽宁高考)若将一个质点随机投入如图所示的长方形ABCD中,其中AB=2,BC=1,则质点落在以AB为直径的半圆内的概率是( )A.π2B.π4C.π6D.π8答案:B3.已知函数f(x)=x2-x-2,x∈[-5,5],那么满足f(x0)≤0,x0∈[-5,5]的x0取值的概率为( )A.310B.35C.15D.110答案:A4.一只小蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,即称其为“安全飞行”,则蜜蜂“安全飞行”的概率为( )A.827B.127C.2627D.1527答案:B5.如图,A是圆O上固定的一点,在圆上其他位置任取一点A′,连接AA′,它的长度小于或等于半径的概率为( )A.1 2B.32C.13D.14答案:C二、填空题6.设D是半径为R的圆周上的一定点,在圆周上随机取一点C,连接CD得一弦,若A 表示“所得弦的长大于圆内接等边三角形的边长”,则P(A)=________.解析:如图所示,△DPQ为圆内接正三角形,当C点位于劣弧PQ上时,弦DC>PD,∴P(A)=13.答案:137.在棱长为a的正方体ABCD-A1B1C1D1内任取一点P,则点P到点A的距离小于等于a 的概率为________.解析:点P到点A的距离小于等于a可以看作是随机的,点P到点A的距离小于等于a 可视作构成事件的区域,棱长为a的正方体ABCD-A1B1C1D1可视作试验的所有结果构成的区域,可用“体积比”公式计算概率:P=18×43πa3a3=16π.答案:16π8.(重庆高考)某校早上8:00开始上课,假设该校学生小张与小王在早上7:30~7:50之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为________(用数字作答).解析:设小张与小王的到校时间分别为7:00后第x分钟,第y分钟.根据题意可画出图形,如图所示,则总事件所占的面积为(50-30)2=400.小张比小王至少早5分钟到校表示的事件A={(x,y)|y-x≥5,30≤x≤50,30≤y≤50},如图中阴影部分所示.阴影部分所占的面积为12×15×15=2252,所以小张比小王至少早5分钟到校的概率为P(A)=2252400=932.答案:932三、解答题9.已知点M(x,y)满足|x|≤1,|y|≤1.求点M落在圆(x-1)2+(y-1)2=1的内部的概率.解:如图所示,区域Ω为图中的正方形,正方形的面积为4,且阴影部分是四分之一圆,其面积为14π,则点M落在圆(x-1)2+(y -1)2=1的内部的概率为14π4=π16.10.小朋友做投毽子游戏,首先在地上画出如图所示的框图,其中AG=HR=DR=12GH,CP=DP=AE=2CQ.其游戏规则是:将毽子投入阴影部分为胜,否则为输.求某小朋友投毽子获胜的概率.解:观察图形可看出阴影部分面积占总面积的一半,投入阴影部分的概率只与阴影部分的面积和总面积有关,故所求事件(记为事件A)的概率为P(A)=12.11.如图,已知AB 是半圆O 的直径,AB =8,M ,N ,P 是将半圆圆周四等分的三个分点.(1)从A ,B ,M ,N ,P 这5个点中任取3个点,求这3个点组成直角三角形的概率; (2)在半圆内任取一点S ,求△SAB 的面积大于82的概率.解:(1)从A ,B ,M ,N ,P 这5个点中任取3个点,一共可以组成10个三角形:△ABM ,△ABN ,△ABP ,△AMN ,△AMP ,△ANP ,△BMN ,△BMP ,△BNP ,△MNP ,其中是直角三角形的只有△ABM ,△ABN ,△ABP 3个,所以组成直角三角形的概率为310. (2)连接MP ,取线段MP 的中点D , 则OD ⊥MP ,易求得OD =22,当S 点在线段MP 上时,S △ABS =12×22×8=82,所以只有当S 点落在阴影部分时,△SAB 的面积才能大于82,而S 阴影=S 扇形MOP -S △OMP =12×π2×42-12×42=4π-8,所以由几何概型的概率公式得△SAB 的面积大于82的概率为4π-88π=π-22π.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)复数的模长为()A.B. C.D.22.(5分)已知集合A={x|0<log4x<1},B={x|x≤2},则A∩B=()A.(0,1)B.(0,2] C.(1,2)D.(1,2]3.(5分)已知点A(1,3),B(4,﹣1),则与向量同方向的单位向量为()A. B. C. D.4.(5分)下列关于公差d>0的等差数列{an}的四个命题:p1:数列{an}是递增数列;p2:数列{nan}是递增数列;p3:数列是递增数列;p4:数列{an+3nd}是递增数列;其中真命题是()A.p1,p2 B.p3,p4 C.p2,p3 D.p1,p45.(5分)某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[20,40),[40,60),[60,80),[80,100).若低于60分的人数是15人,则该班的学生人数是()A.45 B.50 C.55 D.606.(5分)在△ABC,内角A,B,C所对的边长分别为a,b,c.asinBcosC+csinBcosA=b,且a>b,则∠B=()A.B.C.D.7.(5分)使得(3x+)n(n∈N+)的展开式中含有常数项的最小的n为()A.4 B.5 C.6 D.78.(5分)执行如图所示的程序框图,若输入n=10,则输出的S=()A.B.C.D.9.(5分)已知点O(0,0),A(0,b),B(a,a3),若△OAB为直角三角形,则必有()A.b=a3 B.C.D.10.(5分)已知三棱柱ABC﹣A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为()A.B.C.D.11.(5分)已知函数f(x)=x2﹣2(a+2)x+a2,g(x)=﹣x2+2(a﹣2)x﹣a2+8.设H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)},(max{p,q})表示p,q中的较大值,min{p,q}表示p,q中的较小值),记H1(x)的最小值为A,H2(x)的最大值为B,则A﹣B=()A.16 B.﹣16 C.﹣16a2﹣2a﹣16 D.16a2+2a﹣1612.(5分)设函数f(x)满足x2f′(x)+2xf(x)=,f(2)=,则x>0时,f(x)()A.有极大值,无极小值B.有极小值,无极大值C.既有极大值又有极小值D.既无极大值也无极小值二、填空题:本大题共4小题,每小题5分.13.(5分)某几何体的三视图如图所示,则该几何体的体积是.14.(5分)已知等比数列{an}是递增数列,Sn是{an}的前n项和.若a1,a3是方程x2﹣5x+4=0的两个根,则S6=.15.(5分)已知椭圆的左焦点为F,C与过原点的直线相交于A,B两点,连接AF、BF,若|AB|=10,|AF|=6,cos∠ABF=,则C的离心率e=.16.(5分)为了考察某校各班参加课外小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据,已知样本平均数为7,样本方差为4,且样本数据互不相同,则样本数据中的最大值为.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(12分)设向量,,.(1)若,求x的值;(2)设函数,求f(x)的最大值.18.(12分)如图,AB是圆的直径,PA垂直圆所在的平面,C是圆上的点.(Ⅰ)求证:平面PAC⊥平面PBC;(Ⅱ)若AB=2,AC=1,PA=1,求证:二面角C﹣PB﹣A的余弦值.19.(12分)现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答.(Ⅰ)求张同学至少取到1道乙类题的概率;(Ⅱ)已知所取的3道题中有2道甲类题,1道乙类题.设张同学答对甲类题的概率都是,答对每道乙类题的概率都是,且各题答对与否相互独立.用X表示张同学答对题的个数,求X的分布列和数学期望.20.(12分)如图,抛物线C1:x2=4y,C2:x2=﹣2py(p>0),点M(x0,y0)在抛物线C2上,过M作C1的切线,切点为A,B(M为原点O时,A,B重合于O),当x0=1﹣时,切线MA的斜率为﹣.(Ⅰ)求P的值;(Ⅱ)当M在C2上运动时,求线段AB中点N的轨迹方程(A,B重合于O时,中点为O).21.(12分)已知函数f(x)=(1+x)e﹣2x,g(x)=ax++1+2xcosx,当x∈[0,1]时,(I)求证:;(II)若f(x)≥g(x)恒成立,求实数a的取值范围.请考生在21、22、23题中任选一题作答,如果多做,则按所做的第一题计分。

高三数学寒假作业冲刺培训班之历年真题汇编复习实战52077

高三数学寒假作业冲刺培训班之历年真题汇编复习实战52077

本试题卷分选择题和非选择题两部分.全卷共4页,选择题部分1至2页,非选择题部分2至4页。

满分150分,考试时间120分钟。

请考生按规定用笔将所有试题的答案涂、写在答题纸上. 参考公式:柱体的体积公式:V Sh = 其中S 表示柱体的底面积,h 表示柱体的高锥体的体积公式:13V Sh =其中S 表示锥体的底面积,h 表示锥体的高台体的体积公式:)(312211S S S S h V ++=其中S1、S2分别表示台体的上、下底面积,h 表示台体的高球的表面积公式:24S R π=球的体积公式:334R V π=其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项符合题目要求。

1.已知集合{}{}2lg ,230A x y x B x x x ===--<,则A B = ( ▲ )A .(0,3)B .(1,0)-C .(,0)(3,)-∞+∞D .(1,3)-2.已知l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是( ▲ )A .若//l α,//m α,则//l mB .若l m ⊥,//m α,则l α⊥C .若l α⊥,m α⊥,则//l mD .若l m ⊥,l α⊥,则//m α3.已知实数y x ,满足20323x y x y x y -≥⎧⎪+≤⎨⎪-≤⎩,则y x z -=的最大值为( ▲ )A .1-B .0C .1D .34.已知直线l :b kx y +=,曲线C :122=+y x ,则“1=b ”是“直线l 与曲线C 有公共点”的( ▲ )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.已知正方形ABCD 的面积为2,点P 在边AB 上,则PD PC ⋅的最大值为( ▲ )A.32C .2 D6.如图,在矩形ABCD 中,2AB =,3AD =,点E 为AD 的中点,现分别沿,BE CE 将,ABE DCE ∆∆翻折,使得点,A D 重合于F ,此时二面角E BC F --的余弦值为 ( ▲ )A .34 BC .23D722221(0,0)x y a b a b -=>>的左、右焦点,点P 在第一象限,且满足2||F P a =,1(F P 2PF 与双曲线C 点Q ,若22C ( ▲ )A .y =C .2y x =±D .3y x =± 8.已知集合22{(,)|1}M x y x y =+≤,若实数,λμ满足:对任意的(,)x y M ∈,都有(,)x y M λμ∈,则称(,)λμ是集合M 的“和谐实数对”。

高三数学寒假作业冲刺培训班之历年真题汇编复习实战77789

高三数学寒假作业冲刺培训班之历年真题汇编复习实战77789

本试卷分选择题和非选择题两部分,共6页,24小题,满分150分,考试时间120分钟。

注意事项:1.答卷前,考生要务必填写答题卷上的有关项目.2.选择题每小题选出答案后,用2B 铅笔把答案填在答题卡相应的位置上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卷的整洁,考试结束后,将答题卷交回. 参考公式:锥体的体积公式是:13V S h =•锥体底,其中S 底是锥体的底面积,h 是锥体的高. 第一部分 选择题(共60分)一.选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{}1,2,3,4,5U =,集合{1,2,5}A =,{}1,3,5U C B =,则A B =( )A .{5}B .{2}C .{1,2,4,5}D .{3,4,5}2.已知Z=ii+12 (i 为虚数单位),则Z 的共轭复数在复平面内对应的点位于() A .第一象限 B .第二象限 C .第三象限D .第四象限3.已知非零向量()21,1a m m =-+与向量()1,2b =-平行,则实数m 的值为( )A .1-或21B .1或21- C .1-D .214.执行如图所示的程序框图,输出的S 值为( )A .1B .23C .1321D .6109875.设C ∆AB 的内角A ,B ,C 的对边分别为a ,b ,c . 若2a =,c =,21sin =A ,且b c <,则=B ( ) A .6πB .3πC .2πD .32π6.设数列}{n a 是等差数列,n S 为其前n 项和.若368S S =,853=-a a ,则20a =( )A .4B.36 C.74- D.80334俯视图侧视图正视图第10题图7.设函数⎩⎨⎧≥<-+=-)1(,3)1(),2(log 1)(13x x x x f x ,则=+-)12(log )7(3f f ( ) A .7B.9 C.11D.138.已知命题p ⌝:存在x ∈(1,2)使得0xe a ->,若p 是真命题,则实数a 的取值范围为( )A. (∞,e )B. (∞, e ]C. (2e ,+∞) D. [2e ,+∞)9. 已知函数()()sin f x A ωx φ=+002πA ωφ⎛⎫>>< ⎪⎝⎭,,的部分图象如图所示,若将()f x 图像上的所有点向右平移12π个单位得到函数()g x 的图像, 则函数()g x 的单调递增区间为( )A .[,]36k k ππππ-+,k Z ∈B .2[+,]63k k ππππ+,k Z ∈ C .[,]1212k k ππππ-+,k Z ∈D .7[,]1212k k ππππ--,k Z ∈10.如图为某几何体的三视图,则该几何体的外接球的表面积为( )A .31πB . 32πC . 34πD .36π11.《算数书》是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也. 又以高乘之,三十六成一. 该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式2136V L h ≈. 它实际上是将圆锥体积公式中的圆周率π近似取为3. 那么,近似公式2275V L h ≈相当于将圆锥体积公式中的π近似取为( ) A .227B .258C .15750D .35511312.已知抛物线24y x =的焦点为F ,A 、B 为抛物线上两点,若3AF FB =,O 为坐标原点,则△AOB 的面积为() A .3B .833C .43D .23第二部分 非选择题(共90分)二、填空题:本大题共4小题,每小题5分,满分20分.13.已知直线l 过圆()2234x y +-=的圆心,且与直线10x y ++=垂直,则直线l 的方程为.第9题图14.实数,x y 满足1030330x y x y x y -+≥⎧⎪+-≤⎨⎪+-≥⎩,则1++=y x Z 的最大值为.15.设△ABC 的内角为A ,B ,C ,所对的边分别是a ,b ,c .若ab c b a c b a =++-+))((,则角C=__________.16.设函数)('x f 是奇函数()()f x x R ∈的导函数,0)1(=-f ,当0x >时,0)()('<-x f x xf ,则使得()0f x >成立的x 的取值范围是.三、解答题:本大题共 8小题,满分 70 分。

高三数学寒假作业冲刺培训班之历年真题汇编复习实战77725

高三数学寒假作业冲刺培训班之历年真题汇编复习实战77725

(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求)1.(·平顶山高一检测)圆(x+2)2+y2=5关于y轴对称的圆的方程为()A.(x2)2+y2=5B.x2+(y2)2=5C.(x+2)2+(y+2)2=5D.x2+(y+2)2=5【解析】选A.由题意知所求圆的圆心为(2,0),半径为,故所求圆的方程为(x2)2+y2=5.2.直线l:y=k与圆C:x2+y2=1的位置关系是()A.相交或相切B.相交或相离C.相切D.相交【解析】选D.圆C的圆心(0,0)到直线y=k的距离d=,因为d2=<<1,所以位置关系为相交.【一题多解】选 D.直线l:y=k过定点,而点在圆C:x2+y2=1内部,故直线l与圆C相交.3.(·广东高考)平行于直线2x+y+1=0且与圆x2+y2=5相切的直线的方程是()A.2xy+=0或2xy=0B.2x+y+=0或2x+y=0C.2xy+5=0或2xy5=0D.2x+y+5=0或2x+y5=0【解析】选D.设所求切线方程为2x+y+c=0,依题有=,解得c=±5,所以所求的直线方程为2x+y+5=0或2x+y5=0.4.若直线ax+by=4与圆x2+y2=4有两个不同的交点,则点P(a,b)与圆的位置关系是()A.点P在圆外B.点P在圆上C.点P在圆内D.不能确定【解析】选A.根据直线与圆相交得圆心到直线的距离小于半径,<2,即a2+b2>4,所以点P(a,b)在圆x2+y2=4的外部.【延伸探究】若本题条件换为“直线ax+by=4与圆x2+y2=4相切”则结论又如何呢?【解析】选B.由题意知=2,即a2+b2=4.则点P在圆上.5.(·成都高一检测)圆O1:x2+y22x=0与圆O2:x2+y24y=0的位置关系是() A.外离 B.相交C.外切D.内切【解析】选B.圆O1(1,0),r1=1,圆O2(0,2),r2=2,|O1O2|==<1+2,且>21,故两圆相交.6.(·全国卷Ⅱ)圆x2+y22x8y+13=0的圆心到直线ax+y1=0的距离为1,则a=()A. B. C.D.2【解析】选A.圆x2+y22x8y+13=0化为标准方程为:(x1)2+(y4)2=4,故圆心为(1,4),d==1,解得a=.7.以点(3,1)为圆心且与直线3x+4y=0相切的圆的方程是()A.(x+3)2+(y1)2=1B.(x+3)2+(y1)2=2C.(x3)2+(y+1)2=1D.(x3)2+(y+1)2=2【解析】选C.由已知,r=d==1,故选C.8.空间直角坐标系中,点A(3,4,0)和B(x,1,6)的距离为,则x的值为()A.2B.8C.2或8D.8或2【解析】选C.由空间两点间距离公式得=,解得x=2或8.9.(·南昌高一检测)直线l1:y=x+a和l2:y=x+b将单位圆C:x2+y2=1分成长度相等的四段弧,则a2+b2=()A. B.2C.1D.3【解析】选 B.依题意,圆心(0,0)到两条直线的距离相等,且每段弧的长度都是圆周的,即=,=1×cos45°=,所以a2=b2=1,故a2+b2=2.10.(·江西高考)在平面直角坐标系中,A,B分别是x轴和y轴上的动点,若以AB为直径的圆C 与直线2x+y4=0相切,则圆C面积的最小值为()A.πB.πC.(62)πD.π【解题指南】数形结合,找到圆的半径最小时的情况即可.【解析】选A.由题意得,当原点到已知直线的距离恰为圆的直径时,圆的面积最小,此时圆的半径为×=,圆的面积为S=π=.11.已知直线l过点(2,0),当直线l与圆x2+y2=2x有两个交点时,其斜率k的取值范围是()A.(2,2)B.(,)C. ,D. ,【解析】选C.易知圆心坐标是(1,0),圆的半径是1,直线l的方程是y=k(x+2),即kxy+2k=0,根据点到直线的距离公式得<1,即k2<,解得<k<.12.若直线xy=2被圆(xa)2+y2=4所截得的弦长为2,则实数a的值为() A.1或 B.1或3C.2或6D.0或4【解析】选 D.圆的半径r=2,圆心(a,0)到直线xy2=0的距离d=,由+()2=22,得a=0或a=4.二、填空题(本大题共4个小题,每小题5分,共20分.把答案填在题中的横线上)13.(·武汉高一检测)已知圆M的圆心在直线xy4=0上并且经过圆x2+y2+6x4=0与圆x2+y2+6y28=0的交点,则圆M的标准方程为______________.【解析】联立两圆的方程得交点坐标(1,3)和(6,2);设圆心坐标(a,a4),所以=解得a=,圆心坐标,,r2=,方程为x+y+=.答案: x+y+=14.(·全国卷Ⅰ)设直线y=x+2a与圆C:x2+y22ay2=0相交于A,B两点,若|AB|=2,则圆C的面积为.【解析】由圆C:x2+y22ay2=0可得x2+(ya) 2=a2+2,所以圆心C(0,a),由题意可知=,解得a2=2,所以圆C的面积为π(a2+2)=4π.答案:4π15.(·石家庄高一检测)集合A={(x,y)|x2+y2=4},B={(x,y)|(x3)2+(y4)2=r2},其中r>0,若A∩B中有且仅有一个元素,则r的值是________.【解题指南】根据A∩B中有且仅有一个元素,说明两圆相切,注意分外切和内切,分别求r 的值.【解析】因为A∩B中有且仅有一个元素,所以两圆相切.当两圆外切时,2+r=5,即r=3;当两圆内切时,r2=5,即r=7.所以r的值是3或7.答案:3或716.方程x2+y2+2ax2ay=0表示的圆,①关于直线y=x对称;②关于直线x+y=0对称;③其圆心在x轴上,且过原点;④其圆心在y轴上,且过原点,其中叙述正确的是______________.【解析】将已知方程配方,得(x+a)2+(ya)2=2a2(a≠0),圆心坐标为(a,a),它在直线x+y=0上,所以已知圆关于直线x+y=0对称.故②正确.答案:②三、解答题(本大题共6个小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤)17.(10分)(·北京高一检测)求经过两点A(1,4),B(3,2)且圆心C在y轴上的圆的方程.【解析】因为AB的中点是(1,3),kAB==,所以AB的垂直平分线方程为y3=2(x1),即2xy+1=0.令x=0,得y=1,即圆心C(0,1).所以所求圆的半径为|AC|==.所以所求圆的方程为x2+(y1)2=10.18.(12分)在三棱柱ABOA′B′O′中,∠AOB=90°,侧棱OO′⊥平面OAB,OA=OB=OO′=2.若C为线段O′A的中点,在线段BB′上求一点E,使|EC|最小.【解析】如图所示,以三棱柱的O点为坐标原点,以OA,OB,OO′所在的直线分别为x轴、y 轴、z轴建立空间直角坐标系Oxyz.由OA=OB=OO′=2,得A(2,0,0),B(0,2,0),O(0,0,0),A′(2,0,2),B′(0,2,2),O′(0,0,2).由C为线段O′A的中点得C点坐标为(1,0,1),设E点坐标为(0,2,z),根据空间两点间距离公式得|EC|==,故当z=1时,|EC|取得最小值为,此时E(0,2,1)为线段BB′的中点.19.(12分)(·大连高一检测)已知圆C:(x1) 2+y2=9内有一点P(2,2),过点P作直线l交圆C于A,B两点.(1)当l经过圆心C时,求直线l的方程.(2)当弦AB被点P平分时,写出直线l的方程.【解析】(1)已知圆C:(x1)2+y2=9的圆心为C(1,0),因直线l过点P,C,所以直线l的斜率为2,直线l的方程为y=2(x1),即2xy2=0.(2)当弦AB被点P平分时,l⊥PC,直线l的方程为y2=(x2),即x+2y6=0.20.(12分)已知圆O:x2+y2=1与直线l:y=kx+2.(1)当k=2时,求直线l被圆O截得的弦长.(2)当直线l与圆O相切时,求k的值.【解析】(1)当k=2时,直线l的方程为2xy+2=0.设直线l与圆O的两个交点分别为A,B,过圆心O(0,0)作OD⊥AB于点D,则|OD|==,所以|AB|=2|AD|=2=.(2)当直线l与圆O相切时,即圆心到直线的距离等于圆的半径.所以=1,即=2,解得k=±.【一题多解】(1)当k=2时,联立方程组消去y,得5x2+8x+3=0,解得x=1或x=,代入y=2x+2,得y=0或y=,设直线l与圆O的两个交点分别为A,B,则A(1,0)和B,所以|AB|==.(2)联立方程组消去y,得(1+k2)x2+4kx+3=0,当直线l与圆O相切时,即上面关于x的方程只有一个实数根.则Δ=(4k)24×3(1+k2)=0,即4k212=0,k2=3,所以k=±.21.(12分)(·长春高一检测)已知圆C:x2+y22x+4y4=0.(1)写出圆C的标准方程,并指出圆心坐标和半径大小.(2)是否存在斜率为1的直线m,使m被圆C截得的弦为AB,且OA⊥OB(O为坐标原点).若存在,求出直线m的方程;若不存在,说明理由.【解题指南】(1)由圆的一般方程x2+y2+Dx+Ey+F=0(D2+E24F>0)得其圆心,,半径为,从而可得圆C的标准方程,此题也可以通过配方法直接得到圆C的标准方程,然后再写出其圆心坐标和半径.(2)首先根据题意设出m的方程,然后与圆的方程联立消y得关于x的一元二次方程,运用根与系数的关系得到两根的和及积的关系,然后再根据OA⊥OB不难得出关于两根和及积的方程,从而可求直线m的方程.【解析】(1)根据圆的一般方程结合已知得:D=2,E=4,F=4,则==1,==2,==3,即圆心C的坐标为(1,2),半径为3,所以圆C的标准方程为:(x1)2+(y+2)2=9.(2)根据题意可设直线m:y=x+b,代入圆的方程得:2x2+2(b+1)x+b2+4b4=0,因为直线与圆相交,所以b2+6b9<0,x1+x2=b1,x1x2=,设A(x1,y1),B(x2,y2),则y1=x1+b,y2=x2+b,由OA⊥OB得:·=1⇒=1⇒(x1+b)(x2+b)+x1x2=0,2x1x2+b(x1+x2)+b2=0⇒b2+3b4=0,得b=4或b=1,均满足b2+6b9<0,故所求直线m存在,且方程为y=x4或y=x+1.22.(12分)已知半径为5的圆的圆心在x轴上,圆心的横坐标是整数,且与直线4x+3y29=0相切.(1)求圆的方程.(2)设直线axy+5=0(a>0)与圆相交于A,B两点,求实数a的取值范围.(3)在(2)的条件下,是否存在实数a,使得弦AB的垂直平分线l过点P(2,4)?若存在,求出实数a的值;若不存在,请说明理由.【解析】(1)设圆心为M(m,0)(m∈Z).由于圆与直线4x+3y29=0相切,且半径为5,所以=5,即|4m29|=25.因为m为整数,故m=1.故所求圆的方程为(x1)2+y2=25.(2)把直线axy+5=0即y=ax+5代入圆的方程,消去y整理,得(a2+1)x2+2(5a1)x+1=0.由于直线axy+5=0交圆于A,B两点,故Δ=4(5a1)24(a2+1)>0.即12a25a>0,由于a>0,解得a>,所以实数a的取值范围是.(3)假设符合条件的实数a存在,由于a≠0,则直线l的斜率为,l的方程为y=(x+2)+4,即x+ay+24a=0.由于l垂直平分弦AB,故圆心M(1,0)必在l上.所以1+0+24a=0,解得a=.由于∈,故存在实数a=,使得过点P(2,4)的直线l垂直平分弦AB.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)复数的模长为()A.B. C.D.22.(5分)已知集合A={x|0<log4x<1},B={x|x≤2},则A∩B=()A.(0,1)B.(0,2] C.(1,2)D.(1,2]3.(5分)已知点A(1,3),B(4,﹣1),则与向量同方向的单位向量为()A. B. C. D.4.(5分)下列关于公差d>0的等差数列{an}的四个命题:p1:数列{an}是递增数列;p2:数列{nan}是递增数列;p3:数列是递增数列;p4:数列{an+3nd}是递增数列;其中真命题是()A.p1,p2 B.p3,p4 C.p2,p3 D.p1,p45.(5分)某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[20,40),[40,60),[60,80),[80,100).若低于60分的人数是15人,则该班的学生人数是()A.45 B.50 C.55 D.606.(5分)在△ABC,内角A,B,C所对的边长分别为a,b,c.asinBcosC+csinBcosA=b,且a>b,则∠B=()A.B.C.D.7.(5分)使得(3x+)n(n∈N+)的展开式中含有常数项的最小的n为()A.4 B.5 C.6 D.78.(5分)执行如图所示的程序框图,若输入n=10,则输出的S=()A.B.C.D.9.(5分)已知点O(0,0),A(0,b),B(a,a3),若△OAB为直角三角形,则必有()A.b=a3 B.C.D.10.(5分)已知三棱柱ABC﹣A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为()A.B.C.D.11.(5分)已知函数f(x)=x2﹣2(a+2)x+a2,g(x)=﹣x2+2(a﹣2)x﹣a2+8.设H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)},(max{p,q})表示p,q中的较大值,min{p,q}表示p,q中的较小值),记H1(x)的最小值为A,H2(x)的最大值为B,则A﹣B=()A.16 B.﹣16 C.﹣16a2﹣2a﹣16 D.16a2+2a﹣1612.(5分)设函数f(x)满足x2f′(x)+2xf(x)=,f(2)=,则x>0时,f(x)()A.有极大值,无极小值B.有极小值,无极大值C.既有极大值又有极小值D.既无极大值也无极小值二、填空题:本大题共4小题,每小题5分.13.(5分)某几何体的三视图如图所示,则该几何体的体积是.14.(5分)已知等比数列{an}是递增数列,Sn是{an}的前n项和.若a1,a3是方程x2﹣5x+4=0的两个根,则S6=.15.(5分)已知椭圆的左焦点为F,C与过原点的直线相交于A,B两点,连接AF、BF,若|AB|=10,|AF|=6,cos∠ABF=,则C的离心率e=.16.(5分)为了考察某校各班参加课外小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据,已知样本平均数为7,样本方差为4,且样本数据互不相同,则样本数据中的最大值为.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(12分)设向量,,.(1)若,求x的值;(2)设函数,求f(x)的最大值.18.(12分)如图,AB是圆的直径,PA垂直圆所在的平面,C是圆上的点.(Ⅰ)求证:平面PAC⊥平面PBC;(Ⅱ)若AB=2,AC=1,PA=1,求证:二面角C﹣PB﹣A的余弦值.19.(12分)现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答.(Ⅰ)求张同学至少取到1道乙类题的概率;(Ⅱ)已知所取的3道题中有2道甲类题,1道乙类题.设张同学答对甲类题的概率都是,答对每道乙类题的概率都是,且各题答对与否相互独立.用X表示张同学答对题的个数,求X的分布列和数学期望.20.(12分)如图,抛物线C1:x2=4y,C2:x2=﹣2py(p>0),点M(x0,y0)在抛物线C2上,过M作C1的切线,切点为A,B(M为原点O时,A,B重合于O),当x0=1﹣时,切线MA的斜率为﹣.(Ⅰ)求P的值;(Ⅱ)当M在C2上运动时,求线段AB中点N的轨迹方程(A,B重合于O时,中点为O).21.(12分)已知函数f(x)=(1+x)e﹣2x,g(x)=ax++1+2xcosx,当x∈[0,1]时,(I)求证:;(II)若f(x)≥g(x)恒成立,求实数a的取值范围.请考生在21、22、23题中任选一题作答,如果多做,则按所做的第一题计分。

高三数学寒假作业冲刺培训班之历年真题汇编复习实战77713

高三数学寒假作业冲刺培训班之历年真题汇编复习实战77713

一、选择题:本大题共10小题,每小题5分,满分50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设全集为U ,若命题p :∈A∩B ,则命题非p 为 ( ) A. ∈A ∪B B. ∉A ∪BC. ∈()()U U C A C B ⋃D. ∈()()U U C A C B ⋂2.已知函数()12f x x =-,若3(log 0.8)a f =,131[()]2b f =,12(2)c f -=,则( )A .a b c <<B .b c a <<C .c a b <<D .a c b <<3.下列命题不正确的是A .如果一个平面内的一条直线垂直于另一个平面内的任意直线,则两平面垂直;B .如果一个平面内的任一条直线都平行于另一个平面,则两平面平行;C .如果两条不同的直线在一平面内的射影互相垂直,则这两条直线垂直;D .如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行4.若对任意实数a ,函数215sin()36k y x ππ+=-()k N ∈在区间[],3a a +上的值54出现不少于4次且不多于8次,则k 的值为()A. 2B. 4C. 3或4D. 2或35. 吴同学晨练所花时间(单位:分钟)分别为x ,y ,30,29,31,已知这组数据的平均数为30,方差为2,则|x -y|的值为A .1B .2C .3D .46. 设A1、A2为椭圆)0(12222>>=+b a by a x 的左右顶点,若在椭圆上存在异于A1、A2的点P ,使得02=⋅PA ,其中O 为坐标原点,则椭圆的离心率e 的取值范围是( ) A 、)21,0( B 、 )22,0( C 、)1,21( D 、)1,22(7. 已知两不共线向量(cos ,sin )αα=a ,(cos ,sin )ββ=b ,则下列说法不正确的是 A .()()+⊥-a b a b B .a 与b 的夹角等于αβ- C .2++->a b a bD .a 与b 在+a b 方向上的投影相等开始1 , 0==k s 1+=k k否 输出s结束图1)1(1++=k k s s是8. 若对一切θ∈R ,复数(cos )(2sin )i z a a θθ=++-的模不超过2,则实数a 的取值范围为 A. 55, 33⎡⎤-⎢⎥⎣⎦B. C. D. 9. 在数列{an}中,对任意*nN ,都有211n n n na a k a a (k 为常数),则称{an}为“等差比数列”. 下面对“等差比数列”的判断: ①k 不可能为0;②等差数列一定是等差比数列;③等比数列一定是等差比数列;④通项公式为(0,0,1)n na ab a b的数列一定是等差比数列,其中正确的个数为( ) A. 1 B. 2 C. 3 D. 410..任意a 、R b ∈,定义运算⎪⎩⎪⎨⎧>-≤⋅=*.0 , ,0, ab b a ab b a b a ,则xe x xf *=)(的A.最小值为e -B.最小值为e 1-C.最大值为e1- D.最大值为e二、填空题:本大题共5小题,每小题5分,满分20分。

高三数学寒假作业冲刺培训班之历年真题汇编复习实战22267

高三数学寒假作业冲刺培训班之历年真题汇编复习实战22267

注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名和考生号、试室号、座位号填写在答题卡上,并用铅笔在答题卡上的相应位置填涂考生号。

2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)已知集合{}11A x x =-≤≤,{}220B x x x =-≤,则AB =(A ){}12x x -≤≤(B ){}10x x -≤≤(C ){}12x x ≤≤(D ){}01x x ≤≤ 答案:D解析:集合A ={}11x x ≤≤-,集合B ={}2x x ≤≤0,所以,A B ={}01x x ≤≤。

(2)已知复数3i1iz +=+,其中i 为虚数单位,则复数z 所对应的点在 (A )第一象限(B )第二象限(C )第三象限(D )第四象限 答案:D 解析:(3)(1)22i i z i +==--,对应坐标为(2,-1),在第四象限。

(3)已知函数()2,1,1,1,1x x x f x x x⎧-≤⎪=⎨>⎪-⎩则()()2f f -的值为(A )12(B )15(C )15-(D )12-答案:C解析:2f (-)=4+2=6,11((2))(6)165f f f -===--,选C 。

(4)设P 是△ABC 所在平面内的一点,且2CP PA =,则△PAB 与△PBC 的面积之比是(A )13(B )12(C )23(D )34答案:B解析:依题意,得:CP =2PA ,设点P 到AC 之间的距离为h ,则 △PAB 与△PBC 的面积之比为1212BPA BCPPA hS S PC h ∆∆==12(5)如果函数()cos 4f x x ωπ⎛⎫=+⎪⎝⎭()0ω>的相邻两个零点之间的距离为6π,则ω的值为 (A )3(B )6(C )12(D )24答案:B解析:依题意,得:周期T =3π,23ππω=,所以,ω=6。

高三数学寒假作业冲刺培训班之历年真题汇编复习实战38077

高三数学寒假作业冲刺培训班之历年真题汇编复习实战38077

第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.已知集合{}24Mx x =<,N x x =<{|}1,则M N ⋂=A.{|}x x -<<21B.{|}x x <-2C.{|}x x <1D.{}2x x <2.设i 是虚数单位,若复数z 满足()()11z i i +=-,则复数z 的模z = A.1-B.1C.2D.23.在ABC ∆中,45,105,2o o A C BC ∠=∠==,则边长AC 为A.31-B.1C.2D.3+14.椭圆C 的中心在原点,焦点在x 轴上,离心率等于12,且它的一个顶点恰好是抛物线283x y = 的焦点,则椭圆C 的标准方程为A.22142x y +=B.22143x y +=C.221129x y += D.2211612x y +=5.下列程序框图中,输出的A 的值是A.128 B.129 C.131 D.1346.将函数()sin(2)()2f x x πϕϕ=+<的图象向左平移6π个单位后的图形关于原点对称,则函数 ()f x 在0,2π⎡⎤⎢⎥⎣⎦上的最小值为A.3B.12C.12-D.37.函数cos 622x xxy-=-的图像大致为8.已知不等式组⎪⎩⎪⎨⎧≥-≥-≤+011y y x y x 所表示的平面区域为D ,若直线3y kx =-与平面区域D 有公共点,则k 的取值范围为是 A.[3,3]-B.11(,][,)33-∞-+∞ C.(,3][3,)-∞-+∞ D.11[,]33-9.某几何体的三视图如图所示,图中的四边形都是边长为2的正方形,两条虚线互相垂直,则该几何体的体积是A .203B .163C .86π-D .83π-10.42()(1)x x x+-的展开式中x 的系数是 A.1B.2C.3D.1211.如图,1F 、2F 是双曲线)0,0(12222>>=-b a by a x 的左、右焦点,过1F 的直线l 与双曲线的左右两支分别交于点A 、B .若2ABF ∆为等边三角形,则双曲线的离心率为A.4B.7C.332D.312.已知函数11,1()4ln,1x xf xx x⎧+≤⎪=⎨⎪⎩>,则方程()f x ax=恰有两个不同的实根时,实数a的取值范围是A.10,e⎛⎫⎪⎝⎭ B.⎪⎭⎫⎢⎣⎡e1,41C.⎥⎦⎤⎝⎛41,0D.1,4e⎛⎫⎪⎝⎭第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知(0,)απ∈,4cos5α=,则sin()πα-=.14.在ABC∆中,090,B∠=1,AB BC==.点M满足2BM AM=,则CM CA⋅=______,15.如图,在边长为1的正方形OABC中任取一点,则该点落在阴影部分中的概率为16.已知直三棱柱111ABC A B C-中,090BAC∠=,侧面11BCC B的面积为2,则直三棱柱111ABC A B C-外接球表面积的最小值为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分)已知数列{}n a 满足:0n a ≠,113a =,112n n n n a a a a ++-=⋅,(n N *∈). (1)求证:1n a ⎧⎫⎨⎬⎩⎭是等差数列,并求出n a ;(2)证明:122311...6n n a a a a a a ++++<.18.(本小题满分12分)如图,矩形ABEF 所在的平面与等边ABC ∆所在 的平面垂直,22AB AF ==,O 为AB 的中点.(1)求证:OE FC ⊥;(2)求二面角F CE B --的余弦值.19.(本小题满分12分) 某批发市场对某种商品的日销售量(单位:吨)进行统计,最近50天的统计结果 如下:b a ,的值;(1)求表中的(2)若以上表频率作为概率,且每天的销售量相互独立.求: ① 5天中该种商品恰好有2天的销售量为 1.5吨的概率;②已知每吨该商品的销售利润为2千元,ξ表示该种商品两天销售利润的和(单位:千元)求ξ的分布列和期望.20.(本小题满分12分)已知椭圆C:22221,(0)x y a b a b +=>>的离心率为63,且过点(1,63).(1)求椭圆C 的方程;(2)设与圆223:4O x y +=相切的直线l 交椭圆C 与A,B 两点,求OAB ∆面积的最大值,及取得最大值时直线l 的方程.日销售量(吨) 11.52频数 10 2515频率0.2a b21.(本小题满分12分)已知函数()()xf x ax b e =+(e 为自然对数的底数),曲线()y f x =在点()()0,0f 处的切线方程为2y x =--.(1)求a ,b 的值; (2)任意1x ,[]20,2x ∈时,证明:()()12||f x f x e-≤.请考生从第22、23、24三题中任选一题作答。

高三数学寒假作业冲刺培训班之历年真题汇编复习实战42577

高三数学寒假作业冲刺培训班之历年真题汇编复习实战42577

本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分.考试时间120分钟.考试结束后,将本试卷和答题卡一并收回. 注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试卷上.3.答第II 卷时必须使用0.5毫米的黑色墨水签字笔书写,要字体工整,笔迹清晰,严格在题号所指示的答题区域内作答.超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效.参考公式:锥体的体积公式V=13Sh .其中S 是锥体的底面积,h 是锥体的高. 第I 卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分。

共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}21log ,1,,12xA y y x xB y y x ⎧⎫⎪⎪⎛⎫==>==>⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则A B ⋂=A.102y y ⎧⎫<<⎨⎬⎩⎭B.{}01y y <<C.112yy ⎧⎫<<⎨⎬⎩⎭D.φ2.下列说法中错误的是A.若命题2:,10p x R x x ∃∈++<,则2:,10p x R x x ⌝∀∈++≥ B.“1x =”是“2320x x -+=”的充分不必要条件C.命题“若2320,1x x x -+==则”的逆否命题为:“若1x ≠,则232x x -+≠0” D.若p q ∧为假命题,则,p q 均为假命题3.由曲线1xy =,直线,3y x x ==所围成的封闭图形的面积为 A.1ln 32+B.4ln 3-C.92D.1164. C 解析:因为0.20331>=,πππ0log 1log 3log π1,=<<=33log log 10<=,所以a b c >>,故选C.5. 李华经营了两家电动轿车销售连锁店,其月利润(单位:元)分别为21590016000L x x =-+-,23002000L x =-(其中x 为销售辆数),若某月两连锁店共销售了110辆,则能获得的最大利润为( )A.11000B. 22000C. 33000D. 400005.C 解析:设甲连锁店销售x 辆,则乙连锁店销售110x -辆,故利润2590016000300(110)2000L x x x =-+-+--2560015000x x =-++25(60)33000x =--+,所以当x=60辆时,有最大利润33000元,故选C 。

高三数学寒假作业冲刺培训班之历年真题汇编复习实战43277

高三数学寒假作业冲刺培训班之历年真题汇编复习实战43277

第Ⅰ卷一.选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.复数21z i=-(i 为虚数单位)在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 【答案】A 【解析】 试题分析:211z i i==+-,在复平面内复数z 对应点的坐标为(1,1),在第一象限. 考点:1.复数的四则运算;2.复数的几何意义.2.已知集合{0,1,2}P =,2{|320}Q x x x =-+≤,则P Q ⋂=( ) A .{1}B .{2}C .{0,1}D .{1,2} 【答案】D 【解析】试题分析:因为2{|320}Q x x x =-+≤{|12}x x =≤≤,{0,1,2}P =,所以{1,2}P Q ⋂=. 考点:1.集合的概念;2.集合的表示方法;3.集合的运算;4.一元二次不等式的解法. 3. 等差数列{}n a 的前n 项和为n S ,若532S =,则3a =( ) A .325B .2C .42D .532【答案】A 【解析】试题分析:根据等差数列的性质,535S a =,所以533255S a ==. 考点:等差数列的概念,等差数列的通项公式,等差数列的前n 项和,等差数列的性质.4.已知函数()12log 030xx x f x x >⎧⎪=⎨⎪≤⎩,,,则((4))f f 的值为( ) A .91-B .9-C .91D .9【答案】C 【解析】试题分析:因为()12log 030x x x f x x >⎧⎪=⎨⎪≤⎩,,即()1(4)(2)9f f f =-=. 考点:分段函数求值,指数运算,对数运算.5.如图,网格纸的各小格都是正方形,粗实线画出的是一个凸多面体的三视图(两个矩形,一个直角三角形),则这个几何体可能为( )A .三棱台B .三棱柱C .四棱柱D .四棱锥 【答案】B 【解析】试题分析:根据三视图的法则:长对正,高平齐,宽相等.可得几何体如右图所示.这是一个三棱柱.考点:三视图,棱柱、棱锥、棱台的概念.6.已知直线l 过圆()2234x y +-=的圆心,且与直线10x y ++=垂直,则直线l 的方程为( )A .20x y +-=B .20x y -+=C .30x y +-=D .30x y -+= 【答案】D 【解析】试题分析:由已知得,圆心为(0,3),所求直线的斜率为1,由直线方程的斜截式得,3y x =+,即30x y -+=,故选D.考点:1.圆的标准方程;2.两条互相垂直直线斜率之间的关系;3.直线的方程. 7.执行如图所示的程序框图,如果输入1a =-,2b =-,则输出的a 的值为( )A .16B .8C .4D .2 【答案】B 【解析】试题分析:当1a =-,2b =-时,(1)(2)26a=-⨯-=<;当2a =,2b =-时,2(2)46a =⨯-=-<;当4a =-,2b =-时,(4)(2)86a =-⨯-=>,此时输出8a =,故选B.考点: 程序框图的应用.8.从某小学随机抽取100名同学,现已将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为( )A .2B .3C .4D .5【答案】B 【解析】试题分析:依题意可得10(0.0050.010.020.035)1a ⨯++++=,解得0.03a =,故身高在[120,130),[130,140],[140,150]三组内的学生比例为3:2:1.所以从身高在[140,150]内的学生中选取的人数应为3. 考点:1.统计的知识;2.分层抽样的方法;3.识别图表的能力.开始 输入a ,b输出a 结束6a > 是 a ab =否9.若函数()log 0,1a y x a a =>≠且的图象如图所示,则下列函数与其图象相符的是( )【答案】B 【解析】试题分析:由函数()log 0,1a y x a a =>≠且的图象可知,3,a =所以3xy -=,33()y x x =-=-及3log ()y x =-均为减函数,只有3y x =是增函数,选B.考点:幂函数、指数函数、对数函数的图象和性质.10.已知正四面体ABCD 的棱长为a ,其外接球表面积为1S ,内切球表面积为2S ,则12:S S 的值为( ) A .3B .33C .9D .494【答案】C 【解析】试题分析:如图所示,设点O 是内切球的球心,正四面体棱长为a ,由图形的对称性知,点O 也是外接球的球心.设内切球半径为r ,外接球半径为R .在Rt △BEO 中,222BO BE EO =+,即2223()3R a r =+, 又63R r a +=,可得3R r =,2212::9S S R r ==,故选C.(或由等体积法设内切球半径为r ,外接球半径为R ,正四面体的侧面积为S ,易有11()433S R r Sr +=⋅,有3R r =) 考点:正四面体的定义,正四面体与球的位置关系,球的表面积.11.已知抛物线24y x =的焦点为F ,A 、B 为抛物线上两点,若3AF FB =,O 为坐标原点,则△AOB 的面积为() A .3B .83C .43D .23 【答案】B 【解析】试题分析:(解法一)如图所示,根据抛物线的定义,不难求出,||2||AB AE =,由抛物线的对称性,不妨设直线的斜率为正,所以直线AB 的倾斜角为60,直线AB 的方程为3(1)y x =-, 联立直线AB 与抛物线的方程可得:23(1)y 4y x x⎧=-⎪⎨=⎪⎩,解之得:(3,23)A ,123(,)3B -, 所以2212316(3)(23)333AB =-++=,而原点到直线AB 的距离为3d =,所以14323AOB S AB d ∆=⨯⨯=,故应选C . 当直线AB 的倾斜角为120时,同理可求.(解法二)如图所示,设||BF m =, 则||||3AD AF m ==,又||||2||2AD AG OF -==,故C . 考点:1.抛物线的简单几何性质;2.直线与抛物线的相交问题.12.已知偶函数)(x f (0)x ≠的导函数为)(x f ',且满足(1)0f =,当0x >时,()2()xf x f x '<,则使得()0f x >成立的x 的取值范围是( )A .(,1)(0,1)-∞-B .(,1)(1,)-∞-+∞C .(1,0)(1,)-+∞D .(1,0)(0,1)-【答案】D 【解析】,当0x >时,()g x 在(0,)+∞上单调递减,又()f x 为偶函数,所以()g x 为偶函数,又(1)0f =,所以(1)0g =,故()g x 在(1,0)(0,1)-的函数值大于零,即()f x 在(1,0)(0,1)-的函数值大于零.考点:1.函数的单调性、奇偶性;2.利用导数研究函数的性质.第Ⅱ卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二. 填空题:(本大题共4小题,每小题5分,共20分,把答案填在答卷纸的相应位置上)13.设,x y 满足约束条件:,013x y x y x y ≥⎧⎪-≥-⎨⎪+≤⎩,若z x y =-,则z 的最大值为;【答案】3 【解析】试题分析:不等式组所表示的平面区域如图:目标函数(虚线)在点(3,0)B 处取得最大值3max =z .考点:简单线性规划14.已知正方形ABCD 的边长为2,E 为CD 的中点,则AC BE ⋅=; 【答案】2 【解析】 试题分析: (解法一)1()()()()2AC BE AB AD BC CE AB AD AD AB ⋅=+⋅+=+⋅-22142 2.2AD AB =-=-= (解法二)以A 为原点,以AB 为x 轴,以AD 为y 轴建立直角坐标系,(2,2)AC =,(1,2)BE =-,2AC BE ⋅=.考点:平面向量数量积15.函数()2ln f x x x =-的单调递增区间是; 【答案】1[,)2+∞(写成1(,)2+∞也给分) 【解析】试题分析:函数()2ln f x x x =-的定义域为(0,)+∞,'1()20f x x=-≥,所以函数()2ln f x x x =-的单调递增区间为1[,)2+∞.考点:利用导数研究具体函数的单调性.16.已知双曲线2222: 1 (0,0)x y C a b a b-=>>的右焦点为F ,双曲线C 与过原点的直线相交于A 、B两点,连接AF ,BF . 若||6AF =,||8BF =,3cos 5BAF ∠=,则该双曲线的离心率为. 【答案】5e =【解析】试题分析:6AF =,8BF =,3cos 5BAF ∠=,由余弦定理可求得10AB =,90BFA ∠=︒,将A ,B 两点分别与双曲线另一焦点连接,可以得到矩形,结合矩形性质可知,210c =,利用双曲线定义,2862a =-=,所以离心率5e =.考点:双曲线的定义,双曲线的离心率,余弦定理.三. 解答题:(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分) 已知函数2()2cos32xf x x =. (Ⅰ)求函数()f x 的最大值,并写出取得最大值时相应的x 的取值集合; (Ⅱ)若1tan22α=,求()f α的值. 【答案】(Ⅰ)3,{|2,k Z}3x x k ππ=+∈.(Ⅱ8+43【解析】试题解析:(Ⅰ)()1cos 3f x x x =++2cos()13x π=-+, …………3分所以cos()13x π-=,即23x k ππ-=,23x k ππ=+()k ∈Z 时,函数()f x 的最大值为3, …………5分 此时相应的x 的取值集合为{|2,k Z}3x x k ππ=+∈. …………6分(或()2sin()16f x x π=++相应给分)(Ⅱ)22222cos 23cos 222()2cos 23cos 222cos sin 22x x xx x x f x x x +=+=+. ………10分222321tan 2xx+=+ …………11分8+435=. …………12分 考点:1.同角三角函数基本关系式;2.三角函数恒等变换;3.三角函数的性质.18.(本小题满分12分)如图所示,三棱锥D ABC -中,AC ,BC ,CD 两两垂直,1AC CD ==,3BC =,点O 为AB 中点.(Ⅰ)若过点O 的平面α与平面ACD 平行,分别与 棱DB ,CB 相交于,M N ,在图中画出该截面多边 形,并说明点,M N 的位置(不要求证明); (Ⅱ)求点C 到平面的距离. 【答案】(Ⅰ)见解析;(Ⅱ)点C 到平面ABD 的距离为21. 【解析】试题解析:(Ⅰ)当M 为棱DB 中点,N 为棱BC 中点时,平面∥平面ACD .…………6分 (Ⅱ)因为CD AC ⊥,CD BC ⊥, 所以直线CD ⊥平面ABC ,…………8分2222112AD AC CD =+=+=, 22312BD BC CD =+=+=.又2213 2.AB AC BC =+=+=所以AB BD =,……………………………………9分BC ADO设点E 是AD 的中点,连接BE ,则BE AD ⊥, 所以2222142(2/2)2BE AB AE =-=-=, 1114722222ABD S AD BE ∆=⋅=⨯⨯=. 又C ABD D ABC V V --=,而11313222ABC S AC BC ∆=⋅=⨯⨯=, 设点C 到平面ABD 的距离为h ,则有1133ABD ABC S h S CD ∆∆⋅=⋅,……10分 即731h ⋅=⨯,∴21h =,即点C 到平面ABD 的距离为217.……12分 考点:1.空间垂直关系的转化与证明;2.点到面的距离;3.平行关系.19.(本小题满分12分)为考查某种疫苗预防疾病的效果,进行动物实验,得到统计数据如下:现从所有试验动物中任取一只,取到“注射疫苗”动物的概率为25. (Ⅰ)求22⨯列联表中的数据x ,y ,A ,B 的值;(Ⅱ)绘制发病率的条形统计图,并判断疫苗是否有效? (Ⅲ)能够有多大把握认为疫苗有效?附:22()()()()()n ad bc a b a c c d b d χ-=++++ 未发病 发病合计未注射疫苗 20 xA 注射疫苗 30 yB合计50501000.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 O未注射 注射【答案】(Ⅰ)10y =,40B =,40x =,60A =.(Ⅱ)由图可以看出疫苗影响到发病率.(Ⅲ)至少有99.9%的把握认为疫苗有效.未注射 注射考点:独立性检验的应用,统计,概率,根据统计数据做出相应评价20.(本小题满分12分) 已知椭圆22221x y a b+=(0)a b >>的左,右焦点分别为1F ,2F ,且126F F ||=,直线y kx =与椭圆交于A ,B 两点.(Ⅰ)若△12AF F 的周长为16,求椭圆的标准方程; (Ⅱ)若24k =,且A ,B ,1F ,2F 四点共圆,求椭圆离心率e 的值; (Ⅲ) 在(Ⅱ)的条件下,设00(,)P x y 为椭圆上一点,且直线PA 的斜率1(2,1)k ∈--,试求直线PB 的斜率2k 的取值范围. 【答案】(Ⅰ)2212516x y +=.(Ⅱ)23=e .(Ⅲ)21184k <<.即128x x =-,所以有22228,18a b b a -=-+ 结合229b a +=.解得212a =,所以离心率32e =.………8分 (若设1111(,),(,)A x y B x y --相应给分)(解法二)设)(11,y x A ,又AB 、EF 互相平分且共圆,所以AB 、EF 是圆的直径,所以92121=+y x ,又由椭圆及直线方程综合可得:⎪⎪⎪⎩⎪⎪⎪⎨⎧=+==+1429221221112121b y a x x y y x 前两个方程解出1,82121==y x ,…………6分将其带入第三个方程并结合92222-=-=a c a b ,解得:122=a ,23=e . …8分 (Ⅲ)由(Ⅱ)结论,椭圆方程为221123x y +=, …………9分 由题可设1111(,),(,)A x y B x y --,010*******,y y y y k k x x x x -+==-+, 所以2201122201y y k k x x -=-,…………10分 又22012201222201013(1)3(1)112124x x y y x x x x ----==--- ,即2114k k =-, 由121k -<<-可知,21184k <<.…………12分 考点:1.椭圆的标准方程及其几何性质;2.直线与椭圆的位置关系.21.(本小题满分12分)已知函数21()ln (R)2f x x a x b a =-+∈. (Ⅰ)若曲线()y f x =在1x =处的切线的方程为330x y --=,求实数a ,b 的值;(Ⅱ)若1x =是函数()f x 的极值点,求实数a 的值;(Ⅲ)若20a -≤<,对任意12,(0,2]x x ∈,不等式121211|()()|||f x f x m x x -≤-恒成立,求m 的最小值.【答案】(Ⅰ)2a =-,12b =-.(Ⅱ)1a =.(Ⅲ)m 的最小值为12. 【解析】试题解析:(Ⅰ)∵21()ln 2f x x a x b =-+,∴'()a f x x x=-,…………2分 ∵曲线()y f x =在1x =处的切线的方程为330x y --=, ∴13a -=,(1)0f =,∴2a =-,102b +=,∴2a =-,12b =-. ……4分 (Ⅱ)∵1x =是函数()f x 的极值点,∴'(1)10f a =-=,∴1a =;…………6分当1a =时,21()ln 2f x x x b =-+,定义域为(0,)+∞, 2'11(1)(1)()x x x f x x x x x --+=-==, 当01x <<时,'()0f x <,()f x 单调递减,当1x >时,'()0f x >,()f x 单调递增,所以,1a =.…………8分(Ⅲ)因为20a -≤<,02x <≤,所以'()0a f x x x=->,故函数()f x 在(0,2]上单调递增, 不妨设1202x x <≤≤,则121211|()()|||f x f x m x x -≤-, 可化为2121()()m m f x f x x x +≤+, …………10分 设21()()ln 2m m h x f x x a x b x x=+=-++,则12()()h x h x ≥.所以()h x 为(0,2]上的减函数,即'2()0a m h x x x x =--≤在(0,2]上恒成立, 等价于30x ax m --≤在(0,2]上恒成立,即3m x ax ≥-在(0,2]上恒成立,又20a -≤<,所以2ax x ≥-,所以332x ax x x -≤+,而函数32y x x =+在(0,2]上是增函数,所以3212x x +≤(当且仅当2a =-,2x =时等号成立).所以12m ≥.即m 的最小值为12.…………12分考点:利用导数研究曲线上某点切线方程;利用导数研究函数的极值,恒成立问题,及参数取值范围等内容.请考生在22,23,24三题中任选一题作答,如果多做,则按所做的第一题记分.做答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑.22.(本小题满分10分)选修4-1:几何证明选讲如图所示,两个圆相内切于点T ,公切线为TN ,外圆的弦TC ,TD 分别交内圆于A 、B 两点,并且外圆的弦CD 恰切内圆于点M .(Ⅰ)证明://AB CD ;(Ⅱ)证明:AC MD BD CM ⋅=⋅.【答案】(Ⅰ)//AB CD .(Ⅱ)AC MD BD CM ⋅=⋅.【解析】试题解析:(Ⅰ)由弦切角定理可知,NTB TAB ∠=∠,……………3分同理,NTB TCD ∠=∠,所以,TCD TAB ∠=∠,所以,//AB CD . ……………5分 (Ⅱ)连接TM 、AM,因为CD 是切内圆于点M ,所以由弦切角定理知,CMA ATM ∠=∠,又由(Ⅰ)知//AB CD ,所以,CMA MAB ∠=∠,又MTD MAB ∠=∠,所以MTD ATM ∠=∠. ……………8分TAB C DM NTAB C DM N在MTD ∆中,由正弦定理知,sin sin MD TD DTM TMD =∠∠, 在MTC ∆中,由正弦定理知,sin sin MC TC ATM TMC=∠∠,因TMC TMD π∠=-∠, 所以MD TD MC TC =,由//AB CD 知TD BD TC AC=, 所以MD BD MC AC =,即,AC MD BD CM ⋅=⋅.…………………………………10分 考点:1. 几何证明选讲;2.正弦定理.23.(本小题满分10分)选修4-4:坐标系与参数方程在以直角坐标原点O 为极点,x 的非负半轴为极轴的极坐标系下,曲线1C 的方程是1ρ=,将1C 向上平移1个单位得到曲线2C .(Ⅰ)求曲线2C 的极坐标方程;(Ⅱ)若曲线1C 的切线交曲线2C 于不同两点,M N ,切点为T .求TM TN ⋅的取值范围.【答案】(Ⅰ)2sin ρθ=. (Ⅱ)[]1,0∈TN TM .【解析】试题解析:(Ⅰ)依题,因222x y ρ=+,所以曲线1C 的直角坐标下的方程为221x y +=,所以曲线2C 的直角坐标下的方程为22(1)1x y +-=,…3分又sin y ρθ=,所以22sin 0ρρθ-=,即曲线2C 的极坐标方程为2sin ρθ=.…………………5分y oTx(Ⅱ)由题令00(,)T x y ,0(0,1]y ∈,切线MN 的倾斜角为θ,所以切线MN 的参数方程为:00cos sin x x t y y t θθ=+⎧⎨=+⎩(t 为参数). ……………………………7分 联立2C 的直角坐标方程得,20002(cos sin sin )120t x y t y θθθ++-+-=, …8分即由直线参数方程中,t 的几何意义可知, 012TM TN y ⋅=-,因为012[1,1)y -∈-所以TM TN ⋅[0,1]∈. …………10分 (解法二)设点()ααsin ,cos T ,则由题意可知当()πα 0∈时,切线与曲线2C 相交,由对称性可知,当⎥⎦⎤ ⎝⎛∈2,0πα 时斜线的倾斜角为2πα+,则切线MN 的参数方程为: ⎪⎪⎩⎪⎪⎨⎧+=⎪⎭⎫ ⎝⎛++=-=⎪⎭⎫ ⎝⎛++=ααπααααπααcos sin 2sin sin sin cos 2cos cos t t y t t x (t 为参数),…………………7分 与C2的直角坐标联立方程,得0sin 21cos 22=-+-ααt t ,…………………8分 则αsin 2121-==t t TN TM , 因为⎥⎦⎤ ⎝⎛∈2,0πα ,所以[]1,0∈TN TM . …………………10分 此题也可根据图形的对称性推出答案,此种方法酌情给分.考点:坐标系与参数方程24.(本小题满分10分)选修4-5:不等式选讲已知命题“a b c ∀>>,11t a b b c a c+≥---”是真命题,记t 的最大值为m , 命题“n R ∀∈,14sin cos n n m γγ+--<”是假命题,其中(0,)2πγ∈.(Ⅰ)求m 的值;(Ⅱ)求n 的取值范围.【答案】(Ⅰ)4=m .(Ⅱ)22≥n . 【解析】 试题解析:(Ⅰ)因为“a b c ∀>>,11t a b b c a c +≥---”是真命题, 所以a b c ∀>>,11t a b b c a c+≥---恒成立, 又c b a >>,所以)11()(cb b ac a t -+-⋅-≤恒成立, 所以,min )]11()[(cb b ac a t -+-⋅-≤.…………………………3分 又因为)11()()11()(cb b ac b b a c b b a c a -+-⋅-+-=-+-⋅- 42≥--+--+=cb b a b ac b ,“=”成立当且仅当b a c b -=-时. 因此,4≤t ,于是4=m . ……………………………5分(Ⅱ)由(Ⅰ)得,因为“n R ∀∈,14sin cos n n m γγ+--<”是假命题, 所以“R n ∈∃,2cos sin ≥--+γγn n ”是真命题. ………………7分 因为n n n n --+=--+γγγγcos sin cos sin γγcos sin +≤2≤((0,)2πγ∈), 因此,2cos sin =--+γγn n ,此时2cos sin =+γγ,即4πγ=时. ……8分 即,22222=--+n n ,由绝对值的意义可知,22≥n .…………10分 考点:不等式选讲高考一轮复习微课视频手机观看地址:http://xkw.so/wksp一、选择题(共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)1.5分)下列函数中,在区间(0,+∞)上为增函数的是()A.y=B.y=(x﹣1)2C.y=2﹣xD.y=log0.5(x+1)2.((5分)已知集合A={x|x2﹣2x=0},B={0,1,2},则A∩B=()A.{0}B.{0,1}C.{0,2}D.{0,1,2}3.(5分)曲线(θ为参数)的对称中心()A.在直线y=2x上B.在直线y=﹣2x上C.在直线y=x﹣1上D.在直线y=x+1上4.(5分)当m=7,n=3时,执行如图所示的程序框图,输出的S的值为()A.7B.42C.210D.8405.(5分)设{an}是公比为q的等比数列,则“q>1”是“{an}为递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件6.(5分)若x,y满足,且z=y﹣x的最小值为﹣4,则k的值为()A.2B.﹣2C.D.﹣7.(5分)在空间直角坐标系Oxyz中,已知A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,),若S1,S2,S3分别表示三棱锥D﹣ABC在xOy,yOz,zOx坐标平面上的正投影图形的面积,则()A.S1=S2=S3B.S2=S1且S2≠S3C.S3=S1且S3≠S2D.S3=S2且S3≠S18.(5分)学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,则这一组学生最多有()A.2人B.3人C.4人D.5人二、填空题(共6小题,每小题5分,共30分)9.(5分)复数()2=.10.(5分)已知向量,满足||=1,=(2,1),且+=(λ∈R),则|λ|=.11.(5分)设双曲线C经过点(2,2),且与﹣x2=1具有相同渐近线,则C的方程为;渐近线方程为.12.(5分)若等差数列{an}满足a7+a8+a9>0,a7+a10<0,则当n=时,{an}的前n项和最大.13.(5分)把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有种.14.(5分)设函数f(x)=Asin(ωx+φ)(A,ω,φ是常数,A>0,ω>0)若f(x)在区间[,]上具有单调性,且f()=f()=﹣f(),则f(x)的最小正周期为.三、解答题(共6小题,共80分,解答应写出文字说明、演算步骤或证明过程)15.(13分)如图,在△ABC中,∠B=,AB=8,点D在边BC上,且CD=2,cos∠ADC=.(1)求sin∠BAD;(2)求BD,AC的长.16.(13分)李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立);场次投篮次数命中次数场次投篮次数命中次数主场1 22 12 客场1 18 8 主场2 15 12 客场2 13 12 主场3 12 8 客场3 21 7 主场4 23 8 客场4 18 15 主场5 24 20 客场5 25 12 (1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;(2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;(3)记是表中10个命中次数的平均数,从上述比赛中随机选择一场,记X为李明在这场比赛中的命中次数,比较EX与的大小(只需写出结论).17.(14分)如图,正方形AMDE的边长为2,B,C分别为AM,MD的中点,在五棱锥P ﹣ABCDE中,F为棱PE的中点,平面ABF与棱PD,PC分别交于点G,H.(1)求证:AB∥FG;(2)若PA⊥底面ABCDE,且PA=AE,求直线BC与平面ABF所成角的大小,并求线段PH 的长.18.(13分)已知函数f(x)=xcosx﹣sinx,x∈[0,](1)求证:f(x)≤0;(2)若a<<b对x∈(0,)上恒成立,求a的最大值与b的最小值.19.(14分)已知椭圆C:x2+2y2=4,(1)求椭圆C的离心率(2)设O为原点,若点A在椭圆C上,点B在直线y=2上,且OA⊥OB,求直线AB与圆x2+y2=2的位置关系,并证明你的结论.20.(13分)对于数对序列P:(a1,b1),(a2,b2),…,(an,bn),记T1(P)=a1+b1,Tk(P)=bk+max{Tk﹣1(P),a1+a2+…+ak}(2≤k≤n),其中max{Tk﹣1(P),a1+a2+…+ak}表示Tk﹣1(P)和a1+a2+…+ak两个数中最大的数,(Ⅰ)对于数对序列P:(2,5),(4,1),求T1(P),T2(P)的值;(Ⅱ)记m为a,b,c,d四个数中最小的数,对于由两个数对(a,b),(c,d)组成的数对序列P:(a,b),(c,d)和P′:(c,d),(a,b),试分别对m=a和m=d两种情况比较T2(P)和T2(P′)的大小;(Ⅲ)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P使T5(P)最小,并写出T5(P)的值(只需写出结论).高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)参考答案与试题解析(5分)下列函数中,在区间(0,+∞)上为增函数的是()A.y=B.y=(x﹣1)2C.y=2﹣xD.y=log0.5(x+1)【分析】根据基本初等函数的单调性,判断各个选项中函数的单调性,从而得出结论. 【解答】解:由于函数y=在(﹣1,+∞)上是增函数,故满足条件,由于函数y=(x﹣1)2在(0,1)上是减函数,故不满足条件,由于函数y=2﹣x在(0,+∞)上是减函数,故不满足条件,由于函数y=log0.5(x+1)在(﹣1,+∞)上是减函数,故不满足条件,故选:A.【点评】本题主要考查函数的单调性的定义和判断,基本初等函数的单调性,属于基础题.一、选择题(共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)2.(5分)已知集合A={x|x2﹣2x=0},B={0,1,2},则A∩B=()A.{0}B.{0,1}C.{0,2}D.{0,1,2}【分析】解出集合A,再由交的定义求出两集合的交集.【解答】解:∵A={x|x2﹣2x=0}={0,2},B={0,1,2},∴A∩B={0,2}故选:C.【点评】本题考查交的运算,理解好交的定义是解答的关键.3.(5分)曲线(θ为参数)的对称中心()A.在直线y=2x上B.在直线y=﹣2x上C.在直线y=x﹣1上D.在直线y=x+1上【分析】曲线(θ为参数)表示圆,对称中心为圆心,可得结论.【解答】解:曲线(θ为参数)表示圆,圆心为(﹣1,2),在直线y=﹣2x 上,故选:B.【点评】本题考查圆的参数方程,考查圆的对称性,属于基础题.4.(5分)当m=7,n=3时,执行如图所示的程序框图,输出的S的值为()A.7B.42C.210D.840【分析】算法的功能是求S=7×6×…×k的值,根据条件确定跳出循环的k值,计算输出S的【解答】解:由程序框图知:算法的功能是求S=7×6×…×k的值,当m=7,n=3时,m﹣n+1=7﹣3+1=5,∴跳出循环的k值为4,∴输出S=7×6×5=210.故选:C.【点评】本题考查了循环结构的程序框图,根据框图的流程判断算法的功能是解答本题的关键.5.(5分)设{an}是公比为q的等比数列,则“q>1”是“{an}为递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】根据等比数列的性质,结合充分条件和必要条件的定义进行判断即可得到结论. 【解答】解:等比数列﹣1,﹣2,﹣4,…,满足公比q=2>1,但{an}不是递增数列,充分性不成立.若an=﹣1为递增数列,但q=>1不成立,即必要性不成立,故“q>1”是“{an}为递增数列”的既不充分也不必要条件,故选:D.【点评】本题主要考查充分条件和必要条件的判断,利用等比数列的性质,利用特殊值法是解决本题的关键.6.(5分)若x,y满足,且z=y﹣x的最小值为﹣4,则k的值为()A.2B.﹣2C.D.﹣【分析】对不等式组中的kx﹣y+2≥0讨论,当k≥0时,可行域内没有使目标函数z=y﹣x取得最小值的最优解,k<0时,若直线kx﹣y+2=0与x轴的交点在x+y﹣2=0与x轴的交点的左边,z=y﹣x的最小值为﹣2,不合题意,由此结合约束条件作出可行域,化目标函数为直线方程的斜截式,由图得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案. 【解答】解:对不等式组中的kx﹣y+2≥0讨论,可知直线kx﹣y+2=0与x轴的交点在x+y﹣2=0与x轴的交点的右边,故由约束条件作出可行域如图,当y=0,由kx﹣y+2=0,得x=,∴B(﹣).由z=y﹣x得y=x+z.由图可知,当直线y=x+z过B(﹣)时直线在y轴上的截距最小,即z最小.此时,解得:k=﹣.故选:D.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.7.(5分)在空间直角坐标系Oxyz中,已知A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,),若S1,S2,S3分别表示三棱锥D﹣ABC在xOy,yOz,zOx坐标平面上的正投影图形的面积,则()A.S1=S2=S3B.S2=S1且S2≠S3C.S3=S1且S3≠S2D.S3=S2且S3≠S1【分析】分别求出三棱锥在各个面上的投影坐标即可得到结论.【解答】解:设A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,),则各个面上的射影分别为A',B',C',D',在xOy坐标平面上的正投影A'(2,0,0),B'(2,2,0),C'(0,2,0),D'(1,1,0),S1=.在yOz坐标平面上的正投影A'(0,0,0),B'(0,2,0),C'(0,2,0),D'(0,1,),S2=.在zOx坐标平面上的正投影A'(2,0,0),B'(2,0,0),C'(0,0,0),D'(0,1,),S3=,则S3=S2且S3≠S1,故选:D.【点评】本题主要考查空间坐标系的应用,求出点对于的投影坐标是解决本题的关键.8.(5分)学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,则这一组学生最多有()A.2人B.3人C.4人D.5人【分析】分别用ABC分别表示优秀、及格和不及格,根据题干中的内容推出文成绩得A,B,C的学生各最多只有1个,继而推得学生的人数.【解答】解:用ABC分别表示优秀、及格和不及格,显然语文成绩得A的学生最多只有1个,语文成绩得B得也最多只有一个,得C最多只有一个,因此学生最多只有3人,显然(AC)(BB)(CA)满足条件,故学生最多有3个.故选:B.【点评】本题主要考查了合情推理,关键是找到语句中的关键词,培养了推理论证的能力.二、填空题(共6小题,每小题5分,共30分)9.(5分)复数()2= ﹣1 .【分析】由复数代数形式的除法运算化简括号内部,然后由虚数单位i的运算性质得答案. 【解答】解:()2=.故答案为:﹣1.【点评】本题考查了复数代数形式的除法运算,考查了虚数单位i的运算性质,是基础题.10.(5分)已知向量,满足||=1,=(2,1),且+=(λ∈R),则|λ|=. 【分析】设=(x,y).由于向量,满足||=1,=(2,1),且+=(λ∈R),可得,解出即可.【解答】解:设=(x,y).∵向量,满足||=1,=(2,1),且+=(λ∈R),∴=λ(x,y)+(2,1)=(λx+2,λy+1),∴,化为λ2=5.解得.故答案为:.【点评】本题考查了向量的坐标运算、向量的模的计算公式、零向量等基础知识与基本技能方法,属于基础题.11.(5分)设双曲线C经过点(2,2),且与﹣x2=1具有相同渐近线,则C的方程为;渐近线方程为 y=±2x .【分析】利用双曲线渐近线之间的关系,利用待定系数法即可得到结论.【解答】解:与﹣x2=1具有相同渐近线的双曲线方程可设为﹣x2=m,(m≠0),∵双曲线C经过点(2,2),∴m=,即双曲线方程为﹣x2=﹣3,即,对应的渐近线方程为y=±2x,故答案为:,y=±2x.【点评】本题主要考查双曲线的性质,利用渐近线之间的关系,利用待定系数法是解决本题的关键,比较基础.12.(5分)若等差数列{an}满足a7+a8+a9>0,a7+a10<0,则当n= 8 时,{an}的前n项和最大.【分析】可得等差数列{an}的前8项为正数,从第9项开始为负数,进而可得结论.【解答】解:由等差数列的性质可得a7+a8+a9=3a8>0,∴a8>0,又a7+a10=a8+a9<0,∴a9<0,∴等差数列{an}的前8项为正数,从第9项开始为负数,∴等差数列{an}的前8项和最大,故答案为:8.【点评】本题考查等差数列的性质和单调性,属中档题.13.(5分)把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有 36 种.【分析】分3步进行分析:①用捆绑法分析A、B,②计算其中A、B相邻又满足B、C相邻的情况,即将ABC看成一个元素,与其他产品全排列,③在全部数目中将A、B相邻又满足A、C相邻的情况排除即可得答案.【解答】解:先考虑产品A与B相邻,把A、B作为一个元素有种方法,而A、B可交换位置,所以有2=48种摆法,又当A、B相邻又满足A、C相邻,有2=12种摆法,故满足条件的摆法有48﹣12=36种.故答案为:36.【点评】本题考查分步计数原理的应用,要优先分析受到限制的元素,如本题的A、B、C.14.(5分)设函数f(x)=Asin(ωx+φ)(A,ω,φ是常数,A>0,ω>0)若f(x)在区间[,]上具有单调性,且f()=f()=﹣f(),则f(x)的最小正周期为π .【分析】由f()=f()求出函数的一条对称轴,结合f(x)在区间[,]上具有单调性,且f()=﹣f()可得函数的半周期,则周期可求.【解答】解:由f()=f(),可知函数f(x)的一条对称轴为x=,则x=离最近对称轴距离为.又f()=﹣f(),则f(x)有对称中心(,0),由于f(x)在区间[,]上具有单调性,则≤T⇒T≥,从而=⇒T=π.故答案为:π.【点评】本题考查f(x)=Asin(ωx+φ)型图象的形状,考查了学生灵活处理问题和解决问题的能力,是中档题.三、解答题(共6小题,共80分,解答应写出文字说明、演算步骤或证明过程)15.(13分)如图,在△ABC中,∠B=,AB=8,点D在边BC上,且CD=2,cos∠ADC=.(1)求sin∠BAD;(2)求BD,AC的长.【分析】根据三角形边角之间的关系,结合正弦定理和余弦定理即可得到结论.【解答】解:(1)在△ABC中,∵cos∠ADC=,∴sin∠ADC====,则sin∠BAD=sin(∠ADC﹣∠B)=sin∠ADC•cosB﹣cos∠ADC•sinB=×﹣=.(2)在△ABD中,由正弦定理得BD==,在△ABC中,由余弦定理得AC2=AB2+CB2﹣2AB•BCcosB=82+52﹣2×8×=49,即AC=7.【点评】本题主要考查解三角形的应用,根据正弦定理和余弦定理是解决本题本题的关键,难度不大.16.(13分)李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立);场次投篮次数命中次数场次投篮次数命中次数主场1 22 12 客场1 18 8 主场2 15 12 客场2 13 12 主场3 12 8 客场3 21 7 主场4 23 8 客场4 18 15 主场5 24 20 客场5 25 12 (1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;(2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;(3)记是表中10个命中次数的平均数,从上述比赛中随机选择一场,记X为李明在这场比赛中的命中次数,比较EX与的大小(只需写出结论).【分析】(1)根据概率公式,找到李明在该场比赛中超过0.6的场次,计算即可,(2)根据互斥事件的概率公式,计算即可.(3)求出平均数和EX,比较即可.【解答】解:(1)设李明在该场比赛中投篮命中率超过0.6为事件A,由题意知,李明在该场比赛中超过0.6的场次有:主场2,主场3,主场5,客场2,客场4,共计5场所以李明在该场比赛中投篮命中率超过0.6的概率P(A)=,(2)设李明的投篮命中率一场超过0.6,一场不超过0.6的概率为事件B,同理可知,李明主场命中率超过0.6的概率,客场命中率超过0.6的概率,故P(B)=P1×(1﹣P2)+P2×(1﹣P1)=;(3)=(12+8+12+12+8+7+8+15+20+12)=11.4EX=【点评】本题主要考查了概率的计算、数学期望,平均数,互斥事件的概率,属于中档题.17.(14分)如图,正方形AMDE的边长为2,B,C分别为AM,MD的中点,在五棱锥P。

高三数学寒假作业冲刺培训班之历年真题汇编复习实战43792

高三数学寒假作业冲刺培训班之历年真题汇编复习实战43792

一、选择题(共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)1.5分)下列函数中,在区间(0,+∞)上为增函数的是()A.y=B.y=(x﹣1)2C.y=2﹣xD.y=log0.5(x+1)2.((5分)已知集合A={x|x2﹣2x=0},B={0,1,2},则A∩B=()A.{0}B.{0,1}C.{0,2}D.{0,1,2}3.(5分)曲线(θ为参数)的对称中心()A.在直线y=2x上B.在直线y=﹣2x上C.在直线y=x﹣1上D.在直线y=x+1上4.(5分)当m=7,n=3时,执行如图所示的程序框图,输出的S的值为()A.7B.42C.210D.8405.(5分)设{an}是公比为q的等比数列,则“q>1”是“{an}为递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件6.(5分)若x,y满足,且z=y﹣x的最小值为﹣4,则k的值为()A.2B.﹣2C.D.﹣7.(5分)在空间直角坐标系Oxyz中,已知A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,),若S1,S2,S3分别表示三棱锥D﹣ABC在xOy,yOz,zOx坐标平面上的正投影图形的面积,则()A.S1=S2=S3B.S2=S1且S2≠S3C.S3=S1且S3≠S2D.S3=S2且S3≠S18.(5分)学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,则这一组学生最多有()A.2人B.3人C.4人D.5人二、填空题(共6小题,每小题5分,共30分)9.(5分)复数()2=.10.(5分)已知向量,满足||=1,=(2,1),且+=(λ∈R),则|λ|=.11.(5分)设双曲线C经过点(2,2),且与﹣x2=1具有相同渐近线,则C的方程为;渐近线方程为.12.(5分)若等差数列{an}满足a7+a8+a9>0,a7+a10<0,则当n=时,{an}的前n项和最大.13.(5分)把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有种.14.(5分)设函数f(x)=Asin(ωx+φ)(A,ω,φ是常数,A>0,ω>0)若f(x)在区间[,]上具有单调性,且f()=f()=﹣f(),则f(x)的最小正周期为.三、解答题(共6小题,共80分,解答应写出文字说明、演算步骤或证明过程)15.(13分)如图,在△ABC中,∠B=,AB=8,点D在边BC上,且CD=2,cos∠ADC=.(1)求sin∠BAD;(2)求BD,AC的长.16.(13分)李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立);场次投篮次数命中次数场次投篮次数命中次数主场1 22 12 客场1 18 8 主场2 15 12 客场2 13 12 主场3 12 8 客场3 21 7 主场4 23 8 客场4 18 15 主场5 24 20 客场5 25 12 (1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;(2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;(3)记是表中10个命中次数的平均数,从上述比赛中随机选择一场,记X为李明在这场比赛中的命中次数,比较EX与的大小(只需写出结论).17.(14分)如图,正方形AMDE的边长为2,B,C分别为AM,MD的中点,在五棱锥P ﹣ABCDE中,F为棱PE的中点,平面ABF与棱PD,PC分别交于点G,H.(1)求证:AB∥FG;(2)若PA⊥底面ABCDE,且PA=AE,求直线BC与平面ABF所成角的大小,并求线段PH 的长.18.(13分)已知函数f(x)=xcosx﹣sinx,x∈[0,](1)求证:f(x)≤0;(2)若a<<b对x∈(0,)上恒成立,求a的最大值与b的最小值.19.(14分)已知椭圆C:x2+2y2=4,(1)求椭圆C的离心率(2)设O为原点,若点A在椭圆C上,点B在直线y=2上,且OA⊥OB,求直线AB与圆x2+y2=2的位置关系,并证明你的结论.20.(13分)对于数对序列P:(a1,b1),(a2,b2),…,(an,bn),记T1(P)=a1+b1,Tk(P)=bk+max{Tk﹣1(P),a1+a2+…+ak}(2≤k≤n),其中max{Tk﹣1(P),a1+a2+…+ak}表示Tk﹣1(P)和a1+a2+…+ak两个数中最大的数,(Ⅰ)对于数对序列P:(2,5),(4,1),求T1(P),T2(P)的值;(Ⅱ)记m为a,b,c,d四个数中最小的数,对于由两个数对(a,b),(c,d)组成的数对序列P:(a,b),(c,d)和P′:(c,d),(a,b),试分别对m=a和m=d两种情况比较T2(P)和T2(P′)的大小;(Ⅲ)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P使T5(P)最小,并写出T5(P)的值(只需写出结论).高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)参考答案与试题解析(5分)下列函数中,在区间(0,+∞)上为增函数的是()A.y=B.y=(x﹣1)2C.y=2﹣xD.y=log0.5(x+1)【分析】根据基本初等函数的单调性,判断各个选项中函数的单调性,从而得出结论. 【解答】解:由于函数y=在(﹣1,+∞)上是增函数,故满足条件,由于函数y=(x﹣1)2在(0,1)上是减函数,故不满足条件,由于函数y=2﹣x在(0,+∞)上是减函数,故不满足条件,由于函数y=log0.5(x+1)在(﹣1,+∞)上是减函数,故不满足条件,故选:A.【点评】本题主要考查函数的单调性的定义和判断,基本初等函数的单调性,属于基础题.一、选择题(共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)2.(5分)已知集合A={x|x2﹣2x=0},B={0,1,2},则A∩B=()A.{0}B.{0,1}C.{0,2}D.{0,1,2}【分析】解出集合A,再由交的定义求出两集合的交集.【解答】解:∵A={x|x2﹣2x=0}={0,2},B={0,1,2},∴A∩B={0,2}故选:C.【点评】本题考查交的运算,理解好交的定义是解答的关键.3.(5分)曲线(θ为参数)的对称中心()A.在直线y=2x上B.在直线y=﹣2x上C.在直线y=x﹣1上D.在直线y=x+1上【分析】曲线(θ为参数)表示圆,对称中心为圆心,可得结论.【解答】解:曲线(θ为参数)表示圆,圆心为(﹣1,2),在直线y=﹣2x 上,故选:B.【点评】本题考查圆的参数方程,考查圆的对称性,属于基础题.4.(5分)当m=7,n=3时,执行如图所示的程序框图,输出的S的值为()A.7B.42C.210D.840【分析】算法的功能是求S=7×6×…×k的值,根据条件确定跳出循环的k值,计算输出S的【解答】解:由程序框图知:算法的功能是求S=7×6×…×k的值,当m=7,n=3时,m﹣n+1=7﹣3+1=5,∴跳出循环的k值为4,∴输出S=7×6×5=210.故选:C.【点评】本题考查了循环结构的程序框图,根据框图的流程判断算法的功能是解答本题的关键.5.(5分)设{an}是公比为q的等比数列,则“q>1”是“{an}为递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】根据等比数列的性质,结合充分条件和必要条件的定义进行判断即可得到结论. 【解答】解:等比数列﹣1,﹣2,﹣4,…,满足公比q=2>1,但{an}不是递增数列,充分性不成立.若an=﹣1为递增数列,但q=>1不成立,即必要性不成立,故“q>1”是“{an}为递增数列”的既不充分也不必要条件,故选:D.【点评】本题主要考查充分条件和必要条件的判断,利用等比数列的性质,利用特殊值法是解决本题的关键.6.(5分)若x,y满足,且z=y﹣x的最小值为﹣4,则k的值为()A.2B.﹣2C.D.﹣【分析】对不等式组中的kx﹣y+2≥0讨论,当k≥0时,可行域内没有使目标函数z=y﹣x取得最小值的最优解,k<0时,若直线kx﹣y+2=0与x轴的交点在x+y﹣2=0与x轴的交点的左边,z=y﹣x的最小值为﹣2,不合题意,由此结合约束条件作出可行域,化目标函数为直线方程的斜截式,由图得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案. 【解答】解:对不等式组中的kx﹣y+2≥0讨论,可知直线kx﹣y+2=0与x轴的交点在x+y﹣2=0与x轴的交点的右边,故由约束条件作出可行域如图,当y=0,由kx﹣y+2=0,得x=,∴B(﹣).由z=y﹣x得y=x+z.由图可知,当直线y=x+z过B(﹣)时直线在y轴上的截距最小,即z最小.此时,解得:k=﹣.故选:D.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.7.(5分)在空间直角坐标系Oxyz中,已知A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,),若S1,S2,S3分别表示三棱锥D﹣ABC在xOy,yOz,zOx坐标平面上的正投影图形的面积,则()A.S1=S2=S3B.S2=S1且S2≠S3C.S3=S1且S3≠S2D.S3=S2且S3≠S1【分析】分别求出三棱锥在各个面上的投影坐标即可得到结论.【解答】解:设A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,),则各个面上的射影分别为A',B',C',D',在xOy坐标平面上的正投影A'(2,0,0),B'(2,2,0),C'(0,2,0),D'(1,1,0),S1=.在yOz坐标平面上的正投影A'(0,0,0),B'(0,2,0),C'(0,2,0),D'(0,1,),S2=.在zOx坐标平面上的正投影A'(2,0,0),B'(2,0,0),C'(0,0,0),D'(0,1,),S3=,则S3=S2且S3≠S1,故选:D.【点评】本题主要考查空间坐标系的应用,求出点对于的投影坐标是解决本题的关键.8.(5分)学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,则这一组学生最多有()A.2人B.3人C.4人D.5人【分析】分别用ABC分别表示优秀、及格和不及格,根据题干中的内容推出文成绩得A,B,C的学生各最多只有1个,继而推得学生的人数.【解答】解:用ABC分别表示优秀、及格和不及格,显然语文成绩得A的学生最多只有1个,语文成绩得B得也最多只有一个,得C最多只有一个,因此学生最多只有3人,显然(AC)(BB)(CA)满足条件,故学生最多有3个.故选:B.【点评】本题主要考查了合情推理,关键是找到语句中的关键词,培养了推理论证的能力.二、填空题(共6小题,每小题5分,共30分)9.(5分)复数()2= ﹣1 .【分析】由复数代数形式的除法运算化简括号内部,然后由虚数单位i的运算性质得答案. 【解答】解:()2=.故答案为:﹣1.【点评】本题考查了复数代数形式的除法运算,考查了虚数单位i的运算性质,是基础题.10.(5分)已知向量,满足||=1,=(2,1),且+=(λ∈R),则|λ|=. 【分析】设=(x,y).由于向量,满足||=1,=(2,1),且+=(λ∈R),可得,解出即可.【解答】解:设=(x,y).∵向量,满足||=1,=(2,1),且+=(λ∈R),∴=λ(x,y)+(2,1)=(λx+2,λy+1),∴,化为λ2=5.解得.故答案为:.【点评】本题考查了向量的坐标运算、向量的模的计算公式、零向量等基础知识与基本技能方法,属于基础题.11.(5分)设双曲线C经过点(2,2),且与﹣x2=1具有相同渐近线,则C的方程为;渐近线方程为 y=±2x .【分析】利用双曲线渐近线之间的关系,利用待定系数法即可得到结论.【解答】解:与﹣x2=1具有相同渐近线的双曲线方程可设为﹣x2=m,(m≠0),∵双曲线C经过点(2,2),∴m=,即双曲线方程为﹣x2=﹣3,即,对应的渐近线方程为y=±2x,故答案为:,y=±2x.【点评】本题主要考查双曲线的性质,利用渐近线之间的关系,利用待定系数法是解决本题的关键,比较基础.12.(5分)若等差数列{an}满足a7+a8+a9>0,a7+a10<0,则当n= 8 时,{an}的前n项和最大.【分析】可得等差数列{an}的前8项为正数,从第9项开始为负数,进而可得结论.【解答】解:由等差数列的性质可得a7+a8+a9=3a8>0,∴a8>0,又a7+a10=a8+a9<0,∴a9<0,∴等差数列{an}的前8项为正数,从第9项开始为负数,∴等差数列{an}的前8项和最大,故答案为:8.【点评】本题考查等差数列的性质和单调性,属中档题.13.(5分)把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有 36 种.【分析】分3步进行分析:①用捆绑法分析A、B,②计算其中A、B相邻又满足B、C相邻的情况,即将ABC看成一个元素,与其他产品全排列,③在全部数目中将A、B相邻又满足A、C相邻的情况排除即可得答案.【解答】解:先考虑产品A与B相邻,把A、B作为一个元素有种方法,而A、B可交换位置,所以有2=48种摆法,又当A、B相邻又满足A、C相邻,有2=12种摆法,故满足条件的摆法有48﹣12=36种.故答案为:36.【点评】本题考查分步计数原理的应用,要优先分析受到限制的元素,如本题的A、B、C.14.(5分)设函数f(x)=Asin(ωx+φ)(A,ω,φ是常数,A>0,ω>0)若f(x)在区间[,]上具有单调性,且f()=f()=﹣f(),则f(x)的最小正周期为π .【分析】由f()=f()求出函数的一条对称轴,结合f(x)在区间[,]上具有单调性,且f()=﹣f()可得函数的半周期,则周期可求.【解答】解:由f()=f(),可知函数f(x)的一条对称轴为x=,则x=离最近对称轴距离为.又f()=﹣f(),则f(x)有对称中心(,0),由于f(x)在区间[,]上具有单调性,则≤T⇒T≥,从而=⇒T=π.故答案为:π.【点评】本题考查f(x)=Asin(ωx+φ)型图象的形状,考查了学生灵活处理问题和解决问题的能力,是中档题.三、解答题(共6小题,共80分,解答应写出文字说明、演算步骤或证明过程)15.(13分)如图,在△ABC中,∠B=,AB=8,点D在边BC上,且CD=2,cos∠ADC=.(1)求sin∠BAD;(2)求BD,AC的长.【分析】根据三角形边角之间的关系,结合正弦定理和余弦定理即可得到结论.【解答】解:(1)在△ABC中,∵cos∠ADC=,∴sin∠ADC====,则sin∠BAD=sin(∠ADC﹣∠B)=sin∠ADC•cosB﹣cos∠A DC•sinB=×﹣=.(2)在△ABD中,由正弦定理得BD==,在△ABC中,由余弦定理得AC2=AB2+CB2﹣2AB•BCcosB=82+52﹣2×8×=49,即AC=7.【点评】本题主要考查解三角形的应用,根据正弦定理和余弦定理是解决本题本题的关键,难度不大.16.(13分)李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立);场次投篮次数命中次数场次投篮次数命中次数主场1 22 12 客场1 18 8 主场2 15 12 客场2 13 12 主场3 12 8 客场3 21 7 主场4 23 8 客场4 18 15 主场5 24 20 客场5 25 12 (1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;(2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;(3)记是表中10个命中次数的平均数,从上述比赛中随机选择一场,记X为李明在这场比赛中的命中次数,比较EX与的大小(只需写出结论).【分析】(1)根据概率公式,找到李明在该场比赛中超过0.6的场次,计算即可,(2)根据互斥事件的概率公式,计算即可.(3)求出平均数和EX,比较即可.【解答】解:(1)设李明在该场比赛中投篮命中率超过0.6为事件A,由题意知,李明在该场比赛中超过0.6的场次有:主场2,主场3,主场5,客场2,客场4,共计5场所以李明在该场比赛中投篮命中率超过0.6的概率P(A)=,(2)设李明的投篮命中率一场超过0.6,一场不超过0.6的概率为事件B,同理可知,李明主场命中率超过0.6的概率,客场命中率超过0.6的概率,故P(B)=P1×(1﹣P2)+P2×(1﹣P1)=;(3)=(12+8+12+12+8+7+8+15+20+12)=11.4EX=【点评】本题主要考查了概率的计算、数学期望,平均数,互斥事件的概率,属于中档题.17.(14分)如图,正方形AMDE的边长为2,B,C分别为AM,MD的中点,在五棱锥P﹣ABCDE中,F为棱PE的中点,平面ABF与棱PD,PC分别交于点G,H.(1)求证:AB∥FG;(2)若PA⊥底面ABCDE,且PA=AE,求直线BC与平面ABF所成角的大小,并求线段PH 的长.【分析】(1)运用线面平行的判定定理和性质定理即可证得;(2)由于PA⊥底面ABCDE,底面AMDE为正方形,建立如图的空间直角坐标系Axyz,分别求出A,B,C,E,P,F,及向量BC的坐标,设平面ABF的法向量为n=(x,y,z),求出一个值,设直线BC与平面ABF所成的角为α,运用sinα=|cos|,求出角α;设H(u,v,w),再设,用λ表示H的坐标,再由n=0,求出λ和H的坐标,再运用空间两点的距离公式求出PH的长.【解答】(1)证明:在正方形AMDE中,∵B是AM的中点,∴AB∥DE,又∵AB⊄平面PDE,∴AB∥平面PDE,∵AB⊂平面ABF,且平面ABF∩平面PDE=FG,∴AB∥FG;(2)解:∵PA⊥底面ABCDE,∴PA⊥AB,PA⊥AE,如图建立空间直角坐标系Axyz,则A(0,0,0),B(1,0,0),C(2,1,0),P(0,0,2),E(0,2,0),F(0,1,1),,设平面ABF的法向量为=(x,y,z),则即,令z=1,则y=﹣1,∴=(0,﹣1,1),设直线BC与平面ABF所成的角为α,则sinα=|cos<,>|=||=,∴直线BC与平面ABF所成的角为,设H(u,v,w),∵H在棱PC上,∴可设,即(u,v,w﹣2)=λ(2,1,﹣2),∴u=2λ,v=λ,w=2﹣2λ,∵是平面ABF的法向量,∴=0,即(0,﹣1,1)•(2λ,λ,2﹣2λ)=0,解得λ=,∴H(),∴PH==2.【点评】本题主要考查空间直线与平面的位置关系,考查直线与平面平行、垂直的判定和性质,同时考查直线与平面所成的角的求法,考查运用空间直角坐标系求角和距离,是一道综合题.18.(13分)已知函数f(x)=xcosx﹣sinx,x∈[0,](1)求证:f(x)≤0;(2)若a<<b对x∈(0,)上恒成立,求a的最大值与b的最小值.【分析】(1)求出f′(x)=cosx﹣xsinx﹣cosx=﹣xsinx,判定出在区间∈(0,)上f′(x)=﹣xsinx<0,得f(x)在区间∈[0,]上单调递减,从而f(x)≤f(0)=0.(2)当x>0时,“>a”等价于“sinx﹣ax>0”,“<b”等价于“sinx﹣bx<0”构造函数g(x)=sinx﹣cx,通过求函数的导数讨论参数c求出函数的最值,进一步求出a,b的最值.【解答】解:(1)由f(x)=xcosx﹣sinx得f′(x)=cosx﹣xsinx﹣cosx=﹣xsinx,此在区间∈(0,)上f′(x)=﹣xsinx<0,所以f(x)在区间∈[0,]上单调递减,从而f(x)≤f(0)=0.(2)当x>0时,“>a”等价于“sinx﹣ax>0”,“<b”等价于“sinx﹣bx<0”令g(x)=sinx﹣cx,则g′(x)=cosx﹣c,当c≤0时,g(x)>0对x∈(0,)上恒成立,当c≥1时,因为对任意x∈(0,),g′(x)=cosx﹣c<0,所以g(x)在区间[0,]上单调递减,从而,g(x)<g(0)=0对任意x∈(0,)恒成立,当0<c<1时,存在唯一的x0∈(0,)使得g′(x0)=cosx0﹣c=0,g(x)与g′(x)在区间(0,)上的情况如下:x (0,x0) x0 (x0,)g′(x)+ ﹣g(x)↑↓因为g(x)在区间(0,x0)上是增函数,所以g(x0)>g(0)=0进一步g(x)>0对任意x∈(0,)恒成立,当且仅当综上所述当且仅当时,g(x)>0对任意x∈(0,)恒成立,当且仅当c≥1时,g(x)<0对任意x∈(0,)恒成立,所以若a<<b对x∈(0,)上恒成立,则a的最大值为,b的最小值为1 【点评】本题考查利用导数求函数的单调区间;利用导数求函数的最值;考查解决不等式问题常通过构造函数解决函数的最值问题,属于一道综合题.20.(13分)对于数对序列P:(a1,b1),(a2,b2),…,(an,bn),记T1(P)=a1+b1,Tk(P)=bk+max{Tk﹣1(P),a1+a2+…+ak}(2≤k≤n),其中max{Tk﹣1(P),a1+a2+…+ak}表示Tk﹣1(P)和a1+a2+…+ak两个数中最大的数,(Ⅰ)对于数对序列P:(2,5),(4,1),求T1(P),T2(P)的值;(Ⅱ)记m为a,b,c,d四个数中最小的数,对于由两个数对(a,b),(c,d)组成的数对序列P:(a,b),(c,d)和P′:(c,d),(a,b),试分别对m=a和m=d两种情况比较T2(P)和T2(P′)的大小;(Ⅲ)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P使T5(P)最小,并写出T5(P)的值(只需写出结论).【分析】(Ⅰ)利用T1(P)=a1+b1,Tk(P)=bk+max{Tk﹣1(P),a1+a2+…+ak}(2≤k≤n),可求T1(P),T2(P)的值;(Ⅱ)T2(P)=max{a+b+d,a+c+d},T2(P′)=max{c+d+b,c+a+b},分类讨论,利用新定义,可比较T2(P)和T2(P′)的大小;(Ⅲ)根据新定义,可得结论.【解答】解:(Ⅰ)T1(P)=2+5=7,T2(P)=1+max{T1(P),2+4}=1+max{7,6}=8;(Ⅱ)T2(P)=max{a+b+d,a+c+d},T2(P′)=max{c+d+b,c+a+b}.当m=a时,T2(P′)=max{c+d+b,c+a+b}=c+d+b,∵a+b+d≤c+d+b,且a+c+d≤c+b+d,∴T2(P)≤T2(P′);当m=d时,T2(P′)=max{c+d+b,c+a+b}=c+a+b,∵a+b+d≤c+a+b,且a+c+d≤c+a+d,∴T2(P)≤T2(P′);∴无论m=a和m=d,T2(P)≤T2(P′);(Ⅲ)数对(4,6),(11,11),(16,11),(11,8),(5,2),T5(P)最小;T1(P)=10,T2(P)=26;T3(P)42,T4(P)=50,T5(P)=52.【点评】本题考查新定义,考查学生分析解决问题的能力,正确理解与运用新定义是解题的关键.19.(14分)已知椭圆C:x2+2y2=4,(1)求椭圆C的离心率(2)设O为原点,若点A在椭圆C上,点B在直线y=2上,且OA⊥OB,求直线AB与圆x2+y2=2的位置关系,并证明你的结论.【分析】(1)化椭圆方程为标准式,求出半长轴和短半轴,结合隐含条件求出半焦距,则椭圆的离心率可求;(2)设出点A,B的坐标分别为(x0,y0),(t,2),其中x0≠0,由OA⊥OB得到,用坐标表示后把t用含有A点的坐标表示,然后分A,B的横坐标相等和不相等写出直线AB的方程,然后由圆x2+y2=2的圆心到AB的距离和圆的半径相等说明直线AB 与圆x2+y2=2相切.【解答】解:(1)由x2+2y2=4,得椭圆C的标准方程为.∴a2=4,b2=2,从而c2=a2﹣b2=2.因此a=2,c=.故椭圆C的离心率e=;(2)直线AB与圆x2+y2=2相切.证明如下:设点A,B的坐标分别为(x0,y0),(t,2),其中x0≠0.∵OA⊥OB,∴,即tx0+2y0=0,解得.当x0=t时,,代入椭圆C的方程,得.故直线AB的方程为x=,圆心O到直线AB的距离d=.此时直线AB与圆x2+y2=2相切.当x0≠t时,直线AB的方程为,即(y0﹣2)x﹣(x0﹣t)y+2x0﹣ty0=0.圆心O到直线AB的距离d=.又,t=.故=.此时直线AB与圆x2+y2=2相切.【点评】本题考查椭圆的简单几何性质,考查了圆与圆锥曲线的综合,训练了由圆心到直线的距离判断直线和圆的位置关系,体现了分类讨论的数学思想方法,考查了计算能力和逻辑思维能力,是压轴题.一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的.)1.【淮南一中等四校高三5月联考】抛物线24x y =的准线方程为( ) A.1-=y B.161-=x C.1-=x D.161-=y 2.【百强校】【西安市高新一中高三5月模拟】已知圆222()()x a y b r -+-=的圆心为抛物线24y x =的焦点,且与直线3420x y ++=相切,则该圆的方程为( )A .2264(1)25x y -+=B .2264(1)25x y +-=C .22(1)1x y -+=D .22(1)1x y +-=3. 【宁波市高三下学期第二次模拟考试】已知F 是抛物线24y x =的焦点,A B , 是抛物线上的两点,12AF BF +=,则线段AB 的中点到y 轴的距离为( )A. 4B. 5C. 6D. 114. 已知不过原点的直线l 与2y x =交于A B 、两点,若使得以AB 为直径的圆过原点,则直线l 必过点( )A.()0,1B.()1,0C.()0,2D.()1,0,()1,0-5.【百强校】【南阳市一中高三下学期第三次模拟】已知抛物线2:16C x y =的焦点为F ,准线为l ,M 是l 上一点,P 是直线MF 与C 的一个交点,若3FM FP =,则PF =( ) A .163 B .83 C .53 D .526.【百强校】【天水市一中高三第五次高考模拟】已知P 是抛物线x y 42=上的一个动点,Q 是圆()()22311x y -+-=上的一个动点,)0,1(N 是一个定点,则PQ PN+的最小值为( )A .3B .4C .5D .21+7.【改编题】设抛物线y2=8x 的焦点为F,准线为l,P 为抛物线上一点,PA ⊥l,A 为垂足,如果直线AF 的斜率为3,那么|PF|等于( )(A)43 (B)8 (C)83 (D)168.已知抛物线C:y2=8x 与点M(2,2),过C 的焦点且斜率为k 的直线与C 交于A 、B 两点,若MA ·MB =0,则k 等于( ) (A)12(B)22 (C)2 (D)29.【辽宁高考理第10题】已知点(2,3)A -在抛物线C :22y px =的准线上,过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为( ) A .12B .23C .34D .4310.【全国1高考理第10题】已知抛物线C :x y 82=的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 得一个焦点,若FQ PF 4=,则=QF ( ) A.27 B. 3 C. 25D. 2 二、填空题11. 【上海市金山中学】若点()8,2-M 在抛物线px y 22=的准线上,则实数p 的值为.12.【全国普通高等学校招生统一考试理科数学(陕西卷)】若抛物线22(0)y px p =>的准线经过双曲线221x y -=的一个焦点,则p =.13.【吉林市高三第三次模拟考试】已知直线:10l x y -+=与抛物线2:4C x y =交于A ,B 两点,点P 为抛物线C 上一动点,且在直线l 下方,则△PAB 的面积的最大值为.14.【全国普通高等学校招生统一考试理科数学(陕西卷)】如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线表示),则原始的最大流量与当前最大流量的比值为.15.【高考山东,理15】平面直角坐标系xoy 中,双曲线()22122:10,0x y C a b a b-=>>的渐近线与抛物线()22:20C x py p =>交于点,,O A B ,若OAB ∆的垂心为2C 的焦点,则1C 的离心率为. 16.如图所示点F 是抛物线x y 82=的焦点,点A 、B 分别在抛物线x y 82=及圆()22216x y -+= 的实线部分上运动,且AB 总是平行于x 轴,,则FAB ∆的周长的取值范围是_______________.三、解答题17.已知抛物线2:4E x y =.(1)若直线1y x =+与抛物线E 相交于,P Q 两点,求PQ 弦长;(2)已知△ABC 的三个顶点在抛物线E 上运动.若点A 在坐标原点,BC 边过定点(0,2)N ,点M 在BC 上且0AM BC ⋅=,求点M 的轨迹方程.18.已知椭圆C1和抛物线C2有公共焦点F(1,0),C1的中心和C2的顶点都在坐标原点,过点M(4,0)的直线l 与抛物线C2分别相交于A ,B 两点.(1)如图所示,若14AM MB =,求直线l 的方程; (2)若坐标原点O 关于直线l 的对称点P 在抛物线C2上,直线l 与椭圆C1有公共点,求椭圆C1的长轴长的最小值.19.【全国普通高等学校招生统一考试文科数学(浙江卷)】(本题满分15分)如图,已知抛物线211C 4y x =:,圆222C (1)1x y +-=:,过点P(t,0)(t>0)作不过原点O 的直线PA ,PB 分别与抛物线1C和圆2C 相切,A ,B 为切点.(1)求点A ,B 的坐标;(2)求PAB ∆的面积.注:直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则该直线与抛物线相切,称该公共点为切点.20.【全国普通高等学校招生统一考试理科数学(新课标Ⅰ)】(本小题满分12分)在直角坐标系xoy中,曲线C :y=24x 与直线y kx a =+(a >0)交与M,N 两点, (Ⅰ)当k=0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM=∠OPN ?说明理由.21.17.已知点A (-1,0),B (1,-1)和抛物线.x y C 4:2=,O 为坐标原点,过点A 的动直线l 交抛物线C 于M 、P ,直线MB 交抛物线C 于另一点Q ,如图.(1)证明:OM OP ⋅为定值;(2)若△POM 的面积为25,求向量OM 与OP 的夹角; (3)证明直线PQ 恒过一个定点.22.【全国普通高等学校招生统一考试理科数学(湖南卷)】已知抛物线21:4C x y =的焦点F 也是椭圆22222:1(0)y x C a b a b+=>>的一个焦点,1C 与2C 的公共弦的长为26. (1)求2C 的方程;(2)过点F 的直线l 与1C 相交于A ,B 两点,与2C 相交于C ,D 两点,且AC 与BD 同向 (ⅰ)若||||AC BD =,求直线l 的斜率(ⅱ)设1C 在点A 处的切线与x 轴的交点为M ,证明:直线l 绕点F 旋转时,MFD ∆总是钝角三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回.
第Ⅰ卷
一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.
(1)已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则A
B =
(A ){1}(B ){1
2},(C ){0123},,,(D ){10123}-,,,, (2)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是
(A )(31)
-,(B )(13)-,(C )(1,)∞+(D )(3)∞--, (3)已知向量(1,)(3,2)m =-,=a b ,且()⊥a +b b ,则m= (A )-8(B )-6 (C )6 (D )8
(4)圆
22
28130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a= (A )43-
(B )3
4-
(C )3(D )2
(5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为
(A )24 (B )18 (C )12 (D )9
(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为 (A )20π(B )24π(C )28π(D )32π
(7)若将函数y=2sin 2x 的图像向左平移π
12个单位长度,则评议后图象的对称轴为
(A )x=kπ2–π6 (k ∈Z) (B )x=kπ2+π6 (k ∈Z) (C )x=kπ2–π12 (k ∈Z) (D )x=kπ2+π
12 (k ∈Z)
(8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,
若输入的x=2,n=2,依次输入的a 为2,2,5,则输出的s= (A )7 (B )12 (C )17 (D )34 (9)若cos(π4–α)=3
5,则sin 2α=
(A )725(B )15(C )–15(D )–7
25
(10)从区间[]
0,1随机抽取2n 个数
1x ,
2
x ,…,
n
x ,
1
y ,
2
y ,…,
n
y ,构成n 个数对()11,x y ,
()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有
m 个,则用随机模拟的方法得到的圆周率
π的近似值为
(A )4n m (B )2n m (C )4m n (D )2m n
(11)已知F1,F2是双曲线E 22
221x y a b
-=的左,右焦点,点M 在E 上,M F1与x 轴垂直,
sin 211
3
MF F ∠=
,则E 的离心率为 (A
B )3
2
(C
D )2
(12)已知函数学.科网()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x
+=与()
y f x =图像的交点为
1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1
()m
i i i x y =+=∑
(A )0 (B )m (C )2m (D )4m
第II 卷
本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.
二、填空题:本大题共3小题,每小题5分
(13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos A=
45,cos C=5
13
,a=1,则b=. (14)α、β是两个平面,m 、n 是两条直线,有下列四个命题:
(1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β. (2)如果m ⊥α,n ∥α,那么m ⊥n.
(3)如果α∥β,m ⊂α,那么m ∥β. (4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等.
其中正确的命题有.(填写所有正确命题的编号)
(15)有三张卡片,分别写有1和2,1和3,2和3。

甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是。

(16)若直线y=kx+b 是曲线y=lnx+2的切线,也是曲线y=ln (x+2)的切线,则b=。

三.解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本题满分12分)
n S 为等差数列{}n a 的前n 项和,且7=128.n a S =,记[]=lg n n b a ,其中[]x 表示不超过x 的最大整数,如
[][]0.9=0lg99=1,.
(I )求111101b b b ,,;
(II )求数列{}n b 的前1 000项和.
18.(本题满分12分)
某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:
上年度出险次数
0 1 2 3 4 ≥5
保费
0.85a a 1.25a 1.5a 1.75a 2a 设该险种一续保人一年内出险次数与相应概率如下:
一年内出险次数
1 2 3 4 ≥5
概率
0.30 0.15 0.20 0.20 0.10
0. 05
(I )求一续保人本年度的保费高于基本保费的概率;
(II )若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率; (III )求续保人本年度的平均保费与基本保费的比值. 19.(本小题满分12分)
如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB=5,AC=6,点E,F 分别在AD,CD 上,AE=CF=5
4,
EF 交BD 于点H.将△DEF 沿EF 折到△D EF '的位置,10OD '=
(I )证明:D H '⊥平面ABCD ; (II )求二面角B D A C '--的正弦值. 20. (本小题满分12分)
已知椭圆E:22
13
x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为k(k>0)的直线交E 于A,M 两点,点N 在E 上,MA ⊥NA.
(I )当t=4,AM AN =时,求△AMN 的面积; (II )当2AM AN =时,求k 的取值范围. (21)(本小题满分12分) (I)讨论函数x
x 2f (x)x 2
-=
+e 的单调性,并证明当x >0时,(2)20;x x e x -++> (II)证明:当[0,1)a ∈时,函数2
x =(0)x e ax a g x x -->()有最小值.设g (x )的最小值为()h a ,求函数()h a 的值域.
请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号
(22)(本小题满分10分)选修41:集合证明选讲
如图,在正方形ABCD ,E,G 分别在边DA,DC 上(不与端点重合),且DE=DG ,过D 点作DF ⊥CE ,垂足为F.
(I) 证明:B,C,E,F 四点共圆;
(II)若AB=1,E 为DA 的中点,求四边形BCGF 的面积. (23)(本小题满分10分)选修4—4:坐标系与参数方程 在直线坐标系xoy 中,圆C 的方程为(x+6)2+y2=25.
(I)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;
(II)直线l的参数方程是(t为参数),l与C交于A、B两点,∣AB∣=,求l的斜率。

(24)(本小题满分10分),选修4—5:不等式选讲
已知函数f(x)= ∣x∣+∣x+∣,M为不等式f(x)<2的解集.
(I)求M;
(II)证明:当a,b∈M时,∣a+b∣<∣1+ab∣。

1. 【高考北京文第2题】在复平面内,复数6+5i,-2+3i对应的点分别为A,B.若C为线段AB的中点,则点C对应的复数是()
A.4+8i B.8+2i
C.2+4i D.4+
i
2.【高考北京文第2题】在复平面内,复

10i 3i+
对应的点的坐标为()
A.(1,3) B.(3,1)
C.(-1,3) D.(3,-1)
3.【高考北京文第4题】在复平面内,复数i(2-i)对应的点位于().A.第一象限 B.第二象限
C.第三象限D.第四象限
4. 【高考北京文第2题】复数
2
12
i
i
-
=
+
(A)i (B )i- (C)
43
55
i
--
(D)
43
55
i
-+
5. 【高考北京文第9题】若
()()
12
x i i i x R
+=-+∈
,则x= .
6. 【高考北京,文9】复数
()
1
i i+
的实部为
.。

相关文档
最新文档