最新血清清蛋白、γ-球蛋白的分离、提纯与鉴定资料

合集下载

血清γ-球蛋白分离、纯度鉴定与浓度检测

血清γ-球蛋白分离、纯度鉴定与浓度检测

生物化学实验报告班级:学号:姓名:实验室:评分━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━日期:实验一:血清γ-球蛋白分离、纯度鉴定与浓度检测实验目的:1、熟悉盐析法分离蛋白质的原理和基本方法2、掌握凝胶层析法脱盐分离蛋白质的原理和基本方法3、掌握醋酸纤维素薄膜电泳法进行纯度鉴定的原理和基本方法4、掌握分光光度计检测蛋白质含量的原理和基本方法实验原理:1.盐析法:盐析法是在蛋白质溶液中,加入无机盐至一定浓度或达饱和状态,可使蛋白质在水中溶解度降低,从而分离出来。

蛋白质溶液中加入中性盐后,由于中性盐与水分子的亲和力大于蛋白质,致使蛋白质分子周围的水化膜减弱乃至消失。

此外,中性盐加入蛋白质溶液后由于离子强度发生改变,蛋白质表面的电荷大量被中和,更加导致蛋白质溶解度降低,蛋白质分子之间聚集而沉淀。

2.凝胶层析法脱盐:在葡聚糖凝胶柱中,蛋白质与盐的分子量不同,当样品通过层析柱时,分子量较大的蛋白质因为不能通过网孔而进入凝胶颗粒,沿着凝胶颗粒间的间隙流动,所以流程较短,向前移动速度较快,最先流出层析柱;反之,盐的分子量较小,可通过网孔而进入凝胶颗粒,所以流程长,向前移动速度较慢,流出层析柱的时间较后。

分段收集蛋白质洗脱液,即可得到脱盐的蛋白质。

3.醋酸纤维素薄膜电泳:血清中各种蛋白质的等电点不同,一般都低于pH7.4。

它们在pH8.6的缓冲液中均解离带负电荷,在电场中向正极移动。

由于血浆中各种蛋白质分子大小、形状及所带的电荷量不同,因而在醋酸纤维素薄膜上电泳的速度也不同。

因此可以将它们分离为清蛋白、α1-球蛋白、α2-球蛋白、β-球蛋白、γ-球蛋白5条区带。

4.分光光度计是应用分光光度法(即比色法)测定物质含量的装置。

通常需要加入某种显色剂,以产生有色化合物,其颜色深浅与待测化学成分的含量成正比,据此对待测物浓度进行测定。

分光光度计的工作原理及分光光度法的计算根据Lambert-Beer定律导衍而得Abs(吸光度)=KCL K:摩尔吸收系数 C:吸光物质浓度 L-溶液厚度实验操作:1.硫酸铵分段盐析:血清2.0 ml,加入PBS2.0ml,一边摇一边缓慢加入饱和硫酸铵2.0 ml,混匀后室温下静置10分钟,3000rpm离心10分钟。

血清γ-球蛋白的分离纯化与鉴定

血清γ-球蛋白的分离纯化与鉴定

实训二血清γ-球蛋白的分离纯化与鉴定目的要求1.了解蛋白质分离提纯的总体思路。

2.掌握盐析法、分子筛层析法、离子交换层析等实验原理及操作技术。

实验原理血清中蛋白质按电泳法一般可分为五类:清蛋白、α1-球蛋白、α2-球蛋白、β-球蛋白和γ-球蛋白,其中γ-球蛋白含量约占16%,100ml血清中约含1.2g左右。

首先利用清蛋白和球蛋白在高浓度中性盐溶液中(常用硫酸铵)溶解度的差异而进行沉淀分离,此为盐析法。

半饱和硫酸铵溶液可使球蛋白沉淀析出,清蛋白则仍溶解在溶液中,经离心分离,沉淀部分即为含有γ-球蛋白的粗制品。

用盐析法分离而得的蛋白质中含有大量的中性盐,会妨碍蛋白质进一步纯化,因此首先必须去除。

常用的方法有透析法、凝胶层析法等。

本实验采用凝胶层析法,其目的是利用蛋白质与无机盐类之间分子量的差异。

当溶液通过SephadexG--25凝胶柱时,溶液中分子直径大的蛋白质不能进入凝胶颗粒的网孔,而分子直径小的无机盐能进入凝胶颗粒的网孔之中.因此在洗脱过程中,小分子的盐会被阻滞而后洗脱出来,从而可达到去盐的目的。

脱盐后的蛋白质溶液尚含有各种球蛋白,利用它们等电点的不同可进行分离。

α-球蛋白、β-球蛋白的PI<6.0;γ-球蛋白的PI为7.2左右。

因此在PH6.3的缓冲溶液中,各类球蛋白所带电荷不同。

经DEAE(二乙基氨基乙基)纤维素阴离子交换层析柱进行层析时,带负电荷的α-球蛋白和β-球蛋白能与DEAE纤维素进行阴离子交换而被结合;带正电荷的γ-球蛋白则不能与DEAE纤维素进行交换结合而直接从层析柱流出。

因此随洗脱液流出的只有γ-球蛋白,从而使γ-球蛋白粗制品被纯化。

其反应式如下:用上述方法分离得到γ-球蛋白是否纯净,单一?可将纯化前后的γ-球蛋白进行电泳比较而鉴定之。

试剂和器材1.试剂(1)饱和硫酸铵溶液:称固体硫酸铵(分析纯)850g,置于1000ml蒸馏水中,在70一80℃水温中搅拌溶解。

将酸度调节至pH7.2,室温中放置过夜,瓶底析出白色结晶,上清液即为饱和硫酸铵溶液。

【生物化学实验】血清γ球蛋白分离纯化与鉴定

【生物化学实验】血清γ球蛋白分离纯化与鉴定

物理、化学性质的不同而建立的方法,其中有盐析、
离子交换、凝胶过滤、亲和层析、制备电泳、离心等。
在分离纯化时,根据情况选用几种方法,相互配合才
能达到分离纯化一种蛋白质的目的。
血清γ 球蛋白的分离纯化与鉴定
【实验原理】
本实验采用硫酸铵盐析、葡聚糖凝 胶过滤、离子交换层析方法,分离纯化 血清γ-球蛋白。最后用醋酸纤维素薄膜 电泳法鉴定γ-球蛋白的纯度。
使表面平整。
▲ 加样与洗脱
1、加样:用滴管将盐析后样品加入柱床面,打开出口使样品 溶液渗入凝胶。 2、洗脱:加入洗脱液,打开出口,保持流速10滴/min,收 集洗脱液,用钠氏试剂检测胺。 3、保存:检测洗脱液的蛋白质量,保存含量高的进一步纯化
▲ 凝胶的再生
不断加洗脱液,使铵全部流出,为下次实验做准备。
多个正电荷游离碱基的聚合物,所以主要靠静电吸引与
带负电的蛋白质形成离子键,对蛋白质提纯有很大好处
量大的物质则被排阻在交联网状物之外,沿着凝胶颗粒间的孔
隙随溶剂流动,其流程短,移动速度快,先流出层析床。经过 分部收集流出液,分子量不x)
应用最多的凝胶!
交联度 网状结构 网孔径 吸水量 机械强度 耐压力 大

致密
疏松








操作步骤:
▲ Sephadex G-50的准备 ▲ 装柱(15~20cm)
一、盐析法粗分离血清γ -球蛋白
原理
盐析法是根据不同蛋白质在一定浓度的盐溶 液中溶解度度不同,从而分别析出,达到彼此分 离的分离方法。
本实验在半饱和硫酸铵溶液中,清蛋白溶解, 球蛋白将沉淀析出,经离心所得的沉淀即为球蛋 白的粗提液。

东师实验1血清清蛋白与γ-球蛋白的分离与鉴定分解

东师实验1血清清蛋白与γ-球蛋白的分离与鉴定分解

综合研究性实验一:血清清蛋白与γ-球蛋白的分离与鉴定一.实验目的1.掌握盐析法分离提纯蛋白质的原理和方法;2.掌握透析法脱盐与蛋白质浓缩的方法;3.掌握凝胶过滤层析的技术方法;4.掌握利用醋酸纤维素薄膜电泳法分离与鉴定血清清蛋白的原理和方法。

二.血清清蛋白与γ-球蛋白的盐析、透析与浓缩[一]实验试剂和仪器1.试剂(1)血清(2)PBS(3)(NH4)2SO4溶液(4)双缩脲试剂(5)酪蛋白(6)蔗糖(7)蒸馏水(8)BaCl溶液2.用品与仪器(1)离心机(2)烧杯(3)移液管(4)透析袋[二]血清清蛋白与γ-球蛋白的盐析(一)蛋白质盐析的实验原理1.蛋白质分子是生物大分子,其大小恰好在胶体的范围,且分子中亲水基团多位于分子的表面,疏水基团多在分子结构内部。

因此,蛋白质分子在水中能以胶体颗粒存在,形成胶体溶液。

2.蛋白质在水中形成亲水胶体,亲水胶体颗粒有两个稳定因素:(1)胶粒上的电荷;(2)水化膜。

3.蛋白质在水溶液中呈现两性电离。

在环境的pH≠pI时,蛋白质可带正电荷或负电荷。

在某一pH条件,蛋白质带同种电荷,同电相斥,故可吸引水分子(水分子为极性分子),水分子排列围绕在蛋白质分子周围,形成水化膜,使蛋白质分子相互分割开来。

破坏这两个因素或其中某一个因素(破坏了蛋白质胶体的稳定性),易于蛋白质发生沉淀。

4.高浓度盐溶液,在水溶液中电离,其正、负离子吸引水分子,从而夺取水化膜,还可以中和部分电荷。

这样,就不同程度地去掉了上述的两个稳定因素,使蛋白质凝聚、沉淀,这就是蛋白质的盐析。

5.由于各种蛋白质的颗粒大小、带电荷多少及亲水程度的不同,对于同一种中性盐,蛋白质盐析所需最低浓度也不同。

例如:球蛋白不溶于半饱和的(NH4)2SO4溶液,γ-球蛋白不溶于1/3饱和度的(NH4)2SO4溶液,而清蛋白仅不溶于饱和的(NH4)2SO4溶液。

因而。

可以利用不同浓度的(NH4)2SO4溶液使血清或其他混合蛋白质中的这些不同的蛋白质分开。

血清蛋白、-球蛋白的分离纯化与鉴定

血清蛋白、-球蛋白的分离纯化与鉴定

血清清蛋白、γ-球蛋白的分离纯化与鉴定之答禄夫天创作(一)血清清蛋白、γ-球蛋白的分离与纯化【目的要求】1.了解蛋白质分离提纯的总体思路。

2.掌握盐析法、分子筛层析、离子交换层析等实验原理及操纵技术。

【实验原理】血清中含有清蛋白和各种球蛋白(α-β-γ-球蛋白等),由于它们所带电荷分歧、相对分子质量分歧,在高浓度盐溶液中的溶解度分歧,因此可利用它们在中性盐溶液中溶解度的差别而进行沉淀分离,此法称为盐析法。

本实验应用分歧浓度硫酸铵分段盐析法可将血清中清蛋白、球蛋白初步分离。

在半饱和硫酸铵溶液中,血清清蛋白不沉淀,球蛋白沉淀,离心后清蛋白主要在上清液中,沉淀的球蛋白加少量水可使其重新溶解。

用盐析法分离而得的蛋白质含有大量的硫酸铵,会妨碍蛋白质的进一步纯化,因此必须去除,经常使用的有透析法、凝胶过滤法等。

本实验采取凝胶过滤法,该法是利用蛋白质与无机盐类之间相对分子质量的差别除去粗制品中盐类。

脱盐后的蛋白质溶液再经DEAE纤维素层析柱进一步纯化。

DEAE纤维素为阴离子交换剂,在pH 6.5的条件下带有正电荷,能吸附带负电荷的α-球蛋白和β-球蛋白(pl分别为4.9、5.06和5.12),而γ-球蛋白(pl7.3)在此条件下带正电荷,不被吸附故直接从层析柱流出,此时收集的流出液即为纯化的γ-球蛋白。

提高醋酸铵溶液的浓度到0.06 mol/L,DEAE纤维素层析柱上的ß-球蛋白及部分a-球蛋白可被洗脱下来。

将醋酸铵溶液的浓度提高至,则清蛋白被洗脱下来,此时收集的流出液即为较纯的清蛋白。

经DEAE纤维素阴离于交换柱纯化的清蛋白、γ-球蛋白液往往体积较大,样品质量分数较低。

为便于鉴定,常需浓缩。

浓缩的方法很多,本实验选用聚乙二醇透析浓缩的方法。

血清清蛋白、γ-球蛋白分离纯化后,选用醋酸纤维薄膜电泳法鉴定其纯度。

【试剂与器材】1.试剂.(1)饱和硫酸铵溶液:称取固体硫酸铵850g加入1000mL蒸馏水中,在70~80℃下搅拌促熔,室温中放置过夜,瓶底析出白色结晶,上清液即为饱和硫酸铵液。

血清蛋白的分离纯化及鉴定

血清蛋白的分离纯化及鉴定
4、放开,流速约20滴/分钟,立即收集并检测, 20%磺基水杨酸检测到蛋白后收集三管,10滴/管。 颜色最深而且无浑浊的管用于下一步操作。 5、 BaCl2检测出现白色混浊或沉淀即有盐分析出, 不再收集。 6、平衡再生:继续洗脱30ml。 7、白蛋白样品脱盐。 15滴/管,收集三管。



3. 纯 化
(二)上样与洗脱:

1、小心控制凝胶柱下端活塞,使柱上缓冲液面刚 好下降到凝胶床表面(注意不要使液面低于凝胶床 表面以致空气进行凝胶床)。 2、关紧下端出口,用滴管吸取盐析球蛋白液,小 心缓慢的加到凝胶床表面上(注意不要将凝胶粒中 冲起或破坏凝胶床表面的平整)。


ห้องสมุดไป่ตู้
3、开下端出口,使样品进入凝胶床(刚好下降到 凝胶床表面),关闭出口,小心加入适量pH6.5的 0.02mol/L NH4Ac
2. 脱 盐
盐析后的粗分离样品中含有硫酸铵 离子成分, 样品中含有过高的离子浓度 会影响离子交换层析的效果,所以在用 离子交换层析进行细分级前需要脱盐。 凝胶色谱法是一个温和而又快速的脱 盐方法,同时可将蛋白质转换到用于离 子交换层析的低离子强度缓冲液中。
凝胶过滤的原理
洗脱液中蛋白质及盐分的检查
分离样品和球蛋白粗分离样品。
2. 脱盐:用凝胶色谱法除去分离样品中的盐类。
3. 细分级: 用离子交换色谱法从白蛋白粗分离样品
中提取纯化的白蛋白;从球蛋白粗分离样品提 取纯化的γ-球蛋白。
4. 鉴定: 用醋酸纤维薄膜电泳进行鉴定。

1. 盐



原理: 当高浓度盐存在时,蛋白质往往凝 聚并析出沉淀。该技术为“盐析”。

• •
不同的蛋白质在不同浓度的盐中形成沉淀。在 半饱和硫酸铵溶液中,血清球蛋白会沉淀,经 离心后,可与白蛋白分离开。 影响因素:PH、温度、蛋白质纯度等。 逐渐改变硫酸铵浓度可分段盐析出不同的蛋白。

血清白蛋白、γ-球蛋白的分离纯化与鉴定

血清白蛋白、γ-球蛋白的分离纯化与鉴定

血清白蛋白、γ-球蛋白的分离纯化与鉴定1.盐析1)取血清2.0ml加到一支15ml离心管中,加0.01M PBS液(PH7.2)2.0ml摇匀。

再逐滴加入PH7.2饱和硫酸铵溶液2.0ml,边加边摇匀。

静置15分钟,3000rpm离心10分钟,用滴管小心吸出上层清液置一干净一次性试管中(尽量全部吸出,但不得有沉淀物)做白蛋白脱盐之用。

2)将沉淀用1.0ml PBS液搅拌溶解,再逐滴加入饱和硫酸铵0.5ml,混匀。

静置15分钟,3000rpm 离心10分钟,倾去上清液。

沉淀用PBS液10滴搅拌溶解,作为γ-球蛋白脱盐之用。

2.白蛋白脱盐与纯化脱盐1)装柱取层析柱1支,用0.02mol/LNH4Ac湿润层析柱,剩余约1/4柱高的液柱时关闭出口。

沿柱内壁缓慢灌入,用PH6.50.02mol/LNH4Ac缓冲液事先浸泡好的稀糊状葡聚糖凝胶G-25悬液约10ml,床面要平整,严防气泡,。

待分层后打开出口,待液面恰与床面重合时,关闭出口。

2)加样与洗脱用细长滴管吸取白蛋白溶液,在靠近床面处沿柱内壁缓慢加入,打开出口,调节流速为6滴/分钟。

待白蛋白完全进入床面后,再用0.02mol/LNH4Ac 5~10ml进行洗脱。

3)收集取小试管12支,依次编号,收集洗脱液,每管收集0.5ml(约12滴),共收集12管后,关闭出口。

4)检测准备一块干净的反应板,向每个孔中按编号顺序依次滴入收集到的洗脱液各1滴,再于各孔内依次滴入20%磺基水杨酸1滴,检测是否出现沉淀(有白色沉淀就说明白蛋白已经洗脱下来)。

将出现沉淀的几管洗脱液留下,进一步做BaCl2浓度检测。

于干净的反应板各孔内依次加入前一步已证明含有白蛋白的洗脱液各1滴,再对应依次加入BaCl2 1滴,检测是否出现沉淀(无白色沉淀就说明无SO42-)。

纯化5)装柱取层析柱1支,用0.06mol/LNH4Ac湿润层析柱,剩余约1/4柱高的液柱时关闭出口。

沿柱内壁缓慢灌入,事先已用0.06mol/LNH4Ac浸泡好的稀糊状DEAE悬液,床面要平整,严防气泡。

血清清蛋白及γ-球蛋白的分离

血清清蛋白及γ-球蛋白的分离

血清清蛋白及γ-球蛋白的分离、纯化与鉴定目的要求1.1.熟悉蛋白质分离纯化的总体思路。

2.2.掌握盐析、离心、层析、浓缩、电泳等技术在蛋白质分离纯化中的综合作用。

3.3.学会设计和制定分离纯化蛋白质的方法。

实验原理血清中蛋白质按电泳法一般可分为五类:清蛋白、α1-球蛋白、α2-球蛋白、β-球蛋白和γ-球蛋白,其中γ-球蛋白含量约占16%,100ml血清中约含1.2g左右。

首先利用清蛋白和球蛋白在高浓度硫酸铵溶液溶解度的差异而进行沉淀分离,此为盐析法。

半饱和硫酸铵溶液可使球蛋白沉淀析出,清蛋白则仍溶解在溶液中,经离心分离,沉淀部分即为含有γ-球蛋白的粗制品。

用盐析法分离而得的蛋白质中含有大量的中性盐,会妨碍蛋白质进一步纯化,因此首先必须去除。

常用的方法有透析法、凝胶层析法等。

本实验采用凝胶层析法,其目的是利用蛋白质与无机盐类之间分子量的差异。

当溶液通过SephadexG--25凝胶柱时,溶液中分子直径大的蛋白质不能进入凝胶颗粒的网孔,而分子直径小的无机盐能进入凝胶颗粒的网孔之中.因此在洗脱过程中,小分子的盐会被阻滞而后洗脱出来,从而可达到去盐的目的。

脱盐后的蛋白质溶液尚含有各种球蛋白,利用它们等电点的不同可进行分离。

清蛋白、α-球蛋白、β-球蛋白的PI<6.0;γ-球蛋白的PI为7.2左右。

因此在PH6.3的缓冲溶液中,各类球蛋白所带电荷不同。

经DEAE(二乙基氨基乙基)纤维素阴离子交换层析柱进行层析时,带负电荷的α-球蛋白和β-球蛋白能与DEAE纤维素进行阴离子交换而被结合;带正电荷的γ-球蛋白则不能与DEAE纤维素进行交换结合而直接从层析柱流出。

因此随洗脱液流出的只有γ-球蛋白,从而使γ-球蛋白粗制品被纯化。

其反应式如下:用上述方法分离得到γ-球蛋白是否纯净,单一。

可将纯化前后的γ-球蛋白进行电泳比较而鉴定之。

提高醋酸铵溶液的浓度到0.06 mol/L,DEAE纤维素层析柱上的ß-球蛋白及部分a-球蛋白可被洗脱下来。

血清γ—球蛋白的分离、纯化与鉴定资料

血清γ—球蛋白的分离、纯化与鉴定资料

“盐析”破坏了蛋白质作为亲水胶体的两个稳定因素
表面电荷 水化膜


但当盐浓度增加到一定浓度时,一方面大量的水同盐分子结合,使得蛋白质没有 足够的水维持溶解状态,破坏了维持蛋白质亲水胶的水化膜 另一方面加入的盐离子中和了蛋白质分子相互排斥的电荷相互聚集沉淀出来
2.常用中性盐:

盐析可用硫酸钠、氯化钠、磷酸钠和硫酸铵等 中性盐,其中运用最广的是硫酸铵。 硫酸铵的优点
结果
1 2 3 4 5 6 7 8 9 10
protein NH4+
-
-
-
-
-
-
+
-
++
18
+
19
±
+
20
11
12
13
14
15
16
17
protein NH4+
+
+
+
-
-
-
-
-
-
-
(四)电泳 (electrophoresis) ---鉴定

带电粒子在电场中移动的现象称为电泳 血清蛋白包括多种蛋白质,它们的等电点大都在 pH7.0以下,清蛋白的等电点为4.6,球蛋白为5-7 在PH高于它们等电点的缓冲液均带负电荷,在电 场中向正极移动 由于各种蛋白质所带电荷的数量和分子的大小有 差别,在电场中泳动的速度也不同
样品
血清
2cm 5cm
三、电泳

将点样面朝下,点样端在负极,悬于滤纸桥上,盖好电泳
槽盖,将电压调至130-160V,电流约为0.4-0.6毫安/厘米, 通电40~50分钟,待电泳区带展开约3.5cm时断电。

血清清蛋白、γ-球蛋白的分离、提纯与鉴定

血清清蛋白、γ-球蛋白的分离、提纯与鉴定

血清清蛋白、γ-球蛋白的分离、提纯与鉴定一、实验目的1.掌握盐析法、凝胶层析法、离子交换层析法分离蛋白质的原理和基本方法;2.掌握醋酸纤维素薄膜电泳法的原理和基本方法;3.了解柱层析技术。

二、实验原理血清蛋白主要由清蛋白和球蛋白组成,各行使其重要的功能。

本实验利用盐析方法将血清中的清蛋白和球蛋白分离,并用电泳技术观察蛋白质分离教果。

1.盐析蛋白质分子能稳定存在于水溶液中是因为有两个稳定因素:表面的电荷和水化膜。

当维持蛋白质的稳定因素破坏时,蛋白质分子可相互聚集沉淀而析出,蛋白质分子沉淀析出的方法很多,根据对蛋白质稳定因素破坏的不同有中性盐析法、有机溶溶剂法、重金属盐法以及生物碱试剂法等。

盐析法的原理是:中性盐如硫酸铵((NH4)2SO4)等对蛋白质作用破坏了蛋白质表面水化膜,并且中和了部分电荷,从而使蛋白质相互聚集而析出。

由于血清中各种蛋白质分子的颗粒大小、所带电荷的多少和亲水程度不同,故盐析所需的盐浓度也不同,因此调节盐的浓度可使不同的蛋白质沉淀从而达到分离的目的。

血清球蛋白在半饱和状态下发生沉淀,而血清清蛋白在完全饱和状态下沉淀,利用此特性可把蛋白质分段沉淀下来,即在半饱和的中,血清蛋白不沉淀,而血球蛋白沉淀,离心后清蛋白主要在上清液中,沉淀蛋白加少量蒸馏水即可溶解,由此达到分离清蛋白和白蛋白的目的。

2.脱盐盐析得到的蛋白质含有高浓度中性盐,需要有脱盐过程去除蛋白质遗留的中性盐,常用方法有:透析法脱盐和凝胶层析法脱盐。

本实验采用凝胶层析法脱盐,在葡聚糖凝胶柱中,蛋白质与盐的分子量不同,当样品通过层析柱时,分子量较大的蛋白质因为不能通过网孔而进入凝胶颗粒,沿着凝胶颗粒间的间隙流动,所以流程较短,向前移动速度较快,最先流出层析柱;反之,盐的分子量较小,可通过网孔而进入凝胶颗粒,所以流程长,向前移动速度较慢,流出层析柱的时间较后。

分段收集蛋白质洗脱液,即可得到脱盐的蛋白质。

3.纯化(离子交换层析)离子交换是溶液中的离子和交换剂上的离子进行可逆的的交换过程。

球蛋白的分离纯化与鉴定

球蛋白的分离纯化与鉴定

• 装柱、上样、洗脱、收集及蛋白质检测等操作步骤及有
关注意事项同前述。
留少量做电泳
•上样前DEAE-纤维素柱的平衡:装柱后用0.02 M乙酸铵 (pH6.5)冲洗2遍。
• 将脱盐后含球蛋白的溶液加于DEAE-纤维素阴离子交换柱 上,用乙酸铵洗脱,样品进入柱床后立即开始收集洗脱液 , 检查各管的蛋白质分布情况,合并含量高的各管。 •此次收集的即为纯化的-球蛋白溶液,留待浓缩及鉴定。
三、操作步骤
1.盐析:分离球蛋白与清蛋白
取血清0.75 ml,缓慢滴入饱和(NH4)2SO4溶液 0.75 ml, 边加边摇,混匀后于室温中放置10分钟,然后10000rpm 离心10分钟,并小心倾去上清液。沉淀加蒸馏水0.4 ml, 使之溶解,即为粗提的球蛋白溶液。
血清-球蛋白的分离、纯化及鉴定
Contents
1 实验目的与要求 2 实验原理 3 操作步骤 4 结果分析
血清-球蛋白的分离、纯化及鉴定
一、实验目的与要求 了解分离纯化蛋白质的基本原理; 掌握柱层析技术。
血清-球蛋白的分离、纯化及鉴定
二、实验原理 本实验为一综合性大实验,目的是要从血清中获得 纯化的-球蛋白。
血清中的蛋白质有两大类:清蛋白和球蛋白(、、)。
血清-球蛋白的分离、纯化及鉴定
三、操作步骤
(2)浓缩 将纯化的-球蛋白溶液量体积,每毫升加葡聚糖凝胶G-25 干胶0.25g,摇动2-3分钟,离心5分钟(10000r/min), 上清即为浓缩的-球蛋白溶液,留待电泳鉴定。
血清-球蛋白的分离、纯化及鉴定
三、操作步骤
4.电泳:鉴定-球蛋白及纯度 (比较纯化前后的蛋白质)
(一)如何分离得到球蛋白? 盐析:
清蛋白在水中的溶解度大于球蛋白,在血清中加入硫酸铵 至半饱和时,球蛋白可被完全沉淀,而绝大部分清蛋白保持 溶解状态,依此可将球蛋白和清蛋白分离 (离心)。

血清清蛋白、γ-球蛋白的分离、提纯与鉴定-2012医学-第六实验室

血清清蛋白、γ-球蛋白的分离、提纯与鉴定-2012医学-第六实验室

生物化学实验报告姓名:学号:专业年级:组别:第六实验室生物化学与分子生物学实验教学中心一、实验室规则1.实验前应认真预习实验指导,明确实验目的和要求,写出预实验报告。

2.进入实验室必须穿白大衣。

严格遵守实验课纪律,不得无故迟到或早退。

不得高声说话。

严禁拿实验器具开玩笑。

实验室内禁止吸烟、用餐。

3.严格按操作规程进行实验。

实验过程中自己不能解决或决定的问题,切勿盲目处理,应及时请教指导老师。

4.严格按操作规程使用仪器,凡不熟悉操作方法的仪器不得随意动用,对贵重的精密仪器必须先熟知使用方法,才能开始使用;仪器发生故障,应立即关闭电源并报告老师,不得擅自拆修。

5.取用试剂时必须“随开随盖”,“盖随瓶走”,即用毕立即盖好放回原处,切忌“张冠李戴”,避免污染。

6.爱护公物,节约水、电、试剂,遵守损坏仪器报告、登记、赔偿制度。

7.注意水、电、试剂的使用安全。

使用易燃易爆物品时应远离火源。

用试管加热时,管口不准对人。

严防强酸强碱及有毒物质吸入口内或溅到别人身上。

任何时候不得将强酸、强碱、高温、有毒物质抛洒在实验台上。

8.废纸及其它固体废物严禁倒入水槽,应倒到垃圾桶内。

废弃液体如为强酸强碱,必须事先用水稀释,方可倒入水槽内,并放水冲走。

9.以实事求是的科学态度如实记录实验结果,仔细分析,做出客观结论。

实验失败,须认真查找原因,而不能任意涂改实验结果。

实验完毕,认真书写实验报告,按时上交。

10.实验完毕,个人应将试剂、仪器器材摆放整齐,用过的玻璃器皿应刷洗干净归置好,方可离开实验室。

值日生则要认真负责整个实验室的清洁和整理,保持实验整洁卫生。

离开实验室前检查电源、水源和门窗的安全等,并严格执行值日生登记制度。

二、实验报告的基本要求实验报告通过分析总结实验的结果和问题,加深对有关理论和技术的理解与掌握,提高分析、综合、概括问题的能力,同时也是学习撰写研究论文的过程。

1.实验报告应该在专用的生化实验报告本上、按上述格式要求书写。

血清球蛋白的分离纯化与鉴定

血清球蛋白的分离纯化与鉴定

实验血清γ-球蛋白的分离纯化与鉴定【实验目的】1.熟悉蛋白质分离提纯的技术路线2.掌握盐析、凝胶过滤层析、离子交换层析等实验原理及操作技术。

【实验原理】血清中蛋白质按电泳法一般可分为五类:清蛋白、α_1 -球蛋白、α_2 -球蛋白、β-球蛋白和γ-球蛋白,其中γ-球蛋白室一类结构及功能相似的蛋白质,绝大多数免疫球蛋白属于γ-球蛋白,因此γ-球蛋白的分离纯化在医学研究中非常重要。

蛋白质的分离纯化室研究蛋白质结构及其生物功能的重要手段。

分离提纯γ-球蛋白时,首先利用各种清蛋白在中性盐溶液中(常用硫酸铵)溶解度的差异而进行沉淀分离,因为中性盐可使蛋白质表面电荷被中和以及水化膜被破坏,导致蛋白质在水溶液中的稳定因素去除而沉淀。

半饱和硫酸铵溶液可使球蛋白沉淀析出,清蛋白则仍溶解在溶液中,而33%的饱和硫酸铵溶液只能使γ-球蛋白沉淀,α-球蛋白和β-球蛋白则仍溶解在溶液中,经离心分离,沉淀部分即为含有γ-球蛋白的醋制品。

用盐析法分离而得的γ-球蛋白中含有大量的中性盐,会妨碍蛋白质进一步纯化,因此必须去除。

常用的方法有透析法、凝胶层析(凝胶过滤)法等。

本实验采用凝胶层析法,其目的是利用蛋白质与无机盐类之间分子量的差异将蛋白质与无机盐分离。

当溶液通过SephadexG-25凝胶柱时,溶液中分子直径大的蛋白质不能进入凝胶颗粒的网孔,而分子直径小的无机盐能进入凝胶颗粒的网孔之中.因此在凝胶柱中会被阻滞而后洗脱出来,从而可达到去盐的目的。

脱盐后的蛋白质溶液可能仍含有其他球蛋白,利用它们等电点的不同,通过DEAE(二乙基氨基乙基)纤维素阴离子交换层析柱进行层析可进一步分离、纯化出γ-球蛋白。

因为α-球蛋白、β-球蛋白的pI﹤6.0;γ-球蛋白的pI为7.2左右。

因此,在pH6.3的缓冲溶液中,各类球蛋白所带电荷不同,经DEAE纤维素进行阴离子交换而被结合;而带正电的γ-球蛋白则不能与DEAE纤维素进行交换结合从而直接从层析柱流出。

血清γ-球蛋白的分离、纯化与鉴定-lhy-图文

血清γ-球蛋白的分离、纯化与鉴定-lhy-图文

1)
饱和(NH4)2SO4 1ml
弃上清
取1ml血清
静置5min
作1ml标记线
3500r/min 5min
边加边摇!
加PBS溶解沉淀至1ml
2)
饱和(NH4)2SO4 0.5ml
静置5min
弃上清
3500r/min 5min 边加边摇!
加PBS 0.5ml溶解沉淀
2.脱盐
1) 装柱
排气、调整凝胶浓度、装柱
无光泽面点样、量少、一次、迅速
3)上槽 点样面朝下、点样线勿接触滤纸桥,置负极
4)电泳 120V;40min
5)染色 丽春红染色液中浸泡 2min
6)漂洗 依次进行三次漂洗, 至背景无色
蛋白双缩脲法定量 (见P159)
肽键 +Cu2+
OH-
紫红色复合物
蛋白质浓度与A540呈正比
试剂
空白管 标准管 测定管1 测定管2
4.64
5.06
5.06
5.12
6.85~7.5
分子量( 6~9
5~20
30
×104)
含量(% 60~70 2~3.5
4~7

电泳缓冲液: pH=8.6 血清蛋白泳动方向? 各种血清蛋白泳动顺序?~18
电泳操作
1)电泳前准备 2)点样( 各组点γ-球蛋白液、每个电泳槽点2份血清)
二、结果 1.脱盐检测结果
1)纳氏试剂、双缩脲试剂颜色反应结果(半定量) 2)收集哪些洗脱液用于鉴定
2.电泳鉴定结果
绘出血清和γ-球蛋白液电泳结果
3.双缩脲法定量鉴定结果
计算γ-球蛋白液浓度
三、讨论 根据结果评价分离效果, 分析原因
血清蛋白醋酸纤维薄膜电泳

07 生物化学实验--血清γ-球蛋白的分离、纯化与鉴定

07 生物化学实验--血清γ-球蛋白的分离、纯化与鉴定

血清γ- 球蛋白的分离、纯化与鉴定【目的】1 .掌握盐析 - 层析法提纯血清γ- 球蛋白的原理和技术。

2 .熟悉电泳比较法定性γ- 球蛋白的方法。

3 .了解扫描定量γ- 球蛋白的方法。

【原理】蛋白质的分离、纯化是研究蛋白质化学性质及生物学功能的重要手段。

根据不同蛋白质的分子量、溶解度以及在一定条件下带电荷性状的差异来分离、纯化各种蛋白质。

1 .γ- 球蛋白的分离、纯化( 1 )盐析:清蛋白与球蛋白的稳定性不同,故可用盐析法对血清蛋白质初步分离。

在半饱和硫酸铵溶液中,清蛋白不沉淀,球蛋白沉淀,离心所得的沉淀即是球蛋白混合物。

( 2 )脱盐:球蛋白混合物中的硫酸铵会妨碍进一步分离纯化,应除去。

脱盐的方法有多种,本试验采用凝胶过滤。

在凝胶过滤中,柱中的填充料是高度水化的惰性多聚物,最常用的有葡聚糖凝胶( Sephadex Gel )和琼脂糖凝胶 (Agarose Gel) 等颗粒。

葡聚糖凝胶是具有不同交联度的网状结构物,它的“ 网眼” 大小可以通过交联剂与葡聚糖的配比来达到。

不同型号的葡聚糖凝胶可用来分离和纯化不同分子大小的物质。

把葡聚糖凝胶装在层析柱中,不同分子大小的蛋白质混合液借助重力通过层析柱时,比“ 网眼” 大的蛋白质分子不能进入网格中,而被排阻在凝胶颗粒之外,随着洗脱剂在凝胶颗粒的外围而流出。

比‘ 网眼 ' 小的分子则进入凝胶颗粒内部。

这样,由于不同大小的分子所经路程距离不同而得到分离。

大分子物质先被洗脱出来,小分子物质后被洗脱出来。

所以含硫酸铵的蛋白值溶液通过层析柱时,先被洗脱出层析柱的是球蛋白,小分子硫酸铵由此法分离除去(参见第 2 篇第 2 章图 2-3 )。

( 3 )纯化:γ- 球蛋白与α 、β- 球蛋白(以及微量的清蛋白),等电点不同,所以采用离子交换层析,从球蛋白混合物中分离、提纯出γ- 球蛋白。

用于蛋白质分离的层析材料多是离子交换纤维素,它们的优点是对蛋白质的交换容量较一般的离子交换树脂大,而且品种较多,可以适用于各种分离目的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

血清清蛋白、γ-球蛋白的分离、提纯与鉴定
一、实验目的
1.掌握盐析法、凝胶层析法、离子交换层析法分离蛋白质的原理和基本方法;
2.掌握醋酸纤维素薄膜电泳法的原理和基本方法;
3.了解柱层析技术。

二、实验原理
血清蛋白主要由清蛋白和球蛋白组成,各行使其重要的功能。

本实验利用盐析方法将血清中的清蛋白和球蛋白分离,并用电泳技术观察蛋白质分离教果。

1.盐析
蛋白质分子能稳定存在于水溶液中是因为有两个稳定因素:表面的电荷和水化膜。

当维持蛋白质的稳定因素破坏时,蛋白质分子可相互聚集沉淀而析出,蛋白质分子沉淀析出的方法很多,根据对蛋白质稳定因素破坏的不同有中性盐析法、有机溶溶剂法、重
金属盐法以及生物碱试剂法等。

盐析法的原理是:中性盐如硫酸铵((NH
4)

SO4)等对蛋
白质作用破坏了蛋白质表面水化膜,并且中和了部分电荷,从而使蛋白质相互聚集而析出。

由于血清中各种蛋白质分子的颗粒大小、所带电荷的多少和亲水程度不同,故盐析所需的盐浓度也不同,因此调节盐的浓度可使不同的蛋白质沉淀从而达到分离的目的。

血清球蛋白在半饱和状态下发生沉淀,而血清清蛋白在完全饱和状态下沉淀,利用此特性可把蛋白质分段沉淀下来,即在半饱和的中,血清蛋白不沉淀,而血球蛋白沉淀,离心后清蛋白主要在上清液中,沉淀蛋白加少量蒸馏水即可溶解,由此达到分离清蛋白和白蛋白的目的。

2.脱盐
盐析得到的蛋白质含有高浓度中性盐,需要有脱盐过程去除蛋白质遗留的中性盐,常用方法有:透析法脱盐和凝胶层析法脱盐。

本实验采用凝胶层析法脱盐,在葡聚糖凝胶柱中,蛋白质与盐的分子量不同,当样品通过层析柱时,分子量较大的蛋白质因为不能通过网孔而进入凝胶颗粒,沿着凝胶颗粒间的间隙流动,所以流程较短,向前移动速度较快,最先流出层析柱;反之,盐的分子量较小,可通过网孔而进入凝胶颗粒,所以流程长,向前移动速度较慢,流出层析柱的时间较后。

分段收集蛋白质洗脱液,即可得到脱盐的蛋白质。

3.纯化(离子交换层析)
离子交换是溶液中的离子和交换剂上的离子进行可逆的的交换过程。

带正电荷的交换剂称为阴离子交换剂;带负电荷的交换剂称为阳离子交换剂。

本实验采用的DEAE纤维素是一种阴离子交换剂,溶液中带负电荷的离子可与其进行交换结合,带正电荷的点正电荷的离子则不能,这样便可达到分离纯化的目的。

脱盐后的蛋白质溶液尚含有各种球蛋白,利用它们的等电点的不同可进行分离。

血清中各种蛋白质的pI各不相同,因此,在同一醋酸铵缓冲液中,各蛋白质所带的电荷不同,可以通过DEAE离子交换层析将血清清蛋白和伽马球蛋白分离出来。

4.纯度鉴定(电泳)
血清中各种蛋白质的等电点不同,一般都低于pH7.4。

它们在pH8.6的缓冲液中均解离带负电荷,在电场中向正极移动。

由于血浆中各种蛋白质分子大小、形状及所带的电荷量不同,因而在醋酸纤维素薄膜上电泳的速度也不同。

因此可以将它们分离为清蛋白(Albumin)、α1-球蛋白、α2-球蛋白、β-球蛋白、γ-球蛋白5条区带。

三、材料与方法:以流程图示意
1.实验材料
人血清、葡聚糖凝胶G-25(Sephadex G-25)层析柱、二乙基氨基乙基(DEAE)纤维素离子
交换层析柱、饱和硫酸铵溶液、0.3mol/l 的PH6.5醋酸铵缓冲液、0.06mol/l 的PH6.5醋酸铵缓冲液、0.02mol/l 的PH6.5醋酸铵缓冲液、1.5mol/l 的NaCl-0.3mol/NH4AC 溶液、20%磺基水杨酸、1%BaCl2溶液、电泳仪、电泳槽。

2.实验方法
1) 实验流程
2) 实验步骤

盐析:中性盐沉淀步骤
注意:上层清夜尽量全部吸出,但不可吸出沉淀物。

② 脱盐:过凝胶层析柱步骤
注意:a.当层析柱的缓冲液面或样品液面刚好下降到纤维素床表面时,不要使液面低于纤维素膜表面,以免空气进入凝胶床。

b.往层析住加样品或缓冲液洗脱事,要小心缓慢加入,不要将纤维素冲起或破坏纤维素床表面平整。

C.切勿将检测蛋白质的磺基水杨酸与检查硫酸根的氯化钡混淆,因为二者相应生成物的沉淀均为白色。

d.洗脱是应注意及时收集样品,切勿使蛋白质峰溶液流失。

e.葡萄糖凝胶价钱昂贵,要回收再生避免损耗,严禁倒掉。

③球蛋白的纯化:过DEAE纤维素阴离子交换层析柱
注意:a.当层析柱的缓冲液面或样品液面刚好下降到纤维素床表面时,不要使液面低于纤维素膜表面,以免空气进入凝胶床。

b.往层析住加样品或缓冲液洗脱事,要小心缓慢加入,不要将纤维素冲起或破坏纤维素床表面平整。

C.切勿将检测蛋白质的磺基水杨酸与检查硫酸根的氯化钡混淆,因为二者相应生成物的沉淀均为白色。

d.洗脱是应注意及时收集样品,切勿使蛋白质峰溶液流失,特别是收集伽马球蛋白时。

④清蛋白的纯化:过DEAE纤维素阴离子交换层析柱
注意:a.当层析柱的缓冲页面或样品页面刚好下降到纤维素膜表层时,不要是液面低于纤维素膜表面,以免空气进入凝胶床。

b.往层析住加样品或缓冲液洗脱事,要小心缓慢加入,不要将纤维素冲起或破坏纤维素床表面平整。

C.使用时切勿将各时段所用的溶液浓度搞混。

d.洗脱是应注意及时收集样品,切勿使蛋白质峰溶液流失。

⑤纯度鉴定(醋酸纤维素薄膜电泳)
步骤操作
准备电泳槽准备:将电泳槽置于水平平台上,两侧注入等量的巴比妥
缓冲溶液,使其在同一水平a,页面与支架距离2~2.5cm,用三层
滤纸或双层纱布搭桥
薄膜准备:将醋酸纤维薄膜裁成2cm乘以8cm大小共四段,在薄
膜一段1.5cm处用铅笔轻轻画上一条横线为点样线,末端用铅笔
做记号。

进入巴比妥溶液中直至浸润完全。

用镊子青青取出,粗
面朝上,平放在两层干滤纸中间,轻轻拭去多余的缓冲液。

点样薄膜片置于干净的玻璃或滤纸片上,粗面朝上,用玻片或载玻片
一段的截面在盛有样品的直接沾取2~3微升待测品,让后将样品
与薄膜点样先轻轻接触,均匀分布在点样线上,带样品渗入薄膜
后移开,四种样品分别点样。

电泳将已点好的样品薄膜放在铺有滤纸盐桥的电泳槽上,点样面朝下,
四、结果与讨论:①结果:实验数据、现象、图谱;②讨论:以结果为基础的逻辑推论,并得出结论。

1.实验结果
从电泳图谱中可以看出,清蛋白第一管和清蛋白第二管的蛋白质与血清的清蛋白电泳图谱几乎一致,可以确定管内的蛋白质为清蛋白,同理球蛋白管内的蛋白质为γ-球蛋白。

2.实验讨论
1)血清电泳中个别电泳带的两条带之间界限不明显
①染色时,醋酸纤维薄膜不是一张一张放入染色液的,在染色固定前,薄膜与薄膜之间重叠,造成薄膜上还未固定的血清蛋白彼此粘连。

②染色时间控制不合适。

因为时间长,薄膜底色深不易脱去;时间短,着色浅不宜区分,或造成条带染色不均;
③透明时间控制不合适,如在透明液中浸泡时间太长则薄膜溶解,太短则透明度不佳。

2)第一管血清蛋白电泳带参差不齐
①薄膜表面吸干时吸的太干或吸的不完全。

因为点样时应将膜片表面多余的缓冲液用滤纸吸去,以免缓冲液太多引起样品扩散。

但也不能吸得太干,太干则样品不易进入薄
膜的网孔内,而造成电泳起始点参差不齐,影响分离效果;
②点样不均匀。

3)第一管血清蛋白中含有少量杂质致使电泳图出现偏差。

思考题
1.硫酸铵盐析一步,为什么是0.8ml血清加0.8ml饱和硫酸铵?
血清球蛋白在半饱和硫酸铵溶液中发生沉淀,而血清清蛋白在完全饱和硫酸铵溶液中沉淀,将血清和饱和硫酸铵等体积混合后,其状态相当于在半饱和硫酸铵溶液中,在此状态下,球蛋白沉淀,而清蛋白不沉淀,因而可以将其分开。

2.为什么实验中DEAE纤维素柱分离γ-球蛋白后不用再生,可直接用于纯化清蛋白?
因为γ-球蛋白带正电荷,不与DEAE结合,会从层析柱中首先洗脱出来,所以分离γ-球蛋白后可直接用于纯化清蛋白。

3.应用醋酸纤维素薄膜电泳鉴定分离纯化后的血清清蛋白和γ-球蛋白的纯度,根据什
么来确定它是清蛋白还是γ-球蛋白?判定它们纯度的依据是什么?
由于血浆中各种蛋白质分子大小、形状及所带的电荷量不同,因而在醋酸纤维素薄膜上电泳的速度也不同,实验的得到的电泳带的位置也不相同。

在5种蛋白中,血清蛋白的等电点和相对分子质量最小,γ-球蛋白的最大,血清蛋白的含量远远高于γ-球蛋白,所以在血清的电泳结果中,最前面的颜色较深的电泳带属于血清蛋白,最后面的颜色较浅的电泳带属于γ-球蛋白。

所以将4张醋酸纤维素薄膜上的电泳带进行对比,即可的得知纯化后的液体中含有那种蛋白。

根据电泳鉴定的原理以及血清电泳的结果可得知:可以凭借薄膜上出现的电泳带的数目来判断纯度。

如若只出现一条,则纯度较高,条数越多,纯度越低。

相关文档
最新文档