蛋白表达、分离和纯化

合集下载

维真生物-原核蛋白的表达、分离和纯化

维真生物-原核蛋白的表达、分离和纯化

原核蛋白的表达、分离和纯化实验原理:携带有目标蛋白基因的质粒在大肠杆菌BL21中,在37℃,IPTG 诱导下,超量表达携带有6个连续组氨酸残基的重组氯霉素酰基转移酶蛋白,该蛋白可用一种通过共价偶连的次氨基三乙酸(NTA)使镍离子(Ni2+)固相化的层析介质加以提纯,实为金属熬合亲和层析(MCAC)。

蛋白质的纯化程度可通过聚丙烯酰胺凝胶电泳进行分析。

实验材料:大肠杆菌BL21试剂、试剂盒:LB液体培养基、氨苄青霉素、Washing Buffer、Elution Buffer、IPTG、蒸馏水、胰蛋白胨、酵母粉、氯化钠仪器、耗材:摇床、离心机、层析柱、离心管、移液枪、枪头盒、烧杯、玻璃棒实验步骤:一、试剂准备1. LB液体培养基:Trytone 10 g,yeast extract 5 g,NaCl 10 g,用蒸馏水配至1000 mL。

2. 氨苄青霉素:100 mg/mL。

3. 上样缓冲液:100 mM NaH2PO4,10 mM Tris,8M Urea,10 mM2-ME,pH8.0。

4. Washing Buffer:100 mM NaH2PO4,10 mM Tris,8 M Urea,pH6.3。

5. Elution Buffer:100 mM NaH2PO4,10 mMTris,8M Urea,500 mM Imidazole,pH8.0。

6. IPTG:100mM IPTG(异丙基硫代-β-D-半乳糖苷):2.38g IPTG溶于100ml ddH2O中,0.22μm滤膜抽滤,-20℃保存。

二、获得目的基因1. 通过PCR方法:以含目的基因的克隆质粒为模板,按基因序列设计一对引物(在上游和下游引物分别引入不同的酶切位点),PCR循环获得所需基因片段。

2. 通过RT-PCR方法:用TRIzol法从细胞或组织中提取总RNA,以mRNA为模板,逆转录形成cDNA第一链,以逆转录产物为模板进行PCR循环获得产物。

蛋白质的表达、纯化及检测-分子实验报告

蛋白质的表达、纯化及检测-分子实验报告

实验目的1.了解外源基因在大肠杆菌细胞中的诱导表达情况2.学会用SDS-PAGE电泳法分离不同分子量的蛋白质3.学习通过亲和层析法纯化目的蛋白4.学会考马斯亮蓝染色法和蛋白质杂交法检测蛋白质实验原理1.外源基因在大肠杆菌细胞中的诱导表达:将外源基因克隆在特殊的表达载体中,让其在E. coli中表达,该表达载体上含有lac操作子的启动子。

在不加诱导剂的条件下培养宿主菌,lacI基因表达的阻遏蛋白LacI与lac操作子结合,使外源基因不能表达;向培养基中加入诱导物IPTG后,LacI阻遏蛋白变构失活,不能与lac操作子结合,外源基因就表达。

2.蛋白质SDS-PAGE电泳分离:SDS-PAGE是最常用的定性分析蛋白质的电泳方式,特别是用于蛋白质纯度检测和测定蛋白质分子量。

其分离原理是根据蛋白质分子量的差异,因为SDS-PAGE的样品处理液及缓冲液的加入破坏了蛋白质的二级、三级、四级等结构,并使SDS与蛋白质充分结合形成SDS-蛋白质复合物,稳定地存在于均一的溶液中,SDS与蛋白质结合后使SDS-蛋白质复合物上带有大量的负电荷,远远超过其原来所带的电荷,从而使蛋白质原来所带的电荷可以忽略不计,消除了不同分子之间原有的电荷差别,其电泳迁移率主要取决于亚基分子质量的大小,这样分离出的谱带也为蛋白质的亚基。

3.考马斯亮蓝法检测蛋白质:考马斯亮蓝是一种蛋白质染料,主要有R-250和G-250两种类型。

考马斯亮蓝可以和蛋白肽链中碱性氨基酸残基或芳香族氨基酸残基(Arg,Trp,Tyr,His,Phe)结合。

考马斯亮蓝R250多用于聚丙烯酰胺凝胶电泳后蛋白质条带的染色;因为考马斯亮蓝R250中的R代表Red,偏红,红蓝色,与蛋白质结合虽然比较缓慢,但是染料可以穿透凝胶,染胶效果好,染色后为蓝色,且与胶的结合可以被洗脱下去,所以可以用来对电泳条带染色。

4.基因融合就是将两个或多个开放读码框按一定顺序连接在一起,融合阅读框架的表达产物是一个杂和蛋白。

蛋白质的表达纯化

蛋白质的表达纯化

完全紧贴。)正常安装则会形成一个密闭的容
器。
蛋白质的表达纯化
5.将底座的开关打开, 并向外拨动透明的架子, 使中间空隙增大,放入 电极架。
6.如图所示将电极架往下 压(约1~2mm),使底面 完全接触。
蛋白质的表达纯化
7.关上底座开关。
8.放入电泳槽内,加上加样 架加样。注意加样架与刚才 制胶所用的梳子齿数必须一 致。
• 3. 细胞裂解液3mL以10-15mL/h 流速上Ni2+-NTA柱,收集流 出液。
• 4.洗脱杂蛋白:用50mL洗涤缓冲液UWB以10-15mL/h流速洗柱, 分别取10ul洗涤开始与结束时的样品用于SDS-PAGE 分析。
• 5.洗脱目标蛋白:用10mL洗脱缓冲液洗柱,每管0.5-1 mL, 共收集6-10管,分别取1蛋0白u质l样的表品达纯用化于SDS-PAGE 分析。
蛋白质的表达纯化
实验步骤
• 一、氯霉素酰基转移酶重组蛋白的诱导 • 1. 接种含有重组氯霉素酰基转移酶蛋白的大肠杆菌
BL21菌株于5mL LB液体培养基中 (含100ug/mL 氨苄 青霉素),37℃震荡培养过夜。 • 2. 转接1mL过夜培养物于100mL(含100ug/mL 氨苄青霉 素)LB液体培养基中,37℃震荡培养至OD600 = 0.6 0.8。取10ul 样品用于SDS-PAGE 分析。 • 3. 加入IPTG至终浓度0.5 mmol/l, 37℃继续培养1-3h. • 4. 12,000rpm 离心10 min, 弃上清,菌体沉淀保存于20℃或-70℃冰箱中。
蛋白质的表达纯化
• 3.制浓缩胶:按所需的浓度配制4%的浓缩胶,配
方如下:
30%Arc- Tris-HCl H2O
Bis

蛋白质的提取与分离纯化——生化实验设计讲解课件讲解学习

蛋白质的提取与分离纯化——生化实验设计讲解课件讲解学习

值得注意的是,在洗脱时,会有少许配基与蛋白 质一同被洗脱下来,因此常在其后加一凝胶层析 以除去小分子的配基。
凝胶层析法属最常用的蛋白质分离方法。系混合
物随流动相流经装有凝胶作为固定相的层析柱时, 混合物中各物质因分子大小不同而被分离的技术。 在洗柱过程中,分子量最大的物质不能进入凝胶 网孔而沿凝胶颗粒间的空隙最先流出柱外。分子 量最小的物质因能进入凝胶网孔而受阻滞,流速 缓慢,致使最后流出柱外。
此课件下载可自行编辑修改,仅供参考! 感谢您的支持,我们努力做得更好!谢谢
当分子量在15KD到200KD之间时,蛋白质的迁 移率和分子量的对数呈线性关系,符合下式: logMW=K-bX,
式中:MW为分子量,X为迁移率,k、b均为常 数若将已知分子量的标准蛋白质的迁移率对分子 量对数作图,可获得一条标准曲线,未知蛋白质 在相同条件下进行电泳,根据它的电泳迁移率即 可在标准曲线上求得分子量。
玻璃匀浆机
b、细胞器的分离
细胞器的分离一般采用差速离心法。细 胞经过破碎后,在适当介质中进行差速 离心。
三、蛋白质粗提取
从破碎材料或细胞器提出的蛋白质是不纯的, 需进一步纯化。纯化包括将蛋白质与非蛋白质 分开,将各种不同的蛋白质分开。选择提取条 件时,就要考虑尽量除去非蛋白质。一般总是 有其它物质伴随混入提取液中。但有些杂质 (如脂肪)以事先除去为宜。先除去便于以后 操作。常用有机溶剂提取除去。
二、a 细胞的破碎
⑴机械方法 主要通过机械切力的作用使组织细胞破 坏。常用器械有: ①玻璃匀浆器(用两个磨砂面相 互摩擦,将细胞磨碎) ②高速组织捣碎机(转速可 达10000rpm,具高速转动的锋利的刀片),宜用于 动物内脏组织的破碎 ⑵物理方法 主要通过各种物理因素的作用,使组织 细胞破碎的方法。 Ⅰ反复冻融法 Ⅱ冷热变替法 Ⅲ超 声波法 ⑶化学及生物化学方法

蛋白质表达纯化概述

蛋白质表达纯化概述

昆虫表达系统的优缺点
• 1,组蛋白具有完整的生物学功能,如蛋白的正确 折叠、二硫键的搭配

2,蛋白翻译后的加工修饰;

3,表达水平高,可达总蛋白量的50%;

4,可容纳大分子的插入片段;

5,能同时表达多个基因。主要缺点是外源蛋
白表达处于极晚期病毒启动子的调控之下,这时
由于病毒感染,细胞开始死亡。
2.3 采用什么培养基进行表达?LB,TB,SOB,SOC等等。 2.4 客户是否有Protocol、essay等参考文献 • 客户是否指定用某种纯化工艺:亲和层析、排阻层析、反向层析、疏水层析、离子交
换 2.5 表达前是否要做小量实验(预表达/预实验/小试)。是否要做表达条件的优化筛选?
如果有,需要做温度、IPTG浓度、诱导OD、抗生素浓度(不常用)、诱导时间中的哪 些优化筛选。 2.3 蛋白纯度要求、浓度要求(蛋白定量方法:分光光度法、旋光光度法等)、蛋白总量 要求。是否要去热源(又叫内毒素,常用于抗原抗体的制备以及药物的筛选。)是否 要去除RNA,是否要去除核酸,是否要去除DNA。 2.4 蛋白活性要求(如果用于抗体的制备可以不需要活性。) 2.6 蛋白WB检测:常用于真核细胞表达检测。
2.1是否需要蛋白标签 GST(常用,增加蛋白溶解性)、His(最常用,用于易表达纯化, 性质稳定的蛋白)、Strep(有I、II两种!!实验方法不同。)、Flag (Flag是一种抗体, 特异性高,表达量相对较低,常用于昆虫、哺乳动物细胞的表达)等
2.2 如果有标签,是在3‘端还是在5’端(或者是蛋白标签在N端还是C端)。需不需要 酶切位点(用于后续纯化中去除标签)。是否要进行基因突变,突变位点在哪里?
• 昆虫表达系统是一类应用广泛的真核表达系统,它具有同大多数高等 真核生物相似的翻译后修饰加工以及转移外源蛋白的能力。昆虫杆状 病毒表达系统是目前国内外十分推崇的真核表达系统。利用杆状病毒 结构基因中多角体蛋白的强启动子构建的表达载体,可使很多真核目 的基因得到有效甚至高水平的表达。它具有真核表达系统的翻译后加 工功能,如二硫键的形成、糖基化及磷酸化等,使重组蛋白在结构和 功能上更接近天然蛋白;其最高表达量可达昆虫细胞蛋白总量的50%; 可表达非常大的外源性基因(一200kD);具有在同一个感染昆虫细胞 内同时表达多个外源基因的能力;对脊椎动物是安全的。由于病毒多 角体蛋白在病毒总蛋白中的含量非常高,至今已有很多外源基因在此 蛋白的强大启动子作用下获得高效表达。。常用的杆状病毒包括苜蓿 银纹夜蛾核型多角体病毒(AcNPV)和家蚕型多角体病毒(BmNPV),常 用的宿主细胞则来源于草地夜蛾Sf9细胞,用于表达外源基因的质粒 来源于PUC系列,其含有一个多克隆位点和多角体蛋白启动子。

蛋白质的提取、分离纯化及定量

蛋白质的提取、分离纯化及定量

实验一氨基酸的别离鉴定——纸层析法实验目的1.学习氨基酸纸层析的根本原理。

2.掌握氨基酸纸层析的操作技术。

实验原理纸层析法是用滤纸作为惰性支持物的分配层析法。

层析溶剂由有机溶剂和水组成,滤纸和水的亲和力强,与有机溶剂的亲和和弱,因此在展层时,水是固定相,有机溶剂是流动相。

将样品点在滤纸上〔原点〕,进展展层,样品中的各种AA在两相溶剂中不断进展分配,由于它们的分配系数不同,不同AA随流动相移动速率就不同,于是将这些AA别离开来,形成距原点距离不等的层析点。

溶质在滤纸上的移动速率用比移〔rate of flow ,Rf〕来表示Rf= 原点到层析点中心的距离〔*〕/原点到溶剂前沿的距离(Y)只要条件〔如温度、展层剂的组成〕不变,*种物质的Rf值是常数。

可根据R f 作为定性依据。

Rf值的大小与物质的构造、性质、溶剂系统、层析滤纸的质量和层析温度等因素有关。

样品中如有多种AA,其中有些AA的Rf值一样或相近,此时只用一种溶剂展层,就不能将它们分开,为此,当用一种溶剂展层后,将滤纸转90度再用另一种溶剂展层,从而到达别离的目的,这种方法叫双向层析。

仪器、试剂1、扩展剂:是水饱和的正丁醇和醋酸以体积比4:1进展混合得混合液。

将20 ml正丁醇和5 ml冰醋酸放入分液漏斗中,与15 ml水混合,充分振荡,静置后分层,放出下层水层,漏斗内即为扩展剂。

取漏斗内的扩展剂约5 ml置于小烧杯中做平衡溶剂,其余的倒入培养皿中备用。

2、氨基酸溶液⑴.单一氨基酸:5%赖氨酸、脯氨酸、苯丙氨酸、⑵.混合氨基酸:各5 ml混合。

3、显色剂:0.1%水合茚三酮正丁醇溶液。

4、层析缸、滤纸〔14*17〕、喷雾器、电吹风实验步骤1.放置平衡溶剂:用量筒量取约5 ml平衡溶剂,放入培养皿中,然后置于密闭的层析缸中。

2.准备滤纸:取层析滤纸〔长17㎝、宽14㎝〕一*。

在纸的一端距边缘2㎝处用铅笔划一条直线,在此直线上每间隔1.5㎝作一记号——点样线。

重组蛋白分离纯化的方法策略及案例介绍

重组蛋白分离纯化的方法策略及案例介绍
简介 谷胱甘肽 S-转移酶(GST)亲和标签是纯化重组蛋白的常用方法,该方法以 GST 能够偶联在介质上的谷胱甘
肽配体结合为基础。同时,带有 GST 的蛋白与配体结合是可逆的,能够在温和,非变性的条件下通过加入还原型 谷胱甘肽被洗脱下来。
材料 BL21 感受态细胞 PGEX 表达载体 LB 培养基 Amp(氨苄青霉素) IPTG 蛋白酶抑制剂 缓冲液 1(100mmol/L Tris,PH 8.5,500mmol/L NaCl) 缓冲液 2(100mmol/L NaAc,PH 4.5,500mmol/L NaCl) PBS 缓冲液(100mmol/L NaCl,2.7mmol/L KCl,10mmol/L Na2HPO4,1.8mmol/L KH2PO4) 洗脱缓冲液(50mmol/L Tris,PH 8.0,10mmol/L GSH) 微量紫外分光光度计 超声波破碎仪 高速冷冻离心机 GST 柱
由上表可知选择将所表达的蛋白分泌到细胞外或周质空间可避免破碎细胞的步骤,而且细胞外和周质空间内的 蛋白种类较少,目的蛋白易纯化;而在细胞质内表达重组蛋白时,重组蛋白通常是可溶性表达,但也易形成包涵体。 可溶性蛋白往往需要复杂的纯化步骤,而包涵体易于分离且纯度较高,但回收具有生物活性的蛋白质却变得相当困 难,通常需要对聚集的蛋白进行变,复性,而通常情况下活性蛋白的得率比较低。德泰生物凭借多年的蛋白表达服 务操作经验和相关的技术,可以提供可溶性重组蛋白保证型服务和更高纯度的上清蛋白。
分离纯化原则总结: 1 应尽可能利用蛋白质不同物理特性选择所用的分离纯化技术,而不是利用相同技术多次纯化; 2 不同的蛋白在性质上有很大区别,每一步纯化步骤都应当充分利用目的蛋白和杂质成分物理性质差异; 3 在纯化早期阶段要尽量减少处理体积,方便后续纯化; 4 在纯化后期阶段,再使用造价高的纯化方法,有利于纯化材料的重复使用,减少再生复杂性。

蛋白表达及纯化PPT课件

蛋白表达及纯化PPT课件

萃取法
液-液萃取法
利用两种不混溶的溶剂,将目标蛋白 质从一种溶剂中转移到另一种溶剂中 。
反胶团萃取法
利用反胶团形成的微环境,选择性分 离和纯化蛋白质。
色谱法
凝胶色谱法
利用凝胶介质对不同大小的蛋白质颗粒的分离作用,将目标蛋白质与其他杂质 分离开。
离子交换色谱法
利用离子交换剂对不同带电状态的蛋白质的吸附作用,将其与其他蛋白质分离 开。
亲和层析
利用基因工程改造的蛋白质分 子上的特定标签与固相载体上 的配体结合进行分离纯化。常 用的亲和层析包括His-tag亲 和层析、GST亲和层析等。
离子交换层析和凝胶过滤 层析
与抗体药物的纯化类似,离子 交换层析和凝胶过滤层析也可 用于重组蛋白药物的进一步纯 化和精制。
蛋白质相互作用研究中的纯化应用
02
蛋白纯化方法
沉淀法
盐析法
通过加入高浓度的盐溶 液,改变蛋白质的溶解
度使其沉淀下来。
有机溶剂沉淀法
利用有机溶剂降低蛋白 质溶解度的原理,使其
沉淀。
聚合物沉淀法
利用聚合物与蛋白质的 相互作用,使蛋白质沉
淀。
低温沉淀法
在低温条件下,通过改 变蛋白质的溶解度使其
沉淀。
离心法
差速离心法
通过逐渐增加离心力,将 不同大小的蛋白质颗粒分 离开。
扩展床吸附技术
将大颗粒的介质填充于柱中,使流动相能够通过吸附作用去 除杂质,提高纯化效果。
集成化与自动化技术
集成化分离系统
将多个分离步骤集成在一个系统中, 实现连续的分离纯化,提高生产效率。
自动化控制技术
通过自动化控制系统,实现分离纯化 的全流程监控和自动调节,减少人为 误差和操作时间。

蛋白质表达与纯化步骤

蛋白质表达与纯化步骤

蛋白质表达与纯化步骤一、蛋白质表达的那些事儿蛋白质表达就像是一场神奇的魔法秀,要让小小的基因变成实实在在的蛋白质呢。

咱先得从基因开始说起。

基因就像是一个藏着宝藏密码的小纸条,我们要把这个密码找出来,然后送到一个特殊的“工厂”里,这个“工厂”就是细胞啦。

在细胞这个“大工厂”里,有各种各样的“小工人”,也就是各种酶和分子机器。

我们要把基因送到细胞里,就像是把宝藏密码送到工厂里一样。

不过这可不是随随便便就能送进去的,得用一些特殊的方法,就像你要进一个很严格的地方得有通行证一样。

比如说,我们可以用一些载体,这些载体就像是小飞船,带着基因这个“乘客”进入细胞。

而且呀,不同的细胞就像不同的工厂,有的擅长生产这种蛋白质,有的擅长生产那种蛋白质。

所以我们得挑选合适的细胞。

要是选错了细胞,就可能像把做蛋糕的配方送到做鞋子的工厂一样,完全不对路嘛。

1. 基因的准备我们得先把想要表达的基因从它原来的地方给找出来。

这有时候就像在一个超级大的图书馆里找一本特定的书一样难。

我们可能得用一些特殊的工具,像是限制酶,它就像一把小剪刀,可以把基因从长长的DNA链上准确地剪下来。

然后我们还得把基因整理得干干净净的,不能有其他乱七八糟的东西混在里面,就像我们要把书擦干净,不能有灰尘一样。

2. 载体的选择载体的种类可多啦。

有质粒载体,它就像一个小小的环状“快递盒”,可以把基因装在里面。

还有病毒载体,这就更酷了,就像用一个小病毒来当快递员,不过这个病毒是经过我们改造的,不会让人生病的哦。

选择载体的时候,我们要考虑很多东西,比如这个载体能不能在我们选定的细胞里生存呀,它能装多少基因呀,就像我们选快递盒的时候要考虑大小和能不能送到目的地一样。

二、蛋白质纯化的趣味之旅当蛋白质在细胞里被表达出来后,就像一堆宝贝混在沙子里一样,我们得把蛋白质这个宝贝给挑出来,这就是蛋白质纯化啦。

这可不容易呢,因为细胞里有各种各样的东西,有其他的蛋白质,有核酸,还有各种小分子。

蛋白质的表达、纯化及检测-分子实验报告

蛋白质的表达、纯化及检测-分子实验报告

实验目的1.了解外源基因在大肠杆菌细胞中的诱导表达情况2.学会用SDS-PAGE电泳法分离不同分子量的蛋白质3.学习通过亲和层析法纯化目的蛋白4.学会考马斯亮蓝染色法和蛋白质杂交法检测蛋白质实验原理1.外源基因在大肠杆菌细胞中的诱导表达:将外源基因克隆在特殊的表达载体中,让其在E. coli中表达,该表达载体上含有lac操作子的启动子。

在不加诱导剂的条件下培养宿主菌,lacI基因表达的阻遏蛋白LacI与lac操作子结合,使外源基因不能表达;向培养基中加入诱导物IPTG后,LacI阻遏蛋白变构失活,不能与lac操作子结合,外源基因就表达。

2.蛋白质SDS-PAGE电泳分离:SDS-PAGE是最常用的定性分析蛋白质的电泳方式,特别是用于蛋白质纯度检测和测定蛋白质分子量。

其分离原理是根据蛋白质分子量的差异,因为SDS-PAGE的样品处理液及缓冲液的加入破坏了蛋白质的二级、三级、四级等结构,并使SDS与蛋白质充分结合形成SDS-蛋白质复合物,稳定地存在于均一的溶液中,SDS与蛋白质结合后使SDS-蛋白质复合物上带有大量的负电荷,远远超过其原来所带的电荷,从而使蛋白质原来所带的电荷可以忽略不计,消除了不同分子之间原有的电荷差别,其电泳迁移率主要取决于亚基分子质量的大小,这样分离出的谱带也为蛋白质的亚基。

3.考马斯亮蓝法检测蛋白质:考马斯亮蓝是一种蛋白质染料,主要有R-250和G-250两种类型。

考马斯亮蓝可以和蛋白肽链中碱性氨基酸残基或芳香族氨基酸残基(Arg,Trp,Tyr,His,Phe)结合。

考马斯亮蓝R250多用于聚丙烯酰胺凝胶电泳后蛋白质条带的染色;因为考马斯亮蓝R250中的R代表Red,偏红,红蓝色,与蛋白质结合虽然比较缓慢,但是染料可以穿透凝胶,染胶效果好,染色后为蓝色,且与胶的结合可以被洗脱下去,所以可以用来对电泳条带染色。

4.基因融合就是将两个或多个开放读码框按一定顺序连接在一起,融合阅读框架的表达产物是一个杂和蛋白。

蛋白质分离纯化方法的研究进展

蛋白质分离纯化方法的研究进展

蛋白质分离纯化方法的研究进展一、本文概述蛋白质是生物体内最重要的一类大分子化合物,它们在生物体内发挥着多种关键功能,包括酶催化、信号转导、基因表达调控等。

因此,对蛋白质的研究一直是生物医学领域的热点之一。

蛋白质的分离纯化是蛋白质研究的基础,也是后续蛋白质功能研究、结构解析和药物研发等工作的前提。

随着科技的进步和方法的创新,蛋白质分离纯化技术也在不断发展。

本文旨在综述近年来蛋白质分离纯化方法的研究进展,包括传统的分离纯化方法以及新兴的技术,以期为蛋白质研究领域的同仁提供参考和启示。

我们将首先回顾传统的蛋白质分离纯化方法,如凝胶电泳、色谱分离、超速离心等,这些方法在过去几十年中得到了广泛应用,但其分辨率和效率仍有待提高。

接着,我们将重点介绍近年来新兴的蛋白质分离纯化技术,如亲和层析、离子交换层析、反向液相色谱等,这些技术具有更高的分辨率和更好的纯化效果,为蛋白质研究提供了新的有力工具。

我们还将讨论一些新兴的跨学科技术,如纳米技术、生物信息学等在蛋白质分离纯化中的应用,这些技术为蛋白质分离纯化带来了新的机遇和挑战。

我们将对蛋白质分离纯化方法的发展趋势进行展望,以期为未来蛋白质研究提供指导。

我们相信,随着科技的进步和方法的创新,蛋白质分离纯化技术将会更加完善,为蛋白质研究领域的深入发展奠定坚实基础。

二、传统蛋白质分离纯化方法传统蛋白质分离纯化方法主要依赖于蛋白质的理化性质差异,如溶解度、分子量、电荷、疏水性等。

这些方法虽然历史悠久,但在许多情况下仍然被广泛应用,因为它们通常操作简单、成本较低,并且对于某些特定类型的蛋白质具有良好的分离效果。

盐析法:这是最早使用的蛋白质纯化方法之一。

通过调整溶液中的盐浓度,可以降低蛋白质的溶解度,从而实现蛋白质的沉淀。

这种方法常用于蛋白质的初步分离,但纯度通常不高。

有机溶剂沉淀:某些有机溶剂可以降低溶液的介电常数,从而改变蛋白质表面的电荷分布,导致其溶解度降低。

这种方法常用于去除样品中的杂质。

蛋白质化学研究方法和思路

蛋白质化学研究方法和思路

蛋白质化学研究方法和思路蛋白质化学研究是生物化学领域的一个重要分支,它涉及对蛋白质的结构、功能、相互作用和生物合成的深入研究。

以下是蛋白质化学研究的一些常见方法和思路。

1. 蛋白质分离和纯化:通过各种色谱技术(如凝胶过滤、离子交换、亲和色谱等)从混合物中分离目标蛋白质。

使用电泳技术(如SDS-PAGE)对蛋白质进行分子量分析。

2. 蛋白质结构分析:通过X射线晶体学获得蛋白质的三维结构。

利用核磁共振(NMR)光谱学分析蛋白质的二维结构。

通过冷冻电子显微镜(cryo-EM)技术观察蛋白质的近原子分辨率结构。

3. 蛋白质功能研究:通过体外酶活实验研究蛋白质的催化功能。

利用细胞生物学实验(如共转染、基因敲除等)研究蛋白质在细胞中的功能。

通过蛋白质相互作用分析(如免疫沉淀、酵母双杂交等)研究蛋白质与其他分子的相互作用。

4. 蛋白质修饰研究:分析蛋白质的磷酸化、乙酰化、泛素化等修饰形式。

研究修饰对蛋白质结构和功能的影响。

5. 蛋白质表达调控:研究蛋白质的转录后调控机制,如miRNA、转录因子等对蛋白质表达的影响。

分析蛋白质的降解途径和稳定性。

6. 蛋白质组学:利用高通量质谱技术对蛋白质进行鉴定和定量分析。

通过蛋白质组学数据挖掘,发现新的蛋白质功能和研究途径。

7. 计算生物学方法:利用生物信息学工具(如SwissProt、UniProt等)查询和分析蛋白质序列信息。

通过分子对接和分子动力学模拟研究蛋白质与配体的相互作用。

8. 系统生物学:研究蛋白质在生物网络中的角色和功能。

利用系统生物学方法分析蛋白质在复杂生物过程中的作用。

在进行蛋白质化学研究时,通常需要综合运用多种技术和方法,以获得全面的研究结果。

研究过程中,科学家们会根据研究目标和问题,选择合适的研究方法和实验设计,以揭示蛋白质在生命活动中的重要作用。

蛋白表达及纯化ppt课件

蛋白表达及纯化ppt课件
蛋白表达及纯化
Part 1: 蛋白表达、纯化
蛋白表达流程
1. 目的基因cDNA
2. 表达宿主
3. 载体 4. 设计引物 5. 连接转化 6. 诱导表达 7. 蛋白纯化 8. 鉴定保存
gene
Host
Cellfree Bacteri al
Yeas t
Mammalia n
0.60 0.50 0.40
Protein preparation, extraction, clarification
Cell growth, protein overexpression Cell lysis Removal of cell debris
From: Protein Purification Handbook. Amersham Biosciences. 18-1132-29, Edition AC
转译起始序列
a: mRNA的5末端之独特的结构特征, 是决定mRNA转译起始效率的主 要因素。 b: 在构建外源基因的高效表达载体时 , 需认真选择有效的转录起 始序列。 c: 未鉴定出通用有效的转译起始序列的保守结构 (KOZAK SEQUENCE)
筛选标记: 其编码产物可被快速测定的功能单元。
pET system manual, Novagen, 11th Edition
X蛋白在大肠杆菌中表达条件优化
1:0mmol/L; 2:0.25mmol/L;3:0.5mmol/L; 4:0.75mmol/L;5:1.0mmol/L; 6:1.5mmol/L; 7:2.5mmol/L; 8:3.5mmol/L; 9:5.0mmol/L。 图1.5 X蛋白表达条件:IPTG浓度优化
1:蛋白marker;2~9:分别用IPTG 诱导表达 0、1、 2、3、4、6、8、12 h。

生物化学中的蛋白质表达和纯化

生物化学中的蛋白质表达和纯化

生物化学中的蛋白质表达和纯化蛋白质是细胞中最基本的生物大分子之一,具有重要的结构和功能作用。

在生化实验研究中,常常需要大量的蛋白质作为实验材料。

蛋白质表达和纯化技术是生物化学研究中的关键技术之一。

本文将简要介绍蛋白质表达和纯化的原理和方法。

一、蛋白质表达技术蛋白质表达是将目的基因转录成RNA后再翻译成蛋白质的过程。

蛋白质表达主要有原核细胞和真核细胞两种方法。

原核细胞表达系统主要利用大肠杆菌,真核细胞表达系统则使用哺乳动物细胞,其主要的表达技术有以下几种:(一)重组蛋白质大规模表达重组蛋白质是指人为构建的同源或异源蛋白序列,利用基因工程技术将其导入到表达宿主中进行高效表达的蛋白质。

大肠杆菌是目前最常用的宿主。

一般来说,要将目的基因插入到选择性表达载体中,选用合适的启动子和终止子,将目的蛋白质与标签结合。

表达宿主随后被转化,蛋白质在生长过程中表达出来,随后进行纯化和鉴定。

(二)GST融合蛋白表达GST融合蛋白是利用GST (glutathione S-transferase)标签的蛋白质,将GST和目的蛋白质融合在一起表达,然后通过Glutathione 亲和层析纯化方法纯化目的蛋白质。

GST融合蛋白可以提高目的蛋白质的稳定性和可溶性,使得其在细胞内表达更加稳定。

(三)His标签蛋白表达His标签是一种聚组氨酸标签,可以与Ni2+螯合,因此可采用Ni2+亲和层析的方法纯化。

His标签融合蛋白表达时选择了较少的氨基酸标签,对目标蛋白的生物学性质和功能影响较小。

二、蛋白质纯化技术蛋白质表达和纯化是蛋白质生物化学研究的关键。

通常情况下,表达宿主细胞中的蛋白质必须经过纯化才能得到纯净的蛋白质,获得足够高纯度的蛋白质可用于测定其结构和功能。

(一)离子交换层析法离子交换层析法是利用蛋白质负荷(或正荷)的离子性质与相应的离子交换质团之间进行选择性结合的纯化方法。

离子交换层析法分为阴离子交换层析和阳离子交换层析两种。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

蛋白质的表达、分离、纯化和鉴定
来源:易生物实验浏览次数:2704网友评论0 条第一部分蛋白质的表达、分离、纯化克隆基因在细胞中表达对理论研究和实验应用都具有重要的意义。

通过表达能探索和研究基因的功能以及基因表达调控的机理,同时克隆基因表达出所编码的蛋白质可供作
结构与功能的研究。

第二部分蛋白质的鉴定电泳可用于分离复杂的蛋白质混合物,研究蛋白质的亚基组成等。

在聚丙烯酰胺凝胶电泳中,凝胶的孔径,蛋白质的电荷,大小,性质等因素共同决定了蛋白质的电泳迁移率。

关键词:蛋白质蛋白质表达克隆基因聚丙烯酰胺凝胶电泳氯霉素酰基转移酶十二烷基硫酸钠SDS聚丙烯酰
胺凝胶
第一部分蛋白质的表达、分离、纯化
目的要求
(1)了解克隆基因表达的方法和意义。

(2)了解重组蛋白亲和层析分离纯化的方法。

实验原理
克隆基因在细胞中表达对理论研究和实验应用都具有重要的意义。

通过表达能探索和研究基因的功能以及基因表达调控的机理,同时克隆基因表达出所编码的蛋白质可供作结构与功能的研究。

大肠杆菌是目前应用最广泛的蛋白质表达系统,其表达外源基因产物的水平远高于其它基因表达系统,表达的目的蛋白量甚至能超过细菌总蛋白量的80%。

本实验中,携带有目标蛋白基因的质粒在大肠杆菌BL21中,在37℃,IPTG诱导下,超量表达携带有6个连续组氨酸残基的重组氯霉素酰基转移酶蛋白,该蛋白可用一种通过共价偶连的次氨基三乙酸(NTA)使镍离子(Ni2+)固相化的层析介质加以提纯,实为金属熬合亲和层析(MC AC)。

蛋白质的纯化程度可通过聚丙烯酰胺凝胶电泳进行分析。

试剂和器材
一、试剂
[1] LB液体培养基:Trytone 10g, yeast extract 5g, NaCl 10g, 用蒸馏水配至1000mL.
[2] 氨苄青霉素:100mg/mL
[3] 上样
缓冲液:100 mM NaH2PO4, 10 mM Tris, 8M Urea, 10 mM2-ME, pH8.0
[4] Washing Buffer:100 mM NaH2PO4, 10 mM Tris, 8 M Urea, pH6.3
[5] Elution Buffer:100 mM NaH2PO4, 10 mMTris, 8M Urea, 500 mM Imidazole, pH 8.0
[6] IPTG
易生物仪器库:.ebioe./yp/product-list-42.html
易生物试剂库:.ebioe./yp/product-list-43.html
二、器材
摇床,离心机,层析柱(1′10 cm)
操作方法
一、氯霉素酰基转移酶重组蛋白的诱导
1. 接种含有重组氯霉素酰基转移酶蛋白的大肠杆菌BL21菌株于5mL LB液体培养基中(含100ug/mL 氨苄青霉素),37℃震荡培养过夜。

2. 转接1mL过夜培养物于100mL(含100ug/mL 氨苄青霉素)LB液体培养基中,37℃震荡培养至OD600 = 0.6 - 0.8。

取10ul 样品用于SDS-PAGE 分析。

3. 加入IPTG至终浓度0.5 mmol/l, 37℃继续培养1-3h.
4. 12,000rpm 离心10 min, 弃上清,菌体沉淀保存于-20℃或-70℃冰箱中。

二、氯霉素酰基转移酶重组蛋白的分离,纯化
1. NTA层析柱的准备:在层析柱中加入1mL NTA介质,并分别用8mL 去离子水,8mL 上样缓冲液洗涤。

2. 重组蛋白的变性裂解:在冰浴中冻融菌体沉淀,加入5mL上样缓冲液, 用吸管抽吸重悬,超声波破裂菌体,用振荡器等轻柔的混匀样品60min, 4℃12000rpm 离心30 min, 将上清吸至一个干净的容器中,并弃沉淀。

取10ul 上清样品用于SDS-PAGE 分析。

3. 上清样品以10-15mL/h 流速上Ni2+-NTA柱,收集流出液,取10ul样品用于SDS-PA GE 分析。

4. 洗脱杂蛋白:用Washing Buffer以10-15mL/h流速洗柱,直至OD280 = 0.01.分步收集洗脱液,约3-4h,取10ul洗脱开始时的样品用于SDS-PAGE 分析。

5. 洗脱目标蛋白:用Elution Buffer洗柱,收集每1 mL 级分,分别取10ul样品用于SD S-PAGE 分析。

第二部分蛋白质的鉴定
目的要求
(1)了解SDS-聚丙烯酰胺凝胶电泳实验原理。

(2)掌握凝胶电泳实验操作规程。

实验原理
电泳可用于分离复杂的蛋白质混合物,研究蛋白质的亚基组成等。

在聚丙烯酰胺凝胶电泳中,凝胶的孔径,蛋白质的电荷,大小,性质等因素共同决定了蛋白质的电泳迁移率。

蛋白质在聚丙烯酰胺凝胶中电泳时,它的迁移率取决于它所带净电荷以及分子的大小和形状等因素。

但如果加入某种试剂使电荷因素消除,则电泳迁移率就取决于分子的大小,就可以用电泳技术测定蛋白质的分子量。

十二烷基硫酸钠(SDS)就具有这种作用。

在蛋白质溶液中加入足够量SDS和巯基乙醇,SDS可使蛋白质分子中的二硫键还原,蛋白质—SDS 复合物带上相同密度的负电荷,并可引起蛋白质构象改变,使蛋白质在凝胶中的迁移率,不再受蛋白质原的电荷和形状的影响,而取决于分子量的大小,因此聚丙烯酰胺凝胶电泳可以用于测定蛋白质的分子量。

SDS聚丙烯酰胺凝胶电泳大多在不连续系统中进行,其电泳漕缓冲液的pH值与离子强度不同于配胶缓冲液。

该凝胶包括积层胶和分离胶两部分。

当两电极间接通电流后,凝胶中形成移动界面,并带动加入凝胶的样品中的SDS多肽复合物向前推进。

样品通过高度多孔性的积层胶后,复合物在分离胶表面聚集成一条很薄的区带(或称积层)。

由于不连续缓冲系统具有把样品中的复合物全部浓缩于极小体积的能力,从而大大提高了SDS聚丙烯酰胺凝胶的分辨率,使蛋白依各自的大小得到分离。

试剂和器材
一、试剂
[1] 30%Acr-Bis贮存液:30g Acr,0.8g Bis, 用无离子水溶解后定容至100mL,不溶物过滤去除后置棕色瓶贮于冰箱。

[2] 1.5mol/L Tris(pH8.8)
[3] 10% (w/v) SDS
[4] 10% 过硫酸铵:4℃保存。

[5] TEMED
[6] 3×SDS凝胶加样缓冲液:50mmol/L Tris-HCl(pH6.8), 300mmol/L DTT, 6% SDS, 0.
6%溴酚蓝,30% 甘油
[7] 5×Tris-甘氨酸电泳缓冲液:15.1g Tris碱,94g甘氨酸(电泳级),50mL 10% SDS,
配至1000mL.
[8] 考马斯亮蓝染液:0.25g考马斯亮蓝R250溶于90mL甲醇:水(1:1)和10mL冰乙
酸的混合液中。

[9] 脱色液:水:乙酸:乙醇= 6.7:0.8:2.5
二、器材
DYCZ-24D型垂直板电泳槽, 移液管(1,5,10mL),烧杯(25,50,100mL),细长头的吸管,微量注射器(10μL或者50μL)。

操作方法
一、SDS聚丙烯酰胺凝胶的配置:
1. 安装玻璃板,检查漏液情况。

2. 制备分离胶:按表1分离胶所示,依次在试管中混合各成分,一旦加入TEMED后,凝
胶马上开始聚合,故应立即快速悬动混合物,迅速在两玻板的间隙中灌注丙烯酰胺溶液,注意流出积层胶所需空间。

并在其上覆盖一层水或异丁醇溶液。

将凝胶垂直放置于室温下。

•分离胶聚合后(约30min),倒出覆盖层液体,用枪将残留液体吸净。

•制备浓缩胶:按表1积层胶所示,依次在试管中混合各成分,一旦加入TEMED后,应立即快速悬动混合物,迅速在分离胶上灌注浓缩胶溶液,并立即在浓缩胶溶液中插入干净的电泳梳,小心避免混入气泡。

将凝胶垂直放置于室温下。

分离胶(5mL)
水30%丙烯酰胺 1.5M Tris(PH8.8)10%SDS 10%过硫酸铵TEMED
1.1mL
2.5mL 1.3mL 50μl50μl2μl
浓缩胶(4mL)
水30%丙烯酰胺1M Tris(PH8.8)10%SDS 10%过硫酸铵TEMED
2.7mL 0.67mL 0.5mL 40μl40μl4μl
二、上样样品的处理:
将样品置于1×SDS 凝胶加样缓冲液中,在100℃加热5min使蛋白质变性。

加热后3000r pm离心1min.
三、电泳:
1. 浓缩胶聚合完全后(约30min),将凝胶固定于电泳装置上,并加入Tris-甘氨酸电泳缓冲液,然后小心移出电泳梳。

2. 按预定顺序加样,小心缓慢加入样品,每样品加12ul。

3. 将电泳与电源相接,凝胶上所加电压为8V/cm,当染料前沿进入分离胶后,把电压提高到15V/cm,继续电泳直至溴酚蓝到达分离胶底部(约4h),然后关闭电源。

4. 将玻璃板从电泳装置上卸下,并将凝胶取出,在第一点样孔侧的凝胶上切去一角以标注凝胶的方位。

四、考马斯亮蓝染色
1. 用染液浸泡凝胶,用保鲜膜封好,略微加热,放在水平摇床上染色15min, 重复加热染色1 次。

2. 移出并回收染液,将凝胶浸泡于脱色液中,用保鲜膜封好,略微加热,放在水平摇床上脱色30min,更换脱色液,直至检出蛋白质条带。

3. 拍照并分析蛋白质的诱导,表达,分离纯化情况。

相关文档
最新文档