2018届高考数学二轮复习技法篇学案含答案(全国通用)
2018年高考数学二轮复习第2部分技法篇必考补充专题学案文
第2部分技法篇必考补充专题必考补充专题中的5个突破点在高考考查中较为简单,题型为选择、填空题及选修“2选1”,属送分题型,通过一轮复习,大多数考生已能熟练掌握,为节省宝贵的二轮复习时间,迎合教师与考生的需求,本部分只简单提炼核心知识,构建知识体系,讲解客观题解法,其余以练为主.建知识网络明内在联系[高考点拨]必考补充专题涉及的知识点比较集中,多为新增内容,在高考中常以“五小一大”的形式呈现,选考内容是解答题“2选1”.本专题的考查也是高考中当仁不让的高频考点,考查考生应用新知识解决问题的能力和转化与化归能力等.综合近年高考命题规律,本专题主要从“集合与常用逻辑用语”“不等式与线性规划”“算法初步、复数、推理与证明”“选修系列4”四大角度进行精练,引领考生明确考情,高效备考.技法篇:5招巧解客观题,省时、省力得高分[技法概述] 选择题、填空题是高考必考的题型,共占有80分,因此,探讨选择题、填空题的特点及解法是非常重要和必要的.选择题的特点是灵活多变、覆盖面广,突出的特点是答案就在给出的选项中.而填空题是一种只要求写出结果,不要求写出解答过程的客观性试题,不设中间分,所以要求所填的是最简最完整的结果.解答选择题、填空题时,对正确性的要求比解答题更高、更严格.它们自身的特点决定选择题及填空题会有一些独到的解法.解法1 直接法直接法是直接从题设出发,抓住命题的特征,利用定义、性质、定理、公式等,经过变形、推理、计算、判断得出结果.直接法是求解填空题的常用方法.在用直接法求解选择题时,可利用选项的暗示性作出判断,同时应注意:在计算和论证时尽量简化步骤,合理跳步,还要尽可能地利用一些常用的性质、典型的结论,以提高解题速度.【例1】(1)将函数y =sin ⎝ ⎛⎭⎪⎫2x -π3图象上的点P ⎝ ⎛⎭⎪⎫π4,t 向左平移s (s >0)个单位长度得到点P ′.若P ′位于函数y =sin 2x 的图象上,则( )A .t =12,s 的最小值为π6B .t =32,s 的最小值为π6C .t =12,s 的最小值为π3D .t =32,s 的最小值为π3(2)等比数列{a n }的各项均为实数,其前n 项和为S n .已知S 3=74,S 6=634,则a 8=________.【导学号:04024144】[解题指导] (1)先求点P 坐标,再求点P ′的坐标,最后将点P ′的坐标代入y =sin 2x 求s 的最小值.(2)先求出等比数列的首项和公比,再利用等比数列的通项公式求a 8即可. (1)A (2)32 [(1)因为点P ⎝⎛⎭⎪⎫π4,t 在函数y =sin ⎝ ⎛⎭⎪⎫2x -π3的图象上,所以t =sin ⎝ ⎛⎭⎪⎫2×π4-π3=sin π6=12.所以P ⎝ ⎛⎭⎪⎫π4,12.将点P 向左平移s (s >0)个单位长度得P ′⎝ ⎛⎭⎪⎫π4-s ,12.因为P ′在函数y =sin 2x 的图象上,所以sin 2⎝ ⎛⎭⎪⎫π4-s =12,即cos 2s =12,所以2s=2k π+π3或2s =2k π+53π,即s =k π+π6或s =k π+5π6(k ∈Z ),所以s 的最小值为π6.(2)设{a n}的首项为a 1,公比为q ,则⎩⎪⎨⎪⎧a 1-q31-q =74,a1-q 61-q=634,解得⎩⎪⎨⎪⎧a 1=14,q =2,所以a 8=14×27=25=32.][变式训练1] 为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:根据上表可得回归直线方程y =b x +a ,其中b =0.76,a =y -b x .据此估计,该社区一户年收入为15万元家庭的年支出为( ) A .11.4万元 B .11.8万元 C .12.0万元D .12.2万元B [由题意知,x =8.2+8.6+10.0+11.3+11.95=10,y =6.2+7.5+8.0+8.5+9.85=8,∴a ^=8-0.76×10=0.4,∴当x =15时,y ^=0.76×15+0.4=11.8(万元).]解法2 特例法在解决选择题和填空题时,可以取一个(或一些)特殊情况(包括特殊数值、特殊位置、特殊函数、特殊点、特殊方程、特殊数列、特殊图形等)来确定其结果,这种方法称为特值法.特值法由于只需对特殊数值、特殊情形进行检验,省去了推理论证、繁琐演算的过程,提高了解题的速度.特值法是考试中解答选择题和填空题时经常用到的一种方法,应用得当可以起到“四两拨千斤”的功效. 【例2】(1)设f (x )=ln x,0<a <b ,若p =f (ab ),q =f ⎝ ⎛⎭⎪⎫a +b 2,r =12(f (a )+f (b )),则下列关系式中正确的是( )A .q =r <pB .q =r >pC .p =r <qD .p =r >q(2)如图1,在棱柱的侧棱A 1A 和B 1B 上各有一动点P ,Q 满足A 1P =BQ ,过P ,Q ,C 三点的截面把棱柱分成两部分,则其体积之比为( )【导学号:04024145】图1A .3∶1B .2∶1C .4∶1D.3∶1[解题指导] (1)从条件看这应是涉及利用基本不等式比较函数值大小的问题,若不等式在常规条件下成立,则在特殊情况下更能成立,所以不妨对a ,b 取特殊值处理,如a =1,b =e.(2)点P ,Q 在非特殊情况下体积较难计算.可将P ,Q 置于特殊位置,令P 与A 1重合,Q 与B 重合,再计算体积.(1)C (2)B [(1)根据条件,不妨取a =1,b =e ,则p =f (e)=ln e =12,q =f ⎝ ⎛⎭⎪⎫1+e 2>f (e)=12,r =12(f (1)+f (e))=12,在这种特例情况下满足p =r <q ,所以选C.(2)令P 与A 1重合,Q 与B 重合,此时A 1P =BQ =0,则VC AA 1B =VA 1ABC =13V 三棱柱ABC A 1B 1C 1,故过P ,Q ,C 三点的截面把棱柱分成的两部分体积之比为2∶1.][变式训练2] (1)如果a 1,a 2,…,a 8为各项都大于零的等差数列,公差d ≠0,那么( )A .a 1a 8>a 4a 5B .a 1a 8<a 4a 5C .a 1+a 8>a 4+a 5D .a 1a 8=a 4a 5(2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a ,b ,c 成等差数列,则cos A +cos C1+cos A cos C=________.(1)B (2)45[(1)取特殊数列1,2,3,4,5,6,7,8,显然只有1×8<4×5成立.(2)令a =b =c ,则A =C =60°,cos A =cos C =12.从而cos A +cos C 1+cos A cos C =45.]解法3 数形结合法数形结合法是指在处理数学问题时,能够将抽象的数学语言与直观的几何图形有机结合起来思考,促使抽象思维和形象思维有机结合,通过对规范图形或示意图形的观察分析,化抽象为直观,化直观为精确,从而使问题得到简捷解决的方法.【例3】(1)(2016·合肥模拟)已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y -4≤0,y ≥1,则z =-2x +y的最大值是( )【导学号:04024146】A .-1B .-2C .-5D .1(2)(2017·武汉模拟)函数f (x )=2sin x sin ⎝⎛⎭⎪⎫x +π2-x 2的零点个数为________.[解题指导] (1)要确定目标函数的最大值,需知道相应的x ,y 的值,从约束条件中不可能解出对应的x ,y 的值,所以只有通过图解法作出约束条件的可行域,据可行域数形结合得出目标函数的最大值.(2)函数的零点即对应方程的根,但求对应方程的根也比较困难,所以进一步转化为求两函数的图象的交点,所以作出两函数的图象确定交点个数即可.(1)A (2)2 [(1)二元一次不等式组表示的平面区域为如图所示的△ABC 内部及其边界,当直线y =2x +z 过A 点时z 最大,又A (1,1),因此z 的最大值为-1.(2)f (x )=2sin x cos x -x 2=sin 2x -x 2,函数f (x )的零点个数可转化为函数y 1=sin 2x 与y 2=x 2图象的交点个数,在同一坐标系中画出y 1=sin 2x 与y 2=x 2的图象如图所示:由图可知两函数图象有2个交点,则f (x )的零点个数为2.][变式训练3] (1)(2017·郑州模拟)方程x lg(x +2)=1的实数根的个数为( )A .1B .2C .0D .不确定(2)已知偶函数y =f (x )(x ∈R )在区间[0,2]上单调递增,在区间(2,+∞)上单调递减,且满足f (-3)=f (1)=0,则不等式x 3f (x )<0的解集为________.(1)B (2)(-3,-1)∪(0,1)∪(3,+∞) [(1)方程x lg(x +2)=1⇔lg(x +2)=1x,在同一坐标系中画出函数y =lg(x +2)与y =1x的图象,可得两函数图象有两个交点,故所求方程有两个不同的实数根.(2)由题意可画出y =f (x )的草图,如图.①x >0,f (x )<0时,x ∈(0,1)∪(3,+∞); ②x <0,f (x )>0时,x ∈(-3,-1).故不等式x 3f (x )<0的解集为(-3,-1)∪(0,1)∪(3,+∞).]解法4 排除法排除法就是充分运用选择题中单选题的特征,即有且只有一个正确选项这一信息,从选项入手,根据题设条件与各选项的关系,通过分析、推理、计算、判断,对选项进行筛选,将其中与题设相矛盾的干扰项逐一排除,从而获得正确结论的方法.使用该法的前提是“答案唯一”,即四个选项中有且只有一个答案正确.排除法适用于定性型或不宜直接求解的选择题,当题目中的条件多于一个时,先根据某些条件,在选项中找到明显与之矛盾的予以否定,再根据另一些条件,在剩余的选项内找出矛盾,这样逐步筛选,直至得出正确的答案.【例4】(1)(2016·北师大附中模拟)函数y =cos 6x 2x -2-x 的图象大致为( )【导学号:04024147】A BC D(2)设x ∈R ,定义符号函数sgn x =⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,则( )A .|x |=x |sgn x |B .|x |=x sgn|x |C .|x |=|x |sgn xD .|x |=x sgn x[解题指导] (1)根据函数的奇偶性和x →+∞时函数值的正负,以及x →0且x >0时函数值的正负,排除可得答案. (2)可验证当x <0时,等式成立的情况.(1)D (2)D [(1)函数y =cos 6x 为偶函数,函数y =2x -2-x为奇函数,故原函数为奇函数,排除A.又函数y =2x-2-x为增函数,当x →+∞时,2x -2-x→+∞且|cos 6x |≤1,∴y =cos 6x2x -2-x →0(x →+∞),排除C.∵y =cos 6x 2x -2-x =2x·cos 6x4x-1为奇函数,不妨考虑x >0时函数值的情况,当x →0时,4x→1,4x-1→0,2x →1,cos 6x →1, ∴y →+∞,故排除B ,综上知选D.(2)当x <0时,|x |=-x ,x |sgn x |=x ,x sgn|x |=x ,|x |sgn x =(-x )·(-1)=x ,排除A ,B ,C ,故选D.][变式训练4] (1)函数f (x )=⎝⎛⎭⎪⎫x -1x cos x (-π≤x ≤π且x ≠0)的图象可能为( )(2)设{a n }是等差数列,下列结论中正确的是( ) A .若a 1+a 2>0,则a 2+a 3>0 B .若a 1+a 3<0,则a 1+a 2<0 C .若0<a 1<a 2,则a 2>a 1a 3 D .若a 1<0,则(a 2-a 1)(a 2-a 3)>0(1)D (2)C [(1)函数f (x )=⎝ ⎛⎭⎪⎫x -1x cos x (-π≤x ≤π且x ≠0)为奇函数,排除选项A ,B ;当x =π时,f (x )=⎝ ⎛⎭⎪⎫π-1πcos π=1π-π<0,排除选项C ,故选D. (2)设等差数列{a n }的公差为d ,若a 1+a 2>0,a 2+a 3=a 1+d +a 2+d =(a 1+a 2)+2d ,由于d 正负不确定,因而a 2+a 3符号不确定,故选项A 错;若a 1+a 3<0,a 1+a 2=a 1+a 3-d =(a 1+a 3)-d ,由于d 正负不确定,因而a 1+a 2符号不确定,故选项B 错;若0<a 1<a 2,可知a 1>0,d >0,a 2>0,a 3>0,∴a 22-a 1a 3=(a 1+d )2-a 1(a 1+2d )=d 2>0,∴a 2>a 1a 3,故选项C 正确;若a 1<0,则(a 2-a 1)·(a 2-a 3)=d ·(-d )=-d 2≤0,故选项D 错.]解法5 构造法用构造法解客观题的关键是利用已知条件和结论的特殊性构造出新的数学模型,从而简化推理与计算过程,使较复杂的数学问题得到解决,它需要对基础知识和基本方法进行积累,需要从一般的方法原理中进行提炼概括,积极联想,横向类比,从曾经遇到的类似问题中寻找灵感,构造出相应的具体的数学模型,使问题简化. 【例5】(1)(2017·福州一模)已知f (x )为定义在(0,+∞)上的可导函数,且f (x )>xf ′(x )恒成立,则不等式x 2f ⎝ ⎛⎭⎪⎫1x-f (x )>0的解集为( )A .(0,1)B .(1,2)C .(1,+∞)D .(2,+∞)(2)如图2,已知球O 的面上有四点A ,B ,C ,D ,DA ⊥平面ABC ,AB ⊥BC ,DA =AB =BC =2,则球O 的体积等于________.图2[解题指导] (1)构造函数g (x )=f xx,可证明函数g (x )在(0,+∞)上是减函数,再利用 x 2f ⎝ ⎛⎭⎪⎫1x -f (x )>0⇔f ⎝ ⎛⎭⎪⎫1x 1x>f x x ⇔g ⎝ ⎛⎭⎪⎫1x >g (x )求解.(2)以DA ,AB ,BC 为棱长构造正方体,则球O 是此正方体的外接球,从而球O 的直径是正方体的体对角线长. (1)C (2)6π [(1)设g (x )=f x x ,则g ′(x )=xfx -f xx 2,又因为f (x )>xf ′(x ),所以g ′(x )=xfx -f xx 2<0在(0,+∞)上恒成立,所以函数g (x )=f x x 为(0,+∞)上的减函数,又因为x 2f ⎝ ⎛⎭⎪⎫1x -f (x )>0⇔f ⎝ ⎛⎭⎪⎫1x 1x>f x x ⇔g ⎝ ⎛⎭⎪⎫1x >g (x ),则有1x<x ,解得x >1,故选C.(2)如图,以DA ,AB ,BC 为棱长构造正方体,设正方体的外接球球O 的半径为R ,则正方体的体对角线长即为球O 的直径,所以CD =22+22+22=2R ,所以R =62,故球O 的体积V =4πR 33=6π.][变式训练5] (1)(2016·兰州高三诊断)已知定义在R 上的可导函数f (x )的导函数为f ′(x ),满足f ′(x )<f (x ),且f (x +2)为偶函数,f (4)=1,则不等式f (x )<e x 的解集为( )【导学号:04024148】A .(-2,+∞)B .(0,+∞)C .(1,+∞)D .(4,+∞)(2)已知a ,b 为不垂直的异面直线,α是一个平面,则a ,b 在α上的射影有可能是:①两条平行直线;②两条互相垂直的直线;③同一条直线;④一条直线及其外一点. 在上面的结论中,正确结论的序号是________(写出所有正确结论的序号). (1)B (2)①②④ [(1)因为f (x +2)为偶函数, 所以f (x +2)的图象关于x =0对称, 所以f (x )的图象关于x =2对称, 所以f (4)=f (0)=1, 设g (x )=f xex(x ∈R ),则g ′(x )=f xx-f xxx2=f x -f xex,又因为f ′(x )<f (x ), 所以g ′(x )<0(x ∈R ),所以函数g (x )在定义域上单调递减, 因为f (x )<e x⇔g (x )=f xex<1,而g (0)=fe=1,所以f (x )<e x⇔g (x )<g (0),所以x >0,故选B.(2)用正方体ABCD A 1B 1C 1D 1实例说明A 1D 与BC 1在平面ABCD 上的射影互相平行,AB 1与BC 1在平面ABCD 上的射影互相垂直,BC 1与DD 1在平面ABCD 上的射影是一条直线及其外一点.故正确的结论为①②④.]客观题常用的5种解法已初步掌握,在突破点17~19的训练中一展身手吧!。
【通用版】2018年高考理科数学二轮复习:教学案全集(含答案)
[全国卷3年考情分析][题点·考法·全练]1.(2017·全国卷Ⅱ)设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B=()A.{1,-3}B.{1,0}C .{1,3}D .{1,5}解析:选C 因为A ∩B ={1},所以1∈B ,所以1是方程x 2-4x +m =0的根,所以1-4+m =0,m =3,方程为x 2-4x +3=0,解得x =1或x =3,所以B ={1,3}.2.(2018届高三·安徽名校阶段测试)设A ={x |x 2-4x +3≤0},B ={x |ln(3-2x )<0},则图中阴影部分表示的集合为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪ x <32B.⎩⎨⎧⎭⎬⎫x ⎪⎪1<x <32 C.⎩⎨⎧⎭⎬⎫x ⎪⎪ 1≤x <32 D.⎩⎨⎧⎭⎬⎫x ⎪⎪32<x ≤3 解析:选B A ={x |x 2-4x +3≤0}={x |1≤x ≤3},B ={x |ln(3-2x )<0}={x |0<3-2x <1}=⎩⎨⎧⎭⎬⎫x ⎪⎪ 1<x <32,结合Venn 图知,图中阴影部分表示的集合为A ∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪1<x <32. 3.(2017·全国卷Ⅲ)已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为( )A .3B .2C .1D .0解析:选B 因为A 表示圆x 2+y 2=1上的点的集合,B 表示直线y =x 上的点的集合,直线y =x 与圆x 2+y 2=1有两个交点,所以A ∩B 中元素的个数为2.4.已知集合P ={n |n =2k -1,k ∈N *,k ≤50},Q ={2,3,5},则集合T ={xy |x ∈P ,y ∈Q }中元素的个数为( )A .147B .140C .130D .117解析:选B 由题意得,y 的取值一共有3种情况,当y =2时,xy 是偶数,与y =3,y =5时,没有相同的元素,当y =3,x =5,15,25,…,95时,与y =5,x =3,9,15,…,57时有相同的元素,共10个,故所求元素个数为3×50-10=140.5.已知集合A =⎩⎨⎧⎭⎬⎫-1,12,B ={x |mx -1=0,m ∈R},若A ∩B =B ,则所有符合条件的实数m 组成的集合是( )A .{-1,0,2} B.⎩⎨⎧⎭⎬⎫-12,0,1 C .{-1,2}D.⎩⎨⎧⎭⎬⎫-1,0,12解析:选A 因为A ∩B =B ,所以B ⊆A .若B 为∅,则m =0;若B ≠∅,则-m -1=0或12m -1=0,解得m =-1或2.综上,m ∈{-1,0,2}. [准解·快解·悟通][题点·考法·全练] 1.(2017·天津高考)设x∈R,则“2-x≥0”是“|x-1|≤1”的() A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解析:选B由2-x≥0,得x≤2,由|x-1|≤1,得0≤x≤2.∵0≤x≤2⇒x≤2,x≤2⇒/ 0≤x≤2,故“2-x ≥0”是“|x -1|≤1”的必要而不充分条件.2.(2017·惠州三调)设函数y =f (x ),x ∈R ,“y =|f (x )|是偶函数”是“y =f (x )的图象关于原点对称”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件解析:选C 设f (x )=x 2,y =|f (x )|是偶函数,但是不能推出y =f (x )的图象关于原点对称.反之,若y =f (x )的图象关于原点对称,则y =f (x )是奇函数,这时y =|f (x )|是偶函数,故选C.3.(2017·浙江高考)已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4+S 6>2S 5”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选C 因为{a n }为等差数列,所以S 4+S 6=4a 1+6d +6a 1+15d =10a 1+21d,2S 5=10a 1+20d ,S 4+S 6-2S 5=d ,所以d >0⇔S 4+S 6>2S 5.4.已知“x >k ”是“3x +1<1”的充分不必要条件,则k 的取值范围是( ) A .[2,+∞) B .[1,+∞) C .(2,+∞)D .(-∞,-1]解析:选A 由3x +1<1,可得3x +1-1=-x +2x +1<0,所以x <-1或x >2,因为“x >k ”是“3x +1<1”的充分不必要条件,所以k ≥2. 5.已知条件p :x +y ≠-2,条件q :x ,y 不都是-1,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A 因为p :x +y ≠-2,q :x ≠-1或y ≠-1, 所以綈p :x +y =-2,綈q :x =-1且y =-1,因为綈q ⇒綈p 但綈p ⇒/綈q ,所以綈q 是綈p 的充分不必要条件,即p 是q 的充分不必要条件.[准解·快解·悟通][题点·考法·全练]1.下列命题中为真命题的是( ) A .命题“若x >1,则x 2>1”的否命题 B .命题“若x >y ,则x >|y |”的逆命题 C .命题“若x =1,则x 2+x -2=0”的否命题 D .命题“若tan x =3,则x =π3”的逆否命题解析:选B 对于选项A ,命题“若x >1,则x 2>1”的否命题为“若x ≤1,则x 2≤1”,易知当x =-2时,x 2=4>1,故选项A 为假命题;对于选项B ,命题“若x >y ,则x >|y |”的逆命题为“若x >|y |,则x >y ”,分析可知选项B 为真命题;对于选项C ,命题“若x =1,则x 2+x -2=0”的否命题为“若x ≠1,则x 2+x -2≠0”,易知当x =-2时,x 2+x -2=0,故选项C 为假命题;对于选项D ,命题“若tan x =3,则x =π3”为假命题,故其逆否命题为假命题,综上可知,选B.2.(2015·全国卷Ⅰ)设命题p :∃n ∈N ,n 2>2n ,则綈p 为( ) A .∀n ∈N ,n 2>2n B .∃n ∈N ,n 2≤2n C .∀n ∈N ,n 2≤2nD .∃n ∈N ,n 2=2n解析:选C 因为“∃x ∈M ,p (x )”的否定是“∀x ∈M ,綈p (x )”,所以命题“∃n ∈N ,n 2>2n ”的否定是“∀n ∈N ,n 2≤2n ”.3.(2017·山东高考)已知命题p :∀x >0,ln(x +1)>0;命题q :若a >b ,则a 2>b 2.下列命题为真命题的是( )A .p ∧qB .p ∧綈qC .綈p ∧qD .綈p ∧綈q解析:选B 当x >0时,x +1>1,因此ln(x +1)>0,即p 为真命题;取a =1,b =-2,这时满足a >b ,显然a 2>b 2不成立,因此q 为假命题.由复合命题的真假性,知B 为真命题.[准解·快解·悟通][专题过关检测]一、选择题1.(2016·全国卷Ⅱ)已知集合A={1,2,3},B={x|(x+1)·(x-2)<0,x∈Z},则A∪B=() A.{1}B.{1,2}C.{0,1,2,3} D.{-1,0,1,2,3}解析:选C因为B={x|(x+1)(x-2)<0,x∈Z}={x|-1<x<2,x∈Z}={0,1},A={1,2,3},所以A∪B={0,1,2,3}.2.(2017·成都一诊)命题“若a>b,则a+c>b+c”的否命题是()A.若a≤b,则a+c≤b+c B.若a+c≤b+c,则a≤bC.若a+c>b+c,则a>b D.若a>b,则a+c≤b+c解析:选A命题的否命题是将原命题的条件和结论均否定,所以题中命题的否命题为“若a≤b,则a+c≤b+c”.3.(2017·广西三市第一次联考)设集合A={x|8+2x-x2>0},集合B={x|x=2n-1,n ∈N*},则A∩B等于()A.{-1,1} B.{-1,3}C.{1,3} D.{3,1,-1}解析:选C∵A={x|-2<x<4},B={1,3,5,…},∴A ∩B ={1,3}.4.(2017·郑州第二次质量预测)已知集合A ={x |log 2x ≤1},B =⎩⎨⎧⎭⎬⎫x ⎪⎪1x>1,则A ∩(∁R B )=( )A .(-∞,2]B .(0,1]C .[1,2]D .(2,+∞)解析:选C 因为A ={x |0<x ≤2},B ={x |0<x <1},所以A ∩(∁R B )={x |0<x ≤2}∩{x |x ≤0或x ≥1}={x |1≤x ≤2}.5.(2017·北京高考)设m ,n 为非零向量,则“存在负数λ,使得m =λn ”是“m ·n <0”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析:选A ∵m =λn ,∴m ·n =λn ·n =λ|n |2. ∴当λ<0,n ≠0时,m ·n <0.反之,由m ·n =|m ||n |cos 〈m ,n 〉<0⇔cos 〈m ,n 〉<0⇔〈m ,n 〉∈⎝⎛⎦⎤π2,π, 当〈m ,n 〉∈⎝⎛⎭⎫π2,π时,m ,n 不共线. 故“存在负数λ,使得m =λn ”是“m ·n <0”的充分而不必要条件.6.(2018届高三·湘中名校联考)已知集合A ={x |x 2-11x -12<0},B ={x |x =2(3n +1),n ∈Z},则A ∩B 等于( )A .{2}B .{2,8}C .{4,10}D .{2,4,8,10}解析:选B 因为集合A ={x |x 2-11x -12<0}={x |-1<x <12},集合B 为被6整除余数为2的数.又集合A 中的整数有0,1,2,3,4,5,6,7,8,9,10,11,故被6整除余数为2的数有2和8,所以A ∩B ={2,8}.7.(2017·石家庄调研)设全集U =R ,集合A ={x |x ≥1},B ={x |(x +2)(x -1)<0},则( ) A .A ∩B =∅ B .A ∪B =U C .∁U B ⊆AD .∁U A ⊆B解析:选A 由(x +2)(x -1)<0,解得-2<x <1,所以B ={x |-2<x <1},则A ∩B =∅,A ∪B ={x |x >-2},∁U B ={x |x ≥1或x ≤-2},A ⊆∁U B ,∁U A ={x |x <1},B ⊆∁U A ,故选A.8.若x ∈A ,则1x ∈A ,就称A 是伙伴关系集合,集合M =⎩⎨⎧⎭⎬⎫-1,0,13,12,1,2,3,4的所有非空子集中,具有伙伴关系的集合的个数为( )A .15B .16C .28D .25解析:选A 本题关键看清-1和1本身也具备这种运算,这样所求集合即由-1,1,3和13,2和12这“四大”元素所能组成的集合.所以满足条件的集合的个数为24-1=15. 9.(2017·郑州第一次质量预测)已知命题p :1a >14,命题q :∀x ∈R ,ax 2+ax +1>0,则p 成立是q 成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 命题p 等价于0<a <4.命题q ,对∀x ∈R ,ax 2+ax +1>0,必有a =0或⎩⎪⎨⎪⎧a >0,a 2-4a <0,则0≤a <4,所以命题p 是命题q 的充分不必要条件. 10.已知f (x )=3sin x -πx ,命题p :∀x ∈⎝⎛⎭⎫0,π2,f (x )<0,则( ) A .p 是假命题,綈p :∀x ∈⎝⎛⎭⎫0,π2,f (x )≥0 B .p 是假命题,綈p :∃x 0∈⎝⎛⎭⎫0,π2,f (x 0)≥0 C .p 是真命题,綈p :∃x 0∈⎝⎛⎭⎫0,π2,f (x 0)≥0 D .p 是真命题,綈p :∀x ∈⎝⎛⎭⎫0,π2,f (x )>0 解析:选C 因为f ′(x )=3cos x -π,所以当x ∈⎝⎛⎭⎫0,π2 时,f ′(x )<0,函数f (x )单调递减,即对∀x ∈⎝⎛⎭⎫0,π2,f (x )<f (0)=0恒成立,所以p 是真命题.而p 的否定为∃x 0∈⎝⎛⎭⎫0,π2,f (x 0)≥0,故选C. 11.已知命题p :函数f (x )=2ax 2-x -1在(0,1)内恰有一个零点;命题q :函数y =x 2-a在(0,+∞)上是减函数.若p 且綈q 为真命题,则实数a 的取值范围是( )A .(1,+∞)B .(-∞,2]C .(1,2]D .(-∞,1]∪(2,+∞)解析:选C 由题意可得,对命题p ,令f (0)·f (1)<0,即-1·(2a -2)<0,得a >1;对命题q ,令2-a <0,即a >2,则綈q 对应的a 的范围是(-∞,2].因为p 且綈q 为真命题,所以实数a 的取值范围是(1,2].12.在下列结论中,正确的个数是( )①命题p :“∃x 0∈R ,x 20-2≥0”的否定形式为綈p :“∀x ∈R ,x 2-2<0”;②O 是△ABC 所在平面上一点,若OA ―→·OB ―→=OB ―→·OC ―→=OC ―→·OA ―→,则O 是△ABC 的垂心;③“M >N ”是“⎝⎛⎭⎫23M >⎝⎛⎭⎫23N”的充分不必要条件;④命题“若x 2-3x -4=0,则x =4”的逆否命题为“若x ≠4,则x 2-3x -4≠0”. A .1 B .2 C .3D .4解析:选C 由特称(存在性)命题与全称命题的关系可知①正确. ∵OA ―→·OB ―→=OB ―→·OC ―→,∴OB ―→·(OA ―→-OC ―→)=0,即OB ―→·CA ―→=0, ∴OB ―→⊥CA ―→.同理可知OA ―→⊥BC ―→,OC ―→⊥BA ―→,故点O 是△ABC 的垂心,∴②正确. ∵y =⎝⎛⎭⎫23x是减函数,∴当M >N 时,⎝⎛⎭⎫23M <⎝⎛⎭⎫23N ,当⎝⎛⎭⎫23M >⎝⎛⎭⎫23N 时,M <N . ∴“M >N ”是“⎝⎛⎭⎫23M >⎝⎛⎭⎫23N ”的既不充分也不必要条件,∴③错误. 由逆否命题的写法可知,④正确. ∴正确的结论有3个. 二、填空题13.设命题p :∀a >0,a ≠1,函数f (x )=a x -x -a 有零点,则綈p :________________________.解析:全称命题的否定为特称(存在性)命题,綈p :∃a 0>0,a 0≠1,函数f (x )=a x 0-x-a 0没有零点.答案:∃a 0>0,a 0≠1,函数f (x )=a x 0-x -a 0没有零点14.设全集U ={(x ,y )|x ∈R ,y ∈R},集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪ y -3x -2=1,P ={(x ,y )|y ≠x +1},则∁U (M ∪P )=________.解析:集合M ={(x ,y )|y =x +1,且x ≠2,y ≠3}, 所以M ∪P ={(x ,y )|x ∈R ,y ∈R ,且x ≠2,y ≠3}. 则∁U (M ∪P )={(2,3)}. 答案:{(2,3)}15.已知命题p :不等式xx -1<0的解集为{x |0<x <1};命题q :在△ABC 中,“A >B ”是“sin A >sin B ”成立的必要不充分条件.有下列四个结论:①p 真q 假;②“p ∧q ”为真;③“p ∨q ”为真;④p 假q 真,其中正确结论的序号是________.解析:解不等式知,命题p是真命题,在△ABC中,“A>B”是“sin A>sin B”的充要条件,所以命题q是假命题,所以①③正确.答案:①③16.a,b,c为三个人,命题A:“如果b的年龄不是最大,那么a的年龄最小”和命题B:“如果c不是年龄最小,那么a的年龄最大”都是真命题,则a,b,c的年龄由小到大依次是________.解析:显然命题A和B的原命题的结论是矛盾的,因此我们应该从它们的逆否命题来看.由命题A可知,当b不是最大时,则a是最小,所以c最大,即c>b>a;而它的逆否命题也为真,即“若a的年龄不是最小,则b的年龄是最大”为真,即b>a>c.同理,由命题B为真可得a>c>b或b>a>c.故由A与B均为真可知b>a>c,所以a,b,c三人的年龄大小顺序是:b最大,a次之,c最小.答案:c,a,b送分专题(二)函数的图象与性质[全国卷3年考情分析][题点·考法·全练]1.(2017·广州综合测试)已知函数f (x )=⎩⎪⎨⎪⎧2x +1,x ≤0,1-log 2x ,x >0,则f (f (-3))=( ) A.43B .23C .-43D .3解析:选D 因为f (-3)=2-2=14,所以f (f (-3))=f ⎝⎛⎭⎫14=1-log 214=3. 2.函数y =1-x 22x 2-3x -2的定义域为( )A .(-∞,1]B .[-1,1]C .[1,2)∪(2,+∞)D.⎣⎡⎭⎫-1,-12∪⎝⎛⎦⎤-12,1 解析:选D 要使函数y =1-x 22x 2-3x -2有意义,则⎩⎪⎨⎪⎧1-x 2≥0,2x 2-3x -2≠0,解得⎩⎪⎨⎪⎧-1≤x ≤1,x ≠2且x ≠-12,即-1≤x ≤1且x ≠-12,所以该函数的定义域为⎣⎡⎭⎫-1,-12∪⎝⎛⎦⎤-12,1. 3.(2017·全国卷Ⅲ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝⎛⎭⎫x -12>1的x 的取值范围是________.解析:由题意知,可对不等式分x ≤0,0<x ≤12,x >12讨论.当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,∴-14<x ≤0.当0<x ≤12时,原不等式为2x +x +12>1,显然成立.当x >12时,原不等式为2x +2x -12>1,显然成立.综上可知,x 的取值范围是⎝⎛⎭⎫-14,+∞.答案:⎝⎛⎭⎫-14,+∞ 4.若函数f (x )=(x +a )(bx +2a )(常数a ,b ∈R)是偶函数,且它的值域为(-∞,2],则该函数的解析式为________.解析:由题意知:a ≠0,f (x )=(x +a )(bx +2a )=bx 2+(2a +ab )x +2a 2是偶函数,则其图象关于y 轴对称,所以2a +ab =0,b =-2.所以f (x )=-2x 2+2a 2,因为它的值域为(-∞,2],所以2a 2=2.所以f (x )=-2x 2+2.答案:f (x )=-2x 2+25.已知函数f (x )=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,则实数a 的取值范围是________.解析:当x ≥1时,f (x )=2x -1≥1,∵函数f (x )=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,∴当x <1时,y =(1-2a )x +3a 必须取遍(-∞,1]内的所有实数,则⎩⎪⎨⎪⎧1-2a >0,1-2a +3a ≥1,解得0≤a <12.答案:⎣⎡⎭⎫0,12 [准解·快解·悟通][题点·考法·全练]1.(2018届高三·安徽名校阶段性测试)函数y =x 2ln|x ||x |的图象大致是( )解析:选D 易知函数y =x 2ln|x ||x |是偶函数,可排除B ,当x >0时,y =x ln x ,y ′=ln x+1,令y ′>0,得x >e -1,所以当x >0时,函数在(e -1,+∞)上单调递增,结合图象可知D正确,故选D.2.已知函数f (x -1)是定义在R 上的奇函数,且在[0,+∞)上是增函数,则函数f (x )的图象可能是( )解析:选B 函数f (x -1)的图象向左平移1个单位,即可得到函数f (x )的图象,因为函数f (x -1)是定义在R 上的奇函数,所以函数f (x -1)的图象关于原点对称,所以函数f (x )的图象关于点(-1,0)对称,排除A 、C 、D ,选B.3.设函数f (x )=⎩⎪⎨⎪⎧m +x 2,|x |≥1,x ,|x |<1的图象过点(1,1),函数g (x )是二次函数,若函数f (g (x ))的值域是[0,+∞),则函数g (x )的值域是( )A .(-∞,-1]∪[1,+∞)B .(-∞,-1]∪[0,+∞)C .[0,+∞)D .[1,+∞)解析:选C 因为函数f (x )=⎩⎪⎨⎪⎧m +x 2,|x |≥1,x ,|x |<1的图象过点(1,1),所以m +1=1,解得m =0,所以f (x )=⎩⎪⎨⎪⎧x 2,|x |≥1,x ,|x |<1.画出函数y =f (x )的图象(如图所示),由于函数g (x )是二次函数,值域不会是选项A 、B ,易知,当g (x )的值域是[0,+∞)时,f (g (x ))的值域是[0,+∞).[准解·快解·悟通][题点·考法·全练]1.下列函数中,满足“∀x1,x2∈(0,+∞),且x1≠x2,(x1-x2)[f(x1)-f(x2)]<0”的是()A.f(x)=1x-x B.f(x)=x3C.f(x)=ln x D.f(x)=2x解析:选A“∀x1,x2∈(0,+∞),且x1≠x2,(x1-x2)·[f(x1)-f(x2)]<0”等价于f(x)在(0,+∞)上为减函数,易判断f(x)=1x-x满足条件.2.(2017·广西三市第一次联考)已知f(x)是定义在R上的偶函数,且在区间(-∞,0]上单调递增,若实数a满足f(2log3a)>f(-2),则a的取值范围是()A.(-∞,3) B.(0,3)C.(3,+∞) D.(1,3)解析:选B∵f(x)是定义在R上的偶函数,且在区间(-∞,0]上单调递增,∴f(x)在区间[0,+∞)上单调递减.根据函数的对称性,可得f(-2)=f(2),∴f(2log3a)>f(2).∵2log 3a >0,f (x )在区间[0,+∞)上单调递减,∴0<2log 3a <2⇒log 3a <12⇒0<a < 3.3.(2017·山东高考)已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当x ∈[-3,0]时,f (x )=6-x ,则f (919)=________.解析:∵f (x +4)=f (x -2),∴f (x +6)=f (x ), ∴f (x )的周期为6,∵919=153×6+1,∴f (919)=f (1). 又f (x )为偶函数,∴f (919)=f (1)=f (-1)=6. 答案:64.(2017·福建普通高中质量检测)已知函数f (x )=x 2(2x -2-x ),则不等式f (2x +1)+f (1)≥0的解集是________.解析:因为f (-x )=(-x )2(2-x -2x )=-x 2(2x -2-x )=-f (x ),所以函数f (x )是奇函数.不等式f (2x +1)+f (1)≥0等价于f (2x +1)≥f (-1).易知,当x >0时,函数f (x )为增函数,所以函数f (x )在R 上为增函数,所以f (2x +1)≥f (-1)等价于2x +1≥-1,解得x ≥-1.答案:{x |x ≥-1}[准解·快解·悟通][专题过关检测]一、选择题 1.函数f (x )=1x -1+x 的定义域为( ) A .[0,+∞) B .(1,+∞) C .[0,1)∪(1,+∞)D .[0,1)解析:选C 由题意知⎩⎪⎨⎪⎧x -1≠0,x ≥0,∴f (x )的定义域为[0,1)∪(1,+∞).2.下列函数中,既是偶函数又在区间(0,+∞)上单调递增的是( ) A .y =1xB .y =|x |-1C .y =lg xD .y =⎝⎛⎭⎫12|x |解析:选B A 中函数y =1x 不是偶函数且在(0,+∞)上单调递减,故A 错误;B 中函数满足题意,故B 正确;C 中函数不是偶函数,故C 错误;D 中函数不满足在(0,+∞)上单调递增,故选B.3.已知函数f (x )=2×4x -a2x的图象关于原点对称,g (x )=ln(e x +1)-bx 是偶函数,则log a b =( )A .1B .-1C .-12D .14解析:选B 由题意得f (0)=0,∴a =2. ∵g (1)=g (-1),∴ln(e +1)-b =ln ⎝⎛⎭⎫1e +1+b , ∴b =12,∴log 212=-1.4.若函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <-1,ln (x +a ),x ≥-1的图象如图所示,则f (-3)等于( )A .-12B .-54C .-1D .-2解析:选C 由图象可得a (-1)+b =3,ln(-1+a )=0,∴a =2,b =5,∴f (x )=⎩⎪⎨⎪⎧2x +5,x <-1,ln (x +2),x ≥-1, 故f (-3)=2×(-3)+5=-1.5.已知函数f (x )的定义域为(-∞,+∞),若f (x +2 017)=⎩⎨⎧2sin x ,x ≥0,lg (-x ),x <0,则f ⎝⎛⎭⎫2 017+π4·f (-7 983)=( ) A .2 016 B.14C .4 D.12 016解析:选C 由题意得,f ⎝⎛⎭⎫2 017+π4=2sin π4=1, f (-7 983)=f (2 017-10 000)=lg 10 000=4, ∴f ⎝⎛⎭⎫2 017+π4·f (-7 983)=4. 6.函数y =sin xx ,x ∈(-π,0)∪(0,π)的图象大致是( )解析:选A 函数y =sin xx ,x ∈(-π,0)∪(0,π)为偶函数,所以图象关于y 轴对称,排除B 、C ,又当x 趋近于π时,y =sin xx 趋近于0,故选A.7.(2016·山东高考)已知函数f (x )的定义域为R.当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x );当x >12时,f ⎝⎛⎭⎫x +12=f ⎝⎛⎭⎫x -12,则f (6)=( ) A .-2 B .-1 C .0D .2解析:选D 由题意知,当x >12时,f ⎝⎛⎭⎫x +12=fx -12,则f (x +1)=f (x ). 又当-1≤x ≤1时,f (-x )=-f (x ), ∴f (6)=f (1)=-f (-1).又当x <0时,f (x )=x 3-1, ∴f (-1)=-2,∴f (6)=2.8.如图,动点P 在正方体ABCD -A 1B 1C 1D 1的体对角线BD 1上.过点P 作垂直于平面BB 1D 1D 的直线,与正方体的表面相交于M ,N 两点.设BP =x ,MN =y ,则函数y =f (x )的图象大致是( )解析:选B 设正方体的棱长为1,显然,当P 移动到体对角线BD 1的中点E 时,函数y =MN =AC =2取得唯一的最大值,所以排除A 、C ;当P 在BE 上时,分别过M ,N ,P 作底面的垂线,垂足分别为M 1,N 1,P 1,则y =MN =M 1N 1=2BP 1=2x cos ∠D 1BD =263x ,是一次函数,所以排除D.故选B.9.(2017·贵阳模拟)定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12解析:选C 由已知得当-2≤x ≤1时,f (x )=x -2, 当1<x ≤2时,f (x )=x 3-2.∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数. ∴f (x )的最大值为f (2)=23-2=6. 10.函数f (x )=ax +b(x +c )2的图象如图所示,则下列结论成立的是( )A .a >0,b >0,c <0B .a <0,b >0,c >0C .a <0,b >0,c <0D .a <0,b <0,c <0 解析:选C ∵f (x )=ax +b(x +c )2的图象与x 轴,y 轴分别交于N ,M ,且点M 的纵坐标与点N 的横坐标均为正,∴x =-b a >0,y =bc 2>0,故a <0,b >0,又函数图象间断点的横坐标为正,∴-c >0,c <0,故选C.11.定义在R 上的函数f (x )对任意0<x 2<x 1都有f (x 1)-f (x 2)x 1-x 2<1,且函数y =f (x )的图象关于原点对称,若f (2)=2,则不等式f (x )-x >0的解集是( )A .(-2,0)∪(0,2)B .(-∞,-2)∪(2,+∞)C .(-∞,-2)∪(0,2)D .(-2,0)∪(2,+∞)解析:选C (转化法)由f (x 1)-f (x 2)x 1-x 2<1,可得[f (x 1)-x 1]-[f (x 2)-x 2]x 1-x 2<0.令F (x )=f (x )-x ,由题意知F (x )在(-∞,0),(0,+∞)上是减函数,且是奇函数,F (2)=0,F (-2)=0,所以结合图象,令F (x )>0,得x <-2或0<x <2.12.已知函数f (x )=2x -1,g (x )=1-x 2,规定:当|f (x )|≥g (x )时,h (x )=|f (x )|;当|f (x )|<g (x )时,h (x )=-g (x ),则h (x )( )A .有最小值-1,最大值1B .有最大值1,无最小值C .有最小值-1,无最大值D .有最大值-1,无最小值解析:选C 作出函数g (x )=1-x 2和函数|f (x )|=|2x -1|的图象如图①所示,得到函数h (x )的图象如图②所示,由图象得函数h (x )有最小值-1,无最大值.二、填空题13.函数f (x )=ln 1|x |+1的值域是________.解析:因为|x |≥0,所以|x |+1≥1. 所以0<1|x |+1≤1.所以ln 1|x |+1≤0, 即f (x )=ln1|x |+1的值域为(-∞,0]. 答案:(-∞,0]14.(2018届高三·安徽名校阶段性测试)已知f (x )是定义在R 上的奇函数,且当x <0时,f (x )=2x ,则f (log 49)=________.解析:因为log 49=log 23>0,又f (x )是定义在R 上的奇函数,且当x <0时,f (x )=2x ,所以f (log 49)=f (log 23)=-2-log 23=-2log 213=-13.答案:-1315.若当x ∈(1,2)时,函数y =(x -1)2的图象始终在函数y =log a x 的图象的下方,则实数a 的取值范围是________.解析:如图,在同一平面直角坐标系中画出函数y =(x -1)2和y =log a x 的图象,由于当x ∈(1,2)时,函数y =(x -1)2的图象恒在函数y =log a x 的图象的下方,则⎩⎪⎨⎪⎧a >1,log a 2≥1,解得1<a ≤2.答案:(1,2]16.(2017·惠州三调)已知定义在R 上的函数y =f (x )满足条件f ⎝⎛⎭⎫x +32=-f (x ),且函数y =f ⎝⎛⎭⎫x -34为奇函数,给出以下四个命题: ①函数f (x )是周期函数;②函数f (x )的图象关于点⎝⎛⎭⎫-34,0对称; ③函数f (x )为R 上的偶函数; ④函数f (x )为R 上的单调函数. 其中真命题的序号为____________.解析:f (x +3)=f ⎣⎡⎦⎤⎝⎛⎭⎫x +32+32=-f ⎝⎛⎭⎫x +32=f (x ),所以f (x )是周期为3的周期函数,①正确;函数f ⎝⎛⎭⎫x -34是奇函数,其图象关于点(0,0)对称,则f (x )的图象关于点⎝⎛⎭⎫-34,0对称,②正确;因为f (x )的图象关于点⎝⎛⎭⎫-34,0对称,-34=-x +⎝⎛⎭⎫-32+x 2,所以f (-x )=-f ⎝⎛⎭⎫-32+x , 又f ⎝⎛⎭⎫-32+x =-f ⎝⎛⎭⎫-32+x +32=-f (x ), 所以f (-x )=f (x ),③正确;f (x )是周期函数在R 上不可能是单调函数,④错误. 故真命题的序号为①②③. 答案:①②③送分专题(三) 平面向量[全国卷3年考情分析][题点·考法·全练]1.(2017·贵州适应性考试)已知向量e 1与e 2不共线,且向量AB ―→=e 1+me 2,AC ―→=ne 1+e 2,若A ,B ,C 三点共线,则实数m ,n 满足的条件是( )A .mn =1B .mn =-1C .m +n =1D .m +n =-1解析:选A 法一:因为A ,B ,C 三点共线,所以一定存在一个确定的实数λ,使得AB―→=λAC ―→,所以有e 1+me 2=nλe 1+λe 2,由此可得⎩⎪⎨⎪⎧1=nλ,m =λ,所以mn =1.法二:因为A ,B ,C 三点共线,所以必有1n =m1,所以mn =1.2.如图所示,下列结论正确的是( )①PQ ―→=32a +32b ;②PT ―→=32a -b ;③PS ―→=32a -12b ;④PR ―→=32a +b .A .①②B .③④C .①③D .②④解析:选C ①根据向量的加法法则,得PQ ―→=32a +32b ,故①正确;②根据向量的减法法则,得PT ―→=32a -32b ,故②错误;③PS ―→=PQ ―→+QS ―→=32a +32b -2b =32a -12b ,故③正确;④PR ―→=PQ ―→+QR ―→=32a +32b -b =32a +12b ,故④错误.故正确命题的结论为①③.3.已知平面内不共线的四点O ,A ,B ,C ,若OA ―→-3OB ―→+2OC ―→=0,则|AB ―→||BC ―→|=________.解析:由已知得OA ―→-OB ―→=2(OB ―→-OC ―→),即BA ―→=2CB ―→, ∴|BA ―→|=2|CB ―→|,∴|AB ―→||BC ―→|=2.答案:24.已知e 1,e 2是不共线向量,a =me 1+2e 2,b =ne 1-e 2,且mn ≠0,若a ∥b ,则mn 等于________.解析:∵a ∥b ,∴a =λb ,即me 1+2e 2=λ(ne 1-e 2),则⎩⎪⎨⎪⎧λn =m ,-λ=2,解得m n =-2.答案:-2[准解·快解·悟通][题点·考法·全练]1.已知向量m =(t +1,1),n =(t +2,2),若(m +n )⊥(m -n ),则t =( ) A .0 B .-3 C .3D .-1解析:选B 法一:由(m +n )⊥(m -n )可得(m +n )·(m -n )=0,即m 2=n 2,故(t +1)2+1=(t +2)2+4,解得t =-3.法二:m +n =(2t +3,3),m -n =(-1,-1),∵(m +n )⊥(m -n ),∴-(2t +3)-3=0,解得t =-3.2.(2017·洛阳统考)已知向量a =(1,0),|b |=2,a 与b 的夹角为45°,若c =a +b ,d =a -b ,则c 在d 方向上的投影为( )A.55B .-55C .1D .-1解析:选D 依题意得|a |=1,a ·b =1×2×cos 45°=1,|d |=(a -b )2=a 2+b 2-2a ·b =1,c ·d =a 2-b 2=-1,因此c 在d 方向上的投影等于c ·d|d |=-1. 3.已知向量a =(2,1),b =(1,k ),且a 与b 的夹角为锐角,则实数k 的取值范围是( ) A.⎝⎛⎭⎫-2,12 B.⎝⎛⎭⎫-2,12∪⎝⎛⎭⎫12,+∞ C .(-2,+∞)D .[-2,+∞)解析:选B 当a ,b 共线时,2k -1=0,k =12,此时a ,b 方向相同,夹角为0,所以要使a 与b 的夹角为锐角,则有a·b >0且a ,b 不共线.由a·b =2+k >0得k >-2,又k ≠12,即实数k 的取值范围是⎝⎛⎭⎫-2,12∪⎝⎛⎭⎫12,+∞,选B. 4.(2017·全国卷Ⅰ)已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=________. 解析:法一:易知|a +2b |=|a |2+4a ·b +4|b |2=4+4×2×1×12+4=2 3.法二:(数形结合法)由|a |=|2b |=2,知以a 与2b 为邻边可作出边长为2的菱形OACB ,如图,则|a +2b |=|OC ―→|.又∠AOB =60°,所以|a +2b |=2 3.答案:2 35.(2017·山东高考)已知e 1,e 2是互相垂直的单位向量.若3e 1-e 2与e 1+λe 2的夹角为60°,则实数λ的值是________.解析:因为(3e 1-e 2)·(e 1+λe 2)|3e 1-e 2|·|e 1+λe 2|=3-λ21+λ2,故3-λ21+λ2=12,解得λ=33.答案:33[准解·快解·悟通][题点·考法·全练]1.在△ABC 中,∠ABC =90°,AB =6,点D 在边AC 上,且2AD ―→=DC ―→,则BA ―→·BD ―→的值是( )A .48B .24C .12D .6解析:选B 法一:由题意得,BA ―→·BC ―→=0,BA ―→·CA ―→=BA ―→·(BA ―→-BC ―→)=|BA ―→|2=36,∴BA ―→·BD ―→=BA ―→·(BC ―→+CD ―→)=BA ―→·⎝⎛⎭⎫BC ―→+23 CA ―→ =0+23×36=24. 法二:(特例法)若△ABC 为等腰直角三角形,建立如图所示的平面直角坐标系,则A (6,0),C (0,6).由2AD ―→=DC ―→,得D (4,2).∴BA ―→·BD ―→=(6,0)·(4,2)=24.2.如图所示,已知点G 是△ABC 的重心,过点G 作直线与AB ,AC 两边分别交于M ,N 两点,且AM ―→=x AB ―→,AN ―→=y AC ―→,则x +2y 的最小值为( )A .2 B.13 C.3+223D.34解析:选C 由已知可得AG ―→=23×12(AB ―→+AC ―→)=13AB ―→+13AC ―→=13x AM ―→+13y AN ―→,又M ,G ,N 三点共线,故13x +13y=1,∴1x +1y =3,则x +2y =(x +2y )·⎝⎛⎭⎫1x +1y ·13=13⎝⎛⎭⎫3+2y x +x y ≥3+223(当且仅当x =2y 时取等号).3.(2017·全国卷Ⅱ)已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则PA ―→·(PB ―→+PC ―→)的最小值是( )A .-2B .-32C .-43D .-1解析:选B 如图,以等边三角形ABC 的底边BC 所在直线为x轴,以BC 的垂直平分线为y 轴建立平面直角坐标系,则A (0,3),B (-1,0),C (1,0),设P (x ,y ),则PA ―→=(-x, 3-y ),PB ―→=(-1-x ,-y ),PC ―→=(1-x ,-y ),所以PA ―→·(PB ―→+PC ―→)=(-x ,3-y )·(-2x ,-2y )=2x 2+2⎝⎛⎭⎫y -322-32,当x =0,y =32时,PA ―→·(PB ―→+PC ―→)取得最小值,为-32.4.如图,已知△ABC 中,∠BAC =90°,∠B =30°,点P 在线段BC 上运动,且满足CP ―→=λCB ―→,当PA ―→·PC ―→取到最小值时,λ的值为( )A.14 B.15 C.16D.18解析:选D 如图所示,建立平面直角坐标系.不妨设BC =4,P (x,0)(0≤x ≤4),则A (3,3),C (4,0),∴PA ―→·PC ―→=(3-x ,3)·(4-x,0)=(3-x )(4-x )=x 2-7x +12=⎝⎛⎭⎫x -722-14.当x =72时,PA ―→·PC ―→取得最小值-14.∵CP ―→=λCB ―→,∴⎝⎛⎭⎫-12,0=λ(-4,0), ∴-4λ=-12,解得λ=18.故选D.5.如图,在平行四边形ABCD 中,已知AB =8,AD =5,CP ―→=3PD ―→,AP ―→·BP ―→=2,则AB ―→·AD ―→的值是________.解析:因为AP ―→=AD ―→+DP ―→=AD ―→+14AB ―→,BP ―→=BC ―→+CP ―→=AD ―→-34AB ―→,所以AP ―→·BP ―→=⎝⎛⎭⎫AD ―→+14AB ―→·⎝⎛⎭⎫AD ―→-34AB ―→= |AD ―→|2-316|AB ―→|2-12AD ―→·AB ―→=2,将AB =8,AD =5代入解得AB ―→·AD ―→=22. 答案:22[准解·快解·悟通][专题过关检测]一、选择题1.设a =(1,2),b =(1,1),c =a +kb .若b ⊥c ,则实数k 的值等于( ) A .-32B .-53C.53D .32解析:选A 因为c =a +kb =(1+k,2+k ),又b ⊥c ,所以1×(1+k )+1×(2+k )=0,解得k =-32.2.(2017·贵州适应性考试)已知向量a =(2,4),b =(-1,1),c =(2,3),若a +λb 与c 共线,则实数λ=( )A.25 B .-25C.35D .-35解析:选B 法一:a +λb =(2-λ,4+λ),c =(2,3),因为a +λb 与c 共线,所以必定存在唯一实数μ,使得a +λb =μc ,所以⎩⎪⎨⎪⎧2-λ=2μ,4+λ=3μ,解得⎩⎨⎧μ=65,λ=-25.法二:a +λb =(2-λ,4+λ),c =(2,3),由a +λb 与c 共线可知2-λ2=4+λ3,解得λ=-25. 3.(2018届高三·云南11校跨区调研)已知平面向量a 与b 的夹角为45°,a =(1,1),|b |=2,则|3a +b |等于( )A .13+6 2B .2 5 C.30D .34解析:选D 依题意得a 2=2,a ·b =2×2×cos 45°=2,|3a +b |=(3a +b )2=9a 2+6a ·b +b 2=18+12+4=34.4.在等腰梯形ABCD 中,AB ―→=-2CD ―→CD ―→,M 为BC 的中点,则AM ―→=( ) A.12AB ―→+12AD ―→ B.34AB ―→+12AD ―→ C.34AB ―→+14AD ―→ D.12AB ―→+34AD ―→ 解析:选B 因为AB ―→=-2CD ―→,所以AB ―→=2DC ―→.又M 是BC 的中点,所以AM ―→=12(AB―→+AC ―→)=12(AB ―→+AD ―→+DC ―→)=12⎝⎛⎭⎫AB ―→+AD ―→+12AB ―→=34AB ―→+12AD ―→.5.(2017·成都二诊)已知平面向量a ,b 的夹角为π3,且|a |=1,|b |=12,则a +2b 与b 的夹角是( )A.π6 B.5π6 C.π4D.3π4解析:选A 法一:因为|a +2b |2=|a |2+4|b |2+4a ·b =1+1+4×1×12×cos π3=3,所以|a +2b |=3,又(a +2b )·b =a ·b +2|b |2=1×12×cos π3+2×14=14+12=34,所以cos 〈a +2b ,b 〉=(a +2b )·b|a +2b ||b |=343×12=32, 所以a +2b 与b 的夹角为π6.法二:(特例法)设a =(1,0),b =⎝⎛⎭⎫12cos π3,12sin π3=⎝⎛⎭⎫14,34,则(a +2b )·b =⎝⎛⎭⎫32,32·⎝⎛⎭⎫14,34=34,|a +2b |=⎝⎛⎭⎫322+⎝⎛⎭⎫322=3,所以cos 〈a +2b ,b 〉=(a +2b )·b |a +2b ||b |=343×12=32,所以a +2b 与b 的夹角为π6. 6.已知点A (-1,1),B (1,2),C (-2,-1),D (3,4),则向量AB ―→在CD ―→方向上的投影为( ) A.322B .3152C .-322D .-3152解析:选A 由题意知AB ―→=(2,1),CD ―→=(5,5),则AB ―→在CD ―→方向上的投影为|AB ―→|·cos 〈AB ―→,CD ―→〉=AB ―→·CD ―→|CD ―→|=322.7.(2017·安徽二校联考)在边长为1的正三角形ABC 中,D ,E 是边BC 的两个三等分点(D 靠近点B ),则AD ―→·AE ―→等于( )A.16B.29C.1318D.13解析:选C 法一:因为D ,E 是边BC 的两个三等分点,所以BD =DE =CE =13,在△ABD 中,AD 2=BD 2+AB 2-2BD ·AB ·cos 60° =⎝⎛⎭⎫132+12-2×13×1×12=79, 即AD =73,同理可得AE =73, 在△ADE 中,由余弦定理得 cos ∠DAE =AD 2+AE 2-DE 22AD ·AE=79+79-⎝⎛⎭⎫1322×73×73=1314,所以AD ―→·AE ―→=|AD ―→|·|AE ―→|cos ∠DAE =73×73×1314=1318. 法二:如图,建立平面直角坐标系,由正三角形的性质易得A ⎝⎛⎭⎫0,32,D ⎝⎛⎭⎫-16,0,E ⎝⎛⎭⎫16,0,所以AD ―→=⎝⎛⎭⎫-16,-32,AE ―→=⎝⎛⎭⎫16,-32,所以AD ―→·AE ―→=⎝⎛⎭⎫-16,-32·⎝⎛⎭⎫16,-32=-136+34=1318.8.(2017·东北四市模拟)已知向量OA ―→=(3,1),OB ―→=(-1,3),OC ―→=m OA ―→-n OB ―→(m >0,n >0),若m +n =1,则|OC ―→|的最小值为( )A.52B.102C. 5D.10解析:选C 由OA ―→=(3,1),OB ―→=(-1,3),得OC ―→=m OA ―→-n OB ―→=(3m +n ,m -3n ),因为m +n =1(m >0,n >0),所以n =1-m 且0<m <1,所以OC ―→=(1+2m,4m -3), 则|OC ―→|=(1+2m )2+(4m -3)2=20m 2-20m +10 =20⎝⎛⎭⎫m -122+5(0<m <1),所以当m =12时,|OC ―→|min = 5.9.已知向量m ,n 的模分别为2,2,且m ,n 的夹角为45°.在△ABC 中,AB ―→=2m +2n ,AC ―→=2m -6n ,BC ―→=2BD ―→,则|AD ―→|=( )A .2B .2 2C .4D .8解析:选B 因为BC ―→=2BD ―→,所以点D 为边BC 的中点,所以AD ―→=12(AB ―→+AC ―→)=2m -2n ,所以|AD ―→|=2|m -n |=2(m -n )2=22+4-2×2×2×22=2 2. 10.(2018届高三·湘中名校联考)若点P 是△ABC 的外心,且PA ―→+PB ―→+λPC ―→=0,C =120°,则实数λ的值为( )A.12 B .-12C .-1D .1解析:选C 设AB 中点为D ,则PA ―→+PB ―→=2PD ―→PD ―→. 因为PA ―→+PB ―→+λPC ―→=0,所以2PD ―→+λPC ―→=0,所以向量PD ―→,PC ―→共线. 又P 是△ABC 的外心,所以PA =PB , 所以PD ⊥AB ,所以CD ⊥AB .因为∠ACB =120°,所以∠APB =120°, 所以四边形APBC 是菱形, 从而PA ―→+PB ―→=2PD ―→=PC ―→,所以2PD ―→+λPC ―→=PC ―→+λPC ―→=0,所以λ=-1.11.已知Rt △AOB 的面积为1,O 为直角顶点,设向量a =OA ―→|OA ―→|,b =OB ―→|OB ―→|,OP ―→=a +2b ,则PA ―→·PB ―→的最大值为( )A .1B .2C .3D .4解析:选A 如图,设A (m,0),B (0,n ),∴mn =2,则a =(1,0),b =(0,1),OP ―→=a +2b =(1,2),PA ―→=(m -1,-2),PB ―→=(-1,n -2),PA ―→·PB ―→=5-(m +2n )≤5-22nm =1,当且仅当m =2n ,即m =2,n =1时,等号成立.12.已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE =2EF ,则AF ―→·BC ―→的值为( )A .-58B.18 C.14D.118解析:选B 如图所示, AF ―→=AD ―→+DF ―→.又D ,E 分别为AB ,BC 的中点, 且DE =2EF ,所以AD ―→=12AB ―→,DF ―→=12AC ―→+14AC ―→=34AC ―→,所以AF ―→=12AB ―→+34AC ―→.又BC ―→=AC ―→-AB ―→,则AF ―→·BC ―→=⎝⎛⎭⎫12AB ―→+34AC ―→·(AC ―→-AB ―→)=12AB ―→·AC ―→-12AB ―→2+34AC ―→2-34AC ―→·AB ―→ =34AC ―→2-12AB ―→2-14AC ―→·AB ―→. 又|AB ―→|=|AC ―→|=1,∠BAC =60°, 故AF ―→·BC ―→=34-12-14×1×1×12=18.二、填空题13.在△ABC 中,点O 在线段BC 的延长线上,且||BO ―→=3||CO―→,当AO ―→=x AB ―→+y AC ―→时,则x -y =________.解析:∵AO ―→=AB ―→+BO ―→=AB ―→+32BC ―→=AB ―→+32(AC ―→-AB ―→)=-12AB ―→+32AC ―→,∴x -y =-2.答案:-214.已知a ,b 是非零向量,f (x )=(ax +b )·(bx -a )的图象是一条直线,|a +b |=2,|a |=1,则f (x )=________.解析:由f (x )=a ·bx 2-(a 2-b 2)x -a ·b 的图象是一条直线,可得a ·b =0.因为|a +b |=2,所以a 2+b 2=4.因为|a |=1,所以a 2=1,b 2=3,所以f (x )=2x . 答案:2x15.(2017·天津高考)在△ABC 中,∠A =60°,AB =3,AC =2.若BD ―→=2DC ―→,AE ―→=λAC ―→-AB ―→ (λ∈R),且AD ―→·AE ―→=-4,则λ的值为________.解析:法一:AD ―→=AB ―→+BD ―→=AB ―→+23BC ―→=AB ―→+23(AC ―→-AB ―→)=13AB ―→+23AC ―→.又AB ―→·AC ―→=3×2×12=3,所以AD ―→·AE ―→=⎝⎛⎭⎫13AB ―→+23AC ―→·(-AB ―→+λAC ―→) =-13AB ―→2+⎝⎛⎭⎫13λ-23AB ―→·AC ―→+23λAC ―→2 =-3+3⎝⎛⎭⎫13λ-23+23λ×4=113λ-5=-4, 解得λ=311.法二:以点A 为坐标原点,AB ―→的方向为x 轴正方向,建立平面直角坐标系,不妨假设点C 在第一象限,则A (0,0),B (3,0),C (1,3). 由BD ―→=2DC ―→,得D ⎝⎛⎭⎫53,233, 由AE ―→=λAC ―→-AB ―→,得E (λ-3,3λ),则AD ―→·AE ―→=⎝⎛⎭⎫53,233·(λ-3,3λ)=53(λ-3)+233×3λ=113λ-5=-4,解得λ=311.答案:31116.定义平面向量的一种运算a ⊙b =|a +b |·|a -b |·sin 〈a ,b 〉,其中〈a ,b 〉是a 与b 的夹角,给出下列命题:①若〈a ,b 〉=90°,则a ⊙b =a 2+b 2;②若|a |=|b |,则(a +b )⊙(a -b )=4a ·b ;③若|a |=|b |,则a ⊙b ≤2|a |2;④若a =(1,2),b =(-2,2),则(a +b )⊙b =10.其中真命题的序号是________.解析:①中,因为〈a ,b 〉=90°,则a ⊙b =|a +b |·|a -b |=a 2+b 2,所以①成立;②中,因为|a |=|b |,所以〈(a +b ),(a -b )〉=90°,所以(a +b )⊙(a -b )=|2a |·|2b |=4|a ||b |,所以②不成立;③中,因为|a |=|b |,所以a ⊙b =|a +b |·|a -b |·sin 〈a ,b 〉≤|a +b |·|a -b |≤|a +b |2+|a -b |22=2|a |2,所以③成立;④中,因为a =(1,2),b =(-2,2),所以a +b =(-1,4),sin 〈(a +b ),b 〉=33434,所以(a +b )⊙b =35×5×33434=453434,所以④不成立.故①③正确.答案:①③送分专题(四) 不等式[全国卷3年考情分析][题点·考法·全练]1.已知关于x 的不等式(ax -1)(x +1)<0的解集是(-∞,-1)∪⎝⎛⎭⎫-12,+∞,则a =( )A .2B .-2C .-12D .12解析:选B 根据一元二次不等式与之对应方程的关系知-1,-12是一元二次方程ax 2+(a -1)x -1=0的两个根,所以-1×⎝⎛⎭⎫-12=-1a,所以a =-2. 2.若x >y >0,m >n ,则下列不等式正确的是( ) A .xm >ymB .x -m ≥y -nC.x n >y mD .x >xy解析:选D A 不正确,因为同向同正不等式相乘,不等号方向不变,m 可能为0或负数;B 不正确,因为同向不等式相减,不等号方向不确定;C 不正确,因为m ,n 的正负不确定.故选D.3.(2017·云南第一次统一检测)已知函数f (x )=⎩⎪⎨⎪⎧2x -1-2,x ≥1,21-x -2,x <1,则不等式f (x -1)≤0的解集为( )A .{x |0≤x ≤2}B .{x |0≤x ≤3}C .{x |1≤x ≤2}D .{x |1≤x ≤3}解析:选D 由题意,得f (x -1)=⎩⎪⎨⎪⎧2x -2-2,x ≥2,22-x -2,x <2.当x ≥2时,由2x -2-2≤0,解得2≤x ≤3;当x <2时,由22-x -2≤0,解得1≤x <2.综上所述,不等式f (x -1)≤0的解集为{x |1≤x ≤3}.4.已知x ∈(-∞,1],不等式1+2x +(a -a 2)·4x >0恒成立,则实数a 的取值范围为( ) A.⎝⎛⎭⎫-2,14 B .⎝⎛⎦⎤-∞,14 C.⎝⎛⎭⎫-12,32 D .(-∞,6]解析:选C 根据题意,由于1+2x +(a -a 2)·4x >0对于一切的x ∈(-∞,1]恒成立,令2x =t (0<t ≤2),则可知1+t +(a -a 2)t 2>0⇔a -a 2>-1+t t 2,故只要求解h (t )=-1+tt2(0<t ≤2)的最大值即可,h (t )=-1t 2-1t =-⎝⎛⎭⎫1t +122+14,又1t ≥12,结合二次函数图象知,当1t =12,即t =2时,h (x )取得最大值-34,即a -a 2>-34,所以4a 2-4a -3<0,解得-12<a <32,故实数a的取值范围为⎝⎛⎭⎫-12,32. [准解·快解·悟通]。
2018届高中数学高考二轮复习创新题解题策略教案含答案(全国通用)
教学过程一、考纲解读高考数学归纳抽象创新题的命题特点:加强创新意识的考查,有利于实现选拔功能;深化课改,促进能力立意命题的实践和发展. 其中新定义信息型创新题是近年高考出现频率最高的创新题之一,因其背景新颖,构思巧妙,能有效甄别考生的思维品质,因而倍受高考命题专家垂青.创新意识:能发现问题、提出问题,综合与灵活地应用所学的数学知识、思想方法,选择有效的方法和手段分析信息,进行独立的思考、探索和研究,提出解决问题的思路,创造性地解决问题.创新意识是理性思维的高层次表现.对数学问题的“观察、猜测、抽象、概括、证明”,是发现问题和解决问题的重要途径,对数学知识的迁移、组合、融会的程度越高,显示出的创新意识也就越强.创新题具有以下特点:一是立意的鲜明性;二是背景的深刻性;三是情境的新颖性;四是设问的巧妙性二、复习预习创新意识:能发现问题、提出问题,综合与灵活地应用所学的数学知识、思想方法,选择有效的方法和手段分析信息,进行独立的思考、探索和研究,提出解决问题的思路,创造性地解决问题.创新意识是理性思维的高层次表现.对数学问题的“观察、猜测、抽象、概括、证明”,是发现问题和解决问题的重要途径,对数学知识的迁移、组合、融会的程度越高,显示出的创新意识也就越强.三、例题精析例1 [2014全国1卷] 甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市; 丙说:我们三人去过同一个城市. 由此可判断乙去过的城市为 . 【规范解答】解法:填A∵丙说:三人同去过同一个城市,甲说没去过B 城市,乙说:我没去过C 城市∴三人同去过同一个城市应为A,∴乙至少去过A,若乙再去城市B ,甲去过的城市至多两个,不可能比乙多,∴可判断乙去过的城市为A。
【总结与反思】 本题主要考查简单的合情推理,要抓住关键,逐步推断,是一道基础题.可先由乙推出,可能去过A 城市或B 城市,再由甲推出只能是A ,B 中的一个,再由丙即可推出结论。
2018届高考数学二轮填空题解法技巧专题卷(全国通用)(1)
填空题1.设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=242,10{,01x x x x -+-≤<≤<则32f ⎛⎫⎪⎝⎭=________.【答案】1【解析】32f ⎛⎫⎪⎝⎭ =21142122f ⎛⎫⎛⎫-=--+= ⎪ ⎪⎝⎭⎝⎭2.在ABC 中, 6A π=, 712B π=,c =a =____.【解析】由三角形内角和为π可得: 76124C ππππ=--=,由正弦定理可得12a =,可得a =3.设α为锐角,若4cos 65πα⎛⎫+= ⎪⎝⎭,则的值为【解析】试题分析:因为α为锐角,所以02πα<<,即得2663πππα<+<因为4cos 65πα⎛⎫+= ⎪⎝⎭,所以3sin 65πα⎛⎫+= ⎪⎝⎭所以3424sin 22sin cos 23665525πππααα⎛⎫⎛⎫⎛⎫+=+⋅+=⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 2247cos 22cos 12136525ππαα⎛⎫⎛⎫⎛⎫+=+-=⨯-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭sin 2sin 2sin 2cos cos 2sin 12343434πππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=+-=+-+ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦考点:三角函数求值.【方法点晴】善于发现角之间的差别与联系,合理对角拆分,完成统一角和角与角转换的目的是三角函数式的求值的常用方法.三角函数求值有三类(1)“给角求值”:一般所给出的角都是非特殊角,从表面上来看是很难的,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合公式转化为特殊角并且消除非特殊角的三角函数而得解.(2)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.(3)“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角. 4..如右上图:设椭圆()012222>>=+b a by a x 的左,右两个焦点分别为21,F F ,短轴的上端点为B ,短轴上的两个三等分点为Q P ,,且Q PF F 21为正方形,若过点B 作此正方形的外接圆的切线在x 轴上的一个截距为423-,则此椭圆方程的方程为 ▲ . 【答案】221109x y += 【解析】略5.执行右边的程序框图,若,则输出的.【答案】5 【解析】略6. 已知函数⎩⎨⎧>-≤+=)0(2)0(1)(2x x x x x f ,若()10f x =,则x =【答案】-3 【解析】略7.0.6log 0.9a =, ln0.9b =, 0.92c =,则a 、b 、c 的大小顺序是________(用大于号连接).【答案】c a b >>【解析】因为l n 0.9l n 1b =<=, 0.60.60.60log 1log 0.9log 0.61a =<=<=,0.90221c =>=,所以c a b >>,故填c a b >>.点睛:利用指数函数对数函数及幂函数的性质比较实数或式子的大小,一方面要比较两个实数或式子形式的异同,底数相同,考虑指数函数增减性,指数相同考虑幂函数的增减性,当都不相同时,考虑分析数或式子的大致范围,来进行比较大小,另一方面注意特殊值0,1的应用,有时候要借助其“桥梁”作用,来比较大小. 8.已知4()ln()f x x a x=+-,若对任意的m R ∈,方程()f x m =均有正实数解,则实数a 的取值范围是 . 【答案】[4,)+∞. 【解析】试题分析:由题意得,问题等价于当0x >时,4y x a x=+-可取遍所有正数,而4y a a ≥=-, ∴404a a -≤⇒≥,即实数a 的取值范围是[4,)+∞,故填:[4,)+∞. 考点:对数函数的性质.9.已知F 1,F 2分别是椭圆+=1(a>b>0)的左、右焦点,以原点O 为圆心,OF 1为半径的圆与椭圆在y 轴左侧交于A,B 两点,若△F 2AB 是等边三角形,则椭圆的离心率等于 . 【答案】e=-1【解析】因为△F 2AB 是等边三角形,所以A(-,c)在椭圆+=1上,所以+=1,因为c 2=a 2-b 2,所以,4a 4-8a 2c 2+c 4=0,即e 4-8e 2+4=0,所以,e 2=4±2,e=-1或e=+1(舍).【误区警示】本题易出现答案为-1或+1的错误,其错误原因是没有考虑椭圆离心率的范围.10.命题“对所有实数a ,都有||0a <”的否定是 . 【答案】存在实数a ,有||0a ≥;【解析】试题分析:该命题为全称命题,故其否定为特称命题,即存在实数a ,有||0a ≥。
2018届高中数学高考二轮复习客观题答题策略与技巧教案含答案(全国通用)
教学过程一、考纲解读解数学选择题的常用方法,主要分为直接法和间接法两大类.直接法是解答选择题最基本、最常用的方法;但高考的题量较大,如果所有选择题都用直接法解答,不但时间不允许,甚至有些题目根本无法解答.因此,我们还要掌握一些特殊的解答选择题的方法.解答填空题时,由于不反映过程,只要求结果,故对正确性的要求比解答题更高、更严格. 《考试说明》中对解答填空题提出的基本要求是“正确、合理、迅速”. 为此在解填空题时要做到:细——审题要细,不能粗心大意;活——解题要活,不要生搬硬套;稳——变形要稳,不可操之过急;快——运算要快,力戒小题大作;全——答案要全,力避残缺不齐.二、复习预习选择题在高考中注重多个知识点的小型综合,渗透各种思想方法,体现以考查“三基”为重点的导向,解答选择题的基本要求是四个字——准确、迅速.填空题是将一个数学真命题,写成其中缺少一些语句的不完整形式,要求学生在指定空位上将缺少的语句填写清楚、准确. 它是一个不完整的陈述句形式,填写的可以是一个词语、数字、符号、数学语句等. 填空题大多能在课本中找到原型和背景,故可以化归为我们熟知的题目或基本题型.三、知识讲解考点1 选择题答题技巧充分利用题干和选项所提供的信息作出判断.先定性后定量,先特殊后推理;先间接后直接,先排除后求解.解题时应仔细审题、深入分析、正确推演、谨防疏漏.解答选择题的常用方法主要是直接法和间接法两大类.直接法是解答选择题最基本、最常用的方法,但高考的题量较大,如果所有选择题都用直接法解答,不但时间不允许,甚至有些题目根本无法解答.因此,我们还要研究解答选择题的一些间接法的应用技巧. 考点2 填空题答题技巧解答填空题时,由于不反映过程,只要求结果,故对正确性的要求比解答题更高、更严格.《考试说明》中对解答填空题提出的基本要求是“正确、合理、迅速”.为此在解填空题时要做到:快——运算要快,力戒小题大做;稳——变形要稳,不可操之过急;全——答案要全,力避残缺不齐;活——解题要活,不要生搬硬套;细——审题要细,不能粗心大意.四、例题精析例1 [2014全国1卷]设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论正确的是 ( )A .()f x ()g x 是偶函数B .|()f x |()g x 是奇函数C .()f x |()g x |是奇函数D .|()f x ()g x |是奇函数【规范解答】解法1.选C (验证推理)设()()()F x f x g x =,则()()()F x f x g x -=--,∵()f x 是奇函数,()g x 是偶函数,∴()()()()F x f x g x F x -=-=-,()F x 为奇函数,选C. 解法2.选C (特值验证)从题意条件我们不难想到将函数()f x ,()g x 特殊化,设x x f =)(,2)(x x g =则A 选项中3)()(x x g x f =不是偶函数,排除A ;B 选项中|()f x |()g x =2x x 很明显是偶函数,排除B 。
2018届高中数学高考二轮复习三角函数及解三角形教案含答案(全国通用)
教学过程 一、考纲解读在复习该部分内容时要有整体意识,抓住角的变换主线解决相关问题,其中三角函数的图形和性质是核心内容,相对于其它模块而言,三角函数的考查的点分散得比较细,这也要引起重视,复习一定要全面,常见的思想方法有化归转化,数形结合等.三角函数模块在高考试卷中通常有1大1小两个问题,总分值在25分左右,小题难度中等,大题属简单题,无论是全国卷还是省市卷大都放在第一个解答题位置,是考生得分的关键点之一.(1)任意角的概念、弧度制 (2)三角函数① 理解任意角三角函数(正弦、余弦、正切)的定义. ② 能利用单位圆中的三角函数线推导出απ±2,απ±的正弦、余弦、正切的诱导公式,能画出x y x y x y tan ,cos ,sin ===的图像,了解三角函数的周期性.③ 理解正弦函数、余弦函数在区间[]π2,0的性质(如单调性、最大和最小值以及与x 轴交点等).理解正切函数在区间⎪⎭⎫⎝⎛-2,2ππ的单调性. ④ 理解同角三角函数的基本关系式:x xxx x tan cos sin ,1cos sin 22==+ ⑤ 了解函数)sin(ϕω+=x A y 的物理意义;能画出)sin(ϕω+=x A y 的图像,了解参数ϕω,,A 对函数图像变化的影响.⑥ 会用三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题.(3)两角和与差的三角函数公式① 会用向量的数量积推导出两角差的余弦公式. ② 会用两角差的余弦公式导出两角差的正弦、正切公式.③ 会用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.(4)简单的三角恒等变换能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).(5)正弦定理和余弦定理掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题. (6) 应用能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题. 二、复习预习复习相关概念:三角函数基本概念、诱导公式、同角三角函数关系、三角函数图像和性质、两角和与差的计算及二倍角公式以及三角函数的实际应用,正余弦定理等.在复习该部分内容时要有整体意识,抓住角的变换主线解决相关问题,其中三角函数的图形和性质是核心内容,相对于其它模块而言,三角函数的考查的点分散得比较细,这也要引起重视,复习一定要全面,常见的思想方法有化归转化,数形结合等. 三、知识讲解考点1 三角函数的定义及性质(1)任意角的概念、弧度制.扇形相关内容,如弧长,面积,圆锥侧面等 (2)三角函数①任意角三角函数(正弦、余弦、正切)的定义.②正弦、余弦、正切的诱导公式, x y x y x y tan ,cos ,sin ===的图像,三角函数的周期性. ③正弦函数、余弦函数在区间[]π2,0的性质(如单调性、最大和最小值以及与x 轴交点等).正切函数在区间⎪⎭⎫⎝⎛-2,2ππ的单调性.④ 理解同角三角函数的基本关系式:x xxx x tan cos sin ,1cos sin 22==+ ⑤ 了解函数)sin(ϕω+=x A y 的物理意义;能画出)sin(ϕω+=x A y 的图像,了解参数ϕω,,A 对函数图像变化的影响.⑥ 会用三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题.考点2 三角恒等变形(1)两角和与差的三角函数公式① 会用向量的数量积推导出两角差的余弦公式. ② 会用两角差的余弦公式导出两角差的正弦、正切公式.③ 会用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系. (2)简单的三角恒等变换能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆). 考点3 解三角形 (1)正弦定理和余弦定理掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题. (2) 应用能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.四、例题精析例1 [2014全国1卷]设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则 ( )A .32παβ-=B .22παβ-=C .32παβ+=D .22παβ+=【规范解答】解法1.选B (演绎推理) ∵sin 1sin tan cos cos αβααβ+==,∴sin cos cos cos sin αβααβ=+ ()sin cos sin 2παβαα⎛⎫-==- ⎪⎝⎭,,02222ππππαβα-<-<<-<∴2παβα-=-,即22παβ-=解法2.选B (特殊角) 取6πβ=代入1sin tan cos βαβ+=,可得3tan =α,所以3πα=,通过四个选项验证,只有选项B 符合。
2018届高考数学二轮复习排列与组合学案含答案(全国通用)
2018届⾼考数学⼆轮复习排列与组合学案含答案(全国通⽤)排列与组合【考点梳理】1.排列与组合的概念(1)从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数,叫做从n 个不同元素中取出m个元素的排列数.(2)从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n 个不同元素中取出m个元素的组合数.3.排列数、组合数的公式及性质考点⼀、排列问题【例1】(1)六个⼈从左⾄右排成⼀⾏,最左端只能排甲或⼄,最右端不能排甲,则不同的排法共有()A.192种B.216种C.240种D.288种(2)把5件不同产品摆成⼀排.若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有________种.[答案] (1)B(2)36[解析] (1)第⼀类:甲在最左端,有A55=5×4×3×2×1=120(种)⽅法;第⼆类:⼄在最左端,有4A44=4×4×3×2×1=96(种)⽅法.所以共有120+96=216(种)⽅法.(2)记其余两种产品为D,E,A,B相邻视为⼀个元素,先与D,E排列,有A22A33种⽅法;再将C插⼊,仅有3个空位可选,共有A22A33C13=2×6×3=36种不同的摆法.【类题通法】1. 第(1)题求解的关键是按特殊元素甲、⼄的位置进⾏分类.注意特殊元素(位置)的优先原则,即先排有限制条件的元素或有限制条件的位置.对于分类过多的问题,可利⽤间接法.2.对相邻问题采⽤捆绑法、不相邻问题采⽤插空法、定序问题采⽤倍缩法等常⽤的解题⽅法.【对点训练】1.7⼈站成两排队列,前排3⼈,后排4⼈,现将甲、⼄、丙三⼈加⼊队列,前排加⼀⼈,后排加两⼈,其他⼈保持相对位置不变,则不同的加⼊⽅法种数为( )A.120B.240C.360D.480[解析] 第⼀步,从甲、⼄、丙三⼈选⼀个加到前排,有3种,第⼆步,前排3⼈形成了4个空,任选⼀个空加⼀⼈,有4种,第三步,后排4⼈形成了5个空,任选⼀个空加⼀⼈有5种,此时形成6个空,任选⼀个空加⼀⼈,有6种,根据分步计数原理有3×4×5×6=360种⽅法.2.某班准备从甲、⼄等七⼈中选派四⼈发⾔,要求甲⼄两⼈⾄少有⼀⼈参加,那么不同的发⾔顺序有( )A.30B.600C.720D.840[答案] C[解析]若只有甲⼄其中⼀⼈参加,有C12C35A44=480种⽅法;若甲⼄两⼈都参加,有C22C25A44=240种⽅法,则共有480+240=720种⽅法,故选C.考点⼆、组合问题【例2】某市⼯商局对35种商品进⾏抽样检查,已知其中有15种假货.现从35种商品中选取3种.(1)其中某⼀种假货必须在内,不同的取法有多少种?(2)其中某⼀种假货不能在内,不同的取法有多少种?(3)恰有2种假货在内,不同的取法有多少种?(4)⾄少有2种假货在内,不同的取法有多少种?(5)⾄多有2种假货在内,不同的取法有多少种?[解析] (1)从余下的34种商品中,选取2种有C234=561种,∴某⼀种假货必须在内的不同取法有561种.(2)从34种可选商品中,选取3种,有C334种或者C335-C234=C334=5 984种.∴某⼀种假货不能在内的不同取法有5 984种.(3)从20种真货中选取1件,从15种假货中选取2件有C120C215=2 100种.∴恰有2种假货在内的不同的取法有2 100种.(4)选取2种假货有C120C215种,选取3件假货有C315种,共有选取⽅式C120C215+C315=2 100+455=2 555种.∴⾄少有2种假货在内的不同的取法有2 555种.(5)选取3件的总数为C335,因此共有选取⽅式C335-C315=6 545-455=6 090种.∴⾄多有2种假货在内的不同的取法有6 090种.【类题通法】组合问题常有以下两类题型变化:1.“含有”或“不含有”某些元素的组合题型;“含”,则先将这些元素取出,再由另外元素补⾜;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.2.“⾄少”或“⾄多”含有⼏个元素的组合题型:解这类题必须⼗分重视“⾄少”与“⾄多”这两个关键词的含义,谨防重复与漏解.⽤直接法和间接法都可以求解,通常⽤直接法分类复杂时,考虑逆向思维,⽤间接法处理.【对点训练】1.现有6个不同的⽩球,4个不同的⿊球,任取4个球,则⾄少有两个⿊球的取法种数是()B.115C.210D.385[答案] B[解析] 分三类,取2个⿊球有C24C26=90种,取3个⿊球有C34C16=24种,取4个⿊球有C44=1种,故共有90+24+1=115种取法,选B.2.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有()A.60种B.63种C.65种D.66种[答案] D[解析]共有4个不同的偶数和5个不同的奇数,要使和为偶数,则4个数全为奇数,或全为偶数,或2个奇数和2个偶数,∴共有不同的取法有C45+C44+C25C24=66(种).考点三、排列、组合的综合应⽤【例3】4个不同的球,4个不同的盒⼦,把球全部放⼊盒内.(1)恰有1个盒不放球,共有⼏种放法?(2)恰有1个盒内有2个球,共有⼏种放法?(3)恰有2个盒不放球,共有⼏种放法?[解析] (1)为保证“恰有1个盒不放球”,先从4个盒⼦中任意取出去⼀个,问题转化为“4个球,3个盒⼦,每个盒⼦都要放⼊球,共有⼏种放法?”即把4个球分成2,1,1的三组,然后再从3个盒⼦中选1个放2个球,其余2个球放在另外2个盒⼦内,由分步乘法计数原理,共有C14C24C13×A22=144(种).(2)“恰有1个盒内有2个球”,即另外3个盒⼦放2个球,每个盒⼦⾄多放1个球,也即另外3个盒⼦中恰有⼀个空盒,因此,“恰有1个盒内有2个球”与“恰有1个盒不放球”是同⼀件事,所以共有144种放法.(3)确定2个空盒有C24种⽅法.4个球放进2个盒⼦可分成(3,1)、(2,2)两类,第⼀类有序不均匀分组有C34C11A22种⽅法;第⼆类有序均匀分组有C24C22A22·A22种⽅法.故共有C24(C34C11A22+C24C22A22·A22)=84(种). 【类题通法】1. 解排列组合问题常以元素(或位置)为主体,即先满⾜特殊元素(或位置),再考虑其他元素(或位置).对于排列组合的综合题⽬,⼀般是将符合要求的元素取出或进⾏分组,再对取出的元素或分好的组进⾏排列.2.不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组,注意各种分组类型中,不同分组⽅法的差异.其次对于相同元素的“分配”问题,常⽤的⽅法是采⽤“隔板法”.【对点训练】1.某校⾼⼆年级共有6个班级,现从外地转⼊4名⽣,要安排到该年级的两个班级且每班安排2名,则不同的安排⽅案种数为( )A.A 26C 24B.12A 26C 24C.A 26A 24D.2A 26 [答案] B[解析] 法⼀将4⼈平均分成两组有12C 24种⽅法,将此两组分配到6个班级中的2个班有A 26(种).所以不同的安排⽅法有12C 24A 26(种).法⼆先从6个班级中选2个班级有C 26种不同⽅法,然后安排⽣有C 24C 22种,故有C 26C 24C 22=12A 26C 24(种). 2.在8张奖券中有⼀、⼆、三等奖各1张,其余5张⽆奖.将这8张奖券分配给4个⼈,每⼈2张,不同的获奖情况有________种(⽤数字作答).[答案] 60[解析] 把8张奖券分4组有两种分法,⼀种是分(⼀等奖,⽆奖)、(⼆等奖,⽆奖)、(三等奖,⽆奖)、(⽆奖,⽆奖)四组,分给4⼈有A 44种分法;另⼀种是⼀组两个奖,⼀组只有⼀个奖,另两组⽆奖,共有C 23种分法,再分给4⼈有C 23A 24种分法,所以不同获奖情况种数为A 44+C 23A 24=24+36=60.。
2018届高中数学高考二轮复习第2讲导数的综合应用教案含答案(全国通用)
第2讲:《导数的综合应用》教案一、教学目标1.应用导数讨论函数的单调性,并会根据函数的性质求参数范围.2.会利用导数解决某些实际问题.二、知识梳理1.已知函数单调性求参数值范围时,实质为恒成立问题.2.求函数单调区间,实质为解不等式问题,但解集一定为定义域的子集.3.实际应用问题:首先要充分理解题意,列出适当的函数关系式,再利用导数求出该函数的最大值或最小值,最后回到实际问题中,得出最优解.三、题型突破题型一 讨论函数的单调性例1 已知函数f (x )=x 2e-ax (a >0),求函数在[1,2]上的最大值.变式迁移1 设a >0,函数f (x )=a ln x x. (1)讨论f (x )的单调性;(2)求f (x )在区间[a,2a ]上的最小值.题型二 用导数证明不等式例2 已知f (x )=12x 2-a ln x (a ∈R ), (1)求函数f (x )的单调区间;(2)求证:当x >1时,12x 2+ln x <23x 3.变式迁移2 (2010·安徽)设a 为实数,函数f (x )=e x -2x +2a ,x ∈R .(1)求f (x )的单调区间与极值;(2)求证:当a>ln 2-1且x>0时,e x>x2-2ax+1.题型三实际生活中的优化问题例3某分公司经销某种品牌产品,每件产品的成本为3元,并且每件产品需向总公司交a元(3≤a≤5)的管理费,预计当每件产品的售价为x元(9≤x≤11)时,一年的销售量为(12-x)2万件.(1)求分公司一年的利润L(万元)与每件产品的售价x的函数关系式;(2)当每件产品的售价为多少元时,分公司一年的利润L最大,并求出L的最大值Q(a).变式迁移3甲方是一农场,乙方是一工厂.由于乙方生产需占用甲方的资源,因此甲方有权向乙方索赔以弥补经济损失并获得一定净收入,在乙方不赔付甲方的情况下,乙方的年利润x(元)与年产量t(吨)满足函数关系x=2 000t.若乙方每生产一吨产品必须赔付甲方S元(以下称S为赔付价格).(1)将乙方的年利润ω(元)表示为年产量t(吨)的函数,并求出乙方获得最大利润的年产量;(2)甲方每年受乙方生产影响的经济损失金额y=0.002t2(元),在乙方按照获得最大利润的产量进行生产的前提下,甲方要在索赔中获得最大净收入,应向乙方要求的赔付价格S是多少?四、针对训练(满分:90分)一、填空题(每小题6分,共48分)1.已知曲线C :y =2x 2-x 3,点P (0,-4),直线l 过点P 且与曲线C 相切于点Q ,则点Q 的横坐标为________.2.函数f (x )=x 3+ax 2+3x -9,已知f (x )在x =-3时取得极值,则a =________.3.函数f (x )在定义域R 内可导,若f (x )=f (2-x ),且当x ∈(-∞,1)时,(x -1)f ′(x )<0,则a =f (0)、b =f (12)、c =f (3)的大小关系为________________. 4.函数f (x )=-x 3+x 2+tx +t 在(-1,1)上是增函数,则t 的取值范围是________.5.若函数f (x )=sin x x ,且0<x 1<x 2<1,设a =sin x 1x 1,b =sin x 2x 2,则a ,b 的大小关系为________. 6.在直径为d 的圆木中,截取一个具有最大抗弯强度的长方体梁,则矩形面的长为________.(强度与bh 2成正比,其中h 为矩形的长,b 为矩形的宽)7.要建造一个长方体形状的仓库,其内部的高为3 m ,长和宽的和为20 m ,则仓库容积的最大值为_______________m 3.8.若函数f (x )=4x x 2+1在区间(m,2m +1)上是单调递增函数,则实数m 的取值范围为________. 二、解答题(共42分)9.(12分)设函数f (x )=kx 3-3x 2+1(k ≥0).(1)求函数f (x )的单调区间;(2)若函数f (x )的极小值大于0,求k 的取值范围.10.(14分)为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位:cm)满足关系:C (x )=k 3x +5(0≤x ≤10),若不建隔热层,每年能源消耗费用为8万元,设f (x )为隔热层建造费用与20年的能源消耗费用之和.(1)求k 的值及f (x )的表达式;(2)隔热层修建多厚时,总费用f (x )达到最小,并求最小值.11.(16分)设函数f (x )=ln x ,g (x )=ax +b x,函数f (x )的图象与x 轴的交点也在函数g (x )的图象上,且在此点有公共切线.(1)求a 、b 的值;(2)对任意x >0,试比较f (x )与g (x )的大小.五、参考答案二、知识梳理1.0<a <1 2.123.-24.⎣⎡⎦⎤12,12e π25.6 三、题型突破例1 解题导引 求函数在闭区间上的最值,首先应判断函数在闭区间上的单调性,一般方法是令f ′(x )=0,求出x 值后,再判断函数在各区间上的单调性,在这里一般要用到分类讨论的思想,讨论的标准通常是极值点与区间端点的大小关系,确定单调性或具体情况.解 ∵f (x )=x 2e-ax (a >0), ∴f ′(x )=2x e-ax +x 2·(-a )e -ax =e -ax (-ax 2+2x ).令f ′(x )>0,即e -ax (-ax 2+2x )>0,得0<x <2a. ∴f (x )在(-∞,0),⎝⎛⎭⎫2a ,+∞上是减函数,在⎝⎛⎭⎫0,2a 上是增函数. ①当0<2a<1,即a >2时,f (x )在[1,2]上是减函数, ∴f (x )max =f (1)=e -a .②当1≤2a≤2,即1≤a ≤2时,f (x )在⎣⎡⎭⎫1,2a 上是增函数,在⎝⎛⎦⎤2a ,2上是减函数,∴f (x )max =f ⎝⎛⎭⎫2a =4a -2e -2. ③当2a>2,即0<a <1时,f (x )在[1,2]上是增函数, ∴f (x )max =f (2)=4e-2a . 综上所述,当0<a <1时,f (x )的最大值为4e -2a ;当1≤a ≤2时,f (x )的最大值为4a -2e -2; 当a >2时,f (x )的最大值为e -a . 变式迁移1 解 (1)函数f (x )的定义域为(0,+∞),f ′(x )=a ·1-ln x x 2(a >0), 由f ′(x )=a ·1-ln x x 2>0,得0<x <e ; 由f ′(x )<0,得x >e.故f (x )在(0,e)上单调递增,在(e ,+∞)上单调递减.(2)∵f (x )在(0,e)上单调递增,在(e ,+∞)上单调递减,∴f (x )在[a,2a ]上的最小值[f (x )]min =min{f (a ),f (2a )}.∵f (a )-f (2a )=12ln a 2, ∴当0<a ≤2时,[f (x )]min =ln a ;当a >2时,[f (x )]min =ln 2a 2. 例2 解题导引 利用导数解决不等式问题的主要方法就是构造函数,通过研究函数的性质进而解决不等式问题.(1)解 f ′(x )=x -a x =x 2-a x(x >0), 若a ≤0时,f ′(x )>0恒成立,∴函数f (x )的单调增区间为(0,+∞).若a >0时,令f ′(x )>0,得x >a ,∴函数f (x )的单调增区间为(a ,+∞),减区间为(0,a ).(2)证明 设F (x )=23x 3-(12x 2+ln x ), 故F ′(x )=2x 2-x -1x. ∴F ′(x )= x -1 2x 2+x +1 x.∵x >1,∴F ′(x )>0. ∴F (x )在(1,+∞)上为增函数.又F (x )在(1,+∞)上连续,F (1)=16>0, ∴F (x )>16在(1,+∞)上恒成立. ∴F (x )>0.∴当x >1时,12x 2+ln x <23x 3. 变式迁移2 (1)解 由f (x )=e x -2x +2a ,x ∈R ,知f ′(x )=e x -2,x ∈R .令f ′(x )=0,得x =ln 2.于是当x 变化时,f ′(x ),f (x )的变化情况如下表: x(-∞,ln 2) ln 2 (ln 2,+∞) f ′(x )- 0 + f (x ) 极小值故f (x )的单调递减区间是(-∞,ln 2),单调递增区间是(ln 2,+∞),f (x )在x =ln 2处取得极小值,极小值为f (ln 2)=e ln 2-2ln 2+2a =2(1-ln 2+a ).(2)证明 设g (x )=e x -x 2+2ax -1,x ∈R .于是g ′(x )=e x -2x +2a ,x ∈R .由(1)知当a >ln 2-1时,g ′(x )最小值为g ′(ln 2)=2(1-ln 2+a )>0.于是对任意x ∈R ,都有g ′(x )>0,所以g (x )在R 内单调递增,于是当a >ln 2-1时,对任意x ∈(0,+∞),都有g (x )>g (0).而g (0)=0,从而对任意x ∈(0,+∞),都有g (x )>0,即e x -x 2+2ax -1>0,故e x >x 2-2ax +1.例3 解 (1)分公司一年的利润L (万元)与售价x 的函数关系式为L =(x -3-a )(12-x )2,x ∈[9,11].(2)L ′(x )=(12-x )2-2(x -3-a )(12-x )=(12-x )(18+2a -3x ).令L ′=0,得x =6+23a 或x =12(不合题意,舍去). ∵3≤a ≤5,∴8≤6+23a ≤283. 在x =6+23a 两侧L ′的值由正变负. ∴①当8≤6+23a <9,即3≤a <92时,L max =L (9)=(9-3-a )(12-9)2=9(6-a ). ②当9≤6+23a ≤283,即92≤a ≤5时,L max =L (6+23a )=(6+23a -3-a )[12-(6+23a )]2=4(3-13a )3.。
2018届高中数学高考二轮复习第11讲选修部分教案含答案(全国通用)
教学过程一、考纲解读本部分内容为选考.故在复习过程中,可以针对某一模块集中突破:几何证明选讲,重点考查相似,圆的相关性质及应用坐标系与参数方程重点考查极坐标方程,参数方程与直角坐标方程的转化不等式选讲重点考查绝对值不等式,均值不等式以及不等式的证明二、复习预习1.几何证明选讲(1)相似三角形(2)会证明和应用以下定理:①直角三角形射影定理;②圆周角定理;③圆的切线判定定理与性质定理;④相交弦定理;⑤圆内接四边形的性质定理与判定定理;⑥切割线定理.2.坐标系与参数方程①了解坐标系的作用②了解极坐标的基本概念③极坐标方程.④参数方程⑤能选择适当的参数写出直线、圆和椭圆的参数方程.3.不等式选讲①理解绝对值的几何意义,并了解下列不等式成立的几何意义及取等号的条件:②会利用绝对值的几何意义求解以下类型的不等式:|ax+b|≤c;|ax+b|≥c;|x-a|+|x-b|≥c.③通过一些简单问题了解证明不等式的基本方法:比较法、综合法、分析法.三、知识讲解考点1 几何证明选讲(1)理解相似三角形的定义与性质,了解平行截割定理.(2)会证明和应用以下定理:①直角三角形射影定理;②圆周角定理;③圆的切线判定定理与性质定理;④相交弦定理;⑤圆内接四边形的性质定理与判定定理;⑥切割线定理.考点2坐标系与参数方程(1)坐标系①了解坐标系的作用,了解在平面直角坐标系伸缩变换作用下平面图形的变化情况.②了解极坐标的基本概念,会在极坐标系中用极坐标刻画点的位置,能进行极坐标和直角坐标的互化.③能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)表示的极坐标方程.④了解参数方程,了解参数的意义.⑤能选择适当的参数写出直线、圆和椭圆的参数方程.考点3 不等式选讲①理解绝对值的几何意义,并了解下列不等式成立的几何意义及取等号的条件:|a+b|≤|a|+|b| (a,b∈R);|a-b|≤|a-c|+|c-b|(a,b∈R).②会利用绝对值的几何意义求解以下类型的不等式:|ax+b|≤c;|ax+b|≥c;|x-a|+|x-b|≥c.③通过一些简单问题了解证明不等式的基本方法:比较法、综合法、分析法.四、例题精析例1 [2014北京卷] 曲线1cos2sinxyθθ=-+⎧⎨=+⎩(θ为参数)的对称中心().A在直线2y x=上.B在直线2y x=-上.C在直线1y x=-上.D在直线1y x=+上【规范解答】参数方程1cos2sinxyθθ=-+⎧⎨=+⎩所表示的曲线为圆心在(12)-,,半径为1的圆.其对称中心为圆心(12)-,.逐个代入选项可知,(12)-,在直线2y x=-上,即选项B.【总结与反思】本题考查参数方程与直角坐标方程的转化,以及圆的标准方程.例2 [2014江西卷] (不等式选做题)对任意,x y R ∈,111x x y y -++-++的最小值为( )A.1B.2C.3D.4【规范解答】()|1||||1||1|1||11|123x x y y x x y y -++-++≥--+--+=+= 选B【总结与反思】 考查绝对值的三角不等式求最值例3 [2014安徽卷] 以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,已知直线l 的参数方程是(t 为参数),圆C 的极坐标方程是θρcos 4=则直线l 被圆C 截得的弦长( ) A.14 B.142 C.2 D.22【规范解答】选(D ):直线与圆都化成普通方程,直线04:=--y x l ,圆4)2(:22=+-y x C . 圆心C 到直线l 的距离为2=d ,弦长为22222=-d r【总结与反思】 此题考察极坐标与参数方程的简单知识,交汇点在直线方程与圆的方程及其位置关系上,考查等价转化思想的运用.例4已知定义在R 上的函数()21-++=x x x f 的最小值为a .(1)求a 的值;(2)若r q p ,,为正实数,且a r q p =++,求证:3222≥++r q p . 【规范解答】(1)因为|x +1|+|x -2|≥|(x +1)-(x -2)|=3,当且仅当-1≤x ≤2时,等号成立,所以f (x )的最小值等于3,即a =3.(2) 由(1)知p +q +r =3,又p ,q ,r 是正实数,所以(p 2+q 2+r 2)(12+12+12)≥(p ×1+q ×1+r ×1)2=(p +q +r )2=9,即p 2+q 2+r 2≥3.【总结与反思】 第一问比较常规.使用三角不等式求最值比较迅速.也可以分类讨论.第二问考查柯西不等式,也可以将a r q p =++平方后用均值不等式处理.⎩ ⎨ ⎧ - = + = 3 1 t y t x例5[2014全国1卷] 选修4—1:几何证明选讲如图,四边形ABCD 是⊙O 的内接四边形,AB 的延长线与DC 的延长线交于点E ,且CB=CE.(Ⅰ)证明:∠D=∠E ;(Ⅱ)设AD 不是⊙O 的直径,AD 的中点为M ,且MB=MC ,证明:△ADE 为等边三角形.【规范解答】(Ⅰ) 由题设知得A 、B 、C 、D 四点共圆,所以∠D=∠CBE ,由已知得,∠CBE=∠E ,所以∠D=∠E(Ⅱ)设BCN 中点为N ,连接MN,则由MB=MC 知MN ⊥BC所以O 在MN 上,又AD 不是O 的直径,M 为AD 中点,故OM ⊥AD , 即MN ⊥AD所以AD//BC,故∠A=∠CBE , 又∠CBE=∠E ,故∠A=∠E由(1)知∠D=∠E所以△ADE 为等边三角形【总结与反思】 本题考查圆的内接四边形性质,考查学生分析解决问题的能力,属于中档题.第一问利用四边形ABCD 是⊙O 的内接四边形,可得∠D=∠CBE ,由CB=CE ,可得∠E=∠CBE ,即可证明:∠D=∠E ;第二问设BC 的中点为N ,连接MN ,证明AD ∥BC ,可得∠A=∠CBE ,进而可得∠A=∠E ,即可证明△ADE 为等边三角形.例6[2014全国1卷] 选修4—4:坐标系与参数方程已知曲线C :22149x y +=,直线l :222x t y t=+⎧⎨=-⎩(t 为参数). (Ⅰ)写出曲线C 的参数方程,直线l 的普通方程;(Ⅱ)过曲线C 上任一点P 作与l 夹角为o30的直线,交l 于点A ,求||PA 的最大值与最小值. 【规范解答】.(Ⅰ) 曲线C 的参数方程为:2cos 3sin x y θθ=⎧⎨=⎩(θ为参数), 直线l 的普通方程为:260x y +-=(Ⅱ)在曲线C 上任意取一点P (2cos θ,3sin θ)到l 的距离为3sin 6d θθ=+-,则()0||6sin 30d PA θα==+-,其中α为锐角.且4tan 3α=.当()sin 1θα+=-时,||PA 取得最大值,最大值为5;当()sin 1θα+=时,||PA 【总结与反思】 本题考查普通方程与参数方程的互化,训练了点到直线的距离公式,直线与圆锥曲线的关系,体现了数学转化思想方法,是中档题.第一问联想三角函数的平方关系可取x=2cosθ、y=3sinθ得曲线C 的参数方程,直接消掉参数t 得直线l 的普通方程;第二问设曲线C 上任意一点P (2cosθ,3sinθ).由点到直线的距离公式得到P 到直线l 的距离,除以sin30°进一步得到|PA|,化积后由三角函数的范围求得|PA|的最大值与最小值。
2018届高考数学二轮复习(理数)概率学案含答案(全国通用)
专题10.3 概率【最新考纲解读】【考点深度剖析】概率均是以填空题的形式进行考查,题目多为中低档题,着重考查学生运算求解能力.概率一般与计数原理结合考查,也可单独设置题目. 【课前检测训练】 【判一判】判断下面结论是否正确(请在括号中打“√”或“×”) (1)事件发生频率与概率是相同的.( ) (2)随机事件和随机试验是一回事.( )(3)在大量重复试验中,概率是频率的稳定值.( ) (4)两个事件的和事件是指两个事件都得发生.( )(5)对立事件一定是互斥事件,互斥事件不一定是对立事件.( ) (6)两互斥事件的概率和为1.( )(7)“在适宜条件下,种下一粒种子观察它是否发芽”属于古典概型,其基本事件是“发芽与不发芽”.( ) (8)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能事件.( ) (9)从市场上出售的标准为500±5 g 的袋装食盐中任取一袋,测其重量,属于古典概型.( ) (10)(教材改编)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为13.( )(11)从1,2,3,4,5中任取出两个不同的数,其和为5的概率是0.2.( )(12)在古典概型中,如果事件A 中基本事件构成集合A ,且集合A 中的元素个数为n ,所有的基本事件构成集合I ,且集合I 中元素个数为m ,则事件A 的概率为n m.( ) (13)在一个正方形区域内任取一点的概率是零.( )(14)几何概型中,每一个基本事件就是从某个特定的几何区域内随机地取一点,该区域中的每一点被取到的机会相等.( )(15)在几何概型定义中的区域可以是线段、平面图形、立体图形.( ) (16)随机模拟方法是以事件发生的频率估计概率.( ) (17)与面积有关的几何概型的概率与几何图形的形状有关.( ) (18)从区间[1,10]内任取一个数,取到1的概率是P =19.( )1. ×2. ×3. √4. ×5. √6. ×7. ×8. ×9. ×10. √11. √12. √13. √14. √15. √16. √17. ×18. × 【练一练】1.一个人打靶时连续射击两次,事件“至少有一次中靶”的互斥事件是( ) A .至多有一次中靶 B .两次都中靶 C .只有一次中靶 D .两次都不中靶 【答案】D2.从某班学生中任意找出一人,如果该同学的身高小于160 cm 的概率为0.2,该同学的身高在[160,175](单位:cm)内的概率为0.5,那么该同学的身高超过175 cm 的概率为( ) A .0.2 B .0.3 C .0.7 D .0.8 【答案】B【解析】因为必然事件发生的概率是1,所以该同学的身高超过175 cm 的概率为1-0.2-0.5=0.3,故选B.3.我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1 534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( ) A .134石 B .169石 C .338石 D .1 365石 【答案】B【解析】因为样品中米内夹谷的比为28254,所以这批米内夹谷为1 534×28254≈169(石).4.给出下列三个命题,其中正确的命题有________个.①有一大批产品,已知次品率为10%,从中任取100件,必有10件是次品;②做7次抛硬币的试验,结果3次出现正面,因此正面出现的概率是37;③随机事件发生的频率就是这个随机事件发生的概率.【答案】0【解析】①错,不一定是10件次品;②错,37是频率而非概率;③错,频率不等于概率,这是两个不同的概念.5.袋中装有9个白球,2个红球,从中任取3个球,则①恰有1个红球和全是白球;②至少有1个红球和全是白球;③至少有1个红球和至少有2个白球;④至少有1个白球和至少有1个红球.在上述事件中,是对立事件的为________. 【答案】②【解析】①是互斥不对立的事件,②是对立事件,③④不是互斥事件.6.从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ) A.12 B.13 C.14 D.16 【答案】B7.从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为( )A.15B.25C.35D.45 【答案】C【解析】取两个点的所有情况为10种,所有距离不小于正方形边长的情况有6种,概率为610=35.故选C.8.如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( ) A.310 B.15 C.110 D.120【答案】C【解析】从1,2,3,4,5中任取3个不同的数共有如下10种不同的结果:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),其中勾股数只有(3,4,5),所以概率为110.故选C.9.同时掷两个骰子,向上点数不相同的概率为________.【答案】56【解析】掷两个骰子一次,向上的点数共6×6=36种可能的结果,其中点数相同的结果共有6个,所以点数不同的概率P =1-66×6=56.10.从1,2,3,4,5,6这6个数字中,任取2个数字相加,其和为偶数的概率是________. 【答案】2511.在线段[0,3]上任投一点,则此点坐标小于1的概率为( ) A.12 B.13 C.14 D .1 【答案】B【解析】坐标小于1的区间为[0,1],长度为1,[0,3]区间长度为3,故所求概率为13.12.在区间[0,2]上随机地取一个数x ,则事件“-1≤12log ⎝ ⎛⎭⎪⎫x +12≤1”发生的概率为( ) A.34 B.23 C.13 D.14 【答案】A【解析】∵由-1≤12log ⎝ ⎛⎭⎪⎫x +12≤1,得12≤x +12≤2,∴0≤x ≤32.∴由几何概型的概率计算公式得所求概率 P =32-02-0=34. 13.若将一个质点随机投入如图所示的长方形ABCD 中,其中AB =2,BC =1,则质点落在以AB 为直径的半圆内的概率是()A.π2 B.π4 C.π6 D.π8【答案】B14.如图,在边长为1的正方形中随机撒1 000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为________.【答案】0.18【解析】由题意知,这是个几何概型问题,S 阴S 正=1801 000=0.18, ∵S 正=1,∴S 阴=0.18.15.如图,圆中有一内接等腰三角形.假设你在图中随机撒一把黄豆,则它落在阴影部分的概率为________.【答案】1π【解析】设圆的半径为R ,由题意知圆内接三角形为等腰直角三角形,其直角边长为2R ,则所求事件的概率为:P =S 阴S 圆=12×2R ×2R πR 2=1π. 【题根精选精析】 考点1:随机事件的概率【1-1】【2015苏州联考】4张卡上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为偶数的概率为 . 【答案】13【解析】因为从四张卡片中任取出两张共有6种情况,其中两种卡片上数字和为偶数的共有2种情况.所以两张数字为偶数的概率为13. 【1-2】【2015无锡模拟】抽查10件产品,设事件A :至少有两件次品,则A 的对立事件为 .。
2018届高考数学二轮复习数列学案文1(全国通用)
专题02数列核心考点一等差数列、等比数列的综合问题解决等差、等比数列的综合问题时,重点在于读懂题意,灵活利用等差、等比数列的定义、通项公式及前n 项和公式解决问题,求解这类问题要重视方程思想的应用.【经典示例】已知首项为32的等比数列{a n }不是递减数列,其前n 项和为*(N )n S n ∈,且S 3+a 3,S 5+a 5,S 4+a 4成等差数列.(1)求数列{a n }的通项公式;(2)设T n =S n -1S n*(N )n ∈,求数列{T n }的最大项的值与最小项的值.答题模板第一步,设量:等差数列、等比数列的运算往往先设出基本量(首项、公差或公比、项数等). 第二步,列式:利用等差数列、等比数列的通项公式、前n 项和公式及中项等确定等量关系. 第三步,求解:化简等量关系求得结果.第四步,反思:反思回顾,查看关键点、易错点,对结果进行估算,检查规范性.【满分答案】(1)设等比数列{a n }的公比为q ,因为S 3+a 3,S 5+a 5,S 4+a 4成等差数列,所以S 5+a 5-S 3-a 3=S 4+a 4-S 5-a 5,即4a 5=a 3,于是q 2=a 5a 3=14. 又{a n }不是递减数列且a 1=32, 所以q =-12. 故等比数列{a n }的通项公式为a n =32×⎝ ⎛⎭⎪⎫-12n -1=(-1)n -1·32n .(2)由(1)得S n =1-⎝ ⎛⎭⎪⎫-12n =⎩⎪⎨⎪⎧1+12n ,n 为奇数,1-12n,n 为偶数, 当n 为奇数时,S n 随n 的增大而减小,所以1<S n ≤S 1=32, 故0<S n -1S n ≤S 1-1S 1=32-23=56. 当n 为偶数时,S n 随n 的增大而增大,所以34=S 2≤S n <1, 故0>S n -1S n ≥S 2-1S 2=34-43=-712. 综上,对于n ∈N *,总有-712≤S n -1S n ≤56. 所以数列{T n }最大项的值为56,最小项的值为-712. 【解题技巧】解决等差数列与等比数列的综合问题,既要善于综合运用等差数列与等比数列的相关知识求解,更要善于根据具体问题情境具体分析,寻找解题的突破口.模拟训练1.已知{a n }是等差数列,{b n }是等比数列,且b 2=3,b 3=9,a 1=b 1,a 14=b 4.(1)求{a n }的通项公式;(2)设c n =a n +b n ,求数列{c n }的前n 项和.又a 1=b 1=1,a 14=b 4=34-1=27,∴1+(14-1)d =27,解得d =2.∴a n =a 1+(n -1)d =1+(n -1)×2=2n -1(n =1,2,3,…).(2)由(1)知a n =2n -1,b n =3n -1,因此c n =a n +b n =2n -1+3n -1.从而数列{c n }的前n 项和 S n =1+3+…+(2n -1)+1+3+…+3n -1=n (1+2n -1)2+1-3n1-3=n 2+3n-12.核心考点二数列的通项与求和数列的通项与求和是高考必考的热点题型,求通项属于基本问题,常涉及与等差、等比的定义、性质、基本量运算.求和问题关键在于分析通项的结构特征,选择合适的求和方法.常考求和方法有:错位相减法、裂项相消法、分组求和法等.【经典示例】设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q ,已知b 1=a 1,b 2=2,q =d ,S 10=100.(1) 求数列{a n },{b n }的通项公式;(2) 当d >1时,记c n =a nb n,求数列{c n }的前n 项和T n .答题模板用错位相减法解决数列求和的模板:第一步,判断结构:若数列}{n n b a ⋅是由等差数列}{n a 与等比数列}{n b (公比为q )的对应项之积构成的,则可用此法求和;第二步,乘公比:设}{n n b a ⋅的前n 项和为n T ,然后两边同乘以q ;第三步,错位相减:乘以公比q 后,向后错开一位,是含有n q (*N ∈n )的项对齐,然后两边同时作差;第四步,求和:将作差后的结果求和,从而表示出n T .【满分答案】(1)由题意有⎩⎪⎨⎪⎧10a 1+45d =100,a 1d =2, 即⎩⎪⎨⎪⎧2a 1+9d =20,a 1d =2,解得⎩⎪⎨⎪⎧a 1=1,d =2或⎩⎪⎨⎪⎧a 1=9,d =29. 故⎩⎪⎨⎪⎧a n =2n -1,b n =2n -1或⎩⎪⎨⎪⎧a n =19(2n +79),b n=9·⎝ ⎛⎭⎪⎫29n -1. (2)由d >1,知a n =2n -1,b n =2n -1,故c n =2n -12n -1, 于是T n =1+32+522+723+924+…+2n -12n -1,① 12T n =12+322+523+724+925+…+2n -12n .② ①-②可得12T n =2+12+122+…+12n -2-2n -12n =3-2n +32n , 故T n =6-2n +32n -1. 【解题技巧】(1)一般地,如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n ·b n }的前n 项和时,可采用错位相减法求和,一般是和式两边同乘以等比数列{b n }的公比,然后作差求解;(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n -qS n ”的表达式.模拟训练2.已知数列{}n a 的首项11=a ,且满足)(0)1(11*++∈=+-N n a a a n n n .(1)求数列{}n a 的通项公式;(2)设nnn a c 3=,求数列{}n c 的前n 项和n S . 【答案】(1)n a n 1=;(2)4334)12(1+⨯-=+n n n S .所以n n a n=-+=)1(11,所以n a n 1=. (2)由(1)知,n n n c 3⋅=,n n n S 333323132⨯+⋅⋅⋅+⨯+⨯+⨯=,①143233)1(3332313+⨯+⨯-+⋅⋅⋅+⨯+⨯+⨯=n n n n n S ,②①-②有132333332+⨯-+⋅⋅⋅+++=-n n n n S , 解得:4334)12(1+⨯-=+n n n S .核心考点三数列的综合应用数列是特殊的函数,以函数为背景的数列的综合问题体现了在知识交汇点上命题的特点,该类综合题的知识综合性强,能很好地考查逻辑推理能力和运算求解能力,因而一直是高考命题者的首选.【经典示例】已知数列{}n a 中,2a a =(a 为非零常数),其前n 项和n S 满足*1()(N )2n n n a a S n -=∈. (1)求数列{}n a 的通项公式;(2)若2a =,且21114m n a S -=,求m n 、的值; (3)是否存在实数a b 、,使得对任意正整数p ,数列{}n a 中满足n a b p +≤的最大项恰为第32p -项?若存在,分别求出a 与b 的取值范围;若不存在,请说明理由.答题模板。
2018届高考数学二轮复习(理数)二项式定理学案含答案(全国通用)
专题11.2 二项式定理【最新考纲解读】【考点深度剖析】本章知识点均是以解答题的形式进行考查,涉及到分类讨论的思想,着重考查学生运算能力和逻辑思维能力,本章知识点常与概率等知识一起考查,难度中等偏上.【课前检测训练】【判一判】判断下面结论是否正确(请在括号中打“√”或“×”)(1)C r n a n -r b r 是二项展开式的第r 项.( )(2)二项展开式中,系数最大的项为中间一项或中间两项.( )(3)(a +b )n 的展开式中某一项的二项式系数与a ,b 无关.( )(4)在(1-x )9的展开式中系数最大的项是第五、第六两项.( )(5)若(3x -1)7=a 7x 7+a 6x 6+…+a 1x +a 0,则a 7+a 6+…+a 1的值为128.( )1. ×2. ×3. √4. ×5. ×【练一练】1. (x -y )n 的二项展开式中,第m 项的系数是( )A.C m nB.C m +1nC.C m -1nD.(-1)m -1C m -1n【答案】D【解析】(x -y )n 展开式中第m 项的系数为C m -1n (-1)m -1.2.已知6e 11d n x x =⎰,那么⎝ ⎛⎭⎪⎫x -3x n 展开式中含x 2项的系数为( ) A.130B.135C.121D.139 【答案】B3.已知C 0n +2C 1n +22C 2n +23C 3n +…+2n C n n =729,则C 1n +C 2n +C 3n +…+C n n 等于( )A.63B.64C.31D.32 【答案】A【解析】逆用二项式定理得C 0n +2C 1n +22C 2n +23C 3n +…+2n C n n =(1+2)n =3n =729,即3n =36,所以n =6,所以C 1n +C 2n +C 3n +…+C n n =26-C 0n =64-1=63.故选A. 4. ⎝ ⎛⎭⎪⎫x 2-2x 35展开式中的常数项为________. 【答案】40【解析】T k +1=C k 5(x 2)5-k ⎝ ⎛⎭⎪⎫-2x 3k =C k 5(-2)k x 10-5k . 令10-5k =0,则k =2.∴常数项为T 3=C 25(-2)2=40. 5.(1+x )8(1+y )4的展开式中x 2y 2的系数是________.【答案】168【解析】∵(1+x )8的通项为C k 8x k ,(1+y )4的通项为C t 4y t ,∴(1+x )8(1+y )4的通项为C k 8C t 4x k y t,令k =2,t =2,得x 2y 2的系数为C 28C 24=168.【题根精选精析】考点1 二项式定理 【1-1】5122x y ⎛⎫- ⎪⎝⎭的展开式中32y x 的系数是________. 【答案】20-【解析】根据二项式定理可得第1n +项展开式为()55122nn nC x y -⎛⎫- ⎪⎝⎭,则2n =时, ()()2532351121022022n n n C x y x y x y -⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭ ,所以23x y 的系数为20-. 【1-2】如果1111221011)23(x a x a x a a x ++++=+ ,那么0211531()(a a a a a -++++ 21042)a a a ++++ 的值是________.【答案】1【1-3】若71()x ax -的展开式中x 项的系数为280,则a = ________. 【答案】12- 【解析】因为x 项的系数为3471280C a ⎛⎫-= ⎪⎝⎭,所以12a =-. 【1-4】已知231(1)nx x x x ⎛⎫+++ ⎪⎝⎭的展开式中没有..常数项,n ∈*N ,且2 ≤ n ≤ 7,则n =______. 【答案】5【解析】二项式定理展开()2311k k n k n x x C x x -⎛⎫++⋅ ⎪⎝⎭化简得()241k n k n x x C x -++⋅,因为不含常数项所以4,41,42n k n k n k ≠≠-≠-又因为27n ≤≤,所以n=5【1-5】9(1)x -的展开式中,系数最大的项是 .【答案】第5项【解析】19(1)r r r r T C x +=-,要使其系数最大,则r 应为偶数,又在9r C (0,1,2,3,,9r = )中,当4r =,或5时9r C 最大,故当4r =,即第5项系数最大.【基础知识】1. 二项式定理()()011*n n n r n r r n n n n n n a b C a C a b C a b C b n N --+=+++++∈ ,这个公式所表示的定理叫做二项式定理,右边的多项式叫做()na b +的二项展开式,其中的系数r n C (0,1,2,3,,r n = )叫做二项式系数.式中的r n r r n C a b -叫做二项展开式的通项,用1r T +表示,即展开式的第1r +项;1r n r r r n T C a b -+=. 2.二项展开式形式上的特点(1)项数为1n +.(2)各项的次数都等于二项式的幂指数n ,即a 与b 的指数的和为n .(3)字母a 按降幂排列,从第一项开始,次数由n 逐项减1直到零;字母b 按升幂排列,从第一项起,次数由零逐项增1直到n .(4)二项式的系数从0n C ,1n C ,一直到1n n C -,n n C .3. 二项式系数的性质(1)对称性:与首末两端“等距离”的两个二项式系数相等,即0n n nC C =,11n n n C C -=, ,m n m n n C C -=. (2)增减性与最大值:二项式系数r n C ,当12n r +≤时,二项式系数是递增的;由对称性知:当12n r +>时,二项式系数是递减的.当n 是偶数时,中间的一项2n n C 取得最大值.当n 是奇数时,中间两项12n n C+ 和12n n C -相等,且同时取得最大值.(3)各二项式系数的和 ()n a b +的展开式的各个二项式系数的和等于2n,即012r n n n n n n C C C C +++++= ,二项展开式中,偶数项的二项式系数的和等于奇数项的二项式系数的和,即02413512n n n n n n n C C C C C C -+++=+++= ,4.注意:(1).分清r n r r n C a b -是第1r +项,而不是第r 项.(2).在通项公式1r n r r r n T C a b -+=中,含有1r T +、r nC 、a 、b 、n 、r 这六个参数,只有a 、b 、n 、r 是独立的,在未知n 、r 的情况下,用通项公式解题,一般都需要首先将通式转化为方程(组)求出n 、r ,然后代入通项公式求解.(3).求二项展开式中的一些特殊项,如系数最大项,常数项等,通常都是先利用通项公式由题意列方程,求出r ,再求所需的某项;有时则需先求n ,计算时要注意n 和r 的取值范围以及 它们之间的大小关系.(4) 在1r n r r r n T C a b -+=中,r nC 就是该项的二项式系数,它与a ,b 的值无关;而1r T +项的系数是指化简后字母外的数.5.二项式的应用(1)求某些多项式系数的和;(2)证明一些简单的组合恒等式;(3)证明整除性,①求数的末位;②数的整除性及求系数;③简单多项式的整除问题;(4)近似计算.当x 充分小时,我们常用下列公式估计近似值:①()11n x nx +≈+;②()()21112n n n x nx x -+≈++; (5)证明不等式.【思想方法】1.在应用通项公式时,要注意以下几点: ①它表示二项展开式的任意项,只要n 与r 确定,该项就随之确定;②1r T +是展开式中的第1r +项,而不是第r 项;③公式中,a ,b 的指数和为n 且a ,b 不能随便颠倒位置;④对二项式()na b -展开式的通项公式要特别注意符号问题.⑤在二项式定理的应用中,“赋值思想”是一种重要方法,是处理组合数问题、系数问题的经典方法.2. 二项定理问题的处理方法和技巧:⑴运用二项式定理一定要牢记通项1r n r r r n T C a b -+=,注意()n a b +与()n b a +虽然相同,但具体到它们展开式的某一项时是不同的,一定要注意顺序问题,另外二项展开式的二项式系数与该项的(字母)系数是两个不同的概念,前者只指r n C ,而后者是字母外的部分.前者只与n 和r 有关,恒为正,后者还与a ,b 有关,可正可负.⑵ 对于二项式系数问题,应注意以下几点:①求二项式所有项的系数和,可采用“特殊值取代法”,通常令字母变量的值为1;②关于组合恒等式的证明,常采用“构造法”——构造函数或构造同一问题的两种算法;③证明不等式时,应注意运用放缩法.⑶ 求二项展开式中指定的项,通常是先根据已知条件求r ,再求1r T +,有时还需先求n ,再求r ,才能求出1r T +.⑷ 有些三项展开式问题可以变形为二项式问题加以解决;有时也可以通过组合解决,但要注意分类清楚,不重不漏.⑸ 对于二项式系数问题,首先要熟记二项式系数的性质,其次要掌握赋值法,赋值法是解决二项式系数问题的一个重要手段.。
2018年高考理科数二轮创新专题复习教学案:第一部分
[研高考·明考点]第一讲小题考法——等差数列与等比数列[典例感悟][典例](1)(2017·云南调研)已知数列{an}的前n项和为S n,且满足4(n+1)(S n+1)=(n+2)2a n(n∈N*),则数列{a n}的通项公式a n=()A.(n+1)3B.(2n+1)2C.8n2D.(2n+1)2-1(2)(2017·成都模拟)在数列{a n}中,a1=1,a1+a222+a332+…+a nn2=a n(n∈N*),则数列{an}的通项公式a n=________.[解析](1)当n=1时,4×(1+1)×(a1+1)=(1+2)2×a1,解得a1=8.当n≥2时,4(S n+1)=(n+2)2a nn+1,则4(S n-1+1)=(n+1)2a n-1n,两式相减得,4a n=(n+2)2a nn+1-(n+1)2a n-1n,整理得,a na n-1=(n+1)3n3,所以a n=a na n-1·a n-1a n-2·…·a2a1·a1=(n+1)3n3×n3(n-1)3×…×3323×8=(n+1)3.检验知,a1=8也符合,所以a n=(n+1)3.(2)根据a1+a222+a332+…+a nn2=a n,①有a 1+a 222+a 332+…+a n -1(n -1)2=a n -1,②①-②得,a nn 2=a n -a n -1,即n 2a n -1=(n 2-1)a n ,所以a n a n -1=n 2n 2-1=n 2(n +1)(n -1),所以a n =a 1×a 2a 1×a 3a 2×…×a na n -1=1×22(2+1)(2-1)×32(3+1)(3-1)×…×n 2(n +1)(n -1)=22×32×42×…×n 2(2-1)(2+1)(3-1)(3+1)(4-1)(4+1)…(n -1)(n +1)=22×32×42×…×n 21×3×2×4×3×5×…×(n -1)×(n +1) =2nn +1. [答案] (1)A (2)2nn +1[方法技巧]由a n 与S n 的关系求通项公式的注意事项(1)应重视分类讨论思想的应用,分n =1和n ≥2两种情况讨论,特别注意a n =S n -S n -1成立的前提是n ≥2.(2)由S n -S n -1=a n 推得a n ,当n =1时,a 1也适合,则需统一表示(“合写”).(3)由S n -S n -1=a n 推得a n ,当n =1时,a 1不适合,则数列的通项公式应分段表示(“分写”),即a n =⎩⎪⎨⎪⎧S 1(n =1),S n -S n -1(n ≥2).[演练冲关]1.(2018届高三·广东五校联考)数列{a n }满足a 1=1,且a n +1=a 1+a n +n (n ∈N *),则1a 1+1a 2+…+1a 2 017=( )A.2 0171 009B.2 0151 008C.2 0162 017D.2 0152 016解析:选A 由a 1=1,a n +1=a 1+a n +n 可得a n +1-a n =n +1,利用累加法可得a n -a 1=(n -1)(n +2)2,所以a n =n 2+n 2,所以1a n=2n 2+n =2⎝⎛⎭⎫1n -1n +1,故1a 1+1a 2+…+1a 2 017=211-12+12-13+…+12 017-12 018=2⎝⎛⎭⎫1-12 018=2 0171 009,故选A.2.(2017·石家庄质检)数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为( ) A .3 690 B .3 660 C .1 845D .1 830解析:选D 不妨令a 1=1,根据题意,得a 2=2,a 3=a 5=a 7=…=1,a 4=6,a 6=10,…,所以当n 为奇数时,a n =1,当n 为偶数时构成以a 2=2为首项,以4为公差的等差数列.所以{a n }的前60项和为S 60=30+2×30+30×(30-1)2×4=1 830. 3.设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则S 5=________. 解析:∵a n +1=2S n +1,∴S n +1-S n =2S n +1,∴S n +1=3S n +1,∴S n +1+12=3⎝⎛⎭⎫S n +12,∴数列⎩⎨⎧⎭⎬⎫S n +12是公比为3的等比数列,∴S 2+12S 1+12=3.又S 2=4,∴S 1=1,∴S 5+12=⎝⎛⎭⎫S 1+12×34=32×34=2432,∴S 5=121.答案:121[典例感悟][典例] (1)(2016·全国卷Ⅰ)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( ) A .100 B .99 C .98D .97(2)(2017·全国卷Ⅲ)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( )A .-24B .-3C .3D .8(3)(2017·江苏高考)等比数列{a n }的各项均为实数,其前n 项和为S n .已知S 3=74,S 6=634,则a 8=________.[解析] (1)∵{a n }是等差数列,设其公差为d , ∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.又∵a 10=8,∴⎩⎪⎨⎪⎧a 1+4d =3,a 1+9d =8,∴⎩⎪⎨⎪⎧a 1=-1,d =1. ∴a 100=a 1+99d =-1+99×1=98,故选C. (2)设等差数列{a n }的公差为d ,因为a 2,a 3,a 6成等比数列,所以a 2a 6=a 23, 即(a 1+d )(a 1+5d )=(a 1+2d )2. 又a 1=1,所以d 2+2d =0. 又d ≠0,则d =-2, 所以{a n }前6项的和 S 6=6×1+6×52×(-2)=-24. (3)设等比数列{a n }的公比为q ,则由S 6≠2S 3,得q ≠1,则⎩⎪⎨⎪⎧S 3=a 1(1-q 3)1-q=74,S 6=a 1(1-q 6)1-q=634,解得⎩⎪⎨⎪⎧q =2,a 1=14, 则a 8=a 1q 7=14×27=32.[答案] (1)C (2)A (3)32[方法技巧]等差(比)数列基本运算的解题思路(1)设基本量:首项a 1和公差d (公比q ).(2)列、解方程(组):把条件转化为关于a 1和d (或q )的方程(组),然后求解,注意整体计算,以减少运算量.[演练冲关]1.(2017·合肥质检)若等差数列{a n }的前n 项和为S n ,且满足a 2+S 3=4,a 3+S 5=12,则a 4+S 7的值是( )A .20B .36C .24D .72解析:选C 由a 2+S 3=4及a 3+S 5=12得⎩⎪⎨⎪⎧ 4a 1+4d =4,6a 1+12d =12,解得⎩⎪⎨⎪⎧a 1=0,d =1,∴a 4+S 7=8a 1+24d=24.故选C.2.(2017·全国卷Ⅲ)设等比数列{a n}满足a1+a2=-1,a1-a3=-3,则a4=________.解析:设等比数列{a n}的公比为q,则a1+a2=a1(1+q)=-1,a1-a3=a1(1-q2)=-3,两式相除,得1+q1-q2=13,解得q=-2,a1=1,所以a4=a1q3=-8.答案:-83.(2018届高三·河南十校联考)已知{a n}是公差为1的等差数列,S n为{a n}的前n项和,若S8=4S4,则a10=________.解析:∵{a n}是公差为1的等差数列,∴S8=8a1+28,S4=4a1+6.∵S8=4S4,∴8a1+28=4(4a1+6),解得a1=1 2,∴a10=a1+9d=12+9=192.答案:19 2[典例感悟][典例](1)(2017·云南调研)已知数列{an}是等比数列,S n为其前n项和,若a1+a2+a3=4,a4+a5+a6=8,则S12=()A.40 B.60C.32 D.50(2)(2017·长沙模拟)在各项均为正数的等比数列{a n}中,a3=2-1,a5=2+1,则a23+2a2a6+a3a7=()A.4 B.6C.8 D.8-4 2(3)(2018届高三·湖南名校联考)若{a n}是等差数列,首项a1>0,a2 016+a2 017>0,a2 016·a2 017<0,则使前n项和S n>0成立的最大正整数n是()A.2 016 B.2 017C .4 032D .4 033[解析] (1)由等比数列的性质可知,数列S 3,S 6-S 3,S 9-S 6,S 12-S 9是等比数列,即数列4,8,S 9-S 6,S 12-S 9是等比数列,所以S 9-S 6=16,S 12-S 9=32,所以S 12=(S 12-S 9)+(S 9-S 6)+(S 6-S 3)+S 3=32+16+8+4=60,故选B.(2)在等比数列{a n }中,a 3a 7=a 25,a 2a 6=a 3a 5,所以a 23+2a 2a 6+a 3a 7=a 23+2a 3a 5+a 25=(a 3+a 5)2=(2-1+2+1)2=(22)2=8,故选C.(3)因为a 1>0,a 2 016+a 2 017>0,a 2 016·a 2 017<0,所以d <0,a 2 016>0,a 2 017<0,所以S 4 032=4 032(a 1+a 4 032)2=4 032(a 2 016+a 2 017)2>0,S 4 033=4 033(a 1+a 4 033)2=4 033a 2 017<0,所以使前n 项和S n >0成立的最大正整数n 是4 032,故选C.[答案] (1)B (2)C (3)C[方法技巧]等差、等比数列性质问题的求解策略(1)解题关键:抓住项与项之间的关系及项的序号之间的关系,从这些特点入手选择恰当的性质进行求解.(2)运用函数性质:数列是一种特殊的函数,具有函数的一些性质,如单调性、周期性等,可利用函数的性质解题.[演练冲关]1.已知等差数列{a n }中,a 1=1,前10项和等于前5项和,若a m +a 6=0,则m =( ) A .10 B .9 C .8D .2解析:选A 记数列{a n }的前n 项和为S n ,由题意S 10=S 5,所以S 10-S 5=a 6+a 7+a 8+a 9+a 10=0,又a 6+a 10=a 7+a 9=2a 8,于是a 8=0,又a m +a 6=0,所以m +6=2×8,解得m =10.2.(2017·合肥质检)已知数列{a n }是首项为a ,公差为1的等差数列,数列{b n }满足b n =1+a n a n.若对任意的n ∈N *,都有b n ≥b 8成立,则实数a 的取值范围是( )A .(-8,-7)B .[-8,-7)C .(-8,-7]D .[-8,-7]解析:选A 因为{a n }是首项为a ,公差为1的等差数列,所以a n =n +a -1,因为b n =1+a nan=1+1a n ,又对任意的n ∈N *都有b n ≥b 8成立,所以1+1a n ≥1+1a 8,即1a n ≥1a 8对任意的n ∈N *恒成立,因为数列{a n }是公差为1的等差数列,所以{a n }是单调递增的数列,所以⎩⎪⎨⎪⎧a 8<0,a 9>0,即⎩⎪⎨⎪⎧8+a -1<0,9+a -1>0,解得-8<a <-7. 3.若等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则ln a 1+ln a 2+…+ln a 20=________.解析:因为a 10a 11+a 9a 12=2a 10a 11=2e 5,所以a 10a 11=e 5.所以ln a 1+ln a 2+…+ln a 20=ln(a 1a 2…a 20)=ln [(a 1a 20)·(a 2a 19)·…·(a 10a 11)]=ln(a 10a 11)10=10ln(a 10a 11)=10ln e 5=50ln e =50.答案:50[典例感悟][典例] (1)(2018届高三·西安八校联考)已知数列{a n }是等比数列,数列{b n }是等差数列,若a 1·a 6·a 11=-33,b 1+b 6+b 11=7π,则tan b 3+b 91-a 4·a 8的值为( )A .- 3B .-1C .-33D . 3(2)设数列{}a n 是等差数列,数列{}b n 是等比数列,记数列{}a n ,{}b n 的前n 项和分别为S n ,T n .若a 5=b 5,a 6=b 6,且S 7-S 5=4(T 6-T 4),则a 7+a 5b 7+b 5=________. [解析] (1)依题意得,a 36=(-3)3,a 6=-3,3b 6=7π,b 6=7π3,所以b 3+b 91-a 4·a 8=2b 61-a 26=-7π3, 故tanb 3+b 91-a 4·a 8=tan ⎝⎛⎭⎫-7π3=tan ⎝⎛⎭⎫-2π-π3=-tan π3=- 3. (2)设等差数列{}a n 的公差为d ,等比数列{}b n 的公比为q . 由a 5=b 5,a 6=b 6,且S 7-S 5=4(T 6-T 4), 得⎩⎪⎨⎪⎧a 5=b 5,a 5+d =b 5q ,2a 5+3d =4(b 5+b 5q ),解得⎩⎪⎨⎪⎧q =-5,d =-6a 5.故a 7+a 5b 7+b 5=2a 5+2d b 5q 2+b 5=2a 5+2(-6a 5)25a 5+a 5=-10a 526a 5=-513.[答案] (1)A (2)-513[方法技巧]等差、等比数列综合问题的求解策略(1)对于等差数列与等比数列交汇的问题,要从两个数列的特征入手,理清它们的关系,常用“基本量法”求解,但有时灵活地运用等差中项、等比中项等性质,可使运算简便.(2)数列的通项或前n 项和可以看作关于n 的函数,然后利用函数的性质求解数列的有关最值问题.[演练冲关]1.(2017·云南调研)已知数列{a n }是等差数列,若a 1-1,a 3-3,a 5-5依次构成公比为q 的等比数列,则q =( )A .-2B .-1C .1D .2解析:选C 依题意,得2a 3=a 1+a 5,2a 3-6=a 1+a 5-6,即2(a 3-3)=(a 1-1)+(a 5-5),所以a 1-1,a 3-3,a 5-5成等差数列.又a 1-1,a 3-3,a 5-5依次构成公比为q 的等比数列,因此有a 1-1=a 3-3=a 5-5,q =a 3-3a 1-1=1.2.(2017·望江调研)等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15=25,则nS n 的最小值为( )A .-47B .-48C .-49D .-50解析:选C 由已知得⎩⎨⎧S 10=10a 1+10×92d =0,S15=15a 1+15×142d =25,解得⎩⎪⎨⎪⎧a 1=-3,d =23,那么nS n =n 2a 1+n 2(n -1)2d =n 33-10n 23.由于函数f (x )=x 33-10x 23在x =203处取得极小值,又6<203<7,从而检验n =6时,6S 6=-48,n =7时,7S 7=-49.所以nS n 的最小值为-49.3.(2017·太原模拟)设等比数列{a n }的前6项和S 6=6,且1-a 22为a 1,a 3的等差中项,则a 7+a 8+a 9=________.解析:依题意得a 1+a 3=2-a 2,即S 3=a 1+a 2+a 3=2,由等比数列的性质,知数列S 3,S 6-S 3,S 9-S 6成等比数列,即数列2,4,S 9-S 6成等比数列,于是有S 9-S 6=8,即a 7+a 8+a 9=8.答案:8[必备知能·自主补缺](一) 主干知识要记牢 1.等差数列、等比数列2.判断等差数列的常用方法(1)定义法:a n +1-a n =d (常数)(n ∈N *)⇔{a n }是等差数列.(2)通项公式法:a n =pn +q (p ,q 为常数,n ∈N *)⇔{a n }是等差数列. (3)中项公式法:2a n +1=a n +a n +2(n ∈N *)⇔{a n }是等差数列.(4)前n 项和公式法:S n =An 2+Bn (A ,B 为常数,n ∈N *)⇔{a n }是等差数列. 3.判断等比数列的常用方法(1)定义法:a n +1a n=q (q 是不为0的常数,n ∈N *)⇔{a n }是等比数列.(2)通项公式法:a n =cq n (c ,q 均是不为0的常数,n ∈N *)⇔{a n }是等比数列. (3)中项公式法:a 2n +1=a n ·a n +2(a n ·a n +1·a n +2≠0,n ∈N *)⇔{a n }是等比数列. (二) 二级结论要用好1.等差数列的重要规律与推论(1)a n =a 1+(n -1)d =a m +(n -m )d ;p +q =m +n ⇒a p +a q =a m +a n . (2)a p =q ,a q =p (p ≠q )⇒a p +q =0;S m +n =S m +S n +mnd .(3)连续k 项的和(如S k ,S 2k -S k ,S 3k -S 2k ,…)构成的数列是等差数列.(4)若等差数列{a n }的项数为偶数2m ,公差为d ,所有奇数项之和为S 奇,所有偶数项之和为S 偶,则所有项之和S 2m =m (a m +a m +1),S 偶-S 奇=md ,S 奇S 偶=a ma m +1. (5)若等差数列{a n }的项数为奇数2m -1,所有奇数项之和为S 奇,所有偶数项之和为S 偶,则所有项之和S 2m -1=(2m -1)a m ,S 奇=ma m ,S 偶=(m -1)a m ,S 奇-S 偶=a m ,S 奇S 偶=m m -1. [针对练1] 一个等差数列的前12项和为354,前12项中偶数项的和与奇数项的和之比为32∶27,则该数列的公差d =________.解析:设等差数列的前12项中奇数项的和为S 奇,偶数项的和为S 偶,等差数列的公差为d .由已知条件,得⎩⎪⎨⎪⎧S 奇+S 偶=354,S 偶∶S 奇=32∶27,解得⎩⎪⎨⎪⎧S 偶=192,S 奇=162.又S 偶-S 奇=6d ,所以d =192-1626=5.答案:52.等比数列的重要规律与推论 (1)a n =a 1q n -1=a m q n-m;p +q =m +n ⇒a p ·a q =a m ·a n .(2){a n },{b n }成等比数列⇒{a n b n }成等比数列.(3)连续m 项的和(如S m ,S 2m -S m ,S 3m -S 2m ,…)构成的数列是等比数列(注意:这连续m 项的和必须非零才能成立).(4)若等比数列有2n 项,公比为q ,奇数项之和为S 奇,偶数项之和为S 偶,则S 偶S 奇=q . (5)对于等比数列前n 项和S n ,有: ①S m +n =S m +q m S n ;②S m S n =1-q m1-q n(q ≠±1). (三) 易错易混要明了已知数列的前n 项和求a n ,易忽视n =1的情形,直接用S n -S n -1表示.事实上,当n =1时,a 1=S 1;当n ≥2时,a n =S n -S n -1.[针对练2] 已知数列{a n }的前n 项和S n =n 2+1,则该数列的通项公式为________. 解析:当n =1时,a 1=S 1=2.当n ≥2时,a n =S n -S n -1=(n 2+1)-[(n -1)2+1]=n 2-(n -1)2=2n -1, 又当n =1时,2×1-1=1≠2.∴a n =⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥2.答案:a n =⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥2[课时跟踪检测]A 组——12+4提速练一、选择题1.(2017·成都模拟)在等比数列{a n }中,已知a 3=6,a 3+a 5+a 7=78,则a 5=( ) A .12 B .18 C .24D .30解析:选B ∵a 3+a 5+a 7=a 3(1+q 2+q 4)=6(1+q 2+q 4)=78,解得q 2=3,∴a 5=a 3q 2=6×3=18.故选B.2.(2017·兰州模拟)已知等差数列{a n }的前n 项和为S n ,若a 1=2,a 8+a 10=28,则S 9=( ) A .36 B .72 C .144D .288解析:选B ∵a 8+a 10=2a 9=28,∴a 9=14,∴S 9=9(a 1+a 9)2=72. 3.(2017·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A .1B .2C .4D .8解析:选C 设等差数列{a n }的公差为d ,则由⎩⎪⎨⎪⎧a 4+a 5=24,S 6=48,得⎩⎪⎨⎪⎧a 1+3d +a 1+4d =24,6a 1+6×52d =48,即⎩⎪⎨⎪⎧2a 1+7d =24,2a 1+5d =16,解得d =4. 4.设等比数列{}a n 的前n 项和为S n ,若S 1=13a 2-13,S 2=13a 3-13,则公比q =( )A .1B .4C .4或0D .8解析:选B ∵S 1=13a 2-13,S 2=13a 3-13,∴⎩⎨⎧a 1=13a 1q -13,a 1+a 1q =13a 1q 2-13,解得⎩⎪⎨⎪⎧a 1=1,q =4或⎩⎪⎨⎪⎧a 1=-13,q =0(舍去),故所求的公比q =4.5.已知S n 是公差不为0的等差数列{}a n 的前n 项和,且S 1,S 2,S 4成等比数列,则a 2+a 3a 1的值为( )A .4B .6C .8D .10解析:选C 设数列{}a n 的公差为d ,则S 1=a 1,S 2=2a 1+d ,S 4=4a 1+6d ,故(2a 1+d )2=a 1(4a 1+6d ),整理得d =2a 1,所以a 2+a 3a 1=2a 1+3d a 1=8a 1a 1=8.6.(2018届高三·湖南十校联考)已知S n 是数列{a n }的前n 项和,且S n +1=S n +a n +3,a 4+a 5=23,则S 8=( )A .72B .88C .92D .98解析:选C 由S n +1=S n +a n +3,得a n +1-a n =3,所以数列{a n }是公差为3的等差数列,S 8=8(a 1+a 8)2=8(a 4+a 5)2=92.7.已知数列{}a n 满足a n +1=⎩⎨⎧2a n ,0≤a n <12,2a n-1,12≤a n<1.若a 1=35,则a 2 018=( )A.15B.25C.35D.45解析:选A 因为a 1=35,根据题意得a 2=15,a 3=25,a 4=45,a 5=35,所以数列{}a n 以4为周期,又2 018=504×4+2,所以a 2 018=a 2=15,故选A.8.若等比数列的各项均为正数,前4项的和为9,积为814,则前4项倒数的和为( )A.32B.94C .1D .2解析:选D 设等比数列的首项为a 1,公比为q ,则第2,3,4项分别为a 1q ,a 1q 2,a 1q 3,依题意得a 1+a 1q +a 1q 2+a 1q 3=9,a 1·a 1q ·a 1q 2·a 1q 3=814,化简得a 21q 3=92,则1a 1+1a 1q +1a 1q 2+1a 1q3=a 1+a 1q +a 1q 2+a 1q 3a 21q3=2. 9.(2017·广州模拟)已知等比数列{a n }的各项都为正数,且a 3,12a 5,a 4成等差数列,则a 3+a 5a 4+a 6的值是( )A.5-12 B.5+12C.3-52D.3+52解析:选A 设等比数列{a n }的公比为q ,由a 3,12a 5,a 4成等差数列可得a 5=a 3+a 4,即a 3q 2=a 3+a 3q ,故q 2-q -1=0,解得q =1+52或q =1-52(舍去),所以a 3+a 5a 4+a 6=a 3+a 3q 2a 4+a 4q 2=a 3(1+q 2)a 4(1+q 2)=1q =25+1=5-12,故选A.10.(2017·张掖模拟)等差数列{a n }中,a na 2n是一个与n 无关的常数,则该常数的可能值的集合为( )A .{1}B.⎩⎨⎧⎭⎬⎫1,12C.⎩⎨⎧⎭⎬⎫12 D.⎩⎨⎧⎭⎬⎫0,12,1解析:选Ba n a 2n =a 1+(n -1)d a 1+(2n -1)d =a 1-d +nd a 1-d +2nd ,若a 1=d ≠0,则a n a 2n =12;若a 1≠0,d =0,则a n a 2n =1.∵a 1-d +nd ≠0,∴a na 2n ≠0,∴该常数的可能值的集合为⎩⎨⎧⎭⎬⎫1,12. 11.(2018届高三·湖南十校联考)等差数列{a n }的前n 项和为S n ,且a 1<0,若存在自然数m ≥3,使得a m =S m ,则当n >m 时,S n 与a n 的大小关系是( )A .S n <a nB .S n ≤a nC .S n >a nD .大小不能确定解析:选C 若a 1<0,存在自然数m ≥3,使得a m =S m ,则d >0,否则若d ≤0,数列是递减数列或常数列,则恒有S m <a m ,不存在a m =S m .由于a 1<0,d >0,当m ≥3时,有a m =S m ,因此a m >0,S m >0,又S n =S m +a m +1+…+a n ,显然S n >a n .故选C.12.(2017·洛阳模拟)等比数列{a n }的首项为32,公比为-12,前n 项和为S n ,则当n ∈N *时,S n -1S n的最大值与最小值之和为( )A .-23B .-712C.14D.56解析:选C 依题意得,S n =32⎣⎡⎦⎤1-⎝⎛⎭⎫-12n 1-⎝⎛⎭⎫-12=1-⎝⎛⎭⎫-12n .当n 为奇数时,S n =1+12n 随着n 的增大而减小,1<S n =1+12n ≤S 1=32,S n -1S n 随着S n 的增大而增大,0<S n -1S n ≤56;当n 为偶数时,S n =1-12n 随着n 的增大而增大,34=S 2≤S n =1-12n <1,S n -1S n 随着S n 的增大而增大,-712≤S n-1S n <0.因此S n -1S n的最大值与最小值分别为56,-712,其最大值与最小值之和为56+⎝⎛⎭⎫-712=14. 二、填空题13.(2017·合肥质检)已知数列{a n }中,a 1=2,且a 2n +1a n=4(a n +1-a n )(n ∈N *),则其前9项和S 9=________.解析:由已知,得a 2n +1=4a n a n +1-4a 2n ,即a 2n +1-4a n a n +1+4a 2n =(a n +1-2a n )2=0,所以a n +1=2a n ,又因为a 1=2,所以数列{a n }是首项为2,公比为2的等比数列,故S 9=2×(1-29)1-2=210-2=1 022.答案:1 02214.(2017·兰州模拟)已知数列{a n }中,a 1=1,S n 为数列{a n }的前n 项和,且当n ≥2时,有2a na n S n -S 2n=1成立,则S 2 017=________.解析:当n ≥2时,由2a n a n S n -S 2n =1,得2(S n -S n -1)=(S n -S n -1)S n -S 2n =-S n S n -1,∴2S n-2S n -1=1,又2S 1=2,∴⎩⎨⎧⎭⎬⎫2S n 是以2为首项,1为公差的等差数列,∴2S n=n +1,故S n =2n +1,则S 2 017=11 009. 答案:11 00915.(2016·全国卷Ⅰ)设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________.解析:设等比数列{a n }的公比为q ,则由a 1+a 3=10,a 2+a 4=q (a 1+a 3)=5,知q =12.又a 1+a 1q 2=10,∴a 1=8.故a 1a 2…a n =a n 1q1+2+…+(n -1)=23n ·⎝⎛⎭⎫12(n -1)n 2=23n -n 22+n 2=2-n 22+72n .记t =-n 22+7n 2=-12(n 2-7n )=-12⎝⎛⎭⎫n -722+498, 结合n ∈N *可知n =3或4时,t 有最大值6. 又y =2t 为增函数,从而a 1a 2…a n 的最大值为26=64. 答案:6416.(2017·广州模拟)设S n 为数列{a n }的前n 项和,已知a 1=2,对任意p ,q ∈N *,都有a p +q=a p +a q ,则f (n )=S n +60n +1(n ∈N *)的最小值为________. 解析:a 1=2,对任意p ,q ∈N *,都有a p +q =a p +a q ,令p =1,q =n ,则有a n +1=a n +a 1=a n+2.故{a n }是等差数列,所以a n =2n ,S n =2×(1+n )n 2=n 2+n ,f (n )=S n +60n +1=n 2+n +60n +1=(n +1)2-(n +1)+60n +1=n +1+60n +1-1.当n +1=8,即n =7时,f (7)=8+608-1=292;当n +1=7,即n =6时,f (6)=7+607-1=1027,因为292<1027,则f (n )=S n +60n +1(n ∈N *)的最小值为292.2B 组——能力小题保分练1.若a ,b 是函数f (x )=x 2-px +q (p >0,q >0)的两个不同的零点,且a ,b ,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p +q 的值为( )A .6B .7C .8D .9解析:选D 不妨设a >b ,由题意得⎩⎪⎨⎪⎧a +b =p >0,ab =q >0,∴a >0,b >0,则a ,-2,b 成等比数列,a ,b ,-2成等差数列,∴⎩⎪⎨⎪⎧ ab =(-2)2,a -2=2b ,∴⎩⎪⎨⎪⎧a =4,b =1,∴p =5,q =4,∴p +q =9. 2.(2017·郑州质检)已知数列{a n }满足a 1a 2a 3…a n =2n 2(n ∈N *),且对任意n ∈N *都有1a 1+1a 2+…+1a n<t ,则实数t 的取值范围为( ) A.⎝⎛⎭⎫13,+∞ B.⎣⎡⎭⎫13,+∞ C.⎝⎛⎭⎫23,+∞ D.⎣⎡⎭⎫23,+∞ 解析:选D 依题意得,当n ≥2时,a n =a 1a 2a 3…a n a 1a 2a 3…a n -1=2n 22(n -1)2=2n 2-(n -1)2=22n -1,又a 1=21=22×1-1,因此a n =22n -1,1a n=122n -1=12×⎝⎛⎭⎫14n -1,即数列⎩⎨⎧⎭⎬⎫1a n 是以12为首项,14为公比的等比数列,等比数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和等于12⎝⎛⎭⎫1-14n 1-14=23⎝⎛⎭⎫1-14n <23,因此实数t 的取值范围是⎣⎡⎭⎫23,+∞. 3.(2017·全国卷Ⅱ)等差数列{a n }的前n 项和为S n ,a 3=3,S 4=10,则∑k =1n1S k=________. 解析:设等差数列{a n }的首项为a 1,公差为d ,依题意有⎩⎪⎨⎪⎧ a 1+2d =3,4a 1+6d =10,解得⎩⎪⎨⎪⎧a 1=1,d =1,所以S n =n (n +1)2,1S n =2n (n +1)=2⎝⎛⎭⎫1n -1n +1, 因此∑k =1n1S k=2⎝⎛⎭⎫1-12+12-13+…+1n -1n +1=2n n +1.n +14.(2017·兰州模拟)已知数列{a n },{b n },若b 1=0,a n =1n (n +1),当n ≥2时,有b n =b n -1+a n -1,则b 2 018=________.解析:由b n =b n -1+a n -1,得b n -b n -1=a n -1,∴b 2-b 1=a 1,b 3-b 2=a 2,…,b n -b n -1=a n-1,∴b 2-b 1+b 3-b 2+…+b n -b n -1=a 1+a 2+…+a n -1=11×2+12×3+…+1(n -1)×n,即b n -b 1=a 1+a 2+…+a n -1=11×2+12×3+…+1(n -1)×n =11-12+12-13+…+1n -1-1n=1-1n =n -1n ,∵b 1=0,∴b n =n -1n ,∴b 2 018=2 0172 018.答案:2 0172 0185.(2017·石家庄质检)已知数列{a n }的前n 项和为S n ,数列{a n }为12,13,23,14,24,34,15,25,35,45,…,1n ,2n ,…,n -1n ,…,若S k =14,则a k =________.解析:因为1n +2n +…+n -1n =1+2+…+n -1n =n 2-12,1n +1+2n +1+…+n n +1=1+2+…+n n +1=n 2,所以数列12,13+23,14+24+34,…,1n +1+2n +1+…+n n +1是首项为12,公差为12的等差数列,所以该数列的前n 项和T n =12+1+32+…+n 2=n 2+n 4.令T n =n 2+n 4=14,解得n =7(n =-8舍去),所以a k =78.答案:786.在数列{a n }和{b n }中,a n +1=a n +b n +a 2n +b 2n ,b n +1=a n +b n -a 2n +b 2n ,a 1=1,b 1=1.设c n =1a n+1b n,则数列{c n }的前2 018项和为________.解析:由已知a n +1=a n +b n +a 2n +b 2n ,b n +1=a n +b n -a 2n +b 2n 得a n +1+b n +1=2(a n +b n ),又a 1+b 1=2,所以数列{a n +b n }是首项为2,公比为2的等比数列,即a n +b n =2n ,将a n +1=a n +b n +a 2n +b 2n ,b n +1=a n +b n -a 2n +b 2n 相乘并化简,得a n +1b n +1=2a n b n ,即a n +1b n +1a n b n =2.所以数列{a n b n }是首项为1,公比为2的等比数列,所以a n b n =2n -1,因为c n =1a n +1b n ,所以c n =a n +b n a n b n=2n 2n -1=2,数列{c n }的前2 018项和为2×2 018=4 036.答案:4 036第二讲 大题考法——数 列[典例感悟][典例1] (2017·沈阳模拟)已知数列{a n }是等差数列,满足a 1=2,a 4=8,数列{b n }是等比数列,满足b 2=4,b 5=32.(1)求数列{a n }和{b n }的通项公式; (2)求数列{a n +b n }的前n 项和S n .[解] (1)设等差数列{a n }的公差为d ,由题意得d =a 4-a 13=2,所以a n =a 1+(n -1)·d =2+(n-1)×2=2n .设等比数列{b n }的公比为q ,由题意得q 3=b 5b 2=8,解得q =2.因为b 1=b 2q=2,所以b n =b 1·q n -1=2×2n -1=2n .(2)因为a n =2n ,b n =2n,所以a n +b n =2n +2n,所以S n =n (2+2n )2+2(1-2n )1-2=n 2+n +2n +1-2.[备课札记][方法技巧]等差、等比数列的基本量的求解策略(1)分析已知条件和求解目标,确定为最终解决问题需要先求解的中间问题.如为求和需要先求出通项、为求出通项需要先求出首项和公差(公比)等,即确定解题的逻辑次序.(2)注意细节.例如:在等差数列与等比数列综合问题中,若等比数列的公比不能确定,则要看其是否有等于1的可能;在数列的通项问题中,第一项和后面的项能否用同一个公式表示等.[演练冲关]1.(2017·洛阳模拟)已知数列{a n }的前n 项和为S n ,a n ≠0,a 1=1,且2a n a n +1=4S n -3(n ∈N *).(1)求a 2的值并证明:a n +2-a n =2; (2)求数列{a n }的通项公式.解:(1)令n =1得2a 1a 2=4a 1-3,又a 1=1,∴a 2=12.由题可得,2a n a n +1=4S n -3,①2a n +1a n +2=4S n +1-3.②②-①得,2a n +1(a n +2-a n )=4a n +1. ∵a n ≠0,∴a n +2-a n =2.(2)由(1)可知:数列a 1,a 3,a 5,…,a 2k -1,…为等差数列,公差为2,首项为1,∴a 2k -1=1+2(k -1)=2k -1,即n 为奇数时,a n =n .数列a 2,a 4,a 6,…,a 2k ,…为等差数列,公差为2,首项为12,∴a 2k =12+2(k -1)=2k -32,即n 为偶数时,a n =n -32.综上所述,a n =⎩⎪⎨⎪⎧n ,n 为奇数,n -32,n 为偶数.[典例感悟][典例2] 等差数列{a n }的前n 项和为S n ,数列{b n }是等比数列,满足a 1=3,b 1=1,b 2+S 2=10,a 5-2b 2=a 3.(1)求数列{a n }和{b n }的通项公式;(2)令c n =⎩⎪⎨⎪⎧2S n ,n 为奇数,b n ,n 为偶数,设数列{c n }的前n 项和为T n ,求T 2n .[解] (1)设数列{a n }的公差为d ,数列{b n }的公比为q ,则由⎩⎪⎨⎪⎧ b 2+S 2=10,a 5-2b 2=a 3,得⎩⎪⎨⎪⎧q +6+d =10,3+4d -2q =3+2d ,解得⎩⎪⎨⎪⎧d =2,q =2,所以a n =3+2(n -1)=2n +1,b n =2n -1.(2)由a 1=3,a n =2n +1得S n =n (n +2), 则c n =⎩⎪⎨⎪⎧2n (n +2),n 为奇数,2n -1,n 为偶数,即c n =⎩⎪⎨⎪⎧1n -1n +2,n 为奇数,2n -1,n 为偶数,所以T 2n =(c 1+c 3+…+c 2n -1)+(c 2+c 4+…+c 2n )=⎝⎛⎭⎫1-13+⎝⎛⎭⎫13-15+…+⎝⎛⎭⎫12n -1-12n +1+(2+23+…+22n -1) =1-12n +1+2(1-4n )1-4=2n 2n +1+23(4n -1).[备课札记][方法技巧]1.分组求和中分组的策略 (1)根据等差、等比数列分组. (2)根据正号、负号分组. 2.裂项相消的规律(1)裂项系数取决于前后两项分母的差. (2)裂项相消后前、后保留的项数一样多. 3.错位相减法的关注点(1)适用题型:等差数列{a n }与等比数列{b n }对应项相乘({a n ·b n })型数列求和. (2)步骤:①求和时先乘以数列{b n }的公比; ②将两个和式错位相减; ③整理结果形式.[演练冲关]2.(2017·合肥质检)已知等差数列{a n }的前n 项和为S n ,且满足S 4=24,S 7=63. (1)求数列{a n }的通项公式;(2)若b n =2a n +a n ,求数列{b n }的前n 项和T n . 解:(1)∵{a n }为等差数列,∴⎩⎨⎧S 4=4a 1+4×32d =24,S 7=7a 1+7×62d =63,解得⎩⎪⎨⎪⎧a 1=3,d =2,∴a n =2n +1.(2)∵b n =2a n +a n =22n +1+(2n +1)=2×4n +(2n +1),∴T n =2×(4+42+…+4n )+(3+5+…+2n +1) =2×4(1-4n )1-4+n (3+2n +1)2=83(4n -1)+n 2+2n .3.(2017·天津高考)已知{a n}为等差数列,前n项和为S n(n∈N*),{b n}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4-2a1,S11=11b4.(1)求{a n}和{b n}的通项公式;(2)求数列{a2n b2n-1}的前n项和(n∈N*).解:(1)设等差数列{a n}的公差为d,等比数列{b n}的公比为q.由已知b2+b3=12,得b1(q+q2)=12,而b1=2,所以q2+q-6=0.又因为q>0,解得q=2.所以b n=2n.由b3=a4-2a1,可得3d-a1=8.①由S11=11b4,可得a1+5d=16.②由①②,解得a1=1,d=3,由此可得a n=3n-2.所以数列{a n}的通项公式为a n=3n-2,数列{b n}的通项公式为b n=2n.(2)设数列{a2n b2n-1}的前n项和为T n,由a2n=6n-2,b2n-1=2×4n-1,得a2n b2n-1=(3n-1)×4n,故T n=2×4+5×42+8×43+…+(3n-1)×4n,4T n=2×42+5×43+8×44+…+(3n-4)×4n+(3n-1)×4n+1,上述两式相减,得-3T n=2×4+3×42+3×43+…+3×4n-(3n-1)×4n+1=12×(1-4n)1-4-4-(3n-1)×4n+1=-(3n-2)×4n+1-8.故T n=3n-23×4n+1+83.所以数列{a2n b2n-1}的前n项和为3n-23×4n+1+83.[典例感悟][典例3](2017·成都模拟)已知数列{an}满足a1=-2,a n+1=2a n+4.(1)证明数列{a n+4}是等比数列;(2)求数列{|a n|}的前n项和S n.[解] (1)证明:∵a n +1=2a n +4, ∴a n +1+4=2a n +8=2(a n +4), ∴a n +1+4a n +4=2, ∵a 1=-2,∴a 1+4=2.∴{a n +4}是以2为首项,2为公比的等比数列. (2)由(1),可知a n +4=2n , ∴a n =2n -4.当n =1时,a 1=-2<0, ∴S 1=|a 1|=2; 当n ≥2时,a n ≥0.∴S n =-a 1+a 2+…+a n =2+(22-4)+…+(2n-4)=2+22+ (2)-4(n -1)=2(1-2n )1-2-4(n -1)=2n +1-4n +2.又当n =1时,也满足上式.∴数列{|a n |}的前n 项和S n =2n +1-4n +2.[备课札记][方法技巧]判定和证明数列是等差(比)数列的方法(1)定义法:对于n ≥1的任意自然数,验证a n +1-a n ⎝⎛⎭⎫或a n +1a n 为与正整数n 无关的某一常数.(2)中项公式法:①若2a n =a n -1+a n +1(n ∈N *,n ≥2),则{a n }为等差数列; ②若a 2n =a n -1·a n +1≠0(n ∈N *,n ≥2),则{a n }为等比数列. [演练冲关]4.(2018届高三·东北三校联考)已知数列{a n }的首项a 1>0,a n +1=3a n 2a n +1(n ∈N *),且a 1=23.(1)求证:⎩⎨⎧⎭⎬⎫1a n-1是等比数列,并求出{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和T n .解:(1)证明:记b n =1a n -1,则b n +1b n=1a n +1-11a n-1=2a n +13a n -11an-1=2a n +1-3a n 3-3a n =1-a n 3(1-a n )=13,又b 1=1a 1-1=32-1=12,所以⎩⎨⎧⎭⎬⎫1a n -1是首项为12,公比为13的等比数列.所以1a n-1=12×⎝⎛⎭⎫13n -1,即a n =2×3n -11+2×3n -1. 所以数列{a n }的通项公式为a n =2×3n -11+2×3n -1.(2)由(1)知,1a n =12×⎝⎛⎭⎫13n -1+1.所以数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和T n =12⎝⎛⎭⎫1-13n 1-13+n =34⎝⎛⎭⎫1-13n +n . 5.(2017·全国卷Ⅰ)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=-6. (1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列. 解:(1)设{a n }的公比为q .由题设可得⎩⎪⎨⎪⎧a 1(1+q )=2,a 1(1+q +q 2)=-6. 解得⎩⎪⎨⎪⎧a 1=-2,q =-2.故{a n }的通项公式为a n =(-2)n . (2)由(1)可得S n =(-2)×[1-(-2)n ]1-(-2)=-23+(-1)n 2n +13. 由于S n +2+S n +1=-43+(-1)n 2n +3-2n +23=2⎣⎡⎦⎤-23+(-1)n 2n +13=2S n ,故S n +1,S n ,S n +2成等差数列.[解题通法点拨] 数列问题重在“归”——化归、归纳[循流程思维——入题快]等差数列与等比数列是我们最熟悉的两个基本数列,在高中阶段它们是一切数列问题的出发点与落脚点.首项与公差(比)称为等差(比)数列的基本量,大凡涉及这两个数列的问题,我们总希望把已知条件化归为等差或等比数列的基本量间的关系,从而达到解决问题的目的.这种化归为基本量处理的方法,是解决等差或等比数列问题特有的方法,对于不是等差或等比的数列,可从简单的个别的特殊的情景出发,从中归纳出一般性的规律、性质,这种归纳思想便形成了解决一般性数列问题的重要方法:观察、归纳、猜想、证明.由于数列是一种特殊的函数,也可根据题目特点,将数列问题化归为函数问题来解决.[按流程解题——快又准][典例] (2015·全国卷Ⅰ)S n 为数列{a n }的前n 项和.已知a n >0,a 2n +2a n =4S n +3. (1)求{a n }的通项公式; (2)设b n =1a n a n +1,求数列{b n }的前n 项和. [解题示范](1)由a 2n +2a n =4S n +3,①可知a 2n +1+2a n +1=4S n +1+3.②②-①,得a 2n +1-a 2n +2(a n +1-a n )=4a n +1, 即2(a n +1+a n )=a 2n +1-a 2n=(a n +1+a n )(a n +1-a n ).由a n >0,得a n +1-a n =2.又a 21+2a 1=4a 1+3,解得a 1=-1(舍去)或a 1=3.所以{a n }是首项为3,公差为2的等差数列,通项公式为a n =2n +1. (2)由a n =2n +1可知 b n =1a n a n +1=1(2n +1)(2n +3)=12⎝⎛⎭⎫12n +1-12n +3. 设数列{b n }的前n 项和为T n ,则 T n =b 1+b 2+…+b n=12⎝⎛⎭⎫13-15+⎝⎛⎭⎫15-17 +…+12n +1-12n +3=n3(2n +3).[思维升华] 对于数列的备考:一是准确掌握数列中a n 与S n 之间的关系,这是解决数列问题的基础;二是重视等差与等比数列的复习,熟悉其基本概念、公式和性质,这是解决数列问题的根本;三是注意数列与函数、不等式等的综合问题,掌握解决此类问题的通法;四是在知识的复习和解题过程中体会其中所蕴含的数学思想方法,如分类讨论、数形结合、等价转化、函数与方程思想等.[应用体验](2017·济南模拟)已知数列{a n }满足a 1=511,4a n =a n -1-3(n ≥2). (1)求证:数列{a n +1}为等比数列,并求数列{a n }的通项公式; (2)令b n =|log 2(a n +1)|,求数列{b n }的前n 项和S n .解:(1)证明:当n ≥2时,由4a n =a n -1-3得a n +1=14(a n -1+1),所以数列{a n +1}是以512为首项,14为公比的等比数列.所以a n +1=512×⎝⎛⎭⎫14n -1=211-2n ,a n=211-2n-1. (2)b n =|11-2n |,设数列{11-2n }的前n 项和为T n ,则T n =10n -n 2. 当n ≤5时,S n =T n =10n -n 2;当n ≥6时,S n =2S 5-T n =n 2-10n +50.所以S n =⎩⎪⎨⎪⎧10n -n 2,n ≤5,n 2-10n +50,n ≥6.[课时跟踪检测]1.(2018届高三·广西三市联考)已知数列{a n }的前n 项和为S n ,且S n =2n -1(n ∈N *). (1)求数列{a n }的通项公式;(2)设b n =log 4a n +1,求{b n }的前n 项和T n . 解:(1)当n ≥2时,a n =S n -S n -1=2n -1,当n =1时,a 1=2-1=1,满足a n =2n -1,∴数列{a n }的通项公式为a n =2n -1(n ∈N *).(2)由(1)得,b n =log 4a n +1=n +12, 则b n +1-b n =n +22-n +12=12, 又b 1=log 4a 1+1=1,∴数列{b n }是首项为1,公差d =12的等差数列,∴T n =nb 1+n (n -1)2d =n 2+3n4.2.(2017·福州质检)已知等差数列{a n }的各项均为正数,其公差为2,a 2a 4=4a 3+1. (1)求{a n }的通项公式; (2)求a 1+a 3+a 9+…+a 3n .解:(1)依题意知,a n =a 1+2(n -1),a n >0.因为a 2a 4=4a 3+1,所以(a 1+2)(a 1+6)=4(a 1+4)+1, 所以a 21+4a 1-5=0,解得a 1=1或a 1=-5(舍去), 所以a n =2n -1. (2)a 1+a 3+a 9+…+a 3n=(2×1-1)+(2×3-1)+(2×32-1)+…+(2×3n -1) =2×(1+3+32+…+3n )-(n +1) =2×1-3n +11-3-(n +1)=3n +1-n -2.3.(2018届高三·广东五校联考)数列{a n }的前n 项和S n 满足S n =2a n -a 1,且a 1,a 2+1,a 3成等差数列.(1)求数列{a n }的通项公式;(2)设b n =a n +1S n S n +1,求数列{b n }的前n 项和T n .解:(1)∵S n =2a n -a 1,①∴当n ≥2时,S n -1=2a n -1-a 1;② ①-②得,a n =2a n -2a n -1,即a n =2a n -1.由a 1,a 2+1,a 3成等差数列,得2(a 2+1)=a 1+a 3, ∴2(2a 1+1)=a 1+4a 1,解得a 1=2.∴数列{a n }是首项为2,公比为2的等比数列. ∴a n =2n .(2)∵a n =2n ,∴S n =2a n -a 1=2n +1-2,S n +1=2n +2-2.∴b n =a n +1S n S n +1=2n +1(2n +1-2)(2n +2-2)=1212n -1-12n +1-1. ∴数列{b n }的前n 项和T n =12⎛⎭⎫12-1-122-1+⎝⎛⎭⎫122-1-123-1+…+⎝⎛⎭⎫12n -1-12n +1-1=12⎛⎭⎫1-12n +1-1=2n -12n 1-1.4.已知数列{a n }的前n 项和为S n ,若a n =-3S n +4,b n =-log 2a n +1.(1)求数列{a n }的通项公式与数列{b n }的通项公式;(2)令c n =b n 2n +1+1n (n +1),其中n ∈N *,若数列{c n }的前n 项和为T n ,求T n .解:(1)由a 1=-3a 1+4,得a 1=1, 由a n =-3S n +4,知a n +1=-3S n +1+4, 两式相减并化简得a n +1=14a n ,∴a n =⎝⎛⎭⎫14n -1,b n =-log 2a n +1=-log 2⎝⎛⎭⎫14n =2n . (2)由题意知,c n =n 2n +1n (n +1).令H n =12+222+323+…+n 2n ,① 则12H n =122+223+…+n -12n +n 2n +1,②①-②得,12H n =12+122+123+…+12n -n 2n +1=1-n +22n +1.∴H n =2-n +22n. 又T n -H n =11×2+12×3+…+1n (n +1)=1-12+12-13+…+1n -1n +1=1-1n +1=n n +1,∴T n =H n +(T n -H n )=2-n +22n +nn +1. 5.已知数列{a n }满足a 1=1,a n +1=2a n +n +1.(1)是否存在实数p ,q ,使{a n +pn +q }成等比数列?若存在,求出p ,q 的值;若不存在,请说明理由;(2)令b n =a n +2,求数列{b n }的前n 项和T n .解:(1)假设存在实数p ,q ,使数列{a n +pn +q }为等比数列,且其公比为A ,则由题意得,a n +1+p (n +1)+q =A (a n +pn +q ),即a n +1=Aa n +(Ap -p )n +Aq -q -p ,又a n +1=2a n +n +1,∴⎩⎪⎨⎪⎧A =2,Ap -p =1,Aq -q -p =1,即⎩⎪⎨⎪⎧A =2,p =1,q =2,∴a n +1+(n +1)+2=2(a n +n +2),当n =1时,a 1+1+2=4,∴存在实数p =1,q =2,使数列{a n +pn +q }是首项为4,公比为2的等比数列.(2)由(1)可知a n +n +2=4·2n -1=2n +1,。
2018届高中数学高考二轮复习数列教案含答案(全国通用)
教学过程一、考纲解读1.高考对于本节的考查方式:(1)选择填空重点考查等差、等比数列的性质;(2)解答题中重点考查通项公式、求和(重视求和的错位相减法、裂项相消法)(3)递推数列也是考察的重点,只局限于最基本的形式2. 数列在历年高考高考试题中占有重要的地位,近几年更是有所加强.一般情况下都是一至两个考查性质的客观题和一个考察能力的解答题。
文科以等差数列的基础知识、基本解法为主,理科注重概念的理解和运用。
分值在22分左右二、复习预习(1)数列的概念和简单表示法①了解数列的概念和几种简单的表示方法(列表、图像、通项公式).②了解数列是自变量为正整数的一类函数.(2)等差数列、等比数列①理解等差数列、等比数列的概念.②掌握等差数列、等比数列的通项公式与前n项和公式.③能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.④了解等差数列与一次函数、等比数列与指数函数的关系.(3)数列求和,求通项.与函数,不等式等知识的综合题,考查学生对知识的掌握和应用能力.错位相减法、裂项相消法三、知识讲解考点1 数列的概念和简单表示法①了解数列的概念和几种简单的表示方法(列表、图像、通项公式).②了解数列是自变量为正整数的一类函数.考点2 等差数列、等比数列①理解等差数列、等比数列的概念.②掌握等差数列、等比数列的通项公式与前n项和公式.③能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.④了解等差数列与一次函数、等比数列与指数函数的关系.考点3 综合问题(1)求数列通项累加法,累乘法,构造法,数学归纳法(2)数列求和裂项相消法,错位相减法, 数学归纳法(3)与函数,不等式等知识的综合题,考查学生对知识的掌握和应用能力.放缩法四、例题精析例1 [2014全国大纲] 等比数列{}n a 中,42a =,55a =,则数列{lg }n a 的前8项和等于( ) (A)6 (B)5 (C)4 (D)3【规范解答】选(C ).(求解对照)由已知有在等比数列{}n a 中,42a =,55a =, 则63728154a a a a a a a a ⋅=⋅=⋅=⋅=10所以410lg )lg(lg lg lg 4821821==⋅⋅⋅=+⋅⋅⋅++a a a a a a 。
2018届高中数学高考二轮复习 圆锥曲线教案含答案(全国通用)
教学过程一、考纲解读通常设置一个小题与一个大题,约占20分.其规律是涉及圆锥曲线的图形、定义或简单几何性质一个小题,直线、圆与圆锥曲线(特别是椭圆)的综合问题一个大题.在解答题中,以“交汇型问题”、“参数问题”和“轨迹问题”为主要题型,需要重视与加强.复习中,要以椭圆的定义、标准方程与几何性质为突破口,通过类比与对比的方法把握双曲线与抛物线.从思想方法的高度把握圆锥曲线问题.其涉及的主要思想方法有:(1)待定系数法;(2)数形结合法;(3)分类讨论法;(4)函数与方程思想.二、复习预习圆锥曲线与方程①掌握椭圆的定义、几何图形、标准方程和简单几何性质(范围、对称性、顶点、离心率).②了解双曲线的定义、几何图形和标准方程,知道其简单的几何性质(范围、对称性、顶点、离心率、渐近线).③了解抛物线的定义、几何图形和标准方程,知道其简单的几何性质(范围、对称性、顶点、离心率).④理解数形结合的思想.⑤了解圆锥曲线的简单应用.三、知识讲解考点1 椭圆椭圆的定义、几何图形、标准方程椭圆简单几何性质(范围、对称性、顶点、焦点、离心率、通径).考点2 双曲线双曲线的定义、几何图形、标准方程双曲线简单几何性质(范围、对称性、顶点、焦点、离心率、渐近线、通径)考点3 抛物线抛物线的定义、几何图形、标准方程抛物线简单几何性质(范围、对称性、顶点、焦点、离心率、焦半径公式)考点4 直线与圆锥曲线位置关系1.解答题中侧重用代数方法解题,考查直线与圆锥曲线的位置关系(解答题中直线与双曲线位置关系几乎不考),有关轨迹问题、最值问题、参数范围问题、定值问题等.2.韦达定理在解决直线与圆锥曲线的位置关系的应用,应注意考虑这几个方面:(1)设交点坐标,设直线方程;(2)联立直线与椭圆方程,消去x或y,得到一个关于y或x一元二次方程,利用韦达定理;(3)利用基本不等式或函数的单调性探求最值问题。
解答题以考查学生的运算求解能力、推理论证能力,常涉及函数与方程思想、数形结合思想、化归与转化思想等基本数学思想,用到待定系数法、代入法、消元法等。
2018年高考理科数二轮创新专题复习教学案:第一部分
[研高考·明考点][析考情·明重点]第一讲小题考法——直线与圆[典例感悟][典例](1)已知直线l1:x+2ay-1=0,l2:(a+1)x-ay=0,若l1∥l2,则实数a的值为()A.-32B.0C.-32或0 D.2(2)已知点A(-1,0),B(1,0),C(0,1),直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,则b的取值范围是()A .(0,1) B.⎝⎛⎭⎫1-22,12 C.⎝⎛⎦⎤1-22,13 D.⎣⎡⎭⎫13,12 (3)过直线l 1:x -2y +3=0与直线l 2:2x +3y -8=0的交点,且到点P (0,4)距离为2的直线方程为________________________________________________________________.[解析] (1)由l 1∥l 2得1×(-a )=2a (a +1),即2a 2+3a =0,解得a =0或a =-32.经检验,当a =0或a =-32时均有l 1∥l 2,故选C.(2)易知BC 所在直线的方程是x +y =1,由⎩⎪⎨⎪⎧x +y =1,y =ax +b 消去x ,得y =a +ba +1,当a >0时,直线y =ax +b 与x 轴交于点⎝⎛⎭⎫-b a ,0,结合图形知12×a +b a +1×⎝⎛⎭⎫1+b a =12,化简得(a +b )2=a (a +1),则a =b 21-2b .∵a >0,∴b 21-2b>0,解得b <12.考虑极限位置,即当a =0时,易得b =1-22,故b 的取值范围是⎝⎛⎭⎫1-22,12.(3)由⎩⎪⎨⎪⎧ x -2y +3=0,2x +3y -8=0,得⎩⎪⎨⎪⎧x =1,y =2.∴l 1与l 2的交点为(1,2).当所求直线斜率不存在,即直线方程为x =1时,显然不满足题意.当所求直线斜率存在时,设所求直线方程为y -2=k (x -1),即kx -y +2-k =0, ∵点P (0,4)到直线的距离为2, ∴2=|-2-k |1+k 2,∴k =0或k =43. ∴直线方程为y =2或4x -3y +2=0. [答案] (1)C (2)B (3)y =2或4x -3y +2=0[方法技巧]直线方程问题的2个关注点(1)求解两条直线平行的问题时,在利用A 1B 2-A 2B 1=0建立方程求出参数的值后,要注意代入检验,排除两条直线重合的情况.(2)求直线方程时应根据条件选择合适的方程形式,同时要考虑直线斜率不存在的情况是否符合题意.[演练冲关]1.已知直线l 的倾斜角为π4,直线l 1经过点A (3,2),B (-a,1),且l 1与l 垂直,直线l 2:2x +by +1=0与直线l 1平行,则a +b =( )A .-4B .-2C .0D .2解析:选B 由题知,直线l 的斜率为1,则直线l 1的斜率为-1,所以2-13+a =-1,所以a=-4.又l 1∥l 2,所以-2b =-1,b =2,所以a +b =-4+2=-2,故选B.2.若直线l 1:x +ay +6=0与l 2:(a -2)x +3y +2a =0平行,则l 1与l 2间的距离为( ) A. 2 B.823C. 3D.833解析:选B 由l 1∥l 2,得(a -2)a =1×3,且a ×2a ≠3×6,解得a =-1,所以l 1:x -y +6=0,l 2:x -y +23=0,所以l 1与l 2间的距离为d =⎪⎪⎪⎪6-2312+(-1)2=823. 3.设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|PA |·|PB |的最大值是________.解析:易求定点A (0,0),B (1,3).当P 与A 和B 均不重合时,因为P 为直线x +my =0与mx -y -m +3=0的交点,且两直线垂直,则PA ⊥PB ,所以|PA |2+|PB |2=|AB |2=10,所以|PA |·|PB |≤|PA |2+|PB |22=5(当且仅当|PA |=|PB |=5时,等号成立),当P 与A 或B 重合时,|PA |·|PB |=0,故|PA |·|PB |的最大值是5.答案:5[典例感悟][典例] (1)已知三点A (1,0),B (0,3),C (2,3),则△ABC 外接圆的圆心到原点的距离为( )A.53 B.213C.253D.43(2)(2015·全国卷Ⅰ)一个圆经过椭圆x 216+y 24=1的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为______________.(3)(2017·广州模拟)若一个圆的圆心是抛物线x 2=4y 的焦点,且该圆与直线y =x +3相切,则该圆的标准方程是______________.[解析] (1)设△ABC 外接圆的一般方程为x 2+y 2+Dx +Ey +F =0,∴⎩⎨⎧1+D +F =0,3+3E +F =0,7+2D +3E +F =0,∴⎩⎪⎨⎪⎧D =-2,E =-433,F =1,∴△ABC 外接圆的一般方程为x 2+y 2-2x -433y +1=0,圆心为⎝⎛⎭⎫1,233,故△ABC 外接圆的圆心到原点的距离为1+⎝⎛⎭⎫2332=213. (2)由题意知a =4,b =2,上、下顶点的坐标分别为(0,2),(0,-2),右顶点的坐标为(4,0).由圆心在x 轴的正半轴上知圆过点(0,2),(0,-2),(4,0)三点.设圆的标准方程为(x -m )2+y 2=r 2(0<m <4,r >0),则⎩⎪⎨⎪⎧m 2+4=r 2,(4-m )2=r 2, 解得⎩⎨⎧m =32,r 2=254.所以圆的标准方程为⎝⎛⎭⎫x -322+y 2=254. (3)抛物线x 2=4y 的焦点为(0,1),即圆心为(0,1),设该圆的标准方程是x 2+(y -1)2=r 2(r >0),因为该圆与直线y =x +3,即x -y +3=0相切,所以r =|-1+3|2=2,故该圆的标准方程是x 2+(y -1)2=2.[答案] (1)B (2)⎝⎛⎭⎫x -322+y 2=254(3)x 2+(y -1)2=2 [方法技巧] 圆的方程的2种求法(1)几何法:通过研究圆的性质、直线和圆、圆与圆的位置关系,进而求得圆的基本量和方程. (2)代数法:用待定系数法先设出圆的方程,再由条件求得各系数.[演练冲关]1.(2017·长春质检)圆(x -2)2+y 2=4关于直线y =33x 对称的圆的方程是( ) A .(x -3)2+(y -1)2=4 B .(x -2)2+(y -2)2=4 C .x 2+(y -2)2=4D .(x -1)2+(y -3)2=4解析:选D 圆与圆关于直线对称,则圆的半径相同,只需求圆心(2,0)关于直线y =33x 对称的点的坐标即可.设所求圆的圆心坐标为(a ,b ),则⎩⎪⎨⎪⎧b -0a -2×33=-1,b +02=33×a +22,解得⎩⎨⎧a =1,b =3,所以圆(x -2)2+y 2=4的圆心关于直线y =33x 对称的点的坐标为(1,3),从而所求圆的方程为(x -1)2+(y -3)2=4,故选D.2.(2017·北京西城区模拟)已知圆C 的圆心是直线x -y +1=0与x 轴的交点,且圆C 与直线x +y +3=0相切,则圆C 的方程是( )A .(x +1)2+y 2=2B .(x +1)2+y 2=8C .(x -1)2+y 2=2D .(x -1)2+y 2=8解析:选A 根据题意直线x -y +1=0与x 轴的交点为(-1,0),即圆心为(-1,0).因为圆C 与直线x +y +3=0相切,所以半径r =|-1+0+3|12+12=2,则圆C 的方程为(x +1)2+y 2=2,故选A.3.(2017·惠州调研)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.解析:设圆心坐标为(a ,b ),半径为r .由已知⎩⎪⎨⎪⎧a -2b =0,b >0,又圆心(a ,b )到y 轴、x 轴的距离分别为|a |,|b |,所以|a |=r ,|b |2+3=r 2.综上,解得a =2,b =1,r =2,所以圆心坐标为(2,1),圆C 的标准方程为(x -2)2+(y -1)2=4.答案:(x -2)2+(y -1)2=4[典例感悟][典例] (1)(2017·昆明模拟)已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( )A .内切B .相交C .外切D .相离(2)(2016·全国卷Ⅰ)设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为________.(3)(2016·全国卷Ⅲ)已知直线l :x -3y +6=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点,则|CD |=________.[解析] (1)由题知圆M :x 2+(y -a )2=a 2(a >0),圆心(0,a )到直线x +y =0的距离d =a2,所以2a 2-a 22=22,解得a =2,即圆M 的圆心为(0,2),半径为2.又圆N 的圆心为(1,1),半径为1,则圆M ,圆N 的圆心距|MN |=2,两圆半径之差为1,半径之和为3,1<2<3,故两圆相交.(2)圆C :x 2+y 2-2ay -2=0化为标准方程为x 2+(y -a )2=a 2+2,所以圆心C (0,a ),半径r =a 2+2,因为|AB |=23,点C 到直线y =x +2a ,即x -y +2a =0的距离d =|0-a +2a |2=|a |2,由勾股定理得⎝⎛⎭⎫2322+⎝⎛⎭⎫|a |22=a 2+2,解得a 2=2,所以r =a 2+2=2,所以圆C 的面积为π×22=4π.(3)如图所示,∵直线AB 的方程为x -3y +6=0,∴k AB =33,∴∠BPD =30°, 从而∠BDP =60°. 在Rt △BOD 中, ∵|OB |=23,∴|OD |=2.取AB 的中点H ,连接OH ,则OH ⊥AB , ∴OH 为直角梯形ABDC 的中位线, ∴|OC |=|OD |,∴|CD |=2|OD |=2×2=4. [答案] (1)B (2)4π (3)4[方法技巧]1.直线(圆)与圆位置关系问题的求解思路(1)研究直线与圆的位置关系主要通过将圆心到直线的距离同半径做比较实现,两圆位置关系的判断依据是两圆心距离与两半径差与和的比较.(2)直线与圆相切时利用“切线与过切点的半径垂直,圆心到切线的距离等于半径”建立关于切线斜率的等式,所以求切线方程时主要选择点斜式.过圆外一点求解切线段长的问题,可先求出圆心到圆外点的距离,再结合半径利用勾股定理计算.2.直线截圆所得弦长的求解方法(1)根据平面几何知识构建直角三角形,把弦长用圆的半径和圆心到直线的距离表示,即l =2r 2-d 2(其中l 为弦长,r 为圆的半径,d 为圆心到直线的距离).(2)根据公式:l =1+k 2|x 1-x 2|求解(其中l 为弦长,x 1,x 2为直线与圆相交所得交点的横坐标,k 为直线的斜率).(3)求出交点坐标,用两点间的距离公式求解.[演练冲关]1.(2017·南昌模拟)如图,在平面直角坐标系xOy 中,直线y =2x +1与圆x 2+y 2=4相交于A ,B 两点,则cos ∠AOB =( )A.510B .-510 C.910D .-910解析:选D 因为圆x 2+y 2=4的圆心为O (0,0),半径为2,所以圆心O 到直线y =2x +1的距离d =|2×0-0+1|22+(-1)2=15,所以弦长|AB |=222-⎝⎛⎭⎫152=2195. 在△AOB 中,由余弦定理得cos ∠AOB =|OA |2+|OB |2-|AB |22|OA |·|OB |=4+4-4×1952×2×2=-910.2.已知P (x ,y )是直线kx +y +4=0(k >0)上一动点,PA ,PB 是圆C :x 2+y 2-2y =0的两条切线,A ,B 是切点,若四边形PACB 的最小面积是2,则k =________.解析:如图,把圆的方程化成标准形式得x 2+(y -1)2=1,所以圆心为C (0,1),半径为r =1,四边形PACB 的面积S =2S △PBC ,所以若四边形PACB 的最小面积是2,则S △PBC 的最小值为1.而S △PBC =12r ·|PB |,即|PB |的最小值为2,此时|PC |最小,|PC |为圆心到直线kx +y +4=0的距离d ,则d =|5|k 2+1=12+22=5,化简得k 2=4,因为k >0,所以k =2. 答案:23.(2017·云南调研)已知动圆C 过A (4,0),B (0,-2)两点,过点M (1,-2)的直线交圆C 于E ,F 两点,当圆C 的面积最小时,|EF |的最小值为________.解析:依题意得,动圆C 的半径不小于12|AB |=5,即当圆C 的面积最小时,AB 是圆C 的一条直径,此时圆心C 是线段AB 的中点,即点C (2,-1),又点M 的坐标为(1,-2),且|CM |=(2-1)2+(-1+2)2=2<5,所以点M 位于圆C 内,所以当点M 为线段EF 的中点时,|EF |最小,其最小值为2(5)2-(2)2=2 3.答案:2 3[必备知能·自主补缺](一) 主干知识要记牢1.直线方程的五种形式2.点到直线的距离及两平行直线间的距离(1)点P(x0,y0)到直线Ax+By+C=0的距离为d=|Ax0+By0+C|A2+B2.(2)两平行线l1:Ax+By+C1=0,l2:Ax+By+C2=0间的距离为d=|C1-C2| A2+B2.3.圆的方程(1)圆的标准方程:(x-a)2+(y-b)2=r2.(2)圆的一般方程:x2+y2+Dx+Ey+F=0(D2+E2-4F>0).(3)圆的直径式方程:(x-x1)(x-x2)+(y-y1)(y-y2)=0(圆的直径的两端点是A(x1,y1),B(x2,y2)).4.直线与圆位置关系的判定方法(1)代数方法(判断直线与圆方程联立所得方程组的解的情况):Δ>0⇔相交,Δ<0⇔相离,Δ=0⇔相切.(2)几何方法(比较圆心到直线的距离与半径的大小):设圆心到直线的距离为d,则d<r⇔相交,d>r⇔相离,d=r⇔相切.5.圆与圆的位置关系已知两圆的圆心分别为O1,O2,半径分别为r1,r2,则(1)当|O1O2|>r1+r2时,两圆外离;(2)当|O1O2|=r1+r2时,两圆外切;(3)当|r1-r2|<|O1O2|<r1+r2时,两圆相交;(4)当|O1O2|=|r1-r2|时,两圆内切;(5)当0≤|O1O2|<|r1-r2|时,两圆内含.(二) 二级结论要用好1.直线l1:A1x+B1y+C1=0与直线l2:A2x+B2y+C2=0的位置关系(1)平行⇔A1B2-A2B1=0且B1C2-B2C1≠0;(2)重合⇔A1B2-A2B1=0且B1C2-B2C1=0;(3)相交⇔A1B2-A2B1≠0;(4)垂直⇔A1A2+B1B2=0.[针对练1]若直线l1:mx+y+8=0与l2:4x+(m-5)y+2m=0垂直,则m=________.解析:∵l1⊥l2,∴4m+(m-5)=0,∴m=1.答案:12.若点P(x0,y0)在圆x2+y2=r2上,则圆过该点的切线方程为:x0x+y0y=r2.[针对练2]过点(1,3)且与圆x2+y2=4相切的直线l的方程为____________.解析:∵点(1,3)在圆x2+y2=4上,∴切线方程为x+3y=4,即x+3y-4=0.答案:x+3y-4=0(三)易错易混要明了1.易忽视直线方程的几种形式的限制条件,如根据直线在两坐标轴上的截距相等设方程时,忽视截距为0的情况,直接设为xa+ya=1;再如,忽视斜率不存在的情况直接将过定点P(x0,y0)的直线设为y-y0=k(x-x0)等.[针对练3]已知直线过点P(1,5),且在两坐标轴上的截距相等,则此直线的方程为__________________.解析:当截距为0时,直线方程为5x-y=0;当截距不为0时,设直线方程为xa+ya=1,代入P(1,5),得a=6,∴直线方程为x+y-6=0.答案:5x-y=0或x+y-6=02.讨论两条直线的位置关系时,易忽视系数等于零时的讨论导致漏解,如两条直线垂直时,一条直线的斜率不存在,另一条直线斜率为0.如果利用直线l1:A1x+B1y+C1=0与l2:A2x+B2y +C2=0垂直的充要条件A1A2+B1B2=0,就可以避免讨论.[针对练4]已知直线l1:(t+2)x+(1-t)y=1与l2:(t-1)x+(2t+3)y+2=0互相垂直,则t 的值为________.解析:∵l1⊥l2,∴(t+2)(t-1)+(1-t)(2t+3)=0,解得t=1或t=-1.答案:-1或13.求解两条平行线之间的距离时,易忽视两直线系数不相等,而直接代入公式|C1-C2|A2+B2,导致错解.[针对练5]两平行直线3x+2y-5=0与6x+4y+5=0间的距离为________.解析:把直线6x+4y+5=0化为3x+2y+52=0,故两平行线间的距离d=⎪⎪⎪⎪-5-5232+22=151326.答案:1513 264.易误认为两圆相切即为两圆外切,忽视两圆内切的情况导致漏解.[针对练6]已知两圆x2+y2-2x-6y-1=0,x2+y2-10x-12y+m=0相切,则m=________.解析:由x2+y2-2x-6y-1=0,得(x-1)2+(y-3)2=11,由x2+y2-10x-12y+m=0,得(x-5)2+(y-6)2=61-m.当两圆外切时,有(5-1)2+(6-3)2=61-m+11,解得m=25+1011;当两圆内切时,有(5-1)2+(6-3)2=||61-m-11,解得m=25-1011.答案:25±1011[课时跟踪检测]A组——12+4提速练一、选择题1.(2017·沈阳质检)已知直线l:y=k(x+3)和圆C:x2+(y-1)2=1,若直线l与圆C相切,则k=()A.0 B. 3C.33或0 D.3或0解析:选D因为直线l与圆C相切,所以圆心C(0,1)到直线l的距离d=|-1+3k|1+k2=1,解得k=0或k=3,故选D.2.(2017·陕西质检)圆:x2+y2-2x-2y+1=0上的点到直线x-y=2距离的最大值是() A.1+ 2 B.2C.1+22D.2+2 2解析:选A将圆的方程化为(x-1)2+(y-1)2=1,即圆心坐标为(1,1),半径为1,则圆心到直线x-y=2的距离d=|1-1-2|2=2,故圆上的点到直线x-y=2距离的最大值为d+1=2+1.3.(2017·洛阳统考)直线l:y=kx+1与圆O:x2+y2=1相交于A,B两点,则“k=1”是“|AB|=2”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 依题意,注意到|AB |=2=|OA |2+|OB |2等价于圆心O 到直线l 的距离等于22,即有1k 2+1=22,k =±1.因此,“k =1”是“|AB |=2”的充分不必要条件. 4.若三条直线l 1:4x +y =3,l 2:mx +y =0,l 3:x -my =2不能围成三角形,则实数m 的取值最多有( )A .2个B .3个C .4个D .6个解析:选C 三条直线不能围成三角形,则至少有两条直线平行或三条直线相交于同一点.若l 1∥l 2,则m =4;若l 1∥l 3,则m =-14;若l 2∥l 3,则m 的值不存在;若三条直线相交于同一点,则m =1或-53.故实数m 的取值最多有4个,故选C.5.当a 为任意实数时,直线(a -1)x -y +a +1=0恒过定点C ,则以C 为圆心,5为半径的圆的方程为( )A .x 2+y 2-2x +4y =0B .x 2+y 2+2x +4y =0C .x 2+y 2+2x -4y =0D .x 2+y 2-2x -4y =0解析:选C 由(a -1)x -y +a +1=0得(x +1)a -(x +y -1)=0,由x +1=0且x +y -1=0,解得x =-1,y =2,即该直线恒过点(-1,2),∴所求圆的方程为(x +1)2+(y -2)2=5,即x 2+y 2+2x -4y =0.6.与直线x +y -2=0和曲线x 2+y 2-12x -12y +54=0都相切的半径最小的圆的标准方程是( )A .(x +2)2+(y -2)2=2B .(x -2)2+(y +2)2=2C .(x +2)2+(y +2)2=2D .(x -2)2+(y -2)2=2解析:选D 由题意知,曲线方程为(x -6)2+(y -6)2=(32)2,过圆心(6,6)作直线x +y -2=0的垂线,垂线方程为y =x ,则所求的最小圆的圆心必在直线y =x 上,又圆心(6,6)到直线x +y -2=0的距离d =|6+6-2|2=52,故最小圆的半径为52-322=2,圆心坐标为(2,2),所以标准方程为(x -2)2+(y -2)2=2.7.已知圆C 关于x 轴对称,经过点(0,1),且被y 轴分成两段弧,弧长之比为2∶1,则圆的方程为( )A .x 2+⎝⎛⎭⎫y ±332=43B .x 2+⎝⎛⎭⎫y ±332=13C.⎝⎛⎭⎫x ±332+y 2=43 D.⎝⎛⎭⎫x ±332+y 2=13解析:选C 设圆的方程为(x ±a )2+y 2=r 2(a >0),圆C 与y 轴交于A (0,1),B (0,-1),由弧长之比为2∶1,易知∠OCA =12∠ACB =12×120°=60°,则tan 60°=|OA ||OC |=1|OC |=3,所以a =|OC |=33,即圆心坐标为⎝⎛⎭⎫±33,0,r 2=|AC |2=12+⎝⎛⎭⎫±332=43.所以圆的方程为⎝⎛⎭⎫x ±332+y 2=43,故选C.8.(2017·合肥质检)设圆x 2+y 2-2x -2y -2=0的圆心为C ,直线l 过(0,3)且与圆C 交于A ,B 两点,若|AB |=23,则直线l 的方程为( )A .3x +4y -12=0或4x -3y +9=0B .3x +4y -12=0或x =0C .4x -3y +9=0或x =0D .3x -4y +12=0或4x +3y +9=0解析:选B 由题可知,圆心C (1,1),半径r =2.当直线l 的斜率不存在时,直线方程为x =0,计算出弦长为23,符合题意;当直线l 的斜率存在时,可设直线l 的方程为y =kx +3,由弦长为23可知,圆心到该直线的距离为1,从而有|k +2|k 2+1=1,解得k =-34,所以直线l 的方程为y=-34x +3,即3x +4y -12=0.综上,直线l 的方程为x =0或3x +4y -12=0,故选B.9.(2018届高三·湖北七市(州)联考)关于曲线C :x 2+y 4=1,给出下列四个命题: ①曲线C 有两条对称轴,一个对称中心; ②曲线C 上的点到原点距离的最小值为1; ③曲线C 的长度l 满足l >42;④曲线C 所围成图形的面积S 满足π<S <4. 上述命题中,真命题的个数是( ) A .4B .3C .2D .1解析:选A ①将(x ,-y ),(-x ,y ),(-x ,-y )代入,方程不变,则可以确定曲线关于x 轴,y 轴对称,关于原点对称,故①是真命题.②由x 2+y 4=1得0≤x 2≤1,0≤y 4≤1,故x 2+y 2≥x 2+y 2·y 2=x 2+y 4=1,即曲线C 上的点到原点的距离为x 2+y 2≥1,故②是真命题.③由②知,x 2+y 4=1的图象位于单位圆x 2+y 2=1和边长为2的正方形之间,如图所示,其每一段弧长均大于2,所以l >42,故③是真命题.④由③知,π×12<S <2×2,即π<S <4,故④是真命题.综上,真命题的个数为4.10.已知直线l :x +ay -1=0(a ∈R)是圆C :x 2+y 2-4x -2y +1=0的对称轴.过点A (-4,a )作圆C 的一条切线,切点为B ,则|AB |=( )A .2B .4 2C .6D .210解析:选C 由于直线x +ay -1=0是圆C :x 2+y 2-4x -2y +1=0的对称轴,∴圆心C (2,1)在直线x +ay -1=0上,∴2+a -1=0,解得a =-1,∴A (-4,-1),|AC |2=(-4-2)2+(-1-1)2=40.又r =2,∴|AB |2=40-4=36,即|AB |=6.11.两个圆C 1:x 2+y 2+2ax +a 2-4=0(a ∈R)与C 2:x 2+y 2-2by -1+b 2=0(b ∈R)恰有三条公切线,则a +b 的最小值为( )A .3 2B .-3 2C .6D .-6解析:选B 两个圆恰有三条公切线,则两圆外切,两圆的标准方程为圆C 1:(x +a )2+y 2=4,圆C 2:x 2+(y -b )2=1,所以C 1(-a,0),C 2(0,b ),||C 1C 2=a 2+b 2=2+1=3,即a 2+b 2=9.由⎝⎛⎭⎫a +b 22≤a 2+b 22,得(a +b )2≤18,所以-32≤a +b ≤32,当且仅当“a =b ”时等号成立.所以a +b 的最小值为-3 2.12.若圆(x -3)2+(y +5)2=r 2上有且只有两个点到直线4x -3y -2=0的距离等于1,则半径r 的取值范围是( )A .(4,6)B .[4,6]C .(4,5)D .(4,5]解析:选A 设直线4x -3y +m =0与直线4x -3y -2=0之间的距离为1,则有|m +2|5=1,m =3或m =-7.圆心(3,-5)到直线4x -3y +3=0的距离等于6,圆心(3,-5)到直线4x -3y -7=0的距离等于4,因此所求圆半径的取值范围是(4,6),故选A.二、填空题13.(2017·河北调研)若直线l 1:y =x +a 和直线l 2:y =x +b 将圆(x -1)2+(y -2)2=8分成长度相等的四段弧,则a 2+b 2=________.解析:由题意得直线l 1和l 2截圆所得弦所对的圆心角相等,均为90°,因此圆心到两直线的距离均为22r =2,即|1-2+a |2=|1-2+b |2=2,得a 2+b 2=(22+1)2+(1-22)2=18. 答案:1814.已知圆C 的圆心在x 轴的正半轴上,点M (0,5)在圆C 上,且圆心到直线2x -y =0的距离为455,则圆C 的方程为____________.解析:因为圆C 的圆心在x 轴的正半轴上,设C (a,0),且a >0,所以圆心到直线2x -y =0的距离d =2a 5=455,解得a =2,所以圆C 的半径r =|CM |=22+(5)2=3,所以圆C 的方程为(x -2)2+y 2=9.答案:(x -2)2+y 2=915.设直线l :y =kx +1被圆C :x 2+y 2-2x -3=0截得的弦最短,则直线l 的方程为____________.解析:因为直线l 恒过定点(0,1),由x 2+y 2-2x -3=0变形为(x -1)2+y 2=4,易知点(0,1)在圆(x -1)2+y 2=4的内部,依题意,k ·1-00-1=-1,即k =1,所以直线l 的方程为y =x +1.答案:y =x +116.已知A (-2,0),B (0,2),实数k 是常数,M ,N 是圆x 2+y 2+kx =0上不同的两点,P 是圆x 2+y 2+kx =0上的动点,如果M ,N 关于直线x -y -1=0对称,则△PAB 面积的最大值是________.解析:由题意知圆心⎝⎛⎭⎫-k 2,0在直线x -y -1=0上,所以-k2-1=0,解得k =-2,得圆心的坐标为(1,0),半径为1.又知直线AB 的方程为x -y +2=0,所以圆心(1,0)到直线AB 的最大距离为322,所以P 到直线AB 的最大距离,即△PAB 的AB 边上的高的最大值为1+322,又|AB |=22,所以△PAB 面积的最大值为12×22×⎝⎛⎭⎫1+322=3+ 2. 答案:3+ 2B 组——能力小题保分练1.(2017·石家庄模拟)若a ,b 是正数,直线2ax +by -2=0被圆x 2+y 2=4截得的弦长为23,则t =a 1+2b 2取得最大值时a 的值为( )A.12B.32C.34 D.34解析:选D 因为圆心到直线的距离d =24a 2+b2,则直线被圆截得的弦长L =2r 2-d 2=24-44a 2+b 2=23,所以4a 2+b 2=4.则t =a 1+2b 2=122·(22a )·1+2b 2≤122×12×[](22a )2+(1+2b 2)2=142·[8a 2+1+2(4-4a 2)]=942,当且仅当⎩⎪⎨⎪⎧8a 2=1+2b 2,4a 2+b 2=4时等号成立,此时a =34,故选D.2.已知直线x +y -k =0(k >0)与圆x 2+y 2=4交于不同的两点A ,B ,O 是坐标原点,且有|OA ―→+OB ―→|≥33|AB ―→|,那么k 的取值范围是( )A .(3,+∞)B .[2,+∞)C .[2,22)D .[3,22)解析:选C 当|OA ―→+OB ―→|=33|AB ―→|时,O ,A ,B 三点为等腰三角形AOB 的三个顶点,其中OA =OB =2,∠AOB =120°,从而圆心O 到直线x +y -k =0(k >0)的距离为1,即|k |2=1,解得k =2;当k >2时,|OA ―→+OB ―→|>33|AB ―→|,又直线与圆x 2+y 2=4有两个不同的交点,故|k |2<2,即k <2 2.综上,k 的取值范围为[2,22).3.(2018届高三·湖北七市(州)联考)已知圆C :(x -1)2+y 2=r 2(r >0).设条件p :0<r <3,条件q :圆C 上至多有2个点到直线x -3y +3=0的距离为1,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选C 圆C :(x -1)2+y 2=r 2的圆心(1,0)到直线x -3y +3=0的距离d =|1-3×0+3|12+(3)2=2.当2-r >1,即0<r <1时,直线在圆外,圆上没有点到直线的距离为1; 当2-r =1,即r =1时,直线在圆外,圆上只有1个点到直线的距离为1; 当0<2-r <1,即1<r <2时,直线在圆外,此时圆上有2个点到直线的距离为1; 当2-r =0,即r =2时,直线与圆相切,此时圆上有2个点到直线的距离为1; 当0<r -2<1,即2<r <3时,直线与圆相交,此时圆上有2个点到直线的距离为1;当r -2=1,即r =3时,直线与圆相交,此时圆上有3个点到直线的距离为1; 当r -2>1,即r >3时,直线与圆相交,此时圆上有4个点到直线的距离为1.综上,当0<r <3时,圆C 上至多有2个点到直线x -3y +3=0的距离为1;由圆C 上至多有2个点到直线x -3y +3=0的距离为1可得0<r <3.故p 是q 的充要条件,故选C.4.(2018届高三·广东五校联考)已知圆C :x 2+y 2+2x -4y +1=0的圆心在直线ax -by +1=0上,则ab 的取值范围是( )A.⎝⎛⎦⎤-∞,14B.⎝⎛⎦⎤-∞,18 C.⎝⎛⎦⎤0,14 D.⎝⎛⎦⎤0,18 解析:选B 把圆的方程化为标准方程得,(x +1)2+(y -2)2=4,∴圆心坐标为(-1,2),根据题意可知,圆心在直线ax -by +1=0上,把圆心坐标代入直线方程得,-a -2b +1=0,即a =1-2b ,则ab =(1-2b )b =-2b 2+b =-2⎝⎛⎭⎫b -142+18≤18,当b =14时,ab 有最大值18,故ab 的取值范围为⎝⎛⎦⎤-∞,18. 5.已知点A (3,0),若圆C :(x -t )2+(y -2t +4)2=1上存在点P ,使|PA |=2|PO |,其中O 为坐标原点,则圆心C 的横坐标t 的取值范围为________.解析:设点P (x ,y ),因为|PA |=2|PO |,所以(x -3)2+y 2=2x 2+y 2,化简得(x +1)2+y 2=4,所以点P 在以M (-1,0)为圆心,2为半径的圆上.由题意知,点P (x ,y )在圆C 上,所以圆C 与圆M 有公共点,则1≤|CM |≤3,即1≤(t +1)2+(2t -4)2≤3,1≤5t 2-14t +17≤9.不等式5t 2-14t +16≥0的解集为R ;由5t 2-14t +8≤0,得45≤t ≤2.所以圆心C 的横坐标t 的取值范围为⎣⎡⎦⎤45,2. 答案:⎣⎡⎦⎤45,2 6.设点M (x 0,1),若在圆O :x 2+y 2=1上存在点N ,使得∠OMN =45°,则x 0的取值范围是________.解析:由题意可知M 在直线y =1上运动,设直线y =1与圆x 2+y 2=1相切于点P (0,1).当x 0=0即点M 与点P 重合时,显然圆上存在点N (±1,0)符合要求;当x 0≠0时,过M 作圆的切线,切点之一为点P ,此时对于圆上任意一点N ,都有∠OMN ≤∠OMP ,故要存在∠OMN =45°,只需∠OMP ≥45°.特别地,当∠OMP =45°时,有x 0=±1.结合图形可知,符合条件的x 0的取值范围为[-1,1].答案:[-1,1]第二讲 小题考法——圆锥曲线的方程与性质[典例感悟][典例] (1)(2017·合肥模拟)已知双曲线x 23-y 2=1的左、右焦点分别为F 1,F 2,点P 在双曲线上,且满足|PF 1|+|PF 2|=25,则△PF 1F 2的面积为( )A .1 B. 3 C. 5 D.12(2)在平面直角坐标系中,已知椭圆C 1:x 2a 2+y 2b 2=1(a >b ≥1)的离心率e =32,且椭圆C 1上一点M 到点Q (0,3)的距离的最大值为4.则椭圆C 1的方程为( )A .x 2+y 24=1B.x 24+y 2=1 C.x 216+y 24=1 D.x 24+y 216=1 (3)(2017·全国卷Ⅱ)已知F 是抛物线C :y 2=8x 的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则|FN |=________.[解析] (1)在双曲线x 23-y 2=1中,a =3,b =1,c =2.不妨设P 点在双曲线的右支上,则有|PF 1|-|PF 2|=2a =23,又|PF 1|+|PF 2|=25,∴|PF 1|=5+3,|PF 2|=5- 3.又|F 1F 2|=2c =4,而|PF 1|2+|PF 2|2=|F 1F 2|2,∴PF 1⊥PF 2,∴S △PF 1F 2=12×|PF 1|×|PF 2|=12×(5+3)×(5-3)=1.故选A.(2)因为e 2=c 2a 2=a 2-b 2a 2=34,所以a 2=4b 2,则椭圆方程为x 24b 2+y 2b2=1,即x 2+4y 2=4b 2.设M (x ,y ),则|MQ |=(x -0)2+(y -3)2=4b 2-4y 2+(y -3)2 =-3y 2-6y +4b 2+9=-3(y +1)2+4b 2+12.所以当y =-1时,|MQ |有最大值,为4b 2+12=4,解得b 2=1,则a 2=4,所以椭圆C 1的方程是x 24+y 2=1.故选B.(3)法一:依题意,抛物线C :y 2=8x 的焦点F (2,0),因为M 是C 上一点,FM 的延长线交y 轴于点N ,M 为FN 的中点,设M (a ,b )(b >0),所以a =1,b =22,所以N (0,42),|FN |=4+32=6.法二:如图,不妨设点M 位于第一象限内,抛物线C 的准线交x 轴于点A ,过点M 作准线的垂线,垂足为点B ,交y 轴于点P ,∴PM ∥OF .由题意知,F (2,0),|FO |=|AO |=2.∵点M 为FN 的中点,PM ∥OF , ∴|MP |=12|FO |=1.又|BP |=|AO |=2, ∴|MB |=|MP |+|BP |=3.由抛物线的定义知|MF |=|MB |=3, 故|FN |=2|MF |=6. [答案] (1)A (2)B (3)6[方法技巧]求解圆锥曲线标准方程的思路方法(1)定型,即指定类型,也就是确定圆锥曲线的类型、焦点位置,从而设出标准方程. (2)计算,即利用待定系数法求出方程中的a 2,b 2或p .另外,当焦点位置无法确定时,抛物线常设为y 2=2px 或x 2=2py (p ≠0),椭圆常设为mx 2+ny 2=1(m >0,n >0),双曲线常设为mx 2-ny 2=1(mn >0).[演练冲关]1.(2017·长沙模拟)已知椭圆的中心在原点,离心率e =12,且它的一个焦点与抛物线y 2=-4x 的焦点重合,则此椭圆方程为( )A.x 24+y 23=1 B.x 28+y 26=1 C.x 22+y 2=1 D.x 24+y 2=1 解析:选A 由题可知椭圆的焦点在x 轴上,所以设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),而抛物线y 2=-4x的焦点为(-1,0),所以c =1,又离心率e =c a =12,解得a =2,b 2=a 2-c 2=3,所以椭圆方程为x 24+y 23=1.故选A. 2.(2017·全国卷Ⅲ)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =52x ,且与椭圆x 212+y 23=1有公共焦点,则C 的方程为( )A.x 28-y 210=1 B.x 24-y 25=1 C.x 25-y 24=1 D.x 24-y 23=1 解析:选B 根据双曲线C 的渐近线方程为y =52x ,可知b a =52.① 又椭圆x 212+y 23=1的焦点坐标为(3,0)和(-3,0),所以a 2+b 2=9.②根据①②可知a 2=4,b 2=5, 所以C 的方程为x 24-y 25=1.3.已知抛物线x 2=4y 的焦点为F ,准线为l ,P 为抛物线上一点,过P 作PA ⊥l 于点A ,当∠AFO =30°(O 为坐标原点)时,|PF |=________.解析:法一:令l 与y 轴的交点为B ,在Rt △ABF 中,∠AFB =30°,|BF |=2,所以|AB |=233.设P (x 0,y 0),则x 0=±233,代入x 2=4y 中,得y 0=13,所以|PF |=|PA |=y 0+1=43.法二:如图所示,∠AFO =30°,∴∠PAF =30°,又|PA |=|PF |,∴△APF 为顶角∠APF =120°的等腰三角形, 而|AF |=2cos 30°=433,∴|PF |=|AF |3=43.答案:43[典例感悟][典例] (1)(2016·全国卷Ⅰ)以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为( )A .2B .4C .6D .8(2)(2017·全国卷Ⅰ)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M ,N 两点.若∠MAN =60°,则C 的离心率为________.[解析] (1)由题,不妨设抛物线的方程为y 2=2px (p >0),圆的方程为x 2+y 2=r 2. ∵|AB |=42,|DE |=25,抛物线的准线方程为x =-p2,∴不妨设A ⎝⎛⎭⎫4p ,22,D ⎝⎛⎭⎫-p 2,5. ∵点A ⎝⎛⎭⎫4p ,22,D ⎝⎛⎭⎫-p 2,5在圆x 2+y 2=r 2上, ∴⎩⎨⎧16p 2+8=r 2,p24+5=r 2,∴16p 2+8=p 24+5, ∴p =4(负值舍去),∴C 的焦点到准线的距离为4.(2)双曲线的右顶点为A (a,0),一条渐近线的方程为y =ba x ,即bx -ay =0,则圆心A 到此渐近线的距离d =|ba -a ×0|b 2+a 2=ab c .又因为∠MAN =60°,圆的半径为b ,所以b ·sin 60°=ab c ,即3b2=ab c ,所以e =23=233. [答案] (1)B (2)233[方法技巧]1.椭圆、双曲线离心率(离心率范围)的求法求椭圆、双曲线的离心率或离心率的范围,关键是根据已知条件确定a ,b ,c 的等量关系或不等关系,然后把b 用a ,c 代换,求ca 的值.2.双曲线的渐近线的求法及用法(1)求法:把双曲线标准方程等号右边的1改为零,分解因式可得. (2)用法:①可得b a 或ab 的值;②利用渐近线方程设所求双曲线的方程.[演练冲关]1.(2017·成都模拟)设双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,以F 1F 2为直径的圆与双曲线左支的一个交点为P .若以OF 1(O 为坐标原点)为直径的圆与PF 2相切,则双曲线C 的离心率为( )A. 2B.-3+624C. 3D.3+627解析:选D 如图,在圆O 中,F 1F 2为直径,P 是圆O 上一点,所以PF 1⊥PF 2,设以OF 1为直径的圆的圆心为M ,且圆M 与直线PF 2相切于点Q ,则M ⎝⎛⎭⎫-c 2,0,MQ ⊥PF 2,所以PF 1∥MQ ,所以|MQ ||PF 1|=|MF 2||F 1F 2|,即c 2|PF 1|=3c22c ,可得|PF 1|=2c 3,所以|PF 2|=2c3+2a ,又|PF 1|2+|PF 2|2=|F 1F 2|2,所以4c 29+⎝⎛⎭⎫2c 3+2a 2=4c 2,即7e 2-6e -9=0,解得e =3+627,e =3-627(舍去).故选D.2.(2017·全国卷Ⅰ)设A ,B 是椭圆C :x 23+y 2m =1长轴的两个端点.若C 上存在点M 满足∠AMB =120°,则m 的取值范围是( )A .(0,1]∪[9,+∞)B .(0, 3 ]∪[9,+∞)C .(0,1]∪[4,+∞)D .(0, 3 ]∪[4,+∞)解析:选A 当0<m <3时,焦点在x 轴上,要使C 上存在点M 满足∠AMB =120°,则ab ≥tan 60°=3,即3m≥3,解得0<m ≤1.当m >3时,焦点在y 轴上,要使C 上存在点M 满足∠AMB =120°,则a b ≥tan 60°=3,即m3≥3,解得m ≥9.故m 的取值范围为(0,1]∪[9,+∞).3.(2017·贵阳检测)如图,抛物线y 2=4x 的一条弦AB 经过焦点F ,取线段OB 的中点D ,延长OA 至点C ,使|OA |=|AC |,过点C ,D 作y 轴的垂线,垂足分别为点E ,G ,则|EG |的最小值为________.解析:设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4),则y 3=2y 1,y 4=12y 2,|EG |=y 4-y 3=12y 2-2y 1.因为AB 为抛物线y 2=4x 的焦点弦,所以y 1y 2=-4,所以|EG |=12y 2-2×⎝⎛⎭⎫-4y 2=12y 2+8y 2≥212y 2×8y 2=4,当且仅当12y 2=8y 2,即y 2=4时取等号,所以|EG |的最小值为4.答案:4[典例感悟][典例] (1)(2018届高三·河南九校联考)已知直线y =kx +t 与圆x 2+(y +1)2=1相切且与抛物线C:x 2=4y 交于不同的两点M ,N ,则实数t 的取值范围是( )A .(-∞,-3)∪(0,+∞)B .(-∞,-2)∪(0,+∞)C .(-3,0)D .(-2,0)(2)(2017·宝鸡质检)已知双曲线C :mx 2+ny 2=1(mn <0)的一条渐近线与圆x 2+y 2-6x -2y +9=0相切,则C 的离心率为( )A.53B.54C.53或2516D.53或54 [解析] (1)因为直线与圆相切,所以|t +1|1+k2=1,即k 2=t 2+2t .将直线方程代入抛物线方程并整理得x 2-4kx -4t =0,于是Δ=16k 2+16t =16(t 2+2t )+16t >0,解得t >0或t <-3.故选A.(2)圆x 2+y 2-6x -2y +9=0的标准方程为(x -3)2+(y -1)2=1,则圆心为M (3,1),半径r =1.当m <0,n >0时,由mx 2+ny 2=1得y 21n -x 2-1m=1,则双曲线的焦点在y 轴上,不妨设双曲线与圆相切的渐近线方程为y =ab x ,即ax -by =0,则圆心到直线的距离d =|3a -b |a 2+b 2=1,即|3a -b |=c ,平方得9a 2-6ab +b 2=c 2=a 2+b 2,即8a 2-6ab =0,则b =43a ,平方得b 2=169a 2=c 2-a 2,即c 2=259a 2,则c =53a ,离心率e =c a =53;当m >0,n <0时,同理可得e =54,故选D. [答案] (1)A (2)D[方法技巧]处理圆锥曲线与圆相结合问题的注意点(1)注意圆心、半径和平面几何知识的应用,如直径所对的圆周角为直角,构成了垂直关系;弦心距、半径、弦长的一半构成直角三角形等.(2)注意圆与特殊线的位置关系,如圆的直径与椭圆长轴(短轴),与双曲线的实轴(虚轴)的关系;圆与过定点的直线、双曲线的渐近线、抛物线的准线的位置关系等.[演练冲关]1.(2018届高三·广西三市联考)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1(-c,0),F 2(c,0),P 是双曲线C 右支上一点,且|PF 2|=|F 1F 2|,若直线PF 1与圆x 2+y 2=a 2相切,则双曲线的离心率为( )A.43B.53C .2D .3解析:选B 取线段PF1的中点为A ,连接AF 2,又|PF 2|=|F 1F 2|,则AF 2⊥PF 1,∵直线PF 1与圆x 2+y 2=a 2相切,∴|AF 2|=2a ,∵|PF 2|=|F 1F 2|=2c ,∴|PF 1|=2a +2c ,∴|PA |=12·|PF 1|=a +c ,则在Rt △APF 2中,4c 2=(a +c )2+4a 2,化简得(3c -5a )(a +c )=0,则双曲线的离心率为53.2.已知椭圆C :9x 2+y 2=m 2(m >0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M ,则直线OM 与直线l 的斜率之积为( )A .-9B .-92C .-19D .-3解析:选A 设直线l :y =kx +b (k ≠0,b ≠0),A (x 1,y 1),B (x 2,y 2),M (x M ,y M ).将y =kx +b 代入9x 2+y 2=m 2,得(k 2+9)x 2+2kbx +b 2-m 2=0,故x M =x 1+x 22=-kbk 2+9,y M=kx M +b =9b k 2+9,故直线OM 的斜率k OM =y M x M=-9k ,所以k OM ·k =-9,即直线OM 与直线l 的斜率之积为-9.[必备知能·自主补缺](一) 主干知识要记牢圆锥曲线的定义、标准方程和性质(二) 二级结论要用好1.椭圆焦点三角形的3个规律设椭圆方程是x 2a 2+y 2b2=1(a >b >0),焦点F 1(-c,0),F 2(c,0),点P 的坐标是(x 0,y 0).(1)三角形的三个边长是|PF 1|=a +ex 0,|PF 2|=a -ex 0,|F 1F 2|=2c ,e 为椭圆的离心率. (2)如果△PF 1F 2中∠F 1PF 2=α,则这个三角形的面积S △PF 1F 2=c |y 0|=b 2tan α2.(3)椭圆的离心率e =sin ∠F 1PF 2sin ∠F 1F 2P +sin ∠F 2F 1P .2.双曲线焦点三角形的2个结论P (x 0,y 0)为双曲线x 2a 2-y 2b 2=1(a >0,b >0)上的点,△PF 1F 2为焦点三角形.(1)面积公式S =c |y 0|=12r 1r 2sin θ=b 2tanθ2(其中|PF 1|=r 1,|PF 2|=r 2,∠F 1PF 2=θ). (2)焦半径若P 在右支上,|PF 1|=ex 0+a ,|PF 2|=ex 0-a ;若P 在左支上,|PF 1|=-ex 0-a ,|PF 2|=-ex 0+a .3.抛物线y 2=2px (p >0)焦点弦AB 的4个结论 (1)x A ·x B =p 24;(2)y A ·y B =-p 2; (3)|AB |=2psin 2α(α是直线AB 的倾斜角); (4)|AB |=x A +x B +p . 4.圆锥曲线的通径 (1)椭圆通径长为2b 2a ; (2)双曲线通径长为2b 2a ; (3)抛物线通径长为2p . 5.圆锥曲线中的最值(1)椭圆上两点间的最大距离为2a (长轴长). (2)双曲线上两点间的最小距离为2a (实轴长).(3)椭圆焦半径的取值范围为[a -c ,a +c ],a -c 与a +c 分别表示椭圆焦点到椭圆上的点的最小距离与最大距离.(4)抛物线上的点中顶点到抛物线准线的距离最短. (三) 易错易混要明了1.利用椭圆、双曲线的定义解题时,要注意两种曲线的定义形式及其限制条件.如在双曲线的定义中,有两点是缺一不可的:其一,绝对值;其二,2a <|F 1F 2|.如果不满足第一个条件,动点到两定点的距离之差为常数,而不是差的绝对值为常数,那么其轨迹只能是双曲线的一支.。
最新2018届高考数学第二轮专题教案18
分类加法计数原理与分步乘法计数原理测试题 (第1课时)1.一个商店销售某种型号的电视机,其中本地的产品有4种,外地的产品有7种,要买1台这种型号的电视机,有多少种不同的选法?2.如图,从甲地到乙地有2条路,从乙地到丁地有3条路;从甲地到丙地4条路,从丙地到丁地有2条路.从甲地到丁地共有多少条不同的路线?3.用1,5,9,13中的任意一个数作分子,4,6,8,12,16中任意一个数作分母,可以构成多少个不同的分数?可以构成多少个不同的真分数? 4.如图,一条电路从A 处到B 处接通时,可有多少条不同的线路? 5.(1)在平面直角坐标系内,横坐标与纵坐标均在{}0,1,2,3,4,5A =内取值的不同点共有多少个?(2)在平面直角坐标系内,斜率在集合{}1,3,5,7B =内取值,y 轴上的截距在集合第2题B第4题{}C=内取值的不同直线共有多少条?2,4,6,86.一个口袋里有3封信,另一个口袋里有4封信,各封信内容均不相同.(1)从两个口袋里,各取1封信,有多少种不同的取法?(2)从两个口袋里,任取1封信,有多少种不同的取法?(3)把这两个口袋里的7封信,分别投入4个邮筒,有多少种不同的放法?评分标准:65分以上为能力超强60~65分为能力强55~60分为能力较强50~55分为能力一般50分以下为能力差凡事发生,必有利我!因为凡事都是我赋予它意义,它才对我有意义。
而我的思维模式已经调整成“赋予所有事情对我有利的意义”了。
什么叫做说话的高手?说的人家舒服、感动,同时愿意按你说的做。
这就是语言的魅力。
你对爱的定义是什么?通过你说话我就知道。
哭泣女:“给他做了20年饭,从来没听他夸我一句。
”——她的爱是“肯定、赞许”委屈男:“不管她做的好吃不好吃,我不全都吃掉了嘛”——他的爱是“行动”“纪念日、生日,买个包包就完了,从没见他在家过!”——她的爱是“陪伴”,他的爱是“礼物”。
2018年高考数学(文)二轮复习教师用书第1部分 技法篇 数学思想专练3 Word版含答案
数学思想专练(三) 分类讨论思想题组由概念、法则、公式引起的分类讨论.已知数列{}的前项和=-(是常数),则数列{}是( ).等差数列.等比数列.等差数列或等比数列.以上都不对[∵=-,∴=-,=-=(-)-(≥).-当≠且≠时,{}是等比数列;当=时,{}是等差数列;当=时,=-,=(≥),此时{}既不是等差数列也不是等比数列.].(·蚌埠模拟)已知函数()=(++),若对于任意实数,总存在实数,使得()=成立,则实数的取值范围是( )【导学号:】.[,+∞) .(-,+∞)[∵对于任意实数,总存在实数,使得()=成立,∴()值域为,因此要求=++的函数值能取到一切正数.①=时,=+符合题意.②≠时,需(\\(>,-××≥,))即<≤.综上,实数的取值范围是.].已知函数()的定义域为(-∞,+∞),′()为()的导函数,函数=′()的图象如图所示,且(-)=,()=,则不等式(-)>的解集为( )图.(-,-)∪().(-,).().(-∞,-)∪(,+∞)[由导函数图象知,当<时,′()>,即()在(-∞,)上为增函数,当>时,′()<,即()在(,+∞)上为减函数,又不等式(-)>等价于(-)>(-)或(-)>(),故-<-≤或≤-<,解得∈(-,-)∪().].已知实数是的等比中项,则曲线-=的离心率为( )【导学号:】..或[由题意可知,=×=,∴=±.()当=时,曲线为双曲线-=.此时离心率=.()当=-时,曲线为椭圆+=.此时离心率=.].在△中,已知=,=,则=.[∵<=<,且为△的一个内角,∴°<<°,∴=,若为锐角,由=,得=°,此时=,若为钝角,由=,得=°,此时+>°,这与三角形的内角和为°相矛盾,∴≠°,∴=[π-(+)]=-(+)=-( ·-· )=-=.].若>且≠,则函数=+的值域为.【导学号:】(-∞,-]∪[,+∞)[当>时,=+)≥·( ))=,当且仅当=,即=时等号成立;当<<时,=+)=-(+\(\)(\\(-( )))))≤-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
技法篇:4大思想提前看,依“法”训练提时效高考试题一是着眼于知识点新颖巧妙的组合;二是着眼于对数思想方法、数能力的考查.如果说数知识是数内容,可用文字和符号记录与描述,那么数思想方法则是数意识,重在领会、运用,属于思维的范畴,着眼于对数问题的认识、处理和解决.高考中常用到的数思想主要有函数与方程思想、数形结合思想、分类讨论思想、转化与化归思想.这些在一轮复习中都有所涉及,建议二轮复习前应先习此部分.带着方法去复习,这样可以使理论指导实践,“一法一练”“一练一过”,既节省了复习时间又能起到事半功倍的效果,而市面上有些资料把方法集中放于最后,起不到”依法训练”的作用,也因时间紧造成而不透、而不深,在真正的高考中不能从容应对.不过也可根据自身情况选择完后再复习此部分.
思想1函数与方程思想
函数的思想,就是通过建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决的数思想.
方程的思想,就是建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决的数思想.【例1】(1)(2017·天水二模)定义域为R的可导函数y=f(x)的导函数为f′(x),满
足f(x)>f′(x),且f(0)=1,则不等式f(x)
e x<1的解集为()
A.(-∞,0)B.(0,+∞) C.(-∞,2) D.(2,+∞)
B[构造函数g(x)=f(x)
e x,则g′(x)=
e x·f′(x)-e x·f(x)
(e x)2
=
f′(x)-f(x)
e x.由题意
得g′(x)<0恒成立,所以函数g(x)=f(x)
e x在R上单调递减.又g(0)=
f(0)
e0=
1,所以f(x)
e x<1,即g(x)<1,解得x>0,所以不等式的解集为(0,+∞).故
选B.]
(2)(名师押题)已知直线y =a 交抛物线y =x 2于A ,B 两点.若该抛物线上存在点C ,使得∠ACB 为直角,则a 的取值范围为________.
【导 号:04024000】
[1,+∞) [以AB 为直径的圆的方程为x 2+(y -a )2=a ,
由⎩⎨⎧
y =x 2,x 2+(y -a )2=a , 得y 2+(1-2a )y +a 2-a =0,
即(y -a )[y -(a -1)]=0,
由题意得⎩⎨⎧
a >0,a -1≥0,
解得a ≥1.] [方法指津]
函数与方程思想在解题中的应用
1.函数与不等式的相互转化,对函数y =f (x ),当y >0时,就化为不等式f (x )>0,借助于函数的图象和性质可解决有关问题,而研究函数的性质也离不开不等式.
2.数列的通项与前n 项和是自变量为正整数的函数,用函数的观点去处理数列问题十分重要.
3.解析几何中的许多问题,需要通过解二元方程组才能解决.这都涉及二次方程与二次函数有关理论.
4.立体几何中有关线段、角、面积、体积的计算,经常需要运用列方程或建立函数表达式的方法加以解决.
[变式训练1] 将函数y =sin ⎝ ⎛⎭
⎪⎫4x -π3的图象向左平移m (m >0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值为________.
【导 号:04024001】
5π24 [把y =sin ⎝ ⎛⎭
⎪⎫4x -π3的图象上所有的点向左平移m 个单位长度后,得到y =sin ⎣⎢⎡⎦⎥⎤4(x +m )-π3=sin ⎝ ⎛⎭
⎪⎫4x +4m -π3的图象, 而此图象关于y 轴对称,则4m -π3=k π+π2(k ∈Z ),
解得m =14k π+5π24(k ∈Z ).又m >0,所以m 的最小值为5π24.]
思想2 数形结合思想
数形结合思想,就是通过数与形的相互转化 解决数 问题的思想.其应用包括以下两个方面:
(1)“以形助数”,把某些抽象的数 问题直观化、生动化,能够变抽象思维为形象思维,揭示数 问题的本质,如应用函数的图象 直观地说明函数的性质.
(2)“以数定形”,把直观图形数量化,使形更加精确,如应用曲线的方程 精确地阐明曲线的几何性质.
【例2】 (经典高考题)已知函数f (x )=⎩⎨⎧
|x |,x ≤m ,x 2-2mx +4m ,x >m ,
其中m >0.若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是________.
(3,+∞) [作出f (x )的图象如图所示.当x >m 时,x 2-2mx +4m =(x -m )2+4m -m 2,∴要使方程f (x )=b 有三个不同的根,则4m -m 2<m ,即m 2-3m >0.又m >0,解得m >3.]
[方法指津]
数形结合思想在解题中的应用
1.构建函数模型并结合其图象求参数的取值范围或解不等式.
2.构建函数模型并结合其图象研究方程根或函数零点的范围.
3.构建解析几何模型求最值或范围.
4.构建函数模型并结合其图象研究量与量之间的大小关系.
[变式训练2] (1)已知函数f (x )=⎩⎪⎨⎪⎧ 2x
,x ≥2,(x -1)3,x <2,若关于x 的方程f (x )=k 有两
个不相等的实根,则实数k 的取值范围是( )
【导 号:04024002】
A .(-1,1)
B .(0,2)
C .(0,1)
D .(0,1] (2)若不等式4x 2-log a x <0对任意x ∈⎝ ⎛⎭
⎪⎫0,14恒成立,则实数a 的取值范围为( )
A.⎝ ⎛⎭
⎪⎫1256,1 B.⎣⎢⎡⎭⎪⎫1256,1 C.⎝ ⎛⎭⎪⎫0,1256 D.⎝ ⎛⎦
⎥⎤0,1256 (1)C (2)B [(1)当x ≥2时,f (x )=2x ,
此时f (x )在[2,+∞)上单调递减,
且0<f (x )≤1.
当x <2时,f (x )=(x -1)3,此时f (x )过点(1,0),(0,-1),
且在(-∞,2)上单调递增.
当x →2时,f (x )→1.
如图所示作出函数y =f (x )的图象,由图可得f (x )在(-∞,2)上单调递增且f (x )<1,f (x )在[2,+∞)上单调递减且0<f (x )≤1,
故当且仅当0<k <1时,关于x 的方程f (x )=k 有两个不相等的实根,即实数k 的取值范围是(0,1).
(2)由已知4x 2<log a x 对任意x ∈⎝ ⎛⎭⎪⎫0,14恒成立,相当于在⎝ ⎛⎭
⎪⎫0,14上,函数y =log a x 的图象恒在函数y =4x 2图象的上方,显然当a >1时,不成立,当0<a
<1时,如图,只需log a 14≥4×⎝ ⎛⎭
⎪⎫142⇒a 14≥14⇒a ≥1256,
又0<a <1,故a ∈⎣⎢⎡⎭
⎪⎫1256,1.故选B.] 思想3 分类讨论思想
分类讨论思想是当问题的对象不能进行统一研究时,就需要对研究的对象按某个标准进行分类,然后对每一类分别研究,给出每一类的结论,最终综合各类结果得到整个问题的解答.实质上分类讨论就是“化整为零,各个击破,再集零为整”的数 思想.
【例3】(1)(经典高考题)设函数f (x )=⎩⎨⎧
3x -1,x <1,2x ,x ≥1.
则满足f (f (a ))=2f (a )的a 的取值范围是( )
A.⎣⎢⎡⎦
⎥⎤23,1 B .[0,1] C.⎣⎢⎡⎭⎪⎫23,+∞ D .[1,+∞) (2)设F 1,F 2为椭圆x 29+y 24=1的两个焦点,P 为椭圆上一点.已知P ,F 1,
F 2是一个直角三角形的三个顶点,且|PF 1|>|PF 2|,则|PF 1||PF 2|的值为________. (1)C (2)2或72
[(1)由f (f (a ))=2f (a )得,f (a )≥1.当a <1时,有3a -1≥1,∴a ≥23,∴23≤a <1.
当a ≥1时,有2a ≥1,∴a ≥0,∴a ≥1.
综上,a ≥23,故选C.
(2)若∠PF 2F 1=90°,
则|PF 1|2=|PF 2|2+|F 1F 2|2.
∵|PF 1|+|PF 2|=6,|F 1F 2|=25,。