七年级下学期尺规作图汇总

合集下载

七年级下册尺规作图知识点

七年级下册尺规作图知识点

七年级下册尺规作图知识点尺规作图是几何学中的一项重要知识,它是将传统的计量工具与纸笔制图相结合的一种方法,可以使用尺规来辅助作图,从而得到精确的几何图形。

在七年级下册中,同学们将学习尺规作图的基本知识,包括使用尺和规画线段、角度、平行线等基本图形,同时也会学习到一些高级的应用。

一、基础知识1. 尺和规的使用原理尺可以用来画线段、线、角度等基本图形。

规可以用来做垂线、平分线段等操作。

在使用尺规时,需要使用规的边缘来与尺的刻度进行配合,从而使得绘制的线条更加准确。

2. 画线段使用尺来画线段时,需要按照所需要的长度来调整尺的刻度,然后直接在纸上划线就可以了。

需要特别注意的是,尺的一个端点应该始终与画布上的原点对齐,这样才能够保证线段的长度准确。

3. 制作直角和等腰三角形制作直角和等腰三角形是尺规作图中最基础的操作。

对于直角三角形,我们可以先画一条线段作为直角边,然后用规工具作一个相互垂直的垂线段,就完成了直角三角形的制作。

对于等腰三角形,则需要先将线段平分,再使用规工具来作出垂线。

二、高级应用1. 画圆和椭圆尺规作图也可以用来制作圆和椭圆。

以圆为例,我们可以使用尺来连接圆心和半径,然后使用规划出圆的周长。

使用这种方法可以得到完美的圆形。

而对于椭圆,则需要特殊的规工具来作图。

2. 制作正五边形制作正五边形也是尺规作图中一个非常有趣的项目。

在作图时,需要先画出一个正三角形,然后再通过规工具来画出其它两条边。

通过反复调整、画线,最终就可以得到一个完美的正五边形。

结语:尺规作图是一项有趣而又具有挑战性的几何学知识,通过学习尺规作图,不仅可以更好地理解几何学中的许多基本概念,还可以锻炼同学们的几何思维能力。

尽管刚开始学习时会感觉有些困难,但只要钻研下去,一定能够掌握尺规作图的精髓,从而在以后的学习中更加游刃有余。

(完整版)初中最基本的尺规作图总结

(完整版)初中最基本的尺规作图总结

尺规作图一、理解“尺规作图”的含义1.在几何中,我们把只限定用直尺(无刻度)和圆规来画图的方法,称为尺规作图.其中直尺只能用来作直线、线段、射线或延长线段;圆规用来作圆和圆弧.由此可知,尺规作图与一般的画图不同,一般画图可以动用一切画图工具,包括三角尺、量角器等,在操作过程中可以度量,但尺规作图在操作过程中是不允许度量成分的.2.基本作图:(1)用尺规作一条线段等于已知线段;(2)用尺规作一个角等于已知角. 利用这两个基本作图,可以作两条线段或两个角的和或差.二、熟练掌握尺规作图题的规范语言1.用直尺作图的几何语言:①过点×、点×作直线××;或作直线××;或作射线××;②连结两点××;或连结××;③延长××到点×;或延长(反向延长)××到点×,使××=××;或延长××交××于点×;2.用圆规作图的几何语言:①在××上截取××=××;②以点×为圆心,××的长为半径作圆(或弧);③以点×为圆心,××的长为半径作弧,交××于点×;④分别以点×、点×为圆心,以××、××的长为半径作弧,两弧相交于点×、×. 三、了解尺规作图题的一般步骤尺规作图题的步骤:1.已知:当作图是文字语言叙述时,要学会根据文字语言用数学语言写出题目中的条件;2.求作:能根据题目写出要求作出的图形及此图形应满足的条件;3.作法:能根据作图的过程写出每一步的操作过程.当不要求写作法时,一般要保留作图痕迹.对于较复杂的作图,可先画出草图,使它同所要作的图大致相同,然后借助草图寻找作法.在目前,我们只要能够写出已知,求作,作法三步(另外还有第四步证明)就可以了,而且在许多中考作图题中,又往往只要求保留作图痕迹,不需要写出作法,可见在解作图题时,保留作图痕迹很重要.尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。

七年级下册尺规作图专题复习课件

七年级下册尺规作图专题复习课件

C
• 连接AC,BC。
b
a
• 则△ABC就是所求作的三角形。
A
c
B
题目四:已知两边及夹角作三角形
• 已知:如图,线段m,n, ∠ . • 求作:△ABC,使∠A=∠ ,AB=m,AC=n.
• 作法:
• 作∠A=∠ ;
n
m
C
• 在AB上截取AB=m ,AC=n;
n
• 连接BC。
α
• 则△ABC就是所求作的三角形。
题目一:作一条线段等于已知线段
• 已知:如图,线段a .求作:线段AB,使AB = a .
• 作法:
• 作射线AP;
a
• 在射线AP上截取AB=a .
• 则线段AB就是所求作的图形。 A
B
P
题目二:作一个角等于已知角
• 已知:如图,∠AOB。 • 求作:∠A’O’B’,使A’O’B’=∠AOB • 作法: (1)作射线O’A’; (2)以O为圆心,任意长度为半径画弧,交OA于M,交OB于N; (3)以O’为圆心,以OM的长为半径画弧,交O’A’于M’; (4)以M’为圆心,以MN的长为半径画弧,交前弧于N’; (5)连接O’N’并延长到B’。则∠A’O’B’就是所求作的角。
变式2:经过直线外一点作已知直线 的垂线
【考点练习】
• 例1、如图:107国道OA和320国道OB在某市相交于点O,在 ∠AOB的内部有工厂C和D,现要修建一个货站P,使P到OA、 OB的距离相等且PC=PD,用尺规作出货站P的位置(不写作 法,保留作图痕迹,写出结论)
A D
107国道
C
O
320国道 B
• 例7、如图,A、B两村在一条小河的的同一侧, 要在河边建一水厂向两村供水.

(完整)尺规作图专题详尽归纳,推荐文档

(完整)尺规作图专题详尽归纳,推荐文档

考点名称:尺规作图【学习目标】1.了解什么是尺规作图.2.学会用尺规作图法完成下列五种基本作图:(1)画一条线段等于已知线段;(2)画一个角等于已知角;(3)画线段的垂直平分线;(4)过已知点画已知直线的垂线;(5)画角平分线.3.了解五种基本作图的理由.4.学会使用精练、准确的作图语言叙述画图过程.5.学会利用基本作图画三角形等较简单的图形.6.通过画图认识图形的本质,体会图形的内在美.【基础知识精讲】1.尺规作图:①定义:限定只用直尺和圆规来完成的画图,称为尺规作图.注意:这里所指的直尺是没有刻度的直尺,由于免去了度量,因此,用尺规作图法画出的图形的精确度更高,它在工程绘图等领域应用比较广泛.②步骤:(1)根据给出的条件和求作的图形,写出已知和求作部分;(2)分析作图的方法和过程;(3)用直尺和圆规进行作图; (4)写出作法步骤,即作法。

(根据题目要求来定是否需要写出作法)2.尺规作图中的最基本、最常用的作图称为基本作图.任何尺规作图的步骤均可分解为以下五种.3.基本作图共有五种:(1)画一条线段等于已知线段.如图24-4-1,已知线段DE.求作:一条线段等于已知线段.作法:①先画射线AB.②然后用圆规在射线AB上截取AC=MN.线段AC就是所要作的线段.(2)作一个角等于已知角.如图24-4-2,已知∠AOB.求作:∠A′O′B′,使∠A′O′B′=∠AOB.作法:①作射线O′A′;②以点O为圆心,以任意长为半径作弧,交OA于C,交OB于D.③以点O′为圆心,以OC长为半径作弧,交O′A′于C′.④以点C′为圆心,以CD为半径作弧,交前弧于D′.⑤经过点D′作射线O′B′,∠A′O′B′就是所求的角.(3)作线段的垂直平分线.如图24-4-3,已知线段AB.求作:线段AB的垂直平分线.作法:①分别以点A和点B为圆心,大于的长为半径作弧,两弧相交于点C和D.②作直线CD.直线CD就是线段AB的垂直平分线.注意:直线CD与线段AB的交点,就是AB的中点.(4)经过一点作已知直线的垂线.a.经过已知直线上的一点作这条直线的垂线,如图24-4-4.已知:直线AB和AB上一点C,求作:AB的垂线,使它经过点C.作法:作平角ACB的平分线CF.直线CF就是所求的垂线,如图24-4-4.b.经过已知直线外一点作这条直线的垂线.如图24-4-5,已知:直线AB和AB外一点C.求作:AB的垂线,使它经过点C.作法:①任意取一点K,使K和C在AB的两旁.②以C为圆心,CK长为半径作弧,交AB于点D和E.③分别以D和E为圆心,大于的长为半径作弧,两弧交于点F.④作直线CF.直线CF就是所求的垂线.注意:经过已知直线上的一点,作这条直线的垂线转化成画线段垂直平分线的方法解决.(5)平分已知角.如图24-4-6,已知∠AOB.求作:射线OC,使∠AOC=∠BOC.作法:①在OA和OB上,分别截取OD、OE.②分别以D、E为圆心,大于的长为半径作弧,在∠AOB内,两弧交于点C.③作射线OC.OC就是所求的射线.注意:以上五种基本作图是尺规作图的基础,一些复杂的尺规作图,都是由基本作图组成的,同学扪要高度重视,努力把这部分内容学习好.通过这一节的学习,同学们要掌握下列作图语言:(1)过点×和点×画射线××,或画射线××.(2)在射线××上截取××=××.(3)以点×为圆心,××为半径画弧.(4)以点×为圆心,××为半径画弧,交××于点×.(5)分别以点×,点×为圆心,以××,××为半径作弧,两弧相交于点×.(6)在射线××上依次截取××=××=××.(7)在∠×××的外部或内部画∠×××=∠×××.注意:学过基本作图后,在作较复杂图时,属于基本作图的地方,不必重复作图的详细过程,只用一句话概括叙述就可以了.如:(1)画线段××=××.(2)画∠×××=∠×××.(3)画××平分∠×××,或画∠×××的角平分线.(4)过点×画××⊥××,垂足为点×.(5)作线段××的垂直平分线××,等等.但要注意保留全部的作图痕迹,包括基本作图的操作程序,不能因为作法的叙述省略而作图就不按程序操作,只有保留作图痕迹,才能反映出作图的操作是否合理.【经典例题精讲】例1已知两边及其夹角,求作三角形.如图24-4-7,已知:∠α,线段a、b,求作:△ABC,使∠A=∠α,AB=a,AC=b.作法:①作∠MAN=∠α.②在射线AM、AN上分别作线段AB=a,AC=b.③连结BC.如图24-4-8,△ABC即为所求作的三角形.注意:一般几何作图题,应有下面几个步骤:已知、求作、作法,比较复杂的作图题,在作图之前可根据需要作一些分析.例2如图24-4-9,已知底边a,底边上的高h,求作等腰三角形.已知线段a、h.求作:△ABC,使AB=AC,且BC=a,高AD=h.分析:可先作出底边BC,根据等腰三角形的三线合一的性质,可再作出BC的垂直平分线,从而作出BC边上的高AD,分别连结AB和AC,即可作出等腰△ABC来.作法:(1)作线段BC=a.(2)作线段BC的垂直平分线MN,MN与BC交于点D.(3)在MN上截取DA,使DA=h.(4)连结AB、AC.如图24-4-10,△ABC即为所求的等腰三角形.例3已知三角形的一边及这边上的中线和高,作三角形.如图24-4-11,已知线段a,m,h(m>h).求作:△ABC使它的一边等于a,这边上的中线和高分别等于m和h(m>h).分析:如图24-4-12,假定△ABC已作出,其中BC=a,中线AD=m,高AE=h,在△AED中AD=m,AE=h,∠AED=90°,因此这个Rt△AED可以作出来(△AED为奠基三角形).当Rt△AED作出后,由的关系可作出点B和点C,于是△ABC即可得到.作法:(1)作△AED,使∠AED=90°,AE=h,AD=m.(2)延长ED到B,使.(3)在DE或BE的延长线上取.(4)连结AB、AC.则△ABC即为所求作的三角形.注意:因为三角形中,一边上的高不能大于这边上的中线,所以如果h>m,作图题无解;若m=h,则作出的图形为等腰三角形.例4如图24-4-13,已知线段a.求作:菱形ABCD,使其半周长为a,两邻角之比为1∶2.分析:因为菱形四边相等,“半周长为a”就是菱形边长为,为此首先要将线段a等分,又因为菱形对边平行,则同旁内角互补,由“邻角之比为1∶2”可知,菱形较小内角为60°,则菱形较短对角线将菱形分成两个全等的等边三角形.所以作图时只要作出两个有公共边的等边三角形,则得到的四边形即为所求的菱形ABCD.作法:(1)作线段a的垂直平分线,等分线段a.(2)作线段AC,使.(3)分别以A、C为圆心,为半径,在AC的两侧画弧,两弧分别交于B,D.(4)分别连结AB、BC、CD、DA得到四边形ABCD,则四边形ABCD为所求作的菱形(如图24-4-14).注意:这种通过先画三角形,然后再画出全部图形的方法即为“三角形奠基法”.例5如图24-4-15,已知∠AOB和C、D两点.求作一点P,使PC=PD,且使点P到∠AOB的两边OA、OB的距离相等.分析:要使PC=PD,则点P在CD的垂直平分线上,要使点P到∠AOB的两边距离相等,则P应在∠AOB的角平分线上,那么满足题设的P点就是垂直平分线与角平分线的交点了.作法:(1)连结CD.(2)作线段CD的中垂线l.(3)作∠AOB的角平分线OM,交l于点P,P点为所求.注意:这类定点问题应需确定两线,两直线的交点即为定点,当然这两直线应分别满足题目的不同要求.【中考考点】例6 (2000·安徽省)如图24-4-16,直线表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )A.一处 B.二处C.三处 D.四处分析:到直线距离相等的点在相交所构成的角的平分线上,可利用作角平分线的方法找到这些点.解:分别作相交所构成的角平分线,共可作出六条,三条角平分线相交的交点共有四个.答案:D.注意:本题应用了角平分线的性质,在具体作图时,不可只作出位于中心位置的一处,而要全面考虑其他满足条件的点.例7 (2002·陕西省)如图24-4-17,△ABC是一块直角三角形余料,∠C=90°,工人师傅要把它加工成—个正方形零件,使C为正方形的—个顶点,其他三个顶点分别在AB、BC、AC边上.(1)试协助工人师傅用尺规画出裁割线(不写作法,保留作图痕迹);(2)工人师傅测得AC=80 cm,BC=120cm,请帮助工人师傅算出按(1)题所画裁割线加工成的正方形零件的边长.解:(1)作∠ACB的平分线与AB的交点E即为正方形—顶点,作CE线段的中垂线HK 与AC、BC的交点F、D即为所作正方形另两个顶点,如图24-4-17.(2)设这个正方形零件的边长为x cm,∵DE∥AC,∴,∴.∴x=48.答:这个正方形零件的边长为48cm.注意:本题是几何作图和几何计算相结合题目,要求读者对基本作图务必掌握,同时对作出图形的性质要清楚.例8 (2002·山西省)如图24-4-18①,有一破残的轮片(不小于半个轮),现要制作一个与原轮片同样大小的圆形零件,请你根据所学的有关知识,设计两种方案,确定这个圆形零件的半径.分析:欲确定这个圆形零件的半径,可以借助三角板,T形尺或尺规作图均可,图②中是这个零件的半径,图③中OB是这个零件半径.解:如图24-4-18②③所示.【常见错误分析】例9如图24-4-19,已知线段a、b、h.求作△ABC,使BC=a,AC=b,BC边上的高AD=h.并回答问题,你作出的三角形唯一吗?从中你可以得到什么结论呢?错解:(1)作法:①作Rt△ADC,使AD=h,AC=b.②在直线CD上截取CB=a.如图24-4-20,则△ABC就是所求作的三角形.(2)作出的三角形唯一.(3)得出结论:有两边及一边上的高对应相等的两三角形全等.误区分析:本题错解在于忽略了三角形的高可能在三角形内部也可能在三角形的外部.正解:如图24-4-21,作法:①作Rt△ADC,使AD=h,AC=b.②在直线CD上截取CB=a(在点C的两侧).则△ABC,△AB′C都是所求作三角形.(2)作出的三角形不唯一.(3)得出结论有两边及—边上的高对应相等的两三角形不一定全等.注意:与三角形的高有关的题目应慎之又慎.【学习方法指导】学习基本作图,主要是运用观察法,通过具体的操作,了解各种基本作图的步骤,掌握作图语言.【规律总结】画复杂的图形时,如一时找不到作法,—般是先画出一个符合所设条件的草图,再根据这个草图进行分析,逐步寻找画图步骤.有时,也可以根据已知条件和基本作图,先作局部三角形,再以此为基础,根据有关条件画出其余部分,从而完成全图,这种方法称为三角形奠基法.拓展: 1.利用基本作图作三角形:(1)已知三边作三角形; (2)已知两边及其夹角作三角形; (3)已知两角及其夹边作三角形; (4)已知底边及底边上的高作等腰三角形;(5)已知一直角边和斜边作直角三角形.2.与圆有关的尺规作图:(1)过不在同一直线上的三点作圆(即三角形的外接圆). (2)作三角形的内切圆.(3)作圆的内接正方形和正六边形.附件:尺规作图简史:“规”就是圆规,是用来画圆的工具,在我国古代甲骨文中就有“规”这个字.“矩”就像现在木工使用的角尺,由长短两尺相交成直角而成,两者间用木杠连接以使其牢固,其中短尺叫勾,长尺叫股.矩的使用是我国古代的一个发明,山东历城武梁祠石室造像中就有“伏羲氏手执矩,女娲氏手执规”之图形.矩不仅可以画直线、直角,加上刻度可以测量,还可以代替圆规.甲骨文中也有矩字,这可追溯到大禹治水(公元前2000年)前.《史记》卷二记载大禹治水时“左准绳,右规矩”.赵爽注《周髀算经》中有“禹治洪水,……望山川之形,定高下之势,……乃勾股之所由生也.”意即禹治洪水,要先测量地势的高低,就必定要用勾股的道理.这也说明矩起源于很远的中国古代.春秋时代也有不少著作涉及规矩的论述,《墨子》卷七中说“轮匠(制造车子的工匠)执其规矩,以度天下之方圆.”《孟子》卷四中说“离娄(传说中目力非常强的人)之明,公输子(即鲁班,传说木匠的祖师)之巧,不以规矩,不能成方圆.”可见,在春秋战国时期,规矩已被广泛地用于作图、制作器具了.由于我国古代的矩上已有刻度,因此使用范围较广,具有较大的实用性.古代希腊人较重视规、矩在数学中训练思维和智力的作用,而忽视规矩的实用价值.因此,在作图中对规、矩的使用方法加以很多限制,提出了尺规作图问题.所谓尺规作图,就是只有限次地使用没有刻度的直尺和圆规进行作图.古希腊的安那萨哥拉斯首先提出作图要有尺寸限制.他因政治上的纠葛,被关进监狱,并被判处死刑.在监狱里,他思考改圆成方以及其他有关问题,用来打发令人苦恼的无所事事的生活.他不可能有规范的作图工具,只能用一根绳子画圆,用随便找来的破木棍作直尺,当然这些尺子上不可能有刻度.另外,对他来说,时间是不多了,因此他很自然地想到要有限次地使用尺规解决问题.后来以理论形式具体明确这个规定的是欧几里德的《几何原本》.由于《几何原本》的巨大影响,希腊人所崇尚的尺规作图也一直被遵守并流传下来.由于对尺规作图的限制,使得一些貌似简单的几何作图问题无法解决.最著名的是被称为几何三大问题的三个古希腊古典作图难题:立方倍积问题、三等分任意角问题和化圆为方问题.当时很多有名的希腊数学家,都曾着力于研究这三大问题,虽然借助于其他工具或曲线,这三大难题都可以解决,但由于尺规作图的限制,却一直未能如愿以偿.以后两千年来,无数数学家为之绞尽脑汁,都以失败而告终.直到1637年笛卡尔创立了解析几何,关于尺规作图的可能性问题才有了准则.到了1837年万芝尔首先证明立方倍积问题和三等分任意角问题都属于尺规作图不可能问题.1882年林德曼证明了π是无理数,化圆为方问题不可能用尺规作图解决,这才结束了历时两千年的数学难题公案.•。

北师大版数学七年级下册尺规作图(绝对经典)

北师大版数学七年级下册尺规作图(绝对经典)

BPAaOQPNM ON MBPA 老师姓名 学生姓名 教材版本 北师大版学科名称 数学年级初一上课时间课题名称尺规作图教学重点1. 掌握几种尺规作图的作法2. 能利用尺规作图解决实际问题教 学 过 程第一环节:知识梳理(要点)1、尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。

最基本,最常用的尺规作图,通常称基本作图。

一些复杂的尺规作图都是由基本作图组成的。

2、五种基本作图:1、作一条线段等于已知线段;2、作一个角等于已知角;3、作已知线段的垂直平分线;4、作已知角的角平分线;5、过一点作已知直线的垂线 (1)题目一:作一条线段等于已知线段。

已知:如图,线段a .求作:线段AB ,使AB = a . 作法:(1) 作射线AP ;(2) 在射线AP 上截取AB=a . 则线段AB 就是所求作的图形。

(2)题目二:作已知线段的中点。

已知:如图,线段MN.求作:点O ,使MO=NO (即O 是MN 的中点).作法:(1)分别以M 、N 为圆心,大于的相同线段为半径画弧, 两弧相交于P ,Q ; (2)连接PQ 交MN 于O .则点O 就是所求作的MN的中点。

(3)题目三:作已知角的角平分线。

已知:如图,∠AOB ,求作:射线OP, 使∠AOP =∠BOP (即OP 平分∠AOB )。

作法:(1)以O 为圆心,任意长度为半径画弧,分别交OA ,OB 于M ,N ;(2)分别以M 、N为圆心,大于 的线段长为半径画弧,两弧交∠AOB 内于P;N MB OA③②①A'A'N'O'B'M'O'A'N'M'M'O'Q NDC P P M BA B A PA BBAP Q N D CM (3) 作射线OP 。

则射线OP 就是∠AOB 的角平分线。

(4)题目四:作一个角等于已知角。

已知:如图,∠AOB 。

最新北师大版七年级数学下册尺规作图

最新北师大版七年级数学下册尺规作图

α七年级下册数学尺规作图1、已知:a求作:AB ,使AB=a2、已知:∠α求作:∠AOB ,使∠AOB=∠α3、已知三角形的两边及其夹角,求作这个三角形.已知:线段a ,c ,∠α。

求作:ΔABC ,使得BC= a ,AB=c ,∠ABC=∠α。

4、已知三角形的两角及其夹边,求作这个三角形.已知:角∠α,∠β,线段c 。

求作:ΔABC ,使得∠A=∠α,∠B=∠β,AB=c 。

5、已知:线段a ,b ,c 。

求作:ΔABC ,使得AB=c ,AC=b ,BC=a 。

ααα6、已知∠α,线段a ,用尺规作一个三角形,使其一个内角等于∠α,;另一个内角等于 2∠α,且这两个内角的夹边等于a 。

7、用尺规作一个直角三角形,使其中一个锐角为∠α,这个锐角和直角的夹边为a 。

8、如图,要在街道旁修建一个奶站,向居民区A 、B 提供牛奶,奶站应建在什么地方才能使A 、B 到它的距离相等?9、如图所示,要在街道旁修建一个奶站,向居民区A 、B 提供牛奶,奶站应建在什么地方,才能使A 、B 到它的距离之和最短?10、如图,一张纸上有A、B、C、D这四个点,请找出一点M,使得MA=MB且MC=MD。

11、A,B,C这3个村庄的位置如图所示,每两个村庄之间有公路相连,村民希望共同投资建一个货运中转站,使中转站的位置到3个村庄的距离相等,请你用尺规确定中转站的位置。

12、某部门想在S区建一个农贸市场,使它到公路、铁路距离相等,且离公路与铁路交叉处500m,这个集贸市场应建于何处(在图上标出它的位置,比例尺为1:20000)?(尺规作图,不写作法,保留作图痕迹)13、直线OA,OB表示两条相互交叉的公路,点M、N表示两个蔬菜基地。

现在建立一个蔬菜批发市场P,要求它到两条公路的距离相等,且到两个蔬菜基地的距离也相等,请用尺规作图说明市场的位置。

14、有公路l1同侧、l2异侧的两个城镇A,B,如下图.电信部门要修建一座信号发射塔,按照设计要求,发射塔到两个城镇A,B的距离必须相等,到两条公路l1,l2的距离也必须相等,发射塔C 应修建在什么位置?请用尺规作图找出所有符合条件的点,注明点C 的位置.(保留作图痕迹,不要求写出画法)15、小明的爸爸准备根据图纸制作一种三角形的零件,却不小心将图纸弄脏了,图纸上只能看清两个顶点A 、C ,已知A ∠是顶角。

(完整版)北师大版数学七年级下册尺规作图(绝对经典)

(完整版)北师大版数学七年级下册尺规作图(绝对经典)

BPAaOQPNM O N MBPA 教 学 过 程第一环节:知识梳理(要点)1、尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。

最基本,最常用的尺规作图,通常称基本作图。

一些复杂的尺规作图都是由基本作图组成的。

2、五种基本作图:1、作一条线段等于已知线段;2、作一个角等于已知角;3、作已知线段的垂直平分线;4、作已知角的角平分线;5、过一点作已知直线的垂线 (1)题目一:作一条线段等于已知线段。

已知:如图,线段a .求作:线段AB ,使AB = a . 作法:(1) 作射线AP ;(2) 在射线AP 上截取AB=a . 则线段AB 就是所求作的图形。

(2)题目二:作已知线段的中点。

已知:如图,线段MN.求作:点O ,使MO=NO (即O 是MN 的中点).作法:(1)分别以M 、N 为圆心,大于的相同线段为半径画弧, 两弧相交于P ,Q ; (2)连接PQ 交MN 于O .则点O 就是所求作的MN的中点。

(3)题目三:作已知角的角平分线。

已知:如图,∠AOB ,求作:射线OP, 使∠AOP =∠BOP (即OP 平分∠AOB )。

作法:(1)以O 为圆心,任意长度为半径画弧,分别交OA ,OB 于M ,N ;(2)分别以M 、N为圆心,大于 的线段长为半径画弧,两弧交∠AOB 内于P; (3) 作射线OP 。

则射线OP 就是∠AOB 的角平分线。

(4)题目四:作一个角等于已知角。

已知:如图,∠AOB 。

求作:∠A ’O ’B ’,使A ’O ’B ’=∠AOB。

北师大数学七年级下册尺规作图绝对经典

北师大数学七年级下册尺规作图绝对经典

BPAaOQPNMON MBPA老师姓名学生姓名教材版本北师大版学科名称 数学 年级 初一 上课时间课题名称尺规作图教学重点1. 掌握几种尺规作图的作法2. 能利用尺规作图解决实际问题教 学 过 程第一环节:知识梳理(要点)1、尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。

最基本,最常用的尺规作图,通常称基本作图。

一些复杂的尺规作图都是由基本作图组成的。

2、五种基本作图:1、作一条线段等于已知线段;2、作一个角等于已知角;3、作已知线段的垂直平分线;4、作已知角的角平分线;5、过一点作已知直线的垂线 (1)题目一:作一条线段等于已知线段。

已知:如图,线段a . 求作:线段AB ,使AB = a . 作法:(1) 作射线AP ;(2) 在射线AP 上截取AB=a . 则线段AB 就是所求作的图形。

(2)题目二:作已知线段的中点。

已知:如图,线段MN.求作:点O ,使MO=NO (即O 是MN 的中点). 作法:(1)分别以M 、N 为圆心,大于的相同线段为半径画弧, 两弧相交于P ,Q ;(2)连接PQ 交MN 于O . 则点O 就是所求作的MN的中点。

(3)题目三:作已知角的角平分线。

已知:如图,∠AOB ,求作:射线OP, 使∠AOP =∠BOP (即OP 平分∠AOB )。

作法:Q NDCPP M BABAPA BBAPQ ND CM(1)以O 为圆心,任意长度为半径画弧,分别交OA ,OB 于M ,N ;(2)分别以M 、N为圆心,大于 的线段长为半径画弧,两弧交∠AOB 内于P; (3) 作射线OP 。

则射线OP 就是∠AOB 的角平分线。

(4)题目四:作一个角等于已知角。

已知:如图,∠AOB 。

求作:∠A ’O ’B ’,使A ’O ’B ’=∠AOB 作法:(1)作射线O ’A ’;(2)以O 为圆心,任意长度为半径画弧,交OA 于M ,交OB 于N ; (3)以O ’为圆心,以OM 的长为半径画弧,交O ’A ’于M ’; (4)以M ’为圆心,以MN 的长为半径画弧,交前弧于N ’; (5)连接O ’N ’并延长到B ’。

七年级下册专题之尺规作图复习

七年级下册专题之尺规作图复习

七年级下册期末培优复习专题之尺规作图复习类型一:作角1如图,已知∠AOB,点P在OB上,求作直线PE,使得PE//AC.(要求尺规作图,保留作图痕迹)2.如图,Rt△ABC中,∠A=90°.(1)用尺规作图法作∠ABD=∠C,与边AC交于点D(保留作图痕迹,不用写作法);(2)在(1)的条件下,当∠C=30°时,求∠BDC的度数.3.如图:打台球时,小球由A点出发撞击到台球桌边CD的点O处,请用尺规作图的方法作出小球反弹后的运动方向.(要求:不写作法,但要保留作图痕迹)类型二:作角平分线4.如图,已知△ABC中,AB=AC,(1)尺规作图:作∠BAC的平分线交BC于D点(保留作图痕迹,不写作法)(2)在(1)的条件下,请判断BD与CD的数量关系,并说明理由.5.已知△ABC,如图,点D在△ABC的AB边上,且∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系,并说明理由.6.校园的一角如图所示,其中线段AB,BC,CD表示围墙,围墙内是学生的一个活动区域,小明想在图中的活动区域中找到一点P,使得点P到三面围墙的距离都相等.请在图中找出点P.(用尺规作图,不用写作法,保留作图痕迹)类型三:作垂直平分线7.如图,在△ABC中,∠B<∠C.(1)作BC的垂直平分线DE,垂足为D,与AB相交于点E(用尺规作图,保留作图痕迹)(2)连接CE,若A B=8,A C=3求△AEC的周长.8.如图,已知在△ABC中,AB=AC.(1)试用直尺和圆规在AC上找一点D,使AD=BD(不写作法,保留作图痕迹).(2)在(1)中,连接BD,若∠A=30°,求∠CBD的度数.9.如图,在△ABC的BC边上求作点D,使得△ABD与△ACD的面积相等.(保留作图痕迹,不写作法)类型四:作三角形10.作图题:已知:线段a、c和∠β(如图),利用直尺和圆规作△ABC,使BC=a,AB=c,∠ABC=∠β.(不写作法,保留作图痕迹).11.尺规作图(只保留作图痕迹,不要求写出作法):如图,已知△ABC,请根据“ASA”基本事实作出△DEF,使△DEF≌△ABC.12.作图:请你在下图中用尺规作图法作出一个以线段AB为一边的等边三角形.(要求保留作图痕迹,不写作法)类型五:作三角形的高13.用直尺和三角板作△ABC的AB边上的高。

初中数学尺规作图大汇总(原创绝对经典)

初中数学尺规作图大汇总(原创绝对经典)
尺规作图大汇总
线段垂直平分线的作法 角平分线的作法 作一个角等于已知角 用尺规作一个三角形
太原维刚实验学校 2020年5月6日 一线数学教师何彦峰
尺规作图作线段的垂直平分线
尺规作图
已知:线段AB. 求作:线段AB的垂直平分线.
C
作法:(1)分别以点A,B 为圆心,以大于 1AB
A
的长为半径作弧,2 两
a
c
A
α
α
B
C
二 已知三角形的两角及其夹边作三角形
已知:∠α,∠β和线段c,如图所示.
求作:△ABC,使∠A=∠α,∠B=∠β,AB=c.
ED
α
C
β c
A
BF
用尺规作三角形
三 已知三角形的三条边,求作这个三角形
已知:线段a,b,c如图所示.
求作:△ABC,使AB=c,AC=b,BC=a.
a
b
A
B D
弧交于C,D两点.
(2)连接CD.直线CD即为所求.
如图,A,B是路边两个新建小区,要 在公路边增设一个公共汽车站.使两个 小区到车站的路程一样长,该公共汽 车站应建在什么地方?
B A
【提示】连接AB,作AB的垂直平分线,则与公路的 交点就是要建的公共汽车站.
2. 有A,B,C三个村庄,现准备要建一 所学校,要求学校到三个村庄的距离相 等,请你确定学校的位置.
3、作射线_O_E___;__O_E__即为所求。
如图,直线l1、l2、l3表示三条相 交叉的公路,现要建一个货物中
转站,要求它到三条公路的距离
相等,则可供选择的地址有__处。
l1
l3
l2
l1
D
l3
A

七年级下学期尺规作图汇总

七年级下学期尺规作图汇总

七年级数学下尺规作图汇总姓名班别座号基本作图一:作一条线段等于已知线段已知:如图,线段a .求作:线段AB,使AB = a .作法:(1)作射线AP;(2)在射线AP上截取AB=a .∴线段AB就是所求作的图形.基本作图二:作一个角等于已知角已知:如图,已知∠AOB求作:∠A’O’B’,使A’O’B’=∠AOB作法:(1)作射线O’A’;(2)以O为圆心,任意长度为半径画弧,交OA于M,交OB于N;(3)以O’为圆心,以OM的长为半径画弧,交O’A’于M’;(4)以M’为圆心,以MN的长为半径画弧,交前弧于N’;(5)连接O’N’并延长到B’.∴∠A’O’B’就是所求作的角基本作图三:作线段的垂直平分线已知:线段AB(如图).求作:线段AB的垂直平分线CD. A B作法:(1)分别以点A和B为圆心,以大于12AB的长为半径作弧,两弧相交于点C和D.(2)作直线CD.∴直线CD就是线段AB的垂直平分线.基本作图四:利用尺规作一个角的平分线已知∠AOB,请作出它的角平分线OP.作法:(1)以点O为圆心,以任意长为半径画弧,两弧交∠AOB两边于点M、N.(2)分别以点M,N为圆心,以大于MN的长度为半径画弧,两弧交于点P.(3)作射线OP.∴射线OP为角AOB的角平分线.基本作图五:作已知直线的垂线(1)过直线上一点作一条直线与已知直线垂直已知:如图,点A在上,求作:直线,使经过点A,且⊥作法:①以点A为圆心,以为适当长为半径画弧交于B、C②分别以点B、C为圆心,以大于BC为半径,在一侧作弧,交点为D③连接AD∴AD就是所求作的直线(2)过直线外一点作一条直线与已知直线垂直已知:如图,直线及直线外一点A 求作:直线,使经过点A ,且⊥作法:①以点A 为圆心,以大于点A 到的距离的长度为半径画弧交于B 、C②分别以点B 、C 为圆心,以大于BC 为半径,在另一侧作弧,两弧交于点D③连接AD∴AD 就是所求作的直线练习:1、(2005长沙)请在图中作出△ABC 的角平分线BD (要求保留作图痕迹).3、已知:如图,∠AOB 内有两定点C 、D求作:一点P 使PC=PD ,且P 到∠AOB 的两边之距相等要求:用尺规作图,不写作法,但要保留作图痕迹2、如图,画一个等腰△ABC ,使得底边BC=,它的高AD=.。

初中尺规作图总结

初中尺规作图总结

初中尺规作图总结一、引言初中数学学习中,尺规作图是一个重要的内容。

尺规作图是通过使用直尺、圆规等绘图工具进行准确、规范的绘制图形的方法。

在初中阶段,学生主要学习了直线的作图、角的作图以及等腰三角形、菱形等特殊图形的作图方法。

本文将总结初中尺规作图相关的基本知识和作图方法,帮助初中生更好地掌握这一技能。

二、直线的作图1. 已知一点和一条直线,作与该直线垂直的直线步骤:1.以已知直线上的一点为圆心,画一个任意半径的圆;2.在圆上任取一点,分别与已知直线上的点相连;3.分别以这两条线段为直径作圆;4.两个圆的交点即为垂直于已知直线的直线。

2. 已知两点,作两点之间的线段步骤:1.以其中一个点为圆心,另一个点到该点的距离为半径作圆;2.以另一个点为圆心,与上述圆的交点为半径作圆;3.两个圆的交点即为所求线段的两个端点。

三、角的作图1. 已知一条边和一个角,作与给定角相等的角步骤:1.在给定角的一边上选择一个点A;2.以A为圆心,以给定边的长度为半径作圆;3.以给定角的另一边为直径作弧交于点B;4.连接B与A,所得线段即为所求角的一边。

2. 两直线相交成的角步骤:1.已知两直线AB和CD相交于点E;2.以E为圆心,任意半径作圆与两直线交于两点F、G;3.以F和G为圆心分别作等半径的圆;4.两个圆的交点分别连接到E点,所得线段即为所求角的一边。

四、特殊图形的作图1. 等腰三角形的作图步骤:1.已知底边和底边上的一个高;2.以底边上的点为圆心,高为半径作圆、两条连线;3.连接两个圆的交点与底边上的点,所得线段即为所求等腰三角形的两边。

2. 正方形的作图步骤:1.已知正方形的一条边;2.将该边平分,并在平分点处以该边长为边长作正方形;3.连接正方形的四个顶点,所得线段即为所求正方形的四条边。

五、总结尺规作图是初中数学学习中的重要内容,通过尺规作图的练习,可以帮助学生巩固几何知识,提高几何思维能力。

本文总结了初中数学中常见的尺规作图方法,包括直线的作图、角的作图以及特殊图形的作图。

[荐]七年级数学尺规作图-重要知识点+8种典型题解析

[荐]七年级数学尺规作图-重要知识点+8种典型题解析

七年级数学尺规作图-重要知识点+8种典型题解析1、尺规作图规范用语第一、用直尺作图的几何语言有三种:1、过点x、点x作直线xx;或作直线xx;或作射线xx;2、过两点xx做线段xx;或连结xx:3、延长xx到点x;或延长(反向延长)xx到点x,使xx=xx;或延长xx交xx于点x;第二、用圆规作图的几何语言可总结为四种,分别为:1、在xx上截取xx=xx:2、以点x为圆心,xx的长为半径作圆(或弧);3、以点x为圆心,xx的长为半径作弧,交xx于点x:4、分别以点x、点x为圆心,以xxxx的长为半径作弧,两弧相交于点x、x.2、尺规作图基本步骤1)根据文字语言用数学语言写出题目中的条件;2)根据题目画出要求作出的图形,以及列出该图形应满足的条件;3)根据作图的过程写出每一步的操作过程,当不要求写作法时,须保留作图痕迹。

注意:对于较复杂的作图,可先画出草图,使它同所要作的图大致相同,然后借助草图寻找作法。

3、尺规作图典型题分析典型题1:难度★如图(a),已知∠AOB和点C、D.求作一点M,使点M到∠AOB两边的距离相等,且与C、D组成以CD为底边的等腰三角形.【答案解析】因为到一个角两边距离相等的点在这个角的平分线上;而根据题意,点M应满足条件MC=MD,所以点M又在连结CD所得线段的垂直平分线上.(1)作∠AOB的平分线OG;(2)连结CD,作CD的垂直平分线,交OG于点M,如图(b),M 就是所要求作的点.典型题2:难度★如图,桌面上有黑白两球P、Q,试用尺规在边AD上找出一点,使黑球射向这点后反弹,正好击中白球.【答案解析】(1)以P为圆心,适当长为半径作弧,交AD于两点E、F;(2)分别以E、F为圆心,以同样长(即PE)为半径作弧,在AD的另一侧交于点R(即P关于AD的对称点);(3)连结RQ,交AD于点M,M就是所求作的点.典型题3:难度★★如图(a),A、B、C三个城市准备共建一个飞机场,希望机场到B、C两市的距离相等,到较大城市A的距离最近,试确定飞机场的位置.【答案解析】机场到B、C两市的距离相等,则应在线段BC的垂直平分线上;而这条垂直平分线上的点到A的最短距离是点A到这条直线的垂线段的长.(1)连结BC,作线段BC的垂直平分线l;(2)过点A作直线⊥的垂线,垂足P,如图(b),点P就是飞机场的位置典型题4:难度★★如图(a),已知线段a、b和∠AOB,C是边OB上一点,求作点M,使M到OA的距离为a,到点C的距离为b.【答案解析】(1)在OA上任取一点D,过D作OA的垂线l;(2)在⊥上截取DE=DF=a,过E、F作l的垂线l1、l2;(3)以C为圆心,b为半径作弧,与直线l2相交于点M1、M2,如图(b),则点M1、M2都是所要求作的点.典型题5:难度★★如图(a),已知线段a、b,求作△ABC,使BC=a,AB=b,∠C=90°.【答案解析】(1)作线段BC=a;(2)过点C作CD⊥BC;(3)以B为圆心,b为半径作弧,交CD于点A;(4)连结BA,如图(b),△ABC就是所求作的三角形.典型题6:难度★★如图(a),已知线段a,∠a,求作△ABC,使∠C=90°,∠A=∠a,AB =a.【答案解析】(1)作∠DAE=∠a;(2)在AD上截取AB=a;(3)过点B作BC⊥AE于C,如图(b),△ABC即所求作的三角形.典型题7:难度★★已知等腰三角形的底角及底边上的中线,求作这个等腰三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学下尺规作图汇总 姓名 班别 座号
基本作图一:作一条线段等于已知线段
已知:如图,线段a .
求作:线段AB ,使AB = a .
作法:(1)作射线AP ;
(2)在射线AP 上截取AB=a .
∴线段AB 就是所求作的图形.
基本作图二:作一个角等于已知角
已知:如图,已知∠AOB
求作:∠A ’O ’B ’,使A ’O ’B ’=∠AOB
作法:(1)作射线O ’A ’;
(2)以O 为圆心,任意长度为半径画弧,交OA 于M ,交OB 于N ;
(3)以O ’为圆心,以OM 的长为半径画弧,交O ’A ’于M ’;
(4)以M ’为圆心,以MN 的长为半径画弧,交前弧于N ’;
(5)连接O ’N ’并延长到B ’.
∴∠A ’O ’B ’就是所求作的角
基本作图三:作线段的垂直平分线
已知:线段AB(如图).
求作:线段AB 的垂直平分线CD .
作法:(1)分别以点A 和B 为圆心,以大于12
AB 的长为半径作弧,两弧相交于点C 和D .
(2)作直线CD .
∴直线CD 就是线段AB 的垂直平分线.
基本作图四:利用尺规作一个角的平分线
已知∠AOB ,请作出它的角平分线OP.
作法:
(1)以点O 为圆心,以任意长为半径画弧,
两弧交∠AOB 两边于点M 、N .
(2)分别以点M ,N 为圆心,以大于2
1MN 的 长度为半径画弧,两弧交于点P .
(3)作射线OP .
∴射线OP 为角AOB 的角平分线.
A B
基本作图五:作已知直线的垂线
(1)过直线上一点作一条直线与已知直线垂直 已知:如图,点A 在1l 上,
求作:直线2l ,使2l 经过点A ,且2l ⊥1l
作法:
①以点A 为圆心,以为适当长为半径画弧交1l 于B 、C ②分别以点B 、C 为圆心,以大于21BC 为半径,在1l 一侧作弧,交点为D ③连接AD
∴AD 就是所求作的直线2l
(2)过直线外一点作一条直线与已知直线垂直 已知:如图,直线1l 及直线1l 外一点A
求作:直线2l ,使2l 经过点A ,且2l ⊥1l
作法:
①以点A 为圆心,以大于点A 到1l 的距离的长度为半径画弧交1l 于B 、C ②分别以点B 、C 为圆心,以大于
21BC 为半径,在另一侧作弧,两弧交于点D ③连接AD
∴AD 就是所求作的直线2l
练习:
1、(2005长沙)请在图中作出△ABC 的 角平分线BD (要求保留作图痕迹).
3、已知:如图,∠AOB 内有两定点C 、D
求作:一点P 使PC=PD ,且P 到∠AOB 的
两边之距相等
要求:用尺规作图,不写作法,但要保留作图痕迹 2、如图,画一个等腰△ABC ,使得底边BC=a ,它的高AD=h .。

相关文档
最新文档