反激与辅助电源设计

合集下载

双管反激辅助电源设计

双管反激辅助电源设计

第32卷 第3期 2018年5月湖 南 工 业 大 学 学 报Journal of Hunan University of TechnologyV ol.32 No.3 May 2018doi:10.3969/j.issn.1673-9833.2018.03.0012收稿日期:2017-06-23基金项目:国家自然科学基金资助项目(51607064),湖南省自然科学基金资助项目(2016JJ5038),湖南省教育厅优秀 青年基金资助项目(17B072)作者简介:彭 洵(1993-),男,湖北武汉人,湖南工业大学硕士生,主要研究方向电力电子及电力传动, E-mail :pengxun92@通信作者:廖无限(1969-),男,湖南攸县人,湖南工业大学工程师,硕士生导师,主要从事电力电子的教学与研究, E-mail :380079548@双管反激辅助电源设计彭 洵,廖无限,谌 军,徐丽虹(湖南工业大学 电气与信息工程学院,湖南 株洲 412007)摘 要:针对三相交流输入的电动汽车充电机、变频器、光伏逆变器等变换器辅助电源的问题,设计了一种基于双管反激结构的辅助电源,采用UC2844A 电流型PWM 控制芯片,实现了四路电压的隔离输出,5伏输出时通过LDO 芯片进一步稳压。

测试结果表明:该辅助电源可以输出80 W 额定设计功率,效率高达84%,且纹波小;在100~800 V 宽范围电压的直流输入下,能实现四路电压的稳定输出。

可见,该电源是一种结构可靠、成本较低、应用广泛的高性能辅助电源。

关键词:UC2844A ;开关电源;双管反激;脉冲宽度调制中图分类号:TM919;TN86 文献标志码:A 文章编号:1673-9833(2018)03-0065-06Design of Dual Switch Flyback Auxiliary Power SupplyPENG Xun ,LIAO Wuxian ,CHEN Jun ,XU Lihong(College of Electrical and Information Engineering ,Hunan University of Technology ,Zhuzhou Hunan 412007,China )Abstract :In view of the flaws of the auxiliary power supply of the battery charger, frequency converter,and photovoltaic inverter of three-phase AC input electric vehicles, an auxiliary power supply based on dual switch flyback has thus been designed, which utilizes UC2844A current type PWM control chips to realize the isolated output of the four circuit voltages, further stabilizing the 5 volt output by LDO chips. The test results show that the auxiliary power supply can output 80 W rated design power with small ripple waves, with its ef ficiency up to 84%. A stable output of four circuit voltages can be realized via the DC input of 100~800 V wide range of voltage. It is a reliable, low-cost, and widely used high-performance auxiliary power supply.Keywords :UC2844A ;switching power supply ;dual switch flyback ;pulse width modulation (PWM)0 引言虽然辅助电源的功率一般较小,并且在系统中只是起辅助供电作用,但是辅助电源的可靠性会影响电动机整机的性能。

反激式开关电源电路设计

反激式开关电源电路设计

反激式开关电源电路设计一、反激式开关电源的基本原理1.输入滤波电路:用于对输入电压进行滤波,消除噪声和干扰。

2.整流电路:将输入交流电压转换为直流电压。

3.开关变压器:通过变压器实现电压的升降。

4.开关管:通过快速开关控制电源的输出。

5.输出滤波电路:对输出电压进行滤波,减小纹波。

二、反激式开关电源的设计步骤1.确定需求:首先需要确定设计要求,包括输出电压和电流、负载稳定性要求、效率要求等。

2.选择开关管和变压器:根据需求选择合适的开关管和变压器,考虑其最大工作电流和功率损耗。

3.转换频率的选择:根据应用的具体要求,选择合适的转换频率。

较高的频率可以减小变压器的尺寸,但也会增加开关管的功耗。

4.控制电路设计:设计开关管的控制电路,包括驱动电路和保护电路,确保开关管的正常工作和保护电路的可靠性。

5.输出滤波电路设计:设计输出滤波电路,用于滤除输出电压中的高频噪声和纹波,提高稳定性和负载能力。

6.开关电路设计:设计开关电路,确保开关管的快速开关和可靠性。

7.其他辅助电路设计:如过温保护电路、过流保护电路等。

8.电路板布局和布线:根据电路设计和要求进行电路板布局和布线,提高电路的可靠性和稳定性。

9.电路仿真和调试:使用仿真软件对设计的电路进行仿真分析,并进行实际的电路调试,确保电路的可靠性和稳定性。

三、反激式开关电源设计的注意事项1.高效率设计:选择合适的元件和电路设计,减小功率损耗,提高电源的整体效率。

2.稳定性设计:考虑负载稳定性的要求,选择合适的控制策略和滤波电路,提高电源的稳定性和负载能力。

3.保护设计:考虑过温、过流、短路等保护功能的设计,保护电源和负载器件的安全。

4.电磁兼容设计:反激式开关电源中产生的高频噪声易对其他电子设备产生干扰,需要采取适当的电磁屏蔽和滤波措施。

5.安全性设计:合理设置安全保护电路和安全措施,确保电源在故障情况下能够及时切断电源,保护用户的安全。

通过以上步骤和注意事项,可以设计出一台高效、稳定、安全的反激式开关电源,满足不同应用领域的需求。

反激辅助电源单板硬件设计计算书

反激辅助电源单板硬件设计计算书

辅助电源单板硬件详细设计项目名称:NXm150KVAUPS项目编号:7704929_____ 审核(项目经理):__________日期:__________ 批准(开发经理):__________日期:__________更改信息登记表单板设计项目总目录(没有涉及的部分就不出现)摘要:(简述本单板对应的整机及在整机中的作用)辅助电源为一反激式DC/DC变换器,为整机提供工作电源。

关键词:辅助电源、反激变换UHRF3S67M3单板原理图项目名称:NXm150KVAUPS项目编号:7704929_____ 拟制:------------------------日期:-------------------- 审核:------------------------日期:--------------------辅助电源共有2级变换,均为反激变换器,前级取电自机器母线电压,输出24V供给驱动板、风扇调速电路、监控板。

后级变换器的输入为前级变换器输出的+24V,输出+15V、-15V供给检测板、DSP板,由于采用了+24VBUS母线,当单块辅助电源板的前级没有输入时,后级变换器能够从+24 BUS上取电,从而产生+15V、—15V供给本机的检测板及DSP板工作。

3.电路原理图辅助电源单板设计计算书项目名称:NXm150KVAUPS 项目编号:7704929_____ 拟制:------------------------日期:-------------------- 审核:------------------------日期:--------------------关键词:反激变换器摘 要: 一、设计遵从的规范、标准或依据□ Rank Mount 规格书□ Rank Mount 总体设计方案 □ S0A03<器件选用规范>二、单板技术条件( 即本功能电路的设计指标,输入条件,输出条件,实现的主要目的) 电路设计指标: 工作频率:120K Hz电路拓扑结构采用两级反激式变换器,以较低的成本实现多路输出,工作方式随负载条件变化。

反激式开关电源设计方法

反激式开关电源设计方法

反激式开关电源设计方法1.工作原理反激式开关电源是一种将线性变压器替换为变压器型电感器的开关电源。

它的工作原理是通过开关管周期性的打开和关闭,将直流电源的电能经过变压器转化为需要的输出电压。

当开关管打开时,电流从电源流入变压器进行储能;当开关管关闭时,储存在变压器中的电能会通过二次侧电容器得以释放,并输出到负载上。

2.主要组成部分(1)输入滤波电路:用来消除电源输入端的干扰信号,保证稳定的输入电压。

(2)整流电路:将交流输入电压转化为直流电压,常采用整流桥整流。

(3)激励电路:用来控制开关管的导通和关闭,以实现变压器的能量转移。

(4)变压器:用来完成电能的变换和隔离,将输入端的电能转换为所需的输出电能。

(5)输出电路:包括输出电容和输出滤波电路,用来滤除开关产生的高频脉冲,以得到稳定的输出电压。

3.设计要点在进行反激式开关电源设计时(1)确定输出电压和电流需求:根据实际应用需求,确定所需的输出电压和电流,并根据负载特性选择合适的功率等级。

(2)选择合适的开关管和变压器:根据负载需求和电路参数,选择合适的开关管和变压器,以保证输出电压和效率的要求。

(3)控制开关频率和占空比:根据负载要求和电路特性,选择合适的开关频率和占空比,以保证输出电压的稳定性和整体效果。

(4)进行热设计和保护措施:由于开关管会产生较高的温度,需要进行合理的热设计,同时添加保护电路,如过流保护、过温保护等,以保证电路的安全性和可靠性。

(5)进行EMC设计和测试:由于开关电源会产生较大的电磁干扰,需要进行EMC设计和测试,以满足相关的国际标准要求。

总结:反激式开关电源是一种常用的电源设计方案,其设计方法包括确定输出需求、选择合适的器件、控制开关频率和占空比、进行热设计和保护措施,以及进行EMC设计和测试。

通过合理的设计和选择,可以实现高效率、小型化的电源方案,满足各种电子设备的需求。

反激开关电源设计解析上

反激开关电源设计解析上
单击此处添加小标题
04
Y电容是指跨与L-G/N-G之间的电容器.
单击此处添加小标题
X电容多选用耐纹波电流比较大的聚脂薄膜类电容。这种类型的电容,体积较大,但其允许瞬间充放电的电流也很大,而其内阻相应较小。 X电容容值选取是uF级,此时必须在X电容的两端并联一个安全电阻,用于防止电源线拔插时,由于该电容的充放电过程而致电源线插头长时间带电。 安全标准规定,当正在工作之中的机器电源线被拔掉时,在两秒钟内,电源线插头两端带电的电压(或对地电位)必须小于原来额定工作电压的30%。 作为安全电容之一的X电容,也要求必须取得安全检测机构的认证。X电容一般都标有安全认证标志和耐压AC250V或AC275V字样,但其真正的直流耐压高达2000V以上,使用的时候不要随意使用标称耐压AC250V或者DC400V之类的的普通电容来代用。
反激开关电源特点
在开关电源市场中,400W以下的电源大约占了市场的70-80%,而其中反激式电源又占大部分,几乎常见的消费类产品全是反激式电源。 优点:成本低,外围元件少,低耗能,适用于宽电 压范围输入,可多组输出. 缺点:输出纹波比较大。(输出加低内阻滤波电容或加LC噪声滤波器可以改善) 今天以自行车充电器为例,详细讲解反激开关电源的设计流程及元器件的选择方法。
共模磁芯的选择
从前述设计要求中可知,共模电感器要不易饱和,如此就需要选择低B-H(磁芯损耗与饱和磁通密度)温度特性的材料,因需要较高的电感量,磁芯的μi值也就要高,同时还必须有较低的磁芯损耗和较高的BS(饱和磁通密度)值,符合上述要求之磁芯材质,目前以铁氧体材质最为合适,磁芯大小在设计时并没有一定的规定,原则上只要符合所需要的电感量,且在允许的低频损耗范围内,所设计的产品体积最小化。 因此,磁芯材质及大小选取应以成本、允许损耗、安装空间等做参考。共模电感常用磁芯的μi约在2000~10000之间。

反激变换器辅助电源的设计

反激变换器辅助电源的设计

反激变换器辅助电源的设计1.输入电压范围:反激变换器一般能够适应较宽的输入电压范围,因此需要确定工作的输入电压范围。

根据应用需求和输入电源情况选择合适的电压范围。

同时,要考虑输入电压波动对输出电压的影响,选择合适的电压波动容忍度。

2.输出电压和电流:根据应用需求,确定输出电压和电流的额定值。

同时要考虑输出电压和电流的变动范围,以及在变压器和输出电路中所需要的保护电路。

3.变压器设计:反激变换器中的关键部分是变压器,变压器的设计需要根据输入和输出电压进行匹配。

变压器的设计要根据工频、磁通密度和功率因数等考虑。

同时,要合理选择变压器的结构和材料,以确保变压器的安全性和高效性。

4.开关元件选择:反激变换器的开关元件一般为功率MOSFET,选择合适的开关元件需要考虑工作电压和电流、开关速度和损耗等因素。

同时,要考虑开关元件的散热问题,选择合适的散热方式。

5.输出电路设计:反激变换器的输出电路一般包括整流、滤波和稳压等部分。

整流部分需要根据输出电压和电流选择合适的整流电路,滤波部分要根据输出电压的纹波要求选择合适的电容和电感。

稳压部分可以采用反馈控制,通过调整开关元件的工作周期来实现电压稳定。

6.保护电路设计:反激变换器的保护电路一般包括过流保护、过压保护和过温保护等。

过流保护可以通过电流测量和反馈控制来实现,过压保护可以通过电压检测和反馈控制来实现,过温保护可以通过温度传感器和控制电路来实现。

7.稳定性分析:反激变换器的稳定性分析是设计中重要的一环,需要考虑稳定性的条件和评估交流增益。

可以通过利用伯德图、根轨迹和频率响应来进行分析。

在反激变换器设计完成后,需要进行实验验证和性能测试。

通过实验可以验证设计的正确性和可靠性,并对性能进行测试。

测试内容包括输入输出特性测试、效率测试、纹波测试、稳定性测试和保护功能测试等。

综上所述,反激变换器辅助电源的设计是一个较为复杂的工作,需要考虑多个关键因素,并进行合理的选型和设计。

基于UC28C45 的反激式辅助电源电路设计

基于UC28C45 的反激式辅助电源电路设计

Science and Technology &Innovation ┃科技与创新·155·2018年第04期文章编号:2095-6835(2018)04-0155-02基于UC28C45的反激式辅助电源电路设计*黄建明,薛慧杰(北京建筑大学电气与信息工程学院,北京100044)摘要:以高性能固定频率电流型控制器UC28C45及金属氧化物半导体场效应管FQA9N90C 为主要控制部分,设计了一种交流输入380V 、输出为一路直流电压24V 和两路直流电压11V 的反激式辅助电源电路。

对反激电路原理进行了分析,设计了高频变压器,最后通过实验测试得到了期望的直流输出电压,满足了电路设计要求。

关键词:变流器;辅助电源;反激式;微电网中图分类号:TD605文献标识码:ADOI :10.15913/ki.kjycx.2018.04.155各国政府面对能源耗尽、环境污染的危机,投入巨额资金进行新能源的发展研究。

因此,微电网应运而生,变流器控制技术是交直流混合微电网研究中的一个重要方向,而微网互联变流器是交直流混合微网的接口,其运行方式要求辅助电源具有较高的稳定性。

因此,变流器辅助电源的设计具有非常重要的意义。

本文设计了一个基于UC28C45的反激式辅助电源电路,以满足互联变流器的运行需求。

1UC28C45简介电流型控制器种类繁多,本文设计中所选为UC28C45。

UC28C45是Unitrode 公司生产的一种高性能固定频率电流型控制器,包含误差放大器、PWM 比较器、PWM 锁存器、振荡器、内部基准电源和欠压锁定等单元,其结构图如图1所示。

UC28C45外部有8个引脚:引脚1是误差放大器的输出端;引脚2是反馈电压输入端;引脚3是电流检测输入端;引脚4是定时端,内部振荡器的工作频率由外接的阻容时间常数决定,f =1.72(Rt ×Ct ),上电后,形成一个锯齿波电压;引脚5是公共地端;引脚6是推挽输出端,输出的频率是振荡频率的1/2;引脚7是Vcc 工作电源;引脚8是5V 基准电压输出端。

反激辅助电源变压器设计

反激辅助电源变压器设计
GPT302220B 辅助电源变压器设计
1、输入基本参数: Vin-min =150VDC, 2、输出基本参数: V01=+15V/0.3A,
Vin_max=450VDC,
Vin_nom=350VDC
V02=-15V/0.1A, V03=+7V/0.5A, V04=+7V/0.1A
额定输出功率 ≈10W,效率≈75%,输入功率≈15W 3、参数: 磁芯:EFD25,Ae≈55MM2,开关频率≈80KHZ,最大占空比 DMAX≈0.7 MOSFET:900V/4A, 二极管 US1K:800V/1A, TVS 二极管 250V 4、计算过程: 主反馈+15V, 取 NV0=150V,Vds_max=Vin_max(450V)+NVo(150V)+Vpp(100) 700V 匝比 N=10 取 Vin=Vin_nom=350V 时,变压器工作于临界连续模式,即: Vin_nom*Dnom*Ts=Nvo(1-Dnom)Ts Dnom=0.3 Vin=Vin_min=150V 时,变压器工作于连续模式,即 Vin_min*Dmax*Ts=Nvo(1-Dmax)Ts Dmax=0.5 根据临界连续模式能量完全传递,即: 1 Lp*Ip*fs=Po/0.75=Pin≈15W 2 Vin_nom*Dnom*Ts=Lp*Ip≈1312.5u Lp≈4.6mH, Ip≈0.285A Lp=4.0mH±10%,Ip=0.33A
① ②Βιβλιοθήκη 取根据连续模式能量传递方程,有: (
1 1 Lp*I2p.max- Lp*I2p.min)*fs=Pin≈15W 2 2

Vin.min*Dmax*Ts=Lp*△Ip=Lp*(Ip.max-Ip.min)≈937.5u Ip.max=0.3172A≈0.32A Ip.min=0.0828≈0.083A 根据:

反激式开关电源设计详解

反激式开关电源设计详解

反激式开关电源设计详解
一、反激式开关电源的结构与工作原理
反激式开关电源(也称为反激变换器)是一种半桥变换器,它由开关
电源的基本组成部件组成,其中包括变压器、控制器IC、开关电源模块、电容器等部件。

反激式开关电源的工作原理是利用反馈信号(也称为反激
信号)来实现开关控制,它可以检测输出电压(也称为反馈电压),并将
其与预设的电压比较,然后根据比较结果改变开合时间,使输出电压保持
稳定,这就是其原理。

另外,反激式开关电源还具有以下特点:
(1)反激式开关电源的效率比直流-直流变换器的效率要高得多,可
以达到90%以上。

(2)反激式开关电源的输入电压范围宽,适用于家用电器的输入,
其输入电压范围可以达到85V~265V,可以兼容不同的地区的电压范围。

(3)反激式开关电源的输出电流调节范围较宽,可以调节电流的幅
度达到一定范围内,以满足家用电器对电流稳定性的要求。

反激变换器辅助电源基本设计关系

反激变换器辅助电源基本设计关系

I1
=
Po ηDU i
D = Po = Po D ηUi D ηk
次级电流有效值
I2 =
Io 1− D
次级交流电流有效值
(10) (11)
I 2ac =
I
2 2

I
2 o
晶体管在截止时承受的电压(式(5))
U DS
= Ui
+ nU o
= Ui
+
n
(1
D − D)n
U
i
= Ui 1− D
(12) (13)
Ii
=
Po ηU i
(7)
当电感电流连续时(图2(a)),晶体管流过电流的峰值
I QP
=
I ip
= Po ηDU i
+ UiT 2L1
D
(8)
次级峰值电流,即二极管峰值电流
I DP
=
I2p
=
Io 1− D
+
U oT 2L2
(1 −
D)
(9)
一般选取脉动分量时脉冲中值的1/5,有效值忽略脉动分量。变压器初级电流的有效值为
U ( BR) DS
≥ (1.2 ~ 1.4) U i max 1 − Dmin
(15)
如果已经选择了晶体管,击穿电压已知,因此在最高输入电压时由式(8)得到最小
占空比必须满足
( ) Dmin
≤ 1−
1.2 ~ 1.4 U i max U ( BR)DS
(16)
如果空载进入断续状态,开关管承受的电压为
次级电流变化量
∆i2
= (i2 max
− i2 min ) =
Uo L2

反激式开关电源辅助电路设计

反激式开关电源辅助电路设计

反激式开关电源辅助电路设计反激式开关电源是一种常见的电源设计,常用于电子设备中。

为了提高开关电源的性能和稳定性,通常需要设计一些辅助电路来实现。

本文将介绍反激式开关电源辅助电路的设计原理和实施方法。

我们来了解一下反激式开关电源的工作原理。

反激式开关电源由输入电源、变压器、整流电路、滤波电路、开关管和控制电路等组成。

其中,开关管通过开关动作来控制输入电源与变压器的耦合,从而实现输入电源能量的传递。

为了提高开关电源的效率和稳定性,需要设计一些辅助电路来辅助实现开关管的控制和滤波。

一、过压保护电路过压保护电路是反激式开关电源中重要的辅助电路之一。

其作用是在输出电压超过设定值时,通过控制开关管的导通和断开来保护负载和开关管。

过压保护电路通常由比较器、参考电压源和控制电路等组成。

当输出电压超过设定值时,比较器会检测到这一变化,并通过控制电路来控制开关管的动作,从而实现过压保护的功能。

二、过流保护电路过流保护电路也是反激式开关电源中常用的辅助电路之一。

其作用是在输出电流超过设定值时,通过控制开关管的导通和断开来保护负载和开关管。

过流保护电路通常由电流传感器、比较器和控制电路等组成。

当输出电流超过设定值时,电流传感器会检测到这一变化,并通过控制电路来控制开关管的动作,从而实现过流保护的功能。

三、温度保护电路温度保护电路是为了防止开关电源因过热而损坏而设计的辅助电路。

温度保护电路通常由温度传感器、比较器和控制电路等组成。

当温度传感器检测到开关电源的温度超过设定值时,比较器会发出信号,并通过控制电路来控制开关管的动作,从而实现温度保护的功能。

四、软起动电路软起动电路是为了减小开关电源启动时的冲击电流而设计的辅助电路。

软起动电路通常由电容器、电阻器和继电器等组成。

在开关电源启动时,软起动电路会通过控制继电器的动作来实现对电源的逐渐接入,从而减小冲击电流的影响。

以上是反激式开关电源辅助电路的一些常见设计。

在实际应用中,根据具体的需求和要求,可能还需要设计其他辅助电路来满足特定的功能和性能要求。

反激式开关电源的设计

反激式开关电源的设计

反激式开关电源的设计1.反激式开关电源的基本原理与拓扑结构2.反激式开关电源的设计步骤(1)选择合适的开关器件:根据设计需求确定开关器件的额定电流和电压。

应选择满足设计需求的高效开关器件,以确保电源的稳定性和可靠性。

(2)设计变压器:变压器是反激式开关电源中非常重要的组成部分,其设计影响着整个电源的性能。

变压器的设计应根据输入电压、输出电压及负载电流等确定变比。

(3)设计输入滤波器:输入滤波器主要用于去除输入电源的高频噪声和电磁干扰。

应根据设计要求选择合适的滤波器元件。

(4)选择输出滤波器:输出滤波器用于去除输出电压中的高频噪声和波动。

应选择满足设计要求的输出滤波器元件。

(5)选择控制器和反馈电路:反激式开关电源需要一个控制器来控制开关器件的开关频率和占空比。

应根据具体设计需求选择合适的控制器和反馈电路。

(6)设计保护电路:反激式开关电源应设计有相应的保护电路,以防止过流、过压和过温等情况的发生,保证电源的安全可靠运行。

(7)进行电路仿真和调试:应使用电子设计自动化工具进行电路仿真和调试,以验证电源设计的正确性和稳定性。

3.注意事项和常见问题(1)电源设计应考虑效率和性能的平衡,既要保持高效率,又要满足设计要求。

(2)电源设计时要合理布局电路板,降低电磁干扰和噪声。

(3)电源设计应注意选择合适的元件,在成本和性能之间进行权衡。

(4)在进行电路仿真和调试时,应注意保护器件和测试仪器的安全,避免电源短路和电流过大导致元器件损坏。

(5)设计完成后,应进行严格的测试和质量控制,确保电源的稳定性和可靠性。

总结:反激式开关电源是一种常见的开关电源拓扑结构,在设计中需要考虑元件选择、变压器设计、滤波器设计、控制器和反馈电路选择等多个因素。

合理的设计和调试能够确保电源的稳定性和可靠性,满足设备的电源需求。

BMP模块中反激变换器辅助电源的设计

BMP模块中反激变换器辅助电源的设计

BMP模块中反激变换器辅助电源的设计辅助电源的设计在BMP(Board Mounted Power)模块设计中是非常重要的一个环节。

通过有效运用次级侧辅助电源可以大大改善启动波形。

由于初级侧辅助电源会受到各种保护模式的影响,所以辅助电源的设计应当全面考虑,谨慎设计。

下文对BMP模块中反激变换器辅助电源的设计要点做出介绍。

一、初级侧辅助电源的设计对于大多数的BMP模块而言,由于体积所限并不会有额外的反激电路来产生单独的辅助电源,所以控制器一般被置于初级侧。

如果控制器有高压自启动功能,可以直接由输入电压通过电阻连到Vin,通过IC自身的LDO(Low Drop-Out,低压差线性稳压器)转化为低电压后给IC供电,此时VCC外部所需的电容由VCC的开关机滞环电压决定,如果滞环电压很小,那么需要的电容就很多,考虑到BMP的空间有限,通常不直接应用它的高压自启动功能,将IC的VIN与VCC短接可以屏蔽该功能。

VCC直接由外部的LDO供电。

当主拓扑正常工作时,使用一个辅助绕组为所有的控制电路供电,关闭LDO以减少损耗。

下面为一个典型的初级侧辅助电源的电路图(主功率为反激变换器)。

Q201、R204、R243、C292和CR201组成输入LDO,T1(#4)是与主变压器耦合的辅助绕组,当主变压器正常工作以后,在辅助绕组上可以耦合出等比例的电压给控制IC供电,但在此电压建立前,控制器IC101须由输入LDO供电。

Q201的门极有一个稳压二极管CR201,稳压管电压减去Q201的GS门槛电压应高于IC的最小启动电压。

另一方面,启动结束后,应确保输入LDO不工作,否则由于Q201两端的大电压差,再乘以流过Q201的电流(IC101的工作电流),会令Q201损耗过大而损坏。

Q201不导通的条件是CR201上的电压减去C285上的电压小于Q201的GS门槛电压。

当进入短路电流模式时,辅助绕组没有电压,LDO一直处于工作状态,所以损耗很大。

反激式开关电源设计详细流程

反激式开关电源设计详细流程

反激式开关电源设计详细流程1.确定需求:首先要明确设计电源的输入电压和输出电流的需求,以及设计的环境条件,如工作温度范围和工作效率等。

2.选择主要元器件:根据需求确定选择适配器的主要元器件,包括变压器、MOSFET、二极管、电感器、电容器等。

3.设计变压器:变压器是反激式开关电源中的一个重要元器件,主要功能是提供电源输出的隔离和变压功能。

根据需求设计变压器的变比和功率,确定铁芯材料和绕线参数,如线径和绕线圈数等。

4.选择MOSFET:MOSFET是电源开关的关键元器件,它需要具备低导通和开关损耗、高效率和可靠性等特点。

根据需求选择合适的MOSFET,通过计算和模拟分析确定导通和关断时的最大功率损耗。

5.设计电感器和电容器:电感器和电容器用于滤波和稳压,通过计算和模拟模拟设计电流和电压波形,选择合适的电感值和电容值,以保证输出电流和电压的稳定。

6.设计控制电路:根据反激式开关电源的工作原理,设计适当的控制电路,用于控制开关管的导通和关断。

控制电路包括脉宽调制(PWM)控制和电流/电压反馈控制,以确保输出电流和电压的稳定和可靠。

7.选择和设计保护电路:反激式开关电源需要一些保护电路,如过压保护、过流保护、短路保护等。

根据设计需求选择合适的保护元器件和电路,以防止电源和被供电设备的损坏。

8.PCB设计:根据电路设计和布局要求进行PCB设计,包括元器件的布局、走线、线宽、间距等。

同时要考虑电磁兼容性(EMC)和热管理的问题。

9.原理图和PCB布线优化:通过仿真软件对电路进行仿真和优化,优化电路的参数和特性,如输出电压波形、效率和稳定性等。

10.系统测试与调试:完成PCB的制作和组装后,进行系统测试与调试,测试电源的输出性能、稳定性和保护功能等,并进行必要的调整和优化。

11.电源性能评估:对设计的电源进行性能评估,包括效率、功率因数、纹波和噪声等,以确保其符合设计要求和行业标准。

12.生产和质量控制:根据设计要求进行电源的批量生产,并进行质量控制,包括检测和测试,以确保产品的质量和可靠性。

基于反激变换器拓扑结构的电源设计

基于反激变换器拓扑结构的电源设计

基于反激变换器拓扑结构的辅助电源设计摘要:介绍了反激变换器的基本原理、拓扑结构、应用范围。

重点阐述了反激变换器的三种工作模式及在不同模式下的电流、电压变化情况,随后提出了RCD 吸收电路,最后设计出了一种基于反激变换器原理输出 12V和9V直流电源拓扑,重点介绍了TOPSwitch开关控制芯片并详细介绍了辅助电源设计步骤,论证了设计的合理性。

关键词:反激变换器;RCD吸收电路;TOPSwitch;辅助电源0 引言反激变换器的拓扑在输出功率为5~150W电源中应用非常广泛。

它最大的优点是不需要接输出滤波电感,使反激变换器成本降低,体积减小。

这种拓扑广泛应用于高电压、小功率场合(电压不大于5000V,功率小于15W)。

当直流输入电压较高(不小于160V)、初级电流适当时,该拓扑也可以用在输出功率达到150W的电源中。

由于输出端可不接滤波电感,该拓扑在高压不是很高的场合下很有优势,相反,正激变换器由于输出滤波电感必须承受高压而带来了很多问题。

此外,反激变换器不需要高压续流二极管,使它在高电压场合下应用更有利。

输出功率为50~150W且有多组输出的变换器也常常采用这种拓扑。

由于不需要输出电感,输入电压和负载变化时反激变换器的各输出端都能很好地跟随调整。

只要变压器匝比取得合适,直流输入从低至5V到常用的有115V交流整流得到的160V的场合,都可采用反激拓扑。

若选择合适的匝比,则这种拓扑也可用于由220V交流整流得到的320V的场合。

1反激变换器稳态分析1.1 反激变换器稳态原理反激变换器电路拓扑,如图1所示,变压器兼起储能电感作用。

根据电感电流是否连续将反激变换器分成电感电流连续模式(CCM)、电流临界连续模式、电流断续模式(DCM)。

不同模式时电感电流波形,如图2所示,图中i1,i2分别为反激变换器变压器原副边电感电流,D为开关S的占空图1反激变换器电路拓扑比,Ts为变换器开关周期。

T s D T s (1+D)T s1i 1i 1i 2i 2i 2i )a ()b ()c (C C M 模式D C M 模式电流临界连续模式图2 电感L 1和L 2的电流波形1.2 电流连续模式电流连续模式表示副边电感电流i 2在开关S 截止期间没有下降到零。

反激电源课程设计

反激电源课程设计

反激电源课程设计一、课程目标知识目标:1. 让学生理解反激电源的基本原理,掌握其电路组成及各部分功能。

2. 学会分析反激电源的转换效率、输出电压纹波等性能指标。

3. 掌握反激电源设计中关键参数的计算方法。

技能目标:1. 培养学生运用所学知识设计简单反激电源的能力。

2. 提高学生动手搭建反激电源实验电路,进行性能测试的技能。

3. 培养学生通过查阅资料、开展小组讨论等方式解决实际问题的能力。

情感态度价值观目标:1. 培养学生对电子技术课程的兴趣,激发他们探索科学技术的热情。

2. 培养学生的团队协作精神,让他们学会在合作中共同解决问题。

3. 增强学生的环保意识,让他们认识到高效电源设计在节能减排中的重要性。

本课程针对高年级电子技术相关专业学生,结合学科特点,注重理论与实践相结合,旨在提高学生分析问题、解决问题的能力。

课程目标明确,可衡量,便于教学设计和评估。

通过本课程的学习,学生将能够掌握反激电源的相关知识,具备一定的电源设计能力,同时培养良好的团队协作和环保意识。

二、教学内容1. 反激电源基本原理:讲解反激变换器的工作原理,包括开关管、脉冲变压器、二极管和滤波电容等组成部分的功能。

教材章节:第三章“开关电源原理”第2节“反激变换器”2. 反激电源性能分析:介绍转换效率、输出电压纹波等性能指标的计算方法和影响因素。

教材章节:第四章“开关电源性能分析”第1节“反激电源性能分析”3. 反激电源设计方法:讲解关键参数的计算,包括开关频率、脉冲变压器匝比、输出滤波器参数等。

教材章节:第五章“开关电源设计”第2节“反激电源设计”4. 实验教学:指导学生搭建反激电源实验电路,进行性能测试,分析实验数据,优化设计方案。

教材章节:第六章“开关电源实验”第3节“反激电源实验”5. 电源设计案例分析:分析典型反激电源设计案例,让学生了解实际应用中的设计技巧和注意事项。

教材章节:第七章“电源设计案例”第2节“反激电源设计案例”教学内容按照科学性和系统性原则进行组织,教学大纲明确,确保学生能够循序渐进地掌握反激电源相关知识。

反激变换电源课程设计报告

反激变换电源课程设计报告

反激变换电源课程设计报告一、课程目标知识目标:1. 学生能理解反激变换器的工作原理,掌握其电路组成和关键参数的计算。

2. 学生能描述反激变换电源的开关过程,解释其能量转换机制。

3. 学生掌握反激变换器在不同负载条件下的效率分析和优化方法。

技能目标:1. 学生能够运用所学知识,设计简单的反激变换电源电路,并进行参数计算。

2. 学生能够运用仿真软件对反激变换电源进行模拟,观察和分析其工作状态。

3. 学生能够通过实验操作,搭建反激变换电源实验平台,并验证理论分析的正确性。

情感态度价值观目标:1. 学生通过本课程的学习,培养对电力电子技术领域的兴趣和探究精神。

2. 学生在学习过程中,养成合作、交流和分享的学习习惯,增强团队协作能力。

3. 学生能够认识到反激变换电源在现代电子设备中的重要性,提高社会责任感和环保意识。

课程性质:本课程为电子技术专业课程,以理论教学和实践操作相结合的方式,使学生掌握反激变换电源的基本原理和应用。

学生特点:高二年级学生,已具备一定的电子技术基础,具有较强的学习能力和动手能力。

教学要求:注重理论与实践相结合,提高学生的实际操作能力,通过课程学习,使学生能够独立完成反激变换电源的设计与制作。

同时,注重培养学生的团队协作能力和创新思维。

二、教学内容1. 反激变换器基本原理:包括反激变换器的工作过程、能量转换方式及其在电力电子设备中的应用。

- 课本章节:第三章“开关电源”,第1节“反激变换器原理”。

2. 反激变换器电路组成与参数计算:分析反激变换器电路的各个组成部分,讲解关键参数的计算方法。

- 课本章节:第三章“开关电源”,第2节“反激变换器电路分析与设计”。

3. 反激变换器在不同负载下的效率分析:研究反激变换器在不同负载条件下的效率特性,探讨优化方法。

- 课本章节:第三章“开关电源”,第3节“反激变换器效率分析”。

4. 反激变换电源设计与仿真:介绍反激变换电源设计方法,运用仿真软件进行电路模拟,分析其性能。

反激变换器辅助电源的设计

反激变换器辅助电源的设计
①GVEO(s)的低频段直流增益偏低,为了提高直流增益,可以在补偿网络中引入一个积分环节;
②GVEO(s)含有一个极点,它会引起相位滞后。因此补偿网络应该一个零点,用来抵消极点对相位滞后的影响。
③为了使补偿后系统的高频增益迅速衰减,要求补偿网络除含有一个零极点外,至少还要含有一个非零极点。
综上分析,补偿网络需包含一个零点,一个零极点和一个非零极点,等效电路如图(9)所示,对应的传递函数为
最小原边匝数:
:最小直流输入电压(V);
:最大导通时间,(S);
:磁心磁通密度变化量,单位:高斯,一般取值范围为:1000~2500高斯;
Ae:磁心有效截面积,选用EI33/29/13磁芯,其Ae=118mm2=1.18cm2
副边匝数:
Ns:副边匝数;Np:原边匝数;Dmax:最大占空比;Vd:输出整流二极管压降;
实际过程屮考虑电压留有一定裕量取3脚对开关管漏极电阻12ko副边二极管选取考虑副边电流有效值为2a电流留有一定倍裕量快恢复二极管选用fr307其最大正向流通电流为3a最大反向耐压为700vo输出电容和输出小型lc滤波器的选取根据输出功率和电压纹波耍求一般选取纹波电压为输出电压的1即015v满载时输出电流12a考虑到电容的esr所形成的尖峰电压取较大的输出滤波电容可以减小esr的影响综合考虑选取输出电容为2200uf63v
辅助电源部分
辅助电源设计采用UC3842A芯片,具体设计过程如下。
1、功能指标参数
交流输入电压范围:
电网电压频率:
最大输出功率:
输出电压:
效率:η=85%
开关频率:
2、电路原理图
图1反激变换器电路原理图
3、主电路参数设计
3.1变压器设计
(1)根据AP值选择磁芯

反激变换电源课程设计

反激变换电源课程设计

反激变换电源课程设计一、课程目标知识目标:1. 学生能理解反激变换电源的基本原理和工作流程。

2. 学生能掌握反激变换器中关键参数的计算方法。

3. 学生能描述反激变换器在不同负载下的性能特点。

技能目标:1. 学生能够设计简单的反激变换电源电路,并进行参数计算。

2. 学生能够利用仿真软件对反激变换电源进行性能分析。

3. 学生能够通过实验验证反激变换电源的理论知识,并能解决实际问题。

情感态度价值观目标:1. 培养学生对电子技术课程的兴趣,提高学生的学科热情。

2. 培养学生具备团队协作精神,增强实践操作能力和动手解决问题的能力。

3. 培养学生严谨的科学态度,关注环保和节能,了解反激变换电源在现代电子设备中的应用。

课程性质:本课程为电子技术学科的专业课程,结合理论知识和实践操作,培养学生的实际工程设计能力。

学生特点:学生已具备一定的电子技术基础知识,具有较强的学习能力和动手能力。

教学要求:结合课本内容,注重理论与实践相结合,强调学生自主学习和实践操作,提高学生的工程设计能力。

在教学过程中,分解课程目标为具体学习成果,以便于教学设计和评估。

二、教学内容本章节教学内容主要包括以下三个方面:1. 反激变换电源原理及电路分析- 反激变换器的工作原理- 反激变换器电路的组成及功能- 课本第3章第2节内容:反激变换器的基本电路分析2. 反激变换器参数计算与设计- 反激变换器关键参数的计算方法- 反激变换器磁性元件的设计方法- 课本第3章第3节内容:反激变换器的设计与优化3. 反激变换电源性能分析及实验- 反激变换器在不同负载下的性能分析- 反激变换电源的仿真与实验- 课本第3章第4节内容:反激变换器的性能测试与实验验证教学安排与进度:1. 第一周:反激变换电源原理及电路分析2. 第二周:反激变换器参数计算与设计3. 第三周:反激变换电源性能分析及实验教学内容注重科学性和系统性,结合课本内容,引导学生掌握反激变换电源的基本原理、设计与性能分析,培养学生在实际工程中的应用能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反激变换器辅助电源基本设计关系反激变换器是辅助电源通常采用的电路拓扑.它的优点在于可以工作在非常广阔的输入电压范围,电路简单,元件少,但效率一般在75%左右.一般工程师对反激变换器设计比较茫然。

本文试图找到MIP162和TOPswitch 系列组成的辅助电源的较合理的设计方法。

1. 原理反激变换器电路如图1所示。

它是由功率开关S 、变压器T 、输出整流管D 2和输出滤波电容组成。

D 1和D z 组成尖峰抑制电路。

电路可以工作在电感安匝连续或/和断续.为讨论方便,首先研究电感安匝连续模式。

一、安匝连续原理,初级电流波形如图2(a)所示。

当晶体管S on iT L U i i i 1min 1max 11)(=−=∆电源U i 向电感储能,由输出电容向负载供电。

晶体管S 使二极管D 2,次级电流变化量图2 安匝连续(a)、和临界连续(b)和 断续(c)电流波形of o T L Ui i i 2min 2max22)(=−=∆ (2)在稳态时,转换瞬间变压器应满足 i N i N i N i N 1122112max max min min ==和2因此(3) ∆∆i N i N 1122=式中N 1 、N 2分别为变压器初、次级匝数;L 1和L 2分别为初、次级电感量。

设变压器没有漏感,应有 2222211(L n L N N L == (4) 由式(1)和式(2)联解,考虑到式(3)和式(4)得到 i ofono U nT T U ⋅=或i o U nD DU (5)⋅−=)1(式中n=N1 /N2为变压器变比.D=T on /T 为占空度。

电感电流(安匝)连续时,输出电压与输入电压的关系如式(5),输出电压与负载无关。

器件选择在电路设计时,首先应当知道变压器的电感量。

电感由临界连续电流决定。

临界连续时,在晶体管关断瞬时,次级电流刚好下降到零。

临界连续是连续的特例。

临界电流为)1(2221222D D fL nU TL T U TT i I i ofo of G −==∆=一般取临界电流I G =0.1I o ,即额定输出电流的10%,考虑到效率η、P o =I o ×U o 和式(5),则电流连续需要的电感量为oi o i fP D U fI D nD U L 2.02.0)1(221ηη=−≥ (6)输入电流平均值 ioi U P I η=(7) 当电感电流连续时(图2(a)),晶体管流过电流的峰值 D L TU DU P I I i i o ip QP 12+==η (8)次级峰值电流,即二极管峰值电流)1(2122D L TU D I I I o o p DP −+−== (9) 一般选取脉动分量时脉冲中值的1/5,有效值忽略脉动分量。

变压器初级电流的有效值为 kDP DU P D DU P I o i oio ηηη===1 (10) 次级电流有效值 DI I o−=12 (11)次级交流电流有效值 2222o ac I I I −=(12)晶体管在截止时承受的电压(式(5)) DU U n D DnU nU U U i i i o i DS −=−+=+=1)1( (13) 由式(5)可见,输入电压变化时,通过调节占空比达到输出电压的稳定。

输入电压最低U i max 时,最小占空比为maxmin i o oU nU nU D +=(14)由式(13)可以看到晶体管承受的电压应当小于其击穿电压。

一般反激变压器漏感较大,尽管采用缓冲和箝位措施,还可能有杂散电感引起的尖峰,通常选择晶体管的耐压minmax)(1)4.1~2.1(D U U i DS BR −≥ (15)如果已经选择了晶体管,击穿电压已知,因此在最高输入电压时由式(8)得到最小占空比必须满足 ()DSBR i U U D )(maxmin 4.1~2.11−≤ (16)如果空载进入断续状态,开关管承受的电压为(16a )o i DS BR nU U U +=max )(如果在额定输入电压时选择D在0.5左右,由式(13)可见,要求晶体管的耐压接近3倍。

如果晶体管选定,选择最小占空比D min 应当大于芯片的最小占空比D c min 。

因此,变压器变比 oi U D U D n )1(min maxmin −≤(17)一般根据输出功率决定开关频率f ;选择额定输入电压时占空度D ;根据输入或输出最低电压估计效率η。

根据这些参数就可以选择元器件参数。

次级峰值电压 o i p U nU U +=maxmax 2 (18) 如要求输出纹电压为ΔU pp ,要求滤波电容的R esr((ESR)为 ppp esr I U R 2∆=(19)根据式(6)选择初级电感;由式(8)和(13)选择功率开关管;由式(11)的I 2/1.57和式(18)选择输出整流管;根据式(19)和(12)选择电解电容。

同时如果已知PWM 芯片最大占空度,就可以由式(5)求得最低可能的输入电压U i min 。

占空比一般选择D =0.5左右.如果占空度大于0.5,变比n 加大(式(5)),初级电感加大(式(6)),初级峰值电流减少(式(8)),功率管电流定额下降,但电压定额提高(式(15));次级峰值电流(式(9))和有效值电流(式(11))增大,引起输出二极管,输出电容体积加大;但二极管电压定额降低(式(18))。

反之,以上结果也相反。

有时最大占空度受芯片最大占空度限制。

权衡利弊,一般选择D =0.5。

二、安匝断续恒频安匝连续模式的反激变换器输出电流继续下降就进入断续模式。

断续模式次级电流持续时间小于开关管截止时间。

晶体管零电流导通,输出整流二极管零电流关断。

与连续模式比较,功率开关管关断电流比连续模式大许多倍,关断损耗增大,同时漏感引起的损耗也加大。

但断续模式需要较小的电感,动态响应好,是小功率电源中经常采用的拓扑。

输出电流的平均值(图2(c)) R o T i T I 212∆⋅=(20) 式中TR (<T of )为次级电流流通时间。

当晶体管S 截止时,二极管流通期间Ro T i L U 22∆= 将式(20)代入上式,经化简得到 '22o o R U L TI T =(21) 可见,如果输出电压U o 、L 2和Δi 2=n Δi 1均恒定(式(21)),T R 也恒定。

如果T R 小于T of ,则电感电流断续;如出现大于T of ,实际上等于T of ,电感电流连续。

如果电感电流断续,T R 在整个输入电压范围内基本不变。

将式(21)代入式(20),并考虑式(3)和(4)得到oo o TU L i U L T n i I 221212221∆=⋅∆= (22) 又因111fL DU T L U i i on i ==∆ (23) 如果输出功率不变,U i D 为常数,Δi 1也为恒值。

所以式(18)可以写为oii o U U L TD U I ⋅=122 (24) 由式(24)可见,在断续时,输出电压与输出电流成反比,并考虑到效率η。

即oi o i o fI L D U I L TD U U 12212222ηη==(25) 则初级电感oi o o i fP D U I fU D U L 2222221ηη=≤(26) 则最大输出功率1222fL D U P i o η=(27a ) 或2222222)1(21fL D U f I L P o pk o −== (27b) 电流断续时,如果漏感为零,晶体管耐压应当大于承受的最高电压为(28) )()(D o i DS BR U U n U U ++≥ U图3 反激变换器的无损缓冲电路前面分析时初级电流转换到次级电流是瞬时完成的,实际变压器是有漏感的。

在晶体管关断瞬时,初级和次级线圈上感应电势反号,由于漏感使初级电流不能立即为零,否则将损坏晶体管,为此在初级线圈上一个稳压二极管(图1中虚线所示),将漏感产生的尖峰电压箝位,或加一个无损缓冲电路(图3),将漏感能量返回电源。

如果采用稳压管箝位,当晶体管关断瞬时,变压器各线圈电势反号,次级二极管导通,同时漏感能量迫使箝位稳压管(U z )导通,漏感上电压为)(2d o z s U U n U U +−=所以初级电流变化率为sd zL U U n U dt di )(201+−−= 当输出功率一定时,初级峰值电流一定,因此漏感L s 越小和U z 越大,初级电流下降到零点时间越短。

因为在箝位(漏感恢复时间)时间内,磁路总安匝基本不变,次级电流线性上升,初级电流也流进箝位电路,在导通时间存储在磁场中的能量有一部分消耗在箝位电路中。

箝位时间为 )(211d o z pkc U U n U I L t +−=(29)可见,如果U z 越高,t c 越短。

一般箝位电压是次级反射电压的1.2~1.5倍。

受功率管击穿电压限制:(30) max )(i z DS BR U U U +≥消耗在箝位稳压管上的能量为)(2212211d o z z pk s c z pk z U U n U U I L T t U I P +−⋅=×= (31) 其中初级因t s 损失的功率和漏感损失的功率分别为oz o p s s o p nU U nU f I L T T nU I P −⋅=⋅=221211'1和f I L P p s s 2121= 由式(31)可见,L s 越大,损耗越大,则效率越低。

如果U z 越高,t c 越小,则损耗也越小。

由式(27a)(27b )可见,输出功率反比于电感量和开关频率。

如果输入或输出电压很低(例如5V 以下),要提高输出功率,必须降低开关频率和电感量。

但是在生产线上要制造1µH 以下电感是无法保证较小误差,因为杂散电感和漏感与你需要的电感可以比较。

一般在3µH 以上,因此必须降低开关频率。

所以,低电压反激一般功率限制在50W 以下。

在要求适应输入电压从交流85V ~264V (直流92V ~370V )的反激变换器中,无法决定额定工作电压。

如果初级电感L 1、输出功率P o 和工作频率决定之后,由式(27a )可见,U ’=U i D =U i max D min 为常数,如果芯片的最大占空度为D max ,最低输入电压U i min 时为临界连续,则有(32) max min 'D U U i =于是初级与次级匝比为 ))(1(2max minmax d o i U U D U D n +−= (33)器件选择输入电流平均值 ioi U P I η=(34)当电感安匝断续时(图2(c)),晶体管流过电流的峰值 111'fL U D L T U I I I i p ip QP ==== (35) 可见,初级峰值电流在工作范围内是一个常数。

相关文档
最新文档