2017-2018学年辽宁省高二上学期12月月考试题 数学(文) word版

合集下载

2018-2019学年上学期高二数学12月月考试题含解析(371)

2018-2019学年上学期高二数学12月月考试题含解析(371)

永胜县第二中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 设()f x 是偶函数,且在(0,)+∞上是增函数,又(5)0f =,则使()0f x >的的取值范围是( )A .50x -<<或5x >B .5x <-或5x >C .55x -<<D .5x <-或05x <<2. 抛物线y=﹣x 2上的点到直线4x+3y ﹣8=0距离的最小值是( )A .B .C .D .33. 已知函数f (2x+1)=3x+2,且f (a )=2,则a 的值等于( ) A .8B .1C .5D .﹣14. 若命题“p 或q ”为真,“非p ”为真,则( )A .p 真q 真B .p 假q 真C .p 真q 假D .p 假q 假5. 若函数f (x )=3﹣|x ﹣1|+m 的图象与x 轴没有交点,则实数m 的取值范围是( ) A .m ≥0或m <﹣1B .m >0或m <﹣1C .m >1或m ≤0D .m >1或m <06. 在△ABC 中,sinB+sin (A ﹣B )=sinC 是sinA=的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也非必要条件7. 已知正方体ABCD ﹣A 1B 1C 1D 1中,点E 为上底面A 1C 1的中心,若+,则x 、y 的值分别为( )A .x=1,y=1B .x=1,y=C .x=,y=D .x=,y=18. 线段AB 在平面α内,则直线AB 与平面α的位置关系是( )A .AB ⊂αB .AB ⊄αC .由线段AB 的长短而定D .以上都不对9. 已知命题p :∃x ∈R ,cosx ≥a ,下列a 的取值能使“¬p ”是真命题的是( )A .﹣1B .0C .1D .210.已知函数,函数,其中b ∈R ,若函数y=f (x )﹣g (x )恰有4个零点,则b 的取值范围是( )A .B .C .D .11.设复数z 满足z (1+i )=2(i 为虚数单位),则z=( ) A .1﹣i B .1+i C .﹣1﹣iD .﹣1+i12.已知α,β为锐角△ABC 的两个内角,x ∈R ,f (x )=()|x ﹣2|+()|x ﹣2|,则关于x 的不等式f (2x ﹣1)﹣f (x+1)>0的解集为( )A .(﹣∞,)∪(2,+∞)B .(,2)C .(﹣∞,﹣)∪(2,+∞)D .(﹣,2)二、填空题13.下列关于圆锥曲线的命题:其中真命题的序号 .(写出所有真命题的序号).①设A ,B 为两个定点,若|PA|﹣|PB|=2,则动点P 的轨迹为双曲线;②设A ,B 为两个定点,若动点P 满足|PA|=10﹣|PB|,且|AB|=6,则|PA|的最大值为8; ③方程2x 2﹣5x+2=0的两根可分别作椭圆和双曲线的离心率; ④双曲线﹣=1与椭圆有相同的焦点.14.对于集合M ,定义函数对于两个集合A ,B ,定义集合A △B={x|f A (x )fB (x )=﹣1}.已知A={2,4,6,8,10},B={1,2,4,8,12},则用列举法写出集合A △B 的结果为 .15.在极坐标系中,直线l 的方程为ρcos θ=5,则点(4,)到直线l 的距离为 .16.若直线:012=--ay x 与直线2l :02=+y x 垂直,则=a .17.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()ln 4f x x x =+-的零点在区间()1k k +,内,则正整数k 的值为________. 18.在ABC ∆中,已知角C B A ,,的对边分别为c b a ,,,且B c C b a sin cos +=,则角B为 .三、解答题19.电视传媒公司为了解某地区观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性.(1)根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷”与性别有关?非体育迷体育迷合计男女总计(2)将日均收看该体育节目不低于50分钟的观众称为“超级体育迷”,已知“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2名,求至少有1名女性观众的概率.附:K2=P(K2≥k0)0.50 0.40 0.25 0.15 0.10 0.05 0.0250.010 0.005 0.001k00.455 0.708 1.323 2.072 2.706 3.84 5.024 6.63520.已知A(﹣3,0),B(3,0),C(x0,y0)是圆M上的三个不同的点.(1)若x0=﹣4,y0=1,求圆M的方程;(2)若点C是以AB为直径的圆M上的任意一点,直线x=3交直线AC于点R,线段BR的中点为D.判断直线CD与圆M的位置关系,并证明你的结论.21.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()()3231312f x x k x kx =-+++,其中.k R ∈ (1)当3k =时,求函数()f x 在[]0,5上的值域; (2)若函数()f x 在[]1,2上的最小值为3,求实数k 的取值范围.22.如图,M 、N 是焦点为F 的抛物线y 2=2px (p >0)上两个不同的点,且线段MN 中点A 的横坐标为,(1)求|MF|+|NF|的值;(2)若p=2,直线MN 与x 轴交于点B 点,求点B 横坐标的取值范围.23.(本小题满分12分)已知平面向量(1,)a x =,(23,)b x x =+-,()x R ∈. (1)若//a b ,求||a b -;(2)若与夹角为锐角,求的取值范围.24.设椭圆C :+=1(a >b >0)过点(0,4),离心率为.(1)求椭圆C 的方程;(2)求过点(3,0)且斜率为的直线被椭圆所截得线段的中点坐标.永胜县第二中学校2019-2020学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】B考点:函数的奇偶性与单调性.【思路点晴】本题主要考查函数的单调性、函数的奇偶性,数形结合的数学思想方法.由于函数是偶函数,所以定义域关于原点对称,图象关于y 轴对称,单调性在y 轴两侧相反,即在0x >时单调递增,当0x <时,函数单调递减.结合(5)0f =和对称性,可知(5)0f ±=,再结合函数的单调性,结合图象就可以求得最后的解集.12. 【答案】A【解析】解:由,得3x 2﹣4x+8=0.△=(﹣4)2﹣4×3×8=﹣80<0.所以直线4x+3y ﹣8=0与抛物线y=﹣x 2无交点.设与直线4x+3y ﹣8=0平行的直线为4x+3y+m=0联立,得3x 2﹣4x ﹣m=0.由△=(﹣4)2﹣4×3(﹣m )=16+12m=0,得m=﹣.所以与直线4x+3y ﹣8=0平行且与抛物线y=﹣x 2相切的直线方程为4x+3y ﹣=0.所以抛物线y=﹣x 2上的一点到直线4x+3y ﹣8=0的距离的最小值是=.故选:A .【点评】本题考查了直线与圆锥曲线的关系,考查了数学转化思想方法,训练了两条平行线间的距离公式,是中档题.3. 【答案】B【解析】解:∵函数f (2x+1)=3x+2,且f (a )=2,令3x+2=2,解得x=0,∴a=2×0+1=1.故选:B.4.【答案】B【解析】解:若命题“p或q”为真,则p真或q真,若“非p”为真,则p为假,∴p假q真,故选:B.【点评】本题考查了复合命题的真假的判断,是一道基础题.5.【答案】A【解析】解:∵函数f(x)=3﹣|x﹣1|+m的图象与x轴没有交点,∴﹣m=3﹣|x﹣1|无解,∵﹣|x﹣1|≤0,∴0<3﹣|x﹣1|≤1,∴﹣m≤0或﹣m>1,解得m≥0或m>﹣1故选:A.6.【答案】A【解析】解:∵sinB+sin(A﹣B)=sinC=sin(A+B),∴sinB+sinAcosB﹣cosAsinB=sinAcosB+cosAsinB,∴sinB=2cosAsinB,∵sinB≠0,∴cosA=,∴A=,∴sinA=,当sinA=,∴A=或A=,故在△ABC中,sinB+sin(A﹣B)=sinC是sinA=的充分非必要条件,故选:A7.【答案】C【解析】解:如图,++().故选C.8.【答案】A【解析】解:∵线段AB在平面α内,∴直线AB上所有的点都在平面α内,∴直线AB与平面α的位置关系:直线在平面α内,用符号表示为:AB⊂α故选A.【点评】本题考查了空间中直线与直线的位置关系及公理一,主要根据定义进行判断,考查了空间想象能力.公理一:如果一条线上的两个点在平面上则该线在平面上.9.【答案】D【解析】解:命题p:∃x∈R,cosx≥a,则a≤1.下列a的取值能使“¬p”是真命题的是a=2.故选;D.10.【答案】D【解析】解:∵g(x)=﹣f(2﹣x),∴y=f(x)﹣g(x)=f(x)﹣+f(2﹣x),由f(x)﹣+f(2﹣x)=0,得f(x)+f(2﹣x)=,设h(x)=f(x)+f(2﹣x),若x≤0,则﹣x≥0,2﹣x≥2,则h(x)=f(x)+f(2﹣x)=2+x+x2,若0≤x≤2,则﹣2≤﹣x≤0,0≤2﹣x≤2,则h(x)=f(x)+f(2﹣x)=2﹣x+2﹣|2﹣x|=2﹣x+2﹣2+x=2,若x>2,﹣x<﹣2,2﹣x<0,则h(x)=f(x)+f(2﹣x)=(x﹣2)2+2﹣|2﹣x|=x2﹣5x+8.作出函数h (x )的图象如图:当x ≤0时,h (x )=2+x+x 2=(x+)2+≥,当x >2时,h (x )=x 2﹣5x+8=(x ﹣)2+≥,故当=时,h (x )=,有两个交点,当=2时,h (x )=,有无数个交点,由图象知要使函数y=f (x )﹣g (x )恰有4个零点,即h (x )=恰有4个根,则满足<<2,解得:b ∈(,4),故选:D .【点评】本题主要考查函数零点个数的判断,根据条件求出函数的解析式,利用数形结合是解决本题的关键.11.【答案】A【解析】解:∵z (1+i )=2,∴z===1﹣i .故选:A .【点评】本题考查了复数的运算法则、共轭复数的定义,属于基础题.12.【答案】B【解析】解:∵α,β为锐角△ABC 的两个内角,可得α+β>90°,cos β=sin (90°﹣β)<sin α,同理cos α<sin β,∴f (x )=()|x ﹣2|+()|x ﹣2|,在(2,+∞)上单调递减,在(﹣∞,2)单调递增,由关于x的不等式f(2x﹣1)﹣f(x+1)>0得到关于x的不等式f(2x﹣1)>f(x+1),∴|2x﹣1﹣2|<|x+1﹣2|即|2x﹣3|<|x﹣1|,化简为3x2﹣1x+8<0,解得x∈(,2);故选:B.二、填空题13.【答案】②③.【解析】解:①根据双曲线的定义可知,满足|PA|﹣|PB|=2的动点P不一定是双曲线,这与AB的距离有关系,所以①错误.②由|PA|=10﹣|PB|,得|PA|+|PB|=10>|AB|,所以动点P的轨迹为以A,B为焦点的图象,且2a=10,2c=6,所以a=5,c=3,根据椭圆的性质可知,|PA|的最大值为a+c=5+3=8,所以②正确.③方程2x2﹣5x+2=0的两个根为x=2或x=,所以方程2x2﹣5x+2=0的两根可分别作椭圆和双曲线的离心率,所以③正确.④由双曲线的方程可知,双曲线的焦点在x轴上,而椭圆的焦点在y轴上,所以它们的焦点不可能相同,所以④错误.故正确的命题为②③.故答案为:②③.【点评】本题主要考查圆锥曲线的定义和性质,要求熟练掌握圆锥曲线的定义,方程和性质.14.【答案】{1,6,10,12}.【解析】解:要使f A(x)f B(x)=﹣1,必有x∈{x|x∈A且x∉B}∪{x|x∈B且x∉A}={6,10}∪{1,12}={1,6,10,12,},所以A△B={1,6,10,12}.故答案为{1,6,10,12}.【点评】本题是新定义题,考查了交、并、补集的混合运算,解答的关键是对新定义的理解,是基础题.15.【答案】3.【解析】解:直线l的方程为ρcosθ=5,化为x=5.点(4,)化为. ∴点到直线l 的距离d=5﹣2=3.故答案为:3.【点评】本题考查了极坐标化为直角坐标、点到直线的距离,属于基础题.16.【答案】1 【解析】试题分析:两直线垂直满足()02-12=⨯+⨯a ,解得1=a ,故填:1. 考点:直线垂直【方法点睛】本题考查了根据直线方程研究垂直关系,属于基础题型,当直线是一般式直线方程时,0:1111=++c y b x a l ,0:2222=++c y b x a l ,当两直线垂直时,需满足02121=+b b a a ,当两直线平行时,需满足01221=-b a b a 且1221c b c b ≠,或是212121c c b b a a ≠=,当直线是斜截式直线方程时,两直线垂直121-=k k ,两直线平行时,21k k =,21b b ≠.117.【答案】2 【解析】18.【答案】4π 【解析】考点:正弦定理.【方法点晴】本题考查正余弦定理,根据正弦定理,将所给的含有边和角的等式化为只含有角的等式,再利用三角形的三角和是︒180,消去多余的变量,从而解出B 角.三角函数题目在高考中的难度逐渐增加,以考查三角函数的图象和性质,以及三角形中的正余弦定理为主,在2016年全国卷( )中以选择题的压轴题出现.三、解答题19.【答案】【解析】解:(1)由频率分布直方图中可知:抽取的100名观众中,“体育迷”共有(0.020+0.005)×10×100=25名.可得2×2列联表:非体育迷体育迷合计男30 15 45女45 10 55总计75 25 100将2×2列联表中的数据代入公式计算可得K2的观测值为:k==≈3.030.∵3.030<3.841,∴我们没有理由认为“体育迷”与性别有关.(2)由频率分布直方图中可知:“超级体育迷”有5名,从而一切可能结果所组成的基本事件空间Ω={(a1,a2),(a1,a3),(a2,a3),(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)},其中a i(i=1,2,3)表示男性,b j (j=1,2)表示女性.设A表示事件“从“超级体育迷”中任意选取2名,至少有1名女性观众”,则事件A包括7个基本事件:(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2).∴P(A)=.【点评】本题考查了“独立性检验基本原理”、古典概率计算公式、频率分布直方图及其性质,考查了推理能力与计算能力,属于中档题.20.【答案】【解析】解:(1)设圆的方程为x2+y2+Dx+Ey+F=0圆的方程为x2+y2﹣8y﹣9=0…(2)直线CD与圆M相切O、D分别是AB、BR的中点则OD∥AR,∴∠CAB=∠DOB,∠ACO=∠COD,又∠CAO=∠ACO,∴∠DOB=∠COD又OC=OB,所以△BOD≌△COD∴∠OCD=∠OBD=90°即OC⊥CD,则直线CD与圆M相切.…(其他方法亦可)21.【答案】(1)[]1,21;(2)2k ≥.【解析】试题分析:(1)求导,再利用导数工具即可求得正解;(2)求导得()'f x =()()31x x k --,再分1k ≤和1k >两种情况进行讨论;试题解析:(1)解:3k = 时,()32691f x x x x =-++则()()()23129313f x x x x x =-+=--' 令0f x '=得121,3x x ==列表由上表知函数()f x 的值域为[]1,21(2)方法一:()()()()2331331f x x k x k x x k =-++=--'①当1k ≤时,[]()1,2,'0x f x ∀∈≥,函数()f x 在区间[]1,2单调递增 所以()()()min 31113132f x f k k ==-+++= 即53k =(舍) ②当2k ≥时,[]()1,2,'0x f x ∀∈≤,函数()f x 在区间[]1,2单调递减所以()()()min 28613213f x f k k ==-++⋅+= 符合题意③当12k <<时,当[)1,x k ∈时,()'0f x <()f x 区间在[)1,k 单调递减 当(],2x k ∈时,()'0f x >()f x 区间在(],2k 单调递增所以()()()322min 313132f x f k k k k k ==-+++= 化简得:32340k k -+= 即()()2120k k +-=所以1k =-或2k =(舍)注:也可令()3234g k k k =-+则()()23632g k k k k k =='-- 对()()1,2,0k g k ∀∈'≤()3234g k k k =-+在()1,2k ∈单调递减所以()02g k <<不符合题意综上所述:实数k 取值范围为2k ≥方法二:()()()()2331331f x x k x k x x k =-++=--'①当2k ≥时,[]()1,2,'0x f x ∀∈≤,函数()f x 在区间[]1,2单调递减 所以()()()min 28613213f x f k k ==-++⋅+= 符合题意 …………8分 ②当1k ≤时,[]()1,2,'0x f x ∀∈≥,函数()f x 在区间[]1,2单调递增所以()()min 23f x f <=不符合题意③当12k <<时,当[)1,x k ∈时,()'0f x <()f x 区间在[)1,k 单调递减 当(],2x k ∈时,()'0f x >()f x 区间在(],2k 单调递增 所以()()()min 23f x f k f =<=不符合题意综上所述:实数k 取值范围为2k ≥ 22.【答案】【解析】解:(1)设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=8﹣p ,|MF|=x 1+,|NF|=x 2+, ∴|MF|+|NF|=x 1+x 2+p=8;(2)p=2时,y 2=4x ,若直线MN 斜率不存在,则B (3,0);若直线MN 斜率存在,设A (3,t )(t ≠0),M (x 1,y 1),N (x 2,y 2),则代入利用点差法,可得y 12﹣y 22=4(x 1﹣x 2)∴k MN =,∴直线MN 的方程为y ﹣t=(x ﹣3),∴B 的横坐标为x=3﹣,直线MN 代入y 2=4x ,可得y 2﹣2ty+2t 2﹣12=0△>0可得0<t 2<12,∴x=3﹣∈(﹣3,3),∴点B 横坐标的取值范围是(﹣3,3). 【点评】本题考查抛物线的定义,考查点差法,考查学生分析解决问题的能力,属于中档题.23.【答案】(1)2或2)(1,0)(0,3)-.【解析】试题分析:(1)本题可由两向量平行求得参数,由坐标运算可得两向量的模,由于有两解,因此模有两个值;(2)两向量,a b 的夹角为锐角的充要条件是0a b ⋅>且,a b 不共线,由此可得范围.试题解析:(1)由//a b ,得0x =或2x =-, 当0x =时,(2,0)a b -=-,||2a b -=, 当2x =-时,(2,4)a b -=-,||25a b -=.(2)与夹角为锐角,0a b ∙>,2230x x -++>,13x -<<,又因为0x =时,//a b , 所以的取值范围是(1,0)(0,3)-.考点:向量平行的坐标运算,向量的模与数量积.【名师点睛】由向量的数量积cos a b a b θ⋅=可得向量的夹角公式,当为锐角时,cos 0θ>,但当cos 0θ>时,可能为锐角,也可能为0(此时两向量同向),因此两向量夹角为锐角的充要条件是0a b a b⋅>且,a b 不同向,同样两向量夹角为钝角的充要条件是0a b a b⋅<且,a b 不反向.24.【答案】【解析】解:(1)将点(0,4)代入椭圆C 的方程得=1,∴b=4,…由e==,得1﹣=,∴a=5,…∴椭圆C的方程为+=1.…(2)过点(3,0)且斜率为的直线为y=(x﹣3),…设直线与椭圆C的交点为A(x1,y1),B(x2,y2),将直线方程y=(x﹣3)代入椭圆C方程,整理得x2﹣3x﹣8=0,…由韦达定理得x1+x2=3,y1+y2=(x1﹣3)+(x2﹣3)=(x1+x2)﹣=﹣.…由中点坐标公式AB中点横坐标为,纵坐标为﹣,∴所截线段的中点坐标为(,﹣).…【点评】本题考查椭圆的方程与几何性质,考查直线与椭圆的位置关系,考查韦达定理的运用,确定椭圆的方程是关键.。

2022-2023学年辽宁省本溪市本溪满族自治县高级中学高二上学期12月月考数学试题(解析版)

2022-2023学年辽宁省本溪市本溪满族自治县高级中学高二上学期12月月考数学试题(解析版)

2022-2023学年辽宁省本溪市本溪满族自治县高级中学高二上学期12月月考数学试题一、单选题 1.复数13i3iz +=-(i 为虚数单位)的共轭复数=z ( ) A .i B .i - C .3i D .3i -【答案】B【分析】根据复数的除法运算及共轭复数的概念求解. 【详解】因为13i (13i)(3i)i 3i (3i)(3i)z +++===--+,所以i z =-. 故选:B.2.以点(3,2)-为圆心,且与直线310x y -+=相切的圆的方程是( ) A .22(3)(2)10x y -++= B .22(3)(2)1x y ++-= C .22(3)(2)10x y ++-= D .22(3)(2)1x y -++=【答案】C【分析】根据直线与圆的位置关系求得圆的半径,即可求得结果.【详解】因为点(3,2)-到直线310x y -+=的距离是d ==,所以圆的方程为22(3)(2)10x y ++-=. 故选:C.3.小明每天上学途中必须经过2个红绿灯,经过一段时间观察发现如下规律:在第一个红绿灯处遇到红灯的概率是13,连续两次遇到红灯的概率是14,则在第一个红绿灯处小明遇到红灯的条件下,第二个红绿灯处小明也遇到红灯的概率为( ) A .23B .34C .14D .13【答案】B【分析】由条件概率公式求解即可【详解】设“小明在第一个红绿灯处遇到红灯”为事件A , “小明在第二个红绿灯处遇到红灯”为事件B , 则由题意可得()()11,34P A P AB ==,则在第一个红绿灯处小明遇到红灯的条件下,第二个红绿灯处小明也遇到红灯的概率为()()()34P AB P B A P A ==∣. 故选:B .4.以坐标轴为对称轴,焦点在直线45100x y -+=上的抛物线的标准方程为( ) A .210x y =或28y x =- B .210x y =-或28y x = C .210y x =或28x yD .210y x =-或28x y =【答案】D【分析】直线45100x y -+=与坐标轴的交点即为焦点,根据焦点可求出p ,可得答案. 【详解】直线45100x y -+=与坐标轴的交点为()5,0,0,22⎛⎫- ⎪⎝⎭,当抛物线的焦点为5,02⎛⎫- ⎪⎝⎭时,其标准方程为210y x =-;当抛物线的焦点为()0,2时,其标准方程为28x y =. 故选:D.5.若角θ的终边经过点()1,2-,则sin (1sin 2)sin cos θθθθ+=+( )A .65B .65-C .25D .25-【答案】C【分析】根据题意可求得tan 2θ=-,利用同角的三角函数关系结合二倍角公式化简sin (1sin 2)sin cos θθθθ++,代入求值,可得答案.【详解】根据角θ的终边经过点()1,2-,得tan 2θ=-, 又2sin (1sin 2)sin (sin cos )sin cos sin cos θθθθθθθθθ++=++()2222sin sin cos sin sin cos sin sin c o os sin c s θθθθθθθθθθθ+=+=+=+22tan tan 422tan 1415θθθ+-===++, 故选:C.另解:根据三角函数的定义,得sin θ=cos θ=,所以4sin 22sin cos 25θθθ⎛===- ⎝⎭,所以41sin (1sin 2)2sin cos 5θθθθ⎛⎫- ⎪+==+, 故选:C.6.已知双曲线2222:1x y C a b-=C过点)1-,直线():2l y k x =-与C 的右支有两个不同的交点,则实数k 的取值范围是( ) A .()(),11,-∞-⋃+∞ B .()1,1- C.( D.((),2,-∞+∞【答案】A【分析】联立直线与双曲线方程,根据双曲线与双曲线右支有两个不同的交点,利用韦达定理列出不等式进行求解.【详解】的双曲线是等轴双曲线,所以可设双曲线C 的方程是()220x y λλ-=≠,将点)1-的坐标代入得1λ=,所以C 的方程是221x y -=,将()2y k x =-代入上式并消去y 整理得()222214410k xk x k -+--=,则24222122212210Δ164(1)(41)04014101k k k k k x x k k x x k ⎧-≠⎪=---->⎪⎪⎨+=->-⎪⎪+⎪=->-⎩解得1k <-或1k >.故选:A.7.中国空间站已经进入正式建造阶段,天和核心舱、问天实验舱和梦天实验舱将在2022年全部对接,形成“T "字结构.在中国空间站建造阶段,有6名航天员共同停留在空间站,预计在某项建造任务中,需6名航天员在天和核心舱、问天实验舱和梦天实验舱这三个舱内同时进行工作,由于空间限制,每个舱至少1人,至多3人,则不同的安排方案共有( ) A .360种 B .180种C .720种D .450种【答案】D【分析】根据分组分配问题的处理步骤,先将6人分成三组,再将三组分到三个舱内即可.【详解】方案一:每个舱各安排2人,共有2223642333C C C A 90A ⋅=(种)不同的方案; 方案二:分别安排3人,2人,1人,共有32136313C C C A 360=(种)不同的方案.所以共有90360450+=(种)不同的安排方案. 故选:D .8.香港科技大学“逸夫演艺中心”鸟瞰图如图1所示,最上面两层类似于离心率相同的两个椭圆,我们把离心率相同的两个椭圆叫做“相似椭圆”.如图2所示,在“相似椭圆”12,C C 中,由外层椭圆1C 的下顶点A 和右顶点C 分别向内层椭圆2C 引切线,AB CD ,且两切线斜率之积等于34,则该组“相似椭圆”的离心率为( )A .34B .14C 3D .12【答案】D【分析】分别写出切线,AB CD 的方程,与内层椭圆联立方程,根据判别式为零分别表示出12,k k ,再根据斜率之积等于34解出离心率.【详解】设内层椭圆2C 的方程为22221(0)x y a b a b+=>>,因为内外椭圆离心率相同,所以外层椭圆1C 可设成22221(1)()()x y m ma mb +=>, 设切线AB 的方程为1y k x mb =-,与22221x y a b+=联立,得()()2222222211210b a k x mk a bx m a b +-+-=,又Δ0=,所以()222121b k m a=-.设切线CD 的方程为()2y k x ma =-,与22221x y a b+=联立,得()2222232242222220ba k x mk a x k m a ab +-+-=,又Δ0=,所以2222211b k a m =⋅-.又1234k k ⋅=,所以2234b a =,因此12c e a ====.故选:D.二、多选题9.已知圆221:66140C x y x y +-++=和圆222:230C x y y +--=,则( ) A .125C C = B .两圆半径都是4 C .两圆相交 D .两圆外离【答案】AD【分析】先根据配方法确定两个圆的圆心和半径,根据圆心距和半径的关系可判断两圆的位置. 【详解】圆1C 的标准方程为22(3)(3)4x y -++=,圆心为()13,3C -,半径为12r =,圆2C 的标准方程为22(1)4x y +-=,圆心为()20,1C ,半径为22r =,所以125C C =,故A 正确,B 错误;因为1212C C r r >+,所以两圆外离,故C 错误,D 正确. 故选:AD .10.已知e 是自然对数的底数,函数()e e x x f x -=-,实数,m n 满足不等式(32)(2)0f n m f n -+->,则下列结论正确的是( ) A .e 2e m n > B .若1,n >-则11n nm m+>+ C .ln()0m n -> D .20222022m n >【答案】ABC【分析】根据函数的单调性和奇偶性性质得到1m n >+,利用不等式的性质即可一一判断.【详解】()f x 的定义域为R ,()()e e x xf x f x --=-=-,所以()f x 是奇函数.因为1e e xx y -⎛⎫== ⎪⎝⎭,e x y =-在R 上都单调递减,所以()f x 在R 上是减函数.又()()3220f n m f n -+->,则()()322f n m f n ->--,即()()322f n m f n ->-,所以322n m n -<-,即1m n >+.因为e x y =在R 上是增函数,所以1e e 2e m n n +>>,故A 正确; 因为1n >-,所以110m m n +>>+>,所以()()()()1110111m n n m n n m nm m m m m m +-++--==>+++,故B 正确; 因为ln y x =在()0,∞+上是增函数,所以()ln ln1m n ->,即()ln 0m n ->,故C 正确; 取1m =,3n =-,满足1m n >+, 但20222022m n >不成立,故D 错误. 故选:ABC .11.已知2nx⎛ ⎝的展开式中第4项与第7项的二项式系数相等,且展开式的各项系数之和为0,则( ) A .9n =B .2nx⎛⎝的展开式中有理项有5项C .2nx⎛⎝的展开式中偶数项的二项式系数和为512D .(7)n a -除以9余8 【答案】ABD【分析】由二项式系数的概念与组合数的性质可判断A ;由二项式的通向结合有理项的概念判断B ;由偶数项的二项式系数和判断C ;由二项式定理判断D【详解】对于A ,因为第4项与第7项的二项式系数相等,所以36C C n n =,由组合数的性质知9n =,故A 正确;对于B ,在92x⎛ ⎝的展开式中,令1x =,得9(1)0a +=,所以1a =-,所以92x⎛ ⎝的二项式通项为518219(1)C kk k k T x -+=-⋅.由5182k -为整数,得0,2,4,6,8k =,所以展开式中有理项有5项,故B 正确;对于C ,展开式中偶数项的二项式系数和为1398999C C C 2256+++==,故C 错误;对于D ,由B 知1a =-,则()()99909188081789999997(71)8(91)C 9C 9C 919C 9C 9C 18na -=+==-=-++-=-++-+,所以()7na -除以9余8,故D 正确. 故选:ABD.12.已知抛物线2:2(0)C x py p =>的焦点为F ,过点F 的直线l 交C 于()()1122,,,A x y B x y 两点,则下列结论正确的是( )A .以AB 为直径的圆与抛物线C 的准线相切B .221212,4p x x y y p ==-C .112||||AF BF p+= D .若直线l 的倾斜角为π6,且12x x <,则||1||3AF BF = 【答案】ACD【分析】根据抛物线焦点弦性质,抛物线定义,数形结合思想解决即可.【详解】抛物线22x py =的焦点坐标为(0,)2P F ,准线方程是2py =-,由题意知,直线l 的斜率一定存在,设其方程为2p y kx =+,联立22,,2x py p y kx ⎧=⎪⎨=+⎪⎩消去y 得2220x pkx p --=, 设线段AB 的中点00(,)M x y , 所以121200,22x x y y x y ++==, 所以点M 到准线2py =-的距离120||222p y y p AB d y ++=+==, 所以以AB 为直径的圆与抛物线C 的准线相切,故A 正确;由韦达定理,得2222121212,224x x p x x p y y p p =-=⨯=,故B 错误;()212122y y k x x p pk p +=++=+, 所以()1221212121111||||2224y y p p p p p AF BF y y y y y y +++=+==+++++()()()22222222122212424p k pk p p p p p p k pk p ++==++++,故C 正确;若直线l 的倾斜角为π6,且12x x <,则点A 在点B 左侧,如图,直线l 与准线交于点D ,,AA BB ''分别表示点,A B 到准线2py =-的距离,则1sin ||2AA ADA AD ='='∠,设||AF t =,则,||2AA t AD t '==, 又sin ||BB BDB BD ∠=''=||1||||||2||2BB BF AD AF BF t t BF ==++++', 所以||3BF t =,所以||1||33AF t BF t ==,故D 正确. 故选:ACD.三、填空题13.张勇同学在上学期的8次物理测试中的成绩(单位:分)分别是:78,82,76,85,88,94,95,86,则这8次成绩的75%分位数为______. 【答案】91【分析】根据百分位数的计算方法计算即可.【详解】解:先将这8次成绩从小到大排列为76,78,82,85,86,88,94,95, 因为875%6⨯=, 所以75%分位数为8894912+=. 故答案为:9114.如图,在平行四边形ABCD 中,点E ,F 分别在BC ,DC 边上,且DF FC =,2CE EB =,若120ABC ∠=︒,8AB =,6AD =,则DE BF ⋅=______.【答案】24-【分析】由题知23DE AB BC =-,12BF BC AB =-,再根据数量积的运算律运算求解即可.【详解】解:因为DF FC =,2CE EB =,所以,23DE DC CE AB BC =+=-,12BF BC CF BC AB =+=-,因为120ABC ∠=︒,8AB =,6AD =, 所以222141232323DE BF AB BC BC AB AB BC AB BC ⎛⎫⎛⎫⋅=-⋅-=⋅-- ⎪ ⎪⎝⎭⎝⎭2241128686243223=⨯⨯⨯-⨯-⨯=-.故答案为:24-15.已知椭圆C 的方程为22142x y +=,其左、右顶点分别为,A B ,一条垂直于x 轴的直线l 交椭圆C 于,E F 两点,直线AE 与直线BF 相交于点M ,则点M 的轨迹方程为___________.【答案】()221242x y x -=≠±【分析】设直线l 为()()00002,,x x x E x y =≠±,()()00,,,F x y M x y -,由,,A E M 三点共线及,,B F M 三点共线,可得22022044y y x x =---,又2200142x y +=,代入即可求解 【详解】由题意知()()2,0,2,0A B -,设直线l 为()()00002,,x x x E x y =≠±,()()00,,,F x y M x y -, 由,,A E M 三点共线及,,B F M 三点共线, 得0000,2222y y y y x x x x -==++--, 两式相乘化简,得22022044y y x x =---, 又2200142x y +=, 所以2202201442y y x x =-=--,即22142x y -=, 又240x -≠,即2x ≠±,所以点M 的轨迹方程为()221242x y x -=≠±.故答案为:()221242x y x -=≠±16.在菱形ABCD 中,=4AB ,120BAD ∠=︒,M 为BC 的中点,将ABM △沿直线AM 翻折成1AB M △,如图所示,当三棱锥1B AMD -的体积最大时,三棱锥1B AMD -的外接球的体积是______.【答案】642π3##642π3 【分析】易得平面1AB M ⊥平面AMD 时三棱锥1B AMD -的体积最大,要求三棱锥1B AMD -外接球体积,利用长方体外接球,求出球的半径,即可求解【详解】易得平面1AB M ⊥平面AMD 时三棱锥1B AMD -的体积最大, 由题意知BM AM ⊥,故1B M AM ⊥,当平面1AB M ⊥平面AMD 时,1B M ⊥平面AMD , 因为90DAM DAB BAM ∠=∠-∠=︒, 所以AM AD ⊥.如图所示,要求三棱锥1B AMD -外接球体积,即求如图所示的长方体外接球的体积, 由已知得长方体的长、宽、高分别为4,23,2,则长方体外接球半径()2224232222r ++==,则球的体积是34642ππ33r =.故答案为:642π3四、解答题17.已知直线l 经过直线350x y ++=和3270x y --=的交点,且与直线50x y -+=垂直.(1)求直线l 的方程;(2)若圆C 过点()2,0-,且圆心C 在y 轴的负半轴上,直线l 被圆C 所截得的弦长为211,求圆C 的标准方程.【答案】(1)10x y ++=; (2)22(3)13x y ++=.【分析】(1)将两直线联立方程求出交点,再根据垂直的条件求出直线l 的斜率,代入点斜式可得直线方程;(2)设出圆的圆心和半径,圆过点()2,0-和弦长公式可联立方程解方程可得.【详解】(1)由已知,得350,3270,x y x y ++=⎧⎨--=⎩解得两直线交点为1,2,设直线l 的斜率为k ,因为直线l 与50x y -+=垂直,所以11k ⨯=-,解得1k =-, 所以直线l 的方程为()21y x +=--,即10x y ++=. (2)设圆C 的标准方程为222()(0)x y b r b +-=<, 则由题意,得()()()2222222,111,2b r b r ⎧-+-=⎪⎪⎨⎛⎫++=⎪ ⎪⎪⎝⎭⎩ 解得3b =-或5b =(舍去),所以13r =,所以圆C 的标准方程为:22(3)13x y ++=.18.已知四棱锥M ABCD -的底面为直角梯形,//AB CD ,90ADC ︒∠=,MD ⊥底面ABCD ,且22MD DC AD AB ====,P 是MC 的中点.(1)证明://BP 平面MAD ;(2)求直线MB 与平面DBP 所成角的正弦值.【答案】(1)证明见解析 (2)49【分析】(1)取MD 的中点为Q ,连接PQ 、AQ ,即可证明四边形ABPQ 是平行四边形,从而得到//BP AQ ,即可得证;(2)建立空间直角坐标系,利用空间向量法计算可得. 【详解】(1)证明:取MD 的中点为Q ,连接PQ 、AQ , 因为P 、Q 分别是MC 、MD 的中点,所以//PQ DC 且12PQ DC =, 又//AB DC 且12AB DC =,所以//PQ AB 且PQ AB =,所以四边形ABPQ 是平行四边形,所以//BP AQ , 又BP ⊄平面MAD ,AQ ⊂平面MAD ,所以//BP 平面MAD .(2)解:因为90ADC ∠=,MD ⊥底面ABCD ,所以,,DA DC DM 两两互相垂直,以D 为坐标原点, 以,,DA DC DM 分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系如图所示, 则()()()()()()0,0,0,2,0,0,0,2,0,2,1,0,0,0,2,0,1,1D A C B M P , 则()()()2,1,2,2,1,0,0,1,1MB DB DP =-==,设平面DBP 的一个法向量为(),,m x y z =,所以=0=0m DB m DP ⎧⋅⎨⋅⎩,即200x y y z +=⎧⎨+=⎩,令1x=,则()1,2,2m =-,设直线MB 与平面DBP 所成角为θ,则44sin 339MB m MB mθ⋅-===⨯⋅, 即直线MB 与平面DBP 所成角的正弦值为49.19.已知抛物线2:2C y px =的焦点为()0,2,F P y 是抛物线C 上一点,且4PF =.(1)求抛物线C 的标准方程;(2)直线():20l y x m m =+≠与抛物线C 交于,M N 两点,若以MN 为直径的圆过原点O ,求直线l 的方程.【答案】(1)28y x =; (2)216=-y x .【分析】(1)根据抛物线的定义,到焦点的距离与到准线的距离相等,转化焦半径,可得p ,从而求出抛物线方程;(2)直线与抛物线相交,采用标准计算步骤设而不求的思想可解得. 【详解】(1)抛物线2:2C y px =的准线为2p x =-,所以242pPF =+=, 解得4p =,所以抛物线C 的标准方程为28y x =.(2)设()()1122,,,M x y N x y ,联立28y x =与2y x m =+,消去x 得2440,Δ16160y y m m -+==->,即1m <;由韦达定理有:12124,4y y y y m +==,因为以MN 为直径的圆过原点O ,所以12120OM ON x x y y ⋅=+=, 即1212022y m y m y y --⋅+=,化简可得:()2121250444m m y y y y -++=, 代入韦达定理得:()25440444m m m ⨯-⨯+=,解得16m =-或0m =(舍去), 所以直线l 的方程为216=-y x .20.如图,四棱柱1111ABCD A B C D -的底面ABCD 为矩形,2,AD AB M =为BC 中点,平面11AA D D ⊥平面11,ABCD AA A D AD ==.(1)证明:1A D ⊥平面11ABB A ;(2)求二面角1B A A M --的平面角的余弦值. 【答案】(1)证明见解析 6【分析】(1)由面面垂直的性质可得AB ⊥平面11AA D D ,再由线面垂直的性质可得1AB A D ⊥,由勾股定理的逆定理可得11AA A D ⊥,然后利用线面垂直的判定定理可证得结论;(2)取AD 的中点O ,连接1A O ,由已知可证得1,,OM AD OA 两两互相垂直,所以以O 为坐标原点,1,,OM OD OA 为,,x y z 轴的正方向建立空间直角坐标系,求出两平面的法向量,利用空间向量求解即可.【详解】(1)证明:因为底面ABCD 是矩形, 所以AB AD ⊥,又平面11AA D D ⊥平面ABCD ,平面11AA D D ⋂平面,ABCD AD AB =⊂平面ABCD , 所以AB ⊥平面11AA D D ,又1A D ⊂平面11AA D D , 所以1AB A D ⊥, 因为112AA A D AD ==,所以22211AA A D AD +=, 所以11AA A D ⊥,又11,,AA AB A AA AB ⋂=⊂平面11ABB A , 所以1A D ⊥平面11ABB A ;(2)取AD 的中点O ,连接1A O ,因为11A A A D =, 所以1A O AD ⊥,又平面11AA D D ⊥平面ABCD ,平面11AA D D ⋂平面1,ABCD AD AO =⊂平面11AA D D , 所以1A O ⊥平面ABCD ,连接OM ,又底面ABCD 为矩形,所以OM AD ⊥, 所以1,,OM AD OA 两两互相垂直,以O 为坐标原点,1,,OM OD OA 为,,x y z 轴的正方向建立空间直角坐标系,设1AB =, 则()()()()10,1,0,0,1,0,0,0,1,1,0,0A D A M -, 所以()()()110,1,1,0,1,1,1,1,0AA A D AM ==-=.由(1)知1A D ⊥平面11ABB A ,所以1A D 是平面11ABB A 的一个法向量. 设平面1A AM 的一个法向量为(),,n x y z =,则 10n AA y z n AM x y ⎧⋅=+=⎪⎨⋅=+=⎪⎩,令1x =,则()1,1,1n =-. 设二面角1B A A M --的平面角为θ,则1126cos 323A D n A D nθ⋅===⨯⋅ 由图可知二面角1B A A M --的平面角为锐角, 所以二面角1B A A M --的平面角的余弦值为63.21.已知双曲线2222:1(0,0)x y C a b a b-=>>的焦距为8,双曲线C 的左焦点到渐近线的距离为2.(1)求双曲线C 的方程;(2)设,A B 分别是双曲线C 的左、右顶点,P 为双曲线C 上任意一点(P 不与,A B 重合),线段BP 的垂直平分线交直线BP 于点M ,交直线AP 于点N ,设点,M N 的横坐标分别为,M N x x ,求证:M N x x -为定值.【答案】(1)221124x y -=; (2)证明见解析【分析】(1)根据焦距为8,可得c ,再用点到直线的距离公式可解;(2)先写出,,A B P 的坐标,进而求出BP 的斜率,可得线段BP 的垂直平分线方程,分别求出其与,AP BP 的交点横坐标,代入M N x x -可证.【详解】(1)双曲线2222:1x y C a b-=的渐近线为0bx ay ±=,左焦点为(),0c -,所以d b ==,所以2b =.又焦距为8,所以4c =,所以a =C 的方程为221124x y -=.(2)证明:设()()000,0P x y y ≠,由(1)得()(),A B -,又点M 是线段BP的中点,则点02y M ⎫⎪⎪⎝⎭, 直线BPAP又BP MN ⊥,则直线MN的方程为002y y x -=⎝⎭,即200001222x y y y -++ 又直线AP的方程为y x =+,联立方程2000012,22,x y y x y y x ⎧-=++⎪⎪⎨⎪=+⎪⎩得()2220001222x y x x x -+++, 又22004112x y ⎛⎫=- ⎪⎝⎭,代入消去20y,得()()(2000212133x x x x x -+=-+, 因为00y ≠,所以00x -≠.所以((02133x x x +-+=+,解得x =即点N,则M N x x -==,所以M N x x -为定值. 【点睛】求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.22.已知椭圆2222:1(0)x y C a b a b+=>>的长轴长为8,O 是坐标原点,12,F F 分别为椭圆C 的左、右焦点,点()0,2M x 在椭圆C 上,且12MF F △的内切圆半径为23. (1)求椭圆C 的方程;(2)设直线:(0,0)l y kx m k m =+>>与椭圆C 交于,E F 两点,且直线,OE OF 的斜率之和为2k -. ①求直线l 经过的定点的坐标; ②求OEF 的面积的最大值. 【答案】(1)2211612x y +=; (2)①()0,26;②43.【分析】(1)根据长轴长为8可求出a ,再根据12MF F △的面积公式可求出c ,进而确定椭圆的方程;(2)①设出直线方程与椭圆进行联立,标准设而不求的步骤后,将韦达定理代入斜率和为2-的表达式中可得定点;②将①中求出的参数代入韦达定理,表示出OEF 的面积,求此表达式的最大值即可.【详解】(1)由题意可知121228,2MF MF a F F c +===,又12MF F △的内切圆半径为23,所以()()12121212182233MF F SMF MF F F c =++⨯=+, 又12121122222MF F M SF F y c c =⨯=⨯⨯=,所以()18223c c +=,解得2c =.因为22212b a c =-=,所以椭圆C 的方程为2211612x y +=. (2)①设()()1122,,,E x y F x y ,联立22,1,1612y kx m x y =+⎧⎪⎨+=⎪⎩整理,得()2223484480k x kmx m +++-=,所以()()2222Δ644344480k m k m =-+->,可得221216m k <+,21212228448,3434km m x x x x k k-+=-=++, 设直线,OE OF 的斜率分别为12,k k ,因为直线,OE OF 的斜率之和为2k -,所以122k k k +=-,即()()2121212221212122242224401212k m m x x y y kx m kx m km k k k k m x x x x x x m m -+++-++=++=+=+⋅==--,所以224m =,又0m >,所以m =l经过的定点的坐标为(0,. ②设直线l经过的定点为(N,则1212OEF OEN OFNSSSx=-=⨯-==,设0t ,则21242662OEFt St t t==⨯=++6t t=时,即t =294k =时取等号,此时0∆>,所以43OEFS ,即OEF 的面积的最大值为【点睛】求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.。

辽宁省铁岭市昌图县第一高级中学2022-2023学年高二上学期12月月考数学试题(含答案解析)

辽宁省铁岭市昌图县第一高级中学2022-2023学年高二上学期12月月考数学试题(含答案解析)

辽宁省铁岭市昌图县第一高级中学2022-2023学年高二上学期12月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有A .36种B .48种C .96种D .192种2.61()x x+的二项展开式中的常数项为()A .1B .6C .15D .203.从混有5张假钞的20张百元钞票中任意抽出2张,将其中1张放到验钞机上检验发现是假钞,则另1张也是假钞的概率为()A .119B .419C .217D .17384.元宵节灯展后,悬挂有8盏不同的花灯需要取下,如图所示,每次取1盏,则不同的取法共有().A .32种B .70种C .90种D .280种5.为推动党史学习教育各项工作扎实开展,营造“学党史、悟思想、办实事、开新局”的浓厚氛围,某校党委计划将中心组学习、专题报告会、党员活动日、主题班会、主题团日这五种活动分5个阶段安排,以推动党史学习教育工作的进行,若主题班会、主题团日这两个阶段相邻,且中心组学习必须安排在前两阶段并与党员活动日不相邻,则不同的安排方案共有()A .10种B .12种C .16种D .24种6.若()()512x a x --的展开式中3x 的系数为20,则=a ()A .14-B .14C .12-D .127.英国数学家贝叶斯(1701-1763)在概率论研究方面成就显著,创立了贝叶斯统计理论,对于统计决策函数、统计推断等做出了重要贡献.根据贝叶斯统计理论,事件A ,B ,A (A 的对立事件)存在如下关系:()()()()()P B P BA P A PB A P A =⋅+⋅∣∣.若某地区一种疾病的患病率是0.02,现有一种试剂可以检验被检者是否患病,已知该试剂的准确率为99%,即在被检验者患病的前提下用该试剂检测,有99%的可能呈现阳性,该试剂的误报率为5%,即在被检验者未患病的情况下用该试剂检测,有5%的可能会误报阳性.现随机抽取该地区的一个被检验者,用该试剂来检验,结果呈现阳性的概率为()A .0.0688B .0.0198C .0.049D .0.058.已知箱中共有6个球,其中红球、黄球、蓝球各2个,每次从该箱中取1个球(每球取到的机会均等),取出后放回箱中,连续取三次.设事件A =“第一次取到的球和第二次取到的球颜色不相同”,事件B =“三次取到的球颜色都不相同”,则()|P B A =A .16B .13C .23D .1二、多选题9.现有不同的红球4个,黄球5个,绿球6个,则下列说法正确的是()A .从中任选1个球,有15种不同的选法B .若每种颜色选出1个球,有120种不同的选法C .若要选出不同颜色的2个球,有31种不同的选法D .若要不放回地依次选出2个球,有210种不同的选法10.目前有望战胜新冠病毒的有效策略之一就是疫苗的接种预防.装疫苗的玻璃瓶用的不是普通玻璃,而是中性硼硅玻璃,这种玻璃有较好的平均线膨胀系数(简称:膨胀系数).某玻璃厂有两条硼硅玻璃的生产线,其中甲生产线所产硼硅玻璃的膨胀系数1X 服从正态分布()4.4,0.09N ,乙生产线所产硼硅玻璃的膨胀系数2X 服从正态分布()4.7,0.01N ,则下列选项正确的是()附:若随机变量()2~,X N μσ,则()0.6827P X μσμσ-<<+≈.A .甲生产线硼硅玻璃膨胀系数范围在()4.1,4.7的概率约为0.6827B .甲生产线所产硼硅玻璃的膨胀系数比乙生产线所产硼硅玻璃的膨胀系数数值更集中C .若用于疫苗药瓶的硼硅玻璃膨胀系数不能超过5.则乙生产线生产的硼硅玻璃符合标准的概率更大D .乙生产线所产的砌硅玻璃膨胀系数小于4.5的概率与大于4.8的概率相等11.关于二项式92x⎛⎫ ⎪⎝⎭的展开式,下列结论正确的是()A .各项二项式系数之和为102B .各项系数之和为1C .只有第5项的二项式系数最大D .常数项为67212.我国南宋数学家杨辉1261年所著的《详解九章算法》给出了著名的杨辉三角,在杨辉三角(左图)中,除1以外的每一个数都等于它“肩上”两个数的和,第n 行所有数之和为2n ;右图是英国生物学家高尔顿设计的模型高尔顿板,在一块木板上钉着若干排相互平行且相互错开的圆柱形钉子,钉子之间留有空隙作为通道,让一个小球从高尔顿板上方的入口落下,小球在下落的过程中与钉子碰撞,且等可能向左或向右滚下,最后掉到下方的某一球槽内,如图,小球从高尔顿板第1行的第一个缝隙落下的概率是12,第二个缝隙落下的概率是12;从第2行第一个缝隙落下的概率是14,第二个缝腺落下的概率是12,第三个缝隙落下的概率是14,小球从第n 行第m 个缝隙落下的概率可以由杨辉三角快速算出,那么小球从第6行某个缝隙落下的概率可能为()A .764B .516C .332D .532三、填空题13.若()5250125a x a a x a x a x -=+++⋅⋅⋅+,若280a =,则01234a a a a a ++++=______.14.如图,用K 、1A 、2A 三类不同的元件连接成一个系统.当K 正常工作且1A 、2A 至少有一个正常工作时,系统正常工作,已知K 、1A 、2A 正常工作的概率依次为0.9、0.8、0.8,则系统正常工作的概率为__________.15.如图,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求最多使用3种颜色且相邻的两个格子颜色不同,则不同的涂色方法共有种(用数字作答).16.设口袋中有黑球、白球共7个,从中任取2个球,已知取到白球个数的数学期望值为67,则口袋中白球的个数为_______.四、解答题17.将四个编号为1,2,3,4的小球放入四个编号为1,2,3,4的盒子中(1)若恰好有一个空盒,则有多少种放法?(2)若每个盒内放一个球,并且恰好有一个球的编号与盒子的编号相同,则有多少种放法?18.在下面两个条件中任选一个条件,补充在后面问题中的横线上,并完成解答.条件①:展开式前三项的二项式系数的和等于37;条件②:第3项与第7项的二项式系数相等;问题:在二项式(21)n x -的展开式中,已知__________.(1)求展开式中二项式系数最大的项;(2)设121210(21)n n n n n x a x a x a x a x a ---=+++++ ,求123n a a a a +++ 的值;(3)求11(21)nx x ⎛⎫-- ⎪⎝⎭的展开式中2x 的系数.19.某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品做检验,如检验出不合格品,则将其更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品做检验.设每件产品为不合格品的概率为0.1,且各件产品是否为不合格品相互独立.(1)若取3件该产品,求其中至少有1件不合格品的概率;(2)已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用,现对一箱产品已检验了20件:(i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X,求()E X;(ii)以这一箱产品的检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?20.某超市“五一”劳动节举行有奖促销活动,凡5月1日当天消费不低于400元,均可抽奖一次,她奖箱里有6个形状、大小、质地完全相同的小球(其中红球有3个,白球有3个),抽奖方案设置两种,顾客自行选择其中的一种方案.方案一:从抽奖箱中,一次性摸出2个球,若摸出2个红球,则打6折,若摸出1个红球,则打8折;若没摸出红球,则不打折.方案二:从抽奖箱中,有放回地每次摸取1个球,连摸2次,每摸到1次红球,立减100元.(1)若甲、乙两顾客均消费了400元,且均选择抽奖方案一,试求他们其中有一人享受6折优惠的概率.(2)若顾客丙消费恰好满800元,试比较说明该顾客选择哪种方案更划算.21.某百科知识竞答比赛的半决赛阶段,每两人一组进行PK,胜者晋级决赛,败者终止比赛.比赛最多有三局.第一局限时答题,第二局快问快答,第三局抢答.比赛双方首先各自进行一局限时答题,依据答对题目数量,答对多者获胜,比赛结束,答对数量相等视为平局,则需进入快问快答局;若快问快答平局,则需进入抢答局,两人进行抢答,抢答没有平局.已知甲、乙两位选手在半决赛相遇,且在与乙选手的比赛中,甲限时答题局获胜与平局的概率分别为13,12,快问快答局获胜与平局的概率分别为1136,,抢答局获胜的概率为13,且各局比赛相互独立.(1)求甲至多经过两局比赛晋级决赛的概率;(2)已知乙最后晋级决赛,但不知甲、乙两人经过几局比赛,求乙恰好经过三局比赛才晋级决赛的概率.22.为了促进消费,某超市开展购物抽奖送积分活动,顾客单次购物消费每满100元,即可获得一次抽奖的机会,假定每次中奖的概率均为14,不中奖的概率均为34,且各次抽奖相互独立.活动规定:第1次抽奖时,若中奖则得10分,不中奖得5分;第2次抽奖时,需要从以下两个方案中任选一个:方案一:若中奖则得30分,不中奖得0分;方案二:若中奖则获得上一次抽奖得分的两倍,否则得5分.当抽奖次数大于两次时,执行第2次抽奖所选的方案,直到抽奖结束.(1)甲顾客单次消费了200元,获得了两次抽奖机会.①若甲顾客在第二次抽奖时选择了方案二,求甲顾客第一次未中奖且第二次中奖的概率并求此时的得分;②若以甲顾客两次抽奖累计得分的期望为决策依据,甲顾客应该选择哪一个方案?请说明理由;(2)乙顾客单次消费了1100元,获得了11次抽奖机会,记乙顾客11次抽奖共中奖k (011)k次的概率为()P k ,求()P k 的最大值点0k参考答案:1.C【详解】试题分析:设4门课程分别为1,2,3,4,甲选修2门,可有1,2;1,3;1,4;2,3;2,4;3,4共6种情况,同理乙,丙均可有1,2,3;1,2,4;2,3,4;1,3,4共4种情况,∴不同的选修方案共有6×4×4=96种,故选C .考点:分步计数原理点评:本题需注意方案不分次序,即a ,b 和b ,a 是同一种方案,用列举法找到相应的组合即可.2.D【解析】化简得到展开式的通项为6216rrr T C x-+=⋅,令3r =,即可求得展开式的常数项.【详解】由题意,二项式61x x ⎛⎫+ ⎪⎝⎭展开式的通项为6621661()r r r r r r T C x C x x --+=⋅⋅=⋅,令3r =,可得展开式的常数项为34620T C ==.故选:D【点睛】本题主要考查了二项展开式的常数项的求解,其中解答中熟记二项展开式的通项是解答的关键,着重考查了计算能力.3.C【分析】利用条件概率公式可求得所求事件的概率.【详解】记事件:A 抽到的至少1张钞票是假钞,记事件:B 抽到的2张钞票都是假钞,则()1125155220851719038C C C P A C +===,()25220119C P AB C ==,因此,()()()1382191717P AB P B A P A ==⨯=.故选:C.【点睛】思路点睛:用定义法求条件概率()P B A 的步骤:(1)分析题意,弄清概率模型;(2)计算()P A 、()P AB ;(3)代入公式求()()()P AB P B A P A =.4.B【分析】因为取灯时每次只能取一盏,所以每串灯必须先取下面的灯,由定序问题可求解.【详解】因为取灯时每次只能取一盏,所以每串灯必须先取下面的灯,即每串灯取下的顺序确定,取下的方法有88444470A A A =种.故选:B【点睛】本题考查定序问题的处理,关键是将实际问题转化为定序模型,属于中档题.5.A【分析】对中心组学习所在的阶段分两种情况讨论得解.【详解】解:如果中心组学习在第一阶段,主题班会、主题团日在第二、三阶段,则其它活动有2种方法;主题班会、主题团日在第三、四阶段,则其它活动有1种方法;主题班会、主题团日在第四、五阶段,则其它活动有1种方法,则此时共有22(211)8A ++=种方法;如果中心组学习在第二阶段,则第一阶段只有1种方法,后面的三个阶段有222A =种方法.综合得不同的安排方案共有10种.故选:A 6.A【分析】先求得5(12)x -的展开式中2x 和3x 的系数,因此可以得到5()(12)x a x --的展开式中3x 的系数,进而可以解得a .【详解】因为5(12)x -的展开式中2x 的系数为225C (2)40⋅-=,3x 的系数为335C (2)80⋅-=-,所以5()(12)x a x --的展开式中3x 的系数为401(80)()4080a a ⨯+-⨯-=+,由408020a +=得14a =-.故选:A.7.A【分析】根据贝叶斯概率公式计算即可.【详解】设用该试剂检测呈现阳性为事件B ,被检测者患病为事件A ,未患病为事件A ,则()0.99P BA =∣,()0.02P A =,()0.05PB A =∣,()0.98P A =,故所求概率()0.990.020.050.980.0688P B =⨯+⨯=.故选:A.8.B【分析】首先求解出()P AB 和()P A ,根据条件概率公式可求得结果.【详解】 事件AB 表示三次取到的球颜色都不相同()222166627P AB ⨯⨯∴==⨯⨯又()221669P A ⨯==⨯()()()1127139P AB P B A P A ∴==本题正确选项:B【点睛】本题考查条件概率的求解问题,关键是能够准确理解积事件的含义,并求解出对应的概率.9.ABD【分析】利用排列知识计算得到选项ABD 正确;若要选出不同颜色的2个球,有74种不同的选法,所以选项C 错误.【详解】解:A.从中任选1个球,有456++=15种不同的选法,所以该选项正确;B.若每种颜色选出1个球,有456=⨯⨯120种不同的选法,所以该选项正确;C.若要选出不同颜色的2个球,有45+56+46=74⨯⨯⨯种不同的选法,所以该选项错误;D.若要不放回地依次选出2个球,有1514=⨯210种不同的选法,所以该选项正确.故选:ABD 10.AC【分析】由题知甲生产线所产硼硅玻璃的膨胀系数1X 服从正态分布()4.4,0.09N 知110.3, 4.4σμ==,乙生产线所产硼硅玻璃的膨胀系数2X 服从正态分布()4.7,0.01N 220.1, 4.7σμ==,进而根据正态分布的对称性和3σ原则依次讨论各选项即可得答案.【详解】解:由甲生产线所产硼硅玻璃的膨胀系数1X 服从正态分布()4.4,0.09N 知110.3, 4.4σμ==,乙生产线所产硼硅玻璃的膨胀系数2X 服从正态分布()4.7,0.01N 220.1, 4.7σμ==,对于A 选项,所以()11110.6827P X μσμσ-<<+≈,即甲生产线硼硅玻璃膨胀系数范围在()4.1,4.7的概率约为0.6827,故A 选项正确;对于B 选项,由于120.30.1σσ=>=,故乙生产线所产硼硅玻璃的膨胀系数数值更集中,故B 选项错误;对于C 选项,对于甲生产线,()()()1111111115222P X P X P X μσμμσ≤=≤+=+<≤+,()()()2222222215332P X P X P X μσμμσ≤=≤+=+<≤+,显然()()1255P X P X ≤≤≤,所以乙生产线生产的硼硅玻璃符合标准的概率更大,故C 选项正确;对于D 选项,()()22224.52P X P X μσ≤=≤-,()()()()22222222224.82P X P X P X P X μσμσμσ≥=≥+=≤->≤-,故D 选项错误.故选:AC 11.BD【分析】由二项式系数的性质可判断A 、C ;令1x =可判断B ,利用二项式展开式的通项公式可判断D.【详解】二项式系数之和为92,故A 错误;令1x =,得各项系数之和为91211⎛⎫- ⎪⎭=⎝,故B 正确;展开式共有10项,故二项式系数最大项是第5项和第6项,故C 错误;二项式展开式的通项为()()39992199212rr rr r r r r T C x C x---+⎛==-⋅ ⎝,令3902r -=即6r =,可得常数项为36792672T C ==,故D 正确.故选:BD .12.BC【分析】利用n 次独立重复试验中事件A 恰好发生k 次的概率公式,计算m 取各个值的概率即可判断作答.【详解】小球落下要经过6次碰撞,每次向左、向右落下的概率均为12,小球从第6行第m (N ,7)m m *∈≤个缝隙落下,则6次碰撞有(1)m -次向右,其概率为1116(1)66C 11C()()2264m m m m m P -----=⋅=,N ,7m m *∈≤,于是得17164P P ==,26636432P P ===,351564P P ==,42056416P ==,所以选项A ,D 不可能,选项B ,C 可能.故选:BC 13.2【分析】首先利用二项展开式的通项公式,求a ,再利用赋值法求系数的和以及5a .【详解】展开式的通项为()5151C rr r r r T a x -+=-⋅⋅,令2r =,则()223251C 80a a =-⋅=,即2a =,故()52501252x a a x a x a x -=+++⋅⋅⋅+,令1x =,得0151a a a ++⋅⋅⋅+=.又()55055651C 2T x x =-⋅⋅=-,所以51a =-故012342a a a a a ++++=故答案为:214.0.864【分析】首先记K 、1A 、2A 正常工作分别为事件A 、B 、C ;,易得当K 正常工作与1A 、2A 至少有一个正常工作为互相独立事件,而“1A 、2A 至少有一个正常工作”与“1A 、2A 都不正确工作”为对立事件,易得1A 、2A 至少有一个正常工作的概率,由相互独立事件的概率公式,计算可得答案.【详解】解:根据题意,记K 、1A 、2A 正常工作分别为事件A 、B 、C ;则()0.9P A =;1A 、2A 至少有一个正常工作的概率为()()110.20.20.96P B P C -=-⨯=;则系统正常工作的概率为0.90.960.864⨯=;故答案为0.864.【点睛】本题考查相互独立事件的概率乘法公式,涉及互为对立事件的概率关系,解题时注意区分、分析事件之间的关系,理解掌握乘法原理是解决本题的知识保证,本题属于中档题.15.390【详解】用2色涂格子有种方法,用3色涂格子,第一步选色有,第二步涂色,共有种,所以涂色方法种方法,故总共有390种方法.故答案为:39016.3【分析】设口袋中有白球x 个,由已知可得取得白球ξ的可能取值为0,1,2,则ξ服从超几何分布,利用公式2727()k kx xC C P k C ξ--==(0,1,2k =),即可求得答案.【详解】口袋中有白球x 个,由已知可得取得白球个数ξ的可能取值为0,1,2则ξ服从超几何分布,2727()(0,1,2)k kx xC C P k k C ξ--===,2727(0)x C P C ξ-∴==,11727(1)x xC C P C ξ-==,227(2)x C P C ξ==1127227726()7x x C C C E C C ξ∴=+=6(7)(1)21187x x x x ∴-+-=⨯=,618x ∴=3x ∴=故答案为:3.【点睛】本题解题关键是掌握超几何分布期望的求法,考查了分析能力和计算能力,属于基础题.17.(1)144种(2)8种【分析】(1)依据特殊位置法去求恰好有一个空盒有多少种放法;(2)依据错排问题的解法去求即可解决.【详解】(1)先取四个球中的两个“捆”在一起,有24C 种选法,把它与其他两个球共三个元素分别放入四个盒子中的三个盒子,有34A 种投放方法,所以共有2344C A 144⋅=(种)放法.故共有144种放法.(2)一个球的编号与盒子编号相同的选法有14C 种,当一个球与一个盒子的编号相同时,用局部列举法可知其余三个球的投入方法有2种,故共有14C 28⨯=(种)放法.故共有8种放法.18.(1)答案见解析(2)0(3)560【分析】(1)选择①,由01237n n n C C C ++=,得8n =,选择②,由26n n C C =,得8n =;(2)利用赋值法可求解;(3)分两个部分求解后再求和即可.【详解】(1)选择①,因为01237n n n C C C ++=,解得8n =,所以展开式中二项式系数最大的项为444458(2)(1)1120T C x x=⨯⨯-=选择②,因为26n n C C =,解得8n =,所以展开式中二项式系数最大的项为444458(2)(1)1120T C x x=⨯⨯-=(2)令1x =,则80128(21)1a a a a +++⋯+=-=,令0x =,则80(01)1a =-=,所以1280a a a ++⋯+=,(3)因为888111(21)(21)(21)x x x x x ⎛⎫--=--- ⎪⎝⎭所以811(21)x x ⎛⎫-- ⎪⎝⎭的展开式中含2x 的项为:22633528811(2)(1)(2)(1)560C x C x x x ⎛⎫⨯-+-⨯-= ⎪⎝⎭所以展开式中2x 的系数为560.19.(1)0.271;(2)(i )490;(ii )应该对这箱余下的所有产品作检验.【分析】(1)利用对立事件的概率,先求3件产品都合格的概率,即可得至少有1件不合格品的概率;(2)(i )Y 表示余下的180件产品中的不合格产品数,则~(180,0.1)Y B ,25202X Y =+⨯,即有()25()400E X E Y =+,根据二项分布期望公式求期望即可;(ii )比较(i )所得期望与400比较,即可确定是否对剩余产品做检验.【详解】(1)记“取出的3件该产品中,至少有一件不合格品”为事件A ,3()10.910.7290.271P A =-=-=;(2)(i )Y 表示余下的180件产品中的不合格产品数.依题意知~(180,0.1)Y B ,而25202X Y =+⨯,∴()25()400251800.140490E X E Y =+=⨯⨯+=(ii )如果对应该箱余下的产品做检验,则这一箱产品所需的检验费用为2002400⨯=元由于()400E X >,故应该对这箱余下的所有产品作检验.20.(1)825;(2)丙选择方案一更划算.【分析】(1)先求出每人享受6折优惠的概率,再由独立事件的概率公式即可求解;(2)若丙选择方案一,设其所需付的钱为X ,求出相应的概率,分布列以及数学期望()E X ,若丙选择方案二,设其所需付的钱为Z ,求出数学期望()E Z ,比较()E X 和()E Z 的大小即可做出选择.【详解】(1)由题意,设顾客享受到6折优惠为事件A ,则()2326C 1C 5P A ==∴甲、乙两人其中有一人享受6折优惠的概率为()()12118C 1215525P P A P A ⎛⎫=⋅⋅-=⨯⨯-=⎡⎤ ⎪⎣⎦⎝⎭.(2)若丙选择方案一,设付款金额为X 元,则X 可能的取值为480,640,800.则()2326C 1480C 5P X ===,()113326C C 3640C 5P X ===,()2326C 1800C 5P X ===.故X 的分布列为X 480640800P153515∴()131480640800640555E X =⨯+⨯+⨯=(元).若丙选择方案二,设摸到红球的个数为Y ,付款金额为Z 元,则800100Z Y =-.由已知,可得12,2Y B ⎛⎫⎪⎝⎭,故()1212E Y =⨯=,∴()()()800100800100800100700E Z E Y E Y =-=-=-=(元).由上知:()()E X E Z <,故丙选择方案一更划算.21.(1)12(2)217【分析】(1)分别求出甲第一局获胜、第一局平局第二局获胜的概率可得答案;(2)分别求出乙恰好经过一局、两局、三局比赛晋级决赛的概率,由三局比赛晋级决赛的概率除以经过一局、两局、三局比赛晋级决赛的概率和可得答案.【详解】(1)设甲至多经过两局比赛晋级决赛为事件A ,则甲第一局获胜或第一局平局第二局获胜,则1111()3232P A =+⨯=.(2)记乙恰好经过一局、两局、三局比赛晋级决赛分别为事件B 、C 、D ,则111()1326P B ⎛⎫=-+= ⎪⎝⎭,1111()12364P C ⎛⎫=⨯--= ⎪⎝⎭,1111()126318P D ⎛⎫=⨯⨯-= ⎪⎝⎭,故在乙最后晋级决赛的前提下,乙恰好经过三局比赛才晋级决赛的概率为1218111176418=++.22.(1)①甲顾客第一次未中奖且第二次中奖的概率为316,此时得分为15;②选择方案一,理由见解析(2)08k =或09k =【分析】(1)分别求得两个方案的累计积分的期望值即可进行选择;(2)易得中奖情况满足二项分布,根据二项展开式的通项的最大值大于等于前后两项列不等式求解即可【详解】(1)①由题意,甲顾客第一次未中奖且第二次中奖的概率为3134416⨯=,此时得分为52515+⨯=;②若甲第2次抽奖选方案①,两次抽奖累计积分为ξ,则ξ的可能取值为40,35,10,5.111(40)4416P ξ==⨯=,313(35)4416P ξ==⨯=,133(10)4416P ξ==⨯=,339(5)4416P ξ==⨯=,所以55()40351051616161619433E ξ=⨯+⨯+⨯+⨯=.若甲第2次抽奖选方案②,两次抽奖累计积分为η,则η的可能取值为30,15,10,则111(30)4416P η==⨯=,31133(15)44448P η==⨯+⨯=,339(10)4416P η==⨯=,4555()3015101681613449E η=⨯+⨯+⨯=<,因为()()E E ξη>,所以应选择方案①.(2)由题意,()11111111C 313C 444kk k k k P k -⋅⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭,可得最大值点0k 满足00000000111111111111C 3C 3C 3C 3k k k k k k k k --++⎧⋅≥⋅⎨⋅≥⋅⎩,即000011011110011110123C C 11C 3C 1k k k k k k k k ---⎧⋅≥⎪⎪⎨-⎪≥⋅⎪+⎩,化简可得00003631333k k k k -≥⎧⎨+≥-⎩,解得0098k k ≤⎧⎨≥⎩,故08k =或09k =。

辽宁省沈阳市高二数学上学期阶段考试(10月)试题-人教版高二全册数学试题

辽宁省沈阳市高二数学上学期阶段考试(10月)试题-人教版高二全册数学试题

2017-2018学年度上学期月考(10月)试题高二数学时间:120分钟 分数:150分第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若0<<b a ,则下列结论中不恒成立....的是()A .a b >B .11a b >C .ab b a 222>+D .a b +>-2..不等式12x x-≥的解集为 ( ) A. [1,)-+∞ B. [1,0)- C. (,1]-∞- D. (,1](0,)-∞-+∞3.等差数列}{n a 的前n 项和为2811,30n S a a a ++=若,那么13S 值的是() A .130B .65C .70D .以上都不对 4.在下列函数中,最小值是2的是( ) A. 22x y x =+ B. )0y x => C. 1sin 0sin 2y x x x π⎛⎫=+<< ⎪⎝⎭D. 77x xy -=+ 5.若两个等差数列{a n }、{b n }的前n 项和分别为A n 、B n ,且满足5524-+=n n B A n n ,则135135b b a a ++的值为( )A.97 B.78 C.2019 D.876.数列n {a }中,对任意*N n ∈,n 12n a +a ++a =21⋅⋅⋅-,则22212n a +a ++a ⋅⋅⋅等于()A .()2n2-1B .3)12(2-n C.14-nD .314-n7.函数()()120,1x f x aa a -=->≠的图象恒过定点A ,若点A 在直线10mx ny --=上,其中0m >,0n >,则12m n+的最小值为( )A. 4B. 5C. 7D. 3+8.已知数列}{n a 的前n 项和为)34()1(2117139511--++-+-+-=+n S n n ,则312215S S S -+的值是()A .-76B .76C .46D .139.函数()22211x x y x x ++=>-+的图象最低点的坐标是( )A. ()1,2B. ()0,2C. ()1,1D. ()1,2-10.已知12-1,,,4a a - 成等差数列,且1231,,,,4b b b --成等比数列,则212a ab -的值为( ) A. —12 B. 12 C. 12或—12 D. 1411.已知函数的值域为[0,+∞),若关于x 的不等式f(x)< c 的解集为(m ,m +6),则实数c 的值为( ) A. 7B. 8C. 9D. 1012.数列{}n a 满足6(3)377n n a n n a a n ---≤⎧=⎨>⎩ ,且{}n a 是递增数列,则实数a 的取值X 围是( )A .9,34⎛⎫⎪⎝⎭ B .9,34⎡⎫⎪⎢⎣⎭C .(1,3) D .(2,3) 第Ⅱ卷 (90分)二、填空题: 本大题共4小题,每小题5分,共20分. 13.不等式0)12(1≥--x x 的解集为____________14.若数列{a n }是等差数列,首项a 1>0,a 2003+a 2004>0,a 2003·a 2004<0,则使前n 项和S n >0成立的最大自然数n 是。

2022-2023学年辽宁省沈阳市第二中学高二上学期12月月考数学试题(解析版)

2022-2023学年辽宁省沈阳市第二中学高二上学期12月月考数学试题(解析版)

2022-2023学年辽宁省沈阳市第二中学高二上学期12月月考数学试题一、单选题1.沈阳二中24届篮球赛正如火如荼地进行中,全年级共20个班,每四个班一组,如1—4班为一组,5—8班为二组……进行单循环小组赛(没有并列),胜出的5个班级和从余下队伍中选出的数据最优秀的1个班级共6支球队按抽签的方式进行淘汰赛,最后胜出的三个班级再进行单循环赛,按积分的高低(假设没有并列)决出最终的冠亚季军,请问此次篮球赛学校共举办了多少场比赛?( ) A .51 B .42 C .39 D .36【答案】D【分析】先进行单循环赛,6支球队按抽签的方式进行淘汰赛,最后3个班再进行单循环赛,分别求出所需比赛场次,即可得出答案. 【详解】先进行单循环赛,有245C =30场,胜出的5个班级和从余下队伍中选出的数据最优秀的1个班级共6支球队按抽签的方式进行淘汰赛, 6支球队打3场,决出最后胜出的三个班, 最后3个班再进行单循环赛,由23C =3场. 所以共打了30+3+3=36场. 故选:D.2.“m>2”是“方程22212x y m m +=+表示焦点在x 轴上的椭圆”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【分析】先根据焦点在x 轴上的椭圆求出m ,再根据充分性,必要性的概念得答案.【详解】由方程22212x y m m +=+表示焦点在x 轴上的椭圆得:220m m >+>, 解得21m -<<-或m>2, 由充分性,必要性的概念知,“m>2”是“方程22212x y m m +=+表示焦点在x 轴上的椭圆”的充分不必要条件.故选:A.合一组数据时,为了求出回归方程,设ln z y =,将其变换后得到线性方程0.34z x =+,则c ,k 的值分别是4e 和0.3;③根据具有线性相关关系的两个变量的统计数据所得的回归直线方程y a bx =+中,2b =,1x =,3y =,则1a =;④通过回归直线y bx a =+及回归系数b ,可以精确反映变量的取值和变化趋势,其中正确的个数是( ) A .1 B .2C .3D .4【答案】C【分析】根据独立性检验、非线性回归方程以及回归直线方程相关知识进行判断.【详解】对于命题①,根据独立性检验的性质知,两个分类变量2χ越大,说明两个分类变量相关程度越大,命题①正确;对于命题②,由kx y ce =,两边取自然对数,可得ln ln y c kx =+,令ln z y =,得ln z kx c =+,0.34z x =+,所以ln 40.3c k =⎧⎨=⎩,则40.3c e k ⎧=⎨=⎩,命题②正确;对于命题③,回归直线方程y a bx =+中,3211a y bx =-=-⨯=,命题③正确;对于命题④,通过回归直线y bx a =+及回归系数b ,可估计和预测变量的取值和变化趋势,命题④错误.故选C.【点睛】本题考查了回归直线方程、非线性回归方程变换以及独立性检验相关知识,考查推理能力,属于中等题.4.()823x y z ++的展开式中,共有多少项?( ) A .45 B .36 C .28 D .21【答案】A【分析】按照展开式项含有字母个数分类,即可求出项数.【详解】解:当()823x y z ++展开式的项只含有1个字母时,有3项,当()823x y z ++展开式的项只含有2个字母时,有2137C C 21=项,当()823x y z ++展开式的项含有3个字母时,有27C 21=项,所以()823x y z ++的展开式共有45项; 故选:A.5.已知()52232x x --21001210a a x a x a x =++++,则0110a a a ++=( )【答案】A【分析】首先令0x =,这样可以求出0a 的值,然后把2232x x --因式分解,这样可以变成两个二项式的乘积的形式,利用两个二项式的通项公式,就可以求出110a a 、的会下,最后可以计算出0110a a a ++的值.【详解】令0x =,由已知等式可得:50=232a =,()55552[(12)(2)]2((2)3122)x x x x x x =-+=-⋅+--,设5(12)x -的通项公式为:51551(2)(2)rrr r r r r T C x C x -+=⋅⋅-=⋅-⋅,则常数项、x 的系数、5x 的系数分别为:0155555(2)2C C C --⋅⋅、、;设5(2)x +的通项公式为:5512r r r r T C x -+=⋅⋅‘’‘’‘,则常数项、x 的系数、5x 的系数分别为: 4501555522C C C ⋅⋅、、,0115401555522)(2240,a C C C C =⋅⋅⋅=-⋅⋅+-5551055(2)32a C C =-⋅⋅=-,所以01103224032240a a a ++=--=-,故本题选A.【点睛】本题考查了二项式定理的应用,正确求出通项公式是解题的关键.6.平行四边形ABCD 内接于椭圆22221x y a b +=()0a b >>AB 的斜率为1,则直线AD 的斜率为( )A .1-4B .1-2C .D .-1【答案】A【分析】利用对称关系转化为中点弦问题即可求解. 【详解】22222223331,,,2444c c a b b a a a a -=∴==∴=, 设112233(,),(,),(,),A x y B x y D x y设E 为AD 中点,由于O 为BD 中点,所以//OE AB ,所以1OE k =, 因为1133(,),(,)A x y D x y 在椭圆上,所以22112222332211x y a b x y ab ⎧+=⎪⎪⎨⎪+=⎪⎩两式相减得2131321313OE AD y y y y b k k a x x x x +--=⋅=⋅+-, 所以22114AD b k a ⨯=-=-,即14AD k =-.故选:A.7.已知中心在原点的椭圆与双曲线有公共焦点,左、右焦点分别为12,F F ,且两条曲线在第一象限的交点为P ,12PF F △是以1PF 为底边的等腰三角形,若110PF =,椭圆与双曲线的离心率分别为12,e e ,则121e e ⋅+的取值范围是A .()1,+∞B .4,3⎛⎫+∞ ⎪⎝⎭C .6,5⎛⎫+∞ ⎪⎝⎭D .10,9⎛⎫+∞ ⎪⎝⎭【答案】B【分析】本题主要考查椭圆和双曲线的定义,椭圆和双曲线的离心率,平面几何分析方法,值域的求法.由于椭圆和双曲线有公共点,那么公共点既满足椭圆的定义,也满足上曲线的定义,根据已知条件有22PF c =,利用定义列出两个离心率的表达式,根据题意求121e e ⋅+的表达式,表达式分母还有二次函数含有参数,根据三角形两边和大于第三边,求出c 的取值范围,进而求得121e e ⋅+的取值范围.【详解】设椭圆方程为()222221122111x y a b c a b +=-=,双曲线方程为()222221122111x y a b c a b -=+=,由椭圆和双曲线的几何性质可得,1211222,2PF PF a PF PF a +=-=,依题意可知22PF c =,110PF =,代入可得,125,5a c a c =+=-.故2122212251112525c c c e e a a c c ⋅+=⋅+=+=--,三角形两边的和大于第三边,故5410,2c c >>,120,0a a >>,故5c <故22223745402554252525c c c <⇒<⇒<-><-. 故选:B.【点睛】(1)椭圆上一点与两焦点构成的三角形,称为椭圆的焦点三角形,与焦点三角形有关的计算或证明常利用正弦定理、余弦定理、122PF PF a +=,得到a ,c 的关系.(2)双曲线上一点与两焦点构成的三角形,称为双曲线的焦点三角形,与焦点三角形有关的计算或证明常利用正弦定理、余弦定理、122PF PF a -=,得到a ,c 的关系.8.已知A ,B ,C ,D 是椭圆E :22143x y +=上四个不同的点,且()1,1M 是线段AB ,CD 的交点,且3AM CM BMDM==,若l AC ⊥,则直线l 的斜率为( )A .12B .34C .43D .2【答案】C【分析】设出点的坐标()()()()11223344,,,,,,,A x y B x y C x y D x y ,由3AMBM=得到3AM MB =,列出方程,得到12124343x x y y -⎧=⎪⎪⎨-⎪=⎪⎩,分别把()()1122,,,A x y B x y 代入椭圆,得到()()111122143x y -+-=,同理得到()()331122143x y -+-=,两式相减得到34AC k =-,利用直线垂直斜率的关系求出直线l 的斜率. 【详解】设()()()()11223344,,,,,,,A x y B x y C x y D x y ,因为3AM BM =,故3AM MB =,所以()()1212131131x x y y ⎧-=-⎪⎨-=-⎪⎩,则12124343x x y y -⎧=⎪⎪⎨-⎪=⎪⎩,又()()1122,,,A x y B x y 都在椭圆上,故2211143x y +=,且()()22119114443x y -+-=, 两式相减得:()()1181142442443x y -⨯+-⨯=,即()()111122143x y -+-=①, 同理可得:()()11221x y -+-=②,②-①得:()()131311043x x y y -+-=, 所以131334ACy y k x x -==--, 因为l AC ⊥,所以直线l 的斜率为143AC k -=. 故选:C【点睛】直线与圆锥曲线相交涉及中点弦问题,常用点差法,该法计算量小,模式化强,易于掌握,若相交弦涉及AM MB λ=的定比分点问题时,也可以用点差法的升级版—定比点差法,解法快捷.二、多选题9.已知两点(5,0),(5,0)M N -,若直线上存在点P ,使||||6PM PN -=,则称该直线为“B 型直线”.下列直线中为“B 型直线”的是( ) A .1y x =+ B .2y = C .43y x =D .2y x =【答案】AB【解析】首先根据题意,结合双曲线的定义,可得满足||||6PM PN -=的点的轨迹是以M 、N 为焦点的双曲线的右支;进而可得其方程,若该直线为“B 型直线”,则这条直线必与双曲线的右支相交,依次分析4条直线与双曲线的右支是否相交,可得答案.【详解】解:根据题意,满足||||6PM PN -=的点的轨迹是以M 、N 为焦点的双曲线的右支; 则其中焦点坐标为(5,0)M -和(5,0)N ,即5c =,3a =, 可得4b =;故双曲线的方程为221916x y -=,(0)x > 双曲线的渐近线方程为43y x =±∴直线43y x =与双曲线没有公共点, 直线2y x =经过点(0,0)斜率43k >,与双曲线也没有公共点 而直线1y x =+、与直线2y =都与双曲线221916x y-=,(0)x >有交点 因此,在1y x =+与2y =上存在点P 使||||6PM PN -=,满足B 型直线的条件 只有AB 正确 故选:AB .10.甲箱中有3个白球和3个黑球,乙箱中有2个白球和4个黑球.先从甲箱中随机取出一球放入乙箱中,分别以12,A A 表示由甲箱中取出的是白球和黑球的事件;再从乙箱中随机取出一球,以B 表示从乙箱中取出的球是黑球的事件,则下列结论正确的是( ) A .12,A A 两两互斥B .()22|3P B A = C .事件B 与事件2A 相互独立 D .()914P B =【答案】AD【分析】根据条件概率、全概率公式、互斥事件的概念等知识,逐一分析选项,即可得答案. 【详解】因为每次取一球,所以12,A A 是两两互斥的事件,故A 项正确; 因为()()1212P A P A ==,()()()2225|7P BA P B A P A ==,故B 项错误; 又()()()1114|7P BA P B A P A ==,所以()()()1214159272714P B P BA P BA =+=⨯+⨯=,故D 项正确.从甲箱中取出黑球,放入乙箱中,则乙箱中黑球变为5个,取出黑球概率发生变化,所以事件B 与事件2A 不相互独立,故C 项错误. 故选:AD11.已知抛物线E :2y x =,O 为坐标原点,一束平行于x 轴的光线1l 从点41,116P ⎛⎫⎪⎝⎭射入,经过E 上的点()11,A x y 反射后,再经E 上的另一点()22,B x y 反射后,沿直线2l 射出,经过点Q ,则( ) A .12116x x =B .54AB =C .ABP QBP ∠=∠D .延长AO 交E 的准线于点C 则存在实数λ使得CB CQ λ= 【答案】ACD【分析】根据抛物线的光学性质可知,直线AB 经过抛物线的焦点,直线2l 平行于x 轴,由此可求出点,A B 的坐标,判断各选项的真假.【详解】如图所示:因为141,1,16P l ⎛⎫ ⎪⎝⎭过点P 且1//l x 轴,故(1,1)A ,故直线101:1414AF y x -⎛⎫=⋅- ⎪⎝⎭- 化简得4133y x =-,由24133y x y x⎧=-⎪⎨⎪=⎩消去x 并化简得231044y y --=,即1214y y =-,()21212116x x y y ==,故A 正确;又11y =, 故214y =-,B 11,164⎛⎫- ⎪⎝⎭,故121125116216AB x x p =++=++=,故B 错误;因为412511616AP AB =-==,故APB △为等腰三角形,所以ABP APB ∠=∠,而12l l //,故PBQ APB ∠=∠,即ABP PBQ ∠=∠,故C 正确;直线:AO y x =,由14y xx =⎧⎪⎨=-⎪⎩得11,,44C ⎛⎫-- ⎪⎝⎭故C B y y =,所以,,C B Q 三点共线,故D 正确.故选:ACD . 12.已知当随机变量()2,XN μσ时,随机变量X Z μσ-=也服从正态分布.若()2,,X X N Z μμσσ-~=,则下列结论正确的是( )A .()0,1ZNB .()12(1)P X P Z μσ-<=-<C .当μ减小,σ增大时,(2)P X μσ-<不变D .当,μσ都增大时,(3)P X μσ-<增大 【答案】AC【分析】根据正态分布与标准正态分布的关系以及正态分布的性质及特点可判断各选项正误. 【详解】对任意正态分布()2,X N μσ,X Z μσ-=服从标准正态分布()0,1ZN 可知A 正确,由于X Z μ-=,结合正态分布的对称性可得()(1)12(1)P X P Z P Z μσ-<=<=->,可知B 错误,已知正态分布()2,X N μσ,对于给定的*N k ∈,()P X k μσ-<是一个只与k 有关的定值,所以C正确,D 错误. 故选:AC.三、填空题 13.设()2,XB p ,若()519P X ≥=,则p =_________ .【答案】13【分析】由二项分布的概率公式()()1n kk kn P X k p p -==-C ,代入()()()112P X P X P X ≥==+=可得结果. 【详解】()2,XB p ,()()()()()0122222112C 1+C 12P X P X P X p p p p p p ∴≥==+==--=-,2529p p ∴-=,解得:13p ∴=或53p =(舍去)故答案为:13.14.已知()35P A =,()12P B A =,()23P B A =,则()P B =______. 【答案】1330【分析】根据已知条件结合全概率公式求解即可 【详解】因为()35P A =,所以32()1()155P A P A =-=-=, 因为()23P B A =,所以()()211133P B A P B A =-=-=, 所以由全概率公式可得()()()()()P B P B A P A P B A P A =+ 131213253530=⨯+⨯=, 故答案为:133015.现有三位男生和三位女生,共六位同学,随机地站成一排,在男生甲不站两端的条件下,有且只有两位女生相邻的概率是______. 【答案】2##0.4.【分析】先计算出男生甲不站两端,3位女生中有且只有两位女生相邻的总情况,再按照古典概型计算概率即可.【详解】3位男生和3位女生共6位同学站成一排共有66A 种不同排法,其中男生甲不站两端,3位女生中有且只有两位女生相邻有2322233422A (A A 6A A )-种不同排法,因此所求概率为232223342266A (A A 6A A )2=.A 5- 故答案为:25.16.关于曲线C :22111x y +=,有如下结论: ①曲线C 关于原点对称; ②曲线C 关于直线0x y ±=对称; ③曲线C 是封闭图形,且封闭图形的面积大于2π; ④曲线C 不是封闭图形,且它与圆222x y +=无公共点; 其中所有正确结论的序号为_________. 【答案】①②④【分析】利用曲线方程的性质,对称性的应用及曲线间的位置关系即可判断上述结论是否正确. 【详解】对于①,将方程中的x 换为x -,y 换为y -,得()()222211111x y x y +=+=--,所以曲线C 关于原点对称,故①正确;对于②,将方程中的x 换为y 或y -,y 换为x 或x -,得()()2222221111111y x x y y x +=+=+=--,所以曲线C 关于直线0x y ±=对称,故②正确; 对于③,由22111x y +=得221110y x=-≥,即21x ≥,同理21y ≥,显然曲线C 不是封闭图形,故③错误;对于④,由③知曲线C 不是封闭图形,联立22221112x y x y ⎧+=⎪⎨⎪+=⎩,消去2y ,得42220x x -+=,令2t x =,则上式转化为2220t t -+=,由()224240∆=--⨯=-<可知方程无解,因此曲线C 与圆222x y +=无公共点,故④正确. 故答案为:①②④.四、解答题17.给出下列条件:①若展开式前三项的二项式系数的和等于16;②若展开式中倒数第三项与倒数第二项的系数比为4:1.从中任选一个,补充在下面问题中,并加以解答(注:若选择多个条件,按第一个解答计分)已知()*nx n N ⎛∈ ⎝⎭,___________. (1)求展开式中二项式系数最大的项; (2)求展开式中所有的有理项.【答案】(1)4352T x =和74254T x =(2)51T x =,4352T x =,35516T x =【分析】(1)无论选①还是选②,根据题设条件可求5n =,从而可求二项式系数最大的项. (2)利用二项展开式的通项公式可求展开式中所有的有理项. 【详解】(1)二项展开式的通项公式为:211C C ,0,1,2,,2rr r rr n n n r r n T x x r n --+⎛⎫=== ⎪⎝⎭⎝⎭.若选①,则由题得012C C C 16n n n ++=,∴()11162n n n -++=,即2300n n +-=,解得5n =或6n =-(舍去),∴5n =.若选②,则由题得()221111C 22141C 22n n nn n n n n n n ----⎛⎫- ⎪⎝⎭==-=⎛⎫ ⎪⎝⎭,∴5n =, 展开式共有6项,其中二项式系数最大的项为22443515C 22T x x ⎛⎫== ⎪⎝⎭,,7732345215C 24T x x ⎛⎫== ⎪⎝⎭. (2)由(1)可得二项展开式的通项公式为:5521551C C ,0,1,2,,52rr r rr r r T x x r --+⎛⎫=== ⎪⎝⎭⎝⎭.当52rZ -∈即0,2,4r =时得展开式中的有理项,所以展开式中所有的有理项为:51T x =,5423522215C 22T x x -⎛⎫= ⎪⎝⎭=,5342545415C 216T x x -⎛⎫= ⎪=⎝⎭.18.已知圆()22:()(21)4C x a y a a -+-+=∈R ,定点()1,2M -.(1)过点M 作圆C 的切线,切点是A ,若线段MA C 的标准方程;(2)过点M 且斜率为1的直线l ,若圆C 上有且仅有4个点到l 的距离为1,求a 的取值范围. 【答案】(1)22(3)(5)4x y -+-=或22(1)(3)4x y +++=(2)(4【分析】(1)由题可知,圆心(),21C a a -,2r =,由勾股定理有222MC MA r =+,根据两点间距离公式计算即可求出a 的值,进而得出圆的方程;(2)因为圆C 上有且仅有4个点到l 的距离为1,圆C 的半径为2,因此需圆心C 到直线l 的距离小于1,设直线l 的方程为:()211y x -=+,根据点到直线的距离公式列出不等式,即可求出a 的取值范围.【详解】(1)解:由题可知,圆心(),21C a a -,2r =由勾股定理有222MC MA r =+,则222(1)(23)225a a ++-=+= 即2510150a a --=,解得:3a =或1a =-,所以圆C 的标准方程为:22(3)(5)4x y -+-=或22(1)(3)4x y +++=. (2)解:设直线l 的方程为:()211y x -=+,即30x y -+=, 由题,只需圆心C 到直线l 的距离小于1即可,所以1d =<,所以4a -44a <所以a 的取值范围为(4.19.某种植物感染α病毒极易导致死亡,某生物研究所为此推出了一种抗α病毒的制剂,现对20株感染了α病毒的该植株样本进行喷雾试验测试药效.测试结果分“植株死亡”和“植株存活”两个结果进行统计;并对植株吸收制剂的量(单位:mg )进行统计.规定:植株吸收在6mg (包括6mg )以上为“足量”,否则为“不足量”.现对该20株植株样本进行统计,其中 “植株存活”的13株,对制剂吸收量统计得下表.已知“植株存活”但“制剂吸收不足量”的植株共1株.(1)完成以下22⨯列联表,并判断是否可以在犯错误概率不超过1%的前提下,认为“植株的存活”与“制剂吸收足量”有关?(2)①若在该样本“吸收不足量”的植株中随机抽取3株,记ζ为“植株死亡”的数量,求ζ得分布列和期望E ζ;②将频率视为概率,现在对已知某块种植了1000株并感染了α病毒的该植物试验田里进行该药品喷雾试验,设“植株存活”且“吸收足量”的数量为随机变量η,求D η.参考数据:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++【答案】(1)不能在犯错误概率不超过1%的前提下,认为“植株的存活”与“制剂吸收足量”有关;(2)①分布列见解析,125E ζ=,②240 【解析】(1)已知“植株存活”但“制剂吸收不足量”的植株共1株,由题意可得“植株存活”的13株,“植株死亡”的7株;“吸收足量”的15株,“吸收不足量”的5株,填表即可(2)代入公式计算2220(12431) 5.934 6.635137155K ⨯-⨯=≈<⨯⨯⨯,有关(3)①样本中“制剂吸收不足量”有5株,其中“植株死亡”的有4株, 存活的1株,所以抽取的3株中ξ的可能取值是2,3,根据古典概型计算即可. ②“植株存活”且“制剂吸收足量”的概率为123205p ==,332~(1000,)(1)1000240555B D np p ηη⇒=-=⨯⨯=【详解】解:(1) 由题意可得“植株存活”的13株,“植株死亡”的7株;“吸收足量”的15株,“吸收不足量”的5株,填写列联表如下:吸收足量 吸收不足量 合计 植株存活 12 1 13 植株死亡 3 4 7 合计 155202220(12431) 5.934 6.635137155K ⨯-⨯=≈<⨯⨯⨯所以不能在犯错误概率不超过1%的前提下,认为“植株的存活”与“制剂吸收足量”有关. ①样本中“制剂吸收不足量”有5株,其中“植株死亡”的有4株, 存活的1株, 所以抽取的3株中ξ的可能取值是2,3.其中24353(2)5C P C ξ===, 34352(3)5C P C ξ===ξ的分布列为: ξ2 3 P3525所以321223555E ξ=⨯+⨯=. ②332~(1000,)(1)1000240555B D np p ηη⇒=-=⨯⨯=【点睛】考查完成22⨯列联表、离散型随机变量的分布列、期望以及二项分布的方差,难题. 20.安排5个大学生到,,A B C 三所学校支教,设每个大学生去任何一所学校是等可能的. (1)求5个大学生中恰有2个人去A 校支教的概率; (2)设有大学生去支教的学校的个数为ξ,求ξ的分布列.【答案】(1);(2)详见解析.【详解】试题分析:(1)5个大学生去三所学校支教,共有种方法,若恰有2人去A 校支教,那就从5人中先选2人,去A 大学,然后剩下的3人去B 和C 大学支教,有种方法,最后根据古典概型求概率;(2)根据题意,,表示5人都去了同一所大学支教,表示5人去了其中2所大学支教,那可以将5人分组,分为4和1,或是3和2,然后再分配到2所大学,计算概率,表示5人去了3所大学支教,那分组为113,或是122型,再将三组分配到三所大学,计算概率,最后列分布列.试题解析:(1)5个大学生到三所学校支教的所有可能为53243=种,设“恰有2个人去A 校支教”为事件M ,则有352280C ⋅=种,∴80()243P M =. 答:5个大学生中恰有2个人去A 校支教的概率80243. (2)由题得:1,2,3ξ=,15ξ=⇒人去同一所学校,有133C =种,∴ 31(1)24381P ξ===, 25ξ=⇒人去两所学校,即分为4,1或3,2有24323552()90C C C A ⋅+⋅=种,∴ 903010(2)2438127P ξ====, 35ξ=⇒人去三所学校,即分为3,1,1或2,2,1有312235253311()1502!2!C C C C A ⋅⋅⋅⋅+⋅= 种,∴15050(3)24381P ξ===. ∴ 的分布列为【解析】1.排列组合;2.离散型随机变量的分布列.21.已知椭圆22:143x y Γ+=的右焦点为F ,过F 的直线l 交Γ于,A B 两点.(1)若直线l 垂直于x 轴,求线段AB 的长;(2)若直线l 与x 轴不重合,O 为坐标原点,求△AOB 面积的最大值;(3)若椭圆Γ上存在点C 使得||||AC BC =,且△ABC 的重心G 在y 轴上,求此时直线l 的方程. 【答案】(1)3 (2)32(3):1l x =、:0l y =或3:1l x y =+【分析】(1)根据直线垂直x 轴,可得,A B 坐标,进而可求线段长度.(2)联立直线和椭圆方程,根据韦达定理,可得根与系数关系,进而根据三角形面积求表达式,进而根据函数最值进行求面积最大值.(3)联立直线和椭圆方程,根据韦达定理,可得根与系数关系,以及重心坐标公式,即可求解.【详解】(1)因为(1,0)F ,令1x =,得21143y +=,所以32y =±,所以||3AB = (2)设直线:1(0)l x my m =+≠,1122(,),(,)A x y B x y ,不妨设210,0y y ><,由221431x y x my ⎧+=⎪⎨⎪=+⎩得22(34)690m y my ++-=, 2144(1)m ∆=+,122634m y y m -+=+,122934y y m -=+, ()2221122221212169434434m y y y y y m m m y --⎛⎫- ⎪++-+-==+⎝⎭2211112122AOBm SOF y y +=⋅-=21m t +=,则1t ≥,2661313AOB t S t t t==++△,记1()3h t t t =+,可得1()3h t t t=+在[)1,+∞上单调递增所以211322AOBSOF y y =⋅-≤当且仅当0m =时取到, 即AOB 面积的最大值为32;(3)①当直线l 不与x 轴重合时,设直线:1l x my =+,1122(,),(,)A x y B x y ,AB 中点为M .由221431x y x my ⎧+=⎪⎨⎪=+⎩得22(34)690m y my ++-=,122634m y y m -+=+,122934y y m -=+, 因为ABC 的重心G 在y 轴上,所以120C x x x ++=, 所以121228()234C x x x m y y m -=--=-+-=+,又()12122242234M m y y x x x m +++===+,1223234M y y my m +-==+, 因为||||AC BC =,所以CM AB ⊥ ,故直线:()M M CM y y m x x -=--,所以29()34C M C M m y y m x x m =--=+,从而2289,3434m C m m -⎛⎫ ⎪++⎝⎭, 代入22143x y +=得22(31)0m m -=,所以0,m =:1l x =或:1l x y =+.② 当直线l 与x 轴重合时,点C 位于椭圆的上、下顶点显然满足条件,此时:0l y =. 综上,:1l x =,:0l y =或:1l x y =+. 22.已知双曲线2222:100x y C a b a b-=>>(,),1F 、2F 分别是它的左、右焦点,(1,0)A -是其左顶点,且双曲线的离心率为2e =.设过右焦点2F 的直线l 与双曲线C 的右支交于P Q 、两点,其中点P 位于第一象限内. (1)求双曲线的方程;(2)若直线AP AQ 、分别与直线12x =交于M N 、两点,证明22MF NF ⋅为定值; (3)是否存在常数λ,使得22PF A PAF λ∠=∠恒成立?若存在,求出λ的值,若不存在,请说明理由. 【答案】(1)2213y x -= (2)证明见解析 (3)存在,2【分析】(1)根据题意可得1a =,2ce a==,即可求解,b c 的值,进而得到双曲线方程; (2)设直线l 的方程及点,P Q 的坐标,直线l 的方程与双曲线C 的方程联立,得到1212,y y y y +的值,进而得到点,M N 的坐标,计算22MF NF ⋅的值即可;(3)在直线斜率不存在的特殊情况下易得2λ=,再证明222AF P PAF ∠=∠对直线l 存在斜率的情形也成立,将角度问题转化为斜率问题,即222tan 21PAPAk PAF k ∠=-,22tan PF AF P k ∠=-,即可求解=2λ. 【详解】(1)解:由题可知:1a = ∵2ce a==,∴c =2 ∵222+=a b c ,∴b = ∴双曲线C 的方程为:2213y x -=(2)证明:设直线l 的方程为:2x ty =+,另设:()11,P x y ,()22,Q x y ,∴()2222131129032y x t y ty x ty ⎧⎪⎨⎪-=⇒-++==+⎩, ∴121222129,3131t y y y y t t -+==--,又直线AP 的方程为()1111y y x x =++,代入()11311,2221y x M x ⎛⎫=⇒ ⎪ ⎪+⎝⎭, 同理,直线AQ 的方程为()2211y y x x =++,代入()22311,2221y x N x ⎛⎫=⇒ ⎪ ⎪+⎝⎭, ∴()()1222123333,,,221221y y MF NF x x ⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭,∴()()()()()12121222212121212999999441144334439y y y y y y MF NF x x ty ty t y y t y y ⋅=+=+=+++++⎡⎤+++⎣⎦2222999993109124444393131t t t t t t ⨯-=+=-=-⎛⎫⨯+⨯+ ⎪--⎝⎭,故22MF NF ⋅为定值.(3)解:当直线l 的方程为2x =时,解得(2,3)P , 易知此时2AF P △为等腰直角三角形,其中22,24AF P PAF ππ∠=∠=,即222AF P PAF ∠=∠,也即:=2λ,下证:222AF P PAF ∠=∠对直线l 存在斜率的情形也成立,121112222212112122tan 212(1)tan 21tan 1(1)1()1PAPAy PAF k x y x PAF y PAF k x y x ⨯∠++∠====-∠-+--+,∵()222211111313y x y x -=⇒=-,∴()()()()()()11111222121112121tan 22122131y x y x y PAF x x x x x ++∠===--+--+--,∴21221tan tan 22PF y AF P k PAF x ∠=-=-=∠-, ∴结合正切函数在0,,22πππ⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭上的图像可知,222AF P PAF ∠=∠,。

辽宁省实验中学2023-2024学年高一上学期12月月考数学试题及答案

辽宁省实验中学2023-2024学年高一上学期12月月考数学试题及答案

辽宁省实验中学2023—2024学年度上学期12月阶段测试高一数学试卷一.选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是考试时间:120分钟试题满分:150分符合题目要求的。

1.已知集合(){}2{14,},,,A x x x B x y y x x A =<<∈==∈Z ,则A B = ( )A .{}2B .{}2,3C .{}4,9D .∅2.已知函数()()2231mm f x m m x −−=+−是幂函数,且()0,x ∈+∞时,()f x 单调递增,则m 的值为( )A .1B .1−C .2−D .2−或13.若,a b 是方程230x x +−=的两个实数根,则22a a b ++=( ) A .1B .2C .3D .44.一种药在病人血液中的量保持在500mg 以上时才有疗效,而低于100mg 时病人就有危险.现给某病人的静脉注射了这种药2500mg ,如果药在血液中以每小时20%的比例衰减,以保证疗效,那么下次给病人注射这种药的时间最迟大约是(参考数据:lg20.3010≈)( ) A .5小时后B .7小时后C .9小时后D .11小时后5.已知31log 2833log 3,log 4,3a b c−===,则,,a b c 的大小关系为( )A .a b c >>B .c a b >>C .a c b >>D .c b a >>6.设函数()y f x =存在反函数()1y f x −=,且函数()2y x f x =−的图象过点()2,3,则函数()1yf x −=−的图象一定过点( )A .()1,1−B .()3,2C .()1,0D .()2,17.函数()f x 和()g x 的定义域均为R ,已知()13yf x =+为偶函数,()11yg x =++为奇函数,对于x ∀∈R ,均有()()23f x g x x +=+,则()()44f g =( ) A .66B .70C .124D .1448.已知函数()24,0e 1,0xx x x f x x − −+≥= −< ,若关于x 的不等式()()22[]0f x mf x n −−<恰有两个整数解,则实数m 的最小值是( )A .21−B .14−C .7−D .6−二.选择题:本题共4小题,每小题5分,共20分。

辽宁省凤城一中2017-2018学年高二英语12月月考试题

辽宁省凤城一中2017-2018学年高二英语12月月考试题

辽宁省凤城一中2017-2018学年高二英语12月月考试题时间100分钟满分150分第二部分阅读理解(共两节,满分40分)第一节(共15小题;每小题2分,满分30分)阅读下列短文,从每题所给的四个选(A、B、C和D)中,选出最佳选项。

ATour operators have seasonal deals on holidays to Canada, Australia and other countries in a new year.AustravelHolidaymakers can save up to 30% on a trip to Australia with the Austravel sale, which runs for about a month. It also includes a fourteen-day-long trip to Perth and a west coast self-drive trip from£795pp including flights in May or July.•Canadian AffairThe leading UK tour operator to Canada will be offering savings of up to £140 pp during its winter sale. This includes a three-night city break to Toronto, including return flights, for just £399, if you book before 24 December. Other deals continue until 31 December.•Thomson and First ChoiceSome deals are being launched this week by Thomson and First Choice, with early booking offers including free places for kids, lower deposits and up to £300 off per couple on a lot of destinations.•, EurocampThe camping company is offering thousands of Easter and May half-term holidays for under £350, such as an Easter break at La Baume on the French Riviera for just £25 a night, based on a stay in a two-bedroom holiday home. Early bookers can save up to 25% and secure a holiday with a deposit of just £99.•KuoniRunning from Christmas Eve, the Kuoni sake includes a wide range of offers. These offers include ten nights full board in the Maldives from £1,599 and seven nights in Phuket, Thailand from £999 per person—both including flights and transfers (换乘).•21. How long may you stay in Perth with Austravel?A. One month.B. Two weeks.C. One week.D. Four nights.22. What does the author say about Thomson and First Choice?A. It requires no deposit.B. It offers cheap return flights.C. It is suitable for family travel.D. It can save up to £300 per person.23. What do Eurocamp and Kuoni have in common?A. Both have various offers.B. Both include flights.C. Both offer a discount for early booking.D. Both need a deposit to secure a holiday.BI hate Black Friday sales. It’s often a gathering of people who are here for many different reasons. Some are looking for a deal on that one item for their loved one, or perhaps themselves. Their intentions are completely unrelated to the festive time of the year.It was several years ago when my wife asked me to meet her at the local department store on Black Friday morning. They had adver tised a child’s bike that she wanted to purchase for our son. We stood with a very large crowd, waiting for the manager to blow the whistle. After a while the whistle blew. It was like throwing a bucket of small fish into a tank of sharks. I told my wife that if we obtained a bike, fine, but if we did not, I was OK with that too.As the pile of bikes began to gradually decrease in size, I saw my polite opportunity to wrap my hands around the corner of one of the boxes. I lifted it up and suddenly felt some mild resistance. I looked up see one of the largest gentlemen I had ever seen in my life. Frightening was not the word to describe his presence. He wore lots of belts of metal studded leather around both arms and even his neck. Tattoos(纹身)were an obvious passion of his.I started to give up the box but he gently pushed it back in my direction and back into my hands. He then directed it into my shopping cart. He looked at me, smiled, and said, “Merry Christmas.” My wife and I went to the checkout, paid for t he bike and went home. All the way home I was thinking that this moment was by far the best gift I had ever received for Christmas.The kindness of a stranger broke all preconceived notions(预想)I may have had of stereotypes and prejudices.24. How did the author feel when going into the store?A. The crowd was like small fish.B. They might not get the bike.C. He was excited to do the shopping.D. The whistle was blown too late.25. What happened when the author was buying the bike?A. He was scared by a man’s look at first.B. A gentleman bought the bike for him.C. A stranger helped him lift the box.D. He gave up the bike he first touched.26. What can we learn from the author’s experience?A. Look before you leap.B. Custom is a second nature.C. Doing is better than saying.D. Don’t judge a book by its cover.27. What is the best title of the passage?A. Black. Friday salesB. My son’s best bikeC. The best Christmas gift.D. A strange gentlemanCThe word “huh?”is one of the most annoying words in the English language and it seems there is no escaping it. It is in worldwide use, a study found.Researchers discovered that languages spoken in countries from Ghana and Laos to Iceland and Italy all include “huh?”, or something that sounds very like it. They said that while the study may sound silly, the word is an absolutely necessary part of speech. Without it and similar words, it would be impossible to show that we hav en’t heard or understood what had been said and this would lead to constant misunderstandings.But while other words used in the same context, such as “sorry” or “what”, vary widely across languages, “huh?” remains unchanged.The Dutch researchers carefully studied ten languages from around the world, including Siwu, which is spoken in Ghana, and an Australian Aboriginal language, as well as Italian, Spanish, Dutch and Mandarin Chinese.They analyzed tapes of recorded conversations for words that sounded li ke “huh?” and were used to request that whatever had just been said be repeated. All contained a version of “huh?” and the word was also found in another 21 languages. While there were subtle differences in each country, all sounded basically the same.This is surprising because normally unrelated languages will use very different words to describe the same thing. For instance, the Japanese for “dog” is “inu”, while the French is “chien”. It is thought that languages around the world have developed their ow n version of “huh?” because the sound is quick and simple to form, as well as being easily understood.The researchers, said that it might seem unimportant to carry out scientific research into a word like “huh?” but in fact this little word is an essentia l tool in human communication. They also have an answer for those who claim that “huh?” isn’t a word. They say that it qualifies because of the small differences in its pronunciation in different languages. It also can be considered a word because it’s som ething we learn to say, rather than a grunt or cry that we are born knowing how to make.28. According to researchers, the word “huh?” is very important in speech becauseof ________.A.its stable meaning in language developmentB.its important function in communicationC.its simple and easy sound and spellingD.its popularity in every language29. What is the natural response if you hear the lady you’re speaking to say “huh?”?A.You should ask her to repeat what she says before that.B.You should apologize to her for speaking in a low voice.C.You should invite her to share her different views politely.D.You should try to repeat what you’ve just said in a clearer way.30.According to researchers, “huh?” should be considered a word rather than a soundbecause ________.A.it is listed in most dictionariesB.it is something humans learn to sayC.there is a clear and consistent spelling of the wordD.there is a big difference in the way it pronounces in different languages 31. What is the purpose of the passage?A.To inform readers about research on the worldwide used word “huh?”.B.To argue that “huh?” is the most important word in every language.C.To entertain readers by relating similar idioms in different languages.D.To instruct readers of the differences of “huh?” in different languages.DWhen the company was small, Google cared a lot about getting kids from Harvard, Stanford, and MIT. But Laszlo Bock, Google’former Senior Vice President of People Operations, said it was the “wrong” hiring strategy. Expe rience has taught him there are exceptional kids at many other places, from state schools in California to New York.“What we find is the best people from places like that are just as good if not better as anybody you can get from any Ivy League school,” sa id Bock, who just authored a book titled “Work Rules!”So what else does Google not care about:Grades: Google’s data shows that grades predict performance for the first two years of a career, but do not matter after that.Brainteasers: Gone are interview questions such as: Why are manhole covers(井盖) round? How many golf balls can fit in a school bus? “Our research tells us those questions are a waste of time,” Bock said. “They’re a really coachable skill. The more you practice, you get better at it.”Here’s what Google does care about:Problem solvers: Your cognitive(认知) ability, or how well you solve problems. Leaders: The idea is not whether you were president of the student body or vice president of the bank, but rather: “When you see a problem do you step in and help solve it,” and then critically, “Are you willing to let somebody else take over, and make room for somebody else? Are you willing to give up power?”Googleyness: That’s what Google calls its cultural fit. It’s not “Are you like us?” Bock said. “We actually look for people who are di fferent, because diversity gives us great ideas.”“What’s most important is that people are intellectually humble, willing to admit when they’re wrong, and care about the environment around them ...because we want people who think like owners not employees,” Bock said.32. What does Bock mean in Paragraph 1?A. People from state schools can be as good.B. Google prefers kids from Ivy League schools.C. Hiring is a hard job for Google.D. State schools are worse than Ivy League ones.33. Which question belongs to a brain-teaser?A. What are your grades like?B. What is the significance of the “dead beef”?C. How would you improve a Google product?D. How would you solve homelessness in Seattle?34. Who is a qualified leader according to Google?A. One eager for power.B. One solving problems well.C. One willing to step aside.D. One operating an organization.35. What is Googleyness?A. Being unique.B. Being diverse.C. Being qualified.D. Being loyal.第二节(共5小题:每小题2分,满分10分)根据短文内容,从短文后的选项中选出能填入空内处的最佳选项。

2018-2019学年上学期高二数学12月月考试题含解析(466)

2018-2019学年上学期高二数学12月月考试题含解析(466)

张北县第二中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 已知全集U=R ,集合A={1,2,3,4,5},B={x ∈R|x ≥3},图中阴影部分所表示的集合为 ( )A .{1}B .{1,2}C .{1,2,3}D .{0,1,2}2. 已知,,那么夹角的余弦值( )A .B .C .﹣2D .﹣3. 函数f (x )=x 2﹣2ax ,x ∈[1,+∞)是增函数,则实数a 的取值范围是( ) A .RB .[1,+∞)C .(﹣∞,1]D .[2,+∞)4. 下列各组函数中,表示同一函数的是( )A 、()f x =x 与()f x =2x xB 、()1f x x =- 与()f x =C 、()f x x =与()f x = D 、()f x x =与2()f x =5. 在正方体ABCD ﹣A 1B 1C 1D 1中,点E ,F 分别是棱AB ,BB 1的中点,则异面直线EF 和BC 1所成的角是( )A .60°B .45°C .90°D .120°6. 如图甲所示, 三棱锥P ABC - 的高8,3,30PO AC BC ACB ===∠= ,,M N 分别在BC和PO 上,且(),203CM x PN x x ==∈(,,图乙的四个图象大致描绘了三棱锥N AMC -的体积y 与的变化关系,其中正确的是( )A.B. C. D.1111]7.函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.8.如图F1、F2是椭圆C1:+y2=1与双曲线C2的公共焦点,A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是()A.B.C.D.9.独立性检验中,假设H0:变量X与变量Y没有关系.则在H0成立的情况下,估算概率P(K2≥6.635)≈0.01表示的意义是()A.变量X与变量Y有关系的概率为1%B.变量X与变量Y没有关系的概率为99%C.变量X与变量Y有关系的概率为99%D.变量X与变量Y没有关系的概率为99.9%10.sin3sin1.5cos8.5,,的大小关系为()A.sin1.5sin3cos8.5<<<<B.cos8.5sin3sin1.5C.sin1.5cos8.5sin3<<D.cos8.5sin1.5sin3<<11.用秦九韶算法求多项式f(x)=x6﹣5x5+6x4+x2+0.3x+2,当x=﹣2时,v1的值为()A.1 B.7 C.﹣7 D.﹣512.已知函数()2sin()f x x ωϕ=+(0)2πϕ<<与y 轴的交点为(0,1),且图像上两对称轴之间的最小距离为2π,则使()()0f x t f x t +--+=成立的t 的最小值为( )1111] A .6π B .3π C .2πD .23π二、填空题13.【2017-2018第一学期东台安丰中学高三第一次月考】在平面直角坐标系xOy 中,直线l 与函数()()2220f x x ax =+>和()()3220g x x a x =+>均相切(其中a 为常数),切点分别为()11,A x y 和()22,B x y ,则12x x +的值为__________.14.已知θ是第四象限角,且sin (θ+)=,则tan (θ﹣)= .15.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AB=5,BC=4,AA 1=3,沿该长方体对角面ABC 1D 1将其截成两部分,并将它们再拼成一个新的四棱柱,那么这个四棱柱表面积的最大值为 .16.(若集合A ⊊{2,3,7},且A 中至多有1个奇数,则这样的集合共有 个.17.为了近似估计π的值,用计算机分别产生90个在[﹣1,1]的均匀随机数x 1,x 2,…,x 90和y 1,y 2,…,y 90,在90组数对(x i ,y i )(1≤i ≤90,i ∈N *)中,经统计有25组数对满足,则以此估计的π值为 .18.在直角梯形,,DC//AB,AD DC 1,AB 2,E,F ABCD AB AD ⊥===分别为,AB AC 的中点,点P 在以A 为圆心,AD 为半径的圆弧DE 上变动(如图所示).若AP ED AF λμ=+,其中,R λμ∈,则2λμ-的取值范围是___________.三、解答题19.设圆C 满足三个条件①过原点;②圆心在y=x 上;③截y 轴所得的弦长为4,求圆C 的方程.20.已知(+)n 展开式中的所有二项式系数和为512,(1)求展开式中的常数项; (2)求展开式中所有项的系数之和.21.甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2个、3个、4个,乙袋中红色、黑色、白色小球的个数均为3个,某人用左右手分别从甲、乙两袋中取球.(1)若左右手各取一球,问两只手中所取的球颜色不同的概率是多少?(2)若左右手依次各取两球,称同一手中两球颜色相同的取法为成功取法,记两次取球的成功取法次数为X,求X的分布列和数学期望.22.我市某校某数学老师这学期分别用m,n两种不同的教学方式试验高一甲、乙两个班(人数均为60人,入学数学平均分和优秀率都相同,勤奋程度和自觉性都一样).现随机抽取甲、乙两班各20名的数学期末考试成绩,并作出茎叶图如图所示.(Ⅰ)依茎叶图判断哪个班的平均分高?(Ⅱ)现从甲班所抽数学成绩不低于80分的同学中随机抽取两名同学,用ξ表示抽到成绩为86分的人数,求ξ的分布列和数学期望;(Ⅲ)学校规定:成绩不低于85分的为优秀,作出分类变量成绩与教学方式的2×2列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为成绩优秀与教学方式有关?”下面临界值表仅供参考:P(K2≥k)0.15 0.10 0.05 0.025 0.010 0.005 0.001k 2.072 2.706 3.841 5.024 6.635 7.879 10.828(参考公式:K2=,其中n=a+b+c+d)23.已知曲线C1:ρ=1,曲线C2:(t为参数)(1)求C1与C2交点的坐标;(2)若把C1,C2上各点的纵坐标都压缩为原来的一半,分别得到曲线C1′与C2′,写出C1′与C2′的参数方程,C1与C2公共点的个数和C1′与C2′公共点的个数是否相同,说明你的理由.2015-2016学年安徽省合肥168中学高三(上)10月月考数学试卷(理科)24.如图,在三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,AB⊥BC,,E,F分别是A1C1,AB的中点.(I)求证:平面BCE⊥平面A1ABB1;(II)求证:EF∥平面B1BCC1;(III)求四棱锥B﹣A1ACC1的体积.张北县第二中学校2019-2020学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】B【解析】解:图中阴影部分表示的集合中的元素是在集合A中,但不在集合B中.由韦恩图可知阴影部分表示的集合为(C U B)∩A,又A={1,2,3,4,5},B={x∈R|x≥3},∵C U B={x|x<3},∴(C U B)∩A={1,2}.则图中阴影部分表示的集合是:{1,2}.故选B.【点评】本小题主要考查Venn图表达集合的关系及运算、Venn图的应用等基础知识,考查数形结合思想.属于基础题.2.【答案】A【解析】解:∵,,∴=,||=,=﹣1×1+3×(﹣1)=﹣4,∴cos<>===﹣,故选:A.【点评】本题考查了向量的夹角公式,属于基础题.3.【答案】C【解析】解:由于f(x)=x2﹣2ax的对称轴是直线x=a,图象开口向上,故函数在区间(﹣∞,a]为减函数,在区间[a,+∞)上为增函数,又由函数f(x)=x2﹣2ax,x∈[1,+∞)是增函数,则a≤1.故答案为:C4.【答案】C【解析】试题分析:如果两个函数为同一函数,必须满足以下两点:①定义域相同,②对应法则相同。

2021-2022学年辽宁省实验中学高一上学期12月月考数学试题(解析版)

2021-2022学年辽宁省实验中学高一上学期12月月考数学试题(解析版)

2021-2022学年辽宁省实验中学高一上学期12月月考数学试题一、单选题1.设集合{1,2,3,4,5}U =,{}1,3A =,{}2,3,4B =,则()()U UA B =( )A .{}1B .{}5C .{}2,4D .{}1,2,3,4【答案】B【分析】先求,A B 的补集,然后求两个集合的交集,即可得答案. 【详解】依题意,{}{}2,4,5,1,5UU A B ==,所以()(){}5U U A B ⋂=. 故选:B.2.设集合(){}A x I p x =∈,(){}B x I q x =∈,若A B ,则()p x 是()q x 的( ) A .充分必要条件 B .充分非必要条件C .必要非充分条件D .既非充分也非必要条件【答案】B【分析】根据集合的关系及充分条件,必要条件的概念即得. 【详解】因为A B ,(){}A x I p x =∈,(){}B x I q x =∈, 所以()p x 是()q x 的充分非必要条件. 故选:B.3.设命题p :x ∀∈R ,4221x x +>.则p ⌝为( ) A .x ∃∈R ,4221x x +≤. B .x ∀∈R ,4221x x +≤. C .x ∃∈R ,4221x x+<. D .x ∀∈R ,4221x x+<. 【答案】A【分析】根据全称命题的否定是特称命题可得答案. 【详解】根据全称命题的否定是特称命题可得p ⌝为x ∃∈R ,4221x x +≤. 故选:A.4.小明同学在课外阅读中看到一个趣味数学问题“在64个方格上放米粒:第1个方格放1粒米,第2个方格放2粒米,第3个方格放4粒米,第4个方格放8粒米,第5个方格放16粒米,……,第64个方格放632粒米.那么64个方格上一共有多少粒米?”小明想:第1个方格有1粒米,前2个方格共有3粒米,前3个方格共有7粒米,前4个方格共有15粒米,前5个方格共有31粒米,…….小明又发现,1121=-,2321=-,3721=-,41521=-,53121=-,…….小明又查到一个数据:710粒米的体积大约是1立方米,全球的耕地面积大约是131.510⨯平方米,lg 20.3010=,lg1.8360.2640=.依据以上信息,请你帮小明估算,64个方格上所有的米粒覆盖在全球的耕地上厚度约为( ) A .0.0012米 B .0.012米 C .0.12米 D .1.2米【答案】C【分析】由题意知格子上的米粒数是以1为首项,2为公比的等比数列,利用等比数列求和公式可得64个方格上一共有6421-粒米,设米粒覆盖在全球的耕地上厚度约为h ,可得71364210 1.51110=⨯⨯-h ,两边取对数计算可得答案.【详解】第1个方格放1粒米,第2个方格放2粒米,第3个方格放4粒米,第4个方格放8粒米,第5个方格放16粒米,……,可知格子上的米粒数是以1为首项,2为公比的等比数列, 那么64个方格上一共有6464112212-=--粒米, 设米粒覆盖在全球的耕地上厚度约为h ,因为710粒米的体积大约是1立方米,全球的耕地面积大约是131.510⨯平方米, 所以71364210 1.51110=⨯⨯-h , 可得()64641371372112lg lg lg lg 1.51010 1.51010h ⎛⎫-=⨯≈-⨯ ⎪⨯⎝⎭, 用lg1.8360.2640=近似替代lg1.5,所以()641372lg lg 1.51064lg 27lg1.51364lg 2lg1.52010-⨯=---=--0.30100.264020164⨯--=-≈,即lg 1=-h ,可得0.1h =,又0.10.12≈,故64个方格上所有的米粒覆盖在全球的耕地上厚度约为0.12(米). 故选:C.5.下列四组函数中,同组两个函数的值域相同的是( )A .()2xf x =与()2log g x x =B .()12f x x =与()32g x x -=C .()12f x x -=与()13log g x x =D .()2f x x -=与()13xg x ⎛⎫= ⎪⎝⎭【答案】D【分析】根据指数函数,对数函数及幂函数的性质逐项分析即得.【详解】因为函数()2xf x =的值域为()0,∞+,函数()2log g x x =的值域为R ,故A 不合题意; 因为函数()12f x x =的值域为[)0,∞+,函数()32g x x -=的值域为()0,∞+,故B 不合题意;因为函数()12f x x -=的值域为()0,∞+,函数()13log g x x =的值域为R ,故C 不合题意;因为函数()2f x x -=的值域为()0,∞+,函数()13xg x ⎛⎫= ⎪⎝⎭的值域为()0,∞+,故D 正确.故选:D.6.已知函数()f x 是定义域为R 的奇函数,且当0x ≥时,()2f x x x =-,则当0x <时,( )A .()2f x x x =- B .()2f x x x =+C .()2f x x x =-- D .()2f x x x =-+【答案】C【分析】根据函数的奇偶性求解0x <的解析式. 【详解】因为函数()f x 是定义域为R 的奇函数, 当0x <时,0x ->,所以()()()()22f x f x x x x x ⎡⎤=--=----=--⎣⎦, 故选:C7.函数()22221x x f x x -+=的图像简图可能是( )A .B .C .D .【答案】D【分析】由题可得()21111f x x ⎛⎫=+-> ⎪⎝⎭可排除AB ,然后根据0x <时函数值的范围可排除C.【详解】因为()()2222221221111x x x x f x x x x --+⎛⎫===+- ⎪⎝⎭+, 所以()21111f x x ⎛⎫=+-> ⎪⎝⎭,故排除AB ;当0x <时,()2111112f x x ⎛⎫=+->+= ⎪⎝⎭,故排除C.故选:D.8.已知函数()231x x k f x x +=--有4个零点,则k 的取值范围是( )A .1,13⎛⎫- ⎪⎝⎭B .11,3⎛⎫- ⎪⎝⎭C .1,12⎛⎫- ⎪⎝⎭D .11,2⎛⎫- ⎪⎝⎭【答案】B【分析】将函数零点问题转化为曲线23y x x =+与直线1y kx =+的交点问题,如图分析临界直线,可得k 的取值范围.【详解】2310x x kx +--=,即231x x kx +=+,函数1y kx =+表示恒过点()0,1的直线,如图画出函数23y x x =+,以及1y kx =+的图象,如图,有两个临界值,一个是直线过点()3,0-,此时直线的斜率()101033k -==--,另一个临界值是直线与23y x x =--相切时,联立方程得()2310x k x +++=,()2340k ∆=+-=,解得:1k =-,或5k =-,当1k =-时,切点是1,2如图,满足条件,当5k =-时,切点是()1,4-不成立,所以1k =-,如图,曲线23y x x =+与直线1y kx =+有4个交点时,k 的取值范围是11,3⎛⎫- ⎪⎝⎭.故选:B二、多选题9.函数()12xf x ⎛⎫= ⎪⎝⎭,()12log g x x =,()12h x x -=,在区间()0,+∞上( )A .()f x 递减速度越来越慢B .()g x 递减速度越来越慢C .()h x 递减速度越来越慢D .()g x 的递减速度慢于()h x 递减速度【答案】ABC【分析】根据指数函数,对数函数及幂函数的性质即得.【详解】根据指数函数,对数函数及幂函数的性质结合图象可知在区间()0,+∞上,()12xf x ⎛⎫= ⎪⎝⎭递减速度越来越慢,故A 正确;()12log g x x =递减速度越来越慢,故B 正确;()12h x x -=递减速度越来越慢,故C 正确;()h x 的递减速度慢于()g x 递减速度,故D 错误.故选:ABC.10.已知12a <<且53b -<<,则( ) A .a b +的取值范围是()4,5- B .a b -的取值范围是()2,7- C .ab 的取值范围是()10,6- D .b a 的取值范围是35,2⎛⎫- ⎪⎝⎭【答案】ABC【分析】根据不等式的性质逐项分析即得. 【详解】因为12a <<且53b -<<,35b -<-<, 所以45a b -<+<,27a b -<-<,故AB 正确;当50b -<<时,05b <-<,又12a <<,所以010ab <-<,故100ab -<<; 当03b <<时,又12a <<,所以06ab <<;当0b =时,0ab =; 综上,12a <<且53b -<<,可得106ab -<<,故C 正确;当50b -<<时,05b <-<,又1112a <<,所以05ba <-<,故50b a -<<;当03b <<时,又1112a<<,所以03ba <<;当0b =时,0b a =;综上,12a <<且53b -<<,可得53b a-<<,故D 错误. 故选:ABC.11.函数()()2ln e 1xf x x =+-,则( )A .()f x 的定义域为RB .()f x 的值域为RC .()f x 是偶函数D .()f x 在区间[)0,+∞上是增函数【答案】ACD【分析】由题可得函数的定义域判断A ,根据基本不等式及对数函数的性质可得函数的值域判断B ,根据奇偶性的定义可判断C ,根据指数函数,对勾函数及对数函数的性质可判断D.【详解】因为函数()()2ln e 1xf x x =+-,所以函数()f x 的定义域为R ,故A 正确;因为()()()()222e 1ln e 1ln e 1ln e ln ln e e ex xxxx x x f x x -+=+-=+-==+,又e e 2-+≥x x ,当且仅当e e x x -=,即0x =取等号,所以()ln 2f x ≥,故B 错误;因为()()()ln e e x xf x f x --=+=,所以()f x 是偶函数,故C 正确;因为函数e x t =在[)0,+∞上单调递增,且e 1x t =≥,根据对勾函数的性质可知1u t t=+在1t ≥上单调递增,又函数ln y u =为增函数,故函数()f x 在区间[)0,+∞上是增函数,故D 正确. 故选:ACD.12.若定义在R 上的函数()f x 满足: (ⅰ)存在R a +∈,使得()0f a =; (ⅱ)存在R b ∈,使得()0f b ≠;(ⅲ)任意12,R x x ∈恒有()()()()1212122f x x f x x f x f x ++-=. 则下列关于函数()f x 的叙述中正确的是( ) A .任意x ∈R 恒有()()4f x a f x += B .函数()f x 是偶函数C .函数()f x 在区间[]0,a 上是减函数D .函数()f x 最大值是1,最小值是-1【答案】ABD【分析】A 选项,赋值法得到()()f x a f x a +=--,从而得到()()4f x a f x +=; B 选项,令20x =得到()01f =,再令120,x x x ==-得到()()=f x f x -,B 正确; C 选项,可举出反例; D 选项,令12x x t 得到()()20212f f t t +=≥⎡⎤⎣⎦,令2t x =,则()1f x ≥-,由()()f x a f x a +=--,得到()()2f x a f x +=-,故可得()()21f x a f x +=-≤,求出函数()f x 最大值是1,最小值是-1. 【详解】令12,x x x a ==得()()()()20f x a f x a f x f a ++-==,故()()f x a f x a +=--, 上式中,用2x a -代替x 得:()()22f x a a f x a a -+=---,即()()3f x a f x a -=--, 从而()()3f x a f x a +=-,故()()4f x a f x +=,A 正确;()()()()1212122f x x f x x f x f x ++-=,令20x =得:()()()()11120f x f x f x f +=,即()()()11022f x f x f =,∵1R x ∈,()1f x 不恒为0, ∴()01f =,令120,x x x ==-,得()()()()20x f f x x f f +=--,即()()=f x f x -, 又()f x 的定义域为R ,定义域关于原点对称, 所以()f x 为偶函数,B 正确;不妨令()cos f x x =,满足()()()()12121212cos cos f x x f x x x x x x ++-=++- 1212121212cos sin sin c 2cos s co os in sin co s co s s x x x x x x x x x x =-++=,故()()()()1212122f x x f x x f x f x ++-=,此时存在3π2a =,使得3π02f ⎛⎫= ⎪⎝⎭,且存在π3b =,使得()0f b ≠;但函数()f x 在区间0,3π2⎡⎤⎢⎥⎣⎦上不单调,C 错误;令12x x t 得:()()()2220f f f t t +=⎡⎤⎣⎦,即()()20212f f t t +=≥⎡⎤⎣⎦,所以()12f t ≥-,令2t x =,则()1f x ≥-,因为()()f x a f x a +=--,所以()()2f x a f x +=-, 因为()1f x ≥-,所以()()21f x a f x +=-≤, 故函数()f x 最大值是1,最小值是-1. 故选:ABD三、填空题13.51log 25+=______. 【答案】10【分析】根据对数运算求解即可. 【详解】解:551log 2log 215055521+==⨯=⨯ 故答案为:1014.设2log 3a =,3log 5b =,则5log 6=______. 【答案】1a ab+【分析】利用换底公式,结合对数的运算性质进行求解即可. 【详解】∵2lg3log 3lg 2a ==,3lg 5log 5lg 3b ==, ∴lg 3lg 2=a,lg5lg3=b , ∴5lg31lg31lg 6lg 2lg3l 1lg5lg3l o 3g g 6++++=====a a a b b b ab . 故答案为:1a ab+. 15.设方程1502xx ⎛⎫+-= ⎪⎝⎭的解为1x ,2x ,方程12log 50x x +-=的解为3x ,4x ,则1234x x x x +++=______.【答案】10【分析】在同一坐标系下做出函数()12xf x ⎛⎫= ⎪⎝⎭、()12log g x x =,y x =的图象,设1324x x x x <<<,根据函数()12xf x ⎛⎫= ⎪⎝⎭与()12log g x x =的图象关于y x =对称得点111,2⎛⎫⎪⎝⎭x x 与点1244,log ⎛⎫ ⎪⎝⎭x x 、点2122,log x x ⎛⎫ ⎪⎝⎭与点331,2⎛⎫ ⎪⎝⎭x x 都关于y x =对称,求出5、==-y x y x 的交点坐标再根据中点坐标公式计算可得答案.【详解】由方程1502x x ⎛⎫+-= ⎪⎝⎭得152⎛⎫=- ⎪⎝⎭xx ,由方程12log 50x x +-=得12log 5=-x x ,在同一坐标系下做出函数()12xf x ⎛⎫= ⎪⎝⎭、()12log g x x =,y x =的图象,不妨设1324x x x x <<<,如下图,因为函数()12xf x ⎛⎫= ⎪⎝⎭与()12log g x x =的图象关于y x =对称,即点111,2⎛⎫⎪⎝⎭x x 与点1244,log ⎛⎫ ⎪⎝⎭x x 、点2122,log x x ⎛⎫ ⎪⎝⎭与点331,2⎛⎫ ⎪⎝⎭x x 都关于y x =对称, 由5y x y x =⎧⎨=-⎩解得5252x y ⎧=⎪⎪⎨⎪=⎪⎩,即两直线的交点为55,22⎛⎫ ⎪⎝⎭,则231455,2222x x x x ++==,则123410x x x x +++=. 故答案为:10.16.如果函数()()2log 3log 1log a a a f x x a x-=+>在区间[]2,3上是减函数,那么实数a 的取值范围是______. 【答案】[)3,+∞【分析】根据2log 3a -的正负,考虑13a <≤3a >log 32log 3a a -.【详解】()()2log 3log 0,1log a a a f x x a a x-=+>≠,设log a t x =,当13a <≤2log 30a -≤,()2log 3a f t t t-=+单调递增,log a t x =单调递增,故函数()f x 单调递增,不成立;当3a >2log 30a ->,log a t x =单调递增, 故()2log 3a f t t t-=+在[]log 2,log 3a a t ∈上单调递减,故log 32log 3a a - 解得2log 31a -≤≤,故3a ≥.综上所述:3a ≥. 故答案为:[)3,+∞四、解答题17.设a ,b ∈R ,集合{1,,}0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭,求b a -.【答案】2b a -=【分析】根据题意,集合{1,,}{0,,}ba b a b a+=,注意到后面集合中有元素0,由集合相等的意义,结合集合中元素的特征,可得0a b +=,进而分析可得a 、b 的值,计算可得答案. 【详解】解:根据题意,集合{1,,}{0,,}ba b a b a+=,又0a ≠,0a b ∴+=,即a b =-,∴1ba=-, 1b =;故1a =-,1b =, 则2b a -=, 故答案为:2【点睛】本题考查集合元素的特征与集合相等的含义,注意从特殊元素下手,有利于找到解题切入点.18.(1)设()xf x a =(0a >且1a ≠),证明:()()121222f x f x x x f ++⎛⎫≥ ⎪⎝⎭;(2)设()212xx g x -+=,证明:()()121222g x g x x x g ++⎛⎫≥ ⎪⎝⎭.【答案】(1)证明见解析;(2)证明见解析 【分析】(1)结合均值不等式及幂运算即可证明;(2)结合(1)中121222x x x x a a a ++≥得()()()()1222211112222x x x x g x g x -++-++≥,结合均值不等式可得()()22221121221111222xx x x x xx x -++-+++⎛⎫≥-+ ⎪⎝⎭,即可证.【详解】(1)证明:()()121212122222x x x x f x f x x x a a a f ++++⎛⎫=≥== ⎪⎝⎭;(2)证明:由(1)得:()()()()222221111222111112222222x x x x x x x x g x g x -++-+-+-+++=≥,因为()()222211221212111222xx x x x x x x -++-+++=-+22212121212122114222x x x x x x x x x x +++++⎛⎫≥-+=-+ ⎪⎝⎭, 所以()()2222121212221111222x x x x x x x x ++⎛⎫-+ ⎪⎝⎭-++-+≥, 故()()121222g x g x x x g ++⎛⎫≥ ⎪⎝⎭. 19.用水清洗一堆蔬菜上残留的农药,已知用水越多洗掉的农药量也越多,但总还有农药残留在蔬菜上.设用x 个单位量的水清洗一次以后,蔬菜上残留的农药量与本次清洗前残留的农药量之比为()f x .(1)试确定()0f 的值,并解释其实际意义; (2)设()f x cc x=+,其中c 是正的常数.现有A (A >0)个单位量的水,计划把水分成2份后清洗两次,设第一次清洗用水m (0m A <<)个单位量,第二次清洗用水A m -个单位量,试问m 为何值时清洗后蔬菜上残留的农药量最少,说明理由. 【答案】(1)()01f =,答案见解析; (2)当2Am =时清洗后蔬菜上残留的农药量最少,理由见解析.【分析】(1)根据实际意义结合条件即得;(2)由题可得两次清洗后蔬菜上残留的农药量与清洗前残留的农药量之比,然后利用基本不等式即得.【详解】(1)由题意可规定()01f =,表示的是未用清水冲洗蔬菜时,蔬菜上残留的农药量没有变化: (2)两次清洗后蔬菜上残留的农药量与清洗前残留的农药量之比为:()()()()()2c c c y f m f A m c m c A m c m c A m =⋅-=⋅=++-++-⎡⎤⎣⎦,其中0m A <<,因为()()()()222=2c m c A m A c m c A m c +++-⎡⎤⎛⎫++-≤+⎡⎤⎢⎥ ⎪⎣⎦⎝⎭⎣⎦, 当且仅当()c m c A m +=+-时,即2Am =时等号成立,所以()()222c y f m f A m A c =⋅-≥⎛⎫+ ⎪⎝⎭,当且仅当2A m =时等号成立. 所以,当2Am =时清洗后蔬菜上残留的农药量最少. 20.某工厂产生的废气经过过滤后排放,过滤过程中废气的污染物含量P (单位:mg/L )与时间t(单位:h )间的关系为:0e ktP P -=,其中0P ,k 是正的常数.(1)如果过滤5h 消除了废气中20%的污染物,求:过滤15h 后,废气中还剩百分之几的污染物; (2)如果过滤5h 消除了废气中%M 的污染物,那么需要过滤多少时间,废气中的污染物减少50%?(用M 表示)【答案】(1)还剩51.2%的污染物; (2)()5ln 0.5ln 1%t M =-.(或()5ln 2ln 1%t M =--)【分析】(1)由题可得5e 120%k -=-,然后可得15t =时污染物含量,即得; (2)根据条件表示出k ,然后利用函数关系式进而即得. 【详解】(1)因为过滤5h 消除了废气中20%的污染物,所以()500120%ek P P --=,即5e 120%k -=-, 所以当15t =时,()31500e 120%t P P P -==-00.512P =,即过滤15h 后,废气中还剩51.2%的污染物:(2)由题意得()()500001%e 150%e kkt M P P P P --⎧-=⎪⎨-=⎪⎩,即()()00ln 1%5150%e kt M k P P -⎧-=-⎪⎨⎪-=⎩, 所以,()()ln 1% 500150%eM t P P --=,从而,()ln 1%ln 0.55M t -=, 即,()5ln 0.5ln 1%t M =-.(或()5ln 2ln 1%t M =--) 21.已知函数()f x 是函数x y a =(0a >且0a ≠)的反函数,且()21f =. (1)求函数()f x 的解析式; (2)设()()1g x f x =-.(i )写出函数()g x 的单调区间,并指明单调性;(无需证明)(ⅱ)求()g x 在区间[],1t t +(其中R t ∈且0t >)上的的最小值()h t 和最大值()H t . 【答案】(1)()2log f x x =(2)(i )函数()g x 在区间(]0,2上是减函数,在区间[)2,+∞上是增函数;(ⅱ)()()221log 1,01,0,12log 1,2t t h t t t t ⎧-+<≤⎪=<≤⎨⎪->⎩,()()221log ,0log 11,t t H t t t ⎧-<≤⎪⎪=⎨⎪+->⎪⎩【分析】(1)首先设函数()log a f x x =,代入()21f =,即可求解;(2)(ⅰ)首先去绝对值,写成分段函数形式,再根据函数的解析式,直接判断函数的单调区间; (ⅱ)根据函数的单调性,讨论t 的取值,分别求函数的最值.【详解】(1)由题意得()log a f x x =,且log 21a =,所以2a =,从而()2log f x x =.(2)()2221log ,02log 1log 1,2x x g x x x x -<<⎧=-=⎨-≥⎩(i )函数()g x 在区间(]0,2上是减函数,在区间[)2,+∞上是增函数. (ⅱ)当012t t <<+≤时,即1t ≤时,()()()211log 1h t g t t =+=-+,()()21log H t g t t ==-.当2t >时,()()2log 1h t g t t ==-,()()()21log 11H t g t t =+=+-. 当21t t ≤<+时,即12t <≤时,()()20h x g ==,()()()()()22221log 111log log 1log 2g t g t t t t t +-=+---=++-⎡⎤⎣⎦当1t <≤()()21log H t g t t ==-;2t <≤时,()()()21log 11H t g t t =+=+-; 综上,()()221log 1,01,0,12log 1,2t t h t t t t ⎧-+<≤⎪=<≤⎨⎪->⎩,()()221log ,0log 11,t t H t t t ⎧-<≤⎪⎪=⎨⎪+->⎪⎩22.已知函数()232log 1x ax bf x x cx ++=++同时满足下列三个条件:(i )函数()f x 的定义域是R :(ⅱ)函数()f x 是奇函数; (ⅲ)函数()f x 的最大值是1. 求()f x 的解析式.【答案】()2321log 1x x f x x x -+=++或()2321log 1x x f x x x ++=-+.【分析】由题可知()30log 0f b ==,然后根据奇函数可得22a c =,结合条件可得22420x cx ++≥恒成立,且等号成立,进而即得.【详解】由题意可知函数()f x 是定义在R 上的奇函数, 所以()30log 0f b ==,即1b =, 又()()f x f x -=-,所以223322log log 11x ax b x ax b x cx x cx -+++=--+++,所以222211111x ax x ax x cx x cx -+++⋅=-+++, 即()()2222222211x a x x c x +-=+-恒成立;所以22a c =,可得a c =或a c =-, 当a c =时,()0f x =,不合题意, 所以a c =-,()2321log 1x cx f x x cx -+=++, 由题知当x ∈R 时,()232log 11x ax bf x x cx ++=≤++,即22131x cx x cx -+≤++恒成立,且等号成立, 即当x ∈R 时,22420x cx ++≥恒成立,且等号成立; 所以,()244220c ∆=-⨯⨯=, 解得:1c =或1c =-,从而,()2321log 1x x f x x x -+=++或()2321log 1x x f x x x ++=-+,经检验,符合题意;故()2321log 1x x f x x x -+=++或()2321log 1x x f x x x ++=-+.。

2018-2019学年上学期高二数学12月月考试题含解析(1690)

2018-2019学年上学期高二数学12月月考试题含解析(1690)

铁门关市第二中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( ) A .1B .2C .3D .42. 若等边三角形ABC 的边长为2,N 为AB 的中点,且AB 上一点M 满足CM xCA yCB =+,则当14x y+取最小值时,CM CN ⋅=( )A .6B .5C .4D .33. 函数f (x )=ax 2+bx 与f (x )=log x (ab ≠0,|a|≠|b|)在同一直角坐标系中的图象可能是( )A .B .C .D .4. 下列命题正确的是( )A .很小的实数可以构成集合.B .集合{}2|1y y x =-与集合(){}2,|1x y y x =-是同一个集合.C .自然数集 N 中最小的数是.D .空集是任何集合的子集.5. 若实数x ,y 满足不等式组则2x+4y 的最小值是( )A .6B .﹣6C .4D .26. 已知函数1)1(')(2++=x x f x f ,则=⎰dx x f 1)(( )A .67-B .67C .65D .65- 【命题意图】本题考查了导数、积分的知识,重点突出对函数的求导及函数积分运算能力,有一定技巧性,难度中等.7. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若(acosB+bcosA )=2csinC ,a+b=8,且△ABC 的面积的最大值为4,则此时△ABC 的形状为( )A .等腰三角形B .正三角形C .直角三角形D .钝角三角形8. 与﹣463°终边相同的角可以表示为(k ∈Z )( )A .k360°+463°B .k360°+103°C .k360°+257°D .k360°﹣257°9. 已知f (x )为偶函数,且f (x+2)=﹣f (x ),当﹣2≤x ≤0时,f (x )=2x ;若n ∈N *,a n =f (n ),则a 2017等于( ) A .2017 B .﹣8 C .D .10.某大学数学系共有本科生1000人,其中一、二、三、四年级的人数比为4:3:2:1,要用分层抽样的方法从所有本科生中抽取一个容量为200的样本,则应抽取三年级的学生人数为( )A .80B .40C .60D .2011.某几何体的三视图如图所示,则该几何体为( )A .四棱柱B .四棱锥C .三棱台D .三棱柱12.设函数F (x )=是定义在R 上的函数,其中f (x )的导函数为f ′(x ),满足f ′(x )<f (x )对于x ∈R 恒成立,则( ) A .f (2)>e 2f (0),f B .f (2)<e 2f (0),f C .f (2)>e 2f (0),fD .f (2)<e 2f (0),f二、填空题13.经过A (﹣3,1),且平行于y 轴的直线方程为 .14.-23311+log 6-log 42()= . 15.如图是正方体的平面展开图,则在这个正方体中①BM 与ED 平行;②CN 与BE 是异面直线;③CN 与BM 成60︒角;④DM 与BN 是异面直线.以上四个命题中,正确命题的序号是 (写出所有你认为正确的命题).16.圆上的点(2,1)关于直线x+y=0的对称点仍在圆上,且圆与直线x ﹣y+1=0相交所得的弦长为,则圆的方程为 .17.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=lnx -mx(m ∈R )在区间[1,e]上取得最小值4,则m =________.18.已知向量(1,),(1,1),a x b x ==-若(2)a b a -⊥,则|2|a b -=( )A .2B .3C .2D 【命题意图】本题考查平面向量的坐标运算、数量积与模等基础知识,意在考查转化思想、方程思想、逻辑思维能力与计算能力.三、解答题19.已知f (x )=|﹣x|﹣|+x|(Ⅰ)关于x 的不等式f (x )≥a 2﹣3a 恒成立,求实数a 的取值范围;(Ⅱ)若f (m )+f (n )=4,且m <n ,求m+n 的取值范围.20.2015年第7届女足世界杯在加拿大埃德蒙顿联邦体育场打响,某连锁分店销售某种纪念品,每件纪念品的成本为4元,并且每件纪念品需向总店交3元的管理费,预计当每件纪念品的售价为x元(7≤x≤9)时,一年的销售量为(x﹣10)2万件.(Ⅰ)求该连锁分店一年的利润L(万元)与每件纪念品的售价x的函数关系式L(x);(Ⅱ)当每件纪念品的售价为多少元时,该连锁分店一年的利润L最大,并求出L的最大值.21.设函数f(x)=kx2+2x(k为实常数)为奇函数,函数g(x)=a f(x)﹣1(a>0且a≠1).(Ⅰ)求k的值;(Ⅱ)求g(x)在[﹣1,2]上的最大值;(Ⅲ)当时,g(x)≤t2﹣2mt+1对所有的x∈[﹣1,1]及m∈[﹣1,1]恒成立,求实数t的取值范围.22.已知函数f(x)=.(1)求f(x)的定义域;(2)判断并证明f(x)的奇偶性;(3)求证:f()=﹣f(x).23.已知函数f(x)=lg(2016+x),g(x)=lg(2016﹣x)(1)判断函数f(x)﹣g(x)的奇偶性,并予以证明.(2)求使f(x)﹣g(x)<0成立x的集合.24.已知命题p:方程表示焦点在x轴上的双曲线.命题q:曲线y=x2+(2m﹣3)x+1与x轴交于不同的两点,若p∧q为假命题,p∨q为真命题,求实数m的取值范围.铁门关市第二中学校2019-2020学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】B【解析】解:设数列{a n }的公差为d ,则由a 1+a 5=10,a 4=7,可得2a 1+4d=10,a 1+3d=7,解得d=2, 故选B .2. 【答案】D 【解析】试题分析:由题知(1)CB BM CM CB xCA y =-=+-,BA CA CB =-;设BM k B A =,则,1x k y k =-=-,可得1x y +=,当14x y+取最小值时,()141445x yx y x y x y y x⎛⎫+=++=++ ⎪⎝⎭,最小值在4y x x y =时取到,此时21,33y x ==,将()1,CN 2CM xCA yCB CA CB =+=+代入,则()22111233322233x y CM CN xCA yCB CA CB x y +⎛⎫⋅=++⋅=+=+= ⎪⎝⎭.故本题答案选D.考点:1.向量的线性运算;2.基本不等式. 3. 【答案】 D【解析】解:A 、由图得f (x )=ax 2+bx 的对称轴x=﹣>0,则,不符合对数的底数范围,A 不正确;B 、由图得f (x )=ax 2+bx 的对称轴x=﹣>0,则,不符合对数的底数范围,B 不正确;C 、由f (x )=ax 2+bx=0得:x=0或x=,由图得,则,所以f (x )=log x在定义域上是增函数,C 不正确;D 、由f (x )=ax 2+bx=0得:x=0或x=,由图得,则,所以f(x )=logx 在定义域上是减函数,D 正确.【点评】本题考查二次函数的图象和对数函数的图象,考查试图能力.4. 【答案】D 【解析】试题分析:根据子集概念可知,空集是任何集合的子集,是任何非空集合的真子集,所以选项D是正确,故选D.考点:集合的概念;子集的概念.5.【答案】B【解析】解:作出不等式组对应的平面区域如图:设z=2x+4y得y=﹣x+,平移直线y=﹣x+,由图象可知当直线y=﹣x+经过点C时,直线y=﹣x+的截距最小,此时z最小,由,解得,即C(3,﹣3),此时z=2x+4y=2×3+4×(﹣3)=6﹣12=﹣6.故选:B【点评】本题主要考查线性规划的应用,利用目标函数的几何意义是解决本题的关键.6.【答案】B7.【答案】A【解析】解:∵(acosB+bcosA)=2csinC,∴(sinAcosB+sinBcosA)=2sin2C,∴sinC=2sin2C,且sinC>0,∴sinC=,∵a+b=8,可得:8≥2,解得:ab≤16,(当且仅当a=b=4成立)∵△ABC的面积的最大值S△ABC=absinC≤=4,∴a=b=4,则此时△ABC的形状为等腰三角形.故选:A.8.【答案】C【解析】解:与﹣463°终边相同的角可以表示为:k360°﹣463°,(k∈Z)即:k360°+257°,(k∈Z)故选C【点评】本题考查终边相同的角,是基础题.9.【答案】D【解析】解:∵f(x+2)=﹣f(x),∴f(x+4)=﹣f(x+2)=f(x),即f(x+4)=f(x),即函数的周期是4.∴a2017=f(2017)=f(504×4+1)=f(1),∵f(x)为偶函数,当﹣2≤x≤0时,f(x)=2x,∴f(1)=f(﹣1)=,∴a2017=f(1)=,故选:D.【点评】本题主要考查函数值的计算,利用函数奇偶性和周期性之间的关系是解决本题的关键.10.【答案】B【解析】解:∵要用分层抽样的方法从该系所有本科生中抽取一个容量为200的样本,∴三年级要抽取的学生是×200=40,故选:B.【点评】本题考查分层抽样方法,本题解题的关键是看出三年级学生所占的比例,本题也可以先做出三年级学生数和每个个体被抽到的概率,得到结果.11.【答案】A【解析】试题分析:由三视图可知,该几何体是底面为直角梯形的直四棱柱,直角梯形的上下底分别为3和4,直角腰为1,棱柱的侧棱长为1,故选A.考点:三视图【方法点睛】本题考查了三视图的问题,属于基础题型,三视图主要还是来自简单几何体,所以需掌握三棱锥,四棱锥的三视图,尤其是四棱锥的放置方法,比如正常放置,底面就是底面,或是以其中一个侧面当底面的放置方法,还有棱柱,包含三棱柱,四棱柱,比如各种角度,以及以底面当底面,或是以侧面当底面的放置方法,还包含旋转体的三视图,以及一些组合体的三视图,只有先掌握这些,再做题时才能做到胸有成竹.12.【答案】B【解析】解:∵F(x)=,∴函数的导数F′(x)==,∵f′(x)<f(x),∴F′(x)<0,即函数F(x)是减函数,则F(0)>F(2),F(0)>F<e2f(0),f,故选:B二、填空题13.【答案】x=﹣3.【解析】解:经过A(﹣3,1),且平行于y轴的直线方程为:x=﹣3.故答案为:x=﹣3.14.【答案】33 2【解析】试题分析:原式=233331334log log16log16log1622+=+=+=+=。

辽宁省大连市高二上学期数学第一次月考试卷

辽宁省大连市高二上学期数学第一次月考试卷

辽宁省大连市高二上学期数学第一次月考试卷姓名:________班级:________成绩:________一、 单选题 (共 12 题;共 24 分)1. (2 分) 在等差数列 中,已知 + + =39, + + =33,则 + + =( )A . 30B . 27C . 24D . 212. (2 分) (2020 高二上·榆树期末) 在中,角 , , 所对的边分别是 , , ,且,,,则()A.B.C. 或D. 或3. (2 分) 已知等比数列{an}中 a2=1,则其前 3 项的和 S3 的取值范围是( )A.B.C.D.4. (2 分) (2018 高一下·扶余期末) 在等差数列 值是( )中,若 为前 项和,第 1 页 共 11 页,则 的A . 55B . 11C . 50D . 605. (2 分) (2018 高一下·遂宁期末) 如图,为测得河对岸塔 的高,先在河岸上选一点 ,使 在塔底 的正东方向上,此时测得点 的仰角为再由点 沿北偏东方向走到位置 ,测得,则塔 的高是( )A . 10B . 10C . 10D . 106. (2 分) (2017 高二上·平顶山期末) △ABC 的内角 A,B,C 的对边分别为 a,b,c.若 c= ,b= , B=120°,则 a 等于( )A.B.C.D.27. (2 分) 设等差数列的公差 d≠0,. 若 是 与 的等比中项,则 k=( )第 2 页 共 11 页A . 3 或 -1 B . 3或1 C.3 D.18. (2 分) (2016 高三上·成都期中) 在△ABC 中,角 A,B,C 所对的边分别为 a,b,c,若 则 cosB=( )A.﹣B.=,C.﹣ D. 9. (2 分) 已知等比数列 公比为 , 其前 项和为 , 若 、 、 成等差数列,则 等于( )A. B.1C . 或1D . -1 或10. (2 分) (2018·江西模拟) 已知等比数列 的首项,前 项和为 ,若,则数列 A . -11 B.的最大项等于( )第 3 页 共 11 页C. D . 15 11. (2 分) 已知等比数列 的前 n 项和为 A . -3 B.3 C . -1 D.1,, 则实数 a 的值是 ( )12. (2 分) (2016 高三上·吉林期中) 已知△ABC 三边 a,b,c 上的高分别为 , (),1,则 cosA 等于A.B.C.D.二、 填空题 (共 4 题;共 4 分)13. (1 分) (2015 高二上·淄川期末) 已知等差数列{an}的公差 d 不等于 0,Sn 是其前 n 项和,给出下列命 题:①给定 n(n≥2,且 n∈N*),对于一切 k∈N*(k<n),都有 an﹣k+an+k=2an 成立; ②存在 k∈N* , 使得 ak﹣ak+1 与 a2k+1﹣a2k﹣3 同号; ③若 d>0.且 S3=S8 , 则 S5 与 S6 都是数列{Sn}中的最小项④点(1, ),(2, ),(3, ),…,(n, )(n∈N*),…,在同一条直线上. 其中正确命题的序号是________.(把你认为正确的命题序号都填上)第 4 页 共 11 页14. (1 分) 三角形一边长为 ,它对的角为,另两边之比为 ,则此三角形面积为________ .15. (1 分) (2016 高一下·南京期末) 记数列{an}的前 n 项和为 Sn , 若对任意的 n∈N* , 都有 Sn=2an ﹣3,则数列{an}的第 6 项 a6=________.16. (1 分) (2017 高一下·西安期末) 在△ABC 中,已知 sinAsinBcosC=sinAsinCcosB+sinBsinCcosA,若 a、 b、c 分别是角 A、B、C 所对的边,则 的最大值为________.三、 解答题 (共 6 题;共 55 分)17. (10 分) (2016 高三上·滨州期中) 在△ABC 中,角 A,B,C 的对边是 a,b,c,已知 2b﹣c=2acosC.(1) 求 A;(2) 若 4(b+c)=3bc,a=2 ,求△ABC 的面积 S.18. (10 分) (2017 高一下·泰州期末) 设等差数列{an}前 n 项和为 Sn , 且满足 a2=2,S5=15;等比数列 {bn}满足 b2=4,b5=32.(1) 求数列{an}、{bn}的通项公式;(2) 求数列{anbn}的前 n 项和 Tn.19. (5 分) (2018 高一下·黑龙江期末) 在 ,中,角 A,B,C 所对的边长分别为 a,b,c,且满足1 求 C 的大小;20. (5 分) 数列{an}的前 n 项和 Sn=An2+Bn(A,B 是常数)是数列{an}是等差数列的什么条件?21. (15 分) (2017·重庆模拟) 已知数列{an}的前 n 项和为 Sn , 且对任意正整数 n,都有 an 是 n 与 Sn 的等差中项.(1) 求证:an=2an﹣1+1(n≥2);(2) 求证:数列{an+1}为等比数列;(3) 求数列{an}的前 n 项和 Sn.22. (10 分) (2016·新课标Ⅲ卷理) 已知数列{an}的前 n 项和 Sn=1+λan , 其中 λ≠0.第 5 页 共 11 页(1) 证明{an}是等比数列,并求其通项公式; (2) 若 S5= ,求 λ.第 6 页 共 11 页一、 单选题 (共 12 题;共 24 分)1-1、 2-1、 3-1、 4-1、 5-1、 6-1、 7-1、 8-1、 9-1、 10-1、 11-1、 12-1、二、 填空题 (共 4 题;共 4 分)13-1、 14-1、 15-1、参考答案第 7 页 共 11 页16-1、三、 解答题 (共 6 题;共 55 分)17-1、17-2、18-1、第 8 页 共 11 页18-2、19-1、20-1、第 9 页 共 11 页21-1、 21-2、 21-3、22-1、第 10 页 共 11 页22-2、第11 页共11 页。

辽宁省高二上学期第一次月考数学试题

辽宁省高二上学期第一次月考数学试题

辽宁省高二上学期第一次月考数学试题姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)已知函数y=lnx的定义域A,,则()A .B .C .D .2. (2分)(2016·枣庄模拟) 设集合M={x|x≤0},N={x|lnx≤1},则下列结论正确的是()A .B . M=NC . M∪∁RN=RD . M∩∁RN=M3. (2分)函数的图象为()A . 单调递减B . 单调递增C . 关于y轴对称D . 关于x轴对称4. (2分)设集合,集合B=N,则=()A . {0,1}B . {1}C . 1D . {-1,0,1,2}5. (2分) (2018高二上·济宁月考) 在等差数列等于().A . 13B . 18C . 20D . 226. (2分) (2018高一上·武邑月考) 设函数在R上有意义,对给定正数M,定义函数,则称函数为的“孪生函数”,若给定函数,,则的值域为()A .B .C .D .7. (2分) (2019高一上·广州期末) 已知函数f(x),则下列结论正确的是()A . f(x)是周期函数B . f(x)是奇函数C . f(x)在(0,+∞)是增函数D . f(x)的值域为[﹣1,+∞)8. (2分)设a,b,c都是正数,, N=a+b+c,则M,N的大小关系是().A .B . M<NC . M=ND .9. (2分)(2020·湛江模拟) 已知函数,若在为增函数,则实数的取值范围是()A .B .C .D .10. (2分) (2015高一上·雅安期末) 2log510+log50.25=()A . 0B . 1C . 2D . 411. (2分) (2016高一上·黑龙江期中) 已知奇函数f(x)是定义在(﹣2,2)上的减函数,则不等式f()+f(2x﹣1)>0的解集是()A . (﹣∞,)B . [﹣,+∞)C . (﹣6,﹣)D . (﹣,)12. (2分) (2016高一上·襄阳期中) 记函数f(x)= 在区间[3,4]上的最大值和最小值分别为M,m,则的值为()A .B .C .D .二、填空题 (共4题;共4分)13. (1分)(2020·大连模拟) 已知函数,则值为________;若的值为________.14. (1分)将,,按从小到大进行排列为________.15. (1分) (2019高一下·贺州期末) 已知是定义在上的奇函数,对任意实数满足,,则 ________.16. (1分) (2016高三上·浦东期中) x>1,则函数y=x+ 的值域是________.三、解答题 (共5题;共50分)17. (10分) (2016高一上·辽宁期中) 化简:(1)•();(2)(lg2)•[(ln )﹣1+log 5].18. (5分) (2019高一上·葫芦岛月考)(1)若,求的取值范围;(2)若(),求关于的不等式的解集.19. (10分)设集合A={x|1﹣a≤x≤1+a},集合B={x|x<﹣1或x>5},分别就下列条件求实数a的取值范围:(1)A∩B=∅;(2)A∪B=B.20. (15分) (2016高一下·新余期末) 已知定义在(﹣∞,0)∪(0,+∞)上的奇函数f(x)满足f(2)=0,且在(﹣∞,0)上是增函数;又定义行列式;函数(其中).(1)若函数g(θ)的最大值为4,求m的值.(2)若记集合M={m|恒有g(θ)>0},N={m|恒有f[g(θ)]<0},求M∩N.21. (10分) (2017高一上·东城期末) 已知函数f(x)=kx2+2x为奇函数,函数g(x)=af(x)﹣1(a>0,且a≠1).(Ⅰ)求实数k的值;(Ⅱ)求g(x)在[﹣1,2]上的最小值.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共5题;共50分)17-1、17-2、18-1、18-2、19-1、20-1、20-2、21-1、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年辽宁省高二上学期12月月考试题 数学(文)说明:1.测试时间:120分钟 总分:150分2.客观题涂在答题卡上,主观题答在答题纸上第Ⅰ卷 (选择题 共60分)一.选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 集合{|lg 0}M x x =>,2{|4}N x x =≤,则M N = ( ) A . (1,2) B . [1,2) C . (1,2] D .[1,2]2. 复数)()2(2为虚数单位i ii z -=,则=||z ( )A .25B .错误!未找到引用源。

C .5D .错误!未找到引用源。

3. 已知22log 3log 3a =+,22log 9log 3b =-,3log 2c =则错误!未找到引用源。

的大小关系是 ( )A . a b c =<B .a b c =>C .a b c <<D . a b c >>4. 已知直线l 、m ,平面α,且m ⊂α,则l ∥m 是l ∥α的 ( )A .充分不必要条件B .必要不充分条件 B .充要条件 D .既不充分也不必要条件5. 已知A 、B 、C 是圆O : x 2+y 2=r 2上三点,且错误!未找到引用源。

,则错误!未找到引用源。

等于( )A .0 B.12 C.32 D .-32 6.已知数列{an }的各项均为正数,如图给出程序框图,当k =5时,输出的S =511,则数列{a n }的通项公式为( )A .a n =2n -1B . a n =2nC .a n =2n +1D .a n =2n -37. 函数f (x )=x -a x 在x ∈[1,4]上单调递减,则实数a 的最小值为 ( )A .1B .2C .4D .58.已知等比数列{a n}的公比q=2,它的前9项的平均值等于5113,若从中去掉一项a m,剩下的8项的平均值等于14378,则m等于()A.5 B.6 C.7 D.89.存在两条直线x=±m与双曲线x2a2-y2b2=1(a>0,b>0)相交于A、B、C、D四点,若四边形ABCD为正方形,则双曲线的离心率的取值范围为()A.(1,2) B.(1,3) C.(2,+∞) D.(3,+∞)10.函数f(x)的定义域是R,f(0)=2,对任意x∈R,f(x)+f′(x)>1,则不等式e x·f(x)>e x+1的解集为()A.{x|x>0} B.{x|x<0} C.{x|x<-1,或x>1} D.{x|x<-1,或0<x<1}11. 若抛物线y2=4x的焦点是F,准线是l,则经过点F和M(4,4)且与l相切的圆共有()A.0个B.1个C.2个D.3个12.已知双曲线221916x y-=,过其右焦点F的直线交双曲线于,P Q两点,PQ的垂直平分线交x轴于点M,则MFPQ的值为()A.53B.56C.54D.58第Ⅱ卷(非选择题共90分)二.填空题:(本大题共4小题,每小题5分,共20分)13. 若关于x的不等式m(x-1)>x2-x的解集为{x|1<x<2},则实数m的值为________.14.已知2+23=223,3+38=338,4+415=4415,…,若7+at=7a t,(a 、t 均为正实数),则类比以上等式,可推测a 、t 的值,a +t =________. 15.已知函数f (x )的导函数为f ′(x )=5+cos x ,x ∈(-1,1),且f (0)=0,如果f (1-x )+f (1-x 2)<0,则实数x 的取值范围为________.16.已知函数22(2)e ,0,()43,0,x x x x f x x x x ⎧-=⎨-++>⎩≤()()2g x f x k =+,若函数()g x 恰有两个不同的零点,则实数k 的取值范围为 .三、 解答题:(本大题共6小题,满分70分.解答应写出文字说明,证明过程或演算步骤.)17.(本小题满分10分)若函数2()sin sin cos (0)f x ax ax ax a =->的图象与直线y m =(m>0)相切,并且切点的横坐标依次成公差为2π的等差数列。

(Ⅰ)求m 的值;(Ⅱ)若点0,0()A x y 是()y f x =图象的对称中心,且0[0,]2x π∈,求点A 的坐标。

18.(本小题满分12分)设各项均为正数的数列{}n a 的前n 项和为n S ,满足21441,,n n S a n n N *+=--∈且2514,,a a a 构成等比数列.(1) 证明:2145a a =+; (2) 求数列{}n a 的通项公式;19.某班主任对全班50名学生学习积极性和对待班级工作的态度进行了调查,其中学习积极性高的同学中,积极参加班级工作的有18名,不太主动参加班级工作的有7名;学习积极性一般的同学中,积极参加班级工作的有6名,不太主动参加班级工作的有19名。

(Ⅰ)根据以上数据建立一个2×2的列联表;(Ⅱ)试运用独立性检验的思想方法分析:学生的学习积极性与对待班级工作的态度是否有关系?参考公式:2K 统计量的表达式是:))()()(()(22d b c a d c b a bc ad n K ++++-=)(02k K P ≥0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001 0k0.455 0.7081.3232.0722.7063.8415.0246.6357.87910.82820.已知3x =是函数2()ln(1)10f x a x x x =++-的一个极值点. (Ⅰ)求a ;(Ⅱ)求函数()f x 的单调区间;(Ⅲ)若直线y b =与函数()y f x =的图像有3个交点,求b 的取值范围.21.(本小题满分12分)已知椭圆()2222:10x y C a b a b +=>>的离心率为32,短轴端点到焦点的距离为2。

(1)求椭圆C 的方程;(2)设点A,B 是椭圆C 上的任意两点, O 是坐标原点,且OA ⊥OB ①求证:原点O 到直线AB 的距离为定值,并求出该定值;②任取以椭圆C 的长轴为直径的圆上一点P ,求P ∆AB 面积的最大值22(本小题满分12分)已知函数⎩⎨⎧≥<+++-=1,ln 1,)(23x x a x c bx x x x f 的图象过坐标原点O,且在点))1(,1(--f 处的切线的斜率是5-.(Ⅰ)求实数c b 、的值;(Ⅱ)求)(x f 在区间[]2,1-上的最大值;(Ⅲ)对任意给定的正实数a ,曲线)(x f y =上是否存在两点P 、Q ,使得POQ ∆是以O为直角顶点的直角三角形,且此三角形斜边中点在y 轴上?说明理由。

12月月考数学答案(文科)1. C2. C3. B4. D5. A6.A7. C8. B9. C 10. A 11. C 12. B13. 2 14. 55 15.(1,2) 16. 27321,{0,}22e +⎛⎫-- ⎪⎝⎭ 17.解:(Ⅰ) 21cos 2121()sin sin cos sin 2sin(2)22242ax f x ax ax ax ax ax π-=-=-=-++… 由题意知,m 为()f x 的最大值,所以122m +=………5 (Ⅱ)由题设知,函数()f x 的周期为2π,∴2a = (7)∴21()sin(4)242f x x π=-++.令sin(4)04x π+=,得4 ()4x k k Z ππ+=∈,∴ ()416k x k Z ππ=-∈, 由0 ()4162k k Z πππ≤-≤∈,得1k =或2k =, 因此点A 的坐标为31(,)162π或71(,)162π.---------------------------10 18.(1)当1n =时,22122145,45a a a a =-=+,21045n a a a >∴=+ ---------4(2)当2n ≥时,()214411n n S a n -=---,22114444n n n n n a S S a a -+=-=--()2221442n n n n a a a a +=++=+,102n n n a a a +>∴=+∴当2n ≥时,{}n a 是公差2d =的等差数列.2514,,a a a 构成等比数列,25214a a a ∴=⋅,()()2222824a a a +=⋅+,解得23a =, 由(1)可知,212145=4,1a a a =-∴=21312a a -=-= ∴ {}n a 是首项11a =,公差2d =的等差数列.∴数列{}n a 的通项公式为21n a n =-. --------------------------1219.解:(Ⅰ)2×2列联表积极参加班级工作不太主动参加班级工作合计 学习积极性高 18 7 25 学习积极性一般6 19 25 合计242650--------------------------------------------------4(Ⅱ) 设H 。

:学生的学习积极性与对待班级工作的态度没有关系262425257619185022⨯⨯⨯⨯⨯⨯)-(=的观测值k K =13150≈11.5 ------------8 ∵k >6.635(或∵k >10.828)∴有99%的把握说学习的积极性与对待班级工作的态度有关系。

(或有99.9%的把握说学习的积极性与对待班级工作的态度有关系。

)-------1220.解析:(Ⅰ)2()ln(1)10f x a x x x =++-,()2101af x x x'=+-+ 3x =是函数2()ln(1)10f x a x x x =++-的一个极值点.(3)404af '=+= 16a = ------- 4分 (Ⅱ)由(Ⅰ)2()ln(1)10f x a x x x =++-,(1,)x ∈-+∞216282(1)(3)()21111x x x x f x x x x x ---'=+-==+++令()0f x '=,得1,3x x == -- 6分 ()f x '和()f x 随x 的变化情况如下:x(1,1)-1(1,3)3(3,)+∞22.解:(Ⅰ)当1<x 时,c bx x x x f +++-=23)(,则b x x x f ++-='23)(2。

相关文档
最新文档