高中数学人教A版选修2-1第三章空间向量与立体几何阅读与思考向量概念的推广与应用教学课件共12张PPT含学案
新人教A版高中数学选修2-1第三章《空间向量与立体几何》知识点汇总及解题方法总计
第三章 空间向量与立体几何单元小结[核心速填]1.空间向量的有关定理和推论(1)共线向量定理:对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使得a =λb .(2)共线向量定理的推论:若OA →,OB →不共线,则P ,A ,B 三点共线的充要条件是OP →=λOA →+μOB →,且λ+μ=1.(3)共面向量定理:如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在惟一的有序实数对(x ,y ),使得p =x a +y b .(4)共面向量定理的推论:已知空间任意一点O 和不共线的三点A ,B ,C ,则P ,A ,B ,C 四点共面的充要条件是OP →=xOA →+yOB →+zOC →(其中x +y +z =1).(5)空间向量基本定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c ,其中{a ,b ,c }叫做空间的一个基底.2.空间向量运算的坐标表示设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3). (1)a +b =(a 1+b 1,a 2+b 2,a 3+b 3),a -b =(a 1-b 1,a 2-b 2,a 3-b 3),λa =(λa 1,λa 2,λa 3),a ·b =a 1b 1+a 2b 2+a 3b 3.(2)重要结论:a ∥b ⇔a =λb ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R ); a ⊥b ⇔a ·b =0⇔a 1b 1+a 2b 2+a 3b 3=0.3.模、夹角和距离公式(1)设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则①|a |=a ·a②cos 〈a ,b 〉=a ·b |a ||b |=(2)设A (a 1,b 1,c 1),B (a 2,b 2,c 2),则d AB =|AB →|4.空间向量的结论与线面位置关系的对应关系(1)设直线l 的方向向量是u =(a 1,b 1,c 1),平面α的法向量v =(a 2,b 2,c 2), 则l ∥α⇔u ⊥v ⇔u ·v =0⇔a 1a 2+b 1b 2+c 1c 2=0,l ⊥α⇔u ∥v ⇔u =k v ⇔(a 1,b 1,c 1)=k (a 2,b 2,c 2)⇔a 1=ka 2,b 1=kb 2,c 1=kc 2(k ∈R ).(2)设直线l ,m 的方向向量分别为a ,b ,平面α,β的法向量分别为u ,v ,则l ∥m ⇔a ∥b ⇔a =k b ,k ∈R ; l ⊥m ⇔a ⊥b ⇔a ·b =0; l ∥α⇔a ⊥u ⇔a ·u =0; l ⊥α⇔a ∥u ⇔a =k u ,k ∈R ;α∥β⇔u ∥v ⇔u =k v ,k ∈R ; α⊥β⇔u ⊥v ⇔u ·v =0. 5.空间向量与空间角的关系(1)设异面直线l 1,l 2的方向向量分别为m 1,m 2,则l 1与l 2的夹角θ满足cos θ=|cos 〈m 1,m 2〉|.(2)设直线l 的方向向量和平面α的法向量分别为m ,n ,则直线l 与平面α的夹角θ满足sin θ=|cos 〈m ,n 〉|.(3)求二面角的大小:(ⅰ)如图31①,AB ,CD 是二面角αl β的两个半平面α,β内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉.图31(ⅱ)如图31②③,n 1,n 2分别是二面角αl β的两个半平面α,β的法向量,则二面角的大小θ满足cos θ=cos 〈n 1,n 2〉或-cos 〈n 1,n 2〉.[体系构建][题型探究]类型一、空间向量的基本概念及运算例1、如图32,在四棱锥S ABCD 中,底面ABCD 是边长为1的正方形,S 到A 、B 、C 、D 的距离都等于2.给出以下结论:图32①SA →+SB →+SC →+SD →=0; ②SA →+SB →-SC →-SD →=0; ③SA →-SB →+SC →-SD →=0; ④SA →·SB →=SC →·SD →; ⑤SA →·SC →=0.其中正确结论的序号是________. 【答案】 ③④【解析】容易推出SA →-SB →+SC →-SD →=BA →+DC →=0,所以③正确;又因为底面ABCD 是边长为1的正方形,SA =SB =SC =SD =2,所以SA →·SB →=2·2·cos∠ASB ,SC →·SD →=2·2·cos ∠CSD ,而∠ASB =∠CSD ,于是SA →·SB →=SC →·SD →,因此④正确,其余三个都不正确,故正确结论的序号是③④.[规律方法] 1.空间向量的线性运算包括加、减及数乘运算,选定空间不共面的三个向量作为基向量,并用它们表示出目标向量,这是用向量法解决立体几何问题的基本要求,解题时可结合已知和所求,根据图形,利用向量运算法则表示所需向量.2.空间向量的数量积(1)空间向量的数量积的定义表达式a ·b =|a |·|b |·cos 〈a ,b 〉及其变式cos 〈a ,b 〉=a ·b|a | ·|b |是两个重要公式. (2)空间向量的数量积的其他变式是解决立体几何问题的重要公式,如a 2=|a |2,a 在b 上的投影a ·b|b |=|a |·cos θ等.[跟踪训练]1.如图33,已知ABCD A ′B ′C ′D ′是平行六面体.设M 是底面ABCD 的中心,N 是侧面BCC ′B ′对角线BC ′上的34分点,设MN →=αAB →+βAD→+γAA ′→,则α+β+γ=________.图33【答案】32[连接BD ,则M 为BD 的中点,MN →=MB →+BN →=12DB →+34BC ′→=12(DA →+AB →)+34(BC →+CC ′→)=12(-AD →+AB →)+34(AD →+AA ′→)=12AB →+14AD →+34AA ′→.∴α=12,β=14,γ=34.∴α+β+γ=32.]类型二、空间向量的坐标运算例2、(1)已知a =(2,3,-4),b =(-4,-3,-2),b =12x -2a ,则x =( )A .(0,3,-6)B .(0,6,-20)C .(0,6,-6)D .(6,6,-6)(2)已知向量a =(x,1,2),b =(1,y ,-2),c =(3,1,z ),a ∥b ,b ⊥C . ①求向量a ,b ,c ;②求a +c 与b +c 所成角的余弦值.【答案】(1)B [由b =12x -2a 得x =4a +2b ,又4a +2b =4(2,3,-4)+2(-4,-3,-2)=(0,6,-20), 所以x =(0,6,-20).](2)①∵向量a =(x,1,2),b =(1,y ,-2),c =(3,1,z ),且a ∥b ,b ⊥c ,∴⎩⎪⎨⎪⎧x 1=1y =2-23+y -2z =0,解得⎩⎪⎨⎪⎧x =-1,y =-1,z =1,∴向量a =(-1,1,2),b =(1,-1,-2),c =(3,1,1). ②∵a +c =(2,2,3),b +c =(4,0,-1), ∴(a +c )·(b +c )=2×4+2×0+3×(-1)=5,|a +c |=22+22+32=17,|b +c |=42+02+(-1)2=17, ∴a +c 与b +c 所成角的余弦值为(a +c )·(b +c )|a +c ||b +c |=517.[规律方法] 熟记空间向量的坐标运算公式 设a =(x 1,y 1,z 1),b =(x 2,y 2,z 2), (1)加减运算:a ±b =(x 1±x 2,y 1±y 2,z 1±z 2). (2)数量积运算:a ·b =x 1x 2+y 1y 2+z 1z 2. (3)向量夹角:cos 〈a ,b 〉=x 1x 2+y 1y 2+z 1z 2x 21+y 21+z 21x 22+y 22+z 22. (4)向量长度:设M 1(x 1,y 1,z 1),M 2(x 2,y 2,z 2),则|M 1M 2→|=(x 1-x 2)2+(y 1-y 2)2+(z 1-z 2)2. 提醒:在利用坐标运算公式时注意先对向量式子进行化简再运算. [跟踪训练]2.在空间直角坐标系中,已知点A (1,-2,11),B (4,2,3),C (6,-1,4),则△ABC 一定是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形【答案】C [∵AB →=(3,4,-8),AC →=(5,1,-7),BC →=(2,-3,1),∴|AB →|=32+42+(-8)2=89,|AC →|=52+12+(-7)2=75,|BC →|=22+(-3)2+1=14,∴|AC →|2+|BC →|2=|AB →|2,∴△ABC 一定为直角三角形.]类型三、利用空间向量证明平行、垂直问题例3、 在四棱锥P ABCD 中,AB ⊥AD ,CD ⊥AD ,PA ⊥底面ABCD ,PA =AD =CD =2AB =2,M 为PC 的中点.(1)求证:BM ∥平面PAD ;(2)平面PAD 内是否存在一点N ,使MN ⊥平面PBD ?若存在,确定N 的位置;若不存在,说明理由.[思路探究] (1)证明向量BM →垂直于平面PAD 的一个法向量即可;(2)假设存在点N ,设出其坐标,利用MN →⊥BD →,MN →⊥PB →,列方程求其坐标即可. 【答案】以A 为原点,以AB ,AD ,AP 分别为x 轴、y 轴、z 轴建立空间直角坐标系如图所示,则B (1,0,0),D (0,2,0),P (0,0,2),C (2,2,0),M (1,1,1),(1)证明:∵BM →=(0,1,1),平面PAD 的一个法向量为n =(1,0,0), ∴BM →·n =0,即BM →⊥n ,又BM ⊄平面PAD ,∴BM ∥平面PAD . (2)BD →=(-1,2,0),PB →=(1,0,-2), 假设平面PAD 内存在一点N ,使MN ⊥平面PBD . 设N (0,y ,z ),则MN →=(-1,y -1,z -1), 从而MN ⊥BD ,MN ⊥PB , ∴⎩⎪⎨⎪⎧MN →·BD →=0,MN →·PB →=0,即⎩⎪⎨⎪⎧1+2(y -1)=0,-1-2(z -1)=0,∴⎩⎪⎨⎪⎧y =12,z =12,∴N ⎝ ⎛⎭⎪⎫0,12,12,∴在平面PAD 内存在一点N ⎝ ⎛⎭⎪⎫0,12,12,使MN ⊥平面PBD .[规律方法]利用空间向量证明空间中的位置关系(1)线线平行:证明两条直线平行,只需证明两条直线的方向向量是共线向量. (2)线线垂直:证明两条直线垂直,只需证明两直线的方向向量垂直. (3)线面平行:①证明直线的方向向量与平面的法向量垂直;②证明可在平面内找到一个向量与直线的方向向量是共线向量;③利用共面向量定理,即证明直线的方向向量可用平面内两不共线向量线性表示.(4)线面垂直:①证明直线的方向向量与平面的法向量平行;②利用线面垂直的判定定理转化为线线垂直问题.(5)面面平行:①证明两个平面的法向量平行(即是共线向量);②转化为线面平行、线线平行问题.(6)面面垂直:①证明两个平面的法向量互相垂直;②转化为线面垂直、线线垂直问题.[跟踪训练]3.如图34,长方体ABCDA1B1C1D1中,点M,N分别在BB1,DD1上,且AM⊥A1B,AN⊥A1D.图34(1)求证:A1C⊥平面AMN.(2)当AB=2,AD=2,A1A=3时,问在线段AA1上是否存在一点P使得C1P∥平面AMN,若存在,试确定P的位置.【答案】(1)证明:因为CB⊥平面AA1B1B,AM⊂平面AA1B1B,所以CB⊥AM,又因为AM⊥A1B,A1B∩CB=B,所以AM⊥平面A1BC,所以A1C⊥AM,同理可证A1C⊥AN,又AM∩AN=A,所以A1C⊥平面AMN.(2)以C 为原点,CD 所在直线为x 轴,CB 所在直线为y 轴,CC 1所在直线为z 轴,建立空间直角坐标系,因为AB =2,AD =2,A 1A =3,所以C (0,0,0),A 1(2,2,3),C 1(0,0,3),CA 1→=(2,2,3), 由(1)知CA 1⊥平面AMN ,故平面AMN 的一个法向量为CA 1→=(2,2,3).设线段AA 1上存在一点P (2,2,t ),使得C 1P ∥平面AMN ,则C 1P →=(2,2,t -3), 因为C 1P ∥平面AMN ,所以C 1P →·CA 1→=4+4+3t -9=0, 解得t =13.所以P ⎝⎛⎭⎪⎫2,2,13, 所以线段AA 1上存在一点P ⎝ ⎛⎭⎪⎫2,2,13,使得C 1P ∥平面AMN .类型四、利用空间向量求空间角例4、如图35,在等腰直角三角形ABC 中,∠A =90°,BC =6,D ,E 分别是AC ,AB 上的点,CD =BE =2,O 为BC 的中点.将△ADE 沿DE 折起,得到如图(2)所示的四棱锥A ′BCDE ,其中A ′O = 3.(1) (2)图35(1)证明:A ′O ⊥平面BCDE ;(2)求二面角A ′CD B 的平面角的余弦值.[思路探究] (1)利用勾股定理可证A ′O ⊥OD ,A ′O ⊥OE ,从而证得A ′O ⊥平面BCDE ;(2)用“三垂线”法作二面角的平面角后求解或用向量法求两个平面的法向量的夹角.【答案】(1)证明:由题意,得OC =3,AC =32,AD =2 2. 如图,连接OD ,OE ,在△OCD 中,由余弦定理,得OD =OC 2+CD 2-2OC ·CD cos 45°= 5.由翻折不变性,知A ′D =22,所以A ′O 2+OD 2=A ′D 2,所以A ′O ⊥OD . 同理可证A ′O ⊥OE .又因为OD ∩OE =O ,所以A ′O ⊥平面BCDE .(2)如图,过点O 作OH ⊥CD 交CD 的延长线于点H ,连接A ′H .因为A ′O ⊥平面BCDE ,OH ⊥CD , 所以A ′H ⊥CD .所以∠A ′HO 为二面角A ′CD B 的平面角. 结合图(1)可知,H 为AC 的中点,故OH =322,从而A ′H =OH 2+A ′O 2=302. 所以cos ∠A ′HO =OH A ′H =155. 所以二面角A ′CD B 的平面角的余弦值为155. [规律方法] 用向量法求空间角的注意点(1)异面直线所成角:两异面直线所成角的范围为0°<θ≤90°,需找到两异面直线的方向向量,借助方向向量所成角求解.(2)直线与平面所成的角:要求直线a 与平面α所成的角θ,先求这个平面α的法向量n 与直线a 的方向向量a 夹角的余弦cos 〈n ,a 〉,易知θ=〈n ,a 〉-π2或者π2-〈n ,a 〉.(3)二面角:如图36,有两个平面α与β,分别作这两个平面的法向量n 1与n 2,则平面α与β所成的角跟法向量n 1与n 2所成的角相等或互补,所以首先应判断二面角是锐角还是钝角.图36[跟踪训练]4.在如图37所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O ′的直径,FB是圆台的一条母线.图37(1)已知G ,H 分别为EC ,FB 的中点,求证:GH ∥平面ABC . (2)已知EF =FB =12AC =23,AB =BC ,求二面角F BC A 的余弦值.【答案】 (1)证明:设CF 的中点为I ,连接GI ,HI .在△CEF 中,因为点G ,I 分别是CE ,CF 的中点, 所以GI ∥EF .又EF ∥OB ,所以GI ∥OB .在△CFB 中,因为H ,I 分别是FB ,CF 的中点, 所以HI ∥BC .又HI ∩GI =I ,BC ∩OB =B , 所以平面GHI ∥平面ABC . 因为GH ⊂平面GHI , 所以GH ∥平面ABC .(2)连接OO ′,则OO ′⊥平面ABC .又AB =BC ,且AC 是圆O 的直径, 所以BO ⊥AC .以O 为坐标原点,建立如图所示的空间直角坐标系. 由题意得B (0,23,0),C (-23,0,0). 过点F 作FM ⊥OB 于点M , 所以FM =FB 2-BM 2=3, 可得F (0,3,3).11 故BC →=(-23,-23,0),BF →=(0,-3,3). 设m =(x ,y ,z )是平面BCF 的法向量.由⎩⎪⎨⎪⎧m ·BC →=0,m ·BF →=0可得⎩⎨⎧ -23x -23y =0,-3y +3z =0.可得平面BCF 的一个法向量m =⎝ ⎛⎭⎪⎫-1,1,33.因为平面ABC 的一个法向量n =(0,0,1), 所以cos 〈m ,n 〉=m ·n|m |·|n |=77,所以二面角F BC A 的余弦值为77.。
高中数学 第三章 空间向量与立体几何 3.1 空间向量及其运算教案 新人教A版选修2-1(2021
浙江省宁波市高中数学第三章空间向量与立体几何3.1 空间向量及其运算教案新人教A版选修2-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(浙江省宁波市高中数学第三章空间向量与立体几何3.1 空间向量及其运算教案新人教A版选修2-1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为浙江省宁波市高中数学第三章空间向量与立体几何3.1 空间向量及其运算教案新人教A 版选修2-1的全部内容。
空间向量及其运算(2)一、课题:空间向量及其运算(2)二、教学目标:1.理解共线向量定理和共面向量定理及它们的推论;2.掌握空间直线、空间平面的向量参数方程和线段中点的向量公式.三、教学重、难点:共线、共面定理及其应用. 四、教学过程:(一)复习:空间向量的概念及表示; (二)新课讲解: 1.共线(平行)向量:如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量。
读作:a 平行于b ,记作://a b . 2.共线向量定理:对空间任意两个向量,(0),//a b b a b ≠的充要条件是存在实数λ,使a b λ=(λ唯一). 推论:如果l 为经过已知点A ,且平行于已知向量a 的直线,那么对任一点O ,点P 在直线l 上的充要条件是存在实数t ,满足等式OP OA t AB =+①,其中向量a 叫做直线l 的方向向量。
在l 上取AB a =,则①式可化为OP OA t AB =+或(1)OP t OA tOB =-+② 当12t =时,点P 是线段AB 的中点,此时1()2OP OA OB =+③①和②都叫空间直线的向量参数方程,③是线段AB 的中点公式.3.向量与平面平行:已知平面α和向量a ,作OA a =,如果直线OA 平行于α或在α内,那么我们说向量a 平行于平面α,记作://a α.通常我们把平行于同一平面的向量,叫做共面向量.alPBA O a aα说明:空间任意的两向量都是共面的.4.共面向量定理:如果两个向量,a b不共线,p与向量,a b共面的充要条件是存在实数,x y使p xa yb=+.推论:空间一点P位于平面MAB内的充分必要条件是存在有序实数对,x y,使MP xMA yMB=+或对空间任一点O,有OP OM xMA yMB=++①上面①式叫做平面MAB的向量表达式.(三)例题分析:例1.已知,,A B C三点不共线,对平面外任一点,满足条件122555OP OA OB OC =++,试判断:点P与,,A B C是否一定共面?解:由题意:522OP OA OB OC=++,∴()2()2()OP OA OB OP OC OP-=-+-,∴22AP PB PC=+,即22PA PB PC=--,所以,点P与,,A B C共面.说明:在用共面向量定理及其推论的充要条件进行向量共面判断的时候,首先要选择恰当的充要条件形式,然后对照形式将已知条件进行转化运算.【练习】:对空间任一点O和不共线的三点,,A B C,问满足向量式OP xOA yOB zOC=++(其中1x y z++=)的四点,,,P A B C是否共面?解:∵(1)OP z y OA yOB zOC=--++,∴()()OP OA y OB OA z OC OA-=-+-,∴AP y AB z AC=+,∴点P与点,,A B C共面.例2.已知ABCD,从平面AC外一点O引向量,,,OE kOA OF KOB OG kOC OH kOD====,(1)求证:四点,,,E F G H共面;OA BCDHFE(2)平面AC //平面EG .解:(1)∵四边形ABCD 是平行四边形,∴AC AB AD =+,∵EG OG OE =-,()()()k OC k OA k OC OA k AC k AB AD k OB OA OD OA OF OE OH OE EF EH=⋅-⋅=-==+=-+-=-+-=+∴,,,E F G H 共面;(2)∵()EF OF OE k OB OA k AB =-=-=⋅,又∵EG k AC =⋅,∴//,//EF AB EG AC 所以,平面//AC 平面EG .五、课堂练习:课本第96页练习第1、2、3题.六、课堂小结:1.共线向量定理和共面向量定理及其推论;2.空间直线、平面的向量参数方程和线段中点向量公式.七、作业:1.已知两个非零向量21,e e 不共线,如果21AB e e =+,2128AC e e =+,2133AD e e =-,求证:,,,A B C D 共面.2.已知324,(1)82a m n p b x m n yp =--=+++,0a ≠,若//a b ,求实数,x y 的值。
【专业资料】新版高中数学人教A版选修2-1习题:第三章空间向量与立体几何 3.2.3 含解析
第3课时 用向量方法求空间中的角课时过关·能力提升基础巩固1若直线l 的方向向量与平面α的法向量的夹角等于120°,则直线l 与平面α所成的角等于( ) A.120° B.60°C.30°D.以上均错l 的方向向量与平面α的法向量的夹角为120°,∴它们所在直线的夹角为60°.则直线l 与平面α所成的角为90°-60°=30°.2设四边形ABCD ,ABEF 都是边长为1的正方形,FA ⊥平面ABCD ,则异面直线AC 与BF 所成的角等于 ( )A.45°B.30°C.90°D.60°,则A (0,0,0),F (0,0,1),B (0,1,0),C (1,1,0), ∴AC⃗⃗⃗⃗⃗ =(1,1,0),BF ⃗⃗⃗⃗⃗ =(0,-1,1). ∴AC ⃗⃗⃗⃗⃗ ·BF⃗⃗⃗⃗⃗ =-1. 设异面直线AC 与BF 所成的角为θ, ∴cos θ=|cos <AC ⃗⃗⃗⃗⃗ ,BF ⃗⃗⃗⃗⃗ >|=12. 又∵θ∈(0°,90°],∴θ=60°.3若a =(λ,1,2)与b =(2,-1,-2)的夹角为钝角,则实数λ的取值范围为( ) A.λ<52B.λ<52,且λ≠-2C.λ≥52,且λ≠4D.λ≥52,得a ·b =2λ+(-1)-4<0,即λ<52.而|a |=√5+λ2,|b |=3,又<a ,b >为钝角,∴3√5+λ≠-1,即λ≠-2.4若斜线段与它在平面α内射影的长之比是2∶1,则AB 与平面α所成角为( ) A.π6 B.π3C.23πD.56πAB 与平面α所成角为θ,由题意知cos θ=12,则AB 与平面α所成角为π3.5若平面α的一个法向量为n =(4,1,1),直线l 的一个方向向量为a =(-2,-3,3),则l 与α所成角的余弦值为 ( )A.-√11B.√11C.-√110D.√913<a ,n >=√4+9+9√16+1+1=3√11=-4√1133, 故l 与α所成角的余弦值为√1-(-4√1133)2=√91333.6在正方体ABCD-A 1B 1C 1D 1中,二面角A-BD 1-B 1的大小为 .,以点C 为原点建立空间直角坐标系.设正方体的边长为a ,则A (a ,a ,0),B (a ,0,0),D 1(0,a ,a ),B 1(a ,0,a ), ∴BA ⃗⃗⃗⃗⃗ =(0,a ,0),BD 1⃗⃗⃗⃗⃗⃗⃗⃗ =(-a ,a ,a ),BB 1⃗⃗⃗⃗⃗⃗⃗ =(0,0,a ). 设平面ABD 1的法向量为n =(x ,y ,z ), 则n ·BA ⃗⃗⃗⃗⃗ =(x ,y ,z )·(0,a ,0)=ay=0, n ·BD 1⃗⃗⃗⃗⃗⃗⃗⃗ =(x ,y ,z )·(-a ,a ,a )=-ax+ay+az=0. ∵a ≠0,∴y=0,x=z.令x=z=1,则n =(1,0,1),同理,求得平面B 1BD 1的法向量m =(1,1,0),∴cos <n ,m >=n ·m |n ||m |=12,∴<n ,m >=60°.而二面角A-BD 1-B 1为钝角,故为120°.°7在正四棱锥P-ABCD 中,高为1,底面边长为2,E 为BC 的中点,则异面直线PE 与DB 所成的角为 .,则B (1,1,0),D (-1,-1,0),E (0,1,0),P (0,0,1),∴DB⃗⃗⃗⃗⃗⃗ =(2,2,0),PE ⃗⃗⃗⃗⃗ =(0,1,-1). ∴cos <DB ⃗⃗⃗⃗⃗⃗ ,PE ⃗⃗⃗⃗⃗ >=DB ⃗⃗⃗⃗⃗⃗ ·PE ⃗⃗⃗⃗⃗⃗|DB ⃗⃗⃗⃗⃗⃗ ||PE ⃗⃗⃗⃗⃗⃗|=√8×√2=12.∴<DB ⃗⃗⃗⃗⃗⃗ ,PE ⃗⃗⃗⃗⃗ >=π.∴PE 与DB 所成的角为π.8在长方体ABCD-A 1B 1C 1D 1中,已知DA=DC=4,DD 1=3,则异面直线A 1B 与B 1C 所成角的余弦值为 .9如图,在长方体ABCD-A 1B 1C 1D 1中,AD=AA 1=1,AB=2,点E 是棱AB 上的动点.若异面直线AD 1与EC 所成角为60°,试确定此时动点E 的位置.DA 所在直线为x 轴,以DC 所在直线为y 轴,以DD 1所在直线为z 轴,建立空间直角坐标系.设E (1,t ,0)(0≤t ≤2),则A (1,0,0),D (0,0,0),D 1(0,0,1),C (0,2,0),D 1A ⃗⃗⃗⃗⃗⃗⃗ =(1,0,-1),CE ⃗⃗⃗⃗⃗ =(1,t-2,0), 根据数量积的定义及已知得:1+0×(t-2)+0=√2×√1+(t -2)2·cos 60°, 所以t=1.所以点E 的位置是AB 的中点. 10如图,在四棱锥P-ABCD 中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,∠ABC=∠BAD=π,PA=AD=2,AB=BC=1.求平面PAB 与平面PCD 所成二面角的余弦值.{AB ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗ ,AP ⃗⃗⃗⃗⃗ }为正交基底建立如图所示的空间直角坐标系Axyz ,则各点的坐标为B (1,0,0),C (1,1,0),D (0,2,0),P (0,0,2).因为AD ⊥平面PAB ,所以AD ⃗⃗⃗⃗⃗ 是平面PAB 的一个法向量,AD ⃗⃗⃗⃗⃗ =(0,2,0).因为PC⃗⃗⃗⃗⃗ =(1,1,-2),PD ⃗⃗⃗⃗⃗ =(0,2,-2).设平面PCD 的法向量为m =(x ,y ,z ), 则m ·PC ⃗⃗⃗⃗⃗ =0,m ·PD ⃗⃗⃗⃗⃗ =0. 即{x +y -2z =0,2y -2z =0. 令y=1,解得z=1,x=1.所以m =(1,1,1)是平面PCD 的一个法向量.从而cos <AD ⃗⃗⃗⃗⃗ ,m >=AD ⃗⃗⃗⃗⃗⃗·m |AD ⃗⃗⃗⃗⃗⃗ ||m |=√33,所以平面PAB 与平面PCD 所成二面角的余弦值为√33.能力提升1已知E ,F 分别是棱长为1的正方体ABCD-A 1B 1C 1D 1的棱BC ,CC 1的中点,则截面AEFD 1与底面ABCD 所成二面角的正弦值是( ) A.23B.√23C.√53D.2√33D 为坐标原点,以DA ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ ,DD 1⃗⃗⃗⃗⃗⃗⃗⃗ 的方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,如图,则A (1,0,0),E (12,1,0),F (0,1,12),D 1(0,0,1),∴AD 1⃗⃗⃗⃗⃗⃗⃗ =(-1,0,1),AE ⃗⃗⃗⃗⃗ =(-12,1,0). 设平面AEFD 1的法向量为n =(x ,y ,z ),则 {n ·AD 1⃗⃗⃗⃗⃗⃗⃗ =0,n ·AE ⃗⃗⃗⃗⃗ =0⇒{-x +z =0,-x 2+y =0,∴x=2y=z. 取y=1,则n =(2,1,2),而平面ABCD 的一个法向量为u =(0,0,1),∴cos <n ,u >=2,∴sin <n ,u >=√5.2在棱长为1的正方体ABCD-A 1B 1C 1D 1中,M ,N 分别是A 1B 1,BB 1的中点,那么直线AM 与CN 所成角的余弦值是( )A.√32B.√1010C.35D.25,建立空间直角坐标系,则A (1,0,0),M (1,12,1),C (0,1,0),N (1,1,12),∴AM ⃗⃗⃗⃗⃗⃗ =(0,12,1),CN ⃗⃗⃗⃗⃗ =(1,0,12).∴AM ⃗⃗⃗⃗⃗⃗ ·CN ⃗⃗⃗⃗⃗ =12,|AM ⃗⃗⃗⃗⃗⃗ |=|CN ⃗⃗⃗⃗⃗ |=√52. ∴cos <AM ⃗⃗⃗⃗⃗⃗ ,CN ⃗⃗⃗⃗⃗ >=1252×52=25.3在正方体ABCD-A 1B 1C 1D 1中,EF ⊥AC ,EF ⊥A 1D ,则EF 与BD 1所成的角是( ) A.90°B.60°C.30°D.0°,以D 为原点建立空间直角坐标系,设正方体的棱长为a ,则A 1(a ,0,a ),D (0,0,0),A (a ,0,0),C (0,a ,0),B (a ,a ,0),D 1(0,0,a ), ∴DA 1⃗⃗⃗⃗⃗⃗⃗⃗ =(a ,0,a ),AC ⃗⃗⃗⃗⃗ =(-a ,a ,0),BD 1⃗⃗⃗⃗⃗⃗⃗⃗ =(-a ,-a ,a ). ∵EF ⊥AC ,EF ⊥A 1D ,设EF ⃗⃗⃗⃗⃗ =(x ,y ,z ), ∴EF ⃗⃗⃗⃗⃗ ·DA 1⃗⃗⃗⃗⃗⃗⃗⃗ =(x ,y ,z )·(a ,0,a )=ax+az=0, EF ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =(x ,y ,z )·(-a ,a ,0)=-ax+ay=0.∵a ≠0,∴x=y=-z (x ≠0).∴EF ⃗⃗⃗⃗⃗ =(x ,x ,-x ).∴BD 1⃗⃗⃗⃗⃗⃗⃗⃗ =-aEF ⃗⃗⃗⃗⃗ . ∴BD 1⃗⃗⃗⃗⃗⃗⃗⃗ ∥EF ⃗⃗⃗⃗⃗ ,即BD 1∥EF. 故EF 与BD 1所成的角是0°.4二面角α-l-β内有一点P ,若点P 到平面α,β的距离分别是5,8,且点P 在平面α,β内的射影间的距离为7,则二面角的度数是( ) A.30°B.60°C.120°D.150°,PA ⊥α,PB ⊥β,∠ADB 为二面角α-l-β的平面角.由题意知PA=5,PB=8,AB=7, 由余弦定理,可得cos ∠APB=52+82-72=1,则∠APB=60°,故∠ADB=120°.5在空间中,已知平面α过点(3,0,0)和(0,4,0)及z 轴上一点(0,0,a )(a>0),若平面α与平面xOy 的夹角为45°,则a= .6在长方体ABCD-A 1B 1C 1D 1中,B 1C 和C 1D 与底面所成的角分别为60°和45°,则异面直线B 1C 和C 1D 所成角的余弦值为 .,可知∠CB 1C 1=60°,∠DC 1D 1=45°.设B 1C 1=1,则CC 1=√3=DD 1.∴C 1D 1=√3,则有B 1(√3,0,0),C (√3,1,√3),C 1(√3,1,0),D (0,1,√3).∴B 1C ⃗⃗⃗⃗⃗⃗⃗ =(0,1,√3),C 1D ⃗⃗⃗⃗⃗⃗⃗ =(-√3,0,√3). ∴cos <B 1C ⃗⃗⃗⃗⃗⃗⃗ ,C 1D ⃗⃗⃗⃗⃗⃗⃗ >=B 1C ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·C 1D⃗⃗⃗⃗⃗⃗⃗⃗⃗ |B 1C ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ||C 1D ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=2√6=√64.7如图,在三棱锥P-ABC 中,PA=PB=PC=BC ,且∠BAC=π2,则PA 与底面ABC 所成角的大小为 .,∵PA=PB=PC ,∴P 在底面上的射影O 是△ABC 的外心.又∠BAC=π2,∴O 在BC 上且为BC 的中点.∴AO 为PA 在底面上的射影,∠PAO 即为所求的角.在△PAO 中,PO=√32PB=√32PA ,∴sin ∠PAO=PO =√3.∴∠PAO=π3.8在正方体ABCD-A 1B 1C 1D 1中,直线BC 1与平面A 1BD 所成角的余弦值是 .,设棱长为1,则B (1,1,0),C 1(0,1,1),A 1(1,0,1),D (0,0,0). BC 1⃗⃗⃗⃗⃗⃗⃗ =(-1,0,1),A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =(-1,0,-1),BD ⃗⃗⃗⃗⃗⃗ =(-1,-1,0). 设平面A 1BD 的一个法向量为n =(1,x ,y ),设BC 1与平面A 1BD 所成的角为θ,n ⊥A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ ,n ⊥BD⃗⃗⃗⃗⃗⃗ , 所以n ·A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =0,n ·BD ⃗⃗⃗⃗⃗⃗ =0, 所以{-1-y =0,-1-x =0,解得{x =-1,y =-1.所以n =(1,-1,-1),则cos <BC 1⃗⃗⃗⃗⃗⃗⃗ ,n >=BC 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·n|BC 1⃗⃗⃗⃗⃗⃗⃗⃗⃗|·|n |=-√63,所以sin θ=√63.所以cos θ=√1-(√63)2=√33.9如图,在直三棱柱ABC-A 1B 1C 1中,AA 1=BC=AB=2,AB ⊥BC ,求二面角B 1-A 1C-C 1的大小.,则A (2,0,0),C (0,2,0),A 1(2,0,2),B 1(0,0,2),C 1(0,2,2).设AC 的中点为M ,连接BM.∵BM ⊥AC ,BM ⊥CC 1,∴BM ⊥平面AA 1C 1C ,即BM ⃗⃗⃗⃗⃗⃗ =(1,1,0)是平面AA 1C 1C 的一个法向量.设平面A 1B 1C 的一个法向量是n =(x ,y ,z ).A 1C ⃗⃗⃗⃗⃗⃗⃗ =(-2,2,-2),A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-2,0,0),∴n ·A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =-2x=0,n ·A 1C ⃗⃗⃗⃗⃗⃗⃗ =-2x+2y-2z=0,令z=1,解得x=0,y=1.∴n =(0,1,1).设法向量n 与BM⃗⃗⃗⃗⃗⃗ 的夹角为φ,二面角B 1-A 1C-C 1为θ,显然θ为锐角.∴cos θ=|cos φ|=|n ·BM ⃗⃗⃗⃗⃗⃗⃗ ||n ||BM ⃗⃗⃗⃗⃗⃗⃗ |=12,解得θ=π3.∴二面角B 1-A 1C-C 1的大小为π3.★10四棱柱ABCD-A 1B 1C 1D 1的侧棱AA 1垂直于底面,底面ABCD 为直角梯形,AD ∥BC ,AD ⊥AB ,AD=AB=AA 1=2BC ,E 为DD 1的中点,F 为A 1D 的中点. (1)求证:EF ∥平面A 1BC ;(2)求直线EF 与平面A 1CD 所成角θ的正弦值.E ,F 分别是DD 1,DA 1的中点,∴EF ∥A 1D 1.又A 1D 1∥B 1C 1∥BC ,∴EF ∥BC ,且EF ⊄平面A 1BC ,BC ⊂平面A 1BC , ∴EF ∥平面A 1BC.AB ,AD ,AA 1两两垂直,以AB 所在直线为x 轴,以AD 所在直线为y 轴,以AA 1所在直线为z 轴,建立空间直角坐标系,如图.设BC=1,则A (0,0,0),A 1(0,0,2),C (2,1,0),D (0,2,0),D 1(0,2,2),F (0,1,1),E (0,2,1), 故FE ⃗⃗⃗⃗⃗ =(0,1,0),A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =(0,2,-2),CD ⃗⃗⃗⃗⃗ =(-2,1,0). 设平面A 1CD 的法向量n =(x ,y ,z ), 则{n ·A 1D⃗⃗⃗⃗⃗⃗⃗⃗ =(x ,y ,z )·(0,2,-2)=2y -2z =0,n ·CD ⃗⃗⃗⃗⃗ =(x ,y ,z )·(-2,1,0)=-2x +y =0.取n =(1,2,2),则sin θ=|cos <n ,FE ⃗⃗⃗⃗⃗ >|=|n ·FE ⃗⃗⃗⃗⃗⃗|n ||FE ⃗⃗⃗⃗⃗⃗ || =|√1+4+4·√0+1+0|=23,故直线EF 与平面A 1CD 所成角θ的正弦值等于23.。
人教A版数学选修21-空间向量与立体几何-【完整版】
人教A 版数学选修2 1 : 空间向量与立 体几何- 精品课 件p pt( 实用版)
人教A 版数学选修2 1 : 空间向量与立 体几何- 精品课 件p pt( 实用版)
类型3 空间向量加减运算的应用(误区警示)
[典例3]
在长方体ABCD-A1B1C1D1中,化简
→ DA
-
→ DB
+B→1C-B→1B+A→1B1-A→1B.
证明:如图所示,平行六面体 ABCD-A′B′C′D′,设点O是AC′的中点,
则A→O=12A→C′=12(A→B+A→D+A→A′). 设P、M、N分别是BD′、CA′、DB′的中点. 则A→P=A→B+B→P=A→B+12B→D′=A→B+12·(B→A+B→C+
人教A 版数学选修2 1 : 空间向量与立 体几何- 精品课 件p pt( 实用版)
(3)用已知向量表示指定向量的方法. 用已知向量来表示指定向量时,常结合具体图形.通 过向量的平移等手段将指定向量放在与已知向量有关的三 角形或四边形中,通过向量的运算性质将指定向量表示出 来,然后转化为已知向量的线性式.
人教A 版数学选修2 1 : 空间向量与立 体几何- 精品课 件p pt( 实用版)
人教A 版数学选修2 1 : 空间向量与立 体几何- 精品课 件p pt( 实用版)
[变式训练] (1)下列命题中假命题的个数是( )
①向量A→B与B→A的长度相等;
②空间向量就是空间中的一条有向线段;
③不相等的两个空间向量的模必不相等.
A.1
B.2
C.3
D.0
(2)如图,在长方体ABCD-A1B1C1D1中, AB=4,AD=2,AA1=1,以该长方体的八 个顶点中的两点为起点和终点的所有向量
高二数学人教版A版选修2-1课件:第三章 空间向量与立体几何 章末复习课
问题导学
题型探究
当堂训练
问题导学 知识点一 空间中点、线、面位置关系的向量表示
设直线l,m的方向向量分别为a,b,平面α,β的法向量分别为μ,v,则
线线平行 线面平行 面面平行
l∥m⇔a∥b⇔a=kb ,k∈R
a⊥μ ⇔_______ a·μ=0 l∥α⇔______ μ=kv,k∈R α∥β⇔μ∥v⇔____________ a⊥ b a·b=0 l⊥m⇔______ ⇔_______
线线垂直
线面垂直 面面垂直
l⊥α⇔a∥μ⇔a=kμ,k∈R
μ·v=0 α⊥β⇔μ⊥v⇔_______
|a· b| π |a||b| 线线夹角 l,m的夹角为θ(0≤θ≤ ),cos θ=______ 2
|a· μ| π |a||μ| 线面夹角 l,α的夹角为θ(0≤θ≤ ),sin θ=______ 2
解析答
1
2 3 4 5
2.若A(1,-2,1),B(4,2,3),C(6,-1,4),则△ABC的形状是(
A.不等边锐角三角形 C.钝角三角形 B.直角三角形 D.等边三角形
)
A
→ → → → ― → 解析 ― AB =(3,4,2),― AC =(5,1,3),― BC =(2,-3,1),― AB · AC >0 得 A 为锐角;
如图,已知在直三棱柱ABC-A1B1C1中,AC⊥BC,D为AB的中点,AC=BC=BB1.
求证:(1)BC1⊥AB1; (2)BC1∥平面CA1D.
反思与
解析答
跟踪训练 2
A1FD1.
正方体 ABCD - A1B1C1D1 中, E 、 F 分别是 BB1 、 CD 的中点,求证:平面 AED⊥平面
高中数学选修2-1(人教A版)第三章空间向量与立体几何3.1知识点总结含同步练习及答案
描述:例题:高中数学选修2-1(人教A版)知识点总结含同步练习题及答案第三章 空间向量与立体几何 3.2 立体几何中的向量方法一、学习任务1. 理解直线的方向向量与平面的法向量的意义;会用待定系数法求平面的法向量.2. 能用向量语言表述线线、线面、面面的垂直和平行关系.3. 能用向量方法证明有关线、面位置关系的一些定理(包括三垂线定理);能用向量方法判断一些简单的空间线面的平行和垂直关系.4. 能用向量方法解决线线、线面、面面的夹角的计算问题;体会向量方法在研究几何问题中的作用.二、知识清单异面直线所成的角 线面角 二面角三、知识讲解1.异面直线所成的角设直线 是异面直线,过空间一点 分别作直线 的平行线 ,我们把直线 所成的锐角或直角叫做异面直线 所成的角,或异面直线 的夹角.a ,b O a ,b ,a ′b ′,a ′b ′a ,b a ,b 如图,在正方体 中,求:(1)异面直线 与 所成的角;(2) 与 所成的角.解:(1)因为 ,而 ,所以 ,即 与 所成角为 .(2)如下图,连接 ,,因为 ,所以 与 所成的角即为 与 所成的角.又 ,所以 为正三角形,所以 和 所成的角为 ,即 与 所成的角为 .ABCD −A 1B 1C 1D 1AB A 1D 1A D 1D C 1∥AB A 1B 1⊥A 1D 1A 1B 1⊥AB A 1D 1AB A 1D 190∘A B 1B 1D 1A ∥D B 1C 1A B 1A D 1D C 1A D 1A =A =D 1B 1B 1D 1△AB 1D 1A D 1A B 160∘A D 1DC 160∘A1D平面平行,或在平面内,则称直线和平面所成的角是AP P求直线 与 平面∠AP B=∠APRt△AP D描述:例题:3.二面角从一条直线出发的两个半平面所组成的图形叫做二面角(dihedral angle).这条直线叫做二面角的棱,这两个半平面叫做二面角的面.棱 、面分别为 , 的二面角记作二面角.有时为了方便,也可在 , 内(棱以外的半平面部分)分别取点 , ,将这个二面角记作二面角.如果棱记作 ,那么这个二面角记作二面角或.在二面角的棱上任取一点,以点为垂足,在半平面和内分别作垂直于棱的射线和,则射线和构成的叫做二面角的平面角.两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.AB αβα−AB −βαβP Q P −AB −Q l α−l −βP −l −Q α−l −βl O O αβl OA OB OA OB ∠AOB 如图,在正方体 中,,,, 分别是 ,, 和 的中点.(1)求证:;(2)求二面角 的平面角的正切值.解:(1)因为 , 均为所在棱的中点,所以 .而 ,所以 .又因为 , 均为所在棱的中点,所以 和 均为等腰直角三角形.所以 ,所以 , ,故.而 ,所以 .(2)在平面 中,过点 作 于点 ,连接 .由(1)知 ,又 ,所以 .ABCD −A 1B 1C 1D 1E F M N A 1B 1BC C 1D 1B 1C 1平面 MNF ⊥平面 ENF M −EF −N N F NF ⊥平面 A 1B 1C 1D 1MN ⊂平面 A 1B 1C 1D 1NF ⊥MN M E △MN C 1△NE B 1∠MN =∠NE =C 1B 145∘∠MNE =90∘MN ⊥NE MN ⊥平面 NEF MN ⊂平面 MNF 平面 MNF ⊥平面 NEF NEF N NG ⊥EF G MG MN ⊥平面 NEF EF ⊂平面 NEF MN ⊥EFEF ⊥ MNGM−EF−N||n。
高中数学人教A版选修2-1第三章空间向量与立体几何(B)
第三章 空间向量与立体几何(B)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.空间四个点O 、A 、B 、C ,OA →,OB →,OC →为空间的一个基底,则下列说法不正确的是( ) A .O 、A 、B 、C 四点不共线B .O 、A 、B 、C 四点共面,但不共线 C .O 、A 、B 、C 四点中任意三点不共线D .O 、A 、B 、C 四点不共面2.已知a +3b 与7a -5b 垂直,且a -4b 与7a -2b 垂直,则〈a ,b 〉等于( ) A .30°B .60°C .90°D .45°3.已知A (2,-5,1),B (2,-2,4),C (1,-4,1),则向量AB →与AC →的夹角为( ) A .30°B .45°C .60°D .90°4.已知正方体ABCD —A 1B 1C 1D 1中,点E 为上底面A 1C 1的中心,若AE →=AA 1→+xAB →+yAD →,则x ,y 的值分别为( )A .x =1,y =1B .x =1,y =12C .x =12,y =12D .x =12,y =135.设E ,F 是正方体AC 1的棱AB 和D 1C 1的中点,在正方体的12条面对角线中,与截面A 1ECF 成60°角的对角线的数目是( ) A .0B .2C .4D .66.已知点P 是平行四边形ABCD 所在的平面外一点,如果AB →=(2,-1,-4),AD →=(4,2,0),AP →=(-1,2,-1).对于结论:①AP ⊥AB ;②AP ⊥AD ;③AP →是平面ABCD 的法向量;④AP →∥ BD →.其中正确的个数是( )A .1B .2C .3D .47.已知a =(-3,2,5),b =(1,x ,-1)且a ·b =2,则x 的值是( ) A .3B .4C .5D .68.设A 、B 、C 、D 是空间不共面的四点,且满足AB →·AC →=0,AC →·AD →=0,AB →·AD →=0,则△BCD 是( )A .钝角三角形B .锐角三角形C .直角三角形D .不确定9.正三棱柱ABC -A 1B 1C 1中,若∠BAC =90°,AB =AC =AA 1,则异面直线BA 1与AC 1所成的角等于( )A .30°B .45°C .60°D .90°10.若向量a =(2,3,λ),b =⎝ ⎛⎭⎪⎫-1,1,63的夹角为60°,则λ等于( )A.2312B.612C.23612D .-2361211.已知OA →=(1,2,3),OB →=(2,1,2),OP →=(1,1,2),点Q 在直线OP 上运动,则当QA →·QB →取得最小值时,点Q 的坐标为( ) A.⎝ ⎛⎭⎪⎫12,34,13B.⎝ ⎛⎭⎪⎫12,32,34 C.⎝ ⎛⎭⎪⎫43,43,83D.⎝ ⎛⎭⎪⎫43,43,73 12.在正方体ABCD —A 1B 1C 1D 1中,平面A 1BD 与平面C 1BD 所成二面角的余弦值为( ) A.12B.32 C.13D.33题 号 1 2 3 4 5 6 7 8 9 10 11 12 答 案 二、填空题(本大题共4小题,每小题5分,共20分)13.若向量a =(1,1,x ),b =(1,2,1),c =(1,1,1),满足条件(c -a )·(2b )=-2,则x =________.14.若A ⎝ ⎛⎭⎪⎫0,2,198,B ⎝ ⎛⎭⎪⎫1,-1,58,C ⎝⎛⎭⎪⎫-2,1,58是平面α内的三点,设平面α的法向量a =(x ,y ,z ),则x ∶y ∶z =__________.15.平面α的法向量为m =(1,0,-1),平面β的法向量为n =(0,-1,1),则平面α与平面β所成二面角的大小为__________. 16.在直三棱柱ABC —A 1B 1C 1中,∠ABC =90°,AB =BC =AA 1=2,点D 是A 1C 1的中点,则异面直线AD 和BC 1所成角的大小为________.三、解答题(本大题共6小题,共70分) 17.(10分)如图,已知ABCD —A 1B 1C 1D 1是平行六面体.设M 是底面ABCD 的中心,N 是侧面BCC 1B 1对角线BC 1上的34分点,设MN →=αAB →+βAD →+γAA 1→,试求α、β、γ的值.18.(12分)如图,四棱锥S —ABCD 的底面是边长为2a 的菱形,且SA =SC =2a ,SB =SD =2a ,点E 是SC 上的点,且SE =λa (0<λ≤2). (1)求证:对任意的λ∈(0,2],都有BD ⊥AE ;(2)若SC ⊥平面BED ,求直线SA 与平面BED 所成角的大小.19.(12分)已知空间三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b =AC →. (1)求a 和b 的夹角θ的余弦值;(2)若向量k a +b 与k a -2b 互相垂直,求k 的值.20.(12分)如图所示,在三棱锥S—ABC中,SO⊥平面ABC,侧面SAB与SAC均为等边三角形,∠BAC=90°,O为BC的中点,求二面角A—SC—B的余弦值.21.(12分)如图,在底面是矩形的四棱锥P—ABCD中,PA⊥平面ABCD,PA=AB=2,BC=4,E是PD的中点.(1)求证:平面PDC⊥平面PAD;(2)求点B到平面PCD的距离.22.(12分)如图,四棱锥S—ABCD的底面是正方形,每条侧棱的长都是底面边长的2倍,P为侧棱SD上的点.(1)求证:AC⊥SD;(2)若SD⊥平面PAC,求二面角P—AC—D的大小;(3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC.若存在,求SE∶EC 的值;若不存在,试说明理由.第三章空间向量与立体几何(B)1.B2.B [由已知⎩⎪⎨⎪⎧(a +3b )·(7a -5b )=0(a -4b )·(7a -2b )=0,∴⎩⎪⎨⎪⎧7a 2+16a ·b -15b 2=0 ①7a 2-30a ·b +8b 2=0 ②由①-②可得a ·b =12b 2,代入①可得a 2=b 2,∴cos 〈a ·b 〉=a ·b |a||b |=12.∴〈a ,b 〉=60°.]3.C [AB →=(0,3,3),AC →=(-1,1,0),∴cos 〈AB →,AC →〉=332·2=12,∴〈AB →,AC →〉=60°.]4.C [AE →=AA 1→+A 1E →=AA 1→+12(A 1B 1→+A 1D 1→)=AA 1→+12AB →+12AD →,由空间向量的基本定理知,x =y =12.]5.C6.C [∵AB →·AP →=-2-2+4=0,∴AP ⊥AB ,①正确; ∵AP →·AD →=-4+4=0,∴AP ⊥AD ,②正确;由①②知AP →是平面ABCD 的法向量,∴③正确,④错误.] 7.C8.B [△BCD 中,BC →·BD →=(AC →-AB →)·(AD →-AB →)=AB →2>0.∴∠B 为锐角,同理,∠C ,∠D 均为锐角,∴△BCD 为锐角三角形.] 9.C[建系如图,设AB =1,则B (1,0,0),A 1(0,0,1),C 1(0,1,1). ∴BA 1→=(-1,0,1), A C 1→=(0,1,1)∴cos 〈BA 1→,A C 1→〉==12·2=12. ∴〈BA 1→,A C 1→〉=60°,即异面直线BA 1与AC 1所成的角等于60°.]10.C [∵a =(2,3,λ),b =⎝⎛⎭⎪⎫-1,1,63,∴a·b=63λ+1,|a|=λ2+13,|b|=263,∴cos〈a,b〉=a·b|a||b|=63λ+1λ2+13·263=12.∴λ=23612.]11.C [∵Q在OP上,∴可设Q(x,x,2x),则QA→=(1-x,2-x,3-2x),QB→=(2-x,1-x,2-2x).∴QA→·QB→=6x2-16x+10,∴x=43时,QA→·QB→最小,这时Q⎝⎛⎭⎪⎫43,43,83.]12.C [以点D为原点,DA、DC、DD1所在直线为x轴、y轴、z轴建立空间直角坐标系,设正方体的棱长为1,则A1C→=(-1,1,-1),A C1→=(-1,1,1).可以证明A1C⊥平面BC1D,AC1⊥平面A1BD.又cos〈A C1→,A1C→〉=13,结合图形可知平面A1BD与平面C1BD所成二面角的余弦值为13.] 13.2解析∵a=(1,1,x),b=(1,2,1),c=(1,1,1),∴c-a=(0,0,1-x),2b=(2,4,2).∴(c-a)·(2b)=2(1-x)=-2,∴x=2.14.2∶3∶(-4)解析AB→=⎝⎛⎭⎪⎫1,-3,-74,AC→=⎝⎛⎭⎪⎫-2,-1,-74,由a·AB→=0,a·AC→=0,得⎩⎪⎨⎪⎧x=23yz=-43y,x∶y∶z=23y∶y∶⎝⎛⎭⎪⎫-43y=2∶3∶(-4).15.60°或120°解析∵cos〈m,n〉=m·n|m||n|=-12·2=-12,∴〈m,n〉=120°,即平面α与β所成二面角的大小为60°或120°.16.π6解析建立如图所示坐标系,则AD →=(-1,1,-2), B C 1→=(0,2,-2),∴cos 〈AD →,B C 1→〉=622·6=32,∴〈AD →,B C 1→〉=π6.即异面直线AD 和BC 1所成角的大小为π6.17.解 ∵MN →=MB →+BN →=12DB →+34B C 1→=12(AB →-AD →)+34(CC 1→-CB →) =12(AB →-AD →)+34(AA 1→+AD →) =12AB →-12AD →+34AA 1→+34AD → =12AB →+14AD →+34AA 1→, ∴α=12,β=14,γ=34.18.(1)证明 连结BD ,AC ,设BD 与AC 交于O .由底面是菱形,得BD ⊥AC . ∵SB =SD ,O 为BD 中点, ∴BD ⊥SO .又AC ∩SO =O , ∴BD ⊥面SAC .又AE ⊂面SAC ,∴BD ⊥AE . (2)解 由(1)知BD ⊥SO ,同理可证AC ⊥SO ,∴SO ⊥平面ABCD .取AC 和BD 的交点O 为原点建立如图所示的坐标系,设SO =x ,则OA =4a 2-x 2,OB =2a 2-x 2. ∵OA ⊥OB ,AB =2a ,∴(4a 2-x 2)+(2a 2-x 2)=4a 2,解得x =a .∴OA =3a ,则A (3a,0,0),C (-3a,0,0),S (0,0,a ).∵SC ⊥平面EBD ,∴SC →是平面EBD 的法向量. ∴SC →=(-3a,0,-a ),SA →=(3a,0,-a ). 设SA 与平面BED 所成角为α,则sin α==|-3a 2+a 2|3+1a ·3+1a =12,即SA 与平面BED 所成的角为π6.19.解 a =AB →=(-1,1,2)-(-2,0,2)=(1,1,0), b =AC →=(-3,0,4)-(-2,0,2)=(-1,0,2).(1)cos θ=a ·b |a|b |=-1+0+02×5=-1010,∴a 与b 的夹角θ的余弦值为-1010. (2)k a +b =(k ,k,0)+(-1,0,2)=(k -1,k,2), k a -2b =(k ,k,0)-(-2,0,4)=(k +2,k ,-4), ∴(k -1,k,2)·(k +2,k ,-4)=(k -1)(k +2)+k 2-8=0.即2k 2+k -10=0,∴k =-52或k =2.20.解以O 为坐标原点,射线OB ,OA ,OS 分别为x 轴、y 轴、z 轴的正半轴,建立如图所示的空间直角坐标系Oxyz .设B (1,0,0),则C (-1,0,0),A (0,1,0),S (0,0,1),SC 的中点M ⎝ ⎛⎭⎪⎫-12,0,12.故MO →=⎝ ⎛⎭⎪⎫12,0,-12,MA →=⎝ ⎛⎭⎪⎫12,1,-12,SC →=(-1,0,-1),所以MO →·SC →=0,MA →·SC →=0. 即MO ⊥SC ,MA ⊥SC .故〈MO →,MA →〉为二面角A —SC —B 的平面角.cos 〈MO →,MA →〉==33.即二面角A —SC —B 的余弦值为33. 21.(1)证明 如图,以A 为原点,AD 、AB 、AP 所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,则依题意可知A (0,0,0),B (0,2,0),C (4,2,0),D (4,0,0),P (0,0,2).∴PD →=(4,0,-2),CD →=(0,-2,0),PA →=(0,0,-2).设平面PDC 的一个法向量为n =(x ,y,1),则⇒⎩⎪⎨⎪⎧ -2y =04x -2=0⇒⎩⎪⎨⎪⎧ y =0x =12,所以平面PCD 的一个法向量为⎝ ⎛⎭⎪⎫12,0,1. ∵PA ⊥平面ABCD ,∴PA ⊥AB ,又∵AB ⊥AD ,PA ∩AD =A ,∴AB ⊥平面PAD .∴平面PAD 的法向量为AB →=(0,2,0).∵n ·AB →=0,∴n ⊥AB →.∴平面PDC ⊥平面PAD .(2)解 由(1)知平面PCD 的一个单位法向量为n |n|=⎝ ⎛⎭⎪⎫55,0,255. ∴=⎪⎪⎪⎪⎪⎪(4,0,0)·⎝ ⎛⎭⎪⎫55,0,255=455, ∴点B 到平面PCD 的距离为455. 22.(1)证明 连结BD ,设AC 交BD 于点O ,由题意知SO ⊥平面ABCD ,以O 点为坐标原点,OB →、OC →、OS →分别为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系Oxyz 如图所示.设底面边长为a ,则高SO =62a . 于是S (0,0,62a ),D ⎝ ⎛⎭⎪⎫-22a ,0,0,C ⎝ ⎛⎭⎪⎫0,22a ,0,B ⎝ ⎛⎭⎪⎫22a ,0,0, OC →=⎝ ⎛⎭⎪⎫0,22a ,0, SD →=⎝ ⎛⎭⎪⎫-22a ,0,-62a , ∴OC →·SD →=0.∴OC ⊥SD ,即AC ⊥SD .(2)解 由题意知,平面PAC 的一个法向量DS →=⎝ ⎛⎭⎪⎫22a ,0,62a ,平面DAC 的一个法向量OS →=⎝⎛⎭⎪⎫0,0,62a , 设所求二面角为θ,则cos θ==32, 故所求二面角P —AC —D 的大小为30°.(3)解 在棱SC 上存在一点E 使BE ∥平面PAC .由(2)知DS →是平面PAC 的一个法向量,且DS →=⎝ ⎛⎭⎪⎫22a ,0,62a ,CS →=⎝⎛⎭⎪⎫0,-22a ,62a , BC →=⎝⎛⎭⎪⎫-22a ,22a ,0, 设CE →=tCS →,则BE →=BC →+CE →=BC →+tCS →=⎝ ⎛⎭⎪⎫-22a ,22a (1-t ),62at . 由BE →·DS →=0,得t =13, 即当SE ∶EC =2∶1时,BE →⊥DS →而BE 不在平面PAC 内,故BE ∥平面PAC .。
高中数学人教A版选修2-1第三章空间向量与立体几何阅读与思考向量概念的推广与应用教学课件共12张PPT含学案
A
b
B
c
C
A
b
C
Bc
(空间向量)
突破难点二:三个不共面向量和与这三个向量的 关系
平移这三个向量,使其具有同一起点.以这三个向量为棱 作一平行六面体,则这平行六面体中与这三个向量具有相同
起点的那条对角线所确定的一个向量即是这三个向量之和.
突破难点三:那么什么情况下三个向量共面呢?
e
2
a
e1
由e是平2 平面面向内量的基两本个定不理共知线,的如向果量e,,1 那么对于这一平面内的任意向量 a,
k
此时向量p的坐标恰是点P在空间直角 i O j
y
坐标系Oxyz中的坐标 x,y,z.
x
P′
由空间向量基本定理可知,空间任意一个向量
都可以用三个不共面的向量表示出来.
同学们,相信通过这些难 点突破的讲解,大家可以类比 得更顺畅一些,祝学习顺利!
我们课上见咯!
在我的印象里,他一直努力而自知,每天从食堂吃饭后,他总是习惯性地回到办公室看厚厚的专业书不断提升和充实自己,他的身上有九零后少见的沉稳。同事们恭喜他,大多看 到了他的前程似锦,却很少有人懂得他曾经付出过什么。就像说的:“如果这世上真有奇迹,那只是努力的另一个名字,生命中最难的阶段,不是没有人懂你,而是你不懂自已。” 而他的奇迹,是努力给了挑选的机会。伊索寓言中,饥饿的狐狸想找一些可口的食物,但只找到了一个酸柠檬,它说,这只柠檬是甜的,正是我想吃的。这种只能得到柠檬,就说 柠檬是甜的自我安慰现象被称为:“甜柠檬效应。一如很多人不甘平庸,却又大多安于现状,大多原因是不知该如何改变。看时,每个人都能从角色中看到自已。高冷孤独的安 迪,独立纠结的樊胜美,乐观自强的邱莹莹,文静内敛的关睢尔,古怪精灵的曲筱绡。她们努力地在城市里打拼,拥有幸或不幸。但她依然保持学习的习惯,这样无论什么事她都 有最准确的判断和认知;樊胜美虽然虚荣自私,但她努力做一个好HR,换了新工作后也是拼命争取业绩;小蚯蚓虽没有高学历,却为了多卖几包咖啡绞尽脑汁;关睢尔每一次出镜 几乎都是在房间里戴着耳机听课,处理文件;就连那个嬉皮的曲筱潇也会在新年之际为了一单生意飞到境外……其实她们有很多路可以走:嫁人,啃老,安于现状。但每个人都像 个负重的蜗牛一样缓缓前行,为了心中那丁点儿理想拼命努力。今天的努力或许不能决定明天的未来,但至少可以为明天积累,否则哪来那么多的厚积薄发和大器晚成?身边经常 有人抱怨生活不幸福,上司太刁,同事太蛮,公司格局又不大,但却不想改变。还说:“改变干嘛?这个年龄了谁还能再看书考试,混一天是一天吧。”一个“混”字就解释了他 的生活态度。前几天我联系一位朋友,质问为什么好久不联系我?她说自已每天累的像一条狗,我问她为什么那么拼?她笑:“如果不努力我就活得像一条狗了。”恩,新换的上 司,海归,虽然她有了磨合几任领导的经验,但这个给她带来了压力。她的英语不好,有时批阅文件全是大段大段的英文,她心里很怄火,埋怨好好的中国人,出了几天国门弄得 自己像个洋鬼子似的。上司也不舒服,流露出了嫌弃她的意思,甚至在一次交待完工作后建议她是否要调一个合适的部门?她的脸红到了脖子,想着自己怎么也算是老员工,由她 羞辱?两个人很不愉快。但她有一股子倔劲,不服输,将近40岁的人了,开始拿出发狠的学习态度,报了个英语培训班。回家后捧着英文书死啃,每天要求上中学的女儿和自己英 语对话,连看电影也是英文版的。功夫不负有心人,当听力渐渐能跟得上上司的语速,并流利回复,又拿出漂亮的英文版方案,新上司看她的眼光也从挑剔变柔和,某天悄悄放了 几本英文书在她桌上,心里突然发现上司并没那么讨厌。心态好了,她才发现新上司的优秀,自从她来了后,部门业绩翻了又翻,奖金也拿到手软,自己也感觉痛快。她说:这个 社会很功利,但也很公平。别人的傲慢一定有理由,如果想和平共处,需要同等的段位,而这个段位,自己可能需要更多精力,但唯有不断付出,才有可能和优秀的人比肩而立。 人为什么要努力?一位长者告诉我:“适者生存。”这个社会讲究适者生存,优胜劣汰。虽然也有潜规则,有套路和看不见的沟沟坎坎,但一直努力的人总会守得云开见月明。有 些人明明很成功了,但还是很拼。比如剧中的安迪,她光环笼罩,商场大鳄是她的男闺蜜,不离左右,富二代待她小心呵护,视若明珠,加上她走路带风,职场攻势凌历,优秀得 让身边人仰视。这样优秀的人,不管多忙,每天都要抽出两个小时来学习。她的学习不是目的,而是能量,能让未来的自己比过去更好一些。现实生活中,努力真的重要,它能改 变一个人的成长轨迹,甚至决定人生成败。有一句鸡汤:不着急,你想要的,岁月都会给你。其实,岁月只能给你风尘满面,而希望,唯有努力才能得到!9、懂得如何避开问题的 人,胜过知道怎样解决问题的人。在这个世界上,不知道怎么办的时候,就选择学习,也许是最佳选择。胜出者往往不是能力而是观念!在家里看到的永远是家,走出去看到的才 是世界。把钱放在眼前,看到的永远是钱,把钱放在有用的地方,看到的是金钱的世界。给人金钱是下策,给人能力是中策,给人观念是上策。财富买不来好观念,好观念能换来 亿万财富。世界上最大的市场,是在人的脑海里!要用行动控制情绪,不要让情绪控制行动;要让心灵启迪智慧,不能让耳朵支配心灵。人与人之间的差别,主要差在两耳之间的 那块地方!人无远虑,必有近忧。人好的时候要找一条备胎,人不好的时候要找一条退路;人得意的时候要找一条退路,人失意的时候要找一条出路!孩子贫穷是与父母的有一定 的关系,因为他小的时候,父母没给他足够正确的人生观。家长的观念是孩子人生的起跑线!有什么信念,就选择什么态度;有什么态度,就会有什么行为;有什么行为,就产生 什么结果。要想结果变得好,必须选择好的信念。播下一个行动,收获一种习惯;播下一种习惯,收获一种性格;播下一种性格,收获一种命运。思想会变成语言,语言会变成行
高二数学(人教A版)选修2-1课件第三章 空间向量与立体几何
(5)面面平行 ①证明两个平面的法向量平行(即是共线向量); ②转化为线面平行、线线平行问题. (6)面面垂直 ①证明两个平面的法向量互相垂直; ②转化为线面垂直、线线垂直问题.
6.运用空间向量求空间角 (1)求两异面直线所成角 a· b 利用公式 cos〈a,b〉= , |a|· |b| 但务必注意两异面直线所成角 θ
(3)求二面角 用向量法求二面角也有两种方法: 一种方法是利用平面角 的定义, 在两个面内先求出与棱垂直的两条直线对应的方向向 量, 然后求出这两个方向向量的夹角, 由此可求出二面角的大 小;另一种方法是转化为求二面角的两个面的法向量的夹角, 它与二面角的大小相等或互补.
7.运用空间向量求空间距离 空间中的各种距离一般都可以转化为求点与点、点与线、 点与面的距离. (1)点与点的距离 点与点之间的距离就是这两点间线段的长度, 因此也就是 这两点对应向量的模.
二、利用空间向量求空间角 (1)求两异面直线所成的角 设 a,b 分别是异面直线 l1,l2 上的方向向量,θ 为 l1,l2 |a· b| 所成的角,则 cosθ=|cos〈a,b〉|=|a||b|. (2)求直线与平面所成的角 设 l 为平面 α 的斜线,a 为直线的方向向量,n 为平面 α 的法向量,θ 为 l 与 α 所成的角,则 sinθ=|cos〈a,n〉|= |a· n| . |a||n|
成才之路· 数学
人教A版 ·选修2-1
路漫漫其修远兮 吾将上下而求索
第三章
空间向量与立体几何
第三章
章末归纳总结
知识梳理
1.空间向量的概念及其运算与平面向量类似,向量加、 减法的平行四边形法则, 三角形法则以及相关的运算律仍然成 立.空间向量的数量积运算、共线向量定理、共面向量定理都 是平面向量在空间中的推广, 空间向量基本定理则是向量由二 维到三维的推广.
2020秋新版高中数学人教A版选修2-1课件:第三章空间向量与立体几何 3.1.4 .pptx
其中可以作为空间的基底的向量组有( ) A.1个 B.2个 C.3个D.4个
-14-
3.1.4 空间向量的正交分解 及其坐标表示
题型一
题型二
题型三
目标导航
知识梳理
重难聚焦
典例透析
解析:∵x=a+b,y=b+c,z=c+a, ∴x,a,b共面,故①不能作为基底. x,y,z不共面可以作为一个基底,故②可作为基底.
-9-3.1.4 空间向量的交分解 及其坐标表示目标导航
知识梳理
重难聚焦
典例透析
2.空间向量的坐标表示 剖析:(1)单位正交基底.如果空间的一个基底的三个基向量互相 垂直,且长都为1个单位,那么这个基底叫做单位正交基底,用{i,j,k} 或{e1,e2,e3}表示. (2)空间直角坐标系.在空间选定一点O和一个单位正交基底 {i,j,k},以点O为原点,分别以i,j,k的方向为正方向画三条数轴:x轴、 y轴、z轴,它们都叫做坐标轴,则建立了一个空间直角坐标系Oxyz, 点O叫原点,向量i,j,k都叫做坐标向量.
-10-
3.1.4 空间向量的正交分解 及其坐标表示
目标导航
知识梳理
重难聚焦
典例透析
(3)空间向量的坐标.给定一个空间直角坐标系和向量 a,且设 i,j,k 为坐标向量,则存在有序实数组{x,y,z},使 a=xi+yj+zk,把 x,y,z 叫 做 a 在空间直角坐标系 Oxyz 中的坐标,记为 a=(x,y,z).
题型一
题型二
题型三
目标导航
知识梳理
高中数学人教a版选修2-1课件:第三章 空间向量与立体几何 本章小结
第三章 空间向量与立体
人教A 选修 2版 · 数学 1
知识网络建构
知 识 网 络 建 构 热 点 专 题 剖 析 单 元 综 合 测 试
第三章 空间向量与立体
人教A 选修 2版 · 数学 1
知 识 网 络 建 构 热 点 专 题 剖 析 单 元 综 合 测 试
第三章 空间向量与立体
人教A 选修 2版 · 数学 1
第三章 空间向量与立体
人教A 选修 2版 · 数学 1
(2)∵ D(1,1,0), E(0,0, a) → → ∴PD= (1,1,0),PE=(0,0, a), → → ∴AQ· PD=(- 1,1,0)· (1,1,0)=- 1+ 1= 0, → → AQ· PE=(- 1,1,0)· (0,0, a)= 0. → → → → ∴AQ⊥PD,AQ⊥PE,
知 识 网 络 建 构 热 点 专 题 剖 析 单 元 综 合 测 试
第三章 空间向量与立体
人教A 选修 2版 · 数学 1 证明垂直问题,除了应用传统的垂直问题的判定定理 外,还可利用向量数量积进行判断,是非常有效的方法.
知 识 网 络 建 构 热 点 专 题 剖 析 单 元 综 合 测 试
第三章 空间向量与立体
人教A 选修 2版 · 数学 1
此ppt下载后可自行编辑
高中数学课件
第三章 空间向量与立体
人教A 选修 2版 · 数学 1
第三章 空间向量与立体
人教A 选修 2版 · 数学 1
第三章 空间向量与立体几何
第三章 空间向量与立体
人教A 选修 2版 · 数学 1
本章小结
知 识 网 络 建 构 热 点 专 题 剖 析 单 元 综 合 测 试
也可用传统方法求证.面面垂直可以利用面面垂直的判定
2019-2020年新版高中数学人教A版选修2-1课件:第三章空间向量与立体几何 本章整合3
综合应用 专题一 专题二 专题三
应用1如图所示的多面体是由三棱锥A-BDE与四棱锥D-BCFE拼 接而成的,其中EF⊥平面AEB,AE⊥EB,AD∥EF∥BC,
BC=2AD=4,EF=3,AE=BE=2,G是BC的中点.
(1)求异面直线BD与EG所成的角; (2)求平面DEG与平面AEFD所成的钝二面角的正弦值. 提示:求解空间角有两种常见思路,若直接能确定或易作出空间 角,则直接求解;若不易作出,则考虑采用空间向量的方法,这也是空 间向量应用的优势所在.
������ + ������ = 0, ������ + ������ = 0,
令 x=1,得 n=(1,-1,1).
设平面 DEG 与平面 AEFD 所成锐二面角的大小为 θ,
则
cos
θ=��
>
|
=
|������·������������| |������||������������|
若存在,求SE∶EC的值;若不存在,试说明理由.
提示:建立恰当的空间直角坐标系,求出所涉及的点及向量的坐 标,求证两条直线的方向向量数量积为零,则两条直线垂直;二面角 求解,可转化为求法向量的夹角;由平面的法向量垂直于直线的方 向向量来证明线面平行.
综合应用
专题一 专题二 专题三
(1)证明:连接 BD,设 AC 交 BD 于点 O,由题意知 SO⊥平面 ABCD.
(1)用向量法证明:平面A1BD∥平面B1CD1; (2)用向量法证明:MN⊥平面A1BD. 提示:(1)面面平行应转化为证明线面平行;(2)线面垂直应转化为 线线垂直,最终结合面面平行与线面垂直的判定定理证明;此外本 题也可建立空间直角坐标系转化为向量的坐标运算去求解.
高中数学人教A版选修2-1第三章 空间向量与立体几何
高中数学学习材料(灿若寒星 精心整理制作)第三章 空间向量与立体几何§3.1 空间向量及其运算3.1.1 空间向量及其加减运算 课时目标1.理解空间向量的概念,掌握空间向量的几何表示和字母表示.2.掌握空间向量的加减运算及其运算律,能借助图形理解空间向量及其运算的意义.2.几类特殊向量(1)零向量:____________的向量叫做零向量,记为________.(2)单位向量:________的向量称为单位向量.(3)相等向量:方向________且模________的向量称为相等向量.在空间,同向且等长的有向线段表示同一向量或相等向量.(4)相反向量:与向量a 长度______而方向________的向量,称为a 的相反向量,记为________. 3.空间向量的加减法与运算律空间向量的加减法 类似平面向量,定义空间向量的加、减法运算(如图):OB →=OA →+AB →=__________;CA →=OA →-OC →=________.加法运算律 (1)交换律:a +b =________ (2)结合律:(a +b )+c =____________.;一、选择题1.下列命题中,假命题是( )A. 向量AB →与BA →的长度相等B .两个相等的向量,若起点相同,则终点也相同C .只有零向量的模等于0D .共线的单位向量都相等2.如图所示,平行四边形ABCD 的对角线的交点为O ,则下列等式成立的是( )A. OA →+OB →=AB →B. OA →+OB →=BA →C. AO →-OB →=AB →D. OA →-OB →=CD →3.已知O 是△ABC 所在平面内一点,D 为BC 边中点且2OA →+OB →+OC →=0,则AO →等于( )A. OB →B. OC →C. OD → D .2OD → 4.已知向量AB →,AC →,BC →满足|AB →|=|AC →|+|BC →|,则( )A. AB →=AC →+BC →B. AB →=-AC →-BC →C. AC →与BC →同向D. 与AC →与CB →同向5.在正方体ABCD —A 1B 1C 1D 1中,向量表达式DD 1→-AB →+BC →化简后的结果是( )A. BD 1→B. 1D BC.1B DD. 1DB6.平行六面体ABCD —A 1B 1C 1D 1中,E ,F ,G ,H ,P ,Q 分别是A 1A ,AB ,BC ,CC 1,C 1D 1,D 1A 1的中点,则( )A.EF →+GH →+PQ →=0B. EF→-GH →-PQ →=0 C.EF→+GH →-PQ →=0 D.EF →-GH →+PQ →=0 二、填空题7.在平行六面体ABCD -A ’B’C ’D ’中,与向量''A B 的模相等的向量有________个.8.若G 为△ABC 内一点,且满足AG +BG →+CG →=0,则G 为△ABC 的________.(填“外心”“内心”“垂心”或“重心”)9.判断下列各命题的真假:①向量AB →的长度与向量BA →的长度相等;②向量a 与b 平行,则a 与b 的方向相同或相反;③两个有共同起点而且相等的向量,其终点必相同;④两个有公共终点的向量,一定是共线向量;⑤有向线段就是向量,向量就是有向线段.其中假命题的个数为________.三、解答题10.判断下列命题是否正确,若不正确,请简述理由.①向量AB →与CD →是共线向量,则A 、B 、C 、D 四点必在一条直线上;②单位向量都相等;③任一向量与它的相反向量不相等;④四边形ABCD 是平行四边形的充要条件是AB →=DC →;⑤模为0是一个向量方向不确定的充要条件.11.如图所示,已知空间四边形ABCD ,连结AC,BD,E,F,G 分别是BC,CD,DB 的中点,请化简:AB →+BC →+CD →,(2)AB →+GD →+EC →,并标出化简结果的向量.能力提升12.在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F.若AC →=a ,BD →=b ,则AF →等于( )A.14a +12bB.13a +23b C.12a +14b D.23a +13b 13.证明:平行六面体的对角线交于一点,并且在交点处互相平分.1.在掌握向量加减法的同时,应首先掌握有特殊位置关系的两个向量的和或差,如共线、共起点、共终点等.2.通过掌握相反向量,理解两个向量的减法可以转化为加法.3.注意向量的三角形法则和平行四边形法则的要点.对于向量加法运用平行四边形法则要求两向量有共同起点,运用三角形法则要求向量首尾顺次相连.对于向量减法要求两向量有共同的起点.4.a -b 表示的是由b 的终点指向a 的终点的一条有向线段.第三章 空间向量与立体几何§3.1 空间向量及其运算3.1.1 空间向量及其加减运算知识梳理1.大小 方向 (2)大小 模 (3)①有向线段②AB →2.(1)长度为0 0 (2)模为1 (3)相同 相等(4)相等 相反 -a3.a +b a -b (1)b +a (2)a +(b +c )作业设计1.D [共线的单位向量是相等向量或相反向量.]2.D [OA →-OB →=BA →=CD →.]3.C [∵D 为BC 边中点,∴OB →+OC →=2OD →,∴OA →+OD →=0,∴AO →=OD →.]4.D [由|AB →|=|AC →|+|BC →|=|AC →|+|CB →|,知C 点在线段AB 上,否则与三角形两边之和大于第三边矛盾,所以AC →与CB →同向.]5.A[如图所示,∵DD 1→=AA 1→,DD →1-AB →=AA 1→-AB →=BA 1→,BA 1→+BC →=BD →1,∴DD 1→-AB →+BC →=BD 1→.]6.A [观察平行六面体ABCD —A 1B 1C 1D 1可知,向量EF →,GH →,PQ →平移后可以首尾相连,于是EF →+GH →+PQ →=0.]7.7解析 |D'C'→|=|DC →|=|C'D'→|=|CD →|=|BA →|=|AB →|=|B'A'→|=|A'B'→|.8.重心解析如图,取BC 的中点O ,AC 的中点D ,连结OG 、DG .由题意知AG →=-BG →-CG →=GB →+GC →=2GO →,同理BG →=2GD →,故G 为△ABC 的重心.9.3解析 ①真命题;②假命题,若a 与b 中有一个为零向量时,其方向是不确定的;③真命题;④假命题,终点相同并不能说明这两个向量的方向相同或相反;⑤假命题,向量可用有向线段来表示,但并不是有向线段.10.解 ①不正确,共线向量即平行向量,只要求两个向量方向相同或相反即可,并不要求两个向量AB ,CD 在同一条直线上.②不正确,单位向量模均相等且为1,但方向并不一定相同.③不正确,零向量的相反向量仍是零向量,但零向量与零向量是相等的.④正确.⑤正确.11.解 (1) AB →+BC →+CD →=AC →+CD →=AD →.(2)∵E ,F ,G 分别为BC ,CD ,DB 的中点.∴BE →=EC →,EF →=GD →.∴AB →+GD →+EC →=AB →+EF →+BE →=AF →.故所求向量AD →,AF →,如图所示.12.D [AF →=AC →+CF →=a +23CD → =a +13(b -a )=23a +13b .]13.证明如图所示,平行六面体ABCD —A ′B ′C ′D ′,设点O 是AC ′的中点,则AO →=12AC'→ =12(AB →+AD →+AA'→). 设P 、M 、N 分别是BD ′、CA ′、DB ′的中点.则AP =AB →+BP →=AB →+12BD'→ =AB →+12(BA →+BC →+B B'→) =AB →+12(-AB →+AD →+AA'→) =12(AB →+AD →+AA'→). 同理可证:AM →=12(AB →+AD →+AA'→) AN →=12(AB →+AD →+AA'→). 由此可知O ,P ,M ,N 四点重合.故平行六面体的对角线相交于一点,且在交点处互相平分.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
b
B
b
a
Oa
A
结论:空间任意两个向量都是共面向量,所以它 们可用同一平面内的两条有向线段表示.
因此凡是涉及空间任意两个向量的问题,平面向量 中有关结论仍适用于它们.
突破难点一:空间向量的加法是否
满足结合律?
(a b) c = a (b c)
O
O
a a
b +c
由平uur面r 向量基本定理可知, 在OQ,k所确定的平面上,
z
uur uur r
存在实数z,使得OP = OQ + zk,
rr
而在i,j所确定的平面上,
k
P
Oj
y
i
x
Q
由平面向量基本定理可知,存在
有序实数对 x,y,
uur r r 使得OQ = xi + yj.
uur uur r r r r 从而OP = OQ + zk = xi + yj + zk.
rrr 如果 i,j,k是空间三个两两垂直的向量, 那么,对空间任一个向量pr ,
存在一个有序实数组 x,y,z ,
使得pr
=
r xi
+
r yj
+
r zk.
x
ir ,yjr ,zkr 为向量pr 在
rrr i,j,k上的分向量.
空间向量基本定理可知,存在有序实数组
{x,y,z},使得pr =xer 1+yer 2+zer 3
z
我们把x,y,z称作向量pr 在单位正交
基底er 1,er 2,er 3 下的坐标, 记作pr =(x,y,z).
PP k
此时向量pr 的坐标恰是点P在空间直角 i O j
y
坐标系Oxyz中的坐标 x,y,z.
x
P′
由空间向量基本定理可知,空间任意一个向量
都可以用三个不共面的向量表示出来.
同学们,相信通过这些难 点突破的讲解,大家可以类比 得更顺畅一些,祝学习顺利!
向量概念的推广与应用
从平面向量到空间向量难点解析
• 1.平面向量中成立的放在空间中是否成立? • 2.在坐标表示的类比中,看看结构形式发生
什么样的变化?
• 3.空间向量与平面向量不同的内容是什么?
空间任意两个向量是否都可以平移到同一 平面内?
B
b
O
A
a
结论:空间任意两个向量都可以平移到同一个平面内,
ur r r r p xa yb zc .
r rr
{a, b, c} 叫做空间的一个基底
rrr a, b, c 都叫做基向量
空间直角坐标系
rrr
如图,设i,j,k是空间三个两两垂直的向量,
且有公共起点O.对于空任意一个向量pr
=
uur OP,
rr
设点Q为点P在i,j所确定的平面上的正投影,
我们课上见咯!
人生从来没有真正的绝境。无论遭受多少艰辛,无论经历多少苦难,心中都要怀着一粒信念的种子,有什么样的眼界和胸襟,就看到什么样的风景。你的心有多宽,你 局有多大,你的心就能有多宽。我很平凡,却不简单,只要我想要,就会通过自己的努力去得到。羡慕别人不如自己拥有,现在的努力奋斗成就未来的自己。人生要学 存了一次丰收;你若努力,就储存了一个希望;你若微笑,就储存了一份快乐。你能支取什么,取决于你储蓄了什么。没有储存友谊,就无法支取帮助;没有储存学识 储存汗水,就无法支取成长。想要取之不尽的幸福,要储蓄感恩和付出。人生之路并非只有坦途,也有不少崎岖与坎坷,甚至会有一时难以跨越的沟坎儿。在这样的紧要 再向前跨出一步!尽管可能非常艰难,但请相信:只要坚持下去,你的人生会无比绚丽!弯得下腰,才抬得起头。在人生路上,不是所有的门都很宽阔,有的门需要你弯 必要时要能够弯得下自己的腰,才可能在人生路上畅通无阻。跟着理智走,要有勇气;跟着感觉走,就要有倾其所有的决心。从不曾放弃追求,从不愿放弃自己的所有, 风景,领略太多的是是非非,才渐渐明白,人活着不只为了自己,而活着,却要活出自己你不会的东西,觉得难的东西,一定不要躲。先搞明白,后精湛,你就比别人 不舍得花力气去钻研,自动淘汰,所以你执着的努力,就占了大便宜。女生年轻时的奋斗不是为了嫁个好人,而是为了让自己找一份好工作,有一个在哪里都饿不死的 收入。因为:只有当你经济独立了,才能做到说走就走,才能灵魂独立,才能有资本选择自己想要伴侣和生活。成功没有快车道,幸福没有高速路,一份耕耘一份收获 的努力和奔跑,所有幸福都来自平凡的奋斗和坚持。也许你要早上七点起床,晚上十二点睡觉,日复一日,踽踽独行。但只要笃定而动情地活着,即使生不逢时,你人 器晚成。无论遇到什么困难,受到什么伤害,都不要放弃和抱怨。放弃,再也没有机会;抱怨,会让家人伤心;只要不放弃,扛下去,生活一定会给你想要的惊喜!无 么伤害,都不要放弃和抱怨。放弃,再也没有机会;抱怨,会让家人伤心;只要不放弃,扛下去,生活一定会给你想要的惊喜!行动力,是我们对平庸生活最好的回击。 就在于行动力。不行动,梦想就只是好高骛远;不执行,目标就只是海市蜃楼。想做一件事,最好的开始就是现在。每个人的心里,都藏着一个了不起的自己,只要你 悄酝酿着乐观,培养着豁达,坚持着善良,只要在路上,就没有到达不了的远方!每个人的心里,都藏着一个了不起的自己,只要你不颓废,不消极,一直悄悄酝酿着 着善良,只要在路上,就没有到达不了的远方!自己丰富才能感知世界丰富,自己善良才能感知社会美好,自己坦荡才能感受生活喜悦,自己成功才能感悟生命壮观! 退的理由却有一百个。每条路都是孤独的,慢慢的你会相信没有什么事不可原谅,没有什么人会永驻身旁,也许现在的你很累,未来的路还很长,不要忘了当初为何而 现在,勿忘初心。每条路都是孤独的,慢慢的你会相信没有什么事不可原谅,没有什么人会永驻身旁,也许现在的你很累,未来的路还很长,不要忘了当初为何而出发, 勿忘初心。人活一世,实属不易,做个善良的人,踏实,做个简单的人,轻松。不管以前受过什么伤害,遇到什么挫折,做人贵在善良,做事重在坚持!别人欠你的, 好报;坚持,必有收获!人活一世,实属不易,做个善良的人,踏实,做个简单的人,轻松。不管以前受过什么伤害,遇到什么挫折,做人贵在善良,做事重在坚持!别 善良,终有好报;坚持,必有收获!不要凡事都依靠别人。在这个世界上,最能让你依靠的人是自己,最能拯救你的人也只能是自己。要想事情改变,首先要改变自己 终改变别人。有位哲人说得好:如果你不能成为大道,那就当一条小路;如果你不能成为太阳,那就当一颗星星。生活有一百种过法,别人的故事再好,始终容不下你 定。不要羡慕别人,你有更好的,只是你还不知道。水再浑浊,只要长久沉淀,依然会分外清澄;人再愚钝,只要足够努力,一样能改写命运。更何况比我差的人还没 力,我就更没资格说,我无能为力。水再浑浊,只要长久沉淀,依然会分外清澄;人再愚钝,只要足够努力,一样能改写命运。更何况比我差的人还没放弃,比我好的 格说,我无能为力。朝着一个目标不停的向前,不断努力的付出,哪怕你现在的人生是从零开始,你都可以做得到。早安!让梦想照进现实,才是当下最应该做的事情 钱的时候不磨叽, 生活不会因为你哭泣而对你温柔, 连孩子都知道,想要的东西,要踮起脚尖,自己伸手去拿,所以不要什么都不做,还什么都想要。但你可以通过努
有且只有一对实数
a 1e1 2e2
,1 使2
如果空间向量 p与两不共线向量 ,a 共b面,那么可将
三个向量平移到同一平面 ,则有
p x yb
突破难点四:空间向量基本定理
rr r 如果三个向量 a 、b 、c 不共面,那么对于空间任一向 ur
量 p , 存 在 唯 一 的 有 序 实 数 组 x, y, z 使
是该有的生活!无论未来的每一天,是什么样子,都是我自己的选择,按照自己的选择来生活,是送给自己最好的礼物。
A
b
B
c
C
A
b
C
Bc
(空间向量)
突破难点二:三个不共面向量和与这三个向量的 关系
平移这三个向量,使其具有同一起点.以这三个向量为棱 作一平行六面体,则这平行六面体中与这三个向量具有相同
起点的那条对角线所确定的一个向量即是这三个向量之和.
突破难点三:那么什么情况下三个向量共面呢?
e a
2 e1
由e是平2 平面面向内量的基两本个定不理共知线,的如向果量e,,1 那么对于这一平面内的任意向量 a,