1.2.2 函数的表示法(1)
1.2.2函数的表示法(一)
f ( x) x 2x ,画出函数 f ( x)
2
0 x
的图象,并求出函数 f ( x) 的解析式.
例3.(07湖北)为了预防流感,某学校对教室用药熏消毒
法进行消毒. 已知药物释放过程中,室内每立方米空气
中的含药量y(毫克)与时间t(小时)成正比;药物释 放完毕后,y与t的函数关系式为 y 1
16 t a(a为常数), Nhomakorabea图所示,
根据图中提供的信息,回答下列问题: (Ⅰ)从药物释放开始,每立方米空气中的含药量y(毫克
与时间t(小时)之间的函数关系式为_____________ .
(Ⅱ)据测定,当空气中每立方米的含药量降低到0.25
毫克以下时,学生方可进教室,那从药物释放开始,至
少需要经过 小时后,学生才能回到教室.
就是用图象表示两个两个变量之间 (2)图象法: 的对应关系。 就是列出表格来表示两个变量之间 (3)列表法: 的对应关系。
函数的三种表示法的优点:
1、解析法有两个优点:一是简明、全面地概括了变 量间的关系;二是可以通过解析式求出任意一个自 变量的值所对应的函数值。
2、图象法的优点是直观形象地表示自变量的变化, 相应的函数值变化的趋势,有利我们通过图象研究 函数的某些性质。 3、列表法的优点是不需要计算就可以直接看出 与自变量的值相对应的函数值。
例1.(1)已知f ( x) 2 x 3, 求f ( x 1)
(2)已知f ( x 1) 2 x 5, 求f ( x)
(3)已知f ( x 1) 2 x +5,求f ( x)
(4)已知f(x)是二次函数,且f(0)=1, f(x+1)-f(x)=2x,求f(x)
1.2.2函数的表示法课件人教新课标
的三种表示法表示函数 y f (x)
。
例2.(书P20)下表是某校高一(1)班三名 同学在高一年度六次数学测试的成绩及班级 平均分表。
第一次 第二次 第三次 第四次 第五次 第六次
王伟 张城 赵磊
班级 平均分
98 90 68 88.2
⑵列表法:就是列出表格来表示两个变量 的函数关系
优点:不需要计算就可以直接看出与自变 量的值相对应的函数值.
⑶图象法:就是用函数图象表示两个变量之 间的关系.
优点:能直观形象地表示出自变量的变化,相 应的函数值变化的趋势,这样使得我们可以通 过图象来研究函数的某些性质.
二.例题讲授:
例1(书P19).某种笔记本的单价是5元,买 x
四、作业
P24 A组7、8、9 B组3、4 补充:作出分段函数
y 2x 1 x 2 (3 x 3)
的图像并求值域。
(2) 5公里以上,每增加5公里,票价增加 1元(不足5公里按5公里计算). 如果某条线路的总里程为20公里,请根据题 意,写出票价与里程之间的函数解析式,并 画出函数的图象.
练习:
x 2(x 1)
1.在函数
f
(x)
x
2
(1
x
2)
中,若 f (x) 3
2x(x 2)
则x的值为 。
3x2 2 (x 0)
1.2.2 函数的表示法(一)
一、讲授新课:
函数的表示方法 ⑴解析法:就是把两个变量的函数关系,用 一个等式表示,这个等式叫做函数的解析表 达式,简称解析式.
优点:一是简明、全面地概括了变量间的关 系;二是可以通过解析式求出任意一个自变 量的值所对应的函数值.中学阶段研究的函数 主要是用解析法表示的函数.
人教版高中数学必修一1.2.2函数的表示法 (1)ppt课件
例5、下列映射是不是A到B的一一映射?
A
B
A
B
f
1
3
f
1
3
2
5
3
7
5 2
7
3
9
4
9
4
1
(1)
(2)
解:(1) 是
(2) 不是。由于B中元素1在集合A中没有原像
例6、 下列对应是不是A到B的映射? 1 A={1,2,3,4},B={3,4,5,6,7,8,9} ,f:乘2加1 2 A=N+,B={0,1} ,f: x 除以2得的余数 3 A=R+,B=R,f:求平方根 4 A={x|0≤ x<1},B={y|y≥1} f:取倒数
5 , 1 5 < x 2 0 , 2 1
图公交车票价.gsp
05
10
15
20
我们把上述两例中的函数叫做分段函数: 即分区间定义的函数. 分段函数的图象要分段作出!
注意: (1)有时表示函数的式子可以不止一个,对于分几个 表示的函数,不是几个函数,而是一个函数,我们把它 分段函数.
(2) 函数图象既可以是连续的曲线,也可以是直线、 线、离散的点等等。
注意:解析法表示函数是中学研究函数的主要表示方法;用 法表示函数时,必须注明函数的定义域.
2.图像法:用函数图像表示两个变量之间的对应关系。
如:心电图,气象台应用自动记录器描绘温度随时间变 化的曲线,股市走向图等都是用图象法表示函数关系的.
例如: 我国人口出生率变化曲线:
图像法的优点: 能直观形象的表示出函数的变化情况。
(1)对于任何一个实数a,数轴上都有唯一的点P和它对
(2)对于坐标平面内任何一个点A,都有唯一的有序实数 (x,y)和它对应;
1.2.2-函数的表示法(要用)
0 x ≤5 5 x ≤10 10 x ≤15 15 x ≤20
票价 y(元)
2
3
4
5
此分段函数的定义域为 (0,20]
此分段函数的值域为 {2,3,4,5}
①自变量的范围是怎样得到的? ②自变量的范围为什么分成了四个区间?区间端点
是怎样确定的? ③每段上的函数解析式是怎样求出的?
作函数图象:
王伟 张城 赵磊 班级平均分
第一次 98 90 68 88.2
第二次 87 76 65
78.3
第三次 91 88 73 85.4
第三次 92 75 72 80.3
第五次 88 86 75 75.7
第六次 95 80 82 82.6
请你表对格这能三否直位观同地学分在析高出一三学位年同度学成的绩数高学低学? 如习何情才况能做更一好的个比分较析三。个人的成绩高低?
分段函数
2. 化简函数 y | x 5 | x2 2x 1
解:由题意知 y = | x + 5 | + | x -1 |
y
当 x ≤-5 时,
y = -( x + 5 ) -( x -1 )=-2x-4
当 -5 < x ≤ 1 时,
6
y = ( x + 5 ) -( x -1 ) = 6
一函次数函解数析:式y=一kx定+b是(方k≠程0);
可看成关于x、y的方程。
二方次程函不数一:定y=是ax函2+数bx+解c 析(式a≠。0) 例如:x2+y2=1
复习回顾
(1)炮弹发射
(解析法)
h=130t-5t2 (0≤t≤26)
(2)南极臭氧层空洞 (图象法)
人教高中数学必修1课件:1.2.2函数的表示法第1课时函数的表示法精讲优练课型
1.2. 2函数的表示法第1课时函数的表示法【即时小测】1 •思考下列问题: ⑴所有的函数都能用列表法来表示吗?提示:并不是所有的函数都能用列表法来表示,如函数y二2x+l f xe R.因为自变量X w R不能一一列出,所以不能用列表法来表示•(2)用解析法表示函数是否一定要写出自变量的取值范围?提示:函数的走义域是函数存在的前提,写函数解析式的时候L般要写出函数的定义域.2・已知函数f(x)由下表给出:则f(f(2))= ____________【解析】由表格可知十⑵二4所以f(f⑵)=f⑴二0・答案:03・CU咨 f (x —l)"(x —l)2』=f(X)3晝聖【sm ffiXIlHbpMIXHt+l、s u w (t T t 2・0H (x T x 2・嘯4.已知函数y=f (x)的图象如图所示,则其定义域是3~~03^【解析】因为函数y二f(x)图象上所有点的横坐标的取值范围是[23],所以其定义域为[么3]・答案:[23]5.已知f (n) =2f (n+1), f (1) =2,则f (3)= 【解析】f(n) = 2f(n + l),f(l) = 2, 所以俭)= 2f(2)=4f⑶,故f⑶二( 答案:2 2【知识探究】知识点函数的三种表示方法观察如图所示内容,回答下列问题:(函数的表示方法)——(图象法)问题1 :应用三种方法表示函数时应注意什么问题?问题2:函数的三种表示方法各有什么优缺点?【总结提升】1 •对函数三种表示法的说明列表法、图象法和解析法是从三个不同的角度刻画自变量与函数值的对应关系,同一个函数可以用不同的方法表示•在应用三种方法表示函数时要注意:⑴解析法:必须注明函数的定义域(2)列表法:选取的自变量要有代表性,应能反映定义域的特征.⑶图象法:是否连线.2.函数三种表示方法优缺点比较"能形象、直观地表示壓函数的变化情况点 小、 只能近似求出自变量所对应的函数值,而 R 有时误差较大 K ____________ /【题型探究】类型一待定系数法求函数解析式【典例】1.已知f(X)是一次函数,且f (f (x)) =4x+3,则函数f(X)的解析式为_____________ ■2.已知二次函数y=f (x)的最大值为13,且f(3)=f(-l)=5,求f (x)的解析式.【解题探究】1•典例1中一次函数解析式的形式是什么? 提示:一次函数解析式的形式为f(x)二ax+b (a工0) •2.典例2中二次函数的一般形式是什么?提示:二次函数的一般形式是f(x)二ax?+bx+c (a H 0) •【s s】l ・ffi f (x T ax +b (a H O )・ m=f (fH +b T爾糊f s H 2X +一烘f (X)H —w x —w2•方法一:利用二次函数的一般式求解.设f(x)=ax2+bx+c(a^0).由条件知,点⑶5),(也5),("3)在f(x)的图象上9a+3b+c = 5, fa = -2所以a — b+c = 5,所以f的斤邂时x+lg = ii方法二:利用二次函数的顶点式求解.由f(3)=f(・l),可知:对称轴为x“,又最大值为D故可设f(x)二a(x・l)2+13.将f⑶=5代入得a=2・所以f(x) = -2(x-l)2+13jpf(x) = -2x2+4x+ll.【方法技巧】待定系数法求函数解析式(1)适用范围:已知所要求的解析式f(x)的类型,如是一次函数、二次函数等等,即可设出f(x)的解析式,然后根据已知条件确定其系数.(2)待定系数法求函数解析式的步骤:①设出所求函数含有待定系数的解析式;③解方程或方程组,得到待定系数的值;④将所求待定系数的值代回所设解析式.【变式训练】已知二次函数f (X )的图象过点A(0, -5), B (5, 0),其对称 轴为x=2,求其解析式.【解析】因为抛物线的对称轴为x=2, 所以设二次函数的解析式为f(x)=a(x-2)2+k(a^O).把(0,-5),(5,0)分别代入上式得丽劇嗨斛*9・ 龈敲MX 』",类型二换元法(或配凑法)、方程组法求函数解析式【典例】求满足下列条件的函数f(x)的解析式.(1)函数f(X)满足f ( +l)=x+2 .(2)函数f (x)满足2f 占)+f (x) =x《HO).1X【解题探究】1.典例⑴中的5 +1)中的低+1与x+2低能否建立联系?提示:典例⑴中的X+2 =( +1)2-1.2 •典例(2)中x和有越关爲1提示:互为倒数关黍・(1£)「益(3欝“人1:埠只Ig lx V ^.J (T :+r (T +)J M £ V0+x只因:(+s2e H +s g(一丄jpex) J XH (X )J E5£ rH」u z +z(I £H e 4M £"(IeHxliio 存g芥企 叟+W IK ®l 4W 运(I⑵由题意知f(x) + 2f( i=x f令X二(tHO) fx t则i=t f则f(卅2f(t)二a即班?+2f(x)・(于是得剧关于f(肯f(x)的方程自—i ■x X Xf(x) + 2f』) =xf(-) + 2f(x) = I 2 x1解得f(x)拄-°)・XXX【延伸探究】1.(变换条件)典例(1)中若将条件“f(+l)=x+2 “f(2x-l)p2+x+l”,则f(x)的解析式是什么?【解析】设2x-l=t f则X二t+1所以f(t)二亍Q nX/、t+1 ° t+1 7即f(x)二一r+一+i 二一+t+—.2 2 4 41 97一x~+x -一・4 42.(变换条件)典例(1)中若将条件“f (低+ l)=x+2低”变为“f(l+ 1 )=i+x21 ”,则f(x)的解析式是什么?【解析】平(1 + * X1+?]因為寻岂占诫溜胡析幽)+hf(x)=x24c+ 1 , XG(-OO f 1) U (1 , +8).X【方法技巧】换元法(或配凑法)、方程组法求函数解析式的思路⑴已知f (g (x)) =h (x),求f (x),常用的有两种方法:①换元法,即令t=g (x),解出禺代Ah(x)中,得到一个含t的解析式,即为函数解析式,注意:换元后新元的范围②配凑法,即从f (g(X))的解析式中配凑出即用g(x)来表示h (x),然后将解析式中的g (x)用x代替即可.(2)方程组法:当同一个对应关系中的含有自变量的两个表达式之间有互为相反数或互为倒数关系时,可构造方程组求解.【补偿训练】已知f(x-l)=xMx-5,则f(x)的解析式是()【解析】选A.方法一:设t 二则x=t+l,因为f(x-l)=x2+4x ・5, 所以 f(t) = (t+l)2+4(t+l)-5=t 2+6t ff (x)的解析式是f (x)=x 2+6x.方法二:因为 f (x-1)=x 2+4x- 5=(x-1)2+6 (x-1),所以 f(x)=x 2+6x. 所以f (X )的解析式是f (X )二x2+6x.A. f (x) =x 2+6xC. f (x) =x 2+2x-3 B. f (x) =x 2+8x+7 D. f (x) =x 2+6x-10类型三函数的图象及其应用【典例】作出下列函数的图象:(1)y=2x+l, x G [0, 2]・(2)y=x2-2x, x E [0, 3) •(3)y=.【解题探究】典例中可以使用什么方法来画函数图象? 提示:典例中函数的图象可通过描点法来画.1X【解析】⑴当x=0时"二1;当x=2时"二5・所画图象如图(1)所示.⑵因为0<x<3f所以这个函数的图象是抛物线y=x2-2x介于0«xv3 之间的一部分,如图(2)所示.⑶函数图象如图⑶所示・图(1)----------- i―I——>0 2 X图⑵图⑶【方法技巧】描点法作函数图象的步骤及关注点(1)步骤:①列表:取自变量的若干个值,求出相应的函数值,并列表表示;②描点:在平面直角坐标系中描出表中相应的点;③连线:用平滑的曲线将描出的点连接起来,得到函数图象・(2)关注点:①画函数图象时首先关注函数的定义域,即在定义域内作图;②图象是实线或实点,定义域外的部分有时可用虚线来衬托整个图象;③要标出某些关键点,例如图象的顶点、端点、与坐标轴的交点等•要分清这些关键点是实心点还是空心点.【变式训练】作出函数尸x2-2x-2, xG [0, 3]的图象并求其值域.【解析】因为y=(x-l)2-3f所以函数y二x^2x・2的对称轴为x=4顶点为(1厂3)涵数过点(0厂2)®),具图象如图所示.由图象知函数的值域为[乜1]・• -1 - •【补偿训练】画出函数图象:y=x2-2, xWZ且|x| W2・【解析】因为y=x2・2,xwZ且|x|s2,所以x二・2厂:L,0丄2;对应y的值为2・—2厂12图象如图:\y■-2 -1 0 1 2*■2r • -1 - •易错案例换元法求函数解析式【典例】已知f (x 2+2) =x 4+4x 2,则f (x)的解析式为_严识$【失误案例】 【错解分析】分析解题过程,你知道错哪里吗?)专牛十44,d'化力十? mt"提示:错误的根本原因是忽略了函数f(x)的走义域上面的解法看上去似乎是无懈可击撚而从具结论间f(x)二x?・4来看,并未注明f(x)的走义域,那么按一般理解,就应认为直走义域是全体实数.但是f(x)=x2・4 的定义域不是全体实数.【自我矫正】因为f(x2+2)=x4+4x2=(x2+2)2・4, 令t=x2+2(tn2),则f (t)=t2-4(t>2)f所以f(x)=x2・4(xn2).答案:f(x)=x2-4(x>2)【防范措施】关注换元法求函数解析式时对定义域的要求任何一个函数都由定义域、值域和对应关系f三要素组成•所以, 当函数f (g (x)) 一旦给出,则其对应关系f就已确定并且不可改变,那么f的“管辖范围”(即g(x)的值域)也就随之确定•因此,我们由f (g (x))求f (x)时,求得的f (x)的定义域就理应与f (g (x))中的f的“管辖范一致才妥. 围”课时撮井作此/点击进入Word版可编辑套题。
必修一1.2.2函数的表示法1[PPT课件]人教版高中数学
三种表示方法的特点
解析法 ①函数关系清楚、精确;
②容易从自变量的值求出其对应的函数值; ③便于研究函数的性质.
解析法是中学研究函数的主要表达方法.
图象法 能形象直观的表示出函数的变化趋势,是今
后利用数形结合思想解题的基础.
列表法 不必通过计算就知道当自变量取某些值时函
数的对应值,当自变量的值的个数较少时使 用. 列表法在实际生产和生活中有广泛的应用.
2.图象法:用图象表示两个变量之间的对应关系. 优点:能直观地表示出函数的变化情况。
3.列表法:列出表格来表示两个变量之间的对应关系. 试用列表法表示角的正弦、余弦.
角度 00 300 450 600 900
正弦 0
1 2
2 2
3 2
1
角度 00 300 450 600 900
余弦 1
3 2
2 2
5.画出下列函数的图象: (1)y=2x+1,x∈[0,2]; (2)y=x2-2x(-1≤x<2).
解析: (1)当 x=0 时,y=1; 当 x=2 时,y=5. 所画图象如图 1 所示.
(2)y=x2-2x=(x-1)2-1, 当 x=-1 时,y=3. 当 x=0 时,y=0. 当 x=1 时,y=-1. 当 x=2 时,y=0.所画图象如图 2 所示.
是他的成绩呈曲线上升的趋势,从而表明他的数学成
绩在稳步提高.
例 4.作出下列函数的图象: (1)y=1+x(x∈Z); (2)y=x2-2x(x∈[0,3)); (3)y=1x.
[思路点拨] (1)函数的定义域是整数集,因此函数 的图象是一些点;(2)只需画出二次函数在区间 [0,3)上的图象即可;(3)根据函数解析式,函数是 反比例函数.
《》【函数】——【02】【函数的表示法——1】
答案:2x-23
5.(1)已知函数f(x)=x2,求f(x-1); (2)已知函数f(x-1)=x2,求f(x). 解:(1)f(x-1)=(x-1)2=x2-2x+1. (2)法一(配凑法) 因为f(x-1)=x2=(x-1)2+2(x-1)+1, 所以f(x)=x2+2x+1. 法二(换元法) 令t=x-1,则x=t+1,可得f(t)=(t+1)2 =t2+2t+1,即f(x)=x2+2x+1.
令x,t=求-1 1,
则 t≠1.把 x=t-1 1代入 f(1+x x)=1+x2x2+1x,得
f(t)=1+t-1t-11122+t-11 1=(t-1)2+1+(t-1)=t2-t+1.
∴所求函数的解析式为 f(x)=x2-x+1,x∈(-∞,1)∪(1,+∞).
[解] (1)设 f(x)=ax+b(a≠0), 则 f[f(x)]=f(ax+b)=a(ax+b)+b=a2x+ab+b. 又 f[f(x)]=4x+8, ∴a2x+ab+b=4x+8,
即aa2b=+4b,=8
a=2, ,解之得b=83,
或ab==--28,.
∴f(x)=2x+83或 f(x)=-2x-8.
3.已知的式子中含有 f(x),f(1x)或 f(x),f(-x)形式的函数, 求 f(x)的解析式.
解决此类问题的方法为“方程组法”,即用-x 替换 x,或 用1x替换 x,组成方程组进行求解.
例:①已知 af(x)+f(-x)=bx,其中 a≠±1, 求 f(x); ②已知 f(x)-2f(1x)=3x+2,求 f(x).
练2.已知函数f ( x)是一次函数,且满足 f ( f ( x)) 4x 3,求f ( x).
例:已知 f(x)=2x2+1,求 f( x+1)的解析式.
1.2.2 函数的表示法 第一课时 课件(人教A版必修1)
图象法
课前自主学习
课堂讲练互动
课后智能提升
典例剖析
题型一 函数的表示法
【例 1】 已知完成某项任务的时间 t 与参加完成 b 此项任务的人数 x 之间适合关系式 t=ax+ ,当 x= x 2 时,t=100;当 x=14 时,t=28,且参加此项任务 的人数不能超过 20 人.
课前自主学习
课堂讲练互动
1 1 解析:令 =t,则 x= ,且 t≠0, x t 1 t ∴f(t)= = (t+1≠0), 1 t+1 1+ t x ∴f(x)= (x≠0 且 x≠-1). x+1
x 答案: (x≠0 且 x≠-1) x+1
课前自主学习
课堂讲练互动
课后智能提升
4.如图,函数 f(x)的图象是曲 线 OAB,其中点 O,A,B 的坐标 1 分别为(0,0),(1,2),(3,1),则 f f3 的值等于________.
课前自主学习
课堂讲练互动
课后智能提升
正解:∵f(x2+2)=x4+4x2=(x2+2)2-4, 令t=x2+2(t≥2),则f(t)=t2-4(t≥2), ∴f(x)=x2-4(x≥2). 纠错心得:采用换元法求函数的解析式时,一 定要注意换元后的自变量的取值范围.如本题中令t =x2+2后,则t≥2.
【创新设计】高中数学(人教版必修一)配套练习:1.2.2函数的表示法第1课时(含答案解析)
1.2.2 函数的表示法 第1课时 函数的表示法课时目标 1.掌握函数的三种表示方法——解析法、图象法、列表法.2.在实际情境中,会根据不同的需要选择恰当方法表示函数.会根据不同的需要选择恰当方法表示函数.函数的三种表示法函数的三种表示法(1)解析法——用____________表示两个变量之间的对应关系;表示两个变量之间的对应关系; (2)图象法——用______表示两个变量之间的对应关系;表示两个变量之间的对应关系; (3)列表法——列出______来表示两个变量之间的对应关系.来表示两个变量之间的对应关系.一、选择题一、选择题1.一个面积为100 cm 2的等腰梯形,上底长为x cm ,下底长为上底长的3倍,则把它的高y 表示成x 的函数为( )A .y =50x(x>0)B .y =100x(x>0)C .y =50x (x>0)D .y =100x(x>0) 2.一水池有2个进水口,1个出水口,进出水速度如图甲、乙所示.某天0点到6点,该水池的蓄水量如图丙所示.(至少打开一个水口)给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水.则正确论断的个数是( )A .0B .1C .2D .33.如果f(1x )=x1-x ,则当x≠0时,f(x)等于( ) A.1x B.1x -1 C.11-xD.1x -1 4.已知f(x)=2x +3,g(x +2)=f(x),则g(x)等于( ) A .2x +1 B .2x -1 C .2x -3D .2x +7 5.若g(x)=1-2x ,f[g(x)]=1-x 2x 2,则f(12)的值为( ) A .1 B .15 C .4D .306.在函数y =|x|(x ∈[-1,1])的图象上有一点P(t ,|t|),此函数与x 轴、直线x =-1及x =t 围成图形(如图阴影部分)的面积为S ,则S 与t 的函数关系图可表示为( )题 号 1 2 3 4 5 6 答 案二、填空题二、填空题7.一个弹簧不挂物体时长12 cm ,挂上物体后会伸长,伸长的长度与所挂物体的质量成正比例.如果挂上3 kg 物体后弹簧总长是13.5 cm ,则弹簧总长y(cm)与所挂物体质量x(kg)之间的函数关系式为_________________________________________________________ _______________.8.已知函数y =f(x)满足f(x)=2f(1x )+x ,则f(x)的解析式为____________.9.已知f(x)是一次函数,若f(f(x))=4x +8,则f(x)的解析式为__________________. 三、解答题三、解答题10.已知二次函数f(x)满足f(0)=f(4),且f(x)=0的两根平方和为10,图象过(0,3)点,求f(x)的解析式.的解析式.11.画出函数f(x)=-x 2+2x +3的图象,并根据图象回答下列问题:的图象,并根据图象回答下列问题: (1)比较f(0)、f(1)、f(3)的大小;的大小; (2)若x 1<x 2<1,比较f(x 1)与f(x 2)的大小;的大小; (3)求函数f(x)的值域.的值域.能力提升12.某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于..6·时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y =[x]([x]表示不大于x 的最大整数)可以表示为( ) A .y =[x10] B .y =[x +310]C.y=[x+410]10] D.y=[x+513.设f(x)是R上的函数,且满足f(0)=1,并且对任意实数x,y,有f(x-y)=f(x)-y(2x-y+1),求f(x)的解析式.的解析式.1.如何作函数的图象.如何作函数的图象一般地,作函数图象主要有三步:列表、描点、连线.作图象时一般应先确定函数的定义域,再在定义域内化简函数解析式(可能有的要表示为分段函数),再列表描出图象,并在画图象的同时注意一些关键点,如与坐标轴的交点、分段函数的区间端点等.2.如何求函数的解析式.如何求函数的解析式求函数的解析式的关键是理解对应关系f的本质与特点(对应关系就是对自变量进行对应处理的操作方法,与用什么字母表示无关),应用适当的方法,注意有的函数要注明定义域.主要方法有:代入法、待定系数法、换元法、解方程组法(消元法).1.2.2 函数的表示法 第1课时 函数的表示法知识梳理知识梳理(1)数学表达式数学表达式 (2)图象图象 (3)表格表格 作业设计作业设计1.C [由x +3x 2·y =100,得2xy =100.∴y =50x(x>0).]2.B [由题意可知在0点到3点这段时间,每小时进水量为2,即2个进水口同时进水且不出水,所以①正确;从丙图可知3点到4点水量减少了1,所以应该是有一个进水口进水,同时出水口也出水,故②错;当两个进水口同时进水,出水口也同时出水时,水量保持不变,也可由题干中的“至少打开一个水口”知③错.] 3.B [令1x =t ,则x =1t ,代入f(1x )=x1-x, 则有f(t)=1t1-1t=1t -1,故选B.]4.B [由已知得:g(x +2)=2x +3,令t =x +2,则x =t -2,代入g(x +2)=2x +3,则有g(t)=2(t -2)+3=2t -1,故选B.] 5.B [令1-2x =12,则x =14,∴f(12)=1-(14)2(14)2=15.]6.B [当t<0时,S =12-t 22,所以图象是开口向下的抛物线,所以图象是开口向下的抛物线,顶点坐标是顶点坐标是(0,12);当t>0时,S =12+t 22,开口是向上的抛物线,顶点坐标是(0,12).所以B 满足要求.]7.y =12x +12解析解析 设所求函数解析式为y =kx +12,把x =3,y =13.5代入,得13.5=3k +12,k =12. 所以所求的函数解析式为y =12x +12.8.f(x)=-x 2+23x (x≠0) 解析解析 ∵f(x)=2f(1x )+x ,①,① ∴将x 换成1x ,得f(1x )=2f(x)+1x .②由①②消去f(1x ),得f(x)=-23x -x3,即f(x)=-x 2+23x (x≠0).9.f(x)=2x +83或f(x)=-2x -8解析解析 设f(x)=ax +b(a≠0), 则f(f(x))=f(ax +b)=a 2x +ab +b.∴îïíïìa 2=4ab +b =8,解得îïíïìa =2b =83或îïíïìa =-2b =-8. 10.解.解 设f(x)=ax 2+bx +c(a≠0).由f(0)=f(4)知îïíïìf(0)=c ,f(4)=16a +4b +c ,f(0)=f(4),得4a +b =0.① 又图象过(0,3)点,点, 所以c =3.②设f(x)=0的两实根为x 1,x 2, 则x 1+x 2=-b a ,x 1·x 2=ca .所以x 21+x 22=(x 1+x 2)2-2x 1x 2=(-b a)2-2·c a=10.即b 2-2ac =10a 2.③由①②③得a =1,b =-4,c =3.所以f(x)=x 2-4x +3.11.解.解 因为函数f(x)=-x 2+2x +3的定义域为R ,列表:,列表:x … -2 -1 0 1 2 3 4 … y… -5343-5…连线,描点,得函数图象如图:连线,描点,得函数图象如图:(1)根据图象,容易发现f(0)=3,f(1)=4,f(3)=0, 所以f(3)<f(0)<f(1).(2)根据图象,容易发现当x 1<x 2<1时,有f(x 1)<f(x 2).(3)根据图象,根据图象,可以看出函数的图象是以可以看出函数的图象是以(1,4)为顶点,为顶点,开口向下的抛物线,开口向下的抛物线,开口向下的抛物线,因此,因此,因此,函数的函数的值域为(-∞,4].12.B [方法一方法一 特殊取值法,特殊取值法,若若x =56,y =5,排除C 、D ,若x =57,y =6,排除A ,所以选B.方法二方法二 设x =10m +α(0≤α≤9),0≤α≤6时,时, [x +310]=[m +α+310]=m =[x 10], 当6<α≤9时,[x +310]=[m +α+310]=m +1=[x 10]+1,所以选B.]13.解.解 因为对任意实数x ,y ,有,有 f(x -y)=f(x)-y(2x -y +1), 所以令y =x ,有f(0)=f(x)-x(2x -x +1), 即f(0)=f(x)-x(x +1).又f(0)=1, ∴f(x)=x(x +1)+1=x 2+x +1.。
【高一数学 】函数的表示法
教学设计 1.2.2函数的表示法(1)【教学目标】1.了解函数的三种表示法,会根据不同的需要选择恰当的方法表示函数;2.会求简单函数的解析式及画简单函数的图象;【重点难点】教学重点:函数的三种表示方法.教学难点:根据不同的需要选择恰当的方法表示函数,什么才算“恰当”?【教学过程】一、复习回顾,新课引入复习提问:函数的概念是什么?请同学们回忆一下初中我们学过的函数有哪些常用的表示法?二、师生互动,新课讲解1.让学生们回顾初中学过的函数的三种表示法:列表法:列出表格来表示两个变量的对应关系。
图象法:用图象表示两个变量之间的对应关系。
解析法:用数学表达式表示两个变量之间的对应关系。
并通过课件上三种表示法对应的例子提问学生这三种表示法各有什么优点?在学生回答的基础上师生共同总结:列表法优点: 不需要计算就可以直接看出与自变量相对应的函数值图象法优点:直观形象地表示随着自变量的变化,相应函数值变化的趋势。
解析法优点:(1)简明、全面地概括了变量间的关系;(2)可通过解析式求出每个自变量对应的函数值.归纳:函数的三种表示法并不是相互独立的,它们可以相互转化,是一个有机的整体,像我们非常熟悉的一次函数、二次函数,我们都可以用列表法、图象法、解析法来表示和研究它们。
二、例题讲解:例1(课本P19例3)某种笔记本的单价是5元,买x (x∈{1,2,3,4,5})个笔记本需要y 元.试用三种表示法表示函数y=f(x) .分析:注意本例的设问,此处“y=f(x)”有三种含义,它可以是解析表达式,可以是图象,也可以是对应值表.注意:○1函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据;○2解析法:必须注明函数的定义域;○3图象法:是否连线;○4列表法:选取的自变量要有代表性,应能反映定义域的特征.思考1:若例1中的函数y=f(x)的定义域改为 [1,5],则其图象将会发生怎样的变化?思考2:函数图象可以是连续的曲线,也可以是直线、折线、离散的点等等;那么,如何判断在坐标平面中的图象是否为函数图象呢?练习:下列四个图象中,不是函数图象的是()思考3:每一个函数都能用这三种方法表示吗?分析:(1)出生率与时间的函数关系. (2)狄里克莱函数如何选用恰当的函数表示法表示函数关系,并进一步解决一些简单问题?例2(课本P20例4)下表是某校高一(1)班三位同学在高一学年度几次数学测试的成绩及班级平均分表:第一次第二次第三次第四次第五次第六次王伟98 87 91 92 88 95张城90 76 88 75 86 80赵磊68 65 73 72 75 82班平均88.2 78.3 85.4 80.3 75.7 82.6分请你对这三位同学在高一学年度的数学学习情况做一个分析.分析:本例应引导学生分析题目要求,做学情分析,具体要分析什么?怎么分析?借助什么工具?注意:本例为了研究学生的学习情况,将离散的点用虚线连接,这样更便于研究成绩的变化特点;课堂练习:课本P23练习1,2四、归纳小结,巩固反思:理解函数的三种表示方法,在具体的实际问题中能够选用恰当的表示法来表示函数。
【高中数学必修一】1.2.2 函数的表示法-高一数学人教版(必修1)(解析版)
第一章 集合与函数概念1.2.2 函数的表示法一、选择题1.若()()20(0)x x f x x x ⎧≥=⎨-<⎩,,,则f [f (–2)]=A .2B .3C .4D .5【答案】C【解析】∵–2<0,∴f (–2)=–(–2)=2.又∵2>0,∴f [f (–2)]=f (2)=22=4,故选C .2.“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓缓爬行的乌龟,骄傲起来,睡了一觉.当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到了终点.用S 1和S 2分别表示乌龟和兔子经过时间t 所行的路程,则下列图象中与故事情节相吻合的是A .B .C .D .【答案】D3.已知函数f (x +1)=3x +2,则f (x )的解析式是A.f(x)=3x+2 B.f(x)=3x+1C.f(x)=3x–1 D.f(x)=3x+4【答案】C【解析】设t=x+1,∵函数f(x+1)=3x+2=3(x+1)–1,∴函数f(t)=3t–1,即函数f(x)=3x–1,故选C.4.已知映射f:A→B,其中A={a,b},B={1,2},已知a的象为1,则b的象为A.1,2中的一个B.1,2 C.2 D.无法确定【答案】A【解析】映射f:A→B,其中A={a,b},B={1,2},已知a的象为1,可得b的象为1或2,故选A.5.若f(x)满足关系式f(x)+2f(1x)=3x,则f(2)的值为A.1 B.–1 C.–32D.32【答案】B【解析】∵f(x)满足关系式f(x)+2f(1x)=3x,分别令x=2,和x=12,得()()12262132222f ff f⎧⎛⎫+=⎪⎪⎪⎝⎭⎨⎛⎫⎪+=⎪⎪⎝⎭⎩①②,①–②×2得–3f(2)=3,∴f(2)=–1,故选B.6.甲、乙两人在一次赛跑中,路程s与时间t的函数关系如图所示,则下列说法正确的是A.甲比乙先出发B.乙比甲跑的路程多C.甲、乙两人的速度相同D.甲先到达终点【答案】D7.已知f(x–2)=x2–4x,那么f(x)=A .x 2–8x –4B .x 2–x –4C .x 2+8xD .x 2–4【答案】D【解析】由于f (x –2)=x 2–4x =(x 2–4x +4)–4=(x –2)2–4,从而f (x )=x 2–4.故选D . 8.国内某快递公司规定:重量在1000 g 以内的包裹快递邮资标准如下表:运送距离x (km ) 0<x ≤500 500<x ≤10001000<x ≤15001500<x ≤2000… 邮资y (元)5.006.007.008.00如果某人从北京快递900 g 的包裹到距北京1300 km 的某地,他应付的邮资是 A .5.00元B .6.00元C .7.00元D .8.00元【答案】C【解析】邮资y 与运送距离x 的函数关系式为 5.00(0500)6.00(5001000)7.00(10001500)8.00(15002000)x x y x x <≤⎧⎪<≤⎪=⎨<≤⎪⎪<≤⎩,∵1300∈(1000,1500],∴y =7.00,故选C .9.已知函数()()()32121x x f x x x x ⎧>⎪=⎨-+≤⎪⎩.若()54f a =-,则a 的值为A .12-或52B .12或52C .12-D .12【答案】C【解析】当a >1时,f (a )=3514a >≠-,此时a 不存在,当a ≤1,f (a )=–a 2+2a =–54,即4a 2–8a –5=0,解可得a =–12或a =52(舍),综上可得a =12-,故选C .10.已知函数f (x )=()20(0)x x x x ⎧≥⎨<⎩,,,则f (f (–2))的值是A .2B .–2C .4D .–4【答案】C【解析】∵已知函数()()20(0)x x f x x x ⎧≥=⎨<⎩,,,∴f (–2)=(–2)2,∴f (f (–2))=f (4)=4,故选C .二、填空题11.已知f+1)=x,则f (x )=__________.【答案】x 2–1,(x ≥1)【解析】∵()12fx x x +=+=x +2x +1–1=(x +1)2–1,∴则f (x )=x 2–1,(x ≥1).故答案为:x 2–1,(x ≥1).12.已知f (x +1)=2x 2+1,则f (x –1)=__________.【答案】2x 2–8x +9【解析】设x +1=t ,则x =t –1,f (t )=2(t –1)2+1=2t 2–4t +3,f (x –1)=2(x –1)2–4(x –1)+3=2x 2–4x +2–4x +4+3=2x 2–8x +9.故答案为:2x 2–8x +9. 13.已知f (x +1)=x 2,则f (x )=__________.【答案】(x –1)2【解析】由f (x +1)=x 2,得到f (x +1)=(x +1–1)2,故f (x )=(x –1)2.故答案为:(x –1)2. 14.已知函数f (x )=ax –b (a >0),f (f (x ))=4x –3,则f (2)=__________.【答案】3三、解答题15.()()()11032f x kx b f f =+==-,,,求f (4)的值. 【解析】∵()()()11032f x kx b f f =+==-,,,∴0132k b k b +=⎧⎪⎨+=-⎪⎩,解得k =–14,b =14, ∴f (x )=–14x +14,∴f (4)=–14×4+14=–34.16.二次函数f (x )满足f (x +1)–f (x )=2x 且f (0)=1.(1)求f (x )的解析式;(2)当x ∈[–1,1]时,不等式f (x )>2x +m 恒成立,求实数m 的取值范围. 【解析】(1)由题意,设f (x )=ax 2+bx +c , 则f (x +1)=a (x +1)2+b (x +1)+c .从而f (x +1)–f (x )=[a (x +1)2+b (x +1)+c ]–(ax 2+bx +c )=2ax +a +b , 又f (x +1)–f (x )=2x ,∴220a a b =⎧⎨+=⎩即11a b =⎧⎨=-⎩,又f (0)=c =1, ∴f (x )=x 2–x +1.17.已知函数f (x )=()()221(12)22x x x x x x ⎧+≤-⎪-<<⎨⎪≥⎩(1)在坐标系中作出函数的图象; (2)若f (a )=12,求a 的取值集合. 【解析】(1)函数f (x )=()()221(12)22x x x x x x ⎧+≤-⎪-<<⎨⎪≥⎩的图象如下图所示:(2)当a ≤–1时,f (a )=a +2=12,可得:a =32-;当–1<a <2时,f (a )=a 2=12,可得:a =22±;当a ≥2时,f(a )=2a =12,可得:a =14(舍去); 综上所述,a 的取值构成集合为{32-,22-,22}.18.(1)已知3311f x x x x ⎛⎫+=+ ⎪⎝⎭,求f (x ). (2)已知21f lgx x ⎛⎫+=⎪⎝⎭,求f (x ). (3)已知f (x )是一次函数,且满足3f (x +1)–2f (x –1)=2x +17,求f (x ). (4)已知f (x )满足()123f x f x x ⎛⎫+=⎪⎝⎭,求f (x ). 【解析】(1)∵3331111()3f x x x x x x x x ⎛⎫⎛⎫+=+=+-+ ⎪ ⎪⎝⎭⎝⎭, ∴f (x )=x 3–3x (x ≥2或x ≤–2).(2)令21t x +=(t >1), 则21x t =-,∴()21f t lg t =-,∴()()211f x lg x x =->.19.已知函数f (x )=1+2x x -(–2<x ≤2),用分段函数的形式表示该函数.【解析】f (x )=1+1021202x x x x x ≤≤-⎧=⎨--<<⎩,,.。
高中数学必修1课件第一章 1.2.2 第1课时
课
栏 目
A.f(x)=x2-1
开 关
B.f(x)=-(x-1)2+1
C.f(x)=(x-1)2+1
D.f(x)=(x-1)2-1
练一练·当堂检测、目标达成落实处
本 课
答案
D
栏 目
解析
由二次函数的图象开口向上且关于直线 x=1 对称,可
开 关
排除 A、B;又图象过点(0,0),可排除 C.D 项符合题意.
1.2.2 函数的表示法
第 1 课时 函数的表示法
本
课 栏
【读一读学习要求,目标更明确】
目 开
1.了解函数的三种表示法的各自优点,掌握用三种不同形式
关
表示函数;
2.提高在不同情境中用不同形式表示函数的能力.
【看一看学法指导,学习更灵活】
本 课
学习函数的表示形式,不仅是为了研究函数的性质和应
栏
目 用的需要,而且是为加深对函数概念的理解,让学生感受到
解析 ∵g(x+2)=f(x),f(x)=2x+3,∴g(x+2)=2x+3.
令 t=x+2,则 x=t-2,∴g(t)=2(t-2)+3=2t-1. 即 g(x)=2x-1.
练一练·当堂检测、目标达成落实处
1.如果二次函数的图象开口向上且关于直线 x=1 对称,且
本 过点(0,0),则此二次函数的解析式可以是( )
即 2ax+a+b=2x, ∴a=1,b=-1,从而 f(x)=x2-x.
研一研·问题探究、课堂更高效
问题 2 已知函数 f(g(x))的解析式求 f(x)的解析式通常用什么
本
课 栏
方法?这种方法的具体做法是怎样的?
目 开
答 通常用换元法.即令 g(x)=t,反解出 x,然后代入 f(g(x))
第11课时1.2.2函数的表示法1
53.8 52.9 52.9 50.1 50.1 49.9 49.9 49.9 49.9 48.6 48.6 46.4 46.4 44.5 44.5 41.9 41.9 39.2 39.2 37.9 37.9 53.8
x
一般地,作y=f (|x|)的图像,只要先作出x≥ 0的部分,.然后再作y轴的对称变换,就可以得 到 y=f (|x|)的图像.
例5、某市某条公交线路的总里程是20公里,在这条
线路上公交车“招手即停”,其票价如下: (1)5公里以内(含5公里),票价2元; (2)5公里以上,每增加5公里,票价增加1元(不足5 公里按照5公里计算).
思考1:里程与票价之间的对应关系是否为函数?若是,函 数的自变量是什么?定义域是什么?
思考2:该函数用解析法怎样表示?
设里程为x公里,票价为y元,则
2, 0 x 5, 3, 5 x 10, y 4,10 x 15, 5,15 x 20.
思考3:该函数用列表法怎样表示?
里程x (公里) (0,5] (5,10] (10,15] (15,20]
票价y (元)
2
3
4
5
该函数用图象表示为 y
5 4 3 2 1
O
5
10
15
20
x
三、分段函数:在函数定义域内,对于自变量X的取值范 围有着不同的对应法则,这样的函数称为分段函数
2.以下叙述正确的有( ) (1)分段函数的定义域是各段定义域的并集。 值域是各段值域的并集。 (2)分段函数在定义域的不同部分有不同的 对应法则,但它是一个函数。 (3)若D1、D2分别是分段函数的两个不 同对应法则的值域,则D1∩ D2 ≠φ也能成立。 A 、 1个 B 、 2个 C 、 3个 D 、 0个
高一数学函数的表示法1
5 4
。
。
3
2 1
。
。
O
5
10
15
20
x
三、映射
设A,B是两个非空的集合,如果按某一个确定的对应 关系f,使对于集合A中的任意一个元素x,在集合B中都 有惟一确定的元素y与之对应,那么就称对应f:A→B为从 集合A到集合B的一个映射。
理解: 1、映射三要素:两个集合、一个对应法则,三者
缺一不可
2、A中元素与B中元素的对应关系,可以是:一对一, 多对一,但不能一对多。
函数是一种特殊的映射。
例7 以下给出的对应是不是从集合A到B的映射? (1)集合A={P|P是数轴上的点},集合B=R,对应关系f: 数轴上的点与它所代表的实数对应; (2)集合A={P|P是平面直角坐标系中的点},集合B = (x, y) | x R, y R ,对应关系f:平面直角坐标系 中的点与它的坐标对应; (3)集合A={x|x是三角形},集合B={x|x是圆},对 应关系f:每一个三角形都对应它的内切圆; (4)集合A={x|x是新华中学的班级},集合B={x|x是 新华中学的学生},对应关系f:每一个班级都对应班里 的学生; 例8 设集合A={a,b}, B={c,d}, 问:从A到B的映射共有几 个?并分别将它们表示出来。
变一: 画出函数y=|x+1|的图象. 变二: 画出函数y=|x-1|的图象.
变三: 画出函数y=|x|+1的图象. 变四: 画出函数y=|x|-1的图象.
例6 某市空调公交车的票价按下列规则制定: (1)5公里以内,票价2元; (2)5公里以上,每增加5公里,票价增加1元(不足 5公里的按5公里计算)。 如果某条线路的总里程为20公里,请根据题意,写出 票价与里程之间的函数解析式,并画出函数的图象。
(新)人教版高中数学必修一1.2.2《函数的表示法》课件(共23张PPT)
的一种“程序”或“方法”.因此要把“2x + 1”及“ x + 1”看成一个整体来求解.
1 1 (2)设f( +1)= 2-1,则f(x)=________. x x (3)若对任意x∈R,都有f(x)-2f(-x)=9x+2,则f(x)= ________.
[答案]
(1)D (2)x2-2x(x≠1)
6.(2012· 全国高考数学文科试题江西卷)设函数f(x)= x2+1 x≤1 2 ,则f(f(3))=( x>1 x 1 A.5 2 C. 3 B.3 13 D. 9 )
[答案] D
7.已知函数f(x)=
2 x -4,0≤x≤2, 2x,x>2,
,则f(2)=
2.作图时忘记去掉不在函数定义域内的点 [例5] 数的值域. [错解]
x,-1≤x≤1, 由题意,得y= -x,x<-1或x>1.
x|1-x2| 画出函数y= 2 的图象,并根据图象指出函 1-x
[例 5]
(1)已知 f(x)=x2,求 f(2x+1);
(2)已知 f( x+1)=x+2 x,求 f(x). 1 (3)设函数 f(x)满足 f(x)+2f(x )=x (x≠0),求 f(x). [分析] 我们前面指出,对应法则“f”实际上是对“x”计算
5.(山东冠县武的高2012~2013月考试题)已知函数f(x)
x+1x≥0 = fx+2x<0
则f(-3)的值为( B.-1 D.2
)
A.5 C.-7
[答案] D
如图,在边长为4的正方形ABCD的边上有一点P,沿折 线BCDA由点B(起点)向点A(终点)运动,设点P运动的路程为 x,△APB的面积为y. (1)求y关于x的函数关系式y=f(x); (2)画出y=f(x)的图象; (3)若△APB的面积不小于2,求x的取值范围.
中职数学基础模块上册《函数的表示法》
(3)恩格尔系数 (列表法)
1.2.2 函数的表示法 三、3种表示方法的特点
解析法的特点:简明、全面地概括了变量间 的关系;可以通过用解析式求出任意一个自 变量所对应的函数值。
但不够形象、直观、具体,而且并不是所 有的函数都能用解析式表示出来
列表法的特点:不通过计算就可以直接看出与自变 量的值相对应的函数值。
三、求解函数解析式的方法:代入法、配凑法、换元法 。
2.1.2 指数函数及其性质 八、作业
谢谢!
1.2.2
函数的表示法
1.2.2 函数的表示法
一、温故而知新
1.函数的概念: 设A、B是非空的数集,如果按照某个确定的对应关系f, 使对于集合A中的任意一个数x,在集合B中都有唯一确定 的数f(x)和它对应,那么就称f:A→B为从集合A到集合B 的一个函数(function).
记作:y=f(x),x∈A.
做题步骤:整体代入→化简
五、如1.2何.2根函据数已的知表条示件法求函数 的解析式
一、换元法和配凑法求解析式 类型二:已知f[g(x)] 的表达式,求f(x)的表达式
例2 已知f(x+1) =3x+5,求f(x)的解析式
练习:1、已知f(x+1)=x2+2x,求 f(x).
2、若f (x 1) x2 x 1,求f (x 1)的解析式
解:这个函数的定义域是数集{1,2,3,4,5}.
用解析式法可将函数y=f(x)表示为 y=5x,x∈{1,2,3,4,5}
用列表法可将函数y=f(x)表示为
注一:
解析法:必须 注明函数的定 义域
笔记本数 x
1
2
3
45
钱数y 5 10 15 20 25
高一数学必修1公开课课件1.2.2 函数的表示法 第1课时 函数的表示法
1.函数的三种表示方法的优缺点比较
优点 一是简明、全面地概括 解 了变量间的关系;二是通过 析 解析式可以求出任意一个自 法 变量所对应的函数值 列 不需要计算就可以直接 表 看出与自变量的值相对应的 法 函数值
缺点 不够形象、直观、具 体,而且并不是所有 的函数都能用解析式 表示出来 它只能表示自变量取 较少的有限值的对应 关系
【变式练习】
1. 画出下列函数的图象:
(1) f (x) 2x,x R,且 x 2; (2) f (x) x 2,(x N,且 x 3);
解:(1) y
4
•
2
(2)
2 1 O 1 2
x
2
• 4
2.某路公共汽车,行进的站数与票价关系如下表:
行进的 站数x
1
2
3
4
5
6
7
8
9
票价y 0.5 0.5 0.5 1 1 1 1.5 1.5 1.5
例4 已知 f (x 1) x2 2x 2 ,求 f (x).
解:令t = x +1,则x = t-1
∴ft = t-12 +2t-1 +2 = t2 +1
换元法
f x = x2 +1
适合:已知f(g(x))的解析式,求f(x).
例5 已知 3 f (x) 2 f (1) x(x 0),求 f (x).
-5=4a+k 0=9a+k
,解得ak= =1-9
,
所以解析式为 y=(x-2)2-9.
[点评]
求二次函数解析式时, (1)若已知对称轴或顶点坐标;常设配方式 f(x)=a(x-m)2 +n(a≠0); (2) 若 已 知 f(x) 过 三 点 , 常 设 一 般 式 f(x) = ax2 + bx + c(a≠0); (3)若已知 f(x)与 x 轴两交点横坐标为 x1、x2,常设分解式, f(x)=a(x-x1)(x-x2)(a≠0).
1.2.2函数的表示法
例题剖析
例3 某种笔记本的单价是5元,买x(x{1,2,3,4,5}) 个笔记本需要y元。试用函数的三种表示法表示函数 y=(x)。 解:这个函数的定义域是数集{1,2,3,4,5}用解 析法可将函数y=f(x)表示为y=5x,x{1,2,3,4,5}. 用列表法可将函数表示为 笔记本数x 钱数y 1 5 2 10 3 15 4 20 5 25
y 100
90 80
70
.
班♦ 平 均 分
■
▲
ቤተ መጻሕፍቲ ባይዱ. . . .
▲
.
■ ▲
王伟
♦
▲
♦ ▲
■
■
♦
♦ 张城
▲ ■
■
♦
赵磊
60 0
1
2
3
4
5
6
x
例5 画出函数y=|x|的图象. 解:由绝对值的概念,我们有
y=
图象如下:
x, x≥0, -x, x<0.y
5
4 3 2
1 -3 -2 -1 0 1
2 3 x
有些函数在它的定义域中,对于自变量X的不同取值 范围,对应关系不同,这样函数通常称为分段函数。
第一次 第二次 王伟 张城 赵磊 班级平均分 98 90 68 88.2 87 76 65 78.3
第三次 91 88 73 85.4
第三次 92 75 72 80.3
第五次 88 86 75 75.7
第六次 95 80 82 82.6
y 100
90 80
70
.
班♦ 平 均 分
■
▲
. . . .
▲
应关系f,在集合B中都有唯一的元素和它对应,那么这个
1.2.2函数的表示法(第1课时)
1.2.2函数的表示法(一)
1、某中学高一年级学生李鹏,对某蔬菜基地的收益作了调查,该蔬菜基地种植西红柿,由历年市场行情得知,从2月1日起的300天内,西红柿市场销售与上市时间的关系用图一的一条折线表示;西
红柿的种植成本与上市时间的关系用图二的抛物线段表示,试解答下列问题
.
(注:市场售价和种植成本的单位:元/102kg,时间单位:天)
(1)写出图一表示的市场售价间接函数关系P = f (t). 写出图二表示的种植成本与时间的函数关系式Q = g (t).
(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?
2、下图中可作为函数y = f (x)的图象是()
3、函数||x
y x
x
=+的图象为下图中的()
4、作出下列函数的图象:(1)y = |x– 1| + 2 |x– 2|;(2)y = |x2– 4x + 3|.
1。
1.2.2 函数的表示法第1课时 函数的表示法
1.2.2函数的表示法第1课时函数的表示法明目标、知重点了解函数的三种表示法的各自优点,掌握用三种不同形式表示函数.自主学习1.函数的三种表示法(1)解析法——用表示两个变量之间的;(2)图象法——用表示两个变量之间的;f x为纵坐标就得到一个点,当自变量取完定义(以自变量x为横坐标,以对应的函数值()域内所有值时,即可得到函数图像。
一般地,作函数图象主要有三步:列表、描点、连线.作图象时一般应先确定函数的定义域,再在定义域内化简函数解析式,再列表描出图象,画图时要注意一些关键点,如与坐标轴的交点,端点的虚、实问题等.)(3)列表法——列出来表示两个变量之间的.2.(了解)函数三种表示法的优缺点例题解析探究点一函数的表示方法例1某种笔记本的单价是5元,买x(x∈{1,2,3,4,5})个笔记本需要y元.试用函数的三种表示法表示函数y=f(x).探究点二如何求函数的解析式例2已知f(x)是一次函数,且满足3f(x+1)-f(x)=2x+9,求f(x).反思与感悟本题已知函数类型,故可用待定系数法求解.即设出函数关系式,代入已知条件,建立关于x的恒等式求解.跟踪训练2(1)已知f(x)是一次函数,满足3f(x+1)=6x+4,则f(x)的解析式(2)已知f(x)是二次函数,若f(0)=0,且f(x+1)=f(x)+x+1,求函数f(x)的解析式.例3已知f(x+1)=x2+4x+1,求f(x)的解析式.反思与感悟利用换元法、配凑法求函数解析式时要注意新元的取值范围,即所求函数的定义域.跟踪训练3.已知f (1x )=1x +1,则f (x )的解析式为( ) A .f (x )=11+x B .f (x )=1+x x C .f (x )=x 1+xD .f (x )=1+x 例4 已知函数y =f (x )满足f (x )=2f (1x)+x ,则f (x )的解析式为。
跟踪训练4:已知函数y =f (x )满足f (x )=2f (-x )+x ,则f (x )的解析式为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2.2 函数的表示法整体设计教学分析课本从引进函数概念开始就比较注重函数的不同表示方法:解析法,图象法,列表法.函数的不同表示方法能丰富对函数的认识,帮助理解抽象的函数概念.特别是在信息技术环境下,可以使函数在形与数两方面的结合得到更充分的表现,使学生通过函数的学习更好地体会数形结合这种重要的数学思想方法.因此,在研究函数时,要充分发挥图象的直观作用.在研究图象时,又要注意代数刻画以求思考和表述的精确性.课本将映射作为函数的一种推广,这与传统的处理方式有了逻辑顺序上的变化.这样处理,主要是想较好地衔接初中的学习,让学生将更多的精力集中理解函数的概念,同时,也体现了从特殊到一般的思维过程.三维目标1.了解函数的一些基本表示法(列表法、图象法、解析法),会根据不同实际情境选择合适的方法表示函数,树立应用数形结合的思想.2.通过具体实例,了解简单的分段函数,并能简单应用,提高应用函数解决实际问题的能力,增加学习数学的兴趣.3.会用描点法画一些简单函数的图象,培养学生应用函数的图象解决问题的能力.4.了解映射的概念及表示方法,会利用映射的概念来判断“对应关系”是否是映射,感受对应关系在刻画函数和映射概念中的作用,提高对数学高度抽象性和广泛应用性的进一步认识.重点难点教学重点:函数的三种表示方法,分段函数和映射的概念.教学难点:分段函数的表示及其图象,映射概念的理解;运用集合两种常用表示——列举法与描述法.课时安排3课时教学过程第1课时导入新课思路 1.语言是沟通人与人之间的联系的,同样的祝福又有着不同的表示方法.例如,简体中文中的“生日快乐!”用繁体中文为:生日快樂!英文为:Happy Birthday!法文是Bon Anniversaire!德文是Alles Gute Zum Geburtstag!西班牙中称iFeliz CumpleaRos!印度尼西亚文是Selamat Ulang Tahun!荷兰文的生日快乐为Van Harte Gefeliciteerd met jeverj aardag!在俄语中则是С днем рождения!……那么对于函数,又有什么不同的表示方法呢?引出课题:函数的表示法.思路 2.我们前面已经学习了函数的定义,函数的定义域的求法,函数值的求法,两个函数是否相同的判定方法,那么函数的表示方法常用的有哪些呢?这节课我们就来研究这个问题(板书课题).推进新课新知探究提出问题初中学过的三种表示法:解析法、图象法和列表法各是怎样表示函数的?讨论结果:(1)解析法:用数学表达式表示两个变量之间的函数关系,这种表示方法叫做解析法,这个数学表达式叫做函数的解析式.(2)图象法:以自变量x的取值为横坐标,对应的函数值y为纵坐标,在平面直角坐标系中描出各个点,这些点构成了函数的图象,这种用图象表示两个变量之间函数关系的方法叫做图象法. (3)列表法:列一个两行多列的表格,第一行是自变量的取值,第二行是对应的函数值,这种用表格来表示两个变量之间的函数关系的方法叫做列表法.应用示例思路11.某种笔记本的单价是5元,买x(x∈{1,2,3,4,5})个笔记本需要y元,试用三种表示法表示函数y=f(x).活动:学生思考函数的表示法的规定.注意本例的设问,此处“y=f(x)”有三种含义,它可以是解析表达式,可以是图象,也可以是对应值表.本题的定义域是有限集,且仅有5个元素.解:这个函数的定义域是数集{1,2,3,4,5},用解析法可将函数y=f(x)表示为y=5x,x∈{1,2,3,4,5}.用列表法可将函数y=f(x)表示为用图象法可将函数y=f(x)表示为图1-2-2-1.图1-2-2-1点评:本题主要考查函数的三种表示法.解析法的特点是:简明、全面地概括了变量间的关系;可以通过解析式求出任意一个自变量的值所对应的函数值,便于用解析式来研究函数的性质,还有利于我们求函数的值域;图象法的特点是:直观形象地表示自变量的变化,相应的函数值变化的趋势,有利于我们通过图象来研究函数的某些性质,图象法在生产和生活中有许多应用,如企业生产图,股市走势图等;列表法的特点是:不需要计算就可以直接看出与自变量的值对应的函数值,列表法在实际生产和生活中也有广泛的应用,如银行利率表、列车时刻表等等.但是并不是所有的函数都能用解析法表示,只有函数值随自变量的变化发生有规律的变化时,这样的函数才可能有解析式,否则写不出解析式,也就不能用解析法表示.例如:张丹的年龄n(n∈N*)每取一个值,那么他的身高y(单位:cm)总有唯一确定的值与之对应,因此身高y是年龄n的函数y=f(n),但是这个函数的解析式不存在,函数y=f(n)不能用解析法来表示.注意:①函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等;②解析法:必须注明函数的定义域,否则使函数解析式有意义的自变量的取值范围是函数的定义域;③图象法:根据实际情境来决定是否连线;④列表法:选取的自变量要有代表性,应能反映定义域的特征.变式训练1.已知函数f(x)在[-1,2]上的图象如图1-2-2-2所示,求f(x)的解析式.图1-2-2-2解:观察图象,知此函数是分段函数,并且在每段上均是一次函数,利用待定系数法求出解析式为:当-1≤x≤0时,f(x)=x+1;当0<x<2时,f(x)=2x -,则有f(x)=⎪⎩⎪⎨⎧≤<-≤≤-+.20,21,01,1x x x x 2.2007山东青岛第一次调研,理13已知2f(x)+f(-x)=3x+2,则f(x)=________.分析:由题意得⎩⎨⎧+=++=+2,-3x f(x)2f(-x)2,3x f(-x)2f(x) 把f(x)和f(-x)看成未知数,解方程即得.答案:3x+32活动:学生思考做学情分析,具体要分析什么?怎么分析?借助什么工具?本题利用表格给出了四个函数,它们分别表示王伟、张城、赵磊的考试成绩及各次考试的班级平均分.由于表格区分三位同学的成绩高低不直观,故采用图象法来表示.做学情分析,具体要分析学习成绩是否稳定,成绩变化趋势.解:把“成绩”y 看成“测试序号”x 的函数,用图象法表示函数y=f(x),如图1-2-2-3所示.图1-2-2-3由图1-2-2-3可看到:王伟同学的数学成绩始终高于班级平均分,学习情况比较稳定而且成绩优秀;张城同学的数学成绩不稳定,总是在班级平均分水平上下波动,而且波动幅度较大;赵磊同学的数学学习成绩呈上升趋势,表明他的数学成绩稳步提高.点评:本题主要考查根据实际情境需要选择恰当的函数表示法的能力,以及应用函数解决实际问题的能力.通过本题可见,图象法比列表法和解析法更能直观反映函数值的变化趋势.注意:本例为了研究学生的学习情况,将离散的点用虚线连接,这样便于研究成绩的变化特点. 变式训练1.函数y=x 2-4x+6,x ∈[1,5)的值域是_________.分析:画出函数的图象,图象上所有点的纵坐标的取值范围就是函数的值域.答案:[2,11)2.将长为a 的铁丝折成矩形,求矩形面积y 关于一边长x 的函数关系式,并求定义域和值域,作出函数的图象.分析:解此题的关键是先把实际问题转化成数学问题,即把面积y 表示为x 的函数,用数学的方法解决,然后再回到实际中去.解:设矩形一边长为x,则另一边长为21(a-2x),则面积y=21(a-2x)x=-x 2+21ax. 又⎩⎨⎧>>0,2x -a 0,x 得0<x<2a ,即定义域为(0,2a ). 由于y=-(x 4a -)2+161a 2≤161a 2, 如图1-2-2-4所示,结合函数的图象得值域为(0,161a 2].图1-2-2-43.2007山东高考样题,文8向高为H 的水瓶中注水,注满为止,如果注水量V 与水深h 的函数关系的图象如图1-2-2-5所示,那么水瓶的形状是()图1-2-2-5 图1-2-2-6分析:要求由水瓶的形状识别容积V 和高度h 的函数关系,突出了对思维能力的考查. 观察图象,根据图象的特点发现:取水深h=2H ,注水量V′>20V , 即水深为一半时,实际注水量大于水瓶总水量的一半.A 中V′<20V ,C 、D 中V′=20V ,故排除A 、C 、D. 答案:B思路2 1.2007宁夏银川一模,理14已知f(x x +-11)=2211xx +-,则f(x)=________. 活动:学生思考函数的解析式表达的含义.设xx +-11=t,利用换元法,转化为求f(t).利用整体思想把xx +-11看成一个整体,即可得函数的解析式.要注意函数f(t)与f(x)是同一个函数. 分析: 可设x x +-11=t,则有x=tt +-11, 所以f(t)=22)11(1)11(1tt t t +-++--=212t t +, 所以f(x)=212x x +. 答案:212x x + 变式训练课本P 26练习1.点评:本题主要考查函数的解析式.已知f [g(x)]=φ(x),求f(x)的解析式时,通常用换元法,其步骤是:①设g(x)=t;②把t 看成常数,解关于x 的方程g(x)=t 得x=h(t);③将x=h(t)代入φ(x),得函数f(t)的解析式;④再用x 替换f(t)的解析式中的t 得函数f(x)的解析式.其实求函数的解析式方法很多,例如方程法:对于已知等式中出现两个不同变量的函数关系式,依据这两个变量的关系,重新建立关于这两个变量的不同等式,利用整体思想,把f(x)和另一个函数看成未知数,解方程组得函数f(x)的解析式.类似于解二元一次方程组,故称为方程法.待定系数法:已知函数的模型求其解析式时,常用待定系数法.2.已知函数f(x)=273++x x . (1)画出函数f(x)的图象;(2)观察图象写出函数的定义域和值域.活动:学生思考函数图象的画法.利用变换法画函数f(x)的图象,利用图象法写出函数的定义域和值域.形如函数y=d cx b ax ++(c≠0,a 2+b 2≠0)的图象均可由反比例函数y=xk 的图象经过平移得到,因此函数y=dcx b ax ++(c≠0,a 2+b 2≠0)的图象形状是双曲线. 解:(1)y=273++x x =2163+++x x =21+x . 将y=x 1的图象向左平移两个单位得y=21+x 的图象,再向上平移三个单位得y=21+x +3的图象.图象如图1-2-2-7所示.图1-2-2-7(2)观察函数的图象图1-2-2-7,可知图象上所有点的横坐标的取值范围是(-∞,-2)∪(-2,+∞),图象上所有点的纵坐标的取值范围是(-∞,3)∪(3,+∞).则函数的定义域是(-∞,-2)∪(-2,+∞),值域是(-∞,3)∪(3,+∞).点评:本题主要考查函数的定义域、值域和图象.画不熟悉的函数的图象,可以变形成由基本函数,利用变换法画出图象,但要注意变形过程是否等价,注意x,y 的变化范围.因此必须熟记基本初等函数的图象,如:正、反比例函数,一次、二次函数的图象,在变换函数的解析式中运用了转化和分类讨论的思想.求函数值域的方法:①图象法,借助于函数值域的几何意义,利用函数的图象求值域;②观察法,对于解析式比较简单的函数,利用常见的结论如x 2≥0,|x|≥0,x≥0等观察出函数的值域;③换元法,利用换元法转化为求常见函数如二次函数的值域等.注意:讨论函数的值域要先考虑函数的定义域,本例中(1)如果忽视函数的定义域,那么会错误地得函数值域为[-1,+∞).避免此类错误的方法是研究函数时要遵守定义域优先的原则.变式训练求下列函数的值域:(1)y=x2-2x(-1≤x≤2);(2)y=x4+1.分析:本题主要考查函数的值域及其求法.(1)借助于函数值域的几何意义,利用函数的图象求值域;(2)观察得x4≥0,得函数的值域,也可以利用换元法转化为求二次函数的值域.(1)解:(图象法)在平面直角坐标系中画出二次函数y=x2-2x(-1≤x≤2)的图象,如图1-2-2-8所示:图1-2-2-8函数y=x2-2x(-1≤x≤2)的图象上所有点的纵坐标的取值范围就是函数的值域,观察图象知函数的值域是[-1,3].(2)解法一:(观察法)函数的定义域是R,则x4≥0,有x4+1≥1,即函数y=x4+1的值域是[1,+∞).解法二:(换元法)函数的定义域是R,设x2=t,则t≥0,则有y=t2+1.利用图象可求得当t≥0时,二次函数y=t2+1的值域是[1,+∞),即函数y=x4+1的值域是[1,+∞).3.车管站在某个星期日保管的自行车和电动车共有3 500辆次,其中电动车保管费是每辆一次0.5元,自行车保管费是每次一辆0.3元.(1)若设自行车停放的辆次数为x,总的保管费收入为y元,试写出y关于x的函数关系式;(2)若估计前来停放的3 500辆次自行车中,电动车的辆次不小于25%,但不大于40%,试求该保管站这个星期日收入保管费总数的范围.活动:让学生审清题意读懂题.求解析式时不要忘记函数的定义域,要考虑自变量的取值必须使解析式有意义.然后再根据解析式列不等式求解.总的保管费=自行车保管费+电动车保管费.解:(1)由题意得y=0.3x+0.5(3500-x)=-0.2x+1750,x∈N*且0≤x≤3500.(2)若电动车的辆次不小于25%,但不大于40%,则3500×(1-40%)≤x≤3 500×(1-25%),即2100≤x≤2 625,画出函数y=-0.2x+1750(2 100≤x≤2 625)的图象,可得函数y=-0.2x+1750(2100≤x≤2625)的值域是[1225,1330],即收入在1225元至1330元之间.点评:本题主要考查函数的解析式和值域,以及应用函数知识解决实际问题的能力.解函数应用题的步骤是①审清题意读懂题;②恰当设未知数;③列出函数解析式,并指明定义域;④转化为函数问题,并解决函数问题;⑤将数学问题的答案还原为实际答案.变式训练2007山东实验中学级第一次诊断性测试,文13水池有2个进水口,1个出水口,每个水口进出水的速度如图1-2-2-9甲、乙所示.某天0点到6点,该水池的蓄水量如图1-2-2-9丙所示(至少打开一个水口).图1-2-2-9给出以下三个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水;其中一定正确的论断是( )A.①B.①②C.①③D.①②③分析:由图1229甲可看出,如果进水口与出水口同时打开,每个进水口的速度为出水口速度的一半,即v 进水=21v 出水;由图丙可看出在0点到3点之间蓄水量以速度2匀速增加,所以在此时间段内一定是两个进水口均打开,出水口关闭,故①正确.由图丙可看出在3点到4点之间蓄水量以速度1匀速减少,所以在此时间段内一定是一个进水口打开,出水口打开,故②不正确.由图丙可看出在4点到6点之间蓄水量不变,所以在此时间段内一定是两个进水口打开,出水口打开,或者两个进水口关闭,出水口关闭,故③不正确.综上所述论断仅有①正确.答案:A知能训练课本P 23练习2、3.【补充练习】1.等腰三角形的周长是20,底边长y 是一腰长x 的函数,则( )A.y=10-x(0<x≤10)B.y=10-x(0<x<10)C.y=20-2x(5≤x≤10)D.y=20-2x(5<x<10)分析:根据等腰三角形的周长列出函数解析式.∵2x+y=20,∴y=20-2x.则20-2x>0.∴x<10.由构成三角形的条件(两边之和大于第三边)可知2x>20-2x,得x>5,所以函数的定义域为{x|5<x<10}.所以y=20-2x(5<x<10).答案:D2.2007北京四中第一次统测,文4定义在R 上的函数y=f(x)的值域为[a,b],则y=f(x+1)的值域为( )A.[a,b]B.[a+1,b+1]C.[a-1,b-1]D.无法确定分析:将函数y=f(x)的图象向左平移一个单位得函数y=f(x+1)的图象,由于定义域均是R ,则这两个函数图象上点的纵坐标的取值范围相同,所以y=f(x+1)的值域也是[a,b].答案:A3.2006陕西高考,文2函数f(x)=211x+(x ∈R )的值域是( ) A.(0,1) B.(0,1] C.[0,1) D.[0,1] 分析:(观察法)定义域是R ,由于x 2≥0,则1+x 2≥1,从而0<211x +≤1. 答案:B拓展提升问题:变换法画函数的图象都有哪些?解答:变换法画函数的图象有三类:1.平移变换:(1)将函数y=f(x)的图象向左平移a(a>0)个单位得函数y=f(x+a)的图象;(2)将函数y=f(x)的图象向右平移a(a>0)个单位得函数y=f(x-a)的图象;(3)将函数y=f(x)的图象向上平移b(b>0)个单位得函数y=f(x)+b的图象;(4)将函数y=f(x)的图象向下平移b(b>0)个单位得函数y=f(x)-b的图象.简记为“左加(+)右减(-),上加(+)下减(-)”.2.对称变换:(1)函数y=f(x)与函数y=f(-x)的图象关于直线x=0即y轴对称;(2)函数y=f(x)与函数y=-f(x)的图象关于直线x=0即x轴对称;(3)函数y=f(x)与函数y=-f(-x)的图象关于原点对称.3.翻折变换:(1)函数y=|f(x)|的图象可以将函数y=f(x)的图象位于x轴下方部分沿x轴翻折到x轴上方,去掉原x轴下方部分,并保留y=f(x)的x轴上方部分即可得到.(2)函数y=f(|x|)的图象可以将函数y=f(x)的图象y轴右边部分翻折到y轴左边替代原y轴左边部分并保留y=f(x)在y轴右边部分图象即可得到.函数的图象是对函数关系的一种直观、形象的表示,可以直观地显示出函数的变化状况及其特性,它是研究函数性质时的重要参考,也是运用数形结合思想研究和运用函数性质的基础.另一方面,函数的一些特性又能指导作图,函数与图象是同一事物的两个方面,是函数的不同表现形式.函数的图象可以比喻成人的相片,观察函数的图象可以解决研究其性质,当然,也可以由函数的性质确定函数图象的特点.借助函数的图象来解决函数问题,函数的图象问题是高考的热点之一,应引起重视.课堂小结本节课学习了:函数的三种表示方法,在具体的实际问题中能够选用恰当的表示法来表示函数.作业课本P24习题1.2A组7、8、9.设计感想本节教学设计容量较大,尽量借助于信息技术来完成.本节的设计重点是函数的三种表示方法,提出了表示法的应用,特别是用图象法求函数的值域,并对求函数值域的方法进行了总结以满足高考的要求.(设计者:张新军)。