高三数学上学期第一次月考试题 理2

合集下载

山西省朔州市怀仁市第一中学校等2024-2025学年高三上学期第一次月考 数学试题[含答案]

山西省朔州市怀仁市第一中学校等2024-2025学年高三上学期第一次月考 数学试题[含答案]

2024~2025学年上学期怀仁一中高三年级第一次月考数学全卷满分150分,考试时间120分钟.注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将条形码粘贴在答题卡上的指定位置.2.请按题号顺序在答题卡上各题目的答题区域内作答,写在试卷、草稿纸和答题卡上的非答题区域均无效.3.选择题用2B 铅笔在答题卡上把所选答案的标号涂黑;非选择题用黑色签字笔在答题卡上作答;字体工整,笔迹清楚.4.考试结束后,请将试卷和答题卡一并上交.5.本卷主要考查内容:集合与常用逻辑用语,不等式,函数,导数.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则(){}28120,{14}A x x xB x x =-+<=∈<Z ∣∣ A B ⋂=A.B.C.D.{}1,2{}3,4{}3∅2.已知,则的大小关系为( )121311log ,ln ,e 22a b c ===,,a b c A. B.a b c <<a c b <<C.D.b a c <<b c a<<3.函数的图象大致为( )()2cos e e x xx xf x -+=-A.B.C.D.4.函数的一个零点所在的区间是( )()()1ln 2f x x x =-A.B.C.D.()0,1()1,2()2,3()3,45.已知函数是定义域为的奇函数,当时,.若,()f x R 0x ()()2f x x x =+()()3370f m f m ++->则的取值范围为( )m A.B.C.D.(),0∞-()0,∞+(),1∞-()1,∞+6.已知条件,条件,若是的必要而不充分条件,则实()2:log 12p x +<()22:210q x a x a a -+++ p q 数的取值范围为( )a A.B.C.D.(),2∞-()1,∞-+()1,2-[]2,87.在日常生活中,我们发现一杯热水放在常温环境中,随时间的推移会逐渐逐渐变凉,物体在常温环境下的温度变化有以下规律:如果物体的初始温度为,则经过一定时间,即分钟后的温度满足T t T 称为半衰期,其中是环境温度.若,现有一杯的热水降至()01,2t ha a T T T T h ⎛⎫-=- ⎪⎝⎭a T 25C a T =80C 大约用时1分钟,那么水温从降至大约还需要( )(参考数据:75C 75C 45C )lg20.30,lg11 1.04≈≈A.8分钟 B.9分钟C.10分钟D.11分钟8.设函数,其中,若存在唯一的整数,使得,则的取值范围是()e x f x x ax a=-+1a >0x ()00f x <a ()A. B. C. D.(21,2e ⎤⎦33e 1,2⎛⎤ ⎥⎝⎦343e 4e ,23⎛⎤ ⎥⎝⎦323e 2e ,2⎛⎤ ⎥⎝⎦二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列函数在定义域内不是单调函数的是( )A. B.()e xf x x =()ln f x x x=C.D.()e x f x x =-()cos 2f x x x=-10.已知正实数满足,则下列说法正确的是(),m n 1m n +=A.的最小值是411m n +B.的最大值是22m n +12+的最大值是1211.已知函数,则下列说法正确的是( )()ln f x x x a=--A.若有两个零点,则()f x 1a >B.若无零点,则()f x 1a C.若有两个零点,则()f x 12,x x 121x x <D.若有两个零点,则()f x 12,x x 122x x +>三、填空题:本题共3小题,每小题5分,共15分.12.已知,其中是其导函数,则__________.()()421f x x f x '=--()f x '()()2222f f ='+-'13.若,则的最小值为__________.,,0a b ab ∈>R 442a b ab ++14.已知函数若存在实数满足,且()32log ,03,(4),3,x x f x x x ⎧<<=⎨-⎩ 1234,,,x x x x 1234x x x x <<<,则的取值范围是__________.()()()()1234f x f x f x f x ===()()341233x x x x --四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程及演算步骤.15.(本小题满分13分)已知函数.()()232f x x a x b=--+(1)若关于的不等式的解集为,求实数的值;x ()0f x <()2,3-,a b (2)若函数在区间上单调递增,求实数的取值范围.()f x 10,3∞⎡⎫-+⎪⎢⎣⎭a 16.(本小题满分15分)已知命题:“”为假命题,实数的所有取值构成的集合为.p 2,10x x ax ∃∈-+=R a A (1)求集合;A (2)已知集合,若是的必要不充分条件,求实数的取值范围.{121}B xm x m =+<<+∣t A ∈t B ∈m17.(本小题满分15分)已知函数(为实常数).()321x f x a =-+a (1)若函数为奇函数,求的值;()f x a (2)在(1)的条件下,对任意,不等式恒成立,求实数的最大值.[]1,6x ∈()2x uf xu 18.(本小题满分17分)已知函数.()ln 1a f x x x =+-(1)讨论函数的单调性;()f x (2)若函数有两个零点,且.证明:.()f x 12,x x 12x x >12121x x a +>19.(本小题满分17分)已知函数.()33f x x x=-(1)求函数在区间上的值域;()f x 32,2⎡⎤-⎢⎥⎣⎦(2)曲线在点处的切线也是曲线的切线,求实数的取值范围.()y f x =()(),P m f m 24y x a =-a2024~2025学年上学期怀仁一中高三年级第一次月考·数学参考答案、提示及评分细则1.B 因为,所以.{}{}28120{26},{14}2,3,4A x x x x x B x x =-+<=<<=∈<=Z ∣∣∣ {}3,4A B ⋂=故选B.2.C 因为,所以.故选C.1213311log log 2,01,ln ln20,e 122a a b c ==<<==-<=>c a b >>3.A 由,可知函数为奇函数,又由时,,有()()2cos e e x x x xf x f x -+==--()f x 01x < cos 0x >,可得;当时,,有,故当时,,可2cos 0x x +>()0f x >1x >21x >2cos 0x x +>0x >()0f x >知选项A 正确.4.B 因为,在上是连续函数,且,即在上()()1ln 2f x x x =-()0,∞+()2110f x x x =+>'()f x ()0,∞+单调递增,,所以,所以在上存在一()()11ln210,2ln402f f =-<=->()()120f f ⋅<()f x ()1,2个零点.故选B.5.D 当时,的对称轴为,故在上单调递增.函数在处连续,又0x ()f x 1x =-()f x [)0,∞+0x =是定义域为的奇函数,故在上单调递增.因为,由()f x R ()f x R ()()f x f x -=-,可得,又因为在上单调递增,所以()()3370f m f m ++->()()373f m f m +>-()f x R ,解得.故选D.373m m +>-1m >6.C 由,得,所以,()2log 12x +<13x -<<:13p x -<<由,得,所以,()22210x a x a a -+++ 1a x a + :1q a x a + 因为是的必要而不充分条件,p q 所以⫋,解得,故选C.{}1x a x a +∣ {13}x x -<<∣12a -<<7.C 根据题意得,则,所以()11111075258025,2211hh ⎛⎫⎛⎫-=-= ⎪⎪⎝⎭⎝⎭()1452575252t h⎛⎫-=- ⎪⎝⎭,所以,两边取常用对数得1120502th ⎡⎤⎛⎫⎢⎥=⨯ ⎪⎢⎥⎝⎭⎣⎦102115t ⎛⎫= ⎪⎝⎭,故选C.2lg102lg2lg52lg2120.315lg lg ,10101151lg111lg111 1.04lg 11t t --⨯-====≈=---8.D 令,显然直线恒过点,()()e ,,1x g x x h x ax a a ==->()h x ax a=-()1,0A 则“存在唯一的整数,使得”等价于“存在唯一的整数使得点在直线0x ()00f x <0x ()()00,x g x 下方”,,当时,,当时,,即()h x ax a =-()()1e xg x x =+'1x <-()0g x '<1x >-()0g x '>在上递减,在上递增,()g x (),1∞--()1,∞-+则当时,,当时,,1x =-()min 1()1e g x g =-=-0x ()1,0e g x ⎡⎤∈-⎢⎥⎣⎦而,()()01h x h a =-<- 即当时,不存在整数使得点在直线下方,0x 0x ()()00,x g x ()h x ax a =-当时,过点作函数图象的切线,设切点为,0x >()1,0A ()e xg x x =(),e ,0t P t t t >则切线方程为,()()e 1e t t y t t x t -=+-而切线过点,即有,整理得,而,()1,0A ()()e 1e 1t tt t t -=+-210t t --=0t >解得,因,()1,2t =()()1e 01g h =>=又存在唯一整数使得点在直线下方,则此整数必为2,0x ()()00,x g x ()h x ax a =-即存在唯一整数2使得点在直线下方,()()2,2g ()h x ax a =-因此有解得,()()()()23222e ,333e 2,g h a g h a ⎧<⎧<⎪⇔⎨⎨⎪⎩⎩ 323e 2e 2a < 所以的取值范围是.故选D.a 323e 2e ,2⎛⎤⎥⎝⎦9.ABC 对于选项D ,因为,所以在定义域内恒成立,所以选项D 不合题意;()sin 2f x x =--'()0f x '<其它选项的导函数在各自的定义域内不恒小于(大于)或等于0.10.ACD 正实数满足,当且仅,m n ()11111,224n m m n m n m n m n m n ⎛⎫+=+=++=+++= ⎪⎝⎭ 当时等号成立,故选项A 正确;12m n ==,故的最小值是,故选项B 错误;222()122mn m n ++= 22mn +12,故选项C正确;212m n =++=+,当且仅当时等号成立,故选项D 正确.1m n += 1212m n ==11.ACD 由可得,令,其中,()0f x =ln a x x =-()lng x x x=-0x >所以直线与曲线的图象有两个交点,y a =()y g x =在上单调递减,在上单调递增,()()111,x g x y g x x x -=-=='()0,1()1,∞+图象如图所示.当时,函数与的图象有两个交点,选项A 正确;1a >y a =()y g x =当时,函数与的图象有一个交点,选项B 错误;1a =y a =()y g x =由已知可得两式作差可得,所以,由对数平均不等式1122ln ,ln ,x xa x x a -=⎧⎨-=⎩1212ln ln x x x x -=-12121lnln x x x x -=-,则,选项C正确;121212ln ln 2x x x xx x -+<<-1<121x x <,则,选项D 正确.1212x x +<122x x +>12.0 因为,显然导函数为奇函数,所以.()()3412fx x f x'=--'()()22220f f -'+='13.4 因为,所以,0ab >44332222224a b a b ab ab b a ab ab ab ++=++=+⨯=当且仅当,即时等号成立.331,a b ab ba ab ==221a b ==14.因为.()0,1()()()()12341234,f x f x f x f x x x x x ===<<<由图可知,,即,且,3132log log x x -=3412431,4,82x x x x x x +===-334x <<所以.()()()()()()342343434333312333339815815x x x x x x x x x x x x x x --=--=-++=--=-+-在上单调递增,的取值范围是.233815y x x =-+- ()3,4()()3433x x ∴--()0,115.解:(1)由关于的不等式的解集为,x ()0f x <()2,3-可得关于的一元二次方程的两根为和3,x ()0f x =2-有解得3223,23,a b -=-+⎧⎨=-⨯⎩1,6,a b =⎧⎨=-⎩当时,,符合题意,1,6a b ==-()()()2632f x x x x x =--=-+故实数的值为的值为;a 1,b 6-(2)二次函数的对称轴为,()y f x =322a x -=可得函数的减区间为,增区间为,()f x 32,2a ∞-⎛⎤- ⎥⎝⎦32,2a ∞-⎛⎫+ ⎪⎝⎭若函数在上单调递增,必有,解得,()f x 10,3∞⎡⎫-+⎪⎢⎣⎭321023a -- 149a - 故实数的取值范围为.a 14,9∞⎛⎤--⎥⎝⎦16.解:(1)由命题为假命题,关于的一元二次方程无解,p x 210x ax -+=可得,解得,22Δ()440a a =--=-<22a -<<故集合;()2,2A =-(2)由若是的必要不充分条件,可知⫋,t A ∈t B ∈B A ①当时,可得,满足⫋;121m m ++ 0,m B =∅ B A②当时,可得,若满足⫋,必有(等号不可能同时成立),121m m +<+0m >B A 12,212,0,m m m +-⎧⎪+⎨⎪>⎩解得,102m <由①②可知,实数的取值范围为.m 1,2∞⎛⎤-⎥⎝⎦17.解:(1)因为函数是奇函数,,()f x ()3322121x x xf x a a -⋅-=-=-++,解得()()33222302121xx x f x f x a a ⋅+-=--=-=++3;2a =(2)因为,由不等式,得,()33221x f x =-+()2x u f x 3322221xx xu ⋅⋅-+ 令(因为,故,[]213,65xt +=∈[]1,6x ∈()()3133291222t u t t tt -⎛⎫--=+- ⎪⎝⎭由于函数在上单调递增,所以.()32922t t t ϕ⎛⎫=+-⎪⎝⎭[]3,65()min ()31t ϕϕ==因此,当不等式在上恒成立时,.()2x uf x[]1,6x ∈max 1u =18.解:(1)的定义域为,()f x ()()2210,,a x a f x x x x ∞'-+=-=当时,在上恒大于0,所以在上单调递增,0a ()2x af x x -='()0,∞+()f x ()0,∞+当时,,0a >()20,x af x x a x -==='当时,,当时,.0x a <<()0f x '<x a >()0f x '>所以函数在上单调递减,在上单调递增;()f x ()0,a (),a ∞+(2)由题可得,两式相减可得,,1212ln 10,ln 10a ax x x x +-=+-=()121212ln ln x x x x a x x -=-要证,即证,12121x x a +>()1212121212ln ln x x x x x x x x -+>-即证,即证,1212122ln ln x x x x x x -+>-112122121ln x x xx x x -+>令,则,即证,121x t x =>12ln 0x x >1ln 21t t t ->+令,则,()()1ln 121t g t t t t -=->+()22213410(21)(21)t t g t t t t t ++='-=>++所以在上单调递增,所以,所以,故原命题成立.()g t ()1,∞+()()10g t g >=1ln 21t t t ->+19.解:(1),令,可得,可得函数的增区间为()233f x x =-'()0f x '<11x -<<()f x ()(),1,1,,∞∞--+可得函数在区间上单调递增,在上单调递减,()f x []32,1,1,2⎡⎤--⎢⎥⎣⎦()1,1-由,()()()3333912,12,22,32228f f f f ⎛⎫⎛⎫=--=-=-=-⨯=-⎪ ⎪⎝⎭⎝⎭(2)由曲线在点处的切线方程为,整理为()y f x =P ()()()32333y m m m x m --=--()22332y m x m =--联立方程消去后整理为,()232332,4,y m x m y x a ⎧=--⎪⎨=-⎪⎩y ()22343320x m x m a --+-=可得()()223Δ331620,m m a =---=整理为,43216932189a m m m -=--+令,有,()432932189g x x x x =--+()()()3236963612313g x x x x x x x '=--=+-令,可得或,()0g x '>103x -<<3x >可得函数的增区间为,减区间为,()g x ()1,0,3,3∞⎛⎫-+ ⎪⎝⎭()1,,0,33∞⎛⎫-- ⎪⎝⎭由,可得,()12243288,327g g ⎛⎫=--= ⎪⎝⎭min ()288g x =-有,可得16288a -- 18a。

高三数学上学期第一次月考试题含解析

高三数学上学期第一次月考试题含解析

一中2021-2021学年第一学期高三年级阶段性检测〔一〕创作人:历恰面日期:2020年1月1日数学学科一、填空题:本大题一一共14小题,每一小题5分,一共70分.,,那么___________.【答案】【解析】【分析】此题是集合A与集合B取交集。

【详解】因为,所以【点睛】交集是取两集合都有的元素。

是虚数单位)是纯虚数,那么实数的值是___________.【答案】-2【解析】【分析】此题考察的是复数的运算,可以先将复数化简,在通过复数是纯虚数得出结果。

【详解】,因为是纯虚数,所以。

【点睛】假如复数是纯虚数,那么。

3.“〞是“直线与直线互相垂直〞的___________条件〔填“必要不充分〞“充分不必要〞“充要〞或者“既不充分又不必要〞〕.【答案】充分不必要【解析】【分析】可以先通过“直线与直线互相垂直〞解得的取值范围,再通过与“〞进展比照得出结论。

【详解】因为直线与直线互相垂直,所以两直线斜率乘积为或者者一条直线与轴平行、一条与轴平行,所以或者者,解得或者者,由“〞可以推出“或者者〞,但是由“或者者〞推不出“〞,所以为充分不必要条件。

【点睛】在判断充要条件的时候,可以先将“假设A那么B〞中的A和B化为最简单的数集形式,在进展判断。

的递增区间是___________.【答案】【解析】【分析】此题可以先通过的取值范围来将函数分为两段函数,再依次进展讨论。

【详解】当时,,开口向下,对称轴为,所以递增区间是,当时,,开口向上,对称轴是,所以在定义域内无递增区间。

综上所述,递增区间是。

【点睛】在遇到带有绝对值的函数的时候,可以根据的取值范围来将函数分为数段函数,在依次求解。

5.按如下图的程序框图运行后,输出的结果是63,那么判断框中的整数的值是___________.【答案】5【解析】【分析】此题中,,可根据这几个式子依次推导出每一个A所对应的S的值,最后得出结果。

【详解】因为当时输出结果,所以【点睛】在计算程序框图时,理清每一个字母之间的关系,假如次数较少的话可以依次罗列出每一步的运算结果,最后得出答案。

湖南省长沙市2024届高三上学期月考(一)数学试题(解析版)

湖南省长沙市2024届高三上学期月考(一)数学试题(解析版)

大联考2024届高三月考试卷(一)数学(答案在最后)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页.时量120分钟,满分150分.第Ⅰ卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}2|log 4M x x =<,{}|21N x x =≥,则M N ⋂=()A.{}08x x ≤< B.182xx ⎧⎫≤<⎨⎬⎩⎭C.{}216x x ≤< D.1162xx ⎧⎫≤<⎨⎬⎩⎭【答案】D 【解析】【分析】直接解出集合,M N ,再求交集即可.【详解】{}{}2|log 4|016M x x x x =<=<<,1|2N x x ⎧⎫=≥⎨⎩⎭,则1162M N x x ⎧⎫⋂=≤<⎨⎬⎩⎭.故选:D.2.记等差数列{a n }的前n 项和为S n .若a 6=16,S 5=35,则{a n }的公差为()A.3 B.2C.-2D.-3【答案】A 【解析】【分析】由题得a 3=7,设等差数列的公差为d ,解方程组11+27516a d a d =⎧⎨+=⎩即得解.【详解】解:由等差数列性质可知,S 5=152a a +×5=5a 3=35,解得a 3=7,设等差数列的公差为d ,所以11+27516a d a d =⎧⎨+=⎩,解之得3d =.故选:A.3.已知1z ,2z 是关于x 的方程2220x x +=-的两个根.若11i z =+,则2z =()A.2B.1C.D.2【答案】C 【解析】【分析】由1z ,2z 是关于x 的方程2220x x +=-的两个根,由韦达定理求出2z ,再由复数的模长公式求解即可.【详解】法一:由1z ,2z 是关于x 的方程2220x x +=-的两个根,得122z z +=,所以()21221i 1i z z =-=-+=-,所以21i z =-=法二:由1z ,2z 是关于x 的方程2220x x +=-的两个根,得122z z ⋅=,所以21221i z z ==+,所以2221i 1i z ====++.故选:C .4.函数sin exx x y =的图象大致为()A.B.C.D.【答案】D 【解析】【分析】分析函数sin exx x y =的奇偶性及其在()0,π上的函数值符号,结合排除法可得出合适的选项.【详解】令()sin exx x f x =,该函数的定义域为R ,()()()sin sin eexxx x x x f x f x ----===,所以,函数sin exx x y =为偶函数,排除AB 选项,当0πx <<时,sin 0x >,则sin 0exx x y =>,排除C 选项.故选:D.5.已知220x kx m +-<的解集为()(),11t t -<-,则k m +的值为()A.1B.2C.-1D.-2【答案】B 【解析】【分析】由题知=1x -为方程220x kx m +-=的一个根,由韦达定理即可得出答案.【详解】因为220x kx m +-<的解集为()(),11t t -<-,所以=1x -为方程220x kx m +-=的一个根,所以2k m +=.故选:B .6.古代数学家刘徽编撰的《重差》是中国最早的一部测量学著作,也为地图学提供了数学基础,根据刘徽的《重差》测量一个球体建筑的高度,已知点A 是球体建筑物与水平地面的接触点(切点),地面上B ,C 两点与点A 在同一条直线上,且在点A 的同侧,若在B ,C 处分别测量球体建筑物的最大仰角为60°和20°,且BC =100m ,则该球体建筑物的高度约为()(cos10°≈0.985)A.45.25mB.50.76mC.56.74mD.58.60m【答案】B 【解析】【分析】数形结合,根据三角函数解三角形求解即可;【详解】设球的半径为R ,,tan10R AB AC ==,100tan10RBC =-=- ,25250.760.985R R ==故选:B.7.已知定义域是R 的函数()f x 满足:x ∀∈R ,()()40f x f x ++-=,()1f x +为偶函数,()11f =,则()2023f =()A.1B.-1C.2D.-3【答案】B 【解析】【分析】根据对称性可得函数具有周期性,根据周期可将()()()2023311f f f ==-=-.【详解】因为()1f x +为偶函数,所以()f x 的图象关于直线1x =对称,所以()()2=f x f x -,又由()()40f x f x ++-=,得()()4f x f x +=--,所以()()()846f x f x f x +=---=-+,所以()()2f x f x +=-,所以()()4f x f x +=,故()f x 的周期为4,所以()()()2023311f f f ==-=-.故选:B .8.如今中国被誉为基建狂魔,可谓是逢山开路,遇水架桥.公路里程、高铁里程双双都是世界第一.建设过程中研制出用于基建的大型龙门吊、平衡盾构机等国之重器更是世界领先.如图是某重器上一零件结构模型,中间最大球为正四面体ABCD 的内切球,中等球与最大球和正四面体三个面均相切,最小球与中等球和正四面体三个面均相切,已知正四面体ABCD 棱长为,则模型中九个球的表面积和为()A.6πB.9πC.31π4D.21π【答案】B 【解析】【分析】作出辅助线,先求出正四面体的内切球半径,再利用三个球的半径之间的关系得到另外两个球的半径,得到答案.【详解】如图,取BC 的中点E ,连接DE ,AE ,则CE BE ==,AE DE ===,过点A 作AF ⊥底面BCD ,垂足在DE 上,且2DF EF =,所以DF EF ==4AF ===,点O 为最大球的球心,连接DO 并延长,交AE 于点M ,则DM ⊥AE ,设最大球的半径为R ,则OF OM R ==,因为Rt AOM △∽Rt AEF ,所以AO OMAE EF ==1R =,即1OM OF ==,则413AO =-=,故1sin 3OM EAF AO ∠==设最小球的球心为J ,中间球的球心为K ,则两球均与直线AE 相切,设切点分别为,H G ,连接,HJ KG ,则,HJ KG 分别为最小球和中间球的半径,长度分别设为,a b ,则33,33AJ HJ a AK GK b ====,则33JK AK AJ b a =-=-,又JK a b =+,所以33b a a b -=+,解得2b a =,又33OK R b AO AK b =+=-=-,故432b R =-=,解得12b =,所以14a =,模型中九个球的表面积和为2224π4π44π44π4ππ9πR b a +⨯+⨯=++=.故选:B【点睛】解决与球有关的内切或外接的问题时,解题的关键是确定球心的位置.对于外切的问题要注意球心到各个面的距离相等且都为球半径;对于球的内接几何体的问题,注意球心到各个顶点的距离相等,解题时要构造出由球心到截面圆的垂线段、小圆的半径和球半径组成的直角三角形,利用勾股定理求得球的半径二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列命题为真命题的是()A.若2sin 23α=,则21cos 46πα⎛⎫+= ⎪⎝⎭B.函数()2sin 23f x x π⎛⎫=+ ⎪⎝⎭的图象向右平移6π个单位长度得到函数()2sin 26g x x π⎛⎫=+ ⎪⎝⎭的图象C.函数()2sin cos cos 26f x x x x π⎛⎫=+- ⎪⎝⎭的单调递增区间为(),36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦D.()22tan 1tan xf x x =-的最小正周期为2π【答案】AC 【解析】【分析】利用二倍角公式和诱导公式可求得2cos 4πα⎛⎫+⎪⎝⎭,知A 正确;根据三角函数平移变换可求得()2sin 2g x x =,知B 错误;利用三角恒等变换公式化简得到()f x 解析式,利用整体对应的方式可求得单调递增区间,知C 正确;利用特殊值判断D 错误.【详解】对于A ,21cos 21sin 212cos 4226παπαα⎛⎫++ ⎪-⎛⎫⎝⎭+=== ⎪⎝⎭,A 正确;对于B ,()f x 向右平移6π个单位长度得:2sin 26f x x π⎛⎫-= ⎪⎝⎭,即()2sin 2g x x =,B 错误;对于C ,()13sin 2cos 2sin 222222226f x x x x x x x π⎛⎫=++=+=+ ⎪⎝⎭,则由222262k x k πππππ-+≤+≤+,Z k ∈得:36k x k ππππ-+≤≤+,Z k ∈,()f x \的单调递增区间为(),36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,C 正确;对于D ,()π002f f ⎛⎫= ⎪⎝⎭,无意义,∴2π不是函数的周期,D 错误.故选:AC.10.如图所示,该几何体由一个直三棱柱111ABC A B C -和一个四棱锥11D ACC A -组成,12AB BC AC AA ====,则下列说法正确的是()A.若AD AC ⊥,则1AD A C⊥B.若平面11AC D 与平面ACD 的交线为l ,则AC //l C.三棱柱111ABC A B C -的外接球的表面积为143πD.当该几何体有外接球时,点D 到平面11ACC A 的最大距离为3-【答案】BD 【解析】【分析】根据空间线面关系,结合题中空间几何体,逐项分析判断即可得解.【详解】对于选项A ,若AD AC ⊥,又因为1AA ⊥平面ABC ,但是D 不一定在平面ABC 上,所以A 不正确;对于选项B ,因为11//A C AC ,所以//AC 平面11AC D ,平面11AC D ⋂平面ACD l =,所以//AC l ,所以B 正确;对于选项C ,取ABC ∆的中心O ,111A B C ∆的中心1O ,1OO 的中点为该三棱柱外接球的球心,所以外接球的半径3R ==,所以外接球的表面积为22843R ππ=,所以C 不正确;对于选项D ,该几何体的外接球即为三棱柱111ABC A B C -的外接球,1OO 的中点为该外接球的球心,该球心到平面11ACC A 的距离为3,点D 到平面11ACC A 的最大距离为33R -=,所以D 正确.故选:BD11.同学们,你们是否注意到,自然下垂的铁链;空旷的田野上,两根电线杆之间的电线;峡谷的上空,横跨深洞的观光索道的钢索.这些现象中都有相似的曲线形态.事实上,这些曲线在数学上常常被称为悬链线.悬链线的相关理论在工程、航海、光学等方面有广泛的应用.在恰当的坐标系中,这类函数的表达式可以为()e e x x f x a b -=+(其中a ,b 是非零常数,无理数e 2.71828=⋅⋅⋅),对于函数()f x 以下结论正确的是()A.a b =是函数()f x 为偶函数的充分不必要条件;B.0a b +=是函数()f x 为奇函数的充要条件;C.如果0ab <,那么()f x 为单调函数;D.如果0ab >,那么函数()f x 存在极值点.【答案】BCD 【解析】【分析】根据奇偶函数的定义、充分条件和必要条件的定义即可判断AB ;利用导数,分类讨论函数的单调性,结合极值点的概念即可判断CD.【详解】对于A ,当a b =时,函数()f x 定义域为R 关于原点对称,()()e e =x x f x a b f x --=+,故函数()f x 为偶函数;当函数()f x 为偶函数时,()()=0f x f x --,故()()0e e x xa b b a --+-=,即()()2e =xa b a b --,又2e 0x >,故a b =,所以a b =是函数()f x 为偶函数的充要条件,故A 错误;对于B ,当0a b +=时,函数()f x 定义域为R 关于原点对称,()()=e e ()()=0x x f x f x a b a b -+-+++,故函数()f x 为奇函数,当函数()f x 为奇函数时,()()=e e ()()=0xxf x f x a b a b -+-+++,因为e 0x >,e 0x ->,故0a b +=.所以0a b +=是函数()f x 为奇函数的充要条件,故B 正确;对于C ,()=e e x xa f xb --',因为0ab <,若0,0a b ><,则()e e0=xxa xb f -->'恒成立,则()f x 为单调递增函数,若0,0a b <>则()e e0=xxa xb f --<'恒成立,则()f x 为单调递减函数,故0ab <,函数()f x 为单调函数,故C 正确;对于D ,()2e e e ==e x xxxa ba b f x ---',令()=0f x '得1=ln 2bx a,又0ab >,若0,0a b >>,当1,ln 2b x a ⎛⎫∈-∞ ⎪⎝⎭,()0f x '<,函数()f x 为单调递减.当1ln ,2b x a ⎛⎫∈+∞⎪⎝⎭,()0f x ¢>,函数()f x 为单调递增.函数()f x 存在唯一的极小值.若0,0a b <<,当1ln2b x a ⎛⎫∈-∞ ⎪⎝⎭,,()0f x ¢>,函数()f x 为单调递增.当1ln ,2b x a ⎛⎫∈+∞⎪⎝⎭,()0f x '<,函数()f x 为单调递减.故函数()f x 存在唯一的极大值.所以函数存在极值点,故D 正确.故答案为:BCD.12.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,且满足条件11a >,202220231a a >⋅,()()20222023110a a -⋅-<,则下列选项正确的是()A.{}n a 为递减数列B.202220231S S +<C.2022T 是数列{}Tn 中的最大项D.40451T >【答案】AC 【解析】【分析】根据题意先判断出数列{}n a 的前2022项大于1,而从第2023项开始都小于1.再对四个选项一一验证:对于A :利用公比的定义直接判断;对于B :由20231a <及前n 项和的定义即可判断;对于C :前n 项积为nT 的定义即可判断;对于D :先求出4045T 40452023a =,由20231a <即可判断.【详解】由()()20222023110a a -⋅-<可得:20221a -和20231a -异号,即202220231010a a ->⎧⎨-<⎩或202220231010a a -<⎧⎨->⎩.而11a >,202220231a a >⋅,可得2022a 和2023a 同号,且一个大于1,一个小于1.因为11a >,所有20221a >,20231a <,即数列{}n a 的前2022项大于1,而从第2023项开始都小于1.对于A :公比202320221a q a =<,因为11a >,所以11n n a a q -=为减函数,所以{}n a 为递减数列.故A 正确;对于B :因为20231a <,所以2023202320221a S S =-<,所以202220231S S +>.故B 错误;对于C :等比数列{}n a 的前n 项积为n T ,且数列{}n a 的前2022项大于1,而从第2023项开始都小于1,所以2022T 是数列{}Tn 中的最大项.故C 正确;对于D :40451234045T a a a a = ()()()240441111a a q a q a q = 404512340441a q +++= 4045202240451a q ⨯=()404520221a q =40452023a =因为20231a <,所以404520231a <,即40451T <.故D 错误.故选:AC第Ⅱ卷三、填空题:本题共4小题,每小题5分,共20分.13.已知(2,),(3,1)a b λ=-=,若()a b b +⊥ ,则a = ______.【答案】【解析】【分析】根据题意求得(1,1)a b λ+=+,结合向量的数量积的运算公式求得λ的值,得到a的坐标,利用向量模的公式,即可求解.【详解】因为(2,),(3,1)a b λ=-= ,可得(1,1)a b λ+=+,又因为()a b b +⊥,可得()(1,1)(3,1)310b b a λλ=+⋅=++=⋅+ ,解得4λ=-,所以(2,4)a =--,所以a ==故答案为:14.已知函数51,2()24,2xx f x x x ⎧⎛⎫-≤⎪ ⎪=⎨⎝⎭⎪->⎩,则函数()()g x f x =-的零点个数为______.【答案】3【解析】【分析】令()0g x =得()f x =,根据分段函数性质可在同一直角坐标系中作出()f x,y =的大致图象,由图象可知,函数()y f x =与y =的图象有3个交点,即可得出答案.【详解】令()0g x =得()f x =,可知函数()g x 的零点个数即为函数()f x与y =的交点个数,在同一直角坐标系中作出()f x,y =由图象可知,函数()y f x =与y =的图象有3个交点,即函数()g x 有3个零点,故答案为:3.15.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则平面α截此正方体所得截面面积的最大值为______.【答案】4【解析】【分析】利用正方体的结构特征,判断平面α所在的位置,然后求得截面面积的最大值即可.【详解】根据相互平行的直线与平面所成的角是相等的,可知在正方体1111ABCD A B C D -中,平面11AB D 与直线1AA ,11A B ,11A D 所成的角是相等的,所以平面11AB D 与平面α平行,由正方体的对称性:要求截面面积最大,则截面的位置为过棱的中点的正六边形(过正方体的中心),边长为2,所以其面积为26424S ⎛⎫=⨯= ⎪ ⎪⎝⎭.故答案为:4.16.如图1所示,古筝有多根弦,每根弦下有一个雁柱,雁柱用于调整音高和音质.图2是根据图1绘制的古筝弦及其雁柱的简易平面图.在图2中,每根弦都垂直于x 轴,相邻两根弦间的距离为1,雁柱所在曲线的方程为 1.1x y =,第n 根弦(n ∈N ,从左数首根弦在y 轴上,称为第0根弦)分别与雁柱曲线和直线l :1y x =+交于点(),n n n A x y 和(),n n n B x y '',则20n n n y y ='=∑______.(参考数据:取221.18.14=.)【答案】914【解析】【分析】根据题意可得1, 1.1n n n y n y '=+=,进而利用错位相减法运算求解.【详解】由题意可知:1, 1.1n n n y n y '=+=,则()202011920011.111.12 1.120 1.1211.1n n n n n y y n =='=+=⨯+⨯++⨯+⨯∑∑L ,可得2012202101.111.12 1.120 1.1211.1nn n yy ='⨯=⨯+⨯++⨯+⨯∑L ,两式相减可得:2120120212101 1.10.1 1.1 1.1 1.1211.1211.11 1.1n n n y y =-'-⨯=+++-⨯=-⨯-∑L 2121221 1.10.1211.11 1.118.1491.40.10.10.1-+⨯⨯++====----,所以20914nn n yy ='=∑.故答案为:914.四、解答题:本题共6小题,共70分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.17.如图,在直三棱柱111ABC A B C -中,2CA CB ==,AB =13AA =,M 为AB 的中点.(1)证明:1//AC 平面1B CM ;(2)求点A 到平面1B CM 的距离.【答案】(1)证明见解析(2)11【解析】【分析】(1)利用线面平行的判定定理证明;(2)利用等体积法求解.【小问1详解】连接1BC 交1B C 于点N ,连接MN ,则有N 为1BC 的中点,M 为AB 的中点,所以1//AC MN ,且1AC ⊄平面1B CM ,MN ⊂平面1B CM ,所以1//AC 平面1B CM .【小问2详解】连接1AB ,因为2CA CB ==,所以CM AB ⊥,又因为1AA ⊥平面ABC ,CM ⊂平面ABC ,所以1AA CM ⊥,1AB AA A ⋂=,所以CM ⊥平面11ABB A ,又因为1MB ⊂平面11ABB A ,所以1CM MB ⊥,又222CA CB AB +=,所以ABC是等腰直角三角形,112CM AB MB ====,所以1112222CMB S CM MB =⋅=△,1111222ACM ACB S S CA CB ==⨯⋅=△△,设点A 到平面1B CM 的距离为d ,因为11A B CM B ACM V V --=,所以111133B CM ACM S d S AA ⨯⨯=⨯⨯ ,所以1132211ACM B CM S AA d S ⨯== .18.记锐角ABC 的内角,,A B C 的对边分别为,,a b c ,已知sin()sin()cos cos A B A C B C--=.(1)求证:B C =;(2)若sin 1a C =,求2211a b+的最大值.【答案】(1)见解析;(2)2516.【解析】【分析】(1)运用两角和与差正弦进行化简即可;(2)根据(1)中结论运用正弦定理得sin 2sin sin 12b a C R A b A R === ,然后等量代换出2211a b+,再运用降次公式化简,结合内角取值范围即可求解.【小问1详解】证明:由题知sin()sin()cos cos A B A C B C--=,所以sin()cos sin()cos A B C A C B -=-,所以sin cos cos cos sin cos sin cos cos cos sin cos A B C A B C A C B A C B -=-,所以cos sin cos cos sin cos A B C A C B =因为A 为锐角,即cos 0A ≠,所以sin cos sin cos B C C B =,所以tan tan =B C ,所以B C =.【小问2详解】由(1)知:B C =,所以sin sin B C =,因为sin 1a C =,所以1sin C a=,因为由正弦定理得:2sin ,sin 2b a R A B R==,所以sin 2sin sin 12ba C R Ab A R===,所以1sin A b=,因为2A B C C ππ=--=-,所以1sin sin 2A C b==,所以222211sin sin 2a bC C +=+221cos 2(1cos 2)213cos 2cos 222CC C C -=+-=--+因为ABC 是锐角三角形,且B C =,所以42C ππ<<,所以22C ππ<<,所以1cos 20C -<<,当1cos 24C =-时,2211a b+取最大值为2516,所以2211a b+最大值为:2516.19.甲、乙足球爱好者为了提高球技,两人轮流进行点球训练(每人各踢一次为一轮),在相同的条件下,每轮甲、乙两人在同一位置,一人踢球另一人扑球,甲先踢,每人踢一次球,两人有1人进球另一人不进球,进球者得1分,不进球者得1-分;两人都进球或都不进球,两人均得0分,设甲、乙每次踢球命中的概率均为12,甲扑到乙踢出球的概率为12,乙扑到甲踢出球的概率13,且各次踢球互不影响.(1)经过1轮踢球,记甲的得分为X ,求X 的分布列及数学期望;(2)求经过3轮踢球累计得分后,甲得分高于乙得分的概率.【答案】(1)分布列见解析;期望为112(2)79192【解析】【分析】(1)先分别求甲、乙进球的概率,进而求甲得分的分布列和期望;(2)根据题意得出甲得分高于乙得分的所有可能情况,结合(1)中的数据分析运算.【小问1详解】记一轮踢球,甲进球为事件A ,乙进球为事件B ,A ,B 相互独立,由题意得:()1111233P A ⎛⎫=⨯-= ⎪⎝⎭,()1111224P B ⎛⎫=⨯-= ⎪⎝⎭,甲的得分X 的可能取值为1,0,1-,()()()()11111346P X P AB P A P B ⎛⎫=-===-⨯= ⎪⎝⎭,()()()()()()()11117011343412P X P AB P AB P A P B P A P B ⎛⎫⎛⎫==+=+=⨯+-⨯-=⎪ ⎪⎝⎭⎝⎭()()()()11111344P X P AB P A P B ⎛⎫====⨯-= ⎪⎝⎭,所以X 的分布列为:X 1-01p1671214()1711101612412E X =-⨯+⨯+⨯=.【小问2详解】经过三轮踢球,甲累计得分高于乙有四种情况:甲3轮各得1分;甲3轮中有2轮各得1分,1轮得0分;甲3轮中有2轮各得1分,1轮得1-分;甲3轮中有1轮得1分,2轮各得0分,甲3轮各得1分的概率为3111464P ⎛⎫== ⎪⎝⎭,甲3轮中有2轮各得1分,1轮得0分的概率为2223177C 41264P ⎛⎫=⨯= ⎪⎝⎭,甲3轮中有2轮各得1分,1轮得1-分的概率为2233111C 4632P ⎛⎫=⨯= ⎪⎝⎭,甲3轮中有1轮得1分,2轮各得0分的概率为21431749C 412192P ⎛⎫=⨯⨯= ⎪⎝⎭,所以经过三轮踢球,甲累计得分高于乙的概率1714979646432192192P =+++=.20.已知数列{}n a 中,10a =,()12n n a a n n N*+=+∈.(1)令11n n n b a a +=-+,求证:数列{}n b 是等比数列;(2)令3nn n a c =,当n c 取得最大值时,求n 的值.【答案】(1)证明见解析;(2)3n =.【解析】【分析】(1)求得21a =,12b =,利用递推公式计算得出12n n b b +=,由此可证得结论成立;(2)由(1)可知112nn n a a +-+=,利用累加法可求出数列{}n a 的通项公式,可得出213n n nn c --=,利用定义法判断数列{}n c 的单调性,进而可得出结论.【详解】(1)在数列{}n a 中,10a =,12n n a a n +=+,则21211a a =+=,11n n n b a a +=-+ ,则12112b a a =-+=,则()()()111112211212n n n n n n n n b a a a n a n a a b ++--=-+=+-+-+=-+=,所以,数列{}n b 为等比数列,且首项为2,所以,1222n n n b -=⨯=;(2)由(1)可知,2nn b =即121n n n a a +-=-,可得2123211212121n n n a a a a a a ---=-⎧⎪-=-⎪⎨⎪⎪-=-⎩,累加得()()()()1211212222112112n n n n a a n n n ----=+++--=--=--- ,21n n a n ∴=--.213n n n n c --∴=,()111112112233n n n n n n n c +++++-+---==,11112221212333n n nn n n n n n n n c c ++++----+-∴-=-=,令()212nf n n =+-,则()11232n f n n ++=+-,所以,()()122nf n f n +-=-.()()()()1234f f f f ∴=>>> ,()()1210f f ==> ,()310f =-<,所以,当3n ≥时,()0f n <.所以,123c c c <<,345c c c >>> .所以,数列{}n c 中,3c 最大,故3n =.【点睛】方法点睛:求数列通项公式常用的七种方法:(1)公式法:根据等差数列或等比数列的通项公式()11n a a n d +-=或11n n a a q -=进行求解;(2)前n 项和法:根据11,1,2n nn S n a S S n -=⎧=⎨-≥⎩进行求解;(3)n S 与n a 的关系式法:由n S 与n a 的关系式,类比出1n S -与1n a -的关系式,然后两式作差,最后检验出1a 是否满足用上面的方法求出的通项;(4)累加法:当数列{}n a 中有()1n n a a f n --=,即第n 项与第n 1-项的差是个有规律的数列,就可以利用这种方法;(5)累乘法:当数列{}n a 中有()1nn a f n a -=,即第n 项与第n 1-项的商是个有规律的数列,就可以利用这种方法;(6)构造法:①一次函数法:在数列{}n a 中,1n n a ka b -=+(k 、b 均为常数,且1k ≠,0k ≠).一般化方法:设()1n n a m k a m -+=+,得到()1b k m =-,1b m k =-,可得出数列1n b a k ⎧⎫+⎨⎬-⎩⎭是以k 的等比数列,可求出n a ;②取倒数法:这种方法适用于()112,n n n ka a n n N ma p*--=≥∈+(k 、m 、p 为常数,0m ≠),两边取倒数后,得到一个新的特殊(等差或等比)数列或类似于1n n a ka b -=+的式子;⑦1nn n a ba c +=+(b 、c 为常数且不为零,n N *∈)型的数列求通项n a ,方法是在等式的两边同时除以1n c +,得到一个1n n a ka b +=+型的数列,再利用⑥中的方法求解即可.21.已知双曲线2222:1(0,0)x y E a b a b-=>>的焦距为10,且经过点M .A ,B 为双曲线E 的左、右顶点,P 为直线2x =上的动点,连接PA ,PB 交双曲线E 于点C ,D (不同于A ,B ).(1)求双曲线E 的标准方程.(2)直线CD 是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.【答案】(1)221169x y -=(2)直线CD 过定点,定点坐标为(8,0).【解析】【分析】(1)方法一:将M 代入方程,结合222+=a b c 求得,a b 得双曲线方程;方法二:根据双曲线定义求得a 得双曲线方程.(2)方法一:设CD 的方程为x my t =+,与双曲线联立,由A 点与C 点写出AC 方程,求出p y ,由B 点与D 点写出BD 方程,求出p y ,利用两个p y 相等建立关系式,代入韦达定理可求得t 为定值.方法二:设CD 的方程为,(2,)x my t P n =+,与双曲线联立,由P 点与A 点写出AC 方程,由P 点与B 点写出BD 方程,将()()1122,,,C x y D x y 代入以上两方程,两式相比消去n 建立关系式,代入韦达定理可求得t 为定值.【小问1详解】法一.由222225,64271,a b ab ⎧+=⎪⎨-=⎪⎩解得2216,9a b ==,∴双曲线E 的标准方程为221169x y -=.法二.左右焦点为()()125,0,5,0F F -,125,28c a MF MF ∴==-=,22294,a b c a ∴===-,∴双曲线E 的标准方程为221169x y -=.【小问2详解】直线CD 不可能水平,故设CD 的方程为()()1122,,,,x my t C x y D x y =+,联立221169x my t x y =+⎧⎪⎨-=⎪⎩消去x 得()()2222916189144=0,9160m y mty t m -++--≠,12218916mt y y m -∴+=-,21229144916t y y m -=-,122916y y m -=±-,AC 的方程为11(4)4y y x x =++,令2x =,得1164p y y x =+,BD 的方程为22(4)4y y x x =--,令2x =,得2224p y y x -=-,1221112212623124044y y x y y x y y x x -∴=⇔-++=+-()()21112231240my t y y my t y y ⇔+-+++=()()1212431240my y t y t y ⇔+-++=()()()()12121242480my y t y y t y y ⇔+-++--=()222249144(24)1824(8)9160916916916m t t mt t t m m m m ---⇔-±=---3(8)(0m t t ⇔-±-=(8)30t m ⎡⇔-=⎣,解得8t =3m =±,即8t =或4t =(舍去)或4t =-(舍去),∴CD 的方程为8x my =+,∴直线CD 过定点,定点坐标为(8,0).方法二.直线CD 不可能水平,设CD 的方程为()()1122,,,,,(2,)x my t C x y D x y P n =+,联立22,1,169x my t x y =+⎧⎪⎨-=⎪⎩,消去x 得()2229161891440m y mty t -++-=,2121222189144,916916mt t y y y y m m --∴+==--,AC 的方程为(4)6n y x =+,BD 的方程为(4)2n y x =--,,C D 分别在AC 和BD 上,()()11224,462n n y x y x ∴=+=--,两式相除消去n 得()211211223462444x y y y x x x y ---=⇔+=+-,又22111169x y -=,()()211194416x x y ∴+-=.将()2112344x y x y --+=代入上式,得()()1212274416x x y y ---=⇔()()1212274416my t my t y y -+-+-=()()221212271627(4)27(4)0m y y t m y y t ⇔++-++-=⇔()22222914418271627(4)27(4)0916916t mt m t m t m m --++-+-=--.整理得212320t t +=-,解得8t =或4t =(舍去).∴CD 的方程为8x my =+,∴直线CD 过定点,定点坐标为(8,0).【点睛】圆锥曲线中直线过定点问题通法,先设出直线方程y kx m =+,通过韦达定理和已知条件若能求出m 为定值可得直线恒过定点,若得到k 和m 的一次函数关系式,代入直线方程即可得到直线恒过定点.22.设函数()()2cos 102x f x x x =-+≥.(1)求()f x 的最值;(2)令()sin g x x =,()g x 的图象上有一点列()*11,1,2,...,,22i i i A g i n n ⎛⎫⎛⎫=∈ ⎪ ⎪⎝⎭⎝⎭N ,若直线1i i A A +的斜率为()1,2,...,1i k i n =-,证明:1217 (6)n k k k n -+++>-.【答案】(1)()f x 在[)0,∞+上的最小值为()00f =,()f x 在[)0,∞+上无最大值.(2)见解析【解析】【分析】(1)求出原函数的二阶导数后可判断二阶导数非负,故可判断导数非负,据此可求原函数的最值.(2)根据(1)可得3sin (0)6x x x x ≥-≥,结合二倍角的正弦可证:2271162i i k +>-⨯,结合等比数列的求和公式可证题设中的不等式.【小问1详解】()sin f x x x '=-+,设()sin s x x x =-+,则()cos 10s x x '=-+≥(不恒为零),故()s x 在()0,∞+上为增函数,故()()00s x s >=,所以()0f x ¢>,故()f x 在[)0,∞+上为增函数,故()f x 在[)0,∞+上的最小值为()00f =,()f x 在[)0,∞+上无最大值.【小问2详解】先证明一个不等式:3sin (0)6x x x x ≥-≥,证明:设()3sin ,06x u x x x x =-+≥,则()2cos 1()02x u x x f x '=-+=≥(不恒为零),故()u x 在[)0,∞+上为增函数,故()()00u x u ≥=即3sin (0)6x x x x ≥-≥恒成立.当*N i ∈时,11111111222sin sin 112222i i i i i i i i g g k ++++⎛⎫⎛⎫- ⎪ ⎪⎛⎫⎝⎭⎝⎭==- ⎪⎝⎭-11111111111122sin cos sin 2sin 2cos 122222i i i i i i i +++++++⎛⎫⎛⎫=-=⨯- ⎪ ⎪⎝⎭⎝⎭由(1)可得()2cos 102x x x ≥->,故12311cos 1022i i ++≥->,故111112311112sin 2cos 12sin 2112222i i i i i i ++++++⎡⎤⎛⎫⎛⎫⨯-≥-- ⎪ ⎢⎥⎝⎭⎝⎭⎣⎦1112213322111112sin121222622i i i i i i i +++++++⎛⎫⎛⎫⎛⎫=⨯-≥-- ⎪ ⎪⎪⨯⎝⎭⎝⎭⎝⎭2222224422117111711111622626262i i i i i +++++⎛⎫⎛⎫=--=-⨯+⨯>-⨯ ⎪⎪⨯⎝⎭⎝⎭,故1214627111...16222n n k k k n -⎛⎫+++>--+++ ⎪⎝⎭ 41111771112411166123414n n n n -⎛⎫- ⎪⎛⎫⎝⎭=--⨯=--⨯ ⎪⎝⎭-771797172184726n n n n =--+⨯>->-.。

西安中学202届高三数学上学期第一次月考试题理含解析

西安中学202届高三数学上学期第一次月考试题理含解析
10。 设 ,且不等式 恒成立,则实数 的最小值等于( )
A。 0B。 4
C. -4D。 -2
【答案】C
【解析】
分析】
分离参数,求齐次式 的最大值。
【详解】由 得 ,而 ( 时取等号),
所以 ,因此要使 恒成立,应有 ,即实数 的最小值等于 .
故选: C。
【点睛】多参数不等式,先确定主元,次元唯一转化为函数问题,次元不唯一可以用基本不等式,也可以降元(分式的分子分母为齐次式是降元的主要特征)。
A。 98项B。 97项C。 96项D。 95项
【答案】B
【解析】
【分析】
由于能被3除余1且被7除余1的数就只能是被21除余1的数,故 ,然后由 可求出 的取值范围,从而可得结果
【详解】能被3除余1且被7除余1的数就只能是被21除余1的数,故 ,
由 得 ,又 ,故此数列共有97项.
故选:B
【点睛】此题考查数列模型在实际问题中的应用,考查等差数列的通项公式的运用,考查计算能力,属于基础题
(1)求 、 的通项公式;
(2)数列 中, ,且 ,求 的通项公式.
【答案】(1) , ;(2) 。
【解析】
【分析】
(1)由已知条件结合等差数列和等比数列的通项公式列出方程组
求出公差和公比,从而可求出 、 的通项公式;
(2)先求出 ,而 ,所以 ,然后利用累加法可求出 的通项公式
【详解】(1)设 的公差为 , 的公比为 ,则依题意有
【点睛】本题考查极坐标方程与直角坐标方程的互化,考查直线参数方程及其应用,旨在考查运算求解能力.
二、填空题:(本大题共4小题,每小题5分)
13. 已知圆锥侧面展开图的圆心角为90°,则该圆锥的底面半径与母线长的比为________。

高三数学第一次月考试卷及解答试题

高三数学第一次月考试卷及解答试题

卜人入州八九几市潮王学校2021届一中高三第一次月考数学试卷〔理科〕本套试卷总分值是150分,考试时间是是120分钟.一.选择题:本大题一一共8小题,每一小题5分,一共40分.在每一小题给出的四个选项里面, 只有一项为哪一项哪一项符合题目要求的.请把答案填在答卷页的表格内.}6,5,4,3,2,1,0{=U ,集合}4,3,1,0{=A ,集合}6,5,3,1{=B ,那么)(B C A U =〔〕A.}3,1{ B.}4,0{ C.}4,1,0{ D.}4,3,2,1,0{1:+x p ≤4,条件65:2+-x x q ≤0,那么p ⌝是q ⌝的〔〕 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.假设011<<b a ,那么以下结论中,不正确的选项是〔〕A .2b ab<B .22b a<C .2>+b a a bD .||||||b a b a -=-“,R x ∈∀x 2cos ≤x 2cos 〞的否认为()A.,R x ∈∀x 2cos x 2cos >B.,R x ∈∃x 2cos x 2cos >C.,R x ∈∀x 2cos <x 2cos D.,R x ∈∃x 2cos ≤x 2cos0>a ,假设关于x 的不等式2+ax ≥bx +2的解集为R ,那么b 的取值范围是〔〕A.<b2B.b ≤2 C.0<b ≤2D.0<<b 26.在极坐标系中,直线1cos =θρ与圆θρcos =的位置关系为〔〕A .相切B .相离C .直线过圆心D .直线与圆相交但不过圆心7.现从甲、乙、丙等6名学生中安排4人参加4×100m 接力赛跑。

第一棒只能从甲、乙两人中安排1人,第四棒只能从甲、丙两人中安排1人,那么不同的安排方案一共有〔〕A .24种B .36种C .48种D .72种α+=+n 2009)310(,其中n 是正整数,α是小数,且10<<α,那么n 的值是〔〕A.αα-1B.21αα- C.αα21- D.αα-1二.填空题:〔只要求写出最后结果,并把结果写在答卷页的相应位置上,每一小题5分,一共35分〕x x x f 2666)(-+-=的最大值为nxx )1(+的展开式中,只有第6项的系数最大,那么,nx x )2(+展开式中2x 项的 系数为22cos lg(9)cos lg(9)x x x x +-<+-的解集为12.有10名同学先站成了前排3人后排7人来照毕业纪念像,但如今摄影师要从后排7人中抽2人 调整到前排,并使另外8个人的相对顺序不变,那么不同调整方法的总数是〔用数字答题〕13.假设参数方程⎩⎨⎧-=+=--θθsin )(cos )(t t t t e e y e e x (其中t 为参数,θ为常数,且θ为锐角)所表示的是离心率为2的双曲线,那么锐角θ的值是11)(--+=x x x f ,那么使)2()12(+=+x f x f 成立的x 取值范围是Rt △ABC 中,CA ⊥CB ,斜边AB 上的高为h1,那么有:2221111CB CA h +=;类比此性质,在四面体P —ABC 中,假设PA ,PB ,PC 两两垂直,底面ABC 上的高为h , 那么得到的正确结论为:一.选择题答案卡:〔每一小题5分,一共40分.〕二、填空题答案卡:〔每一小题5分,一共35分.〕10.18011.)22,2()2,22(ππ --;12013π4.),0[]3,(+∞--∞ ;15.22221111PC PB PA h++= 三、解答题:〔本大题一一共6小题,总分值是75分.解容许写出文字说明、证明过程或者演算步骤.〕 16.〔此题总分值是12分〕p :[]21,2,0x x a ∀∈-≥.q :x ∃∈R ,使得2(1)10x a x +-+<.假设p 或者q 为真,p 且q 为假,求a 的取值范围.解:假设p 真,那么2x 的最小值≥a ,即1≥a ;(2分)假设q 真,那么04)1(2>--=∆a ,即,3>a 或者1-<a ;(2分) 假设p 或者q 为真,p 且q 为假,那么p 与q 为一真一假。

天津市第一中学2022-2023学年高三上学期第一次月考数学试题(解析版)

天津市第一中学2022-2023学年高三上学期第一次月考数学试题(解析版)

2023届天津市第一中学高三上学期第一次月考数学试题一、单选题1.设全集R U =,集合{}{}22802345A x x x B =--<=∣,,,,,则()U A B =ð( ) A .{}2 B .{}23,C .{}45,D .{}345,, 【答案】C【分析】解不等式后由补集与交集的概念求解 【详解】由题意得(2,4)A =-,则(){4,5}U A B ⋂=ð, 故选:C2.已知,a b ∈R ,则“2a b >>”是“22a b ->-”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A【分析】根据不等式的性质以及充分不必要条件的判断,即可求解. 【详解】若2a b >>时,则20,20a b ->->,因此22=2a b b ->--, 若22a b ->-时,比如5,1a b ==,但不满足2a b >>, 因此“2a b >>”是“22a b ->-”的充分不必要条件. 故选:A 3.函数2sin ()||2xf x x =+的部分图象大致为( ) A . B .C .D .【答案】B【分析】根据奇偶性及函数值的正负判断即可.【详解】因为2sin ()2xf x x =+,定义域为R 所以2sin()2sin ()()22x xf x f x x x --==-=--++所以()f x 为奇函数,且(0)0f =,排除CD 当()0,x π∈时,sin 0x >,即()0f x >,排除A 故选:B.4.已知函数()11e xm f x x ⎛⎫=+ ⎪-⎝⎭是偶函数,则m 的值是( ) A .2- B .1-C .1D .2【答案】A【分析】先求出函数的定义域,然后根据偶函数的定义取特殊值求解 【详解】函数的定义域为{}0x x ≠,因为函数()11e xm f x x ⎛⎫=+ ⎪-⎝⎭是偶函数, 所以(1)(1)f f -=,所以11111e 1e m m -⎛⎫⎛⎫-+=⨯+ ⎪ ⎪--⎝⎭⎝⎭, e 11e 11em m--=+--,所以(e 1)21e m -=-, 得2m =-, 故选:A5.已知函数()f x 是(),-∞+∞上的偶函数,且()()11f x f x -=+,当[]0,1x ∈时,()21x f x =-,则()()20212022f f +的值为( )A .1B .2C .1-D .0【答案】A【分析】由偶函数可得()()f x f x -=,由()()11f x f x -=+可得对称性,再化简整理可得周期2T =,进而根据性质转换()()20212022f f +到[]0,1x ∈,再代入解析式求解即可.【详解】由题,因为偶函数,所以()()f x f x -=,又()()11f x f x -=+,所以()()()111f x f x f x -+=-=+,即()()2f x f x =+,所以()f x 是周期函数,2T =,故()()()()10202120221021211f f f f +=+=-+-= 故选:A6.已知函数()()||0.542π()2,log 3,log 5,cos 3x f x a f b f c f ⎛⎫==== ⎪⎝⎭,则( )A .a c b >>B .a b c >>C .b a c >>D .c a b >>【答案】B【分析】直接由指数、对数的运算以及特殊角的三角函数值求解即可. 【详解】0.52|log 3|log 3223a ===,4|log 5|log 22b ==2π1cos3222c ==a b c >>.故选:B . 7.已知35a b =且211a b+=,则a 的值为( ) A .3log 15 B .5log 15C .3log 45D .5log 45【答案】C【分析】令350a b k ==>,利用指对数互化,换底公式及对数的运算法则可得45k =,即得.【详解】令350a b k ==>, 则35log ,log a k b k ==,351111log 3,log 5log log k k a k b k ====,又211a b+=, ∴2log 3log 5log 451k k k +==,即45k =, ∴3log 45a =. 故选:C.8.设函数e e ()sin 2x x f x x --=+,不等式()e (ln 1)0xf a x f x x -+++≤对0x >恒成立,则实数a 的最大值为( ) A .e 1- B .1C .e 2-D .0【答案】D【分析】先由定义证()f x 为奇函数,结合均值不等式可证()1cos 0f x x '≥+≥,得()f x 在R 上单调递增,故结合奇偶性与单调性,恒成立转化为e ln 1x a x x x ≤---对0x >恒成立.令()e ln 1x g x x x x =---,用导数法求()g x 最小值,即有()min a g x ≤.【详解】因为e e ()sin 2x xf x x ---=-,所以()()f x f x -=-,所以()f x 为R 上的奇函数.因为e e ()cos cos 1cos 02x x f x x x x -+'=+≥=+≥,所以()f x 在R 上单调递增.不等式()e (ln 1)0x f a x f x x -+++≤可转化为()(ln 1)e xf x x f x a ++≤-,所以ln 1e x x x x a ++≤-,即e ln 1x a x x x ≤---对0x >恒成立. 令()e ln 1x g x x x x =---,则ln ln ()e e ln 1e (ln )1x x x x g x x x x x +=---=-+-, 令()e 1x h x x =--,则()e 1x h x '=-.当0x >时,()0h x '>,()h x 在(0,)+∞上单调递增;当0x <时,()0h x '<,()h x 在(,0)-∞上单调递减.所以0min ()(0)e 010h x h ==--=,即()0h x ≥,所以()0g x ≥,且当ln 0x x +=时,()g x 取最小值0, 故0a ≤,即实数a 的最大值为0. 故选:D.【点睛】1.通常函数不等式恒成立问题涉及奇偶性与单调性可先进行转化; 2.含参不等式恒成立问题,一般通过构造函数解决.一般将参数分离出来,构造函数用导数法讨论不含参数部分的最值;或者包含参数一起构造函数,用导数法对参数分类讨论.当参数不能分离出来时,也可尝试将不等式左右变形成一致形式,即可将该形式构造成函数,通过导数法分析单调性,将问题等价成对应自变量的不等式.9.已知函数()()212f x x mx x =++∈R ,且()y f x =在[]0,2x ∈上的最大值为12,若函数()()2g x f x ax =-有四个不同的零点,则实数a 的取值范围为( )A .1,02⎛⎫- ⎪⎝⎭B .()0,1C .1,14⎛⎫- ⎪⎝⎭D .51,4⎛⎫ ⎪⎝⎭【答案】B【分析】由()y f x =在[]0,2x ∈上的最大值为12,讨论可求出2m =-,从而()2122f x x x =-+,若()()2g x f x ax =-有4个零点,则函数()y f x =与2y ax =有4个交点,画出图象,结合图象求解即可【详解】若0m ≥,则函数()212f x x mx =++在[]0,2上单调递增, 所以()212f x x mx =++的最小值为12,不合题意,则0m <, 要使函数()212f x x mx =++在[]0,2x ∈上的最大值为12. 如果22m-≥,即4m ≤-,则()912222f m =+≤,解得522m -≤≤-,不合题意;若22m -<,即40m -<<,则2912,2211,242m m ⎧+≤⎪⎪⎨⎪-≤⎪⎩解得52,22,m m ⎧-≤≤-⎪⎨⎪≥-⎩即2m =-, 则()2122f x x x =-+. 如图所示,若()()2g x f x ax =-有4个零点,则函数()y f x =与2y ax =有4个交点,只有函数2y ax =的图象开口向上,即0a >.当2y ax =与(2y x =-122x -+)有一个交点时,方程221202ax x x +-+=有一个根,0∆=得1a =,此时函数()()2g x f x ax =-有二个不同的零点,要使函数()g x =()2f x ax -有四个不同的零点,2y ax =与2122y x x ⎛⎫=--+ ⎪⎝⎭有两个交点,则抛物线2y ax =的图象开口要比2y x =的图象开口大,可得1a <, 所以01a <<,即实数a 的取值范围为()0,1. 故选:B【点睛】关键点点睛:此题考查函数与方程的综合应用,考查二次函数的性质的应用,考查数形结合的思想,解题的关键是由已知条件求出m 的值,然后将问题转化为函数()y f x =与2y ax =有4个交点,画出函数图象,结合图象求解即可,属于较难题二、填空题 10.复数i2i=+_________. 【答案】12i 55+【分析】根据复数的除法运算直接求解.【详解】解:()()()i 2i i 12i 2i 2i 2i 55-==+++-. 故答案为:12i 55+.11.已知函数()f x 的导函数,满足()()321f x xf x '=+,则()1f 等于_______________.【答案】5-【分析】求导,令1x =,可解得()1f ',进而可得()1f .【详解】由()()321f x xf x '=+,得()()2213f x f x ''=+,令1x =,得()()1213f f ''=+,解得()13f '=-,所以()()()312112315f f '=+=⨯-+=-,故答案为:5-.12.为了保护水资源,提倡节约用水,某城市对居民生活用水,实行“阶梯水价”.计算方法如下表:若某户居民本月交纳的水费为90元,则此户居民本月用水量为___________. 【答案】320m 20立方米【分析】根据题设条件可得水费与水价的关系式,根据该关系式可求用水量. 【详解】设用水量为x 立方米,水价为y 元,则()3,01236612,1218729(18),18x x y x x x x ≤≤⎧⎪=+-<≤⎨⎪+->⎩,整理得到:3,012636,1218990,18x x y x x x x ≤≤⎧⎪=-<≤⎨⎪->⎩,当012x ≤≤时,036y ≤≤;1218x <≤时,3672y <≤;故某户居民本月交纳的水费为90元,则用水量大于18立方米, 令99090x -=,则20x =(立方米), 故答案为:320m .13.函数()f x 是定义在R 上的奇函数,满足(2)()f x f x +=-,当[0x ∈,1)时,2()f x x =,则23()2f =_______. 【答案】14-【分析】根据题意,分析可得(4)(2)()f x f x f x +=-+=,则函数()f x 是周期为4的周期函数,由此可得231()()22f f =-,结合函数的解析式计算可得答案. 【详解】根据题意,函数()f x 是定义在R 上的奇函数,满足(2)()f x f x +=-, 则(2)()()f x f x f x +=-=-,则有(4)(2)()f x f x f x +=-+=,则函数()f x 是周期为4的周期函数, 则23111()(12)()()2222f f f f =-+=-=-, 又由当[0x ∈,1)时,2()f x x =,则2111()()224f ==,则2311()()224f f =-=-,故答案为:14-.14.已知函数()212-,02=1+1,>02xx f x x x ≤⎧⎛⎫⎪ ⎪⎪⎝⎭⎨⎪⎪⎩,则不等式()313xf ->的解集为___________.【答案】()1,+∞【分析】分别在条件31>0x -,310x -≤下化简不等式,再求其解,由此可得不等式()31>3x f -的解集.【详解】当310x -≤时,即0x ≤时,()31131=22x x f ---⎛⎫ ⎪⎝⎭,所以不等式()31>3xf -可化为3112>32x --⎛⎫ ⎪⎝⎭,所以0x ≤且3111>2x --⎛⎫⎪⎝⎭,所以满足条件的x 不存在,即当0x ≤时,不等式无解,当31>0x -时,即>0x 时,()()2131=31+12xxf --,此时不等式()31>3x f -可化为()2131+1>32x-,得31>2x -或31<2x --,解得>1x , 所以不等式()31>3xf -的解集为()1,+∞,故答案为:()1,+∞.15.已知正数,a b 满足1,a b c +=∈R ,则222312a c bc b abc ab++++的最小值为__________.【答案】2【分析】把1a b +=平方得到2221,0,0a ab b a b ++=>>,代入结论构造基本不等式,再分析计算可求出最小值.【详解】解:由1a b +=,得2221,0,0a ab b a b ++=>>, 则222312a c bc b abc ab++++ 222213221a a ab b c c b ab ⎛⎫++=++ ⎪+⎝⎭2214221a b c c b a ⎛⎫=+++ ⎪+⎝⎭221221c c ⎛⎫+ ⎪ ⎪⎝⎭≥+()226212221c c =++-≥=+, 当且仅当4a bb a =,即2b a =,()226211c c =++,即()2213c +=时取“等号”,所以当212,,133a b c ==时,222312a c bc b abc ab++++的最小值为2.故答案为:2三、解答题16.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos (cos cos )C a B b A c +=.(1)若cos A =cos(2)A C +的值;(2)若c =ABC a ,b 的值.【答案】(1)(2)2a =,3b =或3a =,2b =【分析】(1)利用正弦定理将边化角,再由两角和的正弦公式求出C ,由同角三角函数的基本关系求出sin A ,即可求出sin 2A 、cos 2A ,最后利用两角和的余弦公式计算可得; (2)由面积公式及余弦定理得到方程组,解得即可.【详解】(1)解:因为2cos (cos cos )C a B b A c +=, 由正弦定理得2cos (sin cos sin cos )sin C A B B A C +=, 即2cos sin()2cos sin sin C A B C C C +==, 因为(0,)C π∈,sin 0C >,所以1cos 2C =, 由C 为三角形内角得3C π=;由cos A =,则sin A =所以sin 22sin cos 2A A A ===, 261cos 22cos 121164A A =-=⨯-=-,()cos 2cos 2cos sin 2sin A C A C A C +=-=1142-⨯=(2)解:因为ABC 的面积1sin 2S ab C ==6ab =①, 由余弦定理2222cos c a b ab C =+-得227a b ab =+-,则2213a b +=②, 由①②解得2a =,3b =或3a =,2b =17.如图,在四棱柱1111ABCD A B C D -中,1AA ⊥平面ABCD ,底面ABCD 满足AD BC ∥,且12AB AD AA ===,BD DC ==(1)求证:BD ∥平面11B CD .(2)求直线AB 与平面11B CD 所成角的正弦值. (3)求二面角111B CD C --的正弦值. 【答案】(1)证明见解析(3)正弦值为1【分析】(1)由四棱柱的性质证明11//BD B D ,根据线面平行判定定理证明BD 平面11B CD ;(2)建立空间直角坐标系,求直线AB 的方向向量和平面11B CD 的法向量利用空间向量求解线面角;(3)求平面11C CD 的法向量,利用向量夹角公式求二面角111B CD C --的夹角的余弦值,再由同角关系求其正弦值.【详解】(1)在四棱柱1111ABCD A B C D -中,11BB DD ,11BB DD =,故四边形11BB D D 是平行四边形,所以11//BD B D ,因为BD ⊄平面11B CD ,11B D ⊂平面11B CD , 所以BD ∥平面11B CD ;(2)因为1AA ⊥平面ABCD ,AB ,AD ⊂平面ABCD , 所以1AA AB ⊥,1AA AD ⊥,因为2AB AD ==,BD =所以222AB AD BD +=,=ABD ADB ∠∠,所以AB AD ⊥,=45ADB ∠,因为AD BC ∥,所以=45DBC ∠,又BD CD ==所以BDC △为等腰直角三角形,所以=4BC ,因为AB ,AD ,1AA 两两垂直,以A 为坐标原点,分别以AB ,AD ,1AA 为x 轴,y 轴,z 轴建立空间直角坐标系,则()0,0,0A ,()2,0,0B ,()2,4,0C ,()12,0,2B ,()10,2,2D 所以()2,0,0AB =,()1=0,4,2B C -,()11=2,2,0B D - 设平面11B CD 的法向量为(),,n x y z =∴111=0=0n B C n B D ⎧⋅⎪⎨⋅⎪⎩,即42=02+2=0y z x y --⎧⎨⎩,令=1x ,则=1y ,=2z ,∴()1,1,2n =设直线AB 与平面11B CD 所成角为θ,∴2sin =cos ,==2?6AB n AB nAB n⋅θ⋅所以直线AB 与平面11B CD .(3)平面11B CD 的法向量为()1,1,2n =,因为1AA ⊥平面ABCD ,11//AA DD ,所以1DD ⊥平面ABCD ,BD ⊂平面ABCD ,所以1DD BD ⊥,又B D D C ⊥,1=DD DC D ⋂,1,DD DC ⊂平面11CD C ,所以BD ⊥平面11CD C ,所以BD 为平面11CD C 的法向量,所以平面11CD C 的法向量为()=2,2,0m BD -= ∴cos ,==0m nm n m n⋅,∴sin ,1m n = 所以,二面角111B CD C --的正弦值为1.18.已知()f x 是定义在R 上的奇函数,当],(0x ∈-∞时,()93x xm f x -=-. (1)求()f x 在(0,)+∞上的解析式;(2)当[1,2]x ∈时,1()23x x f x a +⋅+…恒成立,求实数a 的取值范围;(3)关于x 的方程1()3160x f x n -++⋅+=在[2,1]--上有两个不相等的实根,求实数n 的取值范围.【答案】(1)()93x xf x =-+(2)15,2⎡⎫-+∞⎪⎢⎣⎭ (3)227,93⎡⎫--⎪⎢⎣⎭【分析】(1)根据函数的奇偶性求出m 的值,进而求出函数的解析式即可;(2)利用分离参数法将原不等式转化为932()22x xa g x ⎛⎫⎛⎫≥--⨯= ⎪ ⎪⎝⎭⎝⎭在[]1,2上恒成立,结合函数的单调性求出()max g x 即可;(3)令[]33,9xt -=∈,将原方程转化为直线13y n =-与函数()16h t t t=+的图象有两个交点.利用数形结合的思想即可求解.【详解】(1)依题意得()010f m =-=,解得1m =, 经检验1m =,符合题意.当()0,x ∈+∞时,(),0x -∈-∞,则()93x xf x -=-,因为()f x 是定义在R 上的奇函数,所以()()93x xf x f x =--=-+,即当()0,x ∈+∞时,()93x xf x =-+;(2)当[]1,2x ∈时,19323xxxx a +-+≤⋅+恒成立,即93222x xa ⎛⎫⎛⎫≥--⨯ ⎪ ⎪⎝⎭⎝⎭恒成立.设()93222x xg x ⎛⎫⎛⎫=--⨯ ⎪ ⎪⎝⎭⎝⎭,易知()g x 在[]1,2上是减函数,()()max 1512g x g ==-,所以152a ≥-,即实数a 的取值范围为15,2⎡⎫-+∞⎪⎢⎣⎭; (3)方程()13160x f x n -++⋅+=在[]2,1--上有两个不相等的实根, 即函数()()931316x xF x n --=+-⋅+在[]2,1--上有两个零点,令[]33,9xt -=∈,则关于t 的方程()231160t n t +-+=在[]3,9上有两个不相等的实根,由于2161613t n t t t+-==+,则直线13y n =-与()16h t t t=+的图象有两个交点.如图,因为()16h t t =+在[]3,4上单调递减,在[]4,9上单调递增, 且()48h =,()2533h =,()9799h =,所以258133n <-≤, 解得22793n -≤<-,即实数n 的取值范围为227,93⎡⎫--⎪⎢⎣⎭.19.设函数()222ln f x ax a x =--,()1eex g x x =-,其中a ∈R ,e 为自然对数的底数. (1)讨论()f x 的单调性; (2)证明:当1x >时,()0g x >;(3)若不等式()()f x g x >在()1,x ∈+∞时恒成立,求a 的取值范围. 【答案】(1)答案见解析(2)证明见解析 (3)1,4a ⎡⎫∈+∞⎪⎢⎣⎭【分析】(1)求导后分0a ≤与0a >两种情况讨论即可; (2)构造函数()1e-=-x s x x ,求导分析单调性与最值,证明当1x >时,1e x x ->即可;(3)结合(1)(2)讨论()(),f x g x 1的大小关系,构造函数()()()h x f x g x =-,求导放缩判断单调性,进而证明即可. 【详解】(1)()f x 定义域为()0,∞+,()241ax f x x-'=. 当0a ≤时,()0f x '<,()f x 在()0,∞+内单调递减;当0a >时,由()0f x '=,得x =x ⎛∈ ⎝⎭时,()0f x '<,()f x 单调递减;当x ⎫∈+∞⎪⎪⎝⎭时,()0f x '>,()f x 单调递增.综上所述,当0a ≤时,()f x 在()0,∞+内单调递减;当0a >时,()f x 在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. (2)令()1e-=-x s x x ,则()1e 1x s x -=-.当1x >时,()0s x '>,()s x 单调递增,()()10s x s >=, 所以1e x x ->,从而()1110e x g x x -=->. (3)由(2)得,当1x >时,()0g x >.当0a ≤时,1x >时,()()()221ln 0f x a x x g x =--<<,不符合题意.当104a <<1=>,由(1)得,当x ⎛∈ ⎝⎭时,()()()10f x f g x <=<,不符合题意. 当14a ≥时,令()()()h x f x g x =-,1x >. ()211e 4e x h x ax x x '=-+-2111x x x x >-+-()222111110x x x x x ->-+-=>()h x 在区间()1,+∞上单调递增.又因为()10h =,所以当1x >时,()()()0h x f x g x =->,即()()f x g x >恒成立. 综上,1,4a ⎡⎫∈+∞⎪⎢⎣⎭.【点睛】本题主要考查了求导分情况讨论函数单调性的问题,证明不等式与恒成立的问题,需要根据题意,结合极值点与区间端点的关系分情况讨论导函数的正负,求得函数的单调性,从而证明不等式的问题.属于难题.20.已知0a >,设函数()(2)ln ,()=-+'f x x a x x f x 是()f x 的导函数. (1)若2a =,求曲线()f x 在点(1,(1))f 处的切线方程;(2)若()f x 在区间(1,)+∞上存在两个不同的零点()1212,x x x x <, ①求实数a 范围; ②证明:()221(e)(2e)(3)12e---'<-x f x a a a x .注,其中e 2.71828=⋅⋅⋅⋅⋅⋅是自然对数的底数. 【答案】(1)y x =(2)①>a【分析】(1)把1x =代入原函数与导函数得到切点及斜率,利用点斜式即可得切线方程; (2)①可设()()2ln ln f x xg x x a x x==+-,因为1x >,所以()g x 与()f x 零点相同,可根据()g x 的单调性与极值情况来确定a 的范围;②根据题意,巧设函数,利用放缩构造等思路结合导数,可分别求出22()x f x '与111x -的范围,然后相乘即可,详细过程见解析.【详解】(1)当2a =时,2()2(1)ln ,()2ln 3=-+=-+'f x x x x f x x x,所以(1)1,(1)1f k f '===.根据点斜式可得曲线()f x 在(1,(1))f 处的切线方程为y x =.(2)①当1x >时,()0f x =等价于20ln +-=xx a x. 设()2ln =+-x g x x a x ,则22ln 1(ln 1)(2ln 1)()2ln ln '-+-=+=x x x g x x x.当1x <<()0,()g x g x '<单调递减;当x >()0,()'>g x g x 单调递增; 所以,当1x >时,min [()]==g x g a , 因为()f x 在区间(1,)+∞上存在两个不同的零点12,x x ,所以min [()]0<g x,解得>a当>a1=∈-a ax a ,则1ln 11<-=-a a x x a , 故()221201ln 111-=+->+-=>---a a a a a x a a a g x x a a x a a a ,又202ln 2⎛⎫=> ⎪⎝⎭a a g a , 所以()f x在区间和2⎫⎪⎭a 上各有一个零点.综上所述:>a②设()()[(3)2](2)ln (2)(2)=--+-=-+---F x f x a x a x a x a x a , 则2()2ln (2)2ln -=++=+'--x a aF x x a x a x x,它是[1,)+∞上的增函数. 又(1)0F '=,所以()0F x '≥,于是()F x 在[1,)+∞上递增.所以()(1)0F x F ≥=,即(2)ln (3)2-+≥-+-x a x x a x a ,当1x =时取等号. 因为11x >,所以()110(3)2=>-+-f x a x a ,解得11031<<--a x .(1) 因为()2ln 3=-'+af x x x,所以()222222ln 3-'=+x f x x x a x , 结合()()22222ln 0=-+=f x x a x x 知()()2222222222232222-=-+=---+-'-a x ax f x a x a x x a a x .处理1:设函数()ln xh x x =,则2ln 1()ln -='x h x x, 所以当0x e <<时,()0,()h x h x '<递减,当x e >时,()0,()h x h x '>递增,所以()()ln =≥=xh x h e e x,所以2222ln -=≥x a x e x .处理2:因为ln 1≤-x x ,所以ln 1⎛⎫≤- ⎪⎝⎭x xe e,即ln x x e ≤,当x e =时取等号,所以ln 022222-----⎛⎫=-+>-⋅+= ⎪⎝⎭a e a e a e a e a e f e e e . 由①可知,()f x 在[)2,x +∞上单调递增,且()20f x =,所以22-≤a ex ,即22-≥a x e . 因为22()2=--+a a g x t t 在[,)e ∞+上是减函数,且22-≥a x e ,且()()2222()(2)22()22--=-≤=--+='a a a e a e x f x g a x g e e e e.综上可知:()221()(2)(3) 12--'-<-x f x a e a e ax e.【点睛】导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.。

湖南师大附中2025届高三上学期月考(二)数学试卷(原卷版)

湖南师大附中2025届高三上学期月考(二)数学试卷(原卷版)

湖南师大附中2025届高三月考试卷(二)数学命题人、审题人:高三数学备课组时量:120分钟 满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数11i z =+的虚部是( ) A. 1 B. 12 C. 12− D. 1−2. 已知a 是单位向量,向量b 满足3a b −=,则b 的最大值为( ) A. 2 B. 4 C. 3 D. 13. 已知角θ的终边在直线2y x =上,则cos sin cos θθθ+的值为( ) A. 23− B. 13− C. 23 D. 134. 已知函数()2e 33,0,x a x f x x a x +−<= +≥ 对任意的12,x x ∈R ,且12x x ≠,总满足以下不等关系:()()12120f x f x x x −>−,则实数a 的取值范围为( ) A 34a ≤ B. 34a ≥ C. 1a ≤ D. 1a ≥ 5. 如图,圆柱的母线长为4,,AB CD 分别为该圆柱的上底面和下底面直径,且AB CD ⊥,三棱锥A BCD −的体积为83,则圆柱的表面积为().A. 10πB. 9π2C. 4πD. 8π 6. 已知抛物线()2:20C y px p =>的焦点F 到准线的距离为2,过焦点F 的直线l 与抛物线交于,A B 两点,则23AF BF +的最小值为( )A. 52+B. 5+C. 10+D. 117. 设函数()()cos f x x ϕ=+,其中π2ϕ<.若R x ∀∈,都有ππ44f x f x +=−.则()y f x =的图象与直线114y x =−的交点个数为( ) A. 1 B. 2 C. 3 D. 48. 已知定义域为R 的函数()(),f x g x 满足:()()()()()()00,g f x g y f y g x f x y ≠−⋅=−,且()()()()()g x g y f x f y g x y −=−,则下列说法正确的是( )A. ()01f =B. ()f x 是偶函数C. 若()()1112f g +=,则()()2024202420242f g −=− D. 若()()111g f −=,则()()202420242f g += 二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 下列说法中正确的是( )A. 一个样本的方差()()()22221220133320s x x x =−+−++−,则这组样本数据的总和等于60 B. 若样本数据1210,,,x x x 标准差为8,则数据1221,21,x x −− ,1021x −的标准差为16C. 数据13,27,24,12,14,30,15,17,19,23的第70百分位数是23D. 若一个样本容量为8的样本的平均数为5,方差为2,现样本中又加入一个新数据5,此时样本容量为9,平均数不变,方差变小10. 已知函数()32f x ax bx =−+,则( ) A. ()f x 的值域为RB. ()f x 图象的对称中心为()0,2的C. 当30b a −>时,()f x 在区间()1,1−内单调递减D. 当0ab >时,()f x 有两个极值点11. 我国古代太极图是一种优美的对称图.定义:能够将圆O 的周长和面积同时等分成两个部分的函数称为圆O 的一个“太极函数”,则下列命题中正确的是( )A. 函数()sin 1f x x =+是圆22:(1)1O x y +−=的一个太极函数B. 对于圆22:1O x y +=的所有非常数函数的太极函数中,都不能为偶函数C. 对于圆22:1O x y +=的所有非常数函数的太极函数中,均为中心对称图形D. 若函数()()3f x kx kx k =−∈R 是圆22:1O x y +=的太极函数,则()2,2k ∈− 三、填空题:本题共3小题,每小题5分,共15分.12. 曲线2ln y x x =−在点()1,2处的切线与抛物线22y ax ax =−+相切,则a =__________. 13. 已知椭圆CC :xx 2aa 2+yy 2bb 2=1(aa >bb >0)的左、右焦点分别为12,F F ,若P 为椭圆C 上一点,11212,PF F F PF F ⊥ 的内切圆的半径为3c ,则椭圆C 的离心率为______. 14. 设函数()()44x f x ax x x =+>−,若a 是从1,2,3,4四个数中任取一个,b 是从4,8,12,16,20,24六个数中任取一个,则()f x b >恒成立的概率为__________. 四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤. 15. 在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知()()()sin sin sin b c B C a c A +−=−. (1)求B ;(2)若ABC ,且2AD DC = ,求BD 的最小值.16. 已知双曲线E 的焦点在x (在双曲线E 上,点12,F F 分别为双曲线的左、右焦点.(1)求E 的方程;(2)过2F 作两条相互垂直直线1l 和2l ,与双曲线的右支分别交于A ,C 两点和,B D 两点,求四边形ABCD 面积的最小值.17. 如图,侧面11BCC B 水平放置的正三棱台11111,24ABC A B C AB A B −==P 为棱11A B 上的动点.(1)求证:1AA ⊥平面11BCC B ;(2)是否存在点P ,使得平面APC 与平面111A B C?若存在,求出点P ;若不存在,请说明理由.18. 若无穷正项数列{}n a 同时满足下列两个性质:①存在0M >,使得*,n a M n <∈N ;②{}n a 为单调数列,则称数列{}n a 具有性质P .(1)若121,3n n n a n b =−=, (i )判断数列{}{},n n a b 是否具有性质P ,并说明理由; (ii )记1122n n n S a b a b a b =+++ ,判断数列{}n S 是否具有性质P ,并说明理由; (2)已知离散型随机变量X 服从二项分布()1,,02B n p p <<,记X 为奇数的概率为n c .证明:数列{}n c 具有性质P .19 已知函数()24e 2x f x x x−=−,()2233g x x ax a a =−+−−(a ∈R 且2a <). (1)令()()()(),x f x g x h x ϕ=−是()x ϕ的导函数,判断()h x 的单调性;的.(2)若()()f x g x ≥对任意()1,x ∈+∞恒成立,求a 的取值范围.的。

长郡中学2025届高三上学期月考(二)数学试卷(解析版)

长郡中学2025届高三上学期月考(二)数学试卷(解析版)

长郡中学2025届高三月考试卷(二)数学得分__________.本试卷共8页.时量120分钟.满分150分.一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知集合{}(){}2,128tAxx B t t ==∈Z ∣∣ ,则A B = ( )A. []1,3−B. {}0,1C. []0,2D. {}0,1,2【答案】D 【解析】【分析】解绝对值不等式与指数不等式可化简集合,A B ,再利用交集的定义求解即可.【详解】{}{}|2=22A x x xx =≤−≤≤∣, 由指数函数的性质可得(){}{}1280,1,2,3tB t t =≤≤∈=Z ∣,所以{}{}{}220,1,2,30,1,2A B xx ∩−≤≤∩∣. 故选:D.2. 已知复数z 满足i 1z −=,则z 的取值范围是( ) A. []0,1 B. [)0,1C. [)0,2D. []0,2【答案】D 【解析】【分析】利用i 1z −=表示以(0,1)为圆心,1为半径的圆,z 表示圆上的点到原点的距离可得答案. 【详解】因为在复平面内,i 1z −=表示到点(0,1)距离为1的所有复数对应的点, 即i 1z −=表示以(0,1)为圆心,1为半径的圆, z 表示圆上的点到原点的距离,所以最短距离为0,最长距离为112+=,则z 的取值范围是[0,2]. 故选:D3. 已知()2:ln (11)1p f x a x x=+−<< −是奇函数,:1q a =−,则p 是q 成立的( ) A. 充要条件 B. 充分不必要条件 C. 必要不充分条件 D. 既不充分也不必要条件【答案】A 【解析】【分析】当p 成立,判断q 是否成立,再由q 成立时,判断p 是否成立,即可知p 是q 成立何种条件.【详解】由()f x 奇函数,则()00f =,即()ln 20a +=,解得1a =−, 所以p q ⇒,当1a =−时,()21ln 1ln 11x f x x x +=−=−−,11x −<<, ()()1111ln ln ln 111x x x f x f x x x x −−++∴−===−=− +−−,所以()f x 是奇函数, 所以p q ⇐, 所以p 是q 的充要条件. 故选:A.4. 若锐角α满足sin cos αα−sin 22πα+=( ) A.35B. 35C. 35 或35D. 45−或45【答案】B 【解析】【分析】先利用辅助角公式求出πsin 4α−,再利用角的变换ππsin 2sin 2π24αα+=−+,结合诱导公式和二倍角公式求解即可.【详解】由题意可得πsin cos 4ααα−=−=πsin 4α−.是因为α是锐角,所以πππ,444α −∈−,πcos 4α −所以πππππsin 2sin 2πsin 22sin cos 24444ααααα+=−+=−−=−−−325=−=−. 故选:B.5. 某大学在校学生中,理科生多于文科生,女生多于男生,则下述关于该大学在校学生的结论中,一定成立的是( )A. 理科男生多于文科女生B. 文科女生多于文科男生C. 理科女生多于文科男生D. 理科女生多于理科男生【答案】C 【解析】【分析】将问题转化不等式问题,利用不等式性质求解. 【详解】根据已知条件设理科女生有1x 人,理科男生有2x 人, 文科女生有1y 人,文科男生有2y 人;根据题意可知1212x x y y +>+,2211x y x y +<+,根据异向不等式可减的性质有()()()()12221211x x x y y y x y +−+>+−+, 即有12x y >,所以理科女生多于文科男生,C 正确.其他选项没有足够证据论证. 故选:C.6. 如图,某车间生产一种圆台形零件,其下底面的直径为4cm ,上底面的直径为8cm ,高为4cm ,已知点P 是上底面圆周上不与直径AB 端点重合的一点,且,AP BP O =为上底面圆的圆心,则OP 与平面ABC所成的角的正切值为( )为A. 2B.12C.D.【答案】A 【解析】【分析】作出直线OP 与平面ABC 所成的角,通过解直角三角形来求得直线OP 与平面ABC 所成的角的正切值.【详解】设O ′为下底面圆的圆心,连接,OO CO ′′和CO , 因为AP BP =,所以AB OP ⊥,又因为,,AB OO OP OO O OP OO ′′⊥=⊂′ 、平面OO P ′,所以AB ⊥平面OO P ′, 因为PC 是该圆台的一条母线,所以,,,O O C P ′四点共面,且//O C OP ′, 又AB ⊂平面ABC ,所以平面ABC ⊥平面POC ,又因为平面ABC 平面POC OC =,所以点P 在平面ABC 的射影在直线OC 上, 则OP 与平面ABC 所成的角即为POC OCO ∠=∠′,过点C 作CD OP ⊥于点D ,因为4cm,2cm OP O C ′==, 所以tan tan 2OO POC OCO O C∠=′′∠==′. 故选:A7. 在平面直角坐标系xOy 中,已知直线1:2l y kx =+与圆22:1C x y +=交于,A B 两点,则AOB 的面积的最大值为( )A. 1B.12C.D.【答案】D 【解析】【分析】求得直线过定点以及圆心到直线的距离的取值范围,得出AOB 的面积的表达式利用三角函数单调性即可得出结论.【详解】根据题意可得直线1:2l y kx =+恒过点10,2E,该点在已知园内, 圆22:1C x y +=的圆心为()0,0C ,半径1r =,作CD l ⊥于点D ,如下图所示:易知圆心C 到直线l 的距离为12CD CE ≤=,所以1cos 2CD DCB CB ∠=≤, 又π0,2DCB∠∈,可得ππ,32DCB∠∈; 因此可得2π2,π3ACB DCB∠=∠∈,所以AOB 的面积为112πsin 11sin 223AOB S CA CB ACB =∠≤×××= 故选:D 8. 设函数()()2ln f x xax b x =++,若()0f x ≥,则a 的最小值为( )A. 2−B. 1−C. 2D. 1【答案】B 【解析】【分析】根据对数函数性质判断ln x 在不同区间的符号,在结合二次函数性质得1x =为该二次函数的一个零点,结合恒成立列不等式求参数最值.【详解】函数()f x 定义域为(0,)+∞,而01ln 0x x <<⇒<,1ln 0x x =⇒=,1ln 0x x >⇒>, 要使()0f x ≥,则二次函数2y x ax b =++,在01x <<上0y <,在1x >上0y >, 所以1x =为该二次函数的一个零点,易得1b a =−−, 则2(1)(1)[(1)]y x ax a x x a =+−+=−++,且开口向上, 所以,只需(1)0101a a a −+≤⇒+≥⇒≥−,故a 的最小值为1−.故选:B二、多选题(本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.)9. 已知2n >,且*n ∈N ,下列关于二项分布与超几何分布的说法中,错误的有( ) A. 若1(,)3X B n ,则()22113E X n ++ B. 若1(,)3X B n ,则()4219D X n += C. 若1(,)3X B n ,则()()11P X P X n ===−D. 当样本总数远大于抽取数目时,可以用二项分布近似估计超几何分布 【答案】BC 【解析】【分析】利用二项分布的期望、方差公式及期望、方差的性质计算判断AB ;利用二项分布的概率公式计算判断C ;利用二项分布与超几何分布的关系判断D.【详解】对于A ,由1(,)3X B n ,得()13E X n =,则()22113E X n ++,A 正确; 对于B ,由1(,)3X B n ,得()122339D X n n =×=,则()()82149D X D X n +==,B 错误; 对于C ,由1(,)3X B n ,得11111221(1)C (),(1)C ()3333n n n n n P X P X n −−−==××=−=××,故(1)(1)P X P X n =≠=−,C 错误;对于D ,当样本总数远大于抽取数目时,可以用二项分布近似估计超几何分布,D 正确. 故选:BC10. 已知函数()sin cos (,0)f x x a x x ωωω=+∈>R 的最大值为2,其部分图象如图所示,则( )A. 0a >B. 函数π6f x−为偶函数 C. 满足条件的正实数ω存在且唯一 D. ()f x 是周期函数,且最小正周期为π 【答案】ACD 【解析】【分析】根据题意,求得函数π()2sin(2)3f x x =+,结合三角函数的图象与性质,逐项判定,即可求解.【详解】由函数()sin cos )f x x a x x ωωωϕ=++,且tan a ϕ=,因为函数()f x 的最大值为22=,解得a =,又因为(0)0f a =>,所以a =A 正确; ()πsin 2sin 3f x x x x ωωω ==+因为πππ2sin 1443f ω=+= ,且函数()f x 在π4的附近单调递减,所以ππ5π2π,Z 436k k ω++∈,所以28,Z k k ω=+∈,又因为π24T >,可得π2T >π2>,解得04ω<<,所以2ω=, 此时π()2sin(2)3f x x =+,其最小正周期为πT =,所以C 、D 正确; 设()πππ2sin 22sin 2663F x f x x x=−=−+=,()()2sin[2()]2sin 2F x x x F x −=−=−=−,所以FF (xx )为奇函数,即函数π()6f x −为奇函数,所以B 不正确. 故选:ACD.11. 已知抛物线2:2(0)C y px p =>的焦点为F ,准线交x 轴于点D ,直线l 经过F 且与C 交于,A B 两点,其中点A 在第一象限,线段AF 的中点M 在y 轴上的射影为点N .若MN NF =,则( )A. lB. ABD △是锐角三角形C. 四边形MNDF2 D. 2||BF FA FD ⋅> 【答案】ABD 【解析】【分析】根据题意分析可知MNF 为等边三角形,即可得直线l 的倾斜角和斜率,进而判断A ;可知直线l 的方程,联立方程求点,A B 的坐标,求相应长度,结合长度判断BD ;根据面积关系判断C.【详解】由题意可知:抛物线的焦点为,02p F,准线为2px =−,即,02p D −,设()()112212,,,,0,0A x y B x y y y ><, 则111,,0,2422x y y p M N+,可得, 因为MN NF =,即MN NF MF ==,可知MNF 为等边三角形,即60NMF ∠=°,且MN ∥x 轴,可知直线l 的倾斜角为60°,斜率为tan 60k =°=,故A 正确;则直线:2p l y x =− ,联立方程222p yx y px=− =,解得32p x y ==或6p x y p= =,即32p A,,6p B p,则,M p p N p,可得28,,,2,,33DFp AD p BDp FA p FB p AB p ======,在ABD △中,BD AD AB <<,且2220BD AD AB +−<, 可知ADB ∠为最大角,且为锐角,所以ABD △是锐角三角形,故B 正确;四边形MNDF 的面积为21122MNDF BDF MNF S S S p p p p p =+=×+×=△△,故C 错误; 因为224,3FB FA p FD p ⋅==,所以2||BF FA FD ⋅>,故D 正确; 故选:ABD.【点睛】方法点睛:有关圆锥曲线弦长、面积问题的求解方法(1)涉及弦长的问题中,应熟练地利用根与系数的关系、设而不求计算弦长;涉及垂直关系时也往往利用根与系数的关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解; (2)面积问题常采用12S =× 底×高,其中底往往是弦长,而高用点到直线距离求解即可,选择底很重要,选择容易坐标化的弦长为底.有时根据所研究三角形的位置,灵活选择其面积表达形式,若求多边形的面积问题,常转化为三角形的面积后进行求解;(3)在求解有关直线与圆锥曲线的问题时,应注意数形结合、分类与整合、转化与化归及函数与方程思想的应用.三、填空题(本大题共3小题,每小题5分,共15分.) 12. 在ABC 中,AD 是边BC 上的高,若()()1,3,6,3AB BC==,则AD =______.【解析】【分析】设()6,3BD mBC m m == ,表达出()61,33AD m m =++ ,根据垂直关系得到方程,求出13m =−,进而得到答案.【详解】设()6,3BD mBC m m == ,则()()()1,36,361,33AD AB BD m m m m =+=+=++,由0AD BC = 得6(61)3(33)366990AD BC m m m m =+++=+++=,解得13m =−,故()()12,311,2AD =−−=− ,所以||AD ..13. 已知定义在RR 上的函数()f x 满足()()23e xf x f x =−+,则曲线yy =ff (xx )在点()()0,0f 处的切线方程为_____________. 【答案】3y x =+ 【解析】【分析】利用方程组法求出函数解析式,然后利用导数求切线斜率,由点斜式可得切线方程. 【详解】因为()()23e xf x f x =−+,所以()()23e x f x f x −−=+,联立可解得()=e 2e xx f x −+,所以()03f =,所以()()e2e ,01xx f x f −=′−+=′. 所以曲线()y f x =在点()()0,0f 处的切线方程为3y x −=, 故所求的切线方程为3y x . 故答案为:3y x .14. 小澄玩一个游戏:一开始她在2个盒子,A B 中分别放入3颗糖,然后在游戏的每一轮她投掷一个质地均匀的骰子,如果结果小于3她就将B 中的1颗糖放入A 中,否则将A 中的1颗糖放入B 中,直到无法继续游戏.那么游戏结束时B 中没有糖的概率是__________. 【答案】117【解析】【分析】设最初在A 中有k 颗糖,B 中有6k −颗糖时,游戏结束时B 中没有糖的概率为()0,1,,6k a k = ,归纳找出递推关系,利用方程得出0a ,再由递推关系求3a .【详解】设A 中有k 颗糖,B 中有6k −颗糖,游戏结束时B 中没有糖的概率为()0,1,,6k a k = . 显然0113a a =,()65112112,153333k k k a a a a a k +−=+=+≤≤,可得()112k k k k a a a a +−−=−,则()566510022a a a a a −=−=,()65626765040010002222221a a a a a a a a a a ∴=+=++=+++=− ,同理()256510002221a a a a a =+++=− ,()()760021212133a a ∴−=−+,解得011385255a ==× ()430112115.25517a a ∴=−=×=故答案为:117【点睛】关键点点睛:本题的关键在于建立统一的一个6颗糖果放入2个盒子不同情况的模型,找到统一的递推关系,利用递推关系建立方程求出0a ,即可得出这一统一模型的答案.四、解答题(本大题共5小题,共77分,解签应写出文字说明、证明过程或演算步骤.) 15. 已知数列{}n a 中,11a =,且0,n n a S ≠为数列{}n a 的前nn a =.(1)求数列{}n a 的通项公式;(2)若1(1)n n n n n c a a +−=,求数列{}n c 的前n 项和. 【答案】(1)21na n =− (2)421,42n n n n T n n n − += + − + ,为偶数为奇数 【解析】【分析】(1)1={aa nn }的通项公式; (2) 求出(1)1142121n n c n n − =+ −+,再讨论n 为奇、偶数,利用裂项相消法即可求数列{}n c 的前n 项和. 【小问1详解】 根据题意知1,2n n n a S S n −=−≥0n a +≠=②,1,2n =≥,所以可得1=为首项,1为公差的等差数列,11n n =+−=,所以2n S n =,121,2n n n a n S S n −−==−≥,当1n =时11a =也满足该式,所以21na n =−. 【小问2详解】由(1)结论可知21n a n =−,所以()()1(1)(1)(1)11212142121n n n n n n n n c a a n n n n +−−− ===+ −+−+, 设{}n c 的前n 项和为n T ,则当n 为偶数时,111111111111433557212142142n n T n n n n =−+++−++++=−+=− −+++则当n 为奇数时,1111111111111433557212142142n n T n n n n + =−+++−++−+=−−=− −+++所以421,42n n n n T n n n − += + − + ,为偶数为奇数.16. 如图,在以,,,,,A B C D E F 为顶点的五面体中,四边形ABCD 与四边形CDEF 均为等腰梯形,AB∥,CD EF ∥,224CD CD AB EF ===,AD DE AE ===.(1)证明:平面ABCD ⊥平面CDEF ;(2)若M 为线段CD 1=,求二面角A EM B −−的余弦值.【答案】(1)证明见解析(2【解析】【分析】(1)通过勾股定理及全等得出线线垂直,应用线面垂直判定定理得出OE ⊥平面ABCD ,由OE ⊂平面CDEF 进而得出面面垂直;(2)由面面垂直建立空间直角坐标系,分别求出法向量再应用向量夹角公式计算二面角余弦值.【小问1详解】证明:在平面CDEF 内,过E 做EO 垂直于CD 交CD 于点O ,由CDEF 为等腰梯形,且24CD EF ==,则1,DO =又OE =,所以2OE ,连接AO ,由ADO EDO ≅ ,可知AO CD ⊥且2AO =,所以在三角形OAE 中,222AE OE OA =+,从而OE OA ⊥,又,,,OE CD OA CD O OA CD ⊥∩=⊂平面ABCD ,,所以OE ⊥平面ABCD , 又OE ⊂平面CDEF ,所以平面ABCD ⊥平面CDEF【小问2详解】由(1)知,,,OE OC OA 两两垂直,以O 为坐标原点,建立如图所示的空间直角坐标系,则()()()()0,0,2,2,0,0,0,2,0,0,2,2A E M B ,()()()2,0,2,2,2,0,0,0,2AE EM MB =−=−= ,设平面AEM 的一个法向量为(),,n x y z =, 则00n AE n EM ⋅= ⋅=,即220220x z x y −= −+= , 取1z =,则()1,1,1n = ,设平面BEM 的一个法向量为()111,,m x y z =, 则00m MB m EM ⋅= ⋅=,即11120220z x y = −+= , 取11y =,则()1,1,0m = ,所以cos,m nm nm n⋅==⋅由图可以看出二面角A EM B−−为锐角,故二面角A EM B−−.17. 已知函数2()e2,Rxf x ax a=−∈.(1)求函数()f x的单调区间;(2)若对于任意的0x>,都有()1f x≥恒成立,求a的取值范围.【答案】(1)答案见解析(2)(],1−∞【解析】【分析】(1)对2()e2xf x ax=−求导,可得2()2e2xf x a′=−,再分类讨论a的取值,得出导数的正负即可得出单调区间;(2)对a进行分类讨论,根据导数正负求得()f x的最小值,判断是否满足()1f x≥,即可求解.【小问1详解】对2()e2xf x ax=−求导,可得2()2e2xf x a′=−,令()0f x′=,即22e20x a−=,即2e x a=,当0a≤时,ff′(xx)>0恒成立,()f x在R上单调递增;当0a>时,21e,2ln,ln2x a x a x a===,当1ln2x a<时,()()0,f x f x′<在1,ln2a∞−上单调递减;当1ln2x a>时,ff′(xx)>0,()f x在1ln,2a∞+上单调递增;综上,当0a≤时,()f x单调递增区间为R;当0a>时,()f x的单调递减区间为1,ln2a∞−,单调递增区间为1ln,2a∞+.【小问2详解】因为对于任意的0x>,都有()1f x≥恒成立,的的对2()e 2x f x ax =−求导,可得2()2e 2x f x a ′=−,令()0f x ′=,即22e 20x a −=,即2e x a =,①当0a ≤时,ff ′(xx )>0,则()f x 在(0,+∞)单调递增,()()01f x f >=,符合题意; ②当01a <≤时,2e x a =,则1ln 02x a ≤, 则()0f x ′>,()f x 在(0,+∞)单调递增,()()01f x f >=,符合题意; ③当1a >时,2e x a =,则1ln 02xa >, 当10,ln 2x a∈ 时,()0f x ′<,则()f x 在10,ln 2a单调递减, 当1ln ,2x a ∞ ∈+ 时,()0f x ′>,则()f x 在1ln ,2a ∞ +单调递增, 所以()ln 11ln e 2ln ln 22a f x f a a a a a a ≥=−⋅=−, 令()ln ,1g a a a a a =−>,则()ln 0g a a ′=−<, 所以()g a 在(1,+∞)上单调递减,所以()()11g a g <=,不合题意; 综上所述,(],1a ∞∈−.18. 已知双曲线()2222:10,0x y E a b a b−=>>的左、右焦点分别为12,,F F E 的一条渐近线方程为y =,过1F 且与x 轴垂直的直线与E 交于P ,Q 两点,且2PQF 的周长为16.(1)求E 的方程;(2),A B 为双曲线E 右支上两个不同的点,线段AB 的中垂线过点()0,4C ,求ACB ∠的取值范围.【答案】(1)22:13y E x −=; (2)2π0,3. 【解析】 【分析】(1)将x c =−代入曲线E 得2b y a =±,故得211b PF QF a==,从而结合双曲线定义以及题意得24416b a b a a = +=,解出,a b 即可得解. (2)设:AB y kx m =+,联立双曲线方程求得中点坐标,再结合弦长公式求得ACM ∠的正切值,进而得ACM ∠范围,从而由2ACB ACM ∠=∠即可得解.【小问1详解】将x c =−代入2222:1(0,0)x y E a b a b −=>>,得2b y a=±, 所以211b PF QF a==,所以2222b PF QF a a ==+,所以由题得24416b a b a a= +=,1a b = ⇒ = 所以双曲线E 的方程为22:13y E x −=. 【小问2详解】由题意可知直线AB斜率存在且k ≠,设:AB y kx m =+,AA (xx 1,yy 1),BB (xx 2,yy 2),设AB 的中点为M . 由2233y kx m x y =+ −=消去y 并整理得222(3)230k x kmx m −−−−=,230k −≠, 则22222(2)4(3)(3)12(3)0km k m m k ∆=+−+=+−>,即223m k >−, 12223km x x k+=−,212233m x x k +=−−,12122226()2233km m y y k x x m k m k k +=++=⋅+=−−,于是M 点为2(3km k −,23)3m k −,2223431243M C MC M m y y m k k k km x kmx k −−−+−===−. 由中垂线知1A MC B k k ⋅=−,所以231241m k km k−+=−,解得:23m k =−. 所以由,A B 在双曲线的右支上可得:22221220333033m m x x m k k k m+−<+=−=>⇒⇒=−>−, 且12222003km x x k k k+>⇒>−, 且()()()()()22222222Δ43390333403m k k k k k k =−+>⇒−+−=−−>⇒<或24k >, 综上24k >即2k >,又CM =, 所以tan AM ACM CM ∠===因为24k >,所以213m k =−<−,故2333k 0−−<<(, 所以π0,3ACM∠∈. 所以2π20,3ACB ACM∠=∠∈ . 19. 对于集合,A B ,定义运算符“Δ”:Δ{,A B x x A x B =∈∈∣两式恰有一式成立},A 表示集合A 中元素的个数.(1)设][1,1,0,2A B =−= ,求ΔA B ;(2)对于有限集,,A B C ,证明ΔΔΔA B B C A C +≥,并求出固定,A C 后使该式取等号的B 的数量;(用含,A C 的式子表示)(3)若有限集,,A B C 满足ΔΔΔA B B C A C +=,则称有序三元组(),,A B C 为“联合对”,定义{}*1,2,,,I n n ∈N ,(){},,,,u A B C A B C I ⊆∣. ①设m I ∈,求满足ΔA C m =的“联合对”(),,A B C u ⊆的数量;(用含m 的式子表示) ②根据(2)及(3)①的结果,求u 中“联合对”的数量.【答案】(1)[1,0)(1,2]−∪(2)||2A C ∆(3)①C 2m n m n +⋅②6n【解析】【分析】(1)根据新定义,对区间逐一分析即可得解;(2)利用韦恩图及新定义,求出不等式等号成立的条件,利用集合的性质转化为求子集个数; (3)①分别求出(),A C ,B 取法的种数,再由分步乘法计数原理得解②结合(2)及(3)①的结果,利用二项式定理求解.【小问1详解】对于,,[1),0x x A x B −∈∈∉,故x A B ∈∆;对于,,[0,1]x x A x B ∈∈∈,故x A B ∉∆;对于,,(1,2]x x A x B ∉∈∈,故x A B ∈∆;对于,,[1],2x x A x B ∉−∉∉,故x A B ∉∆,即[10)(12],,A B −∆ .【小问2详解】画出Venn 图,如图,将A B C 划分成7个集合17,,S S ,则14562547||||||||||,||||||||||A B S S S S B C S S S S ∆=+++∆=+++,1267||||||||||A C S S S S ∆=+++,故45||||||2||2||0A B B C A C S S ∆+∆−∆=+≥不等式成立,当且仅当45S S ==∅时取等号, 4S =∅等价于()A C B ∩⊆,5S =∅等价于()B A C ⊆∪,故当且仅当()()A C B A C ∩⊆⊆∪取等号. 设()B A C D =∩∪,其中集合D 与A C 无交集,由于()\()A C A C A C ∆= ,故有()()\ΔD A C A C A C ∅⊆⊆∪∩=,即D 为A C ∆的某一子集,有||2A C ∆种,从而使上式取等的B 有||2A C ∆个.【小问3详解】①设X A C u =∆⊆,有||X m =,故X 有C m n 种取法,对于每一个x ,知X 中每一个元素x 有两种情形:,x A x C ∈∉或,x A x C ∉∈,且/I X 中每一个元素x 有两种情形:,x A x C ∈∉或,x A x C ∉∈,故,x I x ∀∈共有两种选择,也就是这样的(),A C 有||22I n =种,对于每一个(),A C ,由(2)知B 有||22A C m ∆=种取法.故由乘法原理,这样的“联合对(),,A B C 有C 2m n m n +⋅个.②由①知,u 中“联合对”的数量为()00C 22C 212216n n n m n m n m m n m n n nnm m +−===⋅=+=∑∑(二项式定理), 故u 中“联合对”(),,A B C 的数量为6n .【点睛】关键点点睛:集合新定义问题的关键在于理解所给新定义,会抽象的利用集合的知识,分步乘法计数原理,二项式定理推理运算,此类问题难度大.。

2024-2025学年高三上学期第一次联考(9月月考) 数学试题[含答案]

2024-2025学年高三上学期第一次联考(9月月考) 数学试题[含答案]

2024~2025学年高三第一次联考(月考)试卷数学考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.4.本卷命题范围:集合、常用逻辑用语、不等式、函数、导数及其应用.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则集合的真子集的个数为(){}4,3,2,0,2,3,4A =---{}2290B x x =-≤A B ⋂A.7B.8C.31D.322.已知,,则“,”是“”的( )0x >0y >4x ≥6y ≥24xy ≥A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分又不必要条件3.国家速滑馆又称“冰丝带”,是北京冬奥会的标志性场馆,拥有亚洲最大的全冰面设计,但整个系统的碳排放接近于零,做到了真正的智慧场馆、绿色场馆,并且为了倡导绿色可循环的理念,场馆还配备了先进的污水、雨水过滤系统,已知过滤过程中废水的污染物数量与时间(小时)的关系为()mg /L N t (为最初污染物数量,且).如果前4个小时消除了的污染物,那么污染物消0e kt N N -=0N 00N >20%除至最初的还需要( )64%A.3.8小时 B.4小时C.4.4小时D.5小时4.若函数的值域为,则的取值范围是()()()2ln 22f x x mx m =-++R m A.B.()1,2-[]1,2-C.D.()(),12,-∞-⋃+∞(][),12,-∞-⋃+∞5.已知点在幂函数的图象上,设,(),27m ()()2n f x m x =-(4log a f =,,则,,的大小关系为( )()ln 3b f =123c f -⎛⎫= ⎪⎝⎭a b c A.B.c a b <<b a c<<C. D.a c b <<a b c<<6.已知函数若关于的不等式的解集为,则的()()2e ,0,44,0,x ax xf x x a x a x ⎧->⎪=⎨-+-+≤⎪⎩x ()0f x ≥[)4,-+∞a 取值范围为( )A.B. C. D.(2,e ⎤-∞⎦(],e -∞20,e ⎡⎤⎣⎦[]0,e 7.已知函数,的零点分别为,,则( )()41log 4xf x x ⎛⎫=- ⎪⎝⎭()141log 4xg x x ⎛⎫=- ⎪⎝⎭a b A. B.01ab <<1ab =C.D.12ab <<2ab ≥8.已知,,,且,则的最小值为( )0a >0b >0c >30a b c +-≥6b a a b c ++A. B. C. D.29495989二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法正确的是( )A.函数是相同的函数()f x =()g x =B.函数6()f x =C.若函数在定义域上为奇函数,则()313xx k f x k -=+⋅1k =D.已知函数的定义域为,则函数的定义域为()21f x +[]1,1-()f x []1,3-10.若,且,则下列说法正确的是()0a b <<0a b +>A. B.1a b >-110a b+>C. D.22a b <()()110a b --<11.已知函数,则下列说法正确的是( )()()3233f x x x a x b=-+--A.若在上单调递增,则的取值范围是()f x ()0,+∞a (),0-∞B.点为曲线的对称中心()()1,1f ()y f x =C.若过点可作出曲线的三条切线,则的取值范围是()2,m ()()3y f x a x b =+-+m ()5,4--D.若存在极值点,且,其中,则()f x 0x ()()01f x f x =01x x ≠1023x x +=三、填空题:本题共3小题,每小题5分,共15分.12.__________.22lg 2lg3381527log 5log 210--+⋅+=13.已知函数称为高斯函数,表示不超过的最大整数,如,,则不等式[]y x =x []3.43=[]1.62-=-的解集为__________;当时,的最大值为__________.[][]06x x <-0x >[][]29x x +14.设函数,若,则的最小值为__________.()()()ln ln f x x a x b =++()0f x ≥ab 四、解答题:本题共5小题、共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)已知全集,集合,.U =R {}231030A x x x =-+≤{}220B x xa =+<(1)若,求和;8a =-A B ⋂A B ⋃(2)若,求的取值范围.()UA B B ⋂= a 16.(本小题满分15分)已知关于的不等式的解集为.x 2280ax x --<{}2x x b-<<(1)求,的值;a b (2)若,,且,求的最小值.0x >2y >-42a bx y +=+2x y +17.(本小题满分15分)已知函数.()()()211e 2x f x x ax a =--∈R (1)讨论的单调性;()f x (2)若对任意的恒成立,求的取值范围.()e x f x x ≥-[)0,x ∈+∞a 18.(本小题满分17分)已知函数是定义在上的奇函数.()22x xf x a -=⋅-R(1)求的值,并证明:在上单调递增;a ()f x R (2)求不等式的解集;()()23540f x x f x -+->(3)若在区间上的最小值为,求的值.()()442x x g x mf x -=+-[)1,-+∞2-m 19.(本小题满分17分)已知函数.()()214ln 32f x x a x x a =---∈R (1)若,求的图像在处的切线方程;1a =()f x 1x =(2)若恰有两个极值点,.()f x 1x ()212x x x <(i )求的取值范围;a (ii )证明:.()()124ln f x f x a+<-数学一参考答案、提示及评分细则1.A 由题意知,又,所以{}2290B x x ⎡=-=⎢⎣∣ {}4,3,2,0,2,3,4A =---,所以的元素个数为3,真子集的个数为.故选.{}2,0,2A B ⋂=-A B ⋂3217-=A 2.A 若,则,所以“”是“”的充分条件;若,满足4,6x y 24xy 4,6x y 24xy 1,25x y ==,但是,所以“”不是“”的必要条件,所以“”是24xy 4x <4,6x y 24xy 4,6x y “”的充分不必要条件.故选A.24xy 3.B 由题意可得,解得,令,可得4004e 5N N -=44e 5k -=20004e 0.645t N N N -⎛⎫== ⎪⎝⎭,解得,所以污染物消除至最初的还需要4小时.故选B.()248e e ek kk---==8t =64%4.D 依题意,函数的值域为,所以,解得()()2ln 22f x x mx m =-++R ()2Δ(2)420m m =--+ 或,即的取值范围是.故选D.2m 1m - m ][(),12,∞∞--⋃+5.C 因为是軍函数,所以,解得,又点在函数的图()()2nf x m x =-21m -=3m =()3,27()n f x x =象上,所以,解得,所以,易得函数在上单调递增,又273n=3n =()3f x x =()f x (),∞∞-+,所以.故选C.1241ln3lne 133log 2log 2->==>=>=>a c b <<6.D 由题意知,当时,;当时,;当时,(),4x ∞∈--()0f x <[]4,0x ∈-()0f x ()0,x ∞∈+.当时,,结合图象知;当时,,当()0f x 0x ()()()4f x x x a =-+-0a 0x >()e 0x f x ax =- 时,显然成立;当时,,令,所以,令,解0a =0a >1e x x a (),0e x x g x x =>()1e xxg x -='()0g x '>得,令0,解得,所以在上单调递增,在上单调递减,所以01x <<()g x '<1x >()g x ()0,1()1,∞+,所以,解得综上,的取值范围为.故选D.()max 1()1e g x g ==11e a0e a < a []0,e 7.A 依题意得,即两式相减得4141log ,41log ,4a b a b ⎧⎛⎫=⎪ ⎪⎝⎭⎪⎨⎛⎫⎪= ⎪⎪⎝⎭⎩441log ,41log ,4a ba b ⎧⎛⎫=⎪ ⎪⎪⎝⎭⎨⎛⎫⎪-= ⎪⎪⎝⎭⎩.在同一直角坐标系中作出的图()44411log log log 44a ba b ab ⎛⎫⎛⎫+==- ⎪ ⎪⎝⎭⎝⎭4141log ,log ,4xy x y x y ⎛⎫=== ⎪⎝⎭象,如图所示:由图象可知,所以,即,所以.故选A.a b >1144ab⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭()4log 0ab <01ab <<8.C 因为,所以,所以30a b c +- 30a b c +> 11911121519966399939911b a b a b b b b a b c a b a b a a a a ⎛⎫++=+=++--=-= ⎪+++⎝⎭++ ,当且仅当,即时等号成立,所以的最小值为.故选C.1911991b b a a ⎛⎫+= ⎪⎝⎭+29b a =6b aa b c ++599.AD 由解得,所以,由,解得10,10x x +⎧⎨-⎩ 11x - ()f x =[]1,1-210x -,所以的定义域为,又,故函数11x - ()g x =[]1,1-()()f x g x ===与是相同的函数,故A 正确;,()f x ()g x ()6f x ==当且仅当方程无解,等号不成立,故B 错误;函数=2169x +=在定义域上为奇函数,则,即,即()313x x k f x k -=+⋅()()f x f x -=-331313x xx x k k k k ----=-+⋅+⋅,即,整理得,即,()()33313313x x xxxxk k k k ----=-+⋅+⋅313313x x x x k kk k ⋅--=++⋅22919x x k k ⋅-=-()()21910x k -+=所以,解得.当时,,该函数定义域为,满足,210k -=1k =±1k =()1313xx f x -=+R ()()f x f x -=-符合题意;当时,,由可得,此时函数定义域为1k =-()13311331x x xxf x --+==--310x -≠0x ≠,满足,符合题意.综上,,故C 错误;由,得{}0x x ≠∣()()f x f x -=-1k =±[]1,1x ∈-,所以的定义域为,故D 正确.故选AD.[]211,3x +∈-()f x []1,3-10.AC 因为,且,所以,所以,即,故A 正确;0a b <<0a b +>0b a >->01a b <-<10ab -<<因为,所以,故В错误;因为,所以,0,0b a a b >->+>110a ba b ab ++=<0a b <<,a a b b =-=由可得,所以,故C 正确;因为当,此时,故0a b +>b a >22a b <11,32a b =-=()()110a b -->D 错误.故选AC.11.BCD 若在上单调递增,则在上佰成立,所以()f x ()0,∞+()23630f x x x a '=-+- ()0,x ∞∈+,解得,即的取值范围是,故A 错误;因为()min ()13630f x f a '==--'+ 0a a (],0∞-,所以,又()()32333(1)1f x x x a x b x ax b =-+--=---+()11f a b =--+,所以点()()()332(21)21(1)1222f x f x x a x b x ax b a b -+=-----++---+=--+为曲线的对称中心,故B 正确;由题意知,所以()()1,1f ()y f x =()()3233y f x a x b xx =+-+=-,设切点为,所以切线的斜率,所以切线的方程为236y x x =-'()32000,3x x x -20036k x x =-,所以,整理得()()()3220000336y x x x x x x --=--()()()322000003362m xx x x x --=--.记,所以3200029120x x x m -++=()322912h x x x x m =-++()26h x x '=-,令,解得或,当时,取得极大值,当时,1812x +()0h x '=1x =2x =1x =()h x ()15h m =+2x =取得极小值,因为过点可作出曲线的三条切线,所以()h x ()24h m=+()2,m ()()3y f x a x b =+-+解得,即的取值范围是,故C 正确;由题意知()()150,240,h m h m ⎧=+>⎪⎨=+<⎪⎩54m -<<-m ()5,4--,当在上单调递增,不符合题意;当,()223633(1)f x x x a x a =-+-=--'()0,a f x (),∞∞-+0a >令,解得,令,解得在()0f x '>1x <-1x >+()0f x '<11x -<<+()f x 上单调递增,在上单调递堿,在上单调递增,因为,1∞⎛- ⎝1⎛+ ⎝1∞⎛⎫+ ⎪ ⎪⎝⎭存在极值点,所以.由,得,令,所以,()f x 0x 0a >()00f x '=()2031x a-=102x x t+=102x t x =-又,所以,又,()()01f x f x =()()002f x f t x =-()()32333(1)1f x x x a x b x ax b =-+--=---+所以,又,所以()()()330000112121x ax b t x a t x b ---+=-----+()2031x a-=,化简得()()()()()()()322320000000013112121312x x x b x x b t x x t x b----=----=------,又,所以,故D 正确.故选BCD.()()20330t x t --=010,30x x x t ≠-≠103,23t x x =+=12. 由题意知10932232862log 184163381255127log 5log 210log 5log 121027---⎛⎫+⋅+=+⋅-+ ⎪⎝⎭62511411410log 5log 2109339339=-⋅+=-+=13.(2分)(3分) 因为,所以,解得,又函数[)1,616[][]06x x <-[][]()60x x -<[]06x <<称为高斯函数,表示不超过的最大整数,所以,即不等式的解集为.当[]y x =x 16x < [][]06x x <-[)1,6时,,此时;当时,,此时01x <<[]0x =[]2[]9x x =+1x []1x ,当且仅当3时等号成立.综上可得,当时,的[][][]2119[]96x x x x ==++[]x =0x >[]2[]9x x +最大值为.1614. 由题意可知:的定义域为,令,解得令,解21e -()f x (),b ∞-+ln 0x a +=ln ;x a =-()ln 0x b +=得.若,当时,可知,此时,不合题1x b =-ln a b -- (),1x b b ∈--()ln 0,ln 0x a x b +>+<()0f x <意;若,当时,可知,此时,不合ln 1b a b -<-<-()ln ,1x a b ∈--()ln 0,ln 0x a x b +>+<()0f x <题意;若,当时,可知,此时;当ln 1a b -=-(),1x b b ∈--()ln 0,ln 0x a x b +<+<()0f x >时,可知,此时,可知若,符合题意;若[)1,x b ∞∈-+()ln 0,ln 0x a x b ++ ()0f x ln 1a b -=-,当时,可知,此时,不合题意.综上所ln 1a b ->-()1,ln x b a ∈--()ln 0,ln 0x a x b +<+>()0f x <述:,即.所以,令,所以ln 1a b -=-ln 1b a =+()ln 1ab a a =+()()ln 1h x x x =+,令,然得,令,解得,所以在()ln 11ln 2h x x x '=++=+()0h x '<210e x <<()0h x '>21e x >()h x 上单调递堿,在上单调递增,所以,所以的最小值为.210,e ⎛⎫ ⎪⎝⎭21,e ∞⎛⎫+ ⎪⎝⎭min 2211()e e h x h ⎛⎫==- ⎪⎝⎭ab 21e -15.解:(1)由题意知,{}2131030,33A x x x ⎡⎤=-+=⎢⎥⎣⎦∣ 若,则,8a =-{}()22802,2B x x =-<=-∣所以.(]1,2,2,33A B A B ⎡⎫⋂=⋃=-⎪⎢⎣⎭(2)因为,所以,()UA B B ⋂= ()UB A ⊆ 当时,此时,符合题意;B =∅0a 当时,此时,所以,B ≠∅0a <{}220Bx x a ⎛=+<= ⎝∣又,U A ()1,3,3∞∞⎛⎫=-⋃+ ⎪⎝⎭13解得.209a -< 综上,的取值范围是.a 2,9∞⎡⎫-+⎪⎢⎣⎭16.解:(1)因为关于的不等式的解集为,x 2280ax x --<{2}xx b -<<∣所以和是关于的方程的两个实数根,且,所以2-b x 2280ax x --=0a >22,82,b a b a⎧=-⎪⎪⎨⎪-=-⎪⎩解得.1,4a b ==(2)由(1)知,所以1442x y +=+()()()221141422242241844242y xx y x y x y x y y x ⎡⎤+⎛⎫⎡⎤+=++-=+++-=+++-⎢⎥ ⎪⎣⎦++⎝⎭⎣⎦,179444⎡⎢+-=⎢⎣ 当且仅当,即时等号成立,所以.()2242y x y x +=+x y ==2x y +74-17.解:(1)由题意知,()()e e x x f x x ax x a=-=-'若,令.解得,令,解得,所以在上单调递琙,在0a ()0f x '<0x <()0f x '>0x >()f x (),0∞-上单调递增.()0,∞+若,当,即时,,所以在上单调递增;0a >ln 0a =1a =()0f x ' ()f x (),∞∞-+当,即时,令,解得或,令,解得,ln 0a >1a >()0f x '>0x <ln x a >()0f x '<0ln x a <<所以在上单调递增,在上单调递减,在上单调递增;()f x (),0∞-()0,ln a ()ln ,a ∞+当,即时,令,解得或,令,解得,ln 0a <01a <<()0f x '>ln x a <0x >()0f x '<ln 0a x <<所以在上单调递增,在上单调递减,在上单调递增.()f x (),ln a ∞-()ln ,0a ()0,∞+综上,当时,在上单调递减,在上单调递增;当时,在0a ()f x (),0∞-()0,∞+01a <<()f x 上单调递增,在上单调递减,在上单调递增当时,在上(,ln )a ∞-()ln ,0a ()0,∞+1a =()f x (),∞∞-+单调递增;当时,在上单调递增,在上单调递减,在上单调递增.1a >()f x (),0∞-()0,ln a ()ln ,a ∞+(2)若对任意的恒成立,即对任意的恒成立,()e xf x x - [)0,x ∞∈+21e 02xx ax x -- [)0,x ∞∈+即对任意的恒成立.1e 102x ax -- [)0,x ∞∈+令,所以,所以在上单调递增,当()1e 12x g x ax =--()1e 2x g x a=-'()g x '[)0,∞+,即时,,所以在上单调递增,所以()10102g a =-' 2a ()()00g x g '' ()g x [)0,∞+,符合题意;()()00g x g = 当,即时,令,解得,令,解得,所()10102g a =-<'2a >()0g x '>ln 2a x >()0g x '<0ln 2a x < 以在上单调递减,()g x 0,ln 2a ⎡⎫⎪⎢⎣⎭所以当时,,不符合题意.0,ln 2a x ⎛⎫∈ ⎪⎝⎭()()00g x g <=综上,的取值范围是.a (],2∞-18.(1)证明:因为是定义在上的奇函数,所以,()f x R ()010f a =-=解得,所以,1a =()22x xf x -=-此时,满足题意,所以.()()22x x f x f x --=-=-1a =任取,所以12x x <,()()()()211122121211122222122222222122x x x x x x x x x x x x f x f x x x --⎛⎫--=---=--=-+ ⎪++⎝⎭又,所以,即,又,12x x <1222x x <12220x x -<121102x x ++>所以,即,所以在上单调递增.()()120f x f x -<()()12f x f x <()f x R (2)解:因为,所以,()()23540f x x f x -+->()()2354f x x f x ->--又是定义在上的奇函数,所以,()f x R ()()2354f x x f x ->-+又在上单调递增,所以,()f x R 2354x x x ->-+解得或,即不等式的解集为.2x >23x <-()()23540f x x f x -+->()2,2,3∞∞⎛⎫--⋃+ ⎪⎝⎭(3)解:由题意知,令,()()()44244222xxxxxxg x mf x m ---=+-=+--322,,2x x t t ∞-⎡⎫=-∈-+⎪⎢⎣⎭所以,所以.()2222442x xxxt --=-=+-()2322,,2y g x t mt t ∞⎡⎫==-+∈-+⎪⎢⎣⎭当时,在上单调递增,所以32m -222y t mt =-+3,2∞⎡⎫-+⎪⎢⎣⎭,解得,符合题意;2min317()323224g x m m ⎛⎫=-++=+=- ⎪⎝⎭2512m =-当时,在上单调递减,在上单调递增,32m >-222y t mt =-+3,2m ⎛⎫- ⎪⎝⎭(),m ∞+所以,解得或(舍).222min ()2222g x m m m =-+=-=-2m =2m =-综上,的值为或2.m 2512-19.(1)解:若,则,所以,1a =()214ln 32f x x x x =---()14f x x x =--'所以,又,()14112f =--='()1114322f =--=所以的图象在处的切线方程为,即.()f x 1x =()1212y x -=-4230x y --=(2)(i )解:由题意知,()22444a x a x x x af x x x x x '---+=--==-又函数恰有两个极值点,所以在上有两个不等实根,()f x ()1212,x x x x <240x x a -+=()0,∞+令,所以()24h x x x a =-+()()00,240,h a h a ⎧=>⎪⎨=-<⎪⎩解得,即的取值范围是.04a <<a ()0,4(ii )证明:由(i )知,,且,12124,x x x x a +==04a <<所以()()2212111222114ln 34ln 322f x f x x a x x x a x x ⎛⎫⎛⎫+=---+--- ⎪ ⎪⎝⎭⎝⎭()()()2212121214ln ln 62x x a x x x x =+-+-+-,()()()21212121214ln 262x x a x x x x x x ⎡⎤=+--+--⎣⎦()116ln 1626ln 22a a a a a a =----=-+要证,即证,只需证.()()124ln f x f x a+<-ln 24ln a a a a -+<-()1ln 20a a a -+-<令,所以,()()()1ln 2,0,4m a a a a a =-+-∈()11ln 1ln a m a a a a a -=-++=-'令,所以,所以即在上单调递减,()()h a m a ='()2110h a a a =--<'()h a ()m a '()0,4又,所以,使得,即,()()1110,2ln202m m '-'=>=<()01,2a ∃∈()00m a '=001ln a a =所以当时,,当时,,所以在上单调递增,在()00,a a ∈()0m a '>()0,4a a ∈()0m a '<()m a ()00,a 上单调递减,所以.()0,4a ()()()max 00000000011()1ln 2123m a m a a a a a a a a a ==-+-=-+-=+-令,所以,所以在上单调递增,所以()()13,1,2u x x x x =+-∈()2110u x x =->'()u x ()1,2,所以,即,得证.()000111323022u a a a =+-<+-=-<()0m a <()()124ln f x f x a +<-。

黑龙江省实验中学2023-2024学年度高三学年上学期第一次月考数学学科试题

黑龙江省实验中学2023-2024学年度高三学年上学期第一次月考数学学科试题

A.恒大于 0
B.恒小于 0
C.等于 0
D.无法判断
第1页 共4页
8.函数 f ( x) 的定义域为 D,若对于任意 x1, x2 D ,当 x1 x2 时,都有 f ( x1 ) f ( x2 ) ,则称函数 f ( x) 在 D
上为非减函数,设函数
f
(
x)
在 0,1 上为非减函数,且满足以下三个条件:①
B.若 x 1 ,则函数 y = 3x + 1 的最大值为 −1
3
3x −1
C.若 x 0 , y 0 , x + y + xy = 3 ,则 xy 的最大值为1
D.函数 y =
x2 + 6 x2 + 4 的最小值为 2
2
12.地震震级根据地震仪记录的地震波振幅来测定,一般采用里氏震级标准.里氏震级的计算公式为
f
(x)
=
1+ ln x
x
,则
f
(
x
)
在区间
a,
a
+
2 3
(
a
0) 上存在极值的一个充分不必要条件是(

A.
2 3
,1
B.
0,
2 3
C.
0,
1 3
D.
1 3
,1
6.已知 a x
|
(1)x 3

x
=
0 ,则
f
(x)
=
loga (x2

4x
+ 3)
的减区间为(

A. (−,1)
B. (−, 2)
M
=
lg
Amax (其中常数 A0

2023-2024学年福建省龙岩市第一中学高三上学期第一次月考数学试题及答案

2023-2024学年福建省龙岩市第一中学高三上学期第一次月考数学试题及答案

龙岩一中2024届高三上学期第一次月考数学试题(考试时间:120分钟 满分:150分)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一一次可使杂质含量减少1/4,要使产品达到市场要求,则至少应过滤的次数为(已知:lg2=0.3010,lg3=0.4771)( )目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知A B 、为实数集R 的非空集合,则A B ≠⊂的必要不充分条件可以是( )A .AB A ⋂=B .A ∩C R B =C .C R B ≠⊂C R AD .B ∪C R A=R三、填空题:本题共4小题,每小题5分,共20分.13.已知实数集R ,集合A ={x|log 2x<1},B ={x ∈Z |x 2+4≤5x},则(C R A)∩B = 15. 已知()24,1,log ,2,ax x f x x x +≤⎧=⎨≥⎩则()()0f f =______;若函数()f x 的值域为[)1,+∞,则a 的最小值为______.17.(本题满分10分)已知集合{}2680A x x x =-+<,{}22430B x x ax a =-+<.(1)若a =1,求(C R B )∩A ;(2)若a >0,设命题:p x A ∈,命题:q x B ∈,已知命题p 是命题q 的充分不必要条件,求实数a 的取值围.18. (本题满分12分)已知函数1(=21xf x a +-)是奇函数.(1)求a ;(2)若[](1ln 0f x x -⋅<),求x 的范围.19.(本题满分12分)已知函数232)1(31)(x k x x f +-=,kx x g -=31)(,且)(x f 在区间),2(+∞上为增函数.(1)求实数k 的取值范围;(2)若函数)(x f 与)(x g 的图象有三个不同的交点,求实数k 的取值范围.20. (本题满分12分)某单位有员工1000名,平均每人每年创造利润10万元.为了增加企业竞争力,决定优化产业结构,调整出()*x x N∈名员工从事第三产业,调整后他们平均每人每年创造利润为310500x a ⎛⎫- ⎪⎝⎭万元()0a >,剩下的员工平均每人每年创造的利润可以提高0.2%x .(1)若要保证剩余员工创造的年总利润不低于原来1000名员工创造的年总利润,则最多调整出多少名员工从事第三产业?(2)若要保证剩余员工创造的年总利润不低于原来1000名员工创造的年总利润条件下,若要求调整出的员工创造出的年总利润始终不高于剩余员工创造的年总利润,则a 的取值范围是多少?21. (本题满分12分)已知函数())2log f x x =-是R 上的奇函数,()2g x t x a =--.(1)若函数()f x 与()g x 有相同的零点,求t 的值;(2)若123,,24x x ⎡⎤∀∈-⎢⎥⎣⎦,()()12f x g x ≤,求t 的取值范围.22. (本题满分12分)已知函数()()2122e x f x x a x a -⎡⎤=+-+-⎣⎦,a ∈R .(1)讨论函数()f x 单调性;(2)当0a =时,若函数()()()11g x f x m x =---在[)0,∞+有两个不同零点,求实数m 的取值范围.龙岩一中2024届高三上学期第一次月考数学参考答案题号123456789101112答案BBCDDDABABDCDBCDABD13.{2,3,4}143-15.2, -316.-1两个函数图象如下图所示:121,ln ln e 1x x <<=,又当1x <时,()f x 单调递增,所以又由{}2680(2,4)A x x x =-+<=,所以()[)3,4B A ⋂=R ð.. ........5分(2)当0a >时,可得(),3B a a =.因为命题p 是命题q 的充分不必要条件,则A ≠⊂B ,可得243a a≤⎧⎨≤⎩,等号不能同时成立,解得423a ≤≤,所以实数a 的取值范围为4,23⎡⎤⎢⎥⎣⎦ ......10分18. .......1分.....................6分 (用特殊值没检验的,扣2分)................8分.....................12分19.解:(1)由题意xk x xf )1()(2+-=' ∵)(x f 在区间),2(+∞上为增函数,≥0在区间(2,+∞)上恒成立..........2分即k+1≤x 恒成立,又2>x ,∴21≤+k ,故1≤k ∴k 的取值范围为1≤k ..........4分 ( 没有等号扣2分)(2)设312)1(3)()()(23-++-=-=kx x k x x g x f x h ,)1)(()1()(2--=++-='x k x k x k x x h ...........6分令0)(='x h 得k x =或1=x 由(1)知1≤k ,①当1=k 时,0)1()(2≥-='x x h ,)(x h 在R 上递增,显然不合题意...........7分②当1<k 时,)(x h ,)(x h '随x 的变化情况如下表:x ),(k -∞k )1,(k 1),1(+∞)(x h '+0—0+)(x h ↗极大值312623-+-k k ↘极小值21-k ↗由于021<-k ,欲使)(x f 与)(x g 的图象有三个不同的交点,即方程0)(=x h 有三个不同的实根,故需0312623>-+-k k ,即0)22)(1(2<---k k k ...........10分∴⎩⎨⎧>--<02212k k k ,解得31-<k ,综上,所求k 的取值范围为31-<k ...........12分20. 解:(1)由题意,得()()10100010.2%101000x x -+≥⨯,..................3分即25000x x -≤,又0x >,所以0500x <≤.即最多调整500名员工从事第三产业. ..........5分(2)从事第三产业的员工创造的年总利润为310500⎛⎫- ⎪⎝⎭x a x 万元,从事原来产业的员工的年总利润为110(1000)1500⎛⎫-+⎪⎝⎭x x 万元,..............7分21. 解:(1)因为())2log f x x =-是R 上的奇函数,所以()00f =,即log 0=解得1a =..................2分因为0x =是函数()f x 的零点,所以()010g t =-=,则1t =....................4分(2)由(1)可得())2log f x x =-,()121,221121,2x t x g x t x x t x ⎧-++≥⎪⎪=--=⎨⎪+-<⎪⎩, (6)分因为奇函数())2log log f x x ==()f x 在3,24⎡⎤-⎢⎥⎣⎦上是减函数,则()f x 在3,24⎡⎤-⎢⎥⎣⎦上的最大值为()2max 33log 144f x f ⎫⎛⎫⎛⎫⎪=-=-= ⎪ ⎪⎪⎝⎭⎝⎭⎭.......8分因为()121,2121,2x t x g x x t x ⎧-++≥⎪⎪=⎨⎪+-<⎪⎩,所以()gx 在31,42⎡⎤-⎢⎥⎣⎦上是增函数,在1,22⎡⎤⎢⎥⎣⎦上是减函数.则()g x 的最小值为34g ⎛⎫-⎪⎝⎭和()2g 中的较小的一个.因为33521442g t t ⎛⎫⎛⎫-=⨯-+-=- ⎪ ⎪⎝⎭⎝⎭,()22213g t t =-⨯++=-.所以()()min 23g x g t ==-.............10分因为123,,24x x ⎡⎤∀∈-⎢⎥⎣⎦,()()12f x f x ≤,所以13t ≤-.解得4t ≥.故t 的取值范围为[)4,+∞.....................12分22. 解(1):因为()()2122e x f x x a x a -⎡⎤=+-+-⎣⎦定义域为R ,所以()()()211e e x xf x x ax x x a --'=+=+,..........1分当0a >时,令()0f x ¢>,解得0x >或x a <-,令()0f x '<,解得0a x -<<,所以()f x 在(),0a -上单调递减,在(),a -∞-和()0,∞+上单调递增,..........2分当0a =时()21e 0xf x x -'=≥恒成立,所以()f x 在R 上单调递增, ..........3分当a<0时,令()0f x ¢>,解得x a >-或0x <,令()0f x '<,解得0x a <<-,所以()f x 在()0,a -上单调递减,在(),0∞-和(),a -+∞上单调递增,..........4分综上可得,当0a >时,()f x 在(),0a -上单调递减,在(),a -∞-和()0,∞+上单调递增;当0a =时,()f x 在R 上单调递增;当a<0时,()f x 在()0,a -上单调递减,在(),0∞-和(),a -+∞上单调递增;..........5分解(2):当0a =时,()()()()()211122e 11x g x f x m x x x m x -=---=-+---,所以()21e x g x x m -'=-,令()()21e x P x g x x m -'==-,则()()212e 0x P x x x -'=+>,所以()21e x g x x m -'=-在[)0,∞+上单调递增,所以()()0g x g m ''≥=-,①当0m -≥,即0m ≤时()()00g x g m ''≥=-≥,所以()g x 在[)0,∞+上单调递增,又()10g =,所以函数()g x 只有一个零点,不符合题意,舍去;..........6分②当0m -<,即0m >时()()00g x g m ''≥=-<,又()()211e 0m g m m m '+=+->,所以存在唯一的()00,1x m ∈+,使得()00g x '=,当()00,x x ∈时,'()0g x <,当()0,x x ∈+∞时,'()0g x >所以()g x 在()00,x 上单调递减,在()0,x +∞上单调递增,又()11g m '=-,当1m =时()10g '=,此时01x =,所以()()10g x g ≥=,函数()g x 只有一个零点,不符合题意,舍去;当1m ≠时()110g m '=-≠,01x ≠,此时有两个零点时,应满足()()0000g g x ⎧≥⎪⎨<⎪⎩,..........8分即()()()011200002e 1022e 110x m g x x x m x --⎧+-≥⎪⎨=-+---<⎪⎩,其中()()()()()0001112220000000022e 1122e e 11x x x g x x x m x x x x x ---=-+---=-+---()0132000222e 1x x x x -=-+-+-,..........9分设()()321222e 1x h x x x x -=-+-+-,()0,1x m ∈+,则()()()121e x h x x x x -'=+-,令()()()121e 0x h x x x x -'=+-=,解得1x =,所以当01x <<时()0h x '>,当11x m <<+时()0h x '<,所以()h x 在()0,1上单调递增,在()1,1m +上单调递减,所以()()10h x h ≤=,..........11分即()()()012000022e 110x g x x x m x -=-+---<恒成立,所以112e m -≥-且1m ≠...........12分【方法点睛】导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.龙岩一中2024届高三上学期第一次月考数学试题一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一故选:D5.某化工厂生产一种溶液,按市场要求,杂质含量不能超过0.1%,若初时含杂质2%,每过滤一次可使杂质含量减少1/4,要使产品达到市场要求,则至少应过滤的次数为(已知:lg2=0.3010,lg3=0.4771)( )A.8B.9C.10D.11【答案】D【详解】设至少需要过滤n次,则10.0210.0014n⎛⎫⨯-≤⎪⎝⎭,即31420n⎛⎫≤⎪⎝⎭,所以3lg204nlg≤-,即lg2010.301010.42lg4lg320.30100.4471n+≥=≈-⨯-,又n N∈,所以11n≥,所以至少过滤11次才能使产品达到市场要求,故选D.【点睛】本题主要考查指数与对数的运算,考查学生的阅读能力,考查学生的建模能力,属于中档题.与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际【点睛】本题考查了比较大小的问题,考查了同构的思想,考查了利用导数求函数的单调区ln二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知A B 、为实数集R 的非空集合,则A B ≠⊂的必要不充分条件可以是( )⊂-x 121,ln ln e 1x x <<=,又当1x <时,()f x 单调递增,所以()()3233223ln 3ln ln ln e ex x x x x f x f x x ==⇒=,又2x 所以23ln x x =,332222ln 1ln ln x x x x x x m ===,21ln x x =确,故选:ABD三、填空题:本题共4小题,每小题5分,共20分.13.已知实数集R ,集合A ={x|log 2x<1},B ={x ∈Z |x 2+4≤5x},则(C R A)∩B = 【答案】{2,3,4}解析 由log 2x<1,解得0<x<2,故A =(0,2),故C R A =(-∞,0]∪[2,+∞),由x 2+4≤5x ,即x 2-5x +4≤0,解得1≤x ≤4,又x ∈Z ,所以B ={1,2,3,4}.15. 已知()24,1,log ,2,ax x f x x x +≤⎧=⎨≥⎩则()()0f f =______;若函数()f x 的值域为[)1,+∞,则a 的最小值为______.【答案】23- 【详解】()()()204log 42f f f ===,要使得函数()f x 的值域为[)1,+∞,则满足041a a ≤⎧⎨+≥,解得30a -≤≤,所以实数a 的最小值为3-.出文字说明、证明过程和演算步骤.17.(本题满分10分)已知集合{}2680A x x x =-+<,{}22430B x x ax a =-+<.(1)若a =1,求(C R B )∩A ;(2)若a >0,设命题:p x A ∈,命题:q x B ∈,已知命题p 是命题q 的充分不必要条件,求实数a 的取值围.17解:(1)当1a =时,{}2430(1,3)B x x x =-+<=,可得][(),13,=-∞⋃+∞R B ð,又由{}2680(2,4)A x x x =-+<=,所以()[)3,4B A ⋂=R ð.. ........5分(2)当0a >时,可得(),3B a a =.因为命题p 是命题q 的充分不必要条件,则A ≠⊂B ,可得243a a≤⎧⎨≤⎩,等号不能同时成立,解得423a ≤≤,所以实数a 的取值范围为4,23⎡⎤⎢⎥⎣⎦ (10)分18. (本题满分12分)已知函数1(=21x f x a +-)是奇函数.(1)求a ;(2)若[](1ln 0f x x -⋅<),求x 的范围........1分.....................6分 (用特殊值没检验的,扣2分).....................8分.....................12分19.(本题满分12分)已知函数232)1(31)(x k x x f +-=,kx x g -=31)(,且)(x f 在区间),2(+∞上为增函数.(1)求实数k 的取值范围;(2)若函数)(x f 与)(x g 的图象有三个不同的交点,求实数k 的取值范围.解:(1)由题意x k x x f )1()(2+-=' ∵)(x f 在区间),2(+∞上为增函数,≥0在区间(2,+∞)上恒成立..........2分即k+1≤x 恒成立,又2>x ,∴21≤+k ,故1≤k ∴k 的取值范围为1≤k ..........4分 ( 没有等号扣2分)(2)设312)1(3)()()(23-++-=-=kx x k x x g x f x h ,)1)(()1()(2--=++-='x k x k x k x x h ...........6分令0)(='x h 得k x =或1=x 由(1)知1≤k ,②当1=k 时,0)1()(2≥-='x x h ,)(x h 在R 上递增,显然不合题意...........7分②当1<k 时,)(x h ,)(x h '随x 的变化情况如下表:x ),(k -∞k )1,(k 1),1(+∞)(x h '+0—0+)(x h ↗极大值312623-+-k k ↘极小值21-k ↗由于021<-k ,欲使)(x f 与)(x g 的图象有三个不同的交点,即方程0)(=x h 有三个不同的实根,故需0312623>-+-k k ,即0)22)(1(2<---k k k ...........10分∴⎩⎨⎧>--<02212k k k ,解得31-<k ,综上,所求k 的取值范围为31-<k ...........12分20. (本题满分12分)某单位有员工1000名,平均每人每年创造利润10万元.为了增加企业竞争力,决定优化产业结构,调整出()*x x N∈名员工从事第三产业,调整后他们平均每人每年创造利润为310500x a ⎛⎫- ⎪⎝⎭万元()0a >,剩下的员工平均每人每年创造的利润可以提高0.2%x .(1)若要保证剩余员工创造的年总利润不低于原来1000名员工创造的年总利润,则最多调整出多少名员工从事第三产业?(2)若要保证剩余员工创造的年总利润不低于原来1000名员工创造的年总利润条件下,若要求调整出的员工创造出的年总利润始终不高于剩余员工创造的年总利润,则a 的取值范围是多少?解:(1)由题意,得()()10100010.2%101000x x -+≥⨯,..................3分即25000x x -≤,又0x >,所以0500x <≤.即最多调整500名员工从事第三产业. ..........5分(2)从事第三产业的员工创造的年总利润为310500⎛⎫-⎪⎝⎭x a x 万元,从事原来产业的员工的年总利润为110(1000)1500⎛⎫-+ ⎪⎝⎭x x 万元,..............7分21. (本题满分12分)已知函数())2log f x x =是R 上的奇函数,()2g x t x a =--.(1)若函数()f x 与()g x 有相同的零点,求t 的值;(2)若123,,24x x ⎡⎤∀∈-⎢⎥⎣⎦,()()12f x g x ≤,求t 的取值范围.解:(1)因为())2log f x x =是R 上的奇函数,所以()00f =,即log 0=解得1a =..................2分因为0x =是函数()f x 的零点,所以()010g t =-=,则1t =....................4分(2)由(1)可得())2log f x x =-,()121,221121,2x t x g x t x x t x ⎧-++≥⎪⎪=--=⎨⎪+-<⎪⎩,............6分因为奇函数())22log log f x x =-=()f x 在3,24⎡⎤-⎢⎥⎣⎦上是减函数,则()f x 在3,24⎡⎤-⎢⎥⎣⎦上的最大值为()2max 33log 144f x f ⎫⎛⎫⎛⎫⎪=-=-= ⎪ ⎪⎪⎝⎭⎝⎭⎭.......8分因为()121,2121,2x t x g x x t x ⎧-++≥⎪⎪=⎨⎪+-<⎪⎩,所以()g x 在31,42⎡⎤-⎢⎥⎣⎦上是增函数,在1,22⎡⎤⎢⎥⎣⎦上是减函数.则()g x 的最小值为34g ⎛⎫- ⎪⎝⎭和()2g 中的较小的一个.因为33521442g t t ⎛⎫⎛⎫-=⨯-+-=-⎪ ⎪⎝⎭⎝⎭,()22213g t t =-⨯++=-.所以()()min 23g x g t ==-.............10分因为123,,24x x ⎡⎤∀∈-⎢⎥⎣⎦,()()12f x x ,所以13t ≤-.解得4t ≥.故t 的取值范围为[)4,+∞.....................12分22. (本题满分12分)已知函数()()2122e x f x x a x a -⎡⎤=+-+-⎣⎦,a ∈R .(1)讨论函数()f x 单调性;(2)当0a =时,若函数()()()11g x f x m x =---在[)0,∞+有两个不同零点,求实数m 的取值范围.解(1):因为()()2122e x f x x a x a -⎡⎤=+-+-⎣⎦定义域为R ,所以()()()211e e x xf x x ax x x a --'=+=+,..........1分当0a >时,令()0f x ¢>,解得0x >或x a <-,令()0f x '<,解得0a x -<<,所以()f x 在(),0a -上单调递减,在(),a -∞-和()0,∞+上单调递增,..........2分当0a =时()21e 0xf x x -'=≥恒成立,所以()f x 在R 上单调递增, ..........3分当a<0时,令()0f x ¢>,解得x a >-或0x <,令()0f x '<,解得0x a <<-,所以()f x 在()0,a -上单调递减,在(),0∞-和(),a -+∞上单调递增,..........4分综上可得,当0a >时,()f x 在(),0a -上单调递减,在(),a -∞-和()0,∞+上单调递增;当0a =时,()f x 在R 上单调递增;当a<0时,()f x 在()0,a -上单调递减,在(),0∞-和(),a -+∞上单调递增;..........5分解(2):当0a =时,()()()()()211122e 11x g x f x m x x x m x -=---=-+---,所以()21e x g x x m -'=-,令()()21e x P x g x x m -'==-,则()()212e 0x P x x x -'=+>,所以()21e x g x x m -'=-在[)0,∞+上单调递增,所以()()0g x g m ''≥=-,①当0m -≥,即0m ≤时()()00g x g m ''≥=-≥,所以()g x 在[)0,∞+上单调递增,又()10g =,所以函数()g x 只有一个零点,不符合题意,舍去;..........6分②当0m -<,即0m >时()()00g x g m ''≥=-<,又()()211e 0m g m m m '+=+->,所以存在唯一的()00,1x m ∈+,使得()00g x '=,当()00,x x ∈时,'()0g x <,当()0,x x ∈+∞时,'()0g x >所以()g x 在()00,x 上单调递减,在()0,x +∞上单调递增,又()11g m '=-,当1m =时()10g '=,此时01x =,所以()()10g x g ≥=,函数()g x 只有一个零点,不符合题意,舍去;当1m ≠时()110g m '=-≠,01x ≠,此时有两个零点时,应满足()()0000g g x ⎧≥⎪⎨<⎪⎩,..........8分即()()()011200002e 1022e 110x m g x x x m x --⎧+-≥⎪⎨=-+---<⎪⎩,其中()()()()()0001112220000000022e 1122e e 11x x x g x x x m x x x x x ---=-+---=-+---()0132000222e 1x x x x -=-+-+-,..........9分设()()321222e 1x h x x x x -=-+-+-,()0,1x m ∈+,则()()()121ex h x x x x -'=+-,令()()()121e0x h x x x x -'=+-=,解得1x =,所以当01x <<时()0h x '>,当11x m <<+时()0h x '<,所以()h x 在()0,1上单调递增,在()1,1m +上单调递减,所以()()10h x h ≤=,..........11分即()()()012000022e 110x g x x x m x -=-+---<恒成立,所以112e m -≥-且1m ≠...........12分【方法点睛】导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.。

湖南师范大学附属中学2024届高三上学期月考(一)数学试题

湖南师范大学附属中学2024届高三上学期月考(一)数学试题

A. an 为等差数列
B.an 为等比数列
C.Sn 为等差数列
D.Sn 为等比数列
6.为了保障交通安全,某地根据《道路交通安全法》规定:汽车驾驶员血液中的酒精
含量不得超过 0.09mg/mL.据仪器监测,某驾驶员喝了二两白酒后,血液中的酒精含量
迅速上升到 0.3mg/mL,在停止喝酒后,血液中每小时末的酒精含量都比上一个小时末
D. 1 108
二、多选题 9.下列命题为真命题的是( )
A.若 a b ,且 1 1 ,则 ab 0 ab
C.若 c a b 0 ,则 a b ca cb
B.若 a b 0 ,则 a2 ab b2 D.若 a b c 0 ,则 a a c
b bc
10.设正方体 ABCD A1B1C1D1 中,A1B1 ,BB1 ,BC 的中点分别为 E ,F ,G ,则( )
与 x 轴的交点为 E ,求VABE 的面积的最大值.
22.已知函数 f x x aex 1 ,g x ax ln x x e2 a R ,设 max ,m n 表示 m ,
n 的最大值,设 F x max f x, g x .
(1)讨论 f x 在 0, 上的零点个数;
(2)当 x 0 时 F x 0 ,求 a 的取值范围.
术人员的年人均投入始终不减少.请问是否存在这样的实数 m ,满足以上两个条件,若
存在,求出 m 的范围;若不存在,说明理由.
21.已知椭圆
C
的中心在坐标原点,两焦点
F1
,F2

x
轴上,离心率为
1 2
,点
P

C
上,
且△PF1F2 的周长为 6.
(1)求椭圆 C 的标准方程;

2024-2025学年湖南师范大学附属中学高三上学期月考(一)数学试题及答案

2024-2025学年湖南师范大学附属中学高三上学期月考(一)数学试题及答案

大联考湖南师大附中2025届高三月考试卷(一)数学命题人:高三数学备课组 审题人:高三数学备课组时量:120分钟 满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,1. 已知{}()260,{lg 10}A x x xB x x =+-≤=-<∣∣,则A B = ( )A. {}32x x -≤≤∣ B. {32}xx -≤<∣C. {12}xx <≤∣ D. {12}xx <<∣2. 若复数z 满足()1i 3i z +=-+(i 是虚数单位),则z 等于( )A.B.54C.D.3. 已知平面向量()()5,0,2,1a b ==- ,则向量a b + 在向量b 上投影向量为( )A. ()6,3- B. ()4,2- C. ()2,1- D. ()5,04. 记n S 为等差数列{}n a 的前n 项和,若396714,63a a a a +==,则7S =( )A. 21B. 19C. 12D. 425. 某校高二年级下学期期末考试数学试卷满分为150分,90分以上(含90分)为及格.阅卷结果显示,全年级1200名学生的数学成绩近似服从正态分布,试卷的难度系数(难度系数=平均分/满分)为0.49,标准差为22,则该次数学考试及格的人数约为( )附:若()2,X Nμσ~,记()()p k P k X k μσμσ=-≤≤+,则()()0.750.547,10.683p p ≈≈.A 136人B. 272人C. 328人D. 820人6. 已知()π5,0,,cos ,tan tan 426αβαβαβ⎛⎫∈-=⋅= ⎪⎝⎭,则αβ+=( )A.π6 B.π4C.π3D.2π37. 已知12,F F 是双曲线22221(0)x y a b a b-=>>的左、右焦点,以2F 为圆心,a 为半径的圆与双曲线的一条的.渐近线交于,A B 两点,若123AB F F >,则双曲线的离心率的取值范围是( )A. ⎛ ⎝B. ⎛ ⎝C. (D. (8. 已知函数()220log 0x a x f x x x ⎧⋅≤=⎨>⎩,,,,若关于x 的方程()()0f f x =有且仅有两个实数根,则实数a 的取值范围是( )A. ()0,1 B. ()(),00,1-∞⋃ C. [)1,+∞ D. ()()0,11,+∞ 二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分9. 如图,在正方体111ABCD A B C D -中,E F M N ,,,分别为棱111AA A D AB DC ,,,的中点,点P 是面1B C 的中心,则下列结论正确的是( )A. E F M P ,,,四点共面B. 平面PEF 被正方体截得的截面是等腰梯形C. //EF 平面PMND. 平面MEF ⊥平面PMN10. 已知函数()5π24f x x ⎛⎫=+ ⎪⎝⎭,则( )A. ()f x 的一个对称中心为3π,08⎛⎫ ⎪⎝⎭B. ()f x 的图象向右平移3π8个单位长度后得到的是奇函数的图象C. ()f x 在区间5π7π,88⎡⎤⎢⎥⎣⎦上单调递增D. 若()y f x =在区间()0,m 上与1y =有且只有6个交点,则5π13π,24m ⎛⎤∈⎥⎝⎦11. 已知定义在R 上的偶函数()f x 和奇函数()g x 满足()()21f x g x ++-=,则()A. ()f x 的图象关于点()2,1对称B. ()f x 是以8为周期的周期函数C. ()20240g =D.20241(42)2025k f k =-=∑三、填空题:本题共3小题,每小题5分,共15分.12. 6(31)x y +-的展开式中2x y 的系数为______.13. 已知函数()f x 是定义域为R 的奇函数,当0x >时,()()2f x f x '->,且()10f =,则不等式()0f x >的解集为__________.14. 已知点C 为扇形AOB 弧AB 上任意一点,且60AOB ∠=,若(),R OC OA OB λμλμ=+∈,则λμ+的取值范围是__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. ABC V 的内角,,A B C 的对边分别为,,a b c ,已知22cos a b c B +=.(1)求角C ;(2)若角C 的平分线CD 交AB于点,D AD DB ==CD 的长.16. 已知1ex =为函数()ln af x x x =的极值点.(1)求a 的值;(2)设函数()ex kxg x =,若对()120,,x x ∀∈+∞∃∈R ,使得()()120f x g x -≥,求k 的取值范围.17. 已知四棱锥P ABCD -中,平面PAB ⊥底面,ABCD AD∥,,,2,BC AB BC PA PB AB AB BC AD E ⊥====为AB 的中点,F 为棱PC 上异于,P C 的点.的(1)证明:BD EF ⊥;(2)试确定点F 的位置,使EF 与平面PCD18. 在平面直角坐标系xOy 中,抛物线21:2(0)C y px p =>的焦点到准线的距离等于椭圆222:161C x y +=的短轴长,点P 在抛物线1C 上,圆222:(2)E x y r -+=(其中01r <<).(1)若1,2r Q =为圆E 上的动点,求线段PQ 长度的最小值;(2)设()1,D t 是抛物线1C 上位于第一象限的一点,过D 作圆E 的两条切线,分别交抛物线1C 于点,M N .证明:直线MN 经过定点.19. 龙泉游泳馆为给顾客更好的体验,推出了A 和B 两个套餐服务,顾客可选择A 和B 两个套餐之一,并在App 平台上推出了优惠券活动,下表是该游泳馆在App 平台10天销售优惠券情况.销售量千张经计算可得:10101021111 2.2,118.73,38510i i i i i i i y y t y t =======∑∑∑(1)因为优惠券购买火爆,App 平台在第10天时系统出现异常,导致当天顾客购买优惠券数量大幅减少,已知销售量y 和日期t 呈线性关系,现剔除第10天数据,求y 关于t 的经验回归方程结果中的数值用分数表示;(2)若购买优惠券的顾客选择A 套餐的概率为14,选择B 套餐的概率为34,并且A 套餐可以用一张优惠券,B 套餐可以用两张优惠券,记App 平台累计销售优惠券为n 张的概率为n P ,求n P ;(3)记(2)中所得概率n P 的值构成数列{}()N n P n *∈.①求n P 的最值;②数列收敛的定义:已知数列{}n a ,若对于任意给定的正数ε,总存在正整数0N ,使得当0n N >时,n a a ε-<,(a 是一个确定的实数),则称数列{}n a 收敛于a .根据数列收敛的定义证明数列{}n P 收敛..参考公式:()()()1122211ˆˆ,n ni i i ii in ni ii ix x y y x y nx ya y bxx x x nx====---==---∑∑∑∑.大联考湖南师大附中2025届高三月考试卷(一)数学命题人:高三数学备课组 审题人:高三数学备课组时量:120分钟 满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,1. 已知{}()260,{lg 10}A x x xB x x =+-≤=-<∣∣,则A B = ( )A. {}32x x -≤≤∣ B. {32}xx -≤<∣C. {12}xx <≤∣ D. {12}xx <<∣【答案】D 【解析】【分析】通过解一元二次不等式和对数函数的定义域,求出集合,A B ,再求交集.【详解】集合{}()32,{lg 10}{12}A x x B x x x x =-≤≤=-<=<<∣∣∣,则{12}A B xx ⋂=<<∣,故选:D .2. 若复数z 满足()1i 3i z +=-+(i 是虚数单位),则z 等于( )A.B.54C.D.【答案】C 【解析】【分析】由复数的除法运算计算可得12i z =-+,再由模长公式即可得出结果.【详解】依题意()1i 3i z +=-+可得()()()()3i 1i 3i 24i12i 1i 1i 1i 2z -+--+-+====-+++-,所以z ==.故选:C3. 已知平面向量()()5,0,2,1a b ==- ,则向量a b +在向量b 上的投影向量为( )A. ()6,3- B. ()4,2- C. ()2,1- D. ()5,0【答案】A 【解析】【分析】根据投影向量的计算公式即可求解.【详解】()()7,1,15,a b a b b b +=-+⋅=== 所以向量a b +在向量b 上的投影向量为()()236,3||a b b b b b +⋅==- .故选:A4. 记n S 为等差数列{}n a 的前n 项和,若396714,63a a a a +==,则7S =( )A. 21 B. 19C. 12D. 42【答案】A 【解析】【分析】根据等差数列的性质,即可求解公差和首项,进而由求和公式求解.【详解】{}n a 是等差数列,396214a a a ∴+==,即67a =,所以67769,a a a a ==故公差76162,53d a a a a d =-=∴=-=-,()767732212S ⨯∴=⨯-+⨯=,故选:A5. 某校高二年级下学期期末考试数学试卷满分为150分,90分以上(含90分)为及格.阅卷结果显示,全年级1200名学生的数学成绩近似服从正态分布,试卷的难度系数(难度系数=平均分/满分)为0.49,标准差为22,则该次数学考试及格的人数约为( )附:若()2,X Nμσ~,记()()p k P k X k μσμσ=-≤≤+,则()()0.750.547,10.683p p ≈≈.A. 136人B. 272人C. 328人D. 820人【答案】B 【解析】【分析】首先求出平均数,即可得到学生的数学成绩2~(73.5,22)X N ,再根据所给条件求出(5790)P X ≤≤,即可求出(90)P X ≥,即可估计人数.【详解】由题得0.4915073.5,22μσ=⨯==,()()(),0.750.547p k P k X k p μσμσ=-≤≤+≈ ,()5790P X ∴≤≤()0.750.547p =≈,()()900.510.5470.2265P X ≥=⨯-=,∴该校及格人数为0.22651200272⨯≈(人),故选:B .6. 已知()π5,0,,cos ,tan tan 426αβαβαβ⎛⎫∈-=⋅= ⎪⎝⎭,则αβ+=( )A.π6 B.π4C.π3D.2π3【答案】D 【解析】【分析】利用两角差的余弦定理和同角三角函数的基本关系建立等式求解,再由两角和的余弦公式求解即可.【详解】由已知可得5cos cos sin sin 6sin sin 4cos cos αβαβαβαβ⎧⋅+⋅=⎪⎪⎨⋅⎪=⋅⎪⎩,解得1cos cos 62sin sin 3αβαβ⎧⋅=⎪⎪⎨⎪⋅=⎪⎩,,()1cos cos cos sin sin 2αβαβαβ∴+=⋅-⋅=-,π,0,2αβ⎛⎫∈ ⎪⎝⎭,()0,παβ∴+∈,2π,3αβ∴+=,故选:D .7. 已知12,F F 是双曲线22221(0)x y a b a b-=>>的左、右焦点,以2F 为圆心,a 为半径的圆与双曲线的一条渐近线交于,A B 两点,若123AB F F >,则双曲线的离心率的取值范围是( )A. ⎛ ⎝B. ⎛ ⎝C. (D. (【答案】B 【解析】【分析】根据双曲线以及圆的方程可求得弦长AB =,再根据不等式123AB F F >整理可得2259c a <,即可求得双曲线的离心率的取值范围.【详解】设以()2,0F c 为圆心,a 为半径的圆与双曲线的一条渐近线0bx ay -=交于,A B 两点,则2F 到渐近线0bx ay -=的距离d b ==,所以AB =,因为123AB F F >,所以32c ⨯>,可得2222299a b c a b ->=+,即22224555a b c a >=-,可得2259c a <,所以2295c a <,所以e <,又1e >,所以双曲线的离心率的取值范围是⎛ ⎝.故选:B8. 已知函数()220log 0x a x f x x x ⎧⋅≤=⎨>⎩,,,,若关于x 的方程()()0f f x =有且仅有两个实数根,则实数a 的取值范围是( )A. ()0,1 B. ()(),00,1-∞⋃ C. [)1,+∞ D. ()()0,11,+∞ 【答案】C 【解析】【分析】利用换元法设()u f x =,则方程等价为()0f u =,根据指数函数和对数函数图象和性质求出1u =,利用数形结合进行求解即可.【详解】令()u f x =,则()0f u =.①当0a =时,若()0,0u f u ≤=;若0u >,由()2log 0f u u ==,得1u =.所以由()()0ff x =可得()0f x ≤或()1f x =.如图所示,满足()0f x ≤的x 有无数个,方程()1f x =只有一个解,不满足题意;②当0a ≠时,若0≤u ,则()20uf u a =⋅≠;若0u >,由()2log 0f u u ==,得1u =.所以由()()0ff x =可得()1f x =,当0x >时,由()2log 1f x x ==,可得2x =,因为关于x 的方程()()0f f x =有且仅有两个实数根,则方程()1f x =在(,0∞-]上有且仅有一个实数根,若0a >且()(]0,20,xx f x a a ≤=⋅∈,故1a ≥;若0a <且()0,20xx f x a ≤=⋅<,不满足题意.综上所述,实数a 的取值范围是[)1,+∞,故选:C .二、多选题:本题共36分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分9. 如图,在正方体111ABCD A B C D -中,E F M N ,,,分别为棱111AA A D AB DC ,,,的中点,点P 是面1B C 的中心,则下列结论正确的是( )A. E F M P ,,,四点共面B. 平面PEF 被正方体截得的截面是等腰梯形C. //EF 平面PMND. 平面MEF ⊥平面PMN【答案】BD 【解析】【分析】可得过,,E F M 三点的平面为一个正六边形,判断A ;分别连接,E F 和1,B C ,截面1C BEF 是等腰梯形,判断B ;分别取11,BB CC 的中点,G Q ,易证EF 显然不平行平面QGMN ,可判断C ;EM ⊥平面PMN ,可判断D.【详解】对于A :如图经过,,E F M 三点的平面为一个正六边形EFMHQK ,点P 在平面外,,,,E F M P ∴四点不共面,∴选项A 错误;对于B :分别连接,E F 和1,B C ,则平面PEF 即平面1C BEF ,截面1C BEF 是等腰梯形,∴选项B 正确;对于C :分别取11,BB CC 的中点,G Q ,则平面PMN 即为平面QGMN ,由正六边形EFMHQK ,可知HQ EF ,所以MQ 不平行于EF ,又,EF MQ ⊂平面EFMHQK ,所以EF MQ W = ,所以EF I 平面QGMN W =,所以EF 不平行于平面PMN ,故选项C 错误;对于D :因为,AEM BMG 是等腰三角形,45AME BMG ∴∠=∠=︒,90EMG ∴∠=︒,EMMG ∴⊥,,M N 是,AB CD 的中点,易证MN AD ∥,由正方体可得AD ⊥平面11ABB A ,MN ∴⊥平面11ABB A ,又ME ⊂平面11ABB A ,EM MN ∴⊥,,MG MN ⊂ 平面PMN ,EM ∴⊥平面GMN ,EM ⊂ 平面MEF ,∴平面MEF ⊥平面,PMN 故选项D 正确.故选:BD .10. 已知函数()5π24f x x ⎛⎫=+ ⎪⎝⎭,则( )A. ()f x 的一个对称中心为3π,08⎛⎫ ⎪⎝⎭B. ()f x 的图象向右平移3π8个单位长度后得到的是奇函数的图象C. ()f x 在区间5π7π,88⎡⎤⎢⎥⎣⎦上单调递增D. 若()y f x =在区间()0,m 上与1y =有且只有6个交点,则5π13π,24m ⎛⎤∈ ⎥⎝⎦【答案】BD 【解析】【分析】代入即可验证A ,根据平移可得函数图象,即可由正弦型函数的奇偶性求解B ,利用整体法即可判断C ,由5πcos 24x ⎛⎫+= ⎪⎝⎭求解所以根,即可求解D.【详解】对于A ,由35π3π2π0848f ⎛⎫⎛⎫=+⨯=≠⎪ ⎪⎝⎭⎝⎭,故A 错误;对于B ,()f x 的图象向右平移3π8个单位长度后得:3π3π5ππ228842y f x x x x ⎡⎤⎛⎫⎛⎫⎛⎫=-=-+=+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,为奇函数,故B 正确;对于C ,当5π7π,88x ⎡⎤∈⎢⎥⎣⎦时,则5π5π2,3π42x ⎡⎤+∈⎢⎥⎣⎦,由余弦函数单调性知,()f x 在区间5π7π,88⎡⎤⎢⎥⎣⎦上单调递减,故C 错误;对于D ,由()1f x =,得5πcos 24x ⎛⎫+= ⎪⎝⎭ππ4x k =+或ππ,2k k +∈Z ,()y f x =在区间()0,m 上与1y =有且只有6个交点,其横坐标从小到大依次为:ππ5π3π9π5π,,,,,424242,而第7个交点的横坐标为13π4,5π13π24m ∴<≤,故D 正确.故选:BD11. 已知定义在R 上的偶函数()f x 和奇函数()g x 满足()()21f x g x ++-=,则( )A. ()f x 的图象关于点()2,1对称B. ()f x 是以8为周期的周期函数C. ()20240g =D.20241(42)2025k f k =-=∑【答案】ABC 【解析】【分析】根据函数奇偶性以及所满足的表达式构造方程组可得()()222f x f x ++-=,即可判断A 正确;利用对称中心表达式进行化简计算可得B 正确,可判断()g x 也是以8为周期的周期函数,即C 正确;根据周期性以及()()42f x f x ++=计算可得20241(42)2024k f k =-=∑,可得D 错误.【详解】由题意()()()(),f x f x g x g x -=-=-,且()()()00,21g f x g x =++-=,即()()21f x g x +-=①,用x -替换()()21f x g x ++-=中的x ,得()()21f x g x -+=②,由①+②得()()222f x f x ++-=所以()f x 的图象关于点(2,1)对称,且()21f =,故A 正确;由()()222f x f x ++-=,可得()()()()()42,422f x f x f x f x f x ++-=+=--=-,所以()()()()82422f x f x f x f x ⎡⎤+=-+=--=⎣⎦,所以()f x 是以8为周期的周期函数,故B 正确;由①知()()21g x f x =+-,则()()()()882121g x f x f x g x +=++-=+-=,故()()8g x g x +=,因此()g x 也是以8为周期的周期函数,所以()()202400g g ==,C 正确;又因为()()42f x f x ++-=,所以()()42f x f x ++=,令2x =,则有()()262f f +=,令10x =,则有()()10142,f f +=…,令8090x =,则有()()809080942f f +=,所以1012(2)(6)(10)(14)(8090)(8094)2222024f f f f f f ++++++=+++=个所以20241(42)(2)(6)(10)(14)(8090)(8094)2024k f k f f f f f f =-=++++++=∑ ,故D 错误.故选:ABC【点睛】方法点睛:求解函数奇偶性、对称性、周期性等函数性质综合问题时,经常利用其中两个性质推得第三个性质特征,再进行相关计算.三、填空题:本题共3小题,每小题5分,共15分.12. 6(31)x y +-的展开式中2x y 的系数为______.【答案】180-【解析】【分析】根据题意,由条件可得展开式中2x y 的系数为213643C C (1)⋅-,化简即可得到结果.【详解】在6(31)x y +-的展开式中,由()2213264C C 3(1)180x y x y ⋅⋅-=-,得2x y 的系数为180-.故答案为:180-.13. 已知函数()f x 是定义域为R 的奇函数,当0x >时,()()2f x f x '->,且()10f =,则不等式()0f x >的解集为__________.【答案】()()1,01,-⋃+∞【解析】【分析】根据函数奇偶性并求导可得()()f x f x ''-=,因此可得()()2f x f x '>,可构造函数()()2xf x h x =e并求得其单调性即可得()f x 在()1,+∞上大于零,在()0,1上小于零,即可得出结论.【详解】因为()f x 为奇函数,定义域为R ,所以()()f x f x -=-,两边同时求导可得()()f x f x ''--=-,即()()f x f x ''-=且()00f =,又因为当0x >时,()()2f x f x '->,所以()()2f x f x '>.构造函数()()2x f x h x =e ,则()()()22xf x f x h x '-'=e,所以当0x >时,()()0,h x h x '>在()0,∞+上单调递增,又因为()10f =,所以()()10,h h x =在()1,+∞上大于零,在()0,1上小于零,又因为2e 0x >,所以()f x 在()1,+∞上大于零,在()0,1上小于零,因为()f x 为奇函数,所以()f x 在(),1∞--上小于零,在()1,0-上大于零,综上所述,()0f x >的解集为()()1,01,-⋃+∞.故答案为:()()1,01,-⋃+∞14. 已知点C 为扇形AOB 的弧AB 上任意一点,且60AOB ∠=,若(),R OC OA OB λμλμ=+∈,则λμ+的取值范围是__________.【答案】⎡⎢⎣【解析】【分析】建系设点的坐标,再结合向量关系表示λμ+,最后应用三角恒等变换及三角函数值域求范围即可.【详解】方法一:设圆O 的半径为1,由已知可设OB 为x 轴的正半轴,O 为坐标原点,过O 点作x 轴垂线为y 轴建立直角坐标系,其中()()1,1,0,cos ,sin 2A B C θθ⎛ ⎝,其中π,0,3BOC θθ⎡⎤∠=∈⎢⎥⎣⎦,由(),R OC OA OB λμλμ=+∈,即()()1cos ,sin 1,02θθλμ⎛=+⎝,整理得1cos sin 2λμθθ+==,解得cos λμθ==,则ππcos cos ,0,33λμθθθθθ⎛⎫⎡⎤+==+=+∈ ⎪⎢⎥⎝⎭⎣⎦,ππ2ππ,,sin 3333θθ⎤⎡⎤⎛⎫+∈+∈⎥⎪⎢⎥⎣⎦⎝⎭⎦所以λμ⎡+∈⎢⎣.方法二:设k λμ+=,如图,当C 位于点A 或点B 时,,,A B C 三点共线,所以1k λμ=+=;当点C 运动到AB的中点时,k λμ=+==,所以λμ⎡+∈⎢⎣故答案为:⎡⎢⎣四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. ABC V 的内角,,A B C 的对边分别为,,a b c ,已知22cos a b c B +=.(1)求角C ;(2)若角C 的平分线CD 交AB于点,D AD DB ==CD 的长.【答案】(1)2π3C = (2)3CD =【解析】【分析】(1)利用正弦定理及两角和的正弦定理整理得到()2cos 1sin 0C B +=,再利用三角形的内角及正弦函数的性质即可求解;(2)利用正弦定理得出3b a =,再由余弦定理求出4a =,12b =,再根据三角形的面积建立等式求解.【小问1详解】由22cos a b c B +=,根据正弦定理可得2sin sin 2sin cos A B C B +=,则()2sin sin 2sin cos B C B C B ++=,所以2sin cos 2cos sin sin 2sin cos B C B C B C B ++=,整理得()2cos 1sin 0C B +=,因为,B C 均为三角形内角,所以(),0,π,sin 0B C B ∈≠,因此1cos 2C =-,所以2π3C =.【小问2详解】因为CD 是角C的平分线,AD DB ==所以在ACD 和BCD △中,由正弦定理可得,,ππsin sin sin sin 33AD CD BD CDA B ==,因此sin 3sin B ADA BD==,即sin 3sin B A =,所以3b a =,又由余弦定理可得2222cos c a b ab C =+-,即222293a a a =++,解得4a =,所以12b =.又ABC ACD BCD S S S =+△△△,即111sin sin sin 222ab ACB b CD ACD a CD BCD ∠∠∠=⋅⋅+⋅⋅,即4816CD =,所以3CD =.16. 已知1ex =为函数()ln af x x x =的极值点.(1)求a 的值;(2)设函数()ex kxg x =,若对()120,,x x ∀∈+∞∃∈R ,使得()()120f x g x -≥,求k 的取值范围.【答案】(1)1a = (2)(]()10,-∞-+∞ ,【解析】【分析】(1)直接根据极值点求出a 的值;(2)先由(1)求出()f x 的最小值,由题意可得是求()g x 的最小值,小于等于()f x 的最小值,对()g x 求导,判断由最小值时的k 的范围,再求出最小值与()f x 最小值的关系式,进而求出k 的范围.【小问1详解】()()111ln ln 1a a f x ax x x x a x xα--=='+⋅+,由1111ln 10e e e a f a -⎛⎫⎛⎫⎛⎫=+= ⎪ ⎪⎪⎝⎭⎝⎭'⎭⎝,得1a =,当1a =时,()ln 1f x x ='+,函数()f x 在10,e ⎛⎫ ⎪⎝⎭上单调递减,在1,e∞⎛⎫+ ⎪⎝⎭上单调递增,所以1ex =为函数()ln af x x x =的极小值点,所以1a =.【小问2详解】由(1)知min 11()e e f x f ⎛⎫==- ⎪⎝⎭.函数()g x 的导函数()()1exg x k x -=-'①若0k >,对()1210,,x x k ∞∀∈+∃=-,使得()()12111e 1e k g x g f x k ⎛⎫=-=-<-<-≤ ⎪⎝⎭,即()()120f x g x -≥,符合题意.②若()0,0k g x ==,取11ex =,对2x ∀∈R ,有()()120f x g x -<,不符合题意.③若0k <,当1x <时,()()0,g x g x '<在(),1∞-上单调递减;当1x >时,()()0,g x g x '>在(1,+∞)上单调递增,所以()min ()1ek g x g ==,若对()120,,x x ∞∀∈+∃∈R ,使得()()120f x g x -≥,只需min min ()()g x f x ≤,即1e ek ≤-,解得1k ≤-.综上所述,k 的取值范围为(](),10,∞∞--⋃+.17. 已知四棱锥P ABCD -中,平面PAB ⊥底面,ABCD AD ∥,,,2,BC AB BC PA PB AB AB BC AD E ⊥====为AB 的中点,F 为棱PC 上异于,P C 的点.(1)证明:BD EF ⊥;(2)试确定点F 的位置,使EF 与平面PCD【答案】(1)证明见解析(2)F 位于棱PC 靠近P 的三等分点【解析】【分析】(1)连接,,PE EC EC 交BD 于点G ,利用面面垂直的性质定理和三角形全等,即可得证;(2)取DC 的中点H ,以E 为坐标原点,分别以,,EB EH EP 所在直线为,,x y z 轴建立,利用线面角公式代入即可求解.小问1详解】如图,连接,,PE EC EC 交BD 于点G .因为E 为AB 的中点,PA PB =,所以PE AB ⊥.因为平面PAB ⊥平面ABCD ,平面PAB ⋂平面,ABCD AB PE =⊂平面PAB ,所以PE ⊥平面ABCD ,因为BD ⊂平面ABCD ,所以BD ⊥.因为ABD BCE ≅ ,所以CEB BDA ∠∠=,所以90CEB ABD ∠∠+= ,所以BD EC ⊥,因为,,PE EC E PE EC ⋂=⊂平面PEC ,所以BD ⊥平面PEC .因为EF ⊂平面PEC ,所以BD EF ⊥.【小问2详解】如图,取DC 的中点H ,以E 为坐标原点,分别以,,EB EH EP 所在直线为,,x y z 轴建立空间直角坐标系,【设2AB =,则2,1,BC AD PA PB ====则()()()()0,0,1,1,2,0,1,1,0,0,0,0P C D E -,设(),,,(01)F x y z PF PC λλ=<<,所以()(),,11,2,1x y z λ-=-,所以,2,1x y z λλλ===-,即(),2,1F λλλ-.则()()()2,1,0,1,2,1,,2,1DC PC EF λλλ==-=-,设平面PCD 的法向量为(),,m a b c =,则00DC m PC m ⎧⋅=⎪⎨⋅=⎪⎩,,即2020a b a b c +=⎧⎨+-=⎩,,取()1,2,3m =--,设EF 与平面PCD 所成的角为θ,由cos θ=sin θ=.所以sin cos ,m EF m EF m EF θ⋅====整理得2620λλ-=,因为01λ<<,所以13λ=,即13PF PC = ,故当F 位于棱PC 靠近P 的三等分点时,EF 与平面PCD18. 在平面直角坐标系xOy 中,抛物线21:2(0)C y px p =>的焦点到准线的距离等于椭圆222:161C x y +=的短轴长,点P 在抛物线1C 上,圆222:(2)E x y r -+=(其中01r <<).(1)若1,2r Q =为圆E 上的动点,求线段PQ长度的最小值;(2)设()1,D t 是抛物线1C 上位于第一象限的一点,过D 作圆E 的两条切线,分别交抛物线1C 于点,M N .证明:直线MN 经过定点.【答案】(1(2)证明见解析【解析】【分析】(1)根据椭圆的短轴可得抛物线方程2y x =,进而根据两点斜率公式,结合三角形的三边关系,即可由二次函数的性质求解,(2)根据两点坐标可得直线,MN DM 的直线方程,由直线与圆相切可得,a b 是方程()()()2222124240r x r x r -+-+-=的两个解,即可利用韦达定理代入化简求解定点.【小问1详解】由题意得椭圆的方程:221116y x +=,所以短半轴14b =所以112242p b ==⨯=,所以抛物线1C 的方程是2y x =.设点()2,P t t ,则111222PQ PE ≥-=-=≥,所以当232ι=时,线段PQ.【小问2详解】()1,D t 是抛物线1C 上位于第一象限的点,21t ∴=,且()0,1,1t D >∴设()()22,,,M a a N b b ,则:直线()222:b a MN y a x a b a --=--,即()21y a x a a b-=-+,即()0x a b y ab -++=.直线()21:111a DM y x a --=--,即()10x a y a -++=.由直线DMr =,即()()()2222124240r a r a r -+-+-=..同理,由直线DN 与圆相切得()()()2222124240r b r b r -+-+-=.所以,a b 是方程()()()2222124240r x r x r -+-+-=的两个解,22224224,11r r a b ab r r --∴+==--代入方程()0x a b y ab -++=得()()222440x y r x y +++---=,220,440,x y x y ++=⎧∴⎨++=⎩解得0,1.x y =⎧⎨=-⎩∴直线MN 恒过定点()0,1-.【点睛】圆锥曲线中定点问题的两种解法(1)引进参数法:先引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法:先根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.技巧:若直线方程为()00y y k x x -=-,则直线过定点()00,x y ;若直线方程为y kx b =+ (b 为定值),则直线过定点()0,.b 19. 龙泉游泳馆为给顾客更好的体验,推出了A 和B 两个套餐服务,顾客可选择A 和B 两个套餐之一,并在App 平台上推出了优惠券活动,下表是该游泳馆在App 平台10天销售优惠券情况.日期t 12345678910销售量千张 1.9 1.98 2.2 2.36 2.43259 2.682.76 2.70.4经计算可得:10101021111 2.2,118.73,38510i i i i i i i y y t y t =======∑∑∑.(1)因为优惠券购买火爆,App 平台在第10天时系统出现异常,导致当天顾客购买优惠券数量大幅减少,已知销售量y 和日期t 呈线性关系,现剔除第10天数据,求y 关于t 的经验回归方程结果中的数值用分数表示;..(2)若购买优惠券的顾客选择A 套餐的概率为14,选择B 套餐的概率为34,并且A 套餐可以用一张优惠券,B 套餐可以用两张优惠券,记App 平台累计销售优惠券为n 张的概率为n P ,求n P ;(3)记(2)中所得概率n P 的值构成数列{}()Nn P n *∈.①求n P 的最值;②数列收敛的定义:已知数列{}n a ,若对于任意给定的正数ε,总存在正整数0N ,使得当0n N >时,n a a ε-<,(a 是一个确定的实数),则称数列{}n a 收敛于a .根据数列收敛的定义证明数列{}n P 收敛.参考公式: ()()()1122211ˆˆ,n ni i i i i i n n ii i i x x y y x y nx y ay bx x x x nx ====---==---∑∑∑∑.【答案】(1)673220710001200y t =+ (2)433774n n P ⎛⎫=+⋅- ⎪⎝⎭(3)①最大值为1316,最小值为14;②证明见解析【解析】【分析】(1)计算出新数据的相关数值,代入公式求出 ,ab 的值,进而得到y 关于t 的回归方程;(2)由题意可知1213,(3)44n n n P P P n --=+≥,其中12113,416P P ==,构造等比数列,再利用等比数列的通项公式求解;(3)①分n 为偶数和n 为奇数两种情况讨论,结合指数函数的单调性求解;②利用数列收敛的定义,准确推理、运算,即可得证.【小问1详解】解:剔除第10天的数据,可得 2.2100.4 2.49y ⨯-==新,12345678959t ++++++++==新,则9922111119.73100.4114,73,38510285i i i i t y t ==⎛⎫⎛⎫=-⨯==-= ⎪ ⎪⎝⎭⎝⎭∑∑新新,所以912922119114,7395 2.4673ˆ2859560009i i i i t y t y b t t ==⎛⎫- ⎪-⨯⨯⎝⎭===-⨯⎛⎫- ⎪⎝⎭∑∑新新新新新,可得6732207ˆ 2.4560001200a =-⨯=,所以6732207ˆ60001200y t =+.【小问2详解】解:由题意知1213,(3)44n n n P P P n --=+≥,其中12111313,444416P P ==⨯+=,所以11233,(3)44n n n n P P P P n ---+=+≥,又由2131331141644P P +=+⨯=,所以134n n P P -⎧⎫+⎨⎬⎩⎭是首项为1的常数列,所以131,(2)4n n P P n -+=≥所以1434(2)747n n P P n --=--≥,又因为1414974728P -=-=-,所以数列47n P ⎧⎫-⎨⎬⎩⎭是首项为928-,公比为34-的等比数列,故143)74n n P --=-,所以1934433(()2847774n n n P -=--+=+-.【小问3详解】解:①当n 为偶数时,19344334()(28477747n n n P -=--+=+⋅>单调递减,最大值为21316P =;当n 为奇数时,19344334()(28477747n n n P -=--+=-⋅<单调递增,最小值为114P =,综上可得,数列{}n P 的最大值为1316,最小值为14.②证明:对任意0ε>总存在正整数0347[log ()]13N ε=+,其中 []x 表示取整函数,当 347[log ()]13n ε>+时,347log ()34333333()()()7747474n n n P εε-=⋅-=⋅<⋅=,所以数列{}n P 收敛.【点睛】知识方法点拨:与新定义有关的问题的求解策略:1、通过给出一个新的定义,或约定一种新的运算,或给出几个新模型来创设新问题的情景,要求在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实心信息的迁移,达到灵活解题的目的;2、遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、运算、验证,使得问题得以解决.方法点拨:与数列有关的问题的求解策略:3、若新定义与数列有关,可得利用数列的递推关系式,结合数列的相关知识进行求解,多通过构造的分法转化为等差、等比数列问题求解,求解过程灵活运用数列的性质,准确应用相关的数列知识.。

吉林省重点高中2020届高三数学上学期月考试题二理【含答案】

吉林省重点高中2020届高三数学上学期月考试题二理【含答案】

吉林省重点高中2020届高三数学上学期月考试题(二)理考生注意:1.本试卷分选择题和非选择题两部分。

满分100分,考试时间90分钟。

2.答题前,考生务必用直径0.5毫米黑色,墨水签字笔将密封线内项目填写清楚。

3.考生作答时,请将答案答在答题卡上。

选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色,墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效。

4.本卷命题范围:集合、常用逻辑用语、函数、导数及其应用(约30%);三角函数、三角恒等变换、解三角形、平面向量(约70%)。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知全集U ={x∈N|一2<x<6},若A ={2,4},B ={l ,3,4},则()∩B=U A ðA.{1,3} B.{l ,5} C{3,5} D.{1,3,5}2.“”的否定是2(2,),20x x x ∀∈+∞->A. B. 200(,2),20x x x ∃∈-∞-≤2(2,),20x x x ∀∈+∞-≤C. D.200(2,),20x x x ∃∈+∞-≤2(,2),20x x x ∀∈-∞->3.若角α的终边过点P(,cos0),则tan α的值是B. D.4.已知某扇形的面积为2.5cm 2,若该扇形的半径r 、弧长l 满足2r +l =7cm ,则该扇形圆心角大小的弧度数是A. B.5 C. D.或54512455.函数f(x)=x 3-x 2-4x 的一个零点所在区间为A.(-2,0)B.(-l ,0)C.(0,l)D.(1,2)6.如图,若,B 是线段AC 靠近点C 的一个四等分点,则下列等式成,,OA a OB b OC c === 立的是A. B. 2136c b a =-4133c b a =+C. D. 4133c b a =-2136c b a =+7.若cosθ=,且θ为第三象限角,则的值等于45-an 4(t )πθ+A. B. C.-7 D.71717-8.若函数y =sinx 的图象与直线y =-x 一个交点的坐标为(x 0,y 0),则2200(31cos 2x x π-+=+A -1 B.1 C. 1 D.无法确定±9.已知在矩形ABCD 中,AB =4,AD =2,若E ,F 分别为AB ,BC 的中点,则DE DF ⋅ =A.8B.10C.12D.1410.已知在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,,△ABC 的面积等于,23A b π==外接圆的面积为A.16πB.8πC.6πD.4π11.为捍卫国家南海主权,我海军在南海海域进行例行巡逻。

宁夏银川一中2024届高三上学期第一次月考数学理科试题及参考答案

宁夏银川一中2024届高三上学期第一次月考数学理科试题及参考答案

银川一中2024届高三年级第一次月考理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,务必将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}1A x x =≤,{}20B x x a =-<,若A B ⊆,则实数a 的取值范围是A .()2,+∞B .[)2,+∞C .(),2-∞D .(],2-∞2.已知复数z 满足i zz =+-112,则复数z 的虚部是A.-1B.iC.1D.-i3.如图,可以表示函数()f x 的图象的是A .B .C .D .4.已知a ,b 为实数,则使得“0a b >>”成立的一个充分不必要条件为A .11a b>B .ln(1)ln(1)a b +>+C .33a b >D 11a b ->-5.函数()214log 2y x x =--的单调递增区间为A .1,2⎛⎫-∞ ⎪⎝⎭B .(),1-∞-C .1,2⎛⎫+∞ ⎪⎝⎭D .()2,+∞6.的大小关系为则,,设c b a c b a ,,,21(31log 2log 3.02131===A .b c a <<B .cb a <<C .ca b <<D .ac b <<7.已知函数ay x=,xy b=,log cy x=的图象如图所示,则A.e e ea c b<<B.e e eb a c<<C.e e ea b c<<D.e e eb c a<<8.若命题“[]()21,3,2130a ax a x a∃∈---+-<”为假命题,则实数x的取值范围为A.[]1,4-B.50,3⎡⎤⎢⎥⎣⎦C.[]51,0,43⎡⎤⎢⎥⎣-⎦D.[)51,0,43⎛⎤- ⎥⎝⎦9.已知函数则函数2,0,()()()1,0,x xf xg x f xxx⎧≥⎪==-⎨<⎪⎩,则函数()g x的图象大致是A.B.C.D.10.已知函数()()()314(1)1a x a xf x axx⎧-+<⎪=⎨≥⎪⎩,满足对任意的实数1x,2x且12x x≠,都有[]1212()()()0f x f x x x--<,则实数a的取值范围为A.1,17⎡⎫⎪⎢⎣⎭B.10,3⎡⎫⎪⎢⎣⎭C.11,63⎡⎫⎪⎢⎣⎭D.1,16⎡⎫⎪⎢⎣⎭11.已知定义在R上的函数()f x在(],2-∞上单调递减,且()2f x+为偶函数,则不等式()()12f x f x->的解集为A.()5,6,3⎛⎫-∞-+∞⎪⎝⎭B.()5,1,3⎛⎫-∞-+∞⎪⎝⎭C.5,13⎛⎫- ⎪⎝⎭D.51,3⎛⎫- ⎪⎝⎭12.已知函数()ln1af x xx=++.若对任意1x,(]20,2x∈,且12x x≠,都有()()21211f x f xx x->--,则实数a的取值范围是A.27,4⎛⎤-∞⎥⎝⎦B.(],2-∞C.27,2⎛⎫-∞⎪⎝⎭D.(],8∞-二、填空题(本大题共4小题,每小题5分.共20分)13.已知lg 2a b +=-,10b a =,则=a ______.14.已知()222,02,0x x x f x x x x ⎧-+≥=⎨+<⎩,满足()()f a f a <-,则a 的取值范围是.15.若函数()21x mf x x +=+在区间[]0,1上的最大值为3,则实数=m _______.16.已知函数()e e 21x x f x x -=--+,则不等式(23)()2f x f x -+>的解集为____________.三、解答题(共70分,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答。

辽宁省本溪市第一中学2024-2025学年高三上学期第一次月考数学试卷(含答案)

辽宁省本溪市第一中学2024-2025学年高三上学期第一次月考数学试卷(含答案)

本溪市第一中学2024-2025学年高三上学期第一次月考数学试题一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.1.已知集合,,则( )A. B.C. D.2.设,,则“”是“”的( )A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件3.已知为锐角,,则( )4.将函数图象上所有的点向左平移个单位长度,再把所有点的横坐标变为原来的后,得到函数的图象,则( )B.C.D.15.已知函数(且),若有最小值,则实数的取值范围是( )A. B. C. D.6.设函数定义域为,为奇函数,为偶函数,当时,,则下列结论错误的是( )A. B.为奇函数{}lg(1)A x y x ==-{}21x B y y ==+{}0A B x x =< A B R = {}1A B x x => A B =∅∅0a >0b >lg()0a b +>lg()0ab >απ3sin 45α⎛⎫-=-⎪⎝⎭sin α=()2sin 26f x x π⎛⎫=-⎪⎝⎭π1212()g x π12g ⎛⎫= ⎪⎝⎭121(2)21,2()2,2x a x a x f x a x --++≤⎧=⎨>⎩0a >1a ≠()f x a 30,4⎛⎤ ⎥⎝⎦31,2⎛⎤ ⎥⎝⎦3(0,1)1,2⎛⎤ ⎥⎝⎦330,1,42⎛⎤⎛⎤ ⎥⎥⎝⎦⎝⎦()f x R (1)f x -(1)f x +(1,1]x ∈-()f x =21x -+7324f ⎛⎫=-⎪⎝⎭(7)f x +C.在上是减函数D.方程仅有6个实数解7.已知,,,则( )A. B. C. D.8.定义在上的函数的导函数为,当时,且.,.则下列说法一定正确的是( )A.B.C. D.二、多选题:本题共3小题,共18分.在每小题给出的选项中,有多项符合题目要求.9.已知的最小正周期是,下列说法正确的是( )A.在是单调递增 B.是偶函数C.的最大值是 D.是的对称中心10.已知函数,则( )A.在上单调递增 B.是函数的极大值点C.既无最大值,也无最小值D.当时,有三个零点11.已知函数,是的导函数,则( )A.“”是“为奇函数”的充要条件B.“”是“为增函数”的充要条件C.若不等式的解集为且,则的极小值为D.若,是方程的两个不同的根,且,则或三、填空题:本题共3小题,每小题5分,共15分.12.如果,是方程两根,则__________.()f x (6,8)()lg 0f x x +=910m =1011m a =-89m b =-0a b>>0a b >>0b a >>0b a>>R ()f x ()f x '[0,)x ∈+∞()2sin cos 0x x f x '⋅->R x ∀∈()()cos 21f x f x x -++=15π32π4643f f ⎛⎫⎛⎫-->-- ⎪ ⎪⎝⎭⎝⎭15π34π4643f f ⎛⎫⎛⎫-->-- ⎪ ⎪⎝⎭⎝⎭3π13π4324f f ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭13π3π2443f f ⎛⎫⎛⎫-->- ⎪ ⎪⎝⎭⎝⎭2π2π()sin 33f x x x ωω⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭π()f x ππ,32⎛⎫⎪⎝⎭π4f x ⎛⎫-⎪⎝⎭()f x 1+(π,0)()k k Z ∈()f x ()|2|xf x x e a =--()f x (1,2)1x =()f x ()f x (1,2)a ∈()f x 32()2(,,)f x x ax bx c a b c R =-++∈()f x '()f x 0a c ==()f x 0a b ==()f x ()0f x <{1x x <}1x ≠-()f x 3227-1x 2x ()0f x '=12111x x +=0a <3a >tan αtan β2330x x --=sin()cos()αβαβ+=-13.已知函数(且),若对任意,,则实数的取值范围是__________.14.已知函数,则的单调递增区间为__________;若对任意的,不等式恒成立,则实数的取值范围为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.15.(13分)已知函数.(1)求的最小正周期和最大值;以及取最大值时相应的x 值;(2)讨论在上的单调性.16.(15分)已知在中,角A ,B ,C 的对边分别为a ,b ,c ,且.(1)求;(2)若外接圆的直径为的取值范围.17.(15分)有一种候鸟每年都按一定的路线迁陟,飞往繁殖地产卵.科学家经过测量发现候鸟的飞行速度可以表示为函数,单位是,其中表示候鸟每分钟耗氧量的单位数,表示测量过程中候鸟每分钟的耗氧偏差.(参考数据:,,)(1)若,候鸟每分钟的耗氧量为8100个单位时,它的飞行速度是多少?(2)若,候鸟停下休息时,它每分钟的耗氧量为多少个单位?(3)若雄鸟的飞行速度为,雌鸟的飞行速度为,那么此时雄鸟每分钟的耗氧量是雌鸟每分钟的耗氧量的多少倍?18.(17分)已知函数,.(1)求的单调区间;(2)设函数.证明:(i )函数有唯一极值点;(ii )若函数有唯一零点,则.2()1xx a f x a =+0a >1a ≠(1,3)x ∈()()242f x f ax ++-<a()e xf x x =-()f x (0,)x ∈+∞ln 2e 1x x ax+-≥a 2π()sin sin 2f x x x x ⎛⎫=+-⎪⎝⎭()f x ()f x π2π,63⎡⎤⎢⎥⎣⎦ABC △cos()cos a B C a A -+-sin cos B A 0=A ABC △2c b -301log lg 2100x v x =-km /min x 0x lg 20.30= 1.23 3.74= 1.43 4.66=02x =km /min 05x = 2.5km /min 1.5km /min 21()ln 2f x x x =-121()(0)2x g x e x ax a -=-->()f x ()()()F x f x g x =+()F x ()F x 0x 012x <<19.(17分)麦克劳林展开式是泰勒展开式的一种特殊形式,的麦克劳林展开式为:,其中表示的阶导数在0处的取值,我们称为麦克劳林展开式的第项.例如:.(1)请写出的麦克劳林展开式中的第2项与第4项;(2)数学竞赛小组发现的麦克劳林展开式为,这意味着:当时,,你能帮助数学竞赛小组完成对此不等式的证明吗?(3)当时,若,求整数的最大值.()f x ()()20(0)(0)(0)()(0)(0)2!!!n n n nn f f f f x f x x x x n n f ∞=''=+++++='∑ ()(0)n f ()f x n ()(0)!n nn f T x n =()f x 1n +234e 12!3!4!xx x x x =+++++ ()sin f x x =ln(1)x +234ln(1)234x x x x x +=-+-+ 0x >2ln(1)2x x x +>-1x ≥31e ln 26xx x mx ++>+m本溪市第一中学2024-2025学年高三上学期第一次月考数学试题答案一、单选题1-4:DBDA5-8:DCAB 二、多选题9:ABD10:BD11:ACD三、填空题12.13.14.;四、解答题15.解:(1)所以的最小正周期,当时,,此时(2)当时,有,从而时,即时,单调递增,时,即时,单调递减,综上所述,单调增区间为,单调减区间为.16.解:(1)由,得,故得,所以,即.32-()[)0,15,+∞ (0,)+∞12a ≤2π()sin sin 2f x x x x ⎛⎫=--⎪⎝⎭1cos sin cos 2)sin 222x x x x x =-+=--πsin 23x ⎛⎫=--⎪⎝⎭()f x πT =πsin 213x ⎛⎫-= ⎪⎝⎭()f x 5ππ()12x k k Z =+∈π2π,63x ⎡⎤∈⎢⎥⎣⎦π02π3x ≤-≤ππ0232x ≤-≤π5π612x ()f x ππ2π23x ≤-≤5π2π123x()f x ()f x π5π,612⎡⎤⎢⎥⎣⎦5π2π,123⎡⎤⎢⎥⎣⎦πA B C ++=(),cos cos()A B C A B C π=-+=-+cos()cos()sin cos a B C a B C B A --+=cos cos sin sin (cos cos sin sin )sin cos a B C a B C a B C B C B A +--=sin sin sin cos a B C B A =由正弦定理,得,显然,,所以,所以.因为,所以.(2)由正弦定理,得,,故.又,所以,,所以.又,所以,所以,所以的取值范围为.17.解:(1)将,,代入函数解析式得,故此时飞行速度为;(2)将,,代入函数解析式得,即,所以,于是,故候鸟停下休息时,它每分钟的耗氧量为466个单位;(3)设雄鸟每分钟的耗氧量为,雌鸟每分钟的耗氧量为,依题意可得:,两式相减得,所以,18.解:(1)由函数可得:,且,当时,,函数单调递减;当时,,函数单调递增,所以函数减区间是,增区间是.(2)(i )因为,的定义域为,sin sin sin sin cos A B C C B A =sin 0C >sin 0B >sin A A =tan A =(0,π)A ∈π3A =2sin sin sin a c bR A C B====b B =c C =2sin )c b C B C B -=-=-πA B C ++=2π3B C =-2π0,3C ⎛⎫∈ ⎪⎝⎭2π3π22sin sin sin 6sin 326c b C C C C C ⎫⎤⎛⎫⎛⎫-=--==-⎪⎪ ⎪⎥⎪⎝⎭⎝⎭⎦⎭2π0,3C ⎛⎫∈ ⎪⎝⎭πππ,662C ⎛⎫-∈- ⎪⎝⎭π26sin (3,6)6c b C ⎛⎫-=-∈- ⎪⎝⎭2c b -(3,6)-02x =8100x =31log 81lg 22lg 2 1.702v =-=-=1.70km /min 05x =0v =310log lg 52100x =-3log 2lg 52(1lg 2) 1.40100x ==-= 1.43 4.66100x==466x =1x 2x 13023012.5log lg 210011.5log lg 2100x x x x⎧=-⎪⎪⎨⎪=-⎪⎩13211log 2x x =129x x =21()ln 2f x x x =-0x >()211(1)(1)x x x f x x x x x -+-'=-==01x <<()0f x '<()f x 1x >()0f x '>()f x ()f x (0,1)(1,)+∞0a >1()ln x F x ex ax -=--(0,)+∞所以,所以在上单调递增.设,则,当时,,所以单调递增,当时,,所以单调递减,所以,所以,即,所以,又,所以存在唯一的,使得,即,当时,,单调递减;当时,,单调递增,所以函数有唯一极值点.(ii )由(i )得,因为函数有唯一零点,所以,所以,即,所以,设,所以,所以在单调递减,因为,,所以.19.(1)因为,,,所以第2项,.(2)设,,因为,所以,单调递增,所以,所以.(3)当时,成立,得出,的最大整数为3.11()x F x e a x-'=--()F x '(0,)+∞()1xh x e x =--()1xh x e '=-0x >()0h x '>()x 0x <()0h x '<()x ()(0)0h x h ≥=10x e x --≥1x e x ≥+111(1)110111a F a e a a a a a a'+=-->+--=->+++(1)0F a '=-<0(1,1)t a ∈+()00F t '=0110t e a t ---=()00,x t ∈()0F x '<()0,x t ∈+∞()0F x '>()F x ()F x ()min 0()F x F t =()F x 0x ()00F t =00x t =011x ea x -=+()00001ln 0F x a x ax x =+--=()00001ln x a x ax x ϕ=+--()0200110x a x x ϕ'=---<()0x ϕ(1,)+∞(1)10ϕ=>1(2)ln 202a ϕ=--<012x <<()cos f x x '=(2)()sin f x x =-(3)()cos f x x =-11cos 01!T x x ==333cos 013!6T x x -==-2()ln(1)2x g x x x =+-+()221111111x x g x x x x x +-'=-+==+++0x >()201x g x x '=>+()g x ()(0)ln1000g x g >=-+=2ln(1)2x x x +>-1x =111e ln126m ++>+1e 3m <+m当时,设,,,当,,单调递增,则,所以,又当时,成立,所以当时.3m =323311()e ln 31ln 3262626xx x x x h x x x x x x =++--=+++++--23()ln 222x h x x x =++-1()220h x x x '=+-≥-=1x >()0h x '>()h x 13()(1)ln12022h x h >=+-+=31e ln 326xx x x ++>+1x =211e ln1326++>+1x ≥31e ln 326xx x x ++>+。

2023—2024学年黑龙江省高三上学期第一次月考考试数学试题(含答案)

2023—2024学年黑龙江省高三上学期第一次月考考试数学试题(含答案)

2023-2024学年黑龙江省高三上册第一次月考考试数学试题.....函数()2ln(f x x =--的单调递减区间为().(,1)-∞-B (1,1)-D7.若正数x ,y 满足35x y xy +=,则34x y +的最小值是()A .2B .3C .4D .58.已知定义在R 上的函数()f x ,其导函数()f x '满足:对任意x ∈R 都有()()f x f x '<,则下列各式恒成立的是()A .()()()()20181e 0,2018e 0f f f f <⋅<⋅B .()()()()20181e 0,2018e 0f f f f >⋅>⋅C .()()()()20181e 0,2018e 0f f f f >⋅<⋅D .()()()()20181<e 0,2018e 0f f f f ⋅>⋅二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.如图是函数()y f x =的导函数()y f x '=的图象,则下列判断正确的是()A .()f x 在()4,3--上是减函数B .()f x 在()1,2-上是减函数C .3x =-时,()f x 有极小值D .2x =时,()f x 有极小值10.对于定义在R 上的函数()f x ,下述结论正确的是()A .若()()11f x f x =+-,则()f x 的图象关于直线1x =对称B .若()f x 是奇函数,则()1f x -的图象关于点()1,0A 对称C .函数()1y f x =+与函数()1y f x =-的图象关于直线1x =对称D .若函数()1f x -的图象关于直线1x =对称,则()f x 为偶函数16.已知定义在R 上的函数f ()()2log a f x x =+,则(2022f 四、解答题:本题共6小题,共由图象可知:函数12xy=与y∴函数()213 2xf x x=+-的零点个数为故答案为.214.2【分析】根据对数函数的性质求出函数过定点坐标,再代入直线方程,即可得到。

高三数学上学期第一次月考试题含解析试题

高三数学上学期第一次月考试题含解析试题

卜人入州八九几市潮王学校六盘山高级2021届高三数学上学期第一次月考试题〔含解析〕一、选择题〔每一小题5分,一共60分,每一小题四个选项里面,只有一项符合要求〕 1.设全集U =Z ,集合A ={x ∈Z |x 2﹣x ﹣2≥0},那么∁U A =〔〕 A.{0} B.{1}C.{0,1}D.{﹣1,0,1,2} 【答案】C 【解析】 【分析】 化简集合A ,求出集合A 的补集即可.【详解】集合{}{2|20|2A x Z x x x Z x =∈--≥=∈≥或者}1x ≤-,那么{}0,1UA =.应选:C.【点睛】此题考察了集合的化简与补集运算问题,属于根底题.2.复数121z i z i =+=,,其中i 为虚数单位,那么12z z 的虚部为〔〕A.1-B.1C.iD.i -【答案】A 【解析】 【分析】根据复数一共轭的概念得到__1z ,再由复数的除法运算得到结果即可.【详解】11211,1,z i z i i z i-=-==-- 虚部为-1,应选A.【点睛】此题考察了复数的运算法那么、复数的一共轭复数等,考察了推理才能与计算才能,属于根底题,复数问题高考必考,常见考点有:点坐标和复数的对应关系,点的象限和复数的对应关系,复数的加减乘除运算,复数的模长的计算.3.以下四个函数中,既是奇函数又在定义域上单调递增的是〔〕 A.1y x =-B.tan y x =C.3y x =D.2log y x =【答案】C 【解析】 【分析】依次判断每个选项得到答案. 【详解】A.1y x =-是非奇非偶函数B.tan y x =是周期函数不是递增C.3y x =满足条件D.2log y x =是非奇非偶函数故答案选C【点睛】此题考察了函数的奇偶性和单调性,属于简单题. 4.设a =3,b =log 32,c =cos 23π,那么a ,b ,c 的大小关系是〔〕A.b >a >cB.a >c >bC.b >c >aD.a >b >c【答案】D 【解析】 【分析】容易得出0.531>,30log 21<<,21cos032π=-<,从而可得出,,a b c 的大小关系. 【详解】0.50331>=,3330log 1log 2log 31=<<=,21cos 032π=-<, a b c ∴>>.应选:D.【点睛】此题考察指数函数、对数函数的单调性,余弦值在各象限的符号,以及增函数的定义,属于根底题.5.函数33,0()log ,0x f x x x x ⎧-<⎪=⎨⎪>⎩,假设()3f a =,那么实数a =〔〕A.-1B.27C.127或者1 D.-1或者27【答案】D 【解析】 【分析】 分别讨论0a <和0a>两种情况,结合函数解析式,即可求出结果.【详解】当0a <时,()3f a =,得33a-=,解得1a =-,符合题意; 当0a>时,由()3f a =,得3log 3a =,解得27a =,符合题意.综上可得1a =-或者27a =. 应选D.【点睛】此题主要考察分段函数,由函数值求参数的问题,灵敏运用分类讨论的思想即可,属于根底题型. 6.在等差数列{n a }中,假设a3,a7是函数f(x)=2x 4x 3-+的两个零点,那么{n a }的前9项和等于〔〕A.-18B.9C.18D.36【答案】C 【解析】∵等差数列{a n }中,a 3,a 7是函数f 〔x 〕=x 2﹣4x+3的两个零点,∴{a n }的前9项和S 9=()()1937991822a a a a +=+=. 应选C .7.向量a )=,b (=-,那么向量b 在向量a 方向上的投影为〔〕A.C.-1D.1【答案】A 【解析】 【分析】此题可根据投影的向量定义式和两个向量的数量积公式来计算. 【详解】由投影的定义可知: 向量b 在向量a 方向上的投影为:b cos a b ⋅<,>,又∵a ba b cos a b ⋅=⋅⋅<,>,∴(33a bb cos a b a ⋅-+⋅⋅===<,>. 应选A .【点睛】此题主要考察投影的向量定义以及根据两个向量的数量积公式来计算一个向量在另一个向量上的投影,此题属根底题. 8.以下说法正确的是〔〕A.设m 为实数,假设方程22112x y m m+=--表示双曲线,那么m >2.B.“p ∧q 〞是“p ∨q 〞的充分不必要条件C.“∃x ∈R ,使得x 2+2x +3<0”的否认是:“∀x ∈R ,x 2+2x +3>0” D.“假设x 0为y =f 〔x 〕的极值点,那么f ’〔x 〕=0”【解析】 【分析】根据双曲线的定义和方程判断ABCD. 【详解】对于A :假设方程表示双曲线,那么()()120m m --<,解得2m >或者1m <,故A 错误;对于B :假设p q ∧p ,q p q ∨p 真q 假时,满足p q ∨p q ∧p q ∧p q ∧B 正确;对于C x R ∃∈,使得2230x x ++<〞的否认是:“x R ∀∈,2230x x ++≥〞,故C 错误;对于D 0x 为()y f x =的极值点,那么()0f x '=()0f x '=,那么0x 为()y f x =()3f x x =中,()23f x x '=,其中()00f '=,但0x =不是极值点,故D 错误.应选:B. 【点睛】 9.1sin()54πα-=,那么3cos(2)5πα+=〔〕 A.78-B.78C.18D.18-【答案】A 【解析】 由题意可得: 此题选择A 选项. 10.函数()21f x x lnx =--,那么y =f 〔x 〕的图象大致为〔〕A. B.C. D.【答案】A 【解析】 【分析】利用特殊值判断函数的图象即可.【详解】令21x e =,那么22222122111ln 1e f e e e e⎛⎫== ⎪+⎝⎭--,再取1x e=,那么12211ln 1f e e e e⎛⎫== ⎪⎝⎭--,显然22221e e e<+,故排除选项B 、C ; 再取xe =时,()220ln 12f e e e e ==>---,又当x →+∞时,()0f x →,故排除选项D.应选:A.【点睛】此题考察函数的图象的判断,特殊值法比利用函数的导函数判断单调性与极值方法简洁,属于根底题. 11.函数()sin 23f x a x x =-的一条对称轴为π6x =-,12()()0f x f x +=,且函数()f x 在12(,)x x 上具有单调性,那么12||x x +的最小值为A.2π3B.π3C.π6D.4π3【答案】A 【解析】 【分析】由题,将函数化简,根据对称轴求得a 的值,再根据条件求得12,x x 两点必须关于对称中心对称,求得12x x +的值,可得结果.【详解】由题,()sin f x a x x =-)x θ+,θ为辅助角,因为对称轴为π6x=-,所以1()362f a π-=--即132a --=2a = 所以()4sin()3f x x π=-又因为()f x 在()12,x x 上具有单调性,且()()120f x f x +=,所以12,x x 两点必须关于正弦函数的对称中心对称,即12122333()22x x x x k k z ππππ-+-+-==∈所以1222()3x x k k z ππ+=+∈ 当0k=时,12x x +取最小为2π3应选A【点睛】此题考察了三角函数综合知识,包含图像与性质,辅助角公式化简等,熟悉性质图像是解题的关键,属于中等较难题.12.函数()xe f x ax x =-,(0,)x ∈+∞,当210x x >>时,不等式()()1221f x f x x x <恒成立,那么实数a 的取值范围为()A.,2e ⎛⎤-∞ ⎥⎝⎦B.(,)e -∞C.(,)2e-∞ D.(,]e -∞【答案】A 【解析】 【分析】根据210x x >>,可以把不等式()()1221f x f x x x <变形为:()()1122f x x f x x <⋅⋅构造函数,知道函数的单调性,进而利用导数,可以求出实数a 的取值范围.【详解】因为210x x >>,所以()()()()12112221f x f x f x x f x x x x <<⇒⋅⋅, 设函数()()g x x f x =⋅,于是有()12()g x g x <,而210x x >>,说明函数()()g x x f x =⋅当(0,)x ∈+∞时,是单调递增函数,因为()x e f x ax x=-,所以()2x g x e ax =-,()'2x g x e ax =-,因此当(0,)x ∈+∞时,()'20x g x e ax =-≥恒成立,即2x e a x ≤,当(0,)x ∈+∞时恒成立,设'2(1)()()22x x e e x h x h x x x -=⇒=,当1x >时, '()0h x >,函数()h x 单调递增,当01x <<时,'()0h x <,函数()h x 单调递减,故当(0,)x ∈+∞时,函数()h x 有最小值,即为(1)2e h =,因此不等式2x e a x≤,当(0,)x ∈+∞时恒成立,只需2ea≤,故此题选A. 【点睛】此题考察了通过构造函数,得知函数的单调性,利用导数求参问题,合理的恒等变形是解题的关键. 二、填空题:本大题一一共4小题,每一小题5分,一共20分.2()32ln f x x x x =-+在1x =处的切线方程为_________.【答案】30x y --=.【解析】试题分析:由题意得,2'23y x x=-+,∴1'|2321x y ==-+=,而1x =时,1302y =-+=-, ∴切线方程为21y x +=-,即30x y --=,故填:30x y --=.考点:导数的运用. 14.3a =,2b =,假设()a b a +⊥,那么a 与b的夹角是_________.【答案】150 【解析】 【分析】由3a =,2b =,且()a b a +⊥,知2a a cos ,0b a b +⋅=,即<a b ,>=0,由此能求出向量a 与b 的夹角. 【详解】∵3a =,2b =,且()a b a +⊥,∴2aa cos ,0b a b +⋅= 即<a b ,>=0,解得cos <a b ,>=∴向量a 与b 的夹角是150°, 故答案为150°.【点睛】此题考察向量的数量积判断两个向量垂直的条件的应用,是根底题.解题时要认真审题,仔细解答,解决向量的小题常用方法有:数形结合,向量的三角形法那么,平行四边形法那么等;建系将向量坐标化;向量基底化,选基底时一般选择大小和方向的向量为基底.15.设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,那么S n =__________. 【答案】-1n. 【解析】试题分析:因为11n n n a S S ++=,所以111n n n n n a S S S S +++=-=,所以111111n n n n n n S S S S S S +++-=-=,即1111n n S S +-=-,又11a =-,即11111S a ==-,所以数列1n S ⎧⎫⎨⎬⎩⎭是首项和公差都为1-的等差数列,所以11(1)(1)n n n S =----=-,所以1n S n=-. 考点:数列的递推关系式及等差数列的通项公式.【方法点晴】此题主要考察了数列的通项公式、数列的递推关系式的应用、等差数列的通项公式及其性质定知识点的综合应用,解答中得到1111n n S S +-=-,111S =-,确定数列1n S ⎧⎫⎨⎬⎩⎭是首项和公差都为1-的等差数列是解答的关键,着重考察了学生灵敏变形才能和推理与论证才能,平时应注意方法的积累与总结,属于中档试题.16.S,a,b,c分别表示三角形的面积,大斜,中斜,小斜;a h,b h,c h分别为对应的大斜,中斜,小斜上的高;那么S=1122a bah bh==12cch=.假设在ABC∆中ah=,2bh=,3ch=,根据上述公式,可以推出该三角形外接圆的半径为__________.【解析】根据题意可知:::3:2a b c=,故设.3.2a b x c x===,由S=1122a bah bh==12cch=代入,,a b c可得x=,由余弦定理可得cosA=1sin1212A⇒=,所以由正弦定理得三角形外接圆半径为2sin2sin143aA A==三、解答题:〔一共计70分.解容许写出计算过程、证明过程或者演算步骤〕17.等差数列{an}的前n项和为Sn,等比数列{bn}的前n项和为Tn,a1=-1,b1=1,a2+b2=2.(1)假设a3+b3=5,求{bn}的通项公式;(2)假设T3=21,求S3.【答案】〔1〕12nnb-=;〔2〕当q=4时,S3=﹣6;当q=﹣5时,S3=21.【解析】【详解】试题分析:()1设等差数列{}n a的公差为d,等比数列{}n b的公比为q,运用等差数列和等比数列的通项公式,列方程解方程可得d q,,即可得到所求通项公式;()2运用等比数列的求和公式,解方程可得公比,再由等差数列的通项公式和求和,计算即可得答案.解析:〔1〕设等差数列{a n }的公差为d ,等比数列{b n }的公比为q , a 1=﹣1,b 1=1,a 2+b 2=2,a 3+b 3=5,可得﹣1+d+q=2,﹣1+2d+q 2=5, 解得d=1,q=2或者d=3,q=0〔舍去〕, 那么{b n }的通项公式为b n =2n ﹣1,n∈N*;〔2〕b 1=1,T 3=21,可得1+q+q 2=21,解得q=4或者﹣5, 当q=4时,b 2=4,a 2=2﹣4=﹣2,d=﹣2﹣〔﹣1〕=﹣1,S 3=﹣1﹣2﹣3=﹣6; 当q=﹣5时,b 2=﹣5,a 2=2﹣〔﹣5〕=7, d=7﹣〔﹣1〕=8,S 3=﹣1+7+15=21.1sin ,2m x ⎛⎫=- ⎪⎝⎭,()3cos ,cos2n x x=,函数()•f x m n =〔1〕求函数()f x 的单调增区间〔2〕将函数()y f x =的图象向左平移6π个单位,得到函数()y g x =的图象,求()g x 在0,2π⎡⎤⎢⎥⎣⎦上的值域.【答案】(1),,63k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦;(2)1,12⎡⎤-⎢⎥⎣⎦. 【解析】【详解】试题分析:(1)由化简可得() sin 26f x x π⎛⎫=- ⎪⎝⎭,可得最大值,利用周期公式可求()f x 的最小正周期;(2)由图象变换得到()sin 26gx x π⎛⎫=+⎪⎝⎭,从而求函数的值域.试题解析:试题解析:(1)()1•3sin cos cos22f x m n x x x ==-1cos22x x =-sin 26x π⎛⎫=- ⎪⎝⎭. (2)由(1)得()sin 26f x x π⎛⎫=- ⎪⎝⎭.将函数()y f x =的图象向左平移6π个单位后得到sin 2sin 2666y x x πππ⎡⎤⎛⎫⎛⎫=+-=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象.因此()sin 26g x x π⎛⎫=+ ⎪⎝⎭,又0,2x π⎡⎤∈⎢⎥⎣⎦,所以72,666x πππ⎡⎤+∈⎢⎥⎣⎦,1sin 2,162x π⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦.故()g x 在0,2π⎡⎤⎢⎥⎣⎦上的值域为1,12⎡⎤-⎢⎥⎣⎦.19.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且sin 2A +sin 2B +sin 2C =sin A sin B +sin B sin C +sin C sin A . 〔1〕证明:△ABC 是正三角形;〔2〕如图,点D 在边BC 的延长线上,且BC =2CD ,AD =sin∠BAD 的值.【答案】〔1〕证明见解析;〔2 【解析】 【分析】〔1〕由利用正弦定理可得222a b c ab bc ca ++=++,再配方得()()()2220a b b c c a -+-+-=,那么a b c ==,因此ABC ∆是正三角形; 〔2〕由条件可得2AC CD =,120ACD ︒∠=,再由余弦定理可得1CD =,又33BD CD ==,利用正弦定理即可得到结论.【详解】〔1〕证明:∵sin 2A +sin 2B +sin 2C =sin A sin B +sin B sin C +sin C sin A∴a 2+b 2+c 2=ab +ac +bc ,∴2a 2+2b 2+2c 2=2ab +2ac +2bc , ∴〔a ﹣b 〕2+〔b ﹣c 〕2+〔a ﹣c 〕2=0,∴a =b =c , ∴△ABC 为等边三角形;〔2〕∵△ABC 是等边三角形,BC =2CD ,∴AC =2CD ,∠ACD =120°,∴在△ACD 中,由余弦定理,得AD 2=AC 2+CD 2﹣2AC •CD cos∠ACD , ∴7=4CD 2+CD 2﹣4CD •CD cos120°,∴CD =1, 在△ABC 中,BD =3CD =3,由正弦定理,得sin∠BAD 14BDsinB AD ==. 【点睛】此题主要考察了余弦定理,正弦定理在解三角形中的应用,考察了转化思想和计算才能,属于根底题.20.函数()32133f x x mx nx =+++,其导函数()f x '的图象关于y 轴对称,()213f =-.〔Ⅰ〕务实数,m n 的值; 〔Ⅱ〕假设函数()y f x λ=-的图象与x 轴有三个不同的交点,务实数λ的取值范围.【答案】〔Ⅰ〕0m =,4n =-〔Ⅱ〕725,33⎛⎫-⎪⎝⎭【解析】 【分析】 〔Ⅰ〕根据导函数()f x '的图象关于y 轴对称求出m 的值,再根据()213f =-求出n 的值;〔Ⅱ〕问题等价于方程()f x λ=有三个不相等的实根,再求出函数f(x)的单调性和极值,分析得解.【详解】解:〔Ⅰ〕()22f x x mx n '=++.函数()f x '的图象关于y 轴对称,0m ∴=.又()121333f n =++=-,解得4n =-.0m ∴=,4n =-.〔Ⅱ〕问题等价于方程()f x λ=有三个不相等的实根时,求λ的取值范围.由〔Ⅰ〕,得()31433f x x x =-+.()24f x x '∴=-.令()0f x '=,解得2x =±.当2x <-或者2x >时,()0f x '>,()f x ∴在(),2-∞-,()2+∞,上分别单调递增.又当22x -<<时,()0f x '<,()f x ∴在()2,2-上单调递减. ()f x ∴的极大值为()2523f -=,极小值为()723f =-. ∴实数λ的取值范围为725,33⎛⎫- ⎪⎝⎭.【点睛】此题主要考察利用导数研究函数的零点问题,数形结合思想是数学中的一种重要的思想,通过数形结合将此题转化为函数图象的交点,可以直观形象的解决问题. 21.己知函数()()()ln f x x a x a R =-∈,它的导函数为()f x '.〔1〕当1a =时,求()f x '的零点;〔2〕假设函数()f x 存在极小值点,求a 的取值范围.【答案】〔1〕1x =是()f x '的零点;〔2〕()2,e --+∞【解析】 【分析】〔1〕求得1a =时的()f x ',由单调性及()10f '=求得结果.〔2〕当0a=时,()1ln f x x ='+,易得()f x 存在极小值点,再分当0a >时和当0a <时,令()()g x f x =',通过研究()g x '的单调性及零点情况,得到()g x 的零点及分布的范围,进而得到()f x 的极值情况,综合可得结果. 【详解】〔1〕()f x 的定义域为()0,+∞,当1a =时,()()1ln f x x x =-,()1ln 1f x x x+'=-. 易知()1ln 1f x x x+'=-为()0,+∞上的增函数, 又()1ln1110f '=+-=,所以1x =是()f x '的零点.〔2〕()ln 1ln x a af x x x x x+-'-==+, ①当0a=时,()1ln f x x ='+,令()0f x '>,得1x e >;令()0f x '<,得10x e<<, 所以()f x 在10,e⎛⎫ ⎪⎝⎭上单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增,符合题意.令()1ln a gx x x =-+,那么()221a x a g x x x x+=='+. ②当0a>时,()0g x '>,所以()g x 在()0,+∞上单调递增.又10g ae e ⎛⎫=-<⎪⎝⎭,()11110aa aa g e a a e e⎛⎫=-+=+-> ⎪⎝⎭, 所以()g x 在()0,+∞上恰有一个零点0x ,且当()00,x x ∈时,()()0f x g x '=<;当()0,x x ∈+∞时,()()0f x g x '=>,所以0x 是()f x 的极小值点,符合题意.③当0a <时,令()0g x '=,得x a =-.当()0,x a ∈-〕时,()0g x '<;当(),x a ∈-+∞时,()0g x '>, 所以()()()min 2ln g x g a a =-=+-.假设()()2ln 0g a a -=+-≥,即当2a e -≤-时,()()()0f x g x g a =≥-≥'恒成立,即()f x 在()0,+∞上单调递增,无极值点,不符合题意.假设()()2ln 0g a a -=+-<,即当20e a --<<时,()()11ln 101ag a a a-=-+->-, 所以()()10ga g a -⋅-<,即()g x 在(),a -+∞上恰有一个零点1x ,且当()1,x a x ∈-时,()()0f x g x '=<;当()1x x ∈+∞时,()()0f x g x '=>,所以1x 是()f x 的极小值点,符合题意.综上,可知2a e ->-,即a 的取值范围为()2,e--+∞.【点睛】此题主要考察导数的综合应用,考察了函数的极值,单调性和函数的导数之间的关系,构造函数研究函数的单调性是解决此题的关键.综合性较强,运算量较大,有一定的难度. 请考生在22、23两题中任选一题答题,假设多做,那么按所做的第一题记分22.在直角坐标系xOy 中,直线l 的参数方程为x tcos y tsin αα=⎧⎨=⎩,〔t 为参数〕,在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 1:ρ=2cosθ,223C cos πρθ⎛⎫=- ⎪⎝⎭:.〔1〕求C 1与C 2交点的直角坐标;〔2〕假设直线l 与曲线C 1,C 2分别相交于异于原点的点M ,N ,求|MN |的最大值.【答案】〔1)〔0,0〕,32⎛⎝⎭;〔2〕2.【解析】 【分析】〔1〕由两曲线的极坐标方程结合极坐标与直角坐标的互化公式可得C 1与C 2的直角坐标方程,再联立求解即可;〔2〕不妨设0απ≤<,设点()1,M ρα,()2,N ρα,作差后取绝对值,再由三角函数求最值.【详解】〔1〕由ρ=2cosθ,得ρ2=2ρcosθ, 那么曲线C 1的直角坐标方程为x 2+y 2=2x ,由23cos πρθ⎛⎫=- ⎪⎝⎭,得2cos sin ρρθθ=,那么曲线C 2的直角坐标方程为220x y x +--=.由222220x y x x y x ⎧+=⎪⎨+-=⎪⎩,解得00x y =⎧⎨=⎩或者322x y ⎧=⎪⎪⎨⎪=⎪⎩,故C 1与C 2交点的直角坐标为〔0,0〕,322⎛⎫⎪ ⎪⎝⎭,; 〔2〕不妨设0≤α<π,点M ,N 的极坐标分别为〔ρ1,α〕,〔ρ2,α〕.∴12223MN cos cos πρραα⎛⎫=-=-- ⎪⎝⎭()223cos cos cos cos παααααα⎛⎫=-==+ ⎪⎝⎭.∴当23πα=时,|MN |获得最大值2.【点睛】此题考察简单曲线的极坐标方程,考察计算才能,属于中档题. 23.函数()211f x x x =-++.〔Ⅰ〕解不等式()3f x ≥;〔Ⅱ〕记函数()f x 的最小值为m ,假设,,a b c 均为正实数,且232a b c m ++=,求222a b c ++的最小值. 【答案】〔Ⅰ〕{}11x x x ≤-≥或;〔Ⅱ〕914. 【解析】 【分析】 〔Ⅰ〕先将函数()211f x x x =-++写成分段函数的形式,再由分类讨论的方法,即可得出结果;〔Ⅱ〕先由〔Ⅰ〕得到m ,再由柯西不等式得到2222222()(123)(23)a b c a b c ++++≥++,进而可得出结果.【详解】〔Ⅰ〕由题意,3,11()2,1213,2x x f x x x x x ⎧⎪-≤-⎪⎪=--<<⎨⎪⎪≥⎪⎩,所以()3f x ≥等价于133x x ≤-⎧⎨-≥⎩或者11223x x ⎧-<<⎪⎨⎪-≥⎩或者1233x x ⎧≥⎪⎨⎪≥⎩.解得:1x ≤-或者1x ≥,所以不等式的解集为{}11x x x ≤-≥或;〔Ⅱ〕由(1)可知,当12x =时,()f x 获得最小值32,所以32m=,即233a b c ++=, 由柯西不等式得2222222()(123)(23)9a b c a b c ++++≥++=,整理得222914ab c ++≥, 当且仅当123a b c ==时,即369,,141414a b c ===时等号成立.所以222a b c ++的最小值为914.【点睛】此题主要考察含绝对值不等式的解法,以及柯西不等式的应用,熟记不等式解法以及柯西不等式即可,属于常考题型.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一次月考数学理 试题【辽宁版】第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 设集合},214|{},,212|{Z k k x x N Z k k x x M ∈+==∈+==则 A. M N = B. M N ⊂ C. M N ⊃ D. M N ⋂=∅ 2. 给出下列四个命题:①命题1sin ,:≤∈∀x R x p ,则1sin ,:<∈∃⌝x R x p . ②当1≥a 时,不等式a x x <-+-34的解集为非空. ③当1>x 时,有2ln 1ln ≥+xx . ④设复数z 满足(1-i )z =2 i ,则z =1-i 其中真命题的个数是 A .1B .2C .3D .43. 已知()πα,0∈,22)3cos(-=+πα,则=α2tan ( )A.33B.3-或33-C.33- D.3-4. 已知等差数列{}n a 中,26a =,515a =,若2n n b a =,则数列{}n b 的前5项和等于( ) A .30B .45C .90D .1865. 已知两个单位向量a r 与b r 的夹角为3π,则a b λ+r r 与a b λ-r r 互相垂直的充要条件是( )A .1λ=-或1λ=B .12λ=-或12λ=C .32λ=-或32λ= D .λ为任意实数 6.已知某几何体的三视图如图所示,则该 几何体的表面积等于( ) A.3160B.160C.23264+D.2888+ 7.下面几个命题中,假命题是( ) A.“若a b ≤,则221ab≤-”的否命题;B.“) ,0(∞+∈∀a ,函数x a y =在定义域内单调递增”的否定;C.“π是函数x y sin =的一个周期”或“π2是函数x y 2sin =的一个周期”;D.“022=+y x ”是“0=xy ”的必要条件.8.下列函数中在区间),1(+∞上为增函数,且其图像为轴对称图形的是( )A.122-+-=x x yB.x y cos =C.|1|lg -=x yD.x x x y 3323+-= 9. 如图,等边三角形ABC 的中线AF 与中位线DE 相交于G ,已知ED A '∆是△ADE 绕DE 旋转过程中的一个图形,下列命题中,错误的是( ) A .动点A '在平面ABC 上的射影在线段AF 上 B .恒有平面GF A '⊥平面BCDE C .三棱锥EFD A -'的体积有最大值 D .异面直线E A '与BD 不可能垂直10. ABC △中,角A B C ,,的对边为a b c ,,,向量31)(cos sin )A A =-=,,,m n , 若⊥m n ,且cos cos sin a B b A c C +=,则角A B ,的大小分别为( )A .ππ36,B .2ππ36,C .ππ63,D .ππ33,11.设25sin 1πn n a n =,n n a a a S +++=Λ21,在10021,,,S S S Λ中,正数的个数是( )A .25B .50C .75D .10012.函数[]()⎪⎩⎪⎨⎧+∞∈-∈--=,2),2(212,0,11)(x x f x x x f ,则下列说法中正确命题的个数是( )① 函数)1ln()(+-=x x f y 有3个零点; ② 若0>x 时,函数x k x f ≤)(恒成立,则实数k 的取值范围是) ,23[∞+; ③ 函数)(x f 的极大值中一定存在最小值;④)2(2)(k x f x f k +=,)(N ∈k ,对于一切) ,0[∞+∈x 恒成立. A .1 B .2 C .3 D .4第II 卷二、填空题(本大题共4小题,每小题5分)13.等比数列{}n a 满足15,a a 是方程282810x x -+=的两个根,且15a a <,则3a = .14.不等式组⎪⎩⎪⎨⎧+-≥+-≥-≥142117x y x y x y 表示的平面区域为D ,若对数函数)10(log ≠>=a a x y a 且上存在区域D 上的点,则实数a 的取值范围是__________.15. 空间中一点P 出发的三条射线,,PA PB PC ,两两所成的角为60︒,在射线,,PA PB PC 上分别取点,,M N Q ,使1,2,3PM PN PQ === ,则三棱锥P MNQ -的外接球表面积是______________.16.关于函数)0(||1lg )(2≠+=x x x x f ,有下列命题: ①其图象关于y 轴对称;②当x >0时,f (x )是增函数;当x <0时,f (x )是减函数; ③f (x )的最小值是lg 2;④f (x )在区间(-1,0)、(2,+∞)上是增函数; ⑤f (x )无最大值,也无最小值.其中所有正确结论的序号是 . 三、解答题17. (本小题满分12分)函数()f x a b =⋅r r,,sin ),(cos ,cos )a x x b x x ωωωω==-r r ,其中0ω>,点()()12,0,,0x x 是函数()f x 图像上相邻的两个对称中心,且122x x π-=(1)求函数()f x 的表达式;(2)若函数()f x 图像向右平移m ()0m >个单位后所对应的函数图像是偶函数图像, 求m 的最小值.18. (本小题满分12分)在某校组织的一次篮球定点投篮训练中,规定每人最多投3次;在A 处每投进一球得3分,在B 处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第三次,某同学在A 处的命中率q 为0.25,在B 处的命中率为q ,该同学选择先在A 处投一球,以后都在B 处投,用ξ表示该同学投篮训练结束后所得的总分,其分布列为(1) 求q 的值;(2) 求随机变量ξ的数学期望E ξ;(3) 试比较该同学选择都在B 处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小。

19. (本小题满分12分)如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,AB BC ⊥, 且AB BC =2=,点N 为11C B 的中点,点P 在棱11A C 的运动 (1)试问点P 在何处时,AB ∥平面PNC ,并证明你的结论; (2)在(1)的条件下,且AB AA <1,直线C B 1与平面BCP 的成角 的正弦值为1010,求二面角C BP A --的大小. PA1C C1A B 1B N20 (本小题满分12分)在平面直角坐标系xOy 中,已知椭圆C :22221(1)x y a b a b+=>≥的离心率3e =C 上一点N 到点Q 03(,)的距离最大值为4,过点3,0M ()的直线交椭圆C 于点.A B 、 (Ⅰ)求椭圆C 的方程;(Ⅱ)设P 为椭圆上一点,且满足OA OB tOP +=u u u r u u u r u u u r(O 为坐标原点),当3AB <范围.21.(本小题满分12分)已知函数()ln f x x a x =-,1(), (R).ag x a x+=-∈ (1)若1a =,求函数()f x 的极值;(2)设函数()()()h x f x g x =-,求函数()h x 的单调区间;(3)若在[]1,e (e 2.718...=)上存在一点0x ,使得0()f x <0()g x 成立,求a 的取值范围.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分.答时用2B 铅笔在答题卡上把所选题目的题号涂黑. (本小题满分10分) 22.选修4—1;几何证明选讲.如图,已知PE 切⊙O 于点E ,割线PBA 交⊙O 于A 、B 两点,∠APE 的平分线和AE 、BE 分别交于点C 、D .求证:(Ⅰ)CE DE =; (Ⅱ)CA PECE PB=. 23.选修4—4;坐标系与参数方程.在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线2:sin 2cos (0)C p a a θθ=>过点P(-2,-4)的直线22,:(242x l t y ⎧=-⎪⎪⎨⎪=-+⎪⎩为参数)与曲线C 相交于点M,N 两点 (Ⅰ)求曲线C 和直线的普通方程;(Ⅱ)若|PM|,|MN|,|PN |成等比数列,求实数a 的值 24.选修4—5;不等式选讲.已知函数()|2||1|f x x a x =-+-. (Ⅰ)当a = 3时,求不等式()2f x ≥的解集;(Ⅱ)若()5f x x ≥-对x R ∀∈恒成立,求实数a 的取值范围.参考答案B AC C A CD CD A D B 13----16题 9 ()(]3,11,0⋃ π1016.①③④ 17题 )62cos(π+x π12118. 解:(1)设该同学在A 处投中为事件A,在B 处投中为事件B,则事件A,B 相互独立,且P(A)=0.25,()0.75P A =, P(B)= q,2()1P B q =-.根据分布列知: ξ=0时22()()()()0.75(1)P ABB P A P B P B q ==-=0.03,所以210.2q -=,q=0.2.(2)当ξ=2时, P 1=)()()(B B A P B B A P B B A B B A P +=+)()()()()()(B P B P A P B P B P A P +==0.75 q ( 21q -)×2=1.5 q ( 21q -)=0.24当ξ=3时, P 2 =22()()()()0.25(1)P ABB P A P B P B q ==-=0.01, 当ξ=4时, P 3=22()()()()0.75P ABB P A P B P B q ===0.48, 当ξ=5时, P 4=()()()P ABB AB P ABB P AB +=+222()()()()()0.25(1)0.25P A P B P B P A P B q q q =+=-+=0.24所以随机变量ξ的分布列为随机变量ξ的数学期望00.0320.2430.0140.4850.24 3.63E ξ=⨯+⨯+⨯+⨯+⨯= (3)该同学选择都在B 处投篮得分超过3分的概率为()P BBB BBB BB ++()()()P BBB P BBB P BB =++222222(1)0.896q q q =-+=;该同学选择(1)中方式投篮得分超过3分的概率为0.48+0.24=0.72.由此看来该同学选择都在B 处投篮得分超过3分的概率大. 19.(1)略(2)中点 (2)120o20.解析:(Ⅰ)∵2222223,4c a b e a a -=== ∴224,a b = (1分) 则椭圆方程为22221,4x y b b+=即22244.x y b +=设(,),N x y 则NQ ====当1y =-时,NQ4,=解得21,b =∴24a =,椭圆方程是2214x y += (4分) (Ⅱ)设1122(,),(,),(,),A x y B x y P x y AB 方程为(3),y k x =-由22(3),1,4y k x x y =-⎧⎪⎨+=⎪⎩ 整理得2222(14)243640k x k x k +-+-=.由24222416(91)(14)0k k k k ∆=--+>,得215k <.2212122224364,.1414k k x x x x k k-+=⋅=++ (6分) ∴1212(,)(,),OA OB x x y y t x y +=++=u u u r u u u r 则2122124()(14)k x x x t t k =+=+, []12122116()()6.(14)ky y y k x x k t t t k -=+=+-=+由点P 在椭圆上,得222222222(24)1444,(14)(14)k k t k t k +=++化简得22236(14)k t k =+① (8分)又由12AB x =-即221212(1)()43,k x x x x ⎡⎤++-⎣⎦<将12x x +,12x x 代入得2422222244(364)(1)3,(14)14k k k k k ⎡⎤-+-⎢⎥++⎣⎦< 化简,得22(81)(1613)0,k k -+> 则221810,8k k ->>, ∴21185k <<② (10分)由①,得22223699,1414k t k k==-++ 联立②,解得234,t <<∴2t --<<2.t < (12分)21. 解:(Ⅰ)()f x 的定义域为(0,)+∞, 当1a =时,()ln f x x x =-,11()1x f x-'=-=,所以()f x 在1x =处取得极小值1.(Ⅱ)1()ln ah x x a x x+=+-, 22221(1)(1)[(1)]()1a a x ax a x x a h x x x x x +--++-+'=--==①当10a +>时,即1a >-时,在(0,1)a +上()0h x '<,在(1,)a ++∞上()0h x '>, 所以()h x 在(0,1)a +上单调递减,在(1,)a ++∞上单调递增; ②当10a +≤,即1a ≤-时,在(0,)+∞上()0h x '>,所以,函数()h x 在(0,)+∞上单调递增.(III )在[]1,e 上存在一点0x ,使得0()f x <0()g x 成立,即 在[]1,e 上存在一点0x ,使得0()0h x <,即函数1()ln ah x x a x x+=+-在[]1,e 上的最小值小于零. 由(Ⅱ)可知①即1e a +≥,即e 1a ≥-时, ()h x 在[]1,e 上单调递减,所以()h x 的最小值为(e)h ,由1(e)e 0eah a +=+-<可得2e 1e 1a +>-, 因为2e 1e 1e 1+>--,所以2e 1e 1a +>-; ②当11a +≤,即0a ≤时, ()h x 在[]1,e 上单调递增,所以()h x 最小值为(1)h ,由(1)110h a =++<可得2a <-;③当11e a <+<,即0e 1a <<-时, 可得()h x 最小值为(1)h a +, 因为0ln(1)1a <+<,所以,0ln(1)a a a <+<故(1)2ln(1)2h a a a a +=+-+>此时,(1)0h a +<不成立.综上讨论可得所求a 的范围是:2e 1e 1a +>-或2a <-.22. (Ⅰ)证明:PE Q 切⊙O 于点E ,A BEP ∴∠=∠PC Q 平分A CPA BEP DPE ∴∠+∠=∠+∠,ECD A CPA EDC BEP DPE ∠=∠+∠∠=∠+∠Q ,,ECD EDC EC ED ∴∠=∠∴=(Ⅱ)证明:,,PDB EDC EDC ECD PDB PCE ∠=∠∠=∠∠=∠Q ,BPD EPC PBD ∴∠=∠∴∆∽PEC ∆,PE PCPB PD∴=同理PDE ∆∽PCA ∆,PC CAPD DE∴=PE CA PB DE ∴= ,CA PEDE CE CE PB=∴=Q23.24.解:(Ⅰ)3a =时,即求解2312x x -+-≥①当32x ≥时,23122x x x -+-≥∴≥ ②当312x <<时,3212220x x x x -+-≥∴-≥∴<③当1x ≤时,23212323x x x x -+-≥∴≤∴≤∴综上,解集为223x x x ⎧⎫≤≥⎨⎬⎩⎭或5'L(Ⅱ)即251x a x x -≥---恒成立 令62,1()514,1x x g x x x x -≥⎧=---=⎨<⎩则函数图象为32a∴≥,6a ∴≥10'La 432xyo。

相关文档
最新文档