材料力学第四章—弯曲应力
材料力学第04章(弯曲内力)-06讲解
下面几章中,将以对称弯曲为主,讨论梁的应力和变形计算。
§4–2 受弯杆件的简化 梁的支承条件与载荷情况一般都比较复杂,为了便于
分析计算,应进行必要的简化,抽象出计算简图。
1. 构件本身的简化
a
F
A
B
l
a
F
A
B
l
取梁的轴线来代替梁
2. 支座简化 (1)固定铰支座
固定铰
2个约束,1个自由度。
(2)可动铰支座
按照习惯,正值的剪力值绘于x轴上方,正的弯矩值绘于x 轴的下方(即绘于梁弯曲时受拉的一侧)。
(b)
FSx qx 0 x l
M x qx x qx2
22
(c)
0 x l
材料力学Ⅰ电子教案
(a) (b) (c)
第四章 弯曲应力
梁横截面上最大剪力值? 最大弯矩值? 位置?
固定铰
1个约束,2个自由度。
(3)固定端
Fx
固定端
3个约束,0个自由度。
M Fy
可动铰 可动铰
3. 梁的三种基本形式 (1)简支梁 A
F
B
F
F
F
(2)外伸梁
B A
q (3)悬臂梁
4. 载荷的简化
作用于梁上的载荷(包括支座反力)可简化为三种类型:
q
F
M
B A
集中力、集中力偶和分布载荷。
5. 静定梁与超静定梁 静定梁:由静力学方程可求出支反力,如上述三种基本形式
向上的外力产生
正弯矩
9kN
M
9kN
向下的外力产生
负弯矩
左:M=9×2-4×1=14kN.m
右:M=9×4-4×3-10×1=14kN.m
材料力学——弯曲应力
公式推导
线应变的变化规律 与纤维到中性层的距离成正比。
从横截面上看: 点离开中性轴越远,该点的线应变越大。
2、物理关系
当σ<σP时 虎克定律
E
E
y
y
弯曲正应力的分布规律 a、与点到中性轴的距离成正比; 沿截面高度 线性分布; b、沿截面宽度 均匀分布; c、正弯矩作用下, 上压下拉; d、危险点的位置, 离开中性轴最远处.
M max ymax IZ
x
67.5 103 90 103 5.832 105
104.17MPa
6、已知E=200GPa,C 截面的曲率半径ρ q=60KN/m A FAY B 1m C 3m FBY
M C 60kN m
I z 5.832 105 m 4
M EI
4 103 88 103 46.1MPa 6 7.64 10
9KN
4KN
C截面应力计算
A FA
M 1m
C 1m
B
1m FB
C截面应力分布 应用公式
t ,max
My Iz
2.5KNm
2.5 103 88 103 28.8MPa 6 7.64 10
Fb Fa
C截面: max M C Fb3 62.5 160 32 46.4MPa d W 3
zC
2
0.13
32
(5)结论 轮轴满足强度条件
一简支梁受力如图所示。已知 [ ] 12MPa ,空心圆截面 的内外径之比 一倍,比值不变,则载荷 q 可增加到多大? q=0.5KN/m A B
反映了截面的几何形状、尺寸对强度的影响
最大弯曲正应力计算公式
孙训方第五版材料力学(I)第四章
第四章 弯曲应力
Ⅱ. 剪力方程和弯矩方程· 剪力图和弯矩图 剪力方程和弯矩方程实际上是表示梁的横截面上的剪 力和弯矩随截面位置变化的函数式,它们分别表示剪力和 弯矩随截面位置的变化规律。显示这种变化规律的图形则
分别称为剪力图和弯矩图。
27
五邑大学土木建筑系:材料力学
第四章 弯曲应力
例题4-4
图a所示悬臂梁受集度为q的满布均布荷载
15
五邑大学土木建筑系:材料力学
第四章 弯曲应力
2. 此梁的约束力亦可将梁在中间铰C处拆开,先利用
CB段梁作为分离体求约束力FBy和AC段梁在中间铰C处作用
在CB段梁上的FCx和FCy,然后利用AC段梁作为分离体邑大学土木建筑系:材料力学
第四章 弯曲应力
3. 显然可见,作用在此梁CB段上的荷载是要通过中
9
五邑大学土木建筑系:材料力学
第四章 弯曲应力
(2) 梁的基本形式 悬臂梁
简支梁
外伸梁
10
五邑大学土木建筑系:材料力学
第四章 弯曲应力
(3) 静定梁和超静定梁
在竖直荷载作用下,图a,b,c所示梁的约束力均可由
平面力系的三个独立的平衡方程求出,称为静定梁。
图d,e所示梁及其约束力不能单独利用平衡方程确定,
36
Fa FB l
五邑大学土木建筑系:材料力学
第四章 弯曲应力
2. 列剪力方程和弯矩方程 此梁上的集中荷载将梁分隔成AC和CB两段,两段内
任意横截面同一侧梁段上的外力显然不同,可见这两段梁
的剪力方程和弯矩方程均不相同,因此需分段列出。
F
AC段梁
FS(x)
M x
37
Fb 0 x a FS x FA l Fb M x FA x x 0 x a l
梁的弯曲(应力、变形)
梁的弯曲类型
01
02
03
自由弯曲
梁在受到外力作用时,其 两端不受约束,可以自由 转动。
简支弯曲
梁在受到外力作用时,其 一端固定,另一端可以自 由转动。
固支弯曲
梁在受到外力作用时,其 两端均固定,不能发生转 动。
梁的弯曲应用场景
桥梁工程
桥梁中的梁常常需要进行弯曲变形以承受车辆和 行人等载荷。
稳定性。
06 梁的弯曲研究展望
CHAPTER
新材料的应用研究
高强度材料
随着材料科学的进步,高强度、轻质的新型 材料不断涌现,如碳纤维复合材料、钛合金 等。这些新材料在梁的弯曲研究中具有广阔 的应用前景,能够显著提高梁的承载能力和 刚度。
功能材料
新型功能材料如形状记忆合金、压电陶瓷等, 具有独特的力学性能和功能特性,为梁的弯 曲研究提供了新的思路和解决方案。
反复的弯曲变形可能导致疲劳裂纹的 产生和扩展,影响结构的疲劳寿命。
对使用功能的影响
弯曲变形可能导致结构使用功能受限 或影响正常使用。
04 梁的弯曲分析方法
CHAPTER
理论分析方法
弹性力学方法
01
基于弹性力学理论,通过数学公式推导梁在弯曲状态下的应力
和变形。
能量平衡法
02
利用能量守恒原理,通过计算梁在不同弯曲状态下的能量变化,
详细描述
常见的截面形状有矩形、工字形、圆形等。应根据梁的用途和受力情况选择合适的截面形状。例如, 对于承受较大弯矩的梁,采用工字形截面可以有效地提高梁的承载能力和稳定性。
支撑结构优化
总结词
支撑结构是影响梁弯曲性能的重要因素,合理的支撑结构可以提高梁的稳定性,减小梁 的变形。
弯曲应力-材料力学
弯曲应力的计算方法
根据材料力学的基本原理,弯曲应力 的计算公式为:σ=M/Wz,其中σ为 弯曲应力,M为弯曲力矩,Wz为截面 对中性轴的抗弯截面系数。
另外,根据不同的弯曲形式和受力情 况,还可以采用其他计算公式来求解 弯曲应力,如均布载荷下的简支梁、 集中载荷下的悬臂梁等。
弯曲应力的计算方法
根据材料力学的基本原理,弯曲应力 的计算公式为:σ=M/Wz,其中σ为 弯曲应力,M为弯曲力矩,Wz为截面 对中性轴的抗弯截面系数。
弯曲应力可能导致材料发生弯曲变形,影响结构的稳定性和精度。
弯曲应力对材料刚度的影响
弯曲应力对材料的刚度有影响,材料的刚度随着弯曲应力的增大而 减小。
弯曲应力与剪切应力的关系
1 2
剪切应力在弯曲应力中的作用
在弯曲过程中,剪切应力会在材料截面的边缘产 生,它与弯曲应力相互作用,影响梁的承载能力 和稳定性。
弯曲应力
材料的韧性和强度都会影响其弯曲应力的大小和分布。韧性好的材料能够更好地分散和 吸收弯曲应力,而高强度的材料则能够承受更大的弯曲应力而不发生断裂。
材料韧性、强度与弯曲应力的关系
韧性
是指材料在受到外力作用时吸收能量的能力。韧性好的材料能够吸收更多的能量,从而 减少因弯曲应力而产生的脆性断裂。
强度
剪切应力的分布
剪切应力在材料截面的边缘最大,向中性轴方向 逐渐减小。
3
剪切应力和弯曲应力的关系
剪切应力和弯曲应力共同作用,影响梁的承载能 力和稳定性,在设计时需要考虑两者的相互作用。
弯曲应力与剪切应力的关系
1 2
剪切应力在弯曲应力中的作用
在弯曲过程中,剪切应力会在材料截面的边缘产 生,它与弯曲应力相互作用,影响梁的承载能力 和稳定性。
材料力学:弯曲正应力
dA
M Z A y (dA)
y
FN dA
A
0
dA
1 dA
M y A z (dA) 0
M
Z
M Z A y (dA) M
y
O
ห้องสมุดไป่ตู้
x
dA
dA Z
因为该梁段是纯弯曲,因此 FN 和 My 均等于零, 而 Mz 就是 上横截面的弯矩 M 。
y
E E
变弯后的曲率半径。
在横截面上取距中性轴为 y 处 的纵向线 AB。 作 O2B1 与 O1A 平行。 O2B1 的长度为 y 。
O1
dx
y
O2
d
y
A
B
B1
d
AB1 为变形前 AB 的长度 B1B 为 AB1 的伸长量 AB1 为 A 点的纵向线应变。
l AB1 B1 B AB1 O1 O2 l
b m n
b
梁在加力前先在其侧面上画上一系列的横向线(如 mm ,nn 等) 以及横向线相垂直的一系列的纵向线 (如 aa ,bb 等) 。
m a
n a
m
m
b m n
b
梁变形后观察到的现象 (1)变形前相互平行的纵向直线(aa ,bb 等),变形后均为 圆弧线(a’a’ ,b’b’等 ),且靠上部的缩短靠下部的伸长。
=E
y
E
y E E
上式为横截面上 正应力 变化规律的表达式。
y E E
上式说明,横截面上任一点处
的正应力与该点到中性轴的距
Z
O
离 y 成正比 ; 在距中性轴为 y 的同一横线上
《材料力学弯曲》课件
弯曲应变通常用曲率半径的变化量与原始曲率半径的比值来表示,即 ΔR/R。其中 ΔR 是曲率半径的变化量,R 是原始曲率半径。
弯曲应变的计算
应变计法
通过在物体上粘贴应变片 ,并利用应变计测量应变 值,从而计算出弯曲应变 。
有限元分析法
利用有限元分析软件,建 立物体的有限元模型,通 过模拟受力情况下的变形 过程,计算出弯曲应变。
实验法
通过实验测试物体的弯曲 变形,利用相关公式计算 出弯曲应变。
弯曲应变的分布
应变分布图
通过绘制应变分布图,可以直观地了 解物体在弯曲变形过程中应变的大小 和分布情况。
应变集中
应变梯度
在弯曲变形过程中,物体不同部位上 的应变大小和方向可能不同,形成应 变梯度。
在物体受力点附近区域,应变会集中 增大,可能导致材料疲劳或断裂。
材料力学的重要性
总结词
材料力学在工程设计和实践中具有重要意义。
详细描述
在工程设计和实践中,材料力学是必不可少的学科之一。通过对材料力学的研究 ,工程师可以更好地理解材料的性能,预测其在各种工况下的行为,从而设计出 更加安全、可靠、经济的工程结构。
材料力学的基本假设
总结词
材料力学基于一系列基本假设,这些假设简 化了问题的复杂性,使得分析更为简便。
学习目标
01
02
03
04
掌握材料力学的基本概念、原 理和分析方法。
理解弯曲问题的特点和解决方 法。
能够运用所学知识解决简单的 弯曲问题。
培养分析问题和解决问题的能 力,提高力学素养。
02
材料力学基础
材料力学的定义
总结词
材料力学是一门研究材料在各种 力和力矩作用下的行为的学科。
材料力学课件 第4章弯曲应力作业
la
1.5 1
4-24 解:
z
h
A
b
第
4 章
max
M max Wz
3.5 10 3 3b3 2
[ ]
弯 曲
得:
应
M
力 作
b3
2 3.5 103 310106
61.56mm
业
题
F
F
C
D
B
a
a
㈩
3.5kN.m
4-31 解:Fs,max F , M max 0.9F
3934N
作
业 (2)梁的最大正应力:
题
max
M max ymax Iz
0.9F Iz
ymax
0.9 3934 0.075 2.8110 5
9.45MPa
4-34 解:
F
z
(1)当移动到梁中点处,h
A
B
弯矩最大:
b
1m
第
4 章
M max
Fl 4
401 4
10kN.m
4-1求指定截面上的剪力和弯矩
2
1
解: (a)求支座约束力
A
FA
FB
1 2
q0
2a
q0a
1
FA a
2
第
2a
4 章
Fs1
FA
1 2
q0 2
a
3 4
q0a
4a
q0
B
FB
弯
曲 应
M1
材料力学弯曲应力课件
材料力学弯曲应力课件曲在工程中的应用。
这是一个厂房,这是一个大梁,这个吊车可以在这个大梁上运动。
对于这样一个问题,我们可以把它简化成一个简支梁,这个吊车的移动呢可以处理成一个移动荷载。
那么对于这个移动荷载而言,它所导致的应力如何计算行车移动时,它的应力如何变化这就是本章的内容之一。
我们再看看这个图片,这是我们拍摄的汽车的下部分,大家注意一些这个部分,这是就是汽车的板簧,它的模型就是这个样子,可以看成好几个钢板的组合,那么,为什么要设计成这个样子呢它有什么优点呢这也是本章要解决的问题。
这是一个运动员,撑杆跳,对吧。
大家常常见到,利用这个杆的助力,人可以跳的更高。
我们可以处理成这样一个模型。
她在跳高的过程中,杆就发生了弯曲。
那么,这个时候,跳杆横截面上的应力和杆曲率半径有什么关系这个杆在什么情况下才满足强度要求大家看看这个场面,对于这个场面,我们截面几何性质那章提到过,都是薄壁杆件,那么薄壁杆件有弯曲正应力和弯曲切应力,专门有一小节来讲解它的弯曲切应力,看看这些切应力有什么特点如何避免薄壁杆件的强度失效这也是本章的问题这个大家都熟悉,著名的比萨斜塔。
对于这个结构,初步计算,我们可以简化成这样一个均质圆筒,那么它有哪些变形效应它的危险截面、危险点在哪儿如何计算其应力这也是本章可以解决的问题。
因此,本章所涉及的问题是比较广的。
基本内容那么本章到底需要同学们掌握哪些内容呢1、熟练张博横截面上弯曲正应力和弯曲切应力的分布规律,并能正确熟练的进行梁的强度分析。
2、熟悉提高梁强度的主要措施。
、正确理解薄壁杆件横截面上弯曲切应力的分布规律,了解弯曲中心的概念。
4、熟悉掌握梁在组合变形中的应力的计算方法。
第一、第四条是很重要的。
这是以后大家经常需要处理的问题。
基本概念平面弯曲首先我们来看弯曲正应力。
在这章具体内容介绍之前呢,我们先介绍一些概念。
关于梁弯曲的基本概念。
梁的平面弯曲。
什么是梁的平面弯曲呢这是一个悬臂梁,截面是矩形截面,那么这个横截面就有一个中心对称轴,整个梁就存在一个对称面,如果我们的所有的外荷载都作用在这个平面之内,比如外荷载是这样的,那么发生变形后,梁的轴线仍然在这个平面内,像这样的弯曲,我们就叫做平面弯曲。
材料力学习题及答案4-6
第四章弯曲应力判断图弯矩的值等于梁截面一侧所有外力的代数和。
()负弯矩说明该截面弯矩值很小,在设计时可以忽略不计。
()简支梁上向下的集中力对任意横截面均产生负弯矩。
()横截面两侧所有外力对该截面形心力矩的代数和就是该截面的弯矩值。
()梁的任一横截面上的弯矩在数值上等于该截面任一侧所有外力对该截面形心的力矩代数和。
()在计算指定截面的剪力时,左段梁向下的荷载产生负剪力。
()在计算指定截面的剪力时,右段梁向下的荷载产生正剪力。
()梁纯弯曲时中性轴一定通过截面的形心。
()简支梁上受一集中力偶作用,当集中力偶在不改变转向的条件下,在梁上任意移动时,弯矩图发生变化,剪力图不发生变化。
()图示梁弯矩图的B点是二次抛物线的顶点。
()图示梁段上集中力偶作用点两侧的弯矩直线一定平行。
()(M图)下列三种斜梁A截面的剪力均相同。
()l/2l/2l/2l/2l/2l/2下列三种斜梁B截面的剪力均相同。
()l/2l/2l/2l/2l/2l/2下列三种斜梁C截面的弯矩均相同。
()l/2l/2l/2l/2l/2l/2梁弯曲时的内力有剪力和弯矩,剪力的方向总是和横截面相切,而弯矩的作用面总是垂直于横截面。
()一端(或两端)向支座外伸出的简支梁叫做外伸梁。
()##√悬臂梁的一端固定,另一端为自由端。
()##√弯矩的作用面与梁的横截面垂直,它们的大小及正负由截面一侧的外力确定。
()##√弯曲时剪力对细长梁的强度影响很小,所以在一般工程计算中可忽略。
()##√图示,外伸梁BC段受力F作用而发生弯曲变形,AB段无外力而不产生弯曲变形()##×由于弯矩是垂直于横截面的内力的合力偶矩,所以弯矩必然在横截面上形成正应力。
()##√抗弯截面系数是反映梁横截面抵抗弯曲变形的一个几何量,它的大小与梁的材料有关。
()##×无论梁的截面形状如何,只要截面面积相等,则抗弯截面系数就相等。
()##×梁弯曲变形时,弯矩最大的截面一定是危险截面。
第四章 弯曲应力(II)-72学时-copy
梁发生平面弯
曲时,具有相
同曲率半径的
纵向纤维构成 一个纤维层。 同一纤维层内 各纤维的变形 性质相同。
中性层: 在平面弯曲变形中,纤维 长度不发生变化的一层纤 维称为中性层。
中性轴: 中性层与横截面的交线, 称为中性轴。
横截面上直角坐标系的建立: 取横截面上与中性轴垂直的轴为y轴,方 向以向下为正,以使伸长纤维处的y坐标为
* FS S Z IZb
•上述假设适用于任何具有对称轴的其它 薄壁截面梁。
y max
FS 2 A
4. 工字形截面梁横截面剪应力的计算 假设: •τ与横截面的侧边平行 •τ沿横截面的宽度均匀分布 腹板处的剪应力 翼缘处的剪应力
讨论:
•τ分布。
•翼缘处两个方向最大剪应力,沿翼缘向远 大于垂直翼缘向,但相对于腹板处的剪 应力属次要地位。
•τ沿梁高是二次分布的,且中性轴处取
得最大值。 y max
3 FS 2 A
ቤተ መጻሕፍቲ ባይዱ
翘曲现象: 变形后,构件的横截面由平面
变为曲面,成为翘曲。
2. 圆形截面梁横截面剪应力的计算
假设: 横截面上任意与中性轴平行的 线上各点τ的方向相交于y轴上 的一点K且各点剪应力沿y方向 的分量相等。
* FS S Z IZb
τ的存在:
使梁的横截面产生翘曲,平面假设不再成立。 使梁的纵向纤维间存在由剪切而引起的相互 作用力。 横向荷载会引起附近纤维间的相互挤压, 单向应力假定不再成立,单向胡克定律 不再适用。
结果:无法在《材料力学》范围内,
得到σ的计算公式。 弹性力学的理论可以证明: 对于浅梁(跨长:梁高≥5),使用纯弯 曲的应力计算公式计算横力弯曲梁横截 面的正应力,结果精度满足工程要求。
材料力学(给排水)第四章-弯曲应力
弯曲应力的计算方法
1 梁弯曲公式
常用于计算直梁受弯时的应力分布和最大应 力值。
2 等强度法
常用于计算不同形状截面的梁受弯时的应力 分布。
弯曲应力的分布特点
1 最大应力出现在最远离中性轴的位置
2 中性轴附近应力应变
2 下表面拉应变
3 中性面应变为0
弯曲应力的应力-应变关系
1 胡克定律
当弯曲应力小于材料的弹性极限时,应力与 应变成正比关系。
2 弹性模量
描述了材料在受力时的变形程度。
材料力学中常见的弯曲应力计算问题
1 悬臂梁的最大弯曲应力计算
2 叠木梁的弯曲应力分布计算
3 榀形梁的弯曲应力计算
弯曲应力的工程应用及实例
1 建筑结构设计
弯曲应力的分析和计算对 于设计坚固和稳定的建筑 结构至关重要。
2 桥梁工程
弯曲应力的研究可以帮助 工程师设计和评估桥梁的 结构和安全性。
3 车辆设计
在汽车和飞机等交通工具 的设计过程中,弯曲应力 是一个重要的考虑因素。
材料力学(给排水)第四章 -弯曲应力
在材料力学中,弯曲应力是一个重要的概念,它涉及到物体在受力时的弯曲 情况。本章将介绍弯曲应力的定义、计算方法、分布特点、应变状态、应力应变关系以及其工程应用及实例。
弯曲应力的定义
1 弯曲应力
当一个物体受到外力作用而发生弯曲时,物体内部会出现垂直于弯曲面的应力,这种应 力即为弯曲应力。
材料力学(土木类)第四章 弯曲应力(4)
* N1
′ d FS = F
* FS S z τ 1′ = I zδ
FS h δ FS τ 1 = τ 1′ = × δη − = × η (h − δ ) I z δ 2 2 2 I z
δ
τ1max τmax O
τmax
FS τ1 = × η (h − δ ) 2I z
* FS S z FS τ= = I zb 2I z
h2 2 −y 4
τmax
O
(1) τ沿截面高度按二次抛物 线规律变化; 线规律变化; (2) 同一横截面上的最大切应 在中性轴处( 力τmax在中性轴处 y=0 ); ; (3)上下边缘处(y=±h/2), 上下边缘处( ± 上下边缘处 , 切应力为零。 切应力为零。
σ max ≤ [σ ]
G
τ τ
σ σ
H
梁上任意点G 平面应力状态, 梁上任意点 和H →平面应力状态, 平面应力状态 若这种应力状态的点需校核强度时不 能分别按正应力和切应力进行, 能分别按正应力和切应力进行,而必 须考虑两者的共同作用(强度理论)。 须考虑两者的共同作用(强度理论)。
ql2/8
横力弯曲梁的强度条件: 横力弯曲梁的强度条件:
Ⅱ、梁的切应力强度条件 发生在F 所在截面的中性轴处, 一般τmax发生在 S ,max所在截面的中性轴处,该位置 σ=0。不计挤压,则τmax所在点处于纯剪切应力状态。 所在点处于纯剪切应力 纯剪切应力状态 。不计挤压,
q E m G mH l/2 C D l F E
τmax
F
τmax
梁的切应力强度条件为
τ
y b
FS1 = ∫ τ d A ≥ 0.9 FS
材料力学课件第四章 弯曲内力
活动铰
固定端
P
二、载荷类型:
分布载荷
集中力 集中力偶
三、静定梁基本形式:
1、简支梁 2、外伸梁 3、悬臂梁
P
A B
§4-3 剪力和弯矩
A
P1 a x Ⅰ Ⅰ L FA a P1 Q M FB P2 B a
梁横截面上的内力分量:
剪力Q:分布内力系主矢,方 向平行于横截面 弯矩M:分布内力系主矩,作 用在纵向截面内
b
b
a
b
Q(b) Q(a) q( x)dx
a
同理,由
dM dQ dx
M (b) M ( a ) Qdx
a
b
梁任意两截面间的剪力改变量等于这两截面之间的梁段 上的分布载荷之合力; 梁任意两截面间的弯矩改变量等于这两截面之间的梁段 上的剪力图的面积
例:已知梁Q图,求梁上载荷图与M图 解: 斜率: 0—50 = +2q
M
P
P b L P a L
四、画 Q、M 图
P
+
x
例2、求Q、M方程,画Q、M图 A B x C qL L 解:一、求反力 FA=FB = 2 FA FB 二、建坐标系 qL FQ 三、列方程 2 x qL —qx qL Q(x)= FA—qx = 2 2 2 qL x M M(x)= FA x —(qx)2 8 x qLx — qx2 = 2 2 四、作图 M(0)= 0 M(L)= 0 L) qL2 (令M′(x)=0) M 2 = ( 8
剪力方程 弯矩方程
Q= Q(x) M = M(x)
Q
x
二、剪力、弯矩图 剪力、弯矩沿梁轴变化规律的图线
M
x
材料力学第4章第5章
X1 A 1m 35kN
15
20
kN
20
10kN m
4m
2.5
FS x1 20kN
X2
B
0 x1 1
25kN
M x1 20x1
0 x1 1
FS x2 25 10x2
25
M
x2
25
0
x2
x2
10
4
x22 2
0 x2 4
20 31.25
kNm
例4-11 外伸梁AB承受荷载如图所示,作该梁旳内
AC段 :
BC段 :
3) 作剪力图与弯矩图
例4-7 如图所示外伸梁,F、a已知,试作其 、Mz图。
解:1) 求约束反力并验算
2) 分段列内力方程 CA段 :
DB段 :
AD段 : 3)画出梁旳剪力图和弯矩图
例4-8 如图所示简支梁承受均布载荷作用,载荷集度为 q,梁 旳长度为l,试作梁旳 、Mz图解。: 1) 求约束反力并验算
叠加法作弯矩图
F
q
F
q
A
BA
+
B
A
B
l
l
l
F
F+qL
1/2qL2+FL
FL
qL
1/2qL2
第五章 弯曲应力
§1 纯弯曲
F
F
a
a
A
B
F F
Fa
纯弯曲:梁受力弯曲
F
后,如其横截面上只有弯
矩而无剪力,这种弯曲称
为纯弯曲。
AC段: 剪力弯曲
CB段:
纯弯曲
pure bending
试验现象:
F
mn
《材料力学》第四章 弯曲内力.ppt
FRA 14.5kN, FRB 3.5kN,
(2)用截面法求剪力和弯矩方程。 分CA,AD,DB三段。
CA段
FS x qx 3x 0 x 2m
M x 1 qx2 3 x2 0 x 2m
§4.1 弯曲的概念和实例
杆的轴线将由原来的直线弯成 曲线,这种变形称为弯曲。受 力后以弯曲变形为主的杆件通 常称为梁。
受力特点:外力作用线垂直于杆 的轴线,或在通过杆轴的平面内 受到外力偶作用。 变形特点:直杆的横截面绕横向 轴转动,轴线将由原来的直线弯 成曲线。
全梁有对称面,并且 所有外力都作用在对称面 内的情形。在这种情形下 梁的轴线弯成位于对称平 面内的一条平面曲线,这 种弯曲属于平面弯曲。
FS
n n1 dx
FS+dFS
上述微分关系在绘制FS、M图中的应用结论。
1.梁上某段无载荷时,则该段FS图为水平线, M图为斜直线。
2.某段为均布载荷时,则FS图为斜直线,M图为抛物线。
dFS
剪力图
dx
d 2M dx2
弯矩图
分布载荷q<0时 0 递减(\) 0 上凸 (╭╮)
分布载荷q>0时 0 递增(/)
0 下凸 (╰╯)
3.在集中力P作用处,剪力图为突变(突变值等于集中力P), 弯矩图为折角。
4.在集中力偶m作用处,弯矩图有突变(突变值等于力偶矩m), 剪力图没影响。
5.某截面FS=0,则在该截面弯矩图取极值。
二、用载荷集度、剪力和弯矩间的关系画剪力图与弯矩图
例4.6 外伸梁及其所受载荷如图a示,作梁的剪力图和弯矩图。
材料力学__弯曲正应力及其强度条件
a
⊕
qa 2
2
ql 2 qla qa 2 8 2 2
qa 2 2
取有效值
a 0.207 l
二.梁的正应力强度条件
强度条件:
等直梁强度条件
max
max
M max Wz
对于铸铁等脆性材料,抗拉和抗压能力不同,所以有许用 弯曲拉应力和许用弯曲压应力两个数值。强度条件为:
由 max 1 max 2 [ ] 得:
例13:矩形截面梁当横截面的高度增加一倍,宽度
减小一半时,从正应力强度条件考虑,该梁 的承载能力将是原来的多少倍?
解: 由公式
max
M max M max 2 Wz bh 6
可以看出, 该梁的承载能力将是原来的 2 倍。
例14:主梁AB,跨度为L,采用加副梁
由
M max AB M max CD
得
Pa P (l a ) 4 4
l a 2
例15:图示梁的截面为T形,材料的许用拉
应力和许用压应力分别为[σ+]和[ σ-], 则 y1 和 y2 的最佳比值为多少? (C为截面形心)
P
y1
y2
C
z
解:
max
M max y1 [ ] Iz
2 3 3
M max max Wz
2b A1 b
a
A2
A3
d
a
例18:图示铸铁梁,许用拉应力[σ+ ]=30MPa,
许用压应力[σ- ]=60MPa,Iz=7.63×10-6m4,试 校核此梁的强度。
A
4 kN 52 B C D 88 1m 1m 1m