3.3.2简单的线性规划问题2

合集下载

3.3.2-简单的线性规划问题-课件2(人教A版必修5)

3.3.2-简单的线性规划问题-课件2(人教A版必修5)

课前自主学习 课堂讲练互动 课后智能提升
说明:求线性目标函数在约束条件下的最值问 题的求解步骤是:
①作图——画出约束条件(不等式组)所确定的 平面区域和目标函数所表示的平行直线系中的任意 一条直线l.
②平移——将直线l平行移动,以确定最优解所 对应的点的位置.
③求值——解有关的方程组求出最优解的坐 标,再代入目标函数,求出目标函数的最值.
课前自主学习 课堂讲练互动 课后智能提升
解:设投资人分别用 x 万元、y 万元投资甲、 乙两个项目,
x+y≤10, 由题意知0x.≥3x0+,0.1y≤1.8,
y≥0.
目标函数 z=x+0.5y. 上述不等式组表示的平面区域如图所示,阴影 部分(含边界)即可行域.
课前自主学习 课堂讲练互动 课后智能提升
解方程组x7+ x+2y1=0y=3,17, 得 M(1,1).
故当 x=1,y=1 时,zmin=8.
课前自主学习 课堂讲练互动 课后智能提升
方法点评:在确定 z 的最小值时,要抓住 z 的几 何意义,即 y=-35x+5z.
图解法是解决线性规划问题的有效方法.其关键 在于平移直线ax+by=0时,看它经过哪个点(或哪些 点)时最先接触可行域和最后离开可行域,则这样的点 即为最优解,再注意到它的几何意义,从而确定是取 得最大值还是最小值.
答案:0
课前自主学习 课堂讲练互动 课后智能提升
4.在如图所示的区域内, z=-x+y的最大值为 ________.
解析:因为z为直线z=-x+y的纵截距,所以要 使z最大,只要纵截距最大就可以,当直线过(0,2)点 时,直线的纵截距最大,最大值为2.
答案:2
课前自主学习 课堂讲练互动 课后智能提升

3.3.2简单的线性规划问题

3.3.2简单的线性规划问题
变式:若生产一件甲产品获利1万元, 生产一件乙产品获利3万元,采用哪种 生产安排利润最大?
变式:求利润z=x+3y的最大值. y
x2y 8
44
x y
16 12
x
0
y 0
4 N(2,3) 3
0
4
8x
y 1 x4
2
y1x z
33
zmax 2 3 3 11
名称 约束条件 线性约束条件 目标函数 线性目标函数
(3)掌握对一些实际优化问题建立线性规划数学 模型并运用图解法进行求解的基本方法和步骤 .
学习重点:线性规划的图解法
学习难点:寻求线性规划问题的最优解
一、导学提示,自主学习
2.本节主要题型 题型一 求线性目标函数的最值 题型二 线性规划的实际应用 3.自主学习教材P87-P91 3. 3.2简单的线性规划问题
经理,问各截这两种钢板多少张既能满足顾客要求又使所用钢板张
数最少。
分 析
解:设需截第一种钢板x张,第二种钢板y张,
2x+y≥15,
钢板总张数为Z则,

x+2y≥18,

x+3y≥27, x≥0
:
y≥0
标目函数: z=x+y (x,y N)
约束条件:
{ 2x+y≥15, x+2y≥18, x+3y≥27, x≥0,
33
3
在y轴上的截距为 z 的直线, 3
当点P在可允许的取值范围变化时,
求截距 z 的最值,即可得z的最值. 3
问题:求利润z=2x+3y的最大值. y
x2y 8
44
x y
16 12

3.3.2简单的线性规划问题(2)

3.3.2简单的线性规划问题(2)
3.3.2简单的线性规划问题(2)
学生明确内容
学习目标
1.从实际情境中抽象出一些简单的二元线性规划问题,并加以解决;
2.体会线性规划的基本思想,借助几何直观解决一些简单的线性规划问题.
重点难点
教学重点:利用图解法求得线性规划问题的最优解
教学难点:把实际问题转化成线性规划问题,并给出解答,解决难点的关键是根据实际问题中的已知条件,找出约束条件和目标函数,利用图解法求得最优解
(1)“斜率型”目标函数(为常数).最优解为点()与可行域上的点的斜率的最值;
(2)“两点间距离型”目Байду номын сангаас函数(为常数).最优解为点()与可行域上的点之间的距离的平方的最值;
(3)“点到直线距离型”目标函数(为常数,且不同时为零).最优解为可行域上的点到直线的距离的最值.
师生共同完成内容
1、问题梳理2、归纳小结
3.已知实数满足约束条件则目标函数的最大值为______________
4.设变量满足约束条件则目标函数的最小值为______________
5.若不等式组表示的平面区域是一个三角形,则的取值范围是().
A.B.C.D.或
小结:课本习题中出现的都是“截距型”目标函数(不同时为零),即线性目标函数,高考中除了出现“截距型”目标函数的情况外,还有非线性目标函数:
易混淆知识点
实际问题中最优整数解的问题
教师编制内容
生成问题预习提纲
课前预习:
1、已知变量满足约束条件,设,取点(3,2)可求得,取点(5,2)可求得,取点(1,1)可求得
取点(0,0)可求得,点(3,2)叫做_________、点(0,0)叫做_____________,点(5,2)和点(1,1)__________________。

线性规划2(用)

线性规划2(用)
由图可以看出,当直线经过可行域上的点M时, 截距2z最大,即z最大。 容易求得M点的坐标为 (2,2),则Zmax=3
y
故生产甲种、乙种肥料各 2车皮,能够产生最大利润, 最大利润为3万元。
M x
o
例题分析
例2 要将两种大小不同规格的钢板截成A、B、C三种规格, 每张钢板可同时截得三种规格的小钢板的块数如下表所示 :
3
(x,y)叫做可行解。 由所有可行解组成 可行解 的集合叫做可行域。
o
4
8
使目标函数取得最大值或最小值的可行解叫 做这个问题的最优解。
x
例1、一个化肥厂生产甲、乙两种混合肥料,生产1车 皮(火车的货用车厢称为车皮)甲种肥料的主要原料是 磷酸盐4t、硝酸盐18t;生产1车皮乙种肥料需要的主 要原料是磷酸盐1t、硝酸盐15t。现库存磷酸盐10t、 硝酸盐66t,在此基础上生产这两种混合肥料。列出满 足生产条件的数学关系式,并画出相应的平面区域。 并计算生产甲、乙两种肥料各多少车皮,能够产生最 大的利润? 解:设x、y分别为计划生产甲、乙两种混合 肥料的车皮数,于是满足以下条件: y
1.若区域“顶点”处恰好为整点,那么它就是最优解;
(在包括边界的情况下) 2.若区域“顶点”不是整点或不包括边界时,应先求出 该点坐标,并计算目标函数值Z,然后在可行域内适当 放缩目标函数值,使它为整数,且与Z最接近,在这条 对应的直线中,取可行域内整点,如果没有整点,继续 放缩,直至取到整点为止。 3.在可行域内找整数解,一般采用平移找解法,即打网 格法、找整点、平移直线、找出整数最优解
解线性规划应用问题的一般步骤:
1)理清题意,列出表格: 2)设好变元并列出不等式组和目标函数 3)由二元一次不等式表示的平面区域作出可行域; 4)在可行域内求目标函数的最优解 5)还原成实际问题 (准确作图,准确计算)

《3.3.2简单的线性规划问题》教案

《3.3.2简单的线性规划问题》教案

简单的线性规划学习内容总析线性规划位于不等式和直线方程的结合点上,是培养学生转化能力和熟练运用数形结合能力的重要内容。

这一节的知识内容形成了一条结构紧密的知识链条:以二元一次不等式(组)表示的平面区域为基础,根据实际问题中的已知条件,找出约束条件和目标函数,利用图解法解决简单的线性规划问题。

学情总析本节内容是在学习了直线方程、二元一次不等式(组)所表示的平面区域的基础上,强调应用转化思想和数形结合思想来解决线性规划问题。

三维教学目标知识与技能:①了解线性规划的意义以及约束条件、线性目标函数、可行域、最优解等相关的基本概念;②在巩固二元一次不等式(组)所表示的平面区域的基础上,能从实际优化问题中抽象出约束条件和目标函数,并依据目标函数的几何含义直观地运用图解法求出最优解;③掌握对一些实际优化问题建立线性规划数学模型并运用图解法进行求解的基本方法和步骤。

过程与方法:①培养学生的形象思维能力、绘图能力和探究能力;②强化数形结合的数学思想方法;③提高学生构建(不等关系)数学模型、解决简单实际优化问题的能力。

情感、态度与价值观:①在感受现实生产、生活中的各种优化、决策问题中体验应用数学的快乐;②在运用求解线性规划问题的图解方法中,感受动态几何的魅力;③在探究性练习中,感受多角度思考、探究问题并收获探究成果的乐趣。

教学重点及应对策略1、教学重点:根据实际优化问题准确建立目标函数,并依据目标函数的几何含义直观地运用图解法求出最优解;2、应对策略:将求目标函数最值问题转化为经过可行域的直线在y轴上的截距的最值问题,然后借助直线方程的知识进行解决。

教学难点及应对策略1、教学难点:①借助线性目标函数的几何含义准确理解线性目标函数在y轴上的截距与z最值之间的关系;②用数学语言表述运用图解法求解线性规划问题的过程。

2、应对策略:在理论解释的同时,可用动画进行演示辅助理解。

教学过程设计。

26-简单的线性规划问题(2)

26-简单的线性规划问题(2)

3.3.2简单的线性规划问题(2)教材分析线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法,广泛地应用于军事作战、经济分析、经营管理和工程技术等方面.简单的线性规划指的是目标函数含两个自变量的线性规划,其最优解可以用数形结合方法求出.简单的线性规划关心的是两类问题:一是在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务;二是给定一项任务,如何合理规划,能以最少的人力、物力、资金等资源来完成. 教科书利用生产安排的具体实例,介绍了线性规划问题的图解法,引出线性规划等概念,最后举例说明了简单的二元线性规划在饮食营养搭配中的应用.本节内容蕴含了丰富的数学思想方法,突出体现了优化思想、数形结合思想和化归思想.课时分配本课时是简单的线性规划问题的第二课时,主要解决的是线性规划的应用问题.教学目标重点: 掌握约束条件、目标函数、可行解、可行域、最优解等基本概念.难点:理解实际问题的能力,渗透化归、数形结合的数学思想.知识点:图解法求线性目标函数的最大值、最小值.能力点:函数与方程、数形结合、等价转化、分类讨论的数学思想的运用.教育点:结合教学内容培养学生学习数学的兴趣和“用数学”的意识.自主探究点:培养学生观察、联想、作图和理解实际问题的能力.考试点:线性规划问题的图解法;寻求有实际背景的线性规划问题的最优解.易错易混点:线性规划问题和非线性规划问题的区分于解决.拓展点:非线性规划问题.教具准备实物投影机和粉笔课堂模式诱思探究一、复习引入简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域作出可行域;(3)在可行域内求目标函数的最优解.【设计意图】通过复习进一步熟悉解决简单线性规划问题的具体操作程序.二、探究新知请同学们通过完成练习来掌握图解法解决简单的线性规划问题.(1)求2z x y =+的最大值,使式中的x y 、满足约束条件,1,1.y x x y y ≤⎧⎪+≤⎨⎪≥-⎩(2)求35z x y =+的最大值和最小值,使式中的x y 、满足约束条件5315,1,5 3.x y y x x y +≤⎧⎪≤+⎨⎪-≥⎩解:不等式组表示的平面区域如右图所示: 当0,0x y ==时,20z x y =+=, 点(0,0)在直线020l x y +=:上.作一组与直线0l 平行的直线2,l x y t t R +=∈:.可知在经过不等式组所表示的公共区域内的点且平行于l 的直线中,以经过点(2,1)A -的直线所对应的t 最大.所以max 2213z =⨯-=.(2)求35z x y =+的最大值和最小值,使式中的x y 、满足约束条件5315,1,5 3.x y y x x y +≤⎧⎪≤+⎨⎪-≥⎩解:不等式组所表示的平面区域如右图所示.从图示可知直线35x y t +=在经过不等式组所表示的公共区域内的点时,以经过点(2,1)--的直线所对应的t 最小,以经过点917(,)88的直线所对应的t 最大.所以min 3(2)5(1)11z =⨯-+⨯-=-, max 917351488z =⨯+⨯=. 【设计意图】通过反思总结,加强对“数形结合”数学思想的认识,形成学生良好的认知结构.三、运用新知【例1】某工厂生产甲、乙两种产品.已知生产甲种产品1t ,需耗A 种矿石10t 、B 种矿石5t 、煤4t ;生产乙种产品需耗A 种矿石4t 、B 种矿石4t 、煤9t.每1t 甲种产品的利润是600元,每1t 乙种产品的利润是1000元.工厂在生产这两种产品的计划中要求消耗A 种矿石不超过360t 、B 种矿石不超过200t 、煤不超过300t ,甲、乙两种产品应各生产多少(精确到0.1t ),能使利润总额达到最大?解:设生产甲、乙两种产品分别为xt yt 、,利润总额为z 元,那么104300,54200,49360,0,0;x y x y x y x y +≤⎧⎪+≤⎪⎪+≤⎨⎪≥⎪≥⎪⎩目标函数为6001000z x y =+.作出以上不等式组所表示的平面区域,即可行域. 作直线6001000=0l x y +:, 即直线5=0l x y +:3,把直线l 向右上方平移至1l 的位置时,直线经过可行域上的点M ,且与原点距离最大,此时6001000z x y =+取最大值.解方程组54200,49360,x y x y +=⎧⎨+=⎩得M 的坐标为3601000(,)2929. 答:应生产甲产品约12.4t ,乙产品34.4t ,能使利润总额达到最大.【设计意图】通过此题检测学生对已学知识的掌握情况,进一步培养学生的运算能力和准确作图的能力.【例2】在上一节例4中(课本85页例4),若生产1车皮甲种肥料,产生的利润为10000元,若生产1车皮乙种肥料,产生的利润为5000元,那么分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?生:若设生产x 车皮甲种肥料,y 车皮乙种肥料,能够产生的利润z 万元.目标函数0.5z x y =+,可行域如右图:把0.5z x y =+变形为22y x z =-+,得到斜率为2-,在y 轴上截距为2z ,随z 变化的一组平行直线.由图可以看出,当直线22y x z =-+经过可行域上的点M 时,截距2z 最大,即z 最大. 解方程组⎩⎨⎧=+=+104,661518y x y x 得点(2,2)M ,因此当2,2x y ==时,0.5z x y =+取最大值,最大值为3.由此可见,生产甲、乙两种肥料各2车皮,能够产生最大的利润,最大利润为3万元.【设计意图】利用学生感兴趣的例子激发学习动机,通过一道完整的简单线性规划问题,让学生掌握解决简单线性规划问题的基本步骤,培养学生的数学建模意识.同时进一步加深对图解法的认识.四、课堂小结用图解法解决简单的线性规划问题的基本步骤:(1)首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域). (2)设0t ,画出直线0l .(3)观察、分析,平移直线0l ,从而找到最优解.(4)最后求得目标函数的最大值及最小值.以实际问题为背景的线性规划问题其求解的格式与步骤: (1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域作出可行域; (3)在可行域内求目标函数的最优解. 当然也要注意问题的实际意义【设计意图】通过总结,培养学生数学交流和表达的能力,养成及时总结的良好习惯,并将所学知识纳入已有的认知结构.五、布置作业课本第93页习题3.3 B 组1、2、3.拓展作业:某工厂用A 、B 两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A 配件耗时1h ,每生产一件乙产品使用4个B 配件耗时2h ,该厂每天最多可从配件厂获得16个A 配件和12个B 配件,按每天工作8h 计算,该厂所有可能的日生产安排是多少?【设计意图】检测题主要考查学生对本节课重点知识的掌握情况,检查学生能否运用所学知识解决问题的能力;拓展作业的设置是为了教会学生怎样利用资料进行数学学习,同时让学生了解网络是自主学习和拓展知识面的一个重要平台,这是本节内容的一个提高与拓展.六、反思提升1. 让学生参与教学的全过程,成为课堂教学的主体和学习的主人,而教师时刻关注学生的活动过程,不时给予引导,及时纠偏的做法是明显的亮点.2.本节课的不足之处是由于整堂课课堂运算量较大,画图用时较多,后续的内容未能完成.七、板书设计。

人教版高中数学必修5第三章不等式《3.3.2 简单的线性规划问题》教学PPT

人教版高中数学必修5第三章不等式《3.3.2 简单的线性规划问题》教学PPT
在线性约束条件下,求目标函数最小值.
思考5:作可行域,使目标函数取最小
值的最优解是什么?目标函数的最小值
为多少? 28x+21y=0
7x+14y=6
y
A最最优小解值1(671.,
4 7
),
7x 7 x

7y 5 14 y 6
14x 7 y 6
x 0, y 0
x=4
思考3:图中阴影区域内任意一点的坐
标都代表一种生产安排吗?
y
x 2y 8
0 x 4 0 y 3 x N , y N O
y=3 x
x+2y=8 x=4
阴影区域内的整点(坐标为整数的点) 代表所有可能的日生产安排.
思考4:若生产一件甲产品获利2万元, 生产一件乙产品获利3万元,设生产甲、 乙两种产品的总利润为z元,那么z与x、 y的关系是什么?
3.3.2 简单的线性规划问题
第一课时
问题提出
1.“直线定界,特殊点定域”是画二元 一次不等式表示的平面区域的操作要点, 怎样画二元一次不等式组表示的平面区 域?
2.在现实生产、生活中,经常会遇到资 源利用、人力调配、生产安排等问题, 如何利用数学知识、方法解决这些问题, 是我们需要研究的课题.
探究(一):线性规划的实例分析 t
5730
【背景材料】某工厂用A、B两种配件 生产甲、乙两种产品,每生产一件甲 产品使用4个A配件耗时1h;每生产一 件乙产品使用4个B配件耗时2h.该厂每 天最多可从配件厂获得16个A配件和12 个B配件,每天工作时间按8h计算.
思考1:设每天分别生产甲、乙两种产 品x、y件,则该厂所有可能的日生产 安排应满足的基本条件是什么?
2x y 15

第一部分 第三章 3.3 第二课时 简单的线性规划问题

第一部分  第三章  3.3  第二课时 简单的线性规划问题
返回
5.某公司租赁甲、乙两种设备生产A、B两类产品,甲种设 备每天能生产A类产品5件和B类产品10件,乙种设备每 天能生产A类产品6件和B类产品20件.已知设备甲每天 的租赁费为200元,设备乙每天的租赁费为300元,现该 公司至少要生产A类产品50件,B类产品140件,所需租 赁费最少为__________元.
3.3
第 三 章
二元 一次 不等 式组
第二 课时
简单
不 等 式
与简 单的 线性 规划
的线 性规 划问 题
问题
理解教材新知 把握热点考向 应用创新演练
考点一 考点二 考点三
返回
返回
第二课时 简单的线性规划问题 返回
返回
现在是信息时代,广告可以给公司带来效益.某公 司计划在甲、乙两个电视台做总时间不超过300分钟的 广告,广告总费用不超过9万元,甲、乙两个电视台的 收费标准分别为500元/分钟和200元/分钟. 问题1:设在甲、乙两个电视台做广告的时间分别为x分 钟,y分钟,试ห้องสมุดไป่ตู้出满足条件的不等关系.
答案:9
返回
2.在如下图所示的可行域内(阴影部分且包括边界), 目标函数z=x-y,则使z取得最小值的点的坐标 为____________.
解析:对直线y=x+b进行平移,注意b越大,z越 小故,四个点中,过点A(1,1)时 z取最小值0. 答案:(1,1)
返回
返回
[例 2]
0≤x≤1 (2011·苏 北 四 市 三 调 )在 约 束 条 件 0≤y≤2 2y-x≥1
返回
[一点通] 解答线性规划应用题的一般步骤: (1)审题——仔细阅读,对关键部分进行“精读”,准 确理解题意,明确有哪些限制条件,起关键作用的变量 有哪些,由于线性规划应用题中的量较多,为了理顺题 目中量与量之间的关系,有时可借助表格来理顺. (2)转化——设元.写出约束条件和目标函数,从而 将实际问题转化为数学上的线性规划问题. (3)求解——解这个纯数学的线性规划问题. (4)作答——就应用题提出的问题作出回答.

高中数学 第三章 不等式 3.3.2 简单的线性规划问题常

高中数学 第三章 不等式 3.3.2 简单的线性规划问题常

线性规划的常见题型及其解法线性规划问题是高考的重点,而线性规划问题具有代数和几何的双重形式,多与函数、平面向量、数列、三角、概率、解析几何等问题交叉渗透,自然地融合在一起,使数学问题的解答变得更加新颖别致.归纳起来常见的命题探究角度有: 1.求线性目标函数的最值. 2.求非线性目标函数的最值. 3.求线性规划中的参数. 4.线性规划的实际应用.本节主要讲解线性规划的常见基础类题型.【母题一】已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥3,x -y ≥-1,2x -y ≤3,则目标函数z =2x +3y 的取值范围为( )A .[7,23]B .[8,23]C .[7,8]D .[7,25]求这类目标函数的最值常将函数z =ax +by 转化为直线的斜截式:y =-ab x +z b,通过求直线的截距z b的最值,间接求出z 的最值.【解析】画出不等式组⎩⎪⎨⎪⎧x +y ≥3,x -y ≥-1,2x -y ≤3,表示的平面区域如图中阴影部分所示,由目标函数z =2x +3y 得y =-23x +z 3,平移直线y =-23x 知在点B 处目标函数取到最小值,解方程组⎩⎪⎨⎪⎧x +y =3,2x -y =3,得⎩⎪⎨⎪⎧ x =2,y =1,所以B (2,1),z min =2×2+3×1=7,在点A 处目标函数取到最大值,解方程组⎩⎪⎨⎪⎧x -y =-1,2x -y =3,得⎩⎪⎨⎪⎧x =4,y =5,所以A (4,5),z max =2×4+3×5=23.【答案】A【母题二】变量x ,y 满足⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y -25≤0,x ≥1,(1)设z =y2x -1,求z 的最小值;(2)设z =x 2+y 2,求z 的取值范围;(3)设z =x 2+y 2+6x -4y +13,求z 的取值范围.点(x ,y )在不等式组表示的平面区域内,y 2x -1=12·y -0⎝ ⎛⎭⎪⎫x -12表示点(x ,y )和⎝ ⎛⎭⎪⎫12,0连线的斜率;x 2+y 2表示点(x ,y )和原点距离的平方;x 2+y 2+6x -4y +13=(x +3)2+(y -2)2表示点(x ,y )和点(-3,2)的距离的平方.【解析】(1)由约束条件⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y -25≤0,x ≥1,作出(x ,y )的可行域如图所示.由⎩⎪⎨⎪⎧x =1,3x +5y -25=0,解得A ⎝⎛⎭⎪⎫1,225.由⎩⎪⎨⎪⎧ x =1,x -4y +3=0,解得C (1,1).由⎩⎪⎨⎪⎧x -4y +3=0,3x +5y -25=0,解得B (5,2).∵z =y 2x -1=y -0x -12×12∴z 的值即是可行域中的点与⎝ ⎛⎭⎪⎫12,0连线的斜率,观察图形可知z min =2-05-12×12=29. (2)z =x 2+y 2的几何意义是可行域上的点到原点O 的距离的平方. 结合图形可知,可行域上的点到原点的距离中,d min =|OC |=2,d max =|OB |=29.∴2≤z ≤29.(3)z =x 2+y 2+6x -4y +13=(x +3)2+(y -2)2的几何意义是: 可行域上的点到点(-3,2)的距离的平方. 结合图形可知,可行域上的点到(-3,2)的距离中,d min =1-(-3)=4,d max =-3-2+-2=8∴16≤z ≤64.1.求目标函数的最值的一般步骤为:一画二移三求.其关键是准确作出可行域,理解目标函数的意义. 2.常见的目标函数有: (1)截距型:形如z =ax +by .求这类目标函数的最值常将函数z =ax +by 转化为直线的斜截式:y =-ab x +z b ,通过求直线的截距z b的最值,间接求出z 的最值.(2)距离型:形一:如z =(x -a )2+(y -b )2,z =x 2+y 2+Dx +Ey +F ,此类目标函数常转化为点(x ,y )与定点的距离;形二:z =(x -a )2+(y -b )2,z =x 2+y 2+Dx +Ey +F ,此类目标函数常转化为点(x ,y )与定点的距离的平方.(3)斜率型:形如z =y x ,z =ay -b cx -d ,z =y cx -d ,z =ay -bx,此类目标函数常转化为点(x ,y )与定点所在直线的斜率.【提醒】 注意转化的等价性及几何意义.角度一:求线性目标函数的最值1.(2014·新课标全国Ⅱ卷)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -7≤0,x -3y +1≤0,3x -y -5≥0,则z =2x -y 的最大值为( )A .10B .8C .3D .2【解析】作出可行域如图中阴影部分所示,由z =2x -y 得y =2x -z ,作出直线y =2x ,平移使之经过可行域,观察可知,当直线经过点A (5,2)时,对应的z 值最大.故z max =2×5-2=8.【答案】B2.(2015·高考天津卷)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2≥0,x -y +3≥0,2x +y -3≤0,则目标函数z =x +6y 的最大值为( )A .3B .4C .18D .40【解析】作出约束条件对应的平面区域如图所示 ,当目标函数经过点(0,3)时,z 取得最大值18.【答案】C3.(2013·高考陕西卷)若点(x ,y )位于曲线y =|x |与y =2所围成的封闭区域,则2x -y 的最小值为( )A .-6B .-2C .0D .2【解析】如图,曲线y =|x |与y =2所围成的封闭区域如图中阴影部分,令z =2x -y ,则y =2x -z ,作直线y =2x ,在封闭区域内平行移动直线y =2x ,当经过点(-2,2)时,z 取得最小值,此时z =2×(-2)-2=-6.【答案】A角度二:求非线性目标的最值4.(2013·高考山东卷)在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x -y -2≥0,x +2y -1≥0,3x +y -8≤0所表示的区域上一动点,则直线OM 斜率的最小值为( )A .2B .1C .-13D .-12【解析】已知的不等式组表示的平面区域如图中阴影所示,显然当点M 与点A 重合时直线OM 的斜率最小,由直线方程x +2y -1=0和3x +y -8=0,解得A (3,-1),故OM 斜率的最小值为-13.【解析】C5.已知实数x ,y 满足⎩⎨⎧0≤x ≤2,y ≤2,x ≤2y ,则z =2x +y -1x -1的取值范围 .【解】由不等式组画出可行域如图中阴影部分所示,目标函数z =2x +y -1x -1=2+y +1x -1的取值范围可转化为点(x ,y )与(1,-1)所在直线的斜率加上2的取值范围,由图形知,A 点坐标为(2,1),则点(1,-1)与(2,1)所在直线的斜率为22+2,点(0,0)与(1,-1)所在直线的斜率为-1,所以z 的取值范围为(-∞,1]∪[22+4,+∞).【答案】(-∞,1]∪[22+4,+∞)6.(2015·郑州质检)设实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +y ≤2y -x ≤2,y ≥1,则x 2+y 2的取值范围是( )A .[1,2]B .[1,4]C .[2,2]D .[2,4]【解析】如图所示,不等式组表示的平面区域是△ABC 的内部(含边界),x 2+y 2表示的是此区域内的点(x ,y )到原点距离的平方.从图中可知最短距离为原点到直线BC 的距离,其值为1;最远的距离为AO ,其值为2,故x 2+y 2的取值范围是[1,4].【答案】B7.(2013·高考北京卷)设D 为不等式组⎩⎪⎨⎪⎧x ≥0,2x -y ≤0,x +y -3≤0所表示的平面区域,区域D 上的点与点(1,0)之间的距离的最小值为________.【解析】作出可行域,如图中阴影部分所示,则根据图形可知,点B (1,0)到直线2x -y =0的距离最小,d =|2×1-0|22+1=255,故最小距离为255. 【答案】2558.设不等式组⎩⎪⎨⎪⎧x ≥1,x -2y +3≥0,y ≥x所表示的平面区域是Ω1,平面区域Ω2与Ω1关于直线3x -4y -9=0对称.对于Ω1中的任意点A 与Ω2中的任意点B ,|AB |的最小值等于( )A .285B .4C .125D .2【解析】不等式组⎩⎪⎨⎪⎧x ≥1x -2y +3≥0y ≥x,所表示的平面区域如图所示,解方程组⎩⎪⎨⎪⎧x =1y =x ,得⎩⎪⎨⎪⎧x =1y =1.点A (1,1)到直线3x -4y -9=0的距离d =|3-4-9|5=2,则|AB |的最小值为4.【答案】B角度三:求线性规划中的参数9.若不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域被直线y =kx +43分为面积相等的两部分,则k 的值是( )A .73 B .37 C .43D .34【解析】不等式组表示的平面区域如图所示.由于直线y =kx +43过定点⎝ ⎛⎭⎪⎫0,43.因此只有直线过AB 中点时,直线y =kx +43能平分平面区域.因为A (1,1),B (0,4),所以AB 中点D ⎝ ⎛⎭⎪⎫12,52.当y =kx +43过点⎝ ⎛⎭⎪⎫12,52时,52=k 2+43,所以k =73.【解析】A10.(2014·高考北京卷)若x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0,且z =y -x 的最小值为-4,则k 的值为( )A .2B .-2C .12D .-12【解析】D 作出线性约束条件⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0的可行域.当k >0时,如图①所示,此时可行域为y 轴上方、直线x +y -2=0的右上方、直线kx -y +2=0的右下方的区域,显然此时z =y -x 无最小值.当k <-1时,z =y -x 取得最小值2;当k =-1时,z =y -x 取得最小值-2,均不符合题意.当-1<k <0时,如图②所示,此时可行域为点A (2,0),B ⎝ ⎛⎭⎪⎫-2k,0,C (0,2)所围成的三角形区域,当直线z =y -x 经过点B ⎝ ⎛⎭⎪⎫-2k ,0时,有最小值,即-⎝ ⎛⎭⎪⎫-2k =-4⇒k =-12.【答案】D11.(2014·高考安徽卷)x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为( )A .12或-1 B .2或12C .2或1D .2或-1【解析】法一:由题中条件画出可行域如图中阴影部分所示,可知A (0,2),B (2,0),C (-2,-2),则z A =2,z B =-2a ,z C =2a -2,要使目标函数取得最大值的最优解不唯一,只要z A =z B >z C 或z A =z C >z B 或z B=z C >z A ,解得a =-1或a =2.法二:目标函数z =y -ax 可化为y =ax +z ,令l 0:y =ax ,平移l 0,则当l 0∥AB 或l 0∥AC 时符合题意,故a =-1或a =2.【答案】D12.在约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤s ,y +2x ≤4.下,当3≤s ≤5时,目标函数z =3x +2y 的最大值的取值范围是( )A .[6,15]B .[7,15]C .[6,8]D .[7,8]【解析】 由⎩⎪⎨⎪⎧x +y =s ,y +2x =4,得⎩⎪⎨⎪⎧x =4-s ,y =2s -4,,则交点为B (4-s,2s -4),y +2x =4与x 轴的交点为A (2,0),与y 轴的交点为C ′(0,4),x +y =s 与y 轴的交点为C (0,s ).作出当s =3和s =5时约束条件表示的平面区域,即可行域,如图(1)(2)中阴影部分所示.(1) (2)当3≤s <4时,可行域是四边形OABC 及其内部,此时,7≤z max <8; 当4≤s ≤5时,可行域是△OAC ′及其内部,此时,z max =8. 综上所述,可得目标函数z =3x +2y 的最大值的取值范围是[7,8]. 【答案】D13.(2015·通化一模)设x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,x 3a +y 4a ≤1,若z =x +2y +3x +1的最小值为32,则a 的值为________.【解析】∵x +2y +3x +1=1+y +x +1,而y +1x +1表示过点(x ,y )与(-1,-1)连线的斜率,易知a >0, ∴可作出可行域,由题意知y +1x +1的最小值是14,即⎝ ⎛⎭⎪⎫y +1x +1min =0--3a --=13a +1=14⇒a =1.【答案】1角度四:线性规划的实际应用14.A ,B 两种规格的产品需要在甲、乙两台机器上各自加工一道工序才能成为成品.已知A 产品需要在甲机器上加工3小时,在乙机器上加工1小时;B 产品需要在甲机器上加工1小时,在乙机器上加工3小时.在一个工作日内,甲机器至多只能使用11小时,乙机器至多只能使用9小时.A 产品每件利润300元,B 产品每件利润400元,则这两台机器在一个工作日内创造的最大利润是________元.【解析】 设生产A 产品x 件,B 产品y 件,则x ,y 满足约束条件⎩⎪⎨⎪⎧3x +y ≤11,x +3y ≤9,x ∈N ,y ∈N ,生产利润为z=300x +400y .画出可行域,如图中阴影部分(包含边界)内的整点,显然z =300x +400y 在点A 处取得最大值,由方程组⎩⎪⎨⎪⎧3x +y =11,x +3y =9,解得⎩⎪⎨⎪⎧x =3,y =2,则z max =300×3+400×2=1 700.故最大利润是1 700元.【答案】1 70015.某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5分钟,生产一个骑兵需7分钟,生产一个伞兵需4分钟,已知总生产时间不超过10小时.若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.(1)试用每天生产的卫兵个数x 与骑兵个数y 表示每天的利润w (元); (2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?【解析】(1)依题意每天生产的伞兵个数为100-x -y ,所以利润w =5x +6y +3(100-x -y )=2x +3y +300.(2)约束条件为⎩⎪⎨⎪⎧5x +7y +-x -y ,100-x -y ≥0,x ≥0,y ≥0,x ,y ∈N .整理得⎩⎪⎨⎪⎧x +3y ≤200,x +y ≤100,x ≥0,y ≥0,x ,y ∈N .目标函数为w =2x +3y +300. 作出可行域.如图所示:初始直线l 0:2x +3y =0,平移初始直线经过点A 时,w有最大值.由⎩⎪⎨⎪⎧x +3y =200,x +y =100,得⎩⎪⎨⎪⎧x =50,y =50.最优解为A (50,50),所以w max =550元.所以每天生产卫兵50个,骑兵50个,伞兵0个时利润最大,最大利润为550元.一、选择题1.已知点(-3,-1)和点(4,-6)在直线3x -2y -a =0的两侧,则a 的取值范围为( ) A .(-24,7)B .(-7,24)C .(-∞,-7)∪(24,+∞)D .(-∞,-24)∪(7,+∞)【解析】根据题意知(-9+2-a )·(12+12-a )<0.即(a +7)(a -24)<0,解得-7<a <24. 【答案】B2.(2015·临沂检测)若x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,x +2y ≥3,2x +y ≤3,则z =x -y 的最小值是( )A .-3B .0C .32D .3【解析】作出不等式组⎩⎪⎨⎪⎧x ≥0,x +2y ≥3,2x +y ≤3表示的可行域(如图所示的△ABC 的边界及内部).平移直线z =x -y ,易知当直线z =x -y 经过点C (0,3)时,目标函数z =x -y 取得最小值,即z min =-3.【答案】A3.(2015·泉州质检)已知O 为坐标原点,A (1,2),点P 的坐标(x ,y )满足约束条件⎩⎪⎨⎪⎧x +|y |≤1,x ≥0,则z =OA →·OP →的最大值为( )A .-2B .-1C .1D .2【解析】如图作可行域,z =OA →·OP →=x +2y ,显然在B (0,1)处z max =2.【答案】D4.已知实数x ,y 满足:⎩⎪⎨⎪⎧x -2y +1≥0,x <2,x +y -1≥0,则z =2x -2y -1的取值范围是( )A .⎣⎢⎡⎦⎥⎤53,5B .[0,5]C .⎣⎢⎡⎭⎪⎫53,5D .⎣⎢⎡⎭⎪⎫-53,5 【解析】画出不等式组所表示的区域,如图阴影部分所示,作直线l :2x -2y -1=0,平移l 可知2×13-2×23-1≤z <2×2-2×(-1)-1,即z 的取值范围是⎣⎢⎡⎭⎪⎫-53,5.【答案】D5.如果点(1,b )在两条平行直线6x -8y +1=0和3x -4y +5=0之间,则b 应取的整数值为( ) A .2 B .1 C .3D .0【解析】由题意知(6-8b +1)(3-4b +5)<0,即⎝ ⎛⎭⎪⎫b -78(b -2)<0,∴78<b <2,∴b 应取的整数为1.【答案】B6.(2014·郑州模拟)已知正三角形ABC 的顶点A (1,1),B (1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z =-x +y 的取值范围是( )A .(1-3,2)B .(0,2)C .(3-1,2)D .(0,1+3)【解析】如图,根据题意得C (1+3,2).作直线-x +y =0,并向左上或右下平移,过点B (1,3)和C (1+3,2)时,z =-x +y 取范围的边界值,即-(1+3)+2<z <-1+3,∴z =-x +y 的取值范围是(1-3,2).【答案】A7.(2014·成都二诊)在平面直角坐标系xOy 中,P 为不等式组⎩⎪⎨⎪⎧y ≤1,x +y -2≥0,x -y -1≤0,所表示的平面区域上一动点,则直线OP 斜率的最大值为( )A .2B .13C .12D .1【解析】作出可行域如图所示,当点P 位于⎩⎪⎨⎪⎧x +y =2,y =1,的交点(1,1)时,(k OP )max =1.【答案】D8.在平面直角坐标系xOy 中,已知平面区域A ={(x ,y )|x +y ≤1,且x ≥0,y ≥0},则平面区域B ={(x +y ,x -y )|(x ,y )∈A }的面积为( )A .2B .1C .12D .14【解析】不等式⎩⎪⎨⎪⎧x +y ≤1,x ≥0,y ≥0,所表示的可行域如图所示,设a =x +y ,b =x -y ,则此两目标函数的范围分别为a =x +y ∈[0,1],b =x -y ∈[-1,1],又a +b =2x ∈[0,2],a -b =2y ∈[0,2],∴点坐标(x +y ,x -y ),即点(a ,b )满足约束条件⎩⎪⎨⎪⎧0≤a ≤1,-1≤b ≤1,0≤a +b ≤2,0≤a -b ≤2,作出该不等式组所表示的可行域如图所示,由图示可得该可行域为一等腰直角三角形,其面积S =12×2×1=1.【答案】B9.设x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y -2≤0,x -y ≥0,x ≥0,y ≥0,若目标函数z =ax +by (a >0,b >0)的最大值为4,则ab 的取值范围是( )A .(0,4)B .(0,4]C .[4,+∞)D .(4,+∞)【解析】作出不等式组表示的区域如图阴影部分所示,由图可知,z =ax +by (a >0,b >0)过点A (1,1)时取最大值,∴a +b =4,ab ≤⎝⎛⎭⎪⎫a +b 22=4,∵a >0,b >0,∴ab ∈(0,4].【答案】B10.设动点P (x ,y )在区域Ω:⎩⎪⎨⎪⎧x ≥0,y ≥x ,x +y ≤4上,过点P 任作直线l ,设直线l 与区域Ω的公共部分为线段AB ,则以AB 为直径的圆的面积的最大值为( )A .πB .2πC .3πD .4π【解析】作出不等式组所表示的可行域如图中阴影部分所示,则根据图形可知,以AB 为直径的圆的面积的最大值S =π×⎝ ⎛⎭⎪⎫422=4π.【答案】D11.(2015·东北三校联考)变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≥-1,x -y ≥2,3x +y ≤14,若使z =ax +y 取得最大值的最优解有无穷多个,则实数a 的取值集合是( )A .{-3,0}B .{3,-1}C .{0,1}D .{-3,0,1}【解析】作出不等式组所表示的平面区域,如图所示.易知直线z =ax +y 与x -y =2或3x +y =14平行时取得最大值的最优解有无穷多个,即-a =1或-a =-3,∴a =-1或a =3.【答案】B12.(2014·新课标全国Ⅰ卷)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥a ,x -y ≤-1,且z =x +ay 的最小值为7,则a=( )A .-5B .3C .-5或3D .5或-3【解析】法一:联立方程⎩⎪⎨⎪⎧x +y =a ,x -y =-1,解得⎩⎪⎨⎪⎧x =a -12,y =a +12,代入x +ay =7中,解得a =3或-5,当a =-5时,z =x +ay 的最大值是7;当a =3时,z =x +ay 的最小值是7.法二:先画出可行域,然后根据图形结合选项求解.当a =-5时,作出不等式组表示的可行域,如图(1)(阴影部分).图(1) 图(2)由⎩⎪⎨⎪⎧ x -y =-1,x +y =-5得交点A (-3,-2),则目标函数z =x -5y 过A 点时取得最大值.z max =-3-5×(-2)=7,不满足题意,排除A ,C 选项.当a =3时,作出不等式组表示的可行域,如图(2)(阴影部分).由⎩⎪⎨⎪⎧x -y =-1,x +y =3得交点B (1,2),则目标函数z =x +3y 过B 点时取得最小值.z min =1+3×2=7,满足题意.【答案】B13.若a ≥0,b ≥0,且当⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤1时,恒有ax +by ≤1,则由点P (a ,b )所确定的平面区域的面积是( )A .12 B .π4C .1D .π2【解析】因为ax +by ≤1恒成立,则当x =0时,by ≤1恒成立,可得y ≤1b(b ≠0)恒成立,所以0≤b ≤1;同理0≤a ≤1.所以由点P (a ,b )所确定的平面区域是一个边长为1的正方形,面积为1.【答案】C14.(2013·高考北京卷)设关于x ,y 的不等式组⎩⎪⎨⎪⎧2x -y +1>0,x +m <0,y -m >0表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2.求得m 的取值范围是( )A .⎝⎛⎭⎪⎫-∞,43B .⎝ ⎛⎭⎪⎫-∞,13C .⎝⎛⎭⎪⎫-∞,-23D .⎝⎛⎭⎪⎫-∞,-53【解析】当m ≥0时,若平面区域存在,则平面区域内的点在第二象限,平面区域内不可能存在点P (x 0,y 0)满足x 0-2y 0=2,因此m <0.如图所示的阴影部分为不等式组表示的平面区域.要使可行域内包含y =12x -1上的点,只需可行域边界点(-m ,m )在直线y =12x -1的下方即可,即m<-12m -1,解得m <-23.【答案】C15.设不等式组⎩⎪⎨⎪⎧x +y -11≥0,3x -y +3≥0,5x -3y +9≤0表示的平面区域为D .若指数函数y =a x的图象上存在区域D 上的点,则a 的取值范围是 ( )A .(1,3]B .[2,3]C .(1,2]D .[3,+∞)【解析】平面区域D 如图所示.要使指数函数y =a x的图象上存在区域D 上的点,所以1<a ≤3. 【解析】A16.(2014·高考福建卷)已知圆C :(x -a )2+(y -b )2=1,平面区域Ω:⎩⎪⎨⎪⎧x +y -7≤0,x -y +3≥0,y ≥0.若圆心C∈Ω,且圆C 与x 轴相切,则a 2+b 2的最大值为( )A .5B .29C .37D .49【解析】由已知得平面区域Ω为△MNP 内部及边界.∵圆C 与x 轴相切,∴b =1.显然当圆心C 位于直线y =1与x +y -7=0的交点(6,1)处时,a max =6.∴a 2+b 2的最大值为62+12=37.【解析】C17.在平面直角坐标系中,若不等式组⎩⎪⎨⎪⎧y ≥0,y ≤x ,y ≤k x --1表示一个三角形区域,则实数k 的取值范围是( )A .(-∞,-1)B .(1,+∞)C .(-1,1)D .(-∞,-1)∪(1,+∞)【解析】已知直线y =k (x -1)-1过定点(1,-1),画出不等式组表示的可行域示意图,如图所示. 当直线y =k (x -1)-1位于y =-x 和x =1两条虚线之间时,表示的是一个三角形区域.所以直线y =k (x -1)-1的斜率的范围为(-∞,-1),即实数k 的取值范围是(-∞,-1).当直线y =k (x -1)-1与y =x 平行时不能形成三角形,不平行时,由题意可得k >1时,也可形成三角形,综上可知k <-1或k >1.【答案】D18.(2016·武邑中学期中)已知实数x ,y 满足⎩⎪⎨⎪⎧x -2y +1≥0,|x |-y -1≤0,则z =2x +y 的最大值为( )A .4B .6C .8D .10【解析】区域如图所示,目标函数z =2x +y 在点A (3,2)处取得最大值,最大值为8.【答案】C19.(2016·衡水中学期末)当变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≥x x +3y ≤4x ≥m时,z =x -3y 的最大值为8,则实数m 的值是( )A .-4B .-3C .-2D .-1【解析】画出可行域如图所示,目标函数z =x -3y 变形为y =x 3-z3,当直线过点C 时,z 取到最大值,又C (m ,m ),所以8=m -3m ,解得m =-4. 【答案】A20.(2016·湖州质检)已知O 为坐标原点,A ,B 两点的坐标均满足不等式组⎩⎪⎨⎪⎧x -3y +1≤0,x +y -3≤0,x -1≥0,则tan∠AOB 的最大值等于( )A .94 B .47 C .34D .12【解析】如图阴影部分为不等式组表示的平面区域,观察图形可知当A 为(1,2),B 为(2,1)时,tan ∠AOB 取得最大值,此时由于tan α=k BO =12,tan β=k AO =2,故tan ∠AOB =tan (β-α)=tan β-tan α1+tan βtan α=2-121+2×12=34. 【解析】C 二、填空题21.(2014·高考安徽卷)不等式组 ⎩⎪⎨⎪⎧x +y -2≥0,x +2y -4≤0,x +3y -2≥0表示的平面区域的面积为________.【解析】作出不等式组表示的平面区域如图中阴影部分所示,可知S △ABC =12×2×(2+2)=4.【答案】422.(2014·高考浙江卷)若实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x ≥1,则x +y 的取值范围是________.【解析】作出可行域,如图,作直线x +y =0,向右上平移,过点B 时,x +y 取得最小值,过点A 时取得最大值.由B (1,0),A (2,1)得(x +y )min =1,(x +y )max =3.所以1≤x +y ≤3. 【答案】[1,3]23.(2015·重庆一诊)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y -4≤0,x -3y +4≤0,则目标函数z =3x -y 的最大值为____.【解析】根据约束条件作出可行域,如图中阴影部分所示,∵z =3x -y ,∴y =3x -z ,当该直线经过点A (2,2)时,z 取得最大值,即z max =3×2-2=4.【答案】424.已知实数x ,y 满足⎩⎪⎨⎪⎧x +y -1≤0,x -y +1≥0,y ≥-1,则w =x 2+y 2-4x -4y +8的最小值为________.【解析】目标函数w =x 2+y 2-4x -4y +8=(x -2)2+(y -2)2,其几何意义是点(2,2)与可行域内的点的距离的平方.由实数x ,y 所满足的不等式组作出可行域如图中阴影部分所示,由图可知,点(2,2)到直线x +y -1=0的距离为其到可行域内点的距离的最小值,又|2+2-1|2=322,所以w min =92.【答案】9225.在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x +3y -6≤0,x +y -2≥0,y ≥0所表示的区域上一动点,则|OM |的最小值是________.【解析】如图所示阴影部分为可行域,数形结合可知,原点O 到直线x +y -2=0的垂线段长是|OM |的最小值,∴|OM |min =|-2|12+12=2.【答案】 226.(2016·汉中二模)某企业生产甲、乙两种产品,已知生产每吨甲产品要用水3吨、煤2吨;生产每吨乙产品要用水1吨、煤3吨.销售每吨甲产品可获得利润5万元,销售每吨乙产品可获得利润3万元,若该企业在一个生产周期内消耗水不超过13吨,煤不超过18吨,则该企业可获得的最大利润是______万元.【解析】设生产甲产品x 吨,生产乙产品y 吨,由题意知⎩⎪⎨⎪⎧x ≥0,y ≥0,3x +y ≤13,2x +3y ≤18,利润z =5x +3y ,作出可行域如图中阴影部分所示,求出可行域边界上各端点的坐标,经验证知当x=3,y=4,即生产甲产品3吨,乙产品4吨时可获得最大利润27万元.【答案】2727.某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表:________亩.【解析】设黄瓜和韭菜的种植面积分别为x亩,y亩,总利润为z万元,则目标函数为z=(0.55×4x-1.2x)+(0.3×6y-0.9y)=x+0.9y.线性约束条件为⎩⎪⎨⎪⎧x+y≤50,1.2x+0.9y≤54,x≥0,y≥0,即⎩⎪⎨⎪⎧x+y≤50,4x+3y≤180,x≥0,y≥0.画出可行域,如图所示.作出直线l0:x+0.9y=0,向上平移至过点A时,z取得最大值,由⎩⎪⎨⎪⎧x+y=50,4x+3y=180,解得A(30,20).【答案】3028.(2015·日照调研)若A为不等式组⎩⎪⎨⎪⎧x≤0,y≥0,y-x≤2表示的平面区域,则当a从-2连续变化到1时,动直线x +y =a 扫过A 中的那部分区域的面积为________.【解析】平面区域A 如图所示,所求面积为S =12×2×2-12×22×22=2-14=74.【答案】7429.(2014·高考浙江卷)当实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x ≥1时,1≤ax +y ≤4恒成立,则实数a 的取值范围是________.【解析】画可行域如图所示,设目标函数z =ax +y ,即y =-ax +z ,要使1≤z ≤4恒成立,则a >0,数形结合知,满足⎩⎪⎨⎪⎧1≤2a +1≤4,1≤a ≤4即可,解得1≤a ≤32.所以a 的取值范围是1≤a ≤32.【答案】⎣⎢⎡⎦⎥⎤1,3230.(2015·石家庄二检)已知动点P (x ,y )在正六边形的阴影部分(含边界)内运动,如图,正六边形的边长为2,若使目标函数z =kx +y (k >0)取得最大值的最优解有无穷多个,则k 的值为________.【解析】由目标函数z =kx +y (k >0)取得最大值的最优解有无穷多个,结合图形分析可知,直线kx +y =0的倾斜角为120°,于是有-k =tan 120°=-3,所以k =3.【答案】 331.设m >1,在约束条件⎩⎪⎨⎪⎧y ≥x ,y ≤mx ,x +y ≤1下,目标函数z =x +my 的最大值小于2,则m 的取值范围 .【解析】变换目标函数为y =-1m x +z m ,由于m >1,所以-1<-1m<0,不等式组表示的平面区域如图中的阴影部分所示,根据目标函数的几何意义,只有直线y =-1m x +zm在y 轴上的截距最大时,目标函数取得最大值.显然在点A 处取得最大值,由y =mx ,x +y =1,得A ⎝ ⎛⎭⎪⎫11+m ,m 1+m ,所以目标函数的最大值z max=11+m +m 21+m<2,所以m 2-2m -1<0,解得1-2<m <1+2,故m 的取值范围是(1,1+2).【答案】(1,1+2)32.已知实数x ,y 满足⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m ,若目标函数z =x -y 的最小值的取值范围是[-2,-1],则目标函数的最大值的取值范围是________.【解析】不等式组表示的可行域如图中阴影部分(包括边界)所示,目标函数可变形为y =x -z ,当z 最小时,直线y =x -z 在y 轴上的截距最大.当z 的最小值为-1,即直线为y =x +1时,联立方程⎩⎪⎨⎪⎧y =x +1,y =2x -1,可得此时点A 的坐标为(2,3),此时m =2+3=5;当z 的最小值为-2,即直线为y =x +2时,联立方程⎩⎪⎨⎪⎧y =x +2,y =2x -1,可得此时点A 的坐标是(3,5),此时m =3+5=8.故m 的取值范围是[5,8].目标函数z =x -y 的最大值在点B (m -1,1)处取得,即z max =m -1-1=m -2,故目标函数的最大值的取值范围是[3,6].【答案】[3,6]33.(2013·高考广东卷)给定区域D :⎩⎪⎨⎪⎧x +4y ≥4,x +y ≤4,x ≥0.令点集T ={(x 0,y 0)∈D |x 0,y 0∈Z ,(x 0,y 0)是z =x +y 在D 上取得最大值或最小值的点},则T 中的点共确定________条不同的直线.【解析】线性区域为图中阴影部分,取得最小值时点为(0,1),最大值时点为(0,4),(1,3),(2,2),(3,1),(4,0),点(0,1)与(0,4),(1,3),(2,2),(3,1),(4,0)中的任何一个点都可以构成一条直线,共有5条 ,又(0,4),(1,3),(2,2),(3,1),(4,0)都在直线x +y =4上,故T 中的点共确定6条不同的直线. 【答案】634.(2011·湖北改编)已知向量a =(x +z,3),b =(2,y -z ),且a ⊥b .若x ,y 满足不等式|x |+|y |≤1,则z 的取值范围为__________.【解析】∵a =(x +z,3),b =(2,y -z ),且a ⊥b ,∴a ·b =2(x +z )+3(y -z )=0,即2x +3y -z =0.又|x |+|y |≤1表示的区域为图中阴影部分,∴当2x +3y -z =0过点B (0,-1)时,z min =-3,当2x +3y -z =0过点A (0,1)时,z min =3. ∴z ∈[-3,3]. 【答案】[-3,3]35.(2016·衡水中学模拟)已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +4y -13≤02y -x +1≥0x +y -4≥0且有无穷多个点(x ,y )使目标函数z =x +my 取得最小值,则m =________.【解析】作出线性约束条件表示的平面区域,如图中阴影部分所示.若m =0,则z =x ,目标函数z =x +my 取得最小值的最优解只有一个,不符合题意. 若m ≠0,则目标函数z =x +my 可看作斜率为-1m 的动直线y =-1m x +zm,若m <0,则-1m>0,由数形结合知,使目标函数z =x +my 取得最小值的最优解不可能有无穷多个;若m >0,则-1m<0,数形结合可知,当动直线与直线AB 重合时,有无穷多个点(x ,y )在线段AB 上,使目标函数z =x +my 取得最小值,即-1m=-1,则m =1.综上可知,m =1. 【答案】1。

高中数学五第三章3.3.2 简单的线性规划问题(第2课时)【教案】

高中数学五第三章3.3.2 简单的线性规划问题(第2课时)【教案】

3。

3。

2简单线性规划问题(第2课时)一、教学目标1.知识目标:1、在应用图解法解题的过程中培养学生的观察能力、理解能力;2、在变式训练的过程中,培养学生的分析能力、探索能力;3、会用线性规划的理论和方法解决一些较简单的实际问题。

2.能力目标: 1、了解线性规划的意义,了解线性约束条件、线性目标函数、可行解、可行域和最优解等概念;2、理解线性规划问题的图解法;3、会利用图解法求线性目标函数的最优解;4、让学生体验数学来源于生活,服务于生活,体验应用数学的快乐。

3.情感目标: 1、培养学生学习数学的兴趣和“用数学"的意识,激励学生创新,鼓励学生讨论,学会沟通,培养团结协作精神;2、让学生学会用运动观点观察事物,了解事物之间从一般到特殊、从特殊到一般的辨证关系,渗透辩证唯物主义认识论的思想。

二、教学重点与难点:重点:1、画可行域;在可行域内,用图解法准确求得线性规划问题的最优;2、解经历从实际情境中抽象出简单的线性规划问题的过程,提高数学建模能力和意识。

难点:1、建立数学模型.把实际问题转化为线性规划问题;2、在可行域内,用图解法准确求得线性规划问题的最优解.三、教学模式与教法、学法教学模式:采用探究教学法,通过“猜想,验证,证明”来探究二元一次不等式(组)表示的平面区域,并通过讲练结合巩固所学的知识。

使用多媒体辅助教学.教师的教法:利用多媒体辅助教学,突出活动的组织设计与方法的引导.“抓三线”,即(一)知识技能线(二)过程与方法线(三)能力线。

“抓两点”,即一抓学生情感和思维的兴奋点,二抓知识的切入点.学法:突出探究、发现与交流.学法设计:引导学生通过主动参与、合作探讨学习知.来源:学四、教学过程:数学教学是数学活动的教学。

因此,我将整个教学过程分为以下六个教学环节:1、创设情境,提出问题;2、分析问题,解决问题,3、复习概念,回顾方法;4、实际应用,强化思想;5、自主思考,归纳总结;6、布置作业,巩固提高._五、教学过程设计①画出了可行域后用闪动的方式加以强调;②拖动直线l 平移,平移过程中可以显示z 值的大小变化。

3.3.2简单线性规划(1_2)--上课用

3.3.2简单线性规划(1_2)--上课用
2、画出Z=2x+y对应的 方程0=2x+y的图像
y-x=0
5
4、 根据0=2x+y平移到 区域的最后一个点时有 最大(小)值
3、根据b的正负值判断向上向下 平移时Z的增减性, 1 O
1 A(2,-1)
5
x
y+1=0
B(-1,-1)
-1
x+y-1=0
x - y 0 1 、 画出x y - 1 0区域 y y 1 0
使 式中,的x、y满足约束条件:
3 z z y x , 为直线3x 5 y z 0 5 5 5 的纵截距
5 x 3 y 15 y x 1 x 5 y 3
5x+3y=15 y y=x+1
5
B(3/2,5/2)
1
X-5y=3 x
O
-1
1
5
A(-2,-1)
B.z=5x+3y D.z=3x+5y
答案:A
第31页
高考题练习:
x y≥2, 1.(2009 浙江)若实数x, y满足不等式组 2 x y≤4, x y≥0, 则2x 3y的最小值是 ________ .
答案:4
第32页
解析:作出可行域如下图. 作直线l:2x+3y=0,平移l,当l过点A(2,0)时,2x+3y有最小值4.
D.5
z=5×1+0=5.
答案:D
第34页
则z x 2y的最大值为
A.4 答案:B B.3 C.2
y≤1, 3.(2010 全国Ⅰ若变量 ) x、y满足约束条件 x y≥0, x y 2≤0,

3.3.2简单的线性规划问题2

3.3.2简单的线性规划问题2

[规范作答] 设需截第一种钢板 x 张,第二种钢板 y 张. 2x+y≥15, x+2y≥18, 可得 x+3y≥27, x≥0,y≥0.
且 x、y 都是整数,
求目标函数 z=x+y 取最小值时的 x、y.2 分 作可行域如图所示,6 分
18 x= 5 , x + 3 y = 27 , ∵ ∴ 2x+y=15, y=39, 5 平移直线
18 39 ∴A 5 , 5
18 39 z=x+y,可知直线经过点 5 , 5 ,此时
x+y
18 39 57 18 39 =5, 但 5 与 5 都不是整数, 所以可行域内的点 A 5 , 5 不
是最优解.8 分
方法一:平移求解法 首先在可行域内打网格,其次描出
下取得最大值时的最优解只有一个, 则实数 a
的取值范围是________. 解析:
x+y-3≥0 作出线性约束条件2x-y≤0 y≤a
表示的平面
区域, 如图中阴影部分所示.
• 因为取得最大值时的最优解只有一个,所以目 标函数对应的直线与平面区域的边界线不平行, 根据图形及直线的斜率,可得实数 a的取值范 围是[2,+∞). • 答案: [2,+∞)
∴A′(3,3)是最优解. 所以,甲、乙两种药片各用 3 片配餐最好.

已知变量x,y满足约束条件1≤x+y≤4,-2≤x -y≤2.若目标函数z=ax+y(其中a>0)仅在点(3,1) 处取得最大值,则a的取值范围为________.
• 由题目可获取以下主要信息: • ①可行域已知; • ②目标函数z=ax+y(a>0)仅在(3,1)处取得最大 值. • 解答本题可先画出可行域,利用数形结合求解.
• 1 . 用图解法解决线性目标函数的最优解问题的 一般步骤 • (1)画:根据线性约束条件,在直角坐标系中,把 可行域表示的平面图形准确地画出来,可行域可 以是封闭的多边形,也可以是一侧开放的无限大 的平面区域. • (2)移:运用数形结合的思想,把线性目标函数看 成直线系,把目标函数表示的直线平行移动,最 先通过或最后通过的顶点便是所需要的点. • (3)求:解方程组求最优解,进而求出目标函数的 最大值和最小值.

3.3.2简单的线性规划问题(二)

3.3.2简单的线性规划问题(二)

3.3.2简单的线性规划问题(二)第一篇:3.3.2简单的线性规划问题(二)简单的线性规划问题(二)一、教学目标(1)知识和技能:能够运用线性规划的图解法解决一些生活中的简单最优问题(2)过程与方法:将实际问题中错综复杂的条件列出目标函数和约束条件对学生而言是一个难点,若要突破这个难点,教师在讲授中要根据学生的认知情况,引导学生建立数学模型;同时,要给学生正确的示范,利用精确的图形并结合推理计算求解(3)情感与价值:培养学生学数学、用数学的意识,并进一步提高解决问题的的能力二、教学重点、教学难点教学重点:把实际问题转化成线性规划问题,即建立数学模型,并相应给出正确的解答教学难点:建立数学模型,并利用图解法找最优解三、教学过程1、复习引入通过上一节课的学习,我们了解到在平面直角坐标系中二元一次不等式(组)表示平面区域,并且掌握了用直线定界,特殊点定域的方法来画出平面区域。

问题:设z=2x+y,式中变量x,y满足下列条件:⎨⎧4≤x+y≤6 求z 的最大值与最小值。

⎩2≤x-y≤42、举例分析(1)效益最佳问题例1、营养学家指出,成人良好的日常饮食应该至少提供0.075kg的碳水化合物,0.06kg的蛋白质,0.06kg的脂肪.1kg的食物A含有0.105kg的碳水化合物,0.07kg蛋白质,0.14kg脂肪,花费28元;而1kg食物B含有0.105kg碳水化合物,0.14kg蛋白质,0.07kg脂肪,花费21元.为了满足营养专家指探究:(1)如果设食用A食物xkg、食用B食物ykg,则目标函数是什么?(2)总成本z随A、B食物的含量变化而变化,是否任意变化,受什么因素制约?列出约束条件(3)能画出它的可行性区域吗?(4)能求出它的最优解吗?(5)你能总结出解线性规划应用题的一般步骤吗?解线性规划应用题的一般步骤:(1)设出所求的未知数;(2)列出约束条件;(3)建立目标函数;(4)作出可行域;(5)运用平移法求出最优解。

3.3.2简单的线性规划问题(2)

3.3.2简单的线性规划问题(2)

解:设每天调出的A型车x辆,
B型车y辆,公司所花的费用为 z元,则
y
4x+5y=30
x+y=10
x=8
{
x≤8 y≤4 x+y≤10 4x+5y≥30 x,y∈N* Z=320x+504y
4 3 2 1 0 1 2 3 4 5 6 7 8
y=4
X
作出可行域 作出可行域中的整点,
可行域中的整点(5,2)使Z=320x+504y取得最 小值,且Zmin=2608元
320x+504y=0
方法归纳:运用线性规划解决问题时,必须清楚目标函数的几何意义。 y A(2,4)
ห้องสมุดไป่ตู้
练习3:
B(-1,2)
如图1所示,已知△ABC中的三顶点 A(2,4) ,B(-1,2),C(1,0),点P(x,y) 0 C(0,1) 在△ABC内部及边界运动, 请你探究并讨论以下问题: (图1) ① z=x+y 在_____处有最大值___,在____处有最小值____; ② z=x-y 在___处有最大值____,在____处有最小值____; ③ 你能否设计一个目标函数,使得其取最优解的 情况有无穷多个? ④ 请你分别设计目标函数,使得最值点分别 在A处、B处、C处取得? ⑤ (思考)若目标函数是 z=x2+y2 , 你知道其几何意义吗?你能否借助其几何意义求得
x
zmin和zmax
y 1 2y 3 呢? 或z ?如果是 z x x 1
课堂小结:
二元一次不等式 表示平面区域 直线定界, 特殊点定域 约束条件 目标函数 简单的线性规划 可行解 可行域
应 用
求解方法:最优解 图解法; 应用题 设-列-解-联-答

3.3.2 简单的线性规划问题(二)

3.3.2 简单的线性规划问题(二)

巩固练习一
咖啡馆配制两种饮料.甲种饮料每杯含奶粉9g 、咖啡4g、糖 3g,乙种饮料每杯含奶粉4g 、咖啡5g、糖10g.已知每天原料 的使用限额为奶粉3600g ,咖啡2000g 糖3000g,如果甲种饮 料每杯能获利0.7元,乙种饮料每杯能获利1.2元,每天在原料 的使用限额内饮料能全部售出,每天应配制两种饮料各多少 杯能获利最大? 解:将已知数据列为下表:
教师年薪 万元
2/人
2/人
初中
高中
分别用数学关系式和图形表示上述限制条件。若 根据有关部门的规定,初中每人每年可收学费1600 元,高中每人每年可收学费2700元。那么开设初中 班和高中班多少个?每年收费的学费总额最多?
解:设开设初中班x个,高中班y个。因办学规模以 20~30个班为宜,所以, 20≤x+y≤30
小结
巩固练习二
某厂拟生产甲、乙两种适销产品,每件销售收入分 别为3000元、2000元,甲、乙产品都需要在A、B两 种设备上加工,在每台A、B上加工1件甲所需工时分 别为1h、2h,A、B两种设备每月有效使用台数分别 为400h和500h。如何安排生产可使收入最大? 设每月生产甲产品x件,生产乙产品y件,每月收 入为z,目标函数为Z=3x+2y,满足的条件是
y _
目标函数为:z =0.7x +1.2y
把直线l向右上方平移至l1的位置时, _00 4 直线经过可行域上的点C,且与原点 3 _00 距 离最大, 此时z =0.7x +1.2y取最大值 7 _ x + 12 y = 0 解方程组
C _ ( 200 , 240 ) 3 _ x + 10 y = 3000
由图可以看出,当直线经过可行域上的点M时, 截距2z最大,即z最大。 容易求得M点的坐标为 (2,2),则Zmin=3

3.3.2-简单的线性规划问题-课件

3.3.2-简单的线性规划问题-课件

[例4] 某人有楼房一幢,室内面积共180 m2,拟分隔成两类 房间作为旅游客房.大房间每间面积为18 m2,可住游客5名,每 名游客每天住宿费为40元;小房间每间15 m2,可住游客3名,每 名游客每天住宿费为50元;装修大房间每间需1000元,装修小房 间每间需600元.如果他只能筹款8000元用于装修,且游客能住满 客房,他应隔出大房间和小房间各多少间,才能获得最大收益?
x≥0
迁移变式 3 已知点 P(x,y)满足条件y≤x
(k
2x+y+k≤0
为常数),若 x+3y 的最大值为 8,则 k=________.
解:作出可行域如图 7 所示, 作直线 l0:x+3y=0, 平移 l0 知当 l0 过点 A 时,x+3y 最大, 由于 A 点坐标为(-3k,-3k). ∴-3k-k=8,从而 k=-6.
[例3] 已知变量x,y满足约束条件1≤x+y≤4,-2≤x-y≤2.若 目标函数z=ax+y(其中a>0)仅在点(3,1)处取得最大值,则a的取值 范围为________.
[分析] 由题目可获取以下主要信息: ①可行域已知; ②目标函数在(3,1)处取得最大值. 解答本题可利用逆向思维,数形结合求解.
解方程组-4x+4x+3y=3y=361. 2, 得 D 点坐标为(3,8) ∴zmax=2x+3y=30 当直线经过可行域上的点 B 时,截距3z最小,即 z 最 小.由已知得 B(-3,-4) ∴zmin=2x+3y=2×(-3)+3×(-4)=-18. (2)同理可求 zmax=40,zmin=-9.
3.3.2 简单的线性规划问题
线性规划问题的有关概念:
1.线性约束条件:不等式组是一组对变量x、y的约束条件, 这组约束条件都是关于x、y的 一次不等式 .

3.3.3简单的线性规划问题(2)

3.3.3简单的线性规划问题(2)

3.3.3简单的线性规划问题(2)
一、学习目标
1.通过本节学习,能解决与线性规划相关的实际问题,学会从实际情境中抽象出二元线性规划的模型;
2.培养学生观察、联想以及作图能力,渗透集合以及数形结合的数学思想。

教学重点、难点 :从实际问题中抽象出线性规划问题的模型。

二、课前自学
在约束条件⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+0
921432y x y x y x 下,求目标函数的S =3x +2y 的最大值,
并求出此时的x ,y 的取值.
三、问题探究
例1.投资生产A 产品时,每生产100吨需要资金200万元,需场地200平方米,可获利润300万元;投资生产B 产品时,每生产100米需要资金300万元,需场地100平方米,可获利润200万元.现某单位可使用资金1400万元,场地900平方米,问:应作怎样的组合投资,可获利最大?
例2.某运输公司向某地区运送物资,每天至少运送180t. 该公司有8辆载重为6t的A型卡车与4辆载重为10t的B型卡车,有10名驾驶员。

每辆卡车每天往返次数为A型车4次,B型车3次。

每辆卡车每天往返的成本费A型车320元,B型车为504元。

试为该公司设计调配车辆方案,使公司花费的成本最低。

四、反馈小结
反馈:必修五P86 练习4
1.某人承揽一项业务,需做文字标牌4个,绘画标牌6个。

现有两种规格原料,甲规格每张3平方米,可做文字标牌1个,绘画标牌2个;乙种规格每张2平方米,可做文字标牌2个,绘画标牌1 个。

求两种规格的原料各用多少张,才能使总的用料面积最小?
小结。

高中数学3.3.2-2简单的线性规划问题(第二课时)复习试题

高中数学3.3.2-2简单的线性规划问题(第二课时)复习试题

课时作业(二十七)1.如果实数x ,y 满足条件⎩⎨⎧x -y +1≥0,y +1≥0,x +y +1≤0,那么2x -y 的最大值为()A .2B .1C .-2D .-3答案 B解析 如图所示可行域中,2x -y 在点C 处取得最大值,即在C(0,-1)处取得最大值,最大值为1.2.若实数x ,y 满足不等式组⎩⎨⎧x +3y -3≥0,2x -y -3≤0,x -my +1≥0且x +y 的最大值为9,则实数m=( ) A .-2 B .-1 C .1 D .2答案 C解析 如图,设x +y =9,显然只有在x +y =9与直线2x -y -3=0的交点处满足要求,解得此时x =4,y =5,即点(4,5)在直线x -my +1=0上,代入得m =1.3.已知x ,y ∈Z ,则满足⎩⎨⎧x -y ≥0,x +y ≤5,y ≥0的点(x ,y)的个数为( ) A .9 B .10 C .11 D .12答案 D解析 画出不等式组对应的可行域,共12个点.4.若实数x 、y 满足⎩⎨⎧x -y +1≤0,x>0,则yx 的取值范围是( )A .(0,1)B .(0,1]C .(1,+∞)D .[1,+∞)答案 C解析 在平面内作出x 、y 满足的可行域,设P(x ,y)为可行域内任一点,则直线PO 的斜率k PO =y x ,由数形结合得,k PO >1,故yx 的取值范围是(1,+∞),选C.5.在如下图所示的可行域内(阴影部分且包括边界),目标函数z =x -y ,则使z 取得最小值的点的坐标为( )A .(1,1)B .(3,2)C .(5,2)D .(4,1)答案 A解析 对直线y =x +b 行平移,注意b 越大,z 越小.6.设变量x ,y 满足约束条件⎩⎨⎧x +2y ≥2,2x +y ≤4,4x -y ≥-1,则目标函数z =3x -y 的取值范围是( ) A .[-32,6]B .[-32,-1]C .[-1,6]D .[-6,32]答案 A解析 利用线性规划的知识求解.作出不等式组表示的可行域,如图阴影部分所示,作直线3x -y =0,并向上、下平移,又直线y =3x -z 的斜率为3.由图像知当直线y =3x -z 经过点A(2,0)时z 取最大值6,当直线y =3x -z 经过点B(12,3)时,z 取最小值-32.∴z =3x -y 的取值范围为[-32,6].故选A.7.某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表菜的种植面积(单位:亩)分别为( ) A .50,0 B .30,20 C .20,30 D .0,50答案 B解析 设黄瓜的种植面积为x 亩,韭菜的种植面积为y 亩,则由题意知其满足的条件为⎩⎨⎧x +y ≤50,1.2x +0.9y ≤54,x ≥0,y ≥0,化简得⎩⎨⎧x +y ≤50,4x +3y ≤180,x ≥0,y ≥0.目标函数z =0.55×4x +0.3×6y -1.2x -0.9y =x +0.9y.目标函数z =x +0.9y 的几何意义是直线x +0.9y -z =0在x 轴上的截距,由图可知当直线经过点B(30,20)时,目标函数z =x +0.9y 取得最大值. 8.已知以x ,y 为自变量的目标函数ω=kx +y(k>0)的可行域如下图阴影部分(含边界),若使ω取最大值时的最优解有无穷多个,则k 的值为( ) A .1B.32C .2D .4答案 A解析 目标函数可变形为y =-kx +ω,又∵k>0,结合图像可知,当ω最大时,-k =k DC =4-22-4=-1.即k =1.9.已知x ,y满足约束条件⎩⎨⎧x ≥0,y ≥0,x +y ≥1,则(x +3)2+y2的最小值为( ) A.10 B .2 2 C .8 D .10答案 D解析 画出可行域(如图所示).(x +3)2+y 2即点A(-3,0)与可行域上点(x ,y)间距离的平方.显然|AC|长度最小,所以|AC|2=(0+3)2+(1-0)2=10.故选D.10.点P(1,a)到直线x -2y +2=0的距离为355,且P 在3x +y -3>0表示的区域内,则a =________. 答案 3 解析|1-2a +2|5=355,∴a =0或3.又点P 在3x +y -3>0表示区域内,∴3+a -3>0,∴a>0,∴a =3.11.在坐标平面内,点的纵、横坐标都是整数时,称该点为整点,则由不等式组⎩⎨⎧x +y ≤2,x -y ≥-2,y ≥0所表示的区域内整点的个数是________.答案 9解析 首先画出不等式组表示的平面区域(如图),再用打网格法找出区域内整点,部分靠近边界的点代入验证,共9个点.12.记不等式组⎩⎨⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域为D.若直线y =a(x +1)与D 有公共点,则a 的取值范围是________. 答案 [12,4]解析 作出题中不等式组表示的可行域如图中阴影部分所示.∵直线y =a(x +1)过定点C(-1,0),由图并结合题意可知k BC =12,k AC =4,∴要使直线y =a(x +1)与平面区域D 有公共点,则12≤a ≤4.13.已知变量x ,y 满足约束条件⎩⎨⎧x -y +2≥0,x +y -4≥0,2x -y -5≤0,求:(1)z =x 2+y 2-10y +25的最小值; (2)z =2y +1x +1的取值范围. 解析 (1)作出可行域如图,计算得点A(1,3),B(3,1),C(7,9).z =x 2+(y -5)2,表示可行域内任一点(x ,y)到点M(0,5)的距离的平方. 过点M 作AC 的垂线,易知垂足N 在AC 上,故|MN|=|0-5+2|1+(-1)2=32=322, ∴|MN|2=(322)2=92,∴z 的最小值为92. (2)z =2·y -(-12)x -(-1),表示可行域内的点(x ,y)与定点Q(-1,-12)连线的斜率的2倍. 连接QA ,QB.∵k QA =74,k QB =38,∴z 的取值范围是[34,72].14.制订投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目.根据预测,甲、乙项目可能的最大盈利率分别为100%和50%,可能的最大亏损率分别为30%和10%.投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元,问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大? 解析 设投资人分别用x 万元,y 万元投资甲、乙两个项目,由题意知⎩⎨⎧x +y ≤10,0.3x +0.1y ≤1.8,x ≥0,y ≥0.目标函数z =x +0.5y.上述不等式组表示的平面区域如图所示,阴影部分(含边界)即可行域.作直线l 0:x +0.5y =0,并作平行于直线l 0的一组直线x +0.5y =z ,z ∈R ,与可行域相交,其中有一条直线经过可行域上的M 点,且与直线x +0.5y =0的距离最大,这里M 点是直线x +y =10和0.3x +0.1y =1.8的交点. 解方程组⎩⎨⎧x +y =10,0.3x +0.1y =1.8,得x =4,y =6.此时z =1×4+0.5×6=7(万元). ∵7>0,∴当x =4,y =6时z 取得最大值.所以,投资人用4万元投资甲项目,6万元投资乙项目,才能在确保亏损不超过1.8万元的前提下,使可能的盈利最大.15.有一批同规格的钢条,每根钢条有两种切割方式,可截成长度为a 的钢条2根,长度为b 的钢条1根;或截成长度为a 的钢条1根,长度为b 的钢条3根.现长度为a 的钢条至少需要15根,长度为b 的钢条至少需要27根.问:如何切割可使钢条用量最省?解析 设按第一种切割方式需钢条x 根,按第二种切割方式需钢条y 根,根据题意得约束条件是⎩⎨⎧2x +y ≥15,x +3y ≥27,x>0,x ∈N ,y>0,y ∈N ,目标函数是z =x +y ,画出不等式组表示的平面区域如图阴影部分.由⎩⎨⎧2x +y =15,x +3y =27,解得⎩⎨⎧x =3.6,y =7.8. 此时z =11.4,但x ,y ,z 都应当为正整数, 所以点(3.6,7.8)不是最优解.经过可行域内的整点且使z 最小的直线是y =-x +12,即z =12,满足该约束条件的(x ,y)有两个:(4,8)或(3,9),它们都是最优解. 即满足条件的切割方式有两种,按第一种方式切割钢条4根,按第二种方式切割钢条8根;或按第一种方式切割钢条3根,按第二种方式切割钢条9根,可满足要求.1.已知实数x ,y 满足⎩⎨⎧x +2y -5≤0,x ≥1,y ≥0,x +2y -3≥0,则yx 的最大值为________.答案 2解析 画出不等式组⎩⎨⎧x +2y -5≤0,x ≥1,y ≥0,x +2y -3≥0对应的平面区域Ω,y x =y -0x -0表示平面区域Ω上的点P(x ,y)与原点的连线的斜率.A(1,2),B(3,0),∴0≤yx≤2.2.若实数x 、y 满足不等式组⎩⎨⎧y ≥0,x -y ≥0,2x -y -2≥0,则ω=y -1x +1的取值范围是()A .[-1,13]B .[-12,13]C .[-12,+∞)D .[-12,1)答案D解析 所求问题转化为求动点(x ,y)与定点(-1,1)连线的斜率问题.不等式组表示的可行域如图所示.目标函数ω=y -1x +1表示阴影部分的点与定点(-1,1)的连线的斜率,由图可见,点(-1,1)与点(1,0)连线的斜率为最小值,最大值趋近于1,但永远达不到,故-12≤ω<1.3.若目标函数z =x +y +1在约束条件⎩⎨⎧x +y -2≤0,x -y +2≤0,y ≤n ,x ≥-3下取得最大值的最优解有无穷多个,则n 的取值范围是________. 答案 n>2解析先根据⎩⎨⎧x +y -2≤0,x -y +2≤0,x ≥-3作出如图所示阴影部分的可行域,欲使目标函数z=x +y +1取得最大值的最优解有无穷多个,需使目标函数对应的直线平移时达到可行域的边界直线x +y -2=0,且只有当n>2时,可行域才包含x +y -2=0这条直线上的线段BC 或其部分.4.某企业生产甲、乙两种产品,已知生产每吨甲产品要用A 原料3吨,B 原料2吨;生产每吨乙产品要用A 原料1吨,B 原料3吨,销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元.该企业在一个生产周期内消耗A 原料不超过13吨,B 原料不超过18吨.那么该企业可获得最大利润是( ) A .12万元B .20万元C .25万元D .27万元答案 D解析 设生产甲产品x 吨,生产乙产品y 吨,获得利润为z ,则有下列关系:则有⎩⎨⎧ y>0, 3x +y ≤13, 2x +3y ≤18.目标函数z =5x +3y ,作出可行域后(如图所示阴影区域)求出可行域边界上各端点的坐标,可知当x =3,y =4时可获得最大利润为27万元,故选D.。

3.3.3简单的线性规划问题(2)(2015年人教A版数学必修五导学案)

3.3.3简单的线性规划问题(2)(2015年人教A版数学必修五导学案)

2、若点 P 满足 ( x 2 y 1)(x y 3 0) ,求 P 到原点的最小距离.
【课后巩固】
1.一家饮料厂生产甲、乙两种果汁饮料,甲种饮料主要西方是每 3 份李子汁加1 份苹 果汁,乙种饮料的西方是李子汁和苹果汁各一半.该厂每天能获得的原料是 2000 L 李子汁和 1000 L 苹果汁, 又厂方的利润是生产 1L 甲种饮料得 3 元, 生产 1L
课题:3.3.3 简单的线性规划问题(2)导学案
班级: 姓名: 学号: 第 学习小组 【学习目标】 1、 能够将实际问题抽象概括为线性问题; 2、 能用线性规划的知识知识解决实际问题的能力. 【课前预习】 x y 2 2 2 1.已知 x, y 满足 x 2 ,则 x y 的最小值是__________. y 2
4.设实数 x, y 满足不等式组
1 x y 4 . y 2 2 x 3 y 2
(1)求作此不等式组表示的平面区域; (2)设 a 1 ,求函数 f ( x,y) y ax 的最大值和最小值.
例 2、某运输公司向某地区运送物资,每天至少运送 180t .该公司有 8 辆载重为 6t 的 A 型卡车与 4 辆载重为 10t 的 B 型卡车,有 10 名驾驶员.每辆卡车每天往返次 数为 A 型车 4 次,B 型车 3 次. 每辆卡车每天往返的成本费 A 型车为 320 元,B 型车为 504 元.试为该公司设计调配车辆方案,使公司花费的成本最低.
x y 2 0 y 2.设实数 x, y 满足 y 1 ,则 的最大值是__________. x x 4 x y 3 y 1 3.已知 x, y 满足约束条件 x 1 ,则 的最大值是__________. x 1 y 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作业处理
线性规划
例2 解下列线性划问题: 求z=300x+900y的最大值和最小值, 使式中x、y满足下列条件:
2 x y 300 x 2 y 250 x+3y=0 x 0 y 0 300x+900y=0
y
2x+y=300 A
300x+900y=112500
(1)怎样安排生产可以获利最大? (2)若只生产书桌可以获利多少? (3)若只生产书橱可以获利多少?
求解:
600
y
A(100,400)
(1)设生产书桌x张,书橱y张,利 润为z元, 则约束条件为
{
0.1x+0.2y≤90 2x+y≤600 x,y∈N*
450
x+2y-900=0
300
Z=80x+120y 0 作出不等式表示的平面区域, 将直线z=80x+120y平移可知: 当生产 100 张书桌, 400 张书橱时利润最大为 z=80×100+120×400=56000元
y
4 3 4
8
x
0
将上面不等式组表示成平面上的区域,区域内 所有坐标为整数的点P(x,y),安排生产任务x,y 都是有意义的.
问题:求利润2x+3y的最大值.
若设利润为z,则z=2x+3y,这样上述问题转化为: 当x,y在满足上述约束条件时,z的最大值为多少? 2 z 2 把z=2x+3y变形为y=- x+ ,这是斜率为- , 3 3 3 z 在y轴上的截距为 的直线, 3
解:设生产甲、乙两种产品.分别为x 10x+4y≤300 那么 5x+4y≤200 4x+9y≤360 x≥0 y ≥0 t、yt,利润总额为z=600x+1000y. 元,
{
y
75
z=600x+1000y.
作出以上不等式组所表示的可行域 作 出 一 组 平 行 直 线
50 40
M (12.4,34.4) 4x+9y=360
变式:若生产一件甲产品获利1万元,生产一件乙 产品获利3万元,采用哪种生产安排利润最大?
变式:求利润z=x+3y的最大值 . y
x 2y 8 4 x 16 4 y 12 x 0 y 0
3
4 N( 2, 3)
4
0
1 z y x 3 3
x 8 1 y x4 2
把例3的有关数据列表表示如下:
资源
A种配件 B种配件 所需时间 利润(万元)
甲产品 (1件) 4 0 1 2
乙产品 (1件) 0 4 2 3
资源限额 16 12 8
解:设甲,乙两种产品分别生产x,y件,由己知条件可得:
线 性 约 束 条 件
x 2y 8 4 x 16 4 y 12 x 0 y 0
2x+y=15
12
x+y=12 x+2y=18
作直线x+y=12
18
27
x
x+3y=27
当直线经过点A时z=x+y=11.4, 但它不是最优整数解.
解得交点B,C的坐标B(3,9)和C(4,8)
直线x+y=12经过的整点是B(3,9)和C(4,8),它们是最优解. 答(略)
例题分析
2x+y≥15, x+2y≥18, x+3y≥27, x≥0, x∈N* y≥0 y∈N*

由图可以看出,当直线经 过可行域上的点M时,截 距2z最大,即z最大。 容易求得M点的坐标为 (2,2),则Zmax=3 答:生产甲种、乙种肥料各2车皮,能 够产生最大利润,最大利润为3万元。
y
M
x
o
应用-有关利润最高、效益最大等问题
1:某工厂生产甲、乙两种产品.已知生产甲种产品1t需消耗
A种矿石10t、B种矿石5t、煤4t;生产乙种产品1吨需消耗A 种矿石4t 、 B种矿石 4t 、煤 9t.每 1t 甲种产品的利润是 600元 , 每1t乙种产品的利润是 1000元.工厂在生产这两种产品的计 划中要求消耗 A 种矿石不超过 300t 、消耗 B 种矿石不超过 200t、消耗煤不超过360t.甲、乙两种产品应各生产多少(精 确到0.1t),能使利润总额达到最大? 列表:设生产甲、乙两种产品.分别为x t、yt,利润总额为z元
600x+1000y=t,
经过可行域上的点M时,目标函数 在y轴上截距最大.
10
此时z=600x+1000y取得最大值. 0 5x+4y=200 由 4x+9y=360 解得交点M的坐标为(12.4,34.4)
{
10 20 30 40 5x+4y=200
90
x
10x+4y=300 600x+1000y=0
10 5 4 600
4 4 9 1000
300
200 360
把题中限制条件进行转化:
10x+4y≤300 5x+4y≤200 4x+9y≤360 x≥0 y ≥0
设生产甲、乙两种产品.分别为x t、yt,利润总额为z元
约束条件
目标函数:
z=600x+1000y.
例题分析
_ 0
1000 5 _00 _ 4 x + 5 y = 2000 _
x _
, 4 x 5 y 2000 , 3x 10y 3000
9 _ x + 4 y = 3600
得点C的坐标为(200,240)
例题分析:关于取整数解的问题
例3 要将两种大小不同规格的钢板截成 A、B、C三种规格, 每张钢板可同时截得三种规格的小钢板的块数如下表所示 :
甲产品 产品 消耗量 (1 杯) 资源 奶粉(g) 9 咖啡(g) 糖(g) 利润(元) 乙产品(1 杯) 资源限额(g)
4 5 10 1.2
3600 2000 3000
4 3 0.7
设每天应配制甲种饮料x杯,乙种饮料y杯,则
作出可行域: 目标函数为:z =0.7x +1.2y 作直线l:0.7x+1.2y=0, 把直线 l 向右上方平移至 l1 的位置 时, 直线经过可行域上的点C,且与原 点距离最大, 此时z =0.7x +1.2y取最大值 解方程组
y
15 9
B(3,9)
C(4,8)
{
打网格线法
消耗量 产品 资源
甲产品 (1t)
乙产品 (1t)
资源限额 ( t)
A种矿石(t)
B种矿石(t)
煤(t) 利润(元)
10 5 4 600
4 4 9 1000
300
200 360
例题分析
消耗量 产品
列表: 资源
A种矿石(t)
甲产品 xt (1t)
乙产品 (1t)
yt
资源限额 ( t)
B种矿石(t)
煤(t) 利润(元)
作业处理
5x+3y=15 y y=x+1
5
B(3/2,5/2)
1
X-5y=3 x
O
-1
1 5
A(-2,-1)
Z max 17; Z min 11
y
A(2,4)
【课前小练】
B(-1,2)
如图1所示,已知△ABC中的三顶点 A(2,4) ,B(-1,2),C(1,0),点P(x,y) 0 C(0,1) 在△ABC内部及边界运动, 请你探究并讨论以下问题: (图1) ① z=x+y 在_____处有最大值___,在____处有最小值____; ② z=x-y 在___处有最大值____,在____处有最小值____; ③ 你能否设计一个目标函数,使得其取最优解的 情况有无穷多个?
125
C x+2y=250 150 B 250
O
答案:当x=0,y=0时,z=300x+900y有最小值0. 当x=0,y=125时,z=300x+900y有最大值112500.
作业处理
练习2、已知 y x 1 x - 5y 3 5x 3y 15 求z=3x+5y的最大值和最小值。
目标函数为 z=x+y
作出可行域(如图)
例题分析
{
2x+y≥15, x+2y≥18, x+3y≥27, x≥0, x∈N y≥0 y∈N
y
15
调整优值法
作出一组平行直线z=x+y,
10 B(3,9) C(4,8) 目标函数z= x+y 8 A(18/5,39/5) 6 x+y =0 4 2 0 2 4 6 8
zmax 2 3 3 11
解线性规划应用问题的一般步骤:
1)理清题意,列出表格:
2)设好变元并列出不等式组和目标函数
3)由二元一次不等式表示的平面区域作出可行域;
画出线性约束条件所表示的可行域,画图力保准确;
4)在可行域内求目标函数的最优解 (准确作图,准确计算) 法1:移-在线性目标函数所表示的一组平行线中,利用平移的 方法找出与可行域有公共点且纵截距最大或最小的直线; 法2:算-线性目标函数的最大(小)值一般在可行域的顶点处 取得,也可能在边界处取得(当两顶点的目标函数值相等时最优 解落在一条边界线段上)。此法可弥补作图不准的局限。 5)还原成实际问题
x
线性规划的应用题
例1: 某工厂用A,B两种配件生产甲,乙两种产品,每生产一件甲种产 品使用4个A配件耗时1h,每生产一件乙种产品使用4个B配件耗时2h, 该厂每天最多可从配件厂获得16个A配件和12个B配件,按每天工作 8小时计算,该厂所有可能的日生产安排是什么? 若生产1件甲种产品获利2万元,生产1 件乙 种产品获利3万元,采用哪种生产安排利润最大?
相关文档
最新文档