2016-2017年重庆市渝中区巴蜀中学九年级(上)期末数学试卷和参考答案

合集下载

巴蜀中学初2017届16-17学年(上)半期考试——数学

巴蜀中学初2017届16-17学年(上)半期考试——数学

巴蜀中学初2017届16-17学年上初三半期考试数学试题一、选择题(本大题共12个小题,每小题4分,共48分)1.4-的倒数是( )A .4B .14C .4-D .14- 2.下列计算正确的是( )A .235()a a =B .224()ab ab =C .44a a a ÷=D .224a a a ⋅=3.下列商标是中心对称图形的是( )A .B .C .D .4.在函数23y x =+中,x 的取值范围是( ) A .3x ≠- B .3x ≠ C .3x ≥ D .3x ≥-5.如图,把一块含有45°角的直角三角板的两个非直角顶点放在直尺的对边上,如果120∠=︒,那么2∠的度数是( )A .30°B .25°C .20°D .15°6.已知23x y -=,则724x y +-的值为( ) A .1- B .13 C .1 D .13-7.下列调查中,适宜采用全面调查(普查)方式的是( )A .调查乘坐飞机的旅客是否携带了危禁物品B .调查某品牌圆珠笔芯的使用寿命C .调查市场上老酸奶的质量情况D .调查我市市民对“社会主义核心价值观”的知晓率8.已知ABC DEF ∆∆∽且相似比为1:4,则ABC ∆与DEF ∆的周长比为( )A .1:2B .1:3C .1:4D .1:169.二次函数2y ax bx c =++与一次函数y ax c =+,它们在同一直角坐标系中的图象可能是( )A B C D10.观察下列一组图形中点的个数,其中第1个图形中共有3个点,第2个图形中共有8个点,第3个图形中共有15个点,按此规律第6个图形中共有点的个数是( )5题图① ② ③ ④A .42B .48C .56D .7211.如图,A 为某旅游景区的最佳观景点,游客可以在B 处乘坐缆车沿BD 方向先到达小观景平台DE 观景,然后再由E 处继续乘坐缆车沿EA 方向到达A 处,返程时从A处乘坐升降电梯直接到C 处.已知AC BC ⊥于C ,//DE BC ,斜坡BD 的坡度4:3i =,210BC =米,48DE =米,100BD =米,64α=︒,则AC 的高度为( )米(结果精确到,参考数据:sin640.9︒≈,tan64 2.1︒≈)A .214.2B .235.2 12.若关于x 的不等式组212(4)4x a x ->⎧⎨-<⎩无解,且关于x 的分式方程11222ax x x --=--有正数解,则符合条件的非负整数a 的值有( )A .1个B .2个C .3个D .4个二、填空题(本题共6小题,每小题4分,共24分)13.2016年重庆高考报名人数近250000人,250000用科学记数法表示为________14.计算:33272|32|--+-=________15.若抛物线2922y x mx =++与x 轴只有一个交点,则m=________ 16.四张卡片上分别写有2,−2,1,−1四个数字,从中任取两张卡片,将卡片上的数字求和,和的绝对值为1的概率是________17.甲、乙两车分别从,A B 两地同时相向匀速行驶.当乙车到达A 地后,继续保持原速向远离B 的方向行驶,而甲车到达B 地后立即掉头,并保持原速与乙车同向行驶,经过一段时间后两车同时到达C 地.设两车行驶的时间为x (小时),两车之间的距离为y (千米),y 与x 之间的函数关系如图所示,则,B C 两地相距 米17题图 18题图18.如图,在边长为2的正方形ABCD 中,F 是DC 延长线上一点,且12CF CD =,E 是AF 中点,将ABE ∆沿BE 翻折至A BE '∆处,连接A D ',则A D '的长为_______三、解答题(共78分)19.(7分)如图,已知AC BC ⊥,BD AD ⊥,AC 与BD 交于O ,AC BD =.求证:OA OB =.20.(7分)某学校为了解学生的课余活动情况,抽样调查了部分学生,将所得数据处理后,制成折线统计图(部分)和扇形统计图(部分)如下:(1)在这次研究中,一共调查了 学生,并请补全折线统计图;(2)该校共有2200名学生,估计该校爱好阅读和爱好体育的学生一共有多少人?11题图19题图21.(10分)化简:(1)2()(4)(2)a b a b a b ----(2)22113263x x x x x x ++-⎛⎫÷- ⎪--⎝⎭22.(10分)如图,平面直角坐标系中,一次函数y kx b =+的图象与反比例函数m y x =的图象交于第二象限内的A 、B 两点,与x 轴交于点C .已知5OA =,3tan 4AOC ∠=,点B 的纵坐标为6.(1)求反比例函数和一次函数的解析式;(2)求AOB ∆的面积.23.(10分)“上有江北嘴,下有陆家嘴”,如今江北嘴是重庆最火爆的地段.(1)国内某知名房地产开发企业成功拍得江北嘴一块土地,并于2014年6月推出了1号楼,出售套内95m 2的三居房.临近2014年末,为了加快资金周转,该企业决定降价促销,套内每平方米的价格比开盘价降低10%.降价后,张老师在1号楼买了一套房子,至少付了769500元房款.问1号楼的开盘价至少是每平方米多少元?(2)2016年6月初,该企业加推出了2号楼,出售套内120m 2的四居房共150套。

(1)2016-2017学年重庆一中九年级(上)期末数学试卷(含答案)

(1)2016-2017学年重庆一中九年级(上)期末数学试卷(含答案)

(1)2016-2017学年重庆一中九年级(上)期末数学试卷(含答案)2016-2017学年重庆一中九年级(上)期末数学试卷(1)一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号在答题卡中对应的方框涂黑.1.在,﹣1,0,﹣3.2这四个数中,属于负分数的是()A.B.﹣1 C.0 D.﹣3.22.下列4个图形中,是中心对称图形但不是轴对称的图形是()A.B.C.D.3.下列计算正确的是()A.5m﹣2m=3 B.2a•3a=6a C.(ab3)2=ab6D.2m3n÷(mn)=2m24.下列说法中,正确的是()A.不可能事件发生的概率是0B.打开电视机正在播放动画片,是必然事件C.随机事件发生的概率是D.对“梦想的声音”节目收视率的调查,宜采用普查5.如图,AB∥CD,CB平分∠ABD.若∠C=40°,则∠D的度数为()A.90°B.100°C.110°D.120°6.不等式组的解集在数轴上表示正确的是()A. B.C.D.7.在函数y=中,自变量x的取值范围是()后,因雾霾严重,小强突感身体不适,于是他按原路以出门时的速度返回,直到他们再次相遇.如图所示是小刚、小强之间的距离y(千米)与小刚跑步所用时间x(分钟)之间的函数图象.问小刚从家出发到他们再次相遇时,一共用了分钟.18.如图,四边形ABCD为正方形,H是AD上任意一点,连接CH,过B作BM⊥CH于M,交AC于F,过D作DE∥BM交AC于E,交CH于G,在线段BF上作PF=DG,连接PG,BE,其中PG交AC于N点,K为BE上一点,连接PK,KG,若∠BPK=∠GPK,CG=12,KP:EF=3:5,求的值为.三、解答题:(本大题共2个小题,每小题7分,共14分)请把答案写在答题卡上对应的空白处,解答时每小题必须给出必要的演算过程或推理步骤.19.已知:如图,在△ABC中,D为BC上的一点,AD平分∠EDC,且∠E=∠B,DE=DC,求证:AB=AC.20.在期末考试来临之际,同学们都进入紧张的复习阶段,为了了解同学们晚上的睡眠情况,现对年级部分同学进行了调查统计,并制成如下两幅不完整的统计图:(其中A代表睡眠时间8小时左右,B代表睡眠时间6小时左右,C代表睡眠时间4小时左右,D代表睡眠时间5小时左右,E代表睡眠时间7小时左右),其中扇形统计图中“E”的圆心角为90°,请你结合统计图所给信息解答下列问题:(1)共抽取了名同学进行调查,同学们的睡眠时间的中位数是小时左右,并将条形统计图补充完整;(2)请你估计年级每个学生的平均睡眠时间约多少小时?四、解答题:(本大题共4个小题,每小题10分,共40分)请把答案写在答题卡上对应的空白处,解答时每小题必须给出必要的演算过程或推理步骤.21.计算:(1)3a(a+1)﹣(3+a)(3﹣a)﹣(2a﹣1)2(2)(﹣x+2)÷.22.如图,一次函数y=ax﹣2(a≠0)的图象与反比例函数y=(k≠0)的图象交于第二象限的点,且与x轴、y轴分别交于点C、D.已知tan∠AOC=,AO=.(1)求这个一次函数和反比例函数的解析式;(2)若点F是点D关于x轴的对称点,求△ABF的面积.23.冬至过后,昼夜温差逐渐加大,山城的市民们已然感受到了深冬的寒意.在还未普遍使用地暖供暖设备的山城,小型电取暖器仍然深受市民的青睐.某格力专卖店销售壁挂式电暖器和卤素/石英式取暖器(俗称“小太阳”),其中壁挂式电暖器的售价是“小太阳”售价的5倍还多100元,2016年12月份壁挂式电暖器和“小太阳”共销售500台,壁挂式电暖器与“小太阳”销量之比是4:1,销售总收入为58.6万元.(1)分别求出每台壁挂式电暖器和“小太阳”的售价;(2)随着“元旦、春节”双节的来临和气温的回升,销售进入淡季,2017年1月份,壁挂式电暖器的售价比2016年12月下调了4m%,根据经验销售量将比2016年12月下滑6m%,而“小太阳”的销售量和售价都维持不变,预计销售总收入将下降到16.04万元,求m的值.24.阅读下列材料,解决后面两个问题:一个能被17整除的自然数我们称为“灵动数”.“灵动数”的特征是:若把一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的整倍数(包括0),则原数能被17整除.如果差太大或心算不易看出是否是17的倍数,就继续上述的“截尾、倍大、相减、验差”的过程,直到能清楚判断为止.例如:判断1675282能不能被17整除. 167528﹣2×5=167518,16751﹣8×5=16711,1671﹣1×5=1666,166﹣6×5=136,到这里如果你仍然观察不出来,就继续…6×5=30,现在个位×5=30>剩下的13,就用大数减去小数,30﹣13=17,17÷17=1;所以1675282能被17整除.(1)请用上述方法判断7242和2098754 是否是“灵动数”,并说明理由;(2)已知一个四位整数可表示为,其中个位上的数字为n,十位上的数字为m,0≤m≤9,0≤n≤9且m,n为整数.若这个数能被51整除,请求出这个数.五、解答题:(本大题共2个小题,每小题12分,共24分)请把答案写在答题卡上对应的空白处,解答时每小题必须给出必要的演算过程或推理步骤.25.如图,在等腰直角△ABC中,∠ACB=90°,CA=CB,CD为斜边AB上的中线.(1)如图1,AE平分∠CAB交BC于E,交CD于F,若DF=2,求AC的长;(2)将图1中的△ADC绕点D顺时针旋转一定角度得到△ADN,如图2,P,Q分别为线段AN,BC的中点,连接AC,BN,PQ,求证:BN=PQ;(3)如图3,将△ADC绕点A顺时针旋转一定角度到△AMN,其中D的对应点是M,C的对应点是N,若B,M,N三点在同一直线上,H为BN中点,连接CH,猜想BM,MN,CH之间的数量关系,请直接写出结果.26.如图1,已知抛物线y=x2+2x﹣3与x轴相交于A,B两点,与y轴交于点C,D为顶点.(1)求直线AC的解析式和顶点D的坐标;(2)已知E(0,),点P是直线AC下方的抛物线上一动点,作PR⊥AC于点R,当PR最大时,有一条长为的线段MN(点M在点N的左侧)在直线BE上移动,首尾顺次连接A、M、N、P构成四边形AMNP,请求出四边形AMNP的周长最小时点N的坐标;(3)如图2,过点D作DF∥y轴交直线AC于点F,连接AD,Q点是线段AD上一动点,将△DFQ沿直线FQ折叠至△D1FQ,是否存在点Q使得△D1FQ与△AFQ重叠部分的图形是直角三角形?若存在,请求出AQ的长;若不存在,请说明理由.2016-2017学年重庆一中九年级(上)期末数学试卷(1)一、选择题:(本大题共12个小题,每小题4分,共48分)1.【解答】解:﹣3.2是负分数,故选:D.2.【解答】解:A、不是轴对称图形,也不是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,符合题意.故选:D.3.【解答】解:A、5m﹣2m=3m,故错误;B、2a•3a=6a2,故错误;C、(ab3)2=a2b6,故错误;D、2m3n÷(mn)=2m2,正确;故选:D.4.【解答】解:A、不可能事件发生的概率是0,故A符合题意;B、打开电视机正在播放动画片,是随机事件,故B不符合题意;C、随机事件发生的概率是0<P<1,故C不符合题意;D、对“梦想的声音”节目收视率的调查,宜采用抽样调查,故D不符合题意;故选:A.5.【解答】解:∵AB∥CD,∠C=40°,∴∠ABC=40°,∵CB平分∠ABD,∴∠ABD=80°,∴∠D=100°.故选B.6.【解答】解:,由①得,x>﹣2;由②得,x≤3;可得不等式组的解集为﹣2<x≤3,在数轴上表示为:故选C.7.【解答】解:由题意得,解得xx≥﹣3且x≠0,故选A.8.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠EAB=∠DEF,∠AFB=∠DFE,∴△DEF∽△BAF,∵S△DEF :S△ABF=4:25,∴DE:AB=2:5,∵AB=CD,∴DE:EC=2:3.故选B.9.【解答】解:∵∠A=22.5°,∴∠BOC=2∠A=45°,∵⊙O的直径AB垂直于弦CD,∴CE=DE,△OCE为等腰直角三角形,∴CE=OC=2,∴CD=2CE=4.故选:C.10.【解答】解:“上”字共有四个端点每次每个端点增加一枚棋子,而初始时内部有两枚棋子不发生变化,所以第20个“上”字需要4×20+2=82枚棋子.故选B.11.【解答】解:如图,过C点作FG⊥AB于F,交DE于G.∵CD与地面DE的夹角∠CDE为12°,∠ACD为80°,∴∠ACF=∠FCD﹣∠ACD=∠CGD+∠CDE﹣∠ACD=90°+12°﹣80°=22°,∴∠CAF=68°,在Rt△ACF中,CF=AC•sin∠CAF≈0.744m,在Rt△CDG中,CG=CD•sin∠CDE≈0.336m,∴FG=FC+CG≈1.1m.故跑步机手柄的一端A的高度约为1.1m.故选C.12.【解答】解:设矩形OABC中OA=2a,AB=2b,∵D、E分别是AB,OA中点,∴点D(b,2a)、E(0,a),如图,过点F作FP⊥BC于点P,延长PF交OA于点Q,∵四边形OABC是矩形,∴∠QOC=∠OCP=∠CPQ=90°,∴四边形OCPQ是矩形,∴OQ=PC,PQ=OC=2b,∵FP⊥BC、AB⊥BC,∴FP∥DB,∴△CFP∽△CDB,∴==,即,可得CP=,FP=,则EQ=EO﹣OQ=a﹣=,FQ=PQ﹣PF=2b﹣=,∵△DEF的面积为6,∴S梯形ADFQ ﹣S△ADE﹣S△EFQ=6,即•(b+b)•a﹣ab﹣×b•=6,可得ab=,则k=2ab=,故选:B二、填空题:(本大题共6小题,每小题4分,共24分)13.【解答】解:将1350000用科学记数法表示为:1.35×106.故答案为:1.35×106.14.【解答】解:2tan60°﹣|1﹣|﹣(﹣)﹣2=2+1﹣2﹣9=﹣8.故答案为:﹣8.15.【解答】解:∵AB=2AD=4,AE=AD,∴AD=2,AE=4.DE===2,∴直角△ADE中,cos∠DAE==,∴∠DAE=60°,则S△ADE =AD•DE=×2×2=2,S扇形AEF==,则S阴影=S扇形AEF﹣S△ADE=﹣2.故答案是:﹣2.16.【解答】解:∵二次函数y=2x2﹣4x﹣1的开口向上且对称轴为直线x=﹣=2,∴当x>2时,y随x 的增大而增大,∵当x>a时,y随x 的增大而增大,∴a=2或3,∵解关于x的分式方程+2=得x=,∵关于x的分式方程+2=有整数解,∴a=3,∴概率为,故答案为:.17..【解答】解:小刚比赛前的速度v1==100(米/分),设小强比赛前的速度为v2(米/分),根据题意得2×(v1+v2)=440,解得v2=120米/分,小刚的速度始终是180米/分,小强的速度开始为220米/分,他们的速度之差是40米/分,10分钟相差400米,设再经过t分钟两人相遇,则180t+120t=400,解得t=(分)所以小刚从家出发到他们再次相遇时5+10+=(分).故答案为.18.【解答】解:连接DF,∵四边形ABCD为正方形,∴BC=CD,∠BCD=90°,∴∠BCM+∠MCD=90°,∵BM⊥CH,∴∠BMC=90°,∴∠BCM+∠MBC=90°,∴∠MCD=∠MBC,∵DE∥BM,∴∠DGC=∠BMG=90°,∴∠DGC=∠BMC=90°,∴△BMC≌△CGD,∴BM=CG=12,CM=DG,∵PF=DG,∴PF=DG=CM,在△ABE和△ADE中,∵,∴△ABE≌△ADE(SAS),∴BE=ED,∠AEB=∠AED,∴∠BEF=∠FED,∵DE∥BM,∴∠DEF=∠EFB,∴∠BEF=∠EFB,∴BE=BF,∴BE=BF=ED,∴四边形EBFD是菱形,∴∠BFE=∠EFD,∴GD=PF,GD∥PF,∴四边形GPFD是平行四边形,∴GP∥DF,∴∠BPG=∠BFD,∵∠BPK=∠KPG,∴2∠BPK=2∠BFE,∴∠BPK=∠BFE,∴PK∥EF,∴△BPK∽△BFE,∴=,设BP=3x,BF=5x,则PF=CM=DG=2x,EG=3x,∵FM∥DE,∴△CFM∽△CEG,∴,∴,∴FM=,∵BM=12,∴BF+FM=12,5x+=12,解得:x1=2,x2=﹣12(舍),∴EG=3x=6;FM==2,CM=2x=4,∵∠BKP=∠BPK,∴BK=BP=3x=6,∵BF=5x=10,∴EK=10﹣6=4,设AC与KG交于点O,过K作KP⊥AC于P,过G作GQ⊥AC于Q,则KP∥GQ,∵∠BEF=∠DEF,∴==,∵∠BEF=∠BFE=∠CFM,∴tan∠BEF=tan∠CFM====2,∵EK=4,∴KP=,EP=,同理得:GQ=,EQ=,∴PQ=EQ﹣EP=﹣=,∵KP∥GQ,∴△KPO∽△GQO,∴=,∴,∴OP=×PQ=×=,由勾股定理得:OK===,∴OG=,∴KG=OK+OG=,∴==;故答案为:.三、解答题:(本大题共2个小题,每小题7分,共14分)请把答案写在答题卡上对应的空白处,解答时每小题必须给出必要的演算过程或推理步骤.19.【解答】证明:∵AD平分∠EDC,∴∠ADE=∠ADC,在△AED和△ACD中,∵∴△AED≌△ACD(SAS),∴∠C=∠E,又∵∠E=∠B.∴∠C=∠B,∴AB=AC.20.【解答】解:(1)共抽取的同学人数=6÷30%=20(人),睡眠时间7小时左右的人数=20×=5(人),睡眠时间8小时左右的人数=20﹣6﹣2﹣3﹣5=4(人),按照睡眠时间从小到大排列,各组人数分别为2,3,6,5,4,睡眠时间分别为4,5,6,7,8,共有20个数据,第10个和第11个数据都是6小时,它们的平均数也是6小时,∴同学们的睡眠时间的中位数是6小时左右;故答案为:20,6;将条形统计图补充完整如图所示:(2)∵平均数为(4×8+6×6+2×4+3×5+5×7)=6.3(小时),∴估计年级每个学生的平均睡眠时间约6.3小时.四、解答题:(本大题共4个小题,每小题10分,共40分)请把答案写在答题卡上对应的空白处,解答时每小题必须给出必要的演算过程或推理步骤.21.【解答】解:(1)原式=3a2+3a﹣9+a2﹣4a2﹣1+4a=7a﹣10.(2)原式=(﹣x+2)÷=×=﹣.22.【解答】解:(1)过点A作AE⊥x轴于E,∵tan∠AOC=,AO=,∴Rt△AOE中,AE=1,OE=3,∵点A在第二象限,∴A(﹣3,1),∵反比例函数y=(k≠0)的图象过点A,∴k=﹣3×1=﹣3,∴反比例函数的解析式为y=﹣,∵一次函数y=ax﹣2(a≠0)的图象过点A,∴1=﹣3a﹣2,解得a=﹣1,∴一次函数的解析式为y=﹣x﹣2;(2)一次函数的解析式y=﹣x﹣2中,令x=0,则y=﹣2,∴D(0,﹣2),∵点F是点D关于x轴的对称点,∴F(0,2),∴DF=2+2=4,解方程组,可得或,∴B(1,﹣3),∵△ADF面积=×DF×CE=6,△BDF面积=×DF×|xB|=2,∴△ABF的面积=△ADF面积+△BDF面积=6+2=8.23.【解答】解:(1)设每台小太阳为x元,则每台壁挂式电暖器的售价为(5x+100)元,∵2014年1月份(春节前期)共销售500件,每台壁挂式电暖器与小太阳销量之比是4:1,∴每台壁挂式电暖器与小太阳销量分别为:400件和100件,根据题意得出:400(5x+100)+100x=586000,解得:x=260,∴5x+100=1400(元),答:每台壁挂式电暖器和小太阳的售价为:1400元,260元;(2)∵2014年2月份每台壁挂式电暖器销量下滑了6m%,售价下滑了4m%,小太阳销量和售价都维持不变,结果销售总收入下降为16.04万元,∴400(1﹣6m%)×1400×(1﹣4m%)+100×260=160400解得:m1=10,m2=(不合题意舍去),答:m的值为10.24.【解答】解:(1)724﹣2×5=714,71﹣4×5=51,51÷17=3,所以7242能被17整除,是“灵动数”;209875﹣4×5=209855,20985﹣5×5=20960,2096﹣0×5=2096,209﹣6×5=179,179÷17=10…9,所以209875不能被17整除,不是“灵动数”;(2)∵51×52<2700,51×55>2800,51×53=2703,51×54=2754,∴这个数是2703或2754.五、解答题:(本大题共2个小题,每小题12分,共24分)请把答案写在答题卡上对应的空白处,解答时每小题必须给出必要的演算过程或推理步骤.25.【解答】解:(1)如图1∵等腰直角△ABC中,∠ACB=90°,CA=CB,CD为斜边AB上的中线.∴CD⊥AB,∠ACD=45°过点F作FM⊥AC,∵AE平分∠CAB,∴FM=FD=2在Rt△CMF中,∠ACD=45°,∴CF=MF=2,∴CD=CF+FD=2+2,∵CD是等腰直角三角形斜边的中线,∴AC=CD=(2+2)=4+2;(2)如图2,连接DP,DQ,∵△ADC绕点D顺时针旋转一定角度得到△ADN,∴AN=BC,DN=CD=DB,△ADN是等腰直角三角形,∵△BCD是等腰直角三角形,点Q是BC中点,∴DQ=BC=×BD=DN,∵点P是AN中点,∴DP=AN=BC=DQ,∴=,∵∠NDP=∠CDQ=45°,∴∠PDQ=∠PDN+∠CDN+∠CDQ=90°+∠CDN,∵∠NDB=∠CDN+∠CDB=90°+∠CDN,∴∠PDQ=∠NDB,∵=,∴△PDQ∽△NDB,∴=,∴BN=PQ.(3)BM﹣MN=2CH.理由:如图3,在BN上截取BG=BD,连接CG,CM,∵△ADC绕点A顺时针旋转一定角度到△AMN,∴MN=AM=AD=CD=DB,∴MN=AM=BG,根据三角形的内角和,得∠MAC=∠GBC,在△ACM和△BCG中,,∴△ACM≌△BCG,∴∠ACM=∠BCG,∴∠MCG=∠ACM+∠ACG=∠BCG+∠A CG=90°,∴△MCG是直角三角形,∵H为BN中点,∴BH=NH,∵BG=MN,∴HG=HM,在Rt△MCG中,HG=HM,∴MG=2CH,∴BM=BG+MG=MN+2CH,∴BM﹣MN=2CH.26.【解答】解:(1)对于抛物线y=x2+2x﹣3,令y=0,得x2+2x﹣3=0,解得x=﹣3或1,∴A(﹣3,0),B(1,0),令x=0,得y=﹣3,∴C(0,﹣3),∵抛物线y=x2+2x﹣3=(x+1)2﹣4,∴顶点D坐标为(﹣1,﹣4),设直线AC的解析式为y=kx+b,则有,解得,∴直线AC的解析式为y=﹣x﹣3,点D坐标(﹣1,﹣4).(2)如图1中,设P(m,m2+2m﹣3),由题意,当PR最大时,△ACP的面积最大,即四边形APCO的面积最大,∵S四边形APCO =S△AOP+S△POC﹣S△AOC=•3•(﹣m2﹣2m+3)+•3•(﹣m)﹣•3•3=﹣m2﹣m=﹣(m+)2+,∴当m=﹣时,四边形APCO的面积最大,即PR最长,∴P(﹣,﹣),将点P沿BE方向平移个单位得到G(﹣,﹣),作点A关于直线BE的对称点K,连接GK交BE于M,此时四边形APNM的最长最小,∵直线BE的解析式为y=﹣x+,直线AK的解析式为y=2x+6,由解得,∴J(﹣,),∵AJ=JK,∴k(﹣,),∴直线KG的解析式为y=x+,由解得,∴M(﹣2,),将点M向下平移1个单位,向右平移2个单位得到N,∴N(0,).(3)存在.⊥AD时,重叠部分是Rt△FKQ,作QM⊥DF于M.①如图2中,当FD1由题意可知F(﹣1,﹣2),DF=2,AF=2,AC=3,AD=2由△AKF∽△ACD,得==,∴==∴FK=,AK=,∴DK==,设QK=QM=x,在Rt△QMD中,x2+(2﹣)2=(﹣x)2,∴x=1﹣,∴AQ=AK+KQ=1+,此时AQ=.②如图3中,当FQ⊥AD时,重叠部分是Rt△FQD1③如图4中,当QD⊥AC时,重叠部分是Rt△QMF.1设QM=QK=x,在Rt△AQM中,x2+(2﹣)2=(﹣x)2,∴x=﹣,∴AQ=AK﹣QK=﹣(﹣)=﹣.FQ与△AFQ重叠部分的图形是直角三角形时,AQ的长为1+综上所述,当△D1或或﹣.。

2018-2019学年重庆市渝中区巴蜀中学九年级(上)期末数学试卷(含解析)

2018-2019学年重庆市渝中区巴蜀中学九年级(上)期末数学试卷(含解析)

2018-2019学年重庆市渝中区巴蜀中学九年级(上)期末数学试卷一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑)1.(4分)在有理数﹣6,3,0,﹣7中,最小的数是()A.﹣6B.3C.0D.﹣72.(4分)如图是由几个相同的小正方体堆砌成的几何体,它的左视图是()A.B.C.D.3.(4分)在函数y=中,自变量x的取值范围是()A.x>2B.x≤2且x≠0C.x<2D.x>2且x≠04.(4分)下列图形都是由同样大小的地砖按照一定规律所组成的,其中第①个图形中有4块地砖,第②个图形中有9块地砖,第③个图形中有16块地砖,…,按此规律排列下去,第9个图形中地砖的块数为()A.81B.99C.100D.1215.(4分)如图,△ABC中,DE∥BC且=,若△ABC的面积等于,则四边形DBCE 的面积为()A.B.C.D.46.(4分)下列命题是真命题的是()A.一组对边平行,且另一组对边相等的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.四边都相等的矩形是正方形D.对角线相等的四边形是矩形7.(4分)估计(﹣)的值应在()A.0和1之间B.1和2之间C.2和3之间D.3和4之间8.(4分)按如图所示的程序运算,如果输出y的结果是4,则输入x的值可能是()A.±2B.2或3C.﹣2或3D.±2或39.(4分)如图,以Rt△ABC的直角边AB为直径作⊙O交BC于点D,连接AD,若∠DAC =30°,DC=1,则⊙O的半径为()A.2B.C.2﹣D.110.(4分)如图,小明站在某广场一看台C处,测得广场中心F的俯角为21°,若小明身高CD=1.7米,BC=1.9米,BC平行于地面F A,台阶AB的坡度为i=3:4,坡长AB=10.5米,则看台底端A点距离广场中心F点的距离约为()米.(参考数据:sin21°≈0.36,cos21°≈0.93,tan21°≈0.38)A.8.9B.9.7C.10.8D.11.911.(4分)若数a使关于x的二次函数y=x2+(a﹣1)x+b,当x<﹣1时,y随x的增大而减小;且使关于y的分式方程+=2有非负数解,则所以满足条件的整数a的是()A.﹣2B.1C.0D.312.(4分)如图,已知Rt△ABC的直角顶点A落在x轴上,点B、C在第一象限,点B的坐标为(,4),点D、E分别为边BC、AB的中点,且tan B=,反比例函数y=的图象恰好经过D、E,则k的值为()A.B.8C.12D.16二、填空题:(本大题共6个小题,每小题4分,共24分)在每个小题中,请将正确答案书写在答题卡(卷)中对应的位置上13.(4分)计算:|1﹣|+(π﹣3.14)0+=.14.(4分)如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=2,以BC为直径的半圆O 交AB于点D,则图中阴影部分的面积为(结果保留π).15.(4分)如图,在4×4正方形网格中,有4个涂成黑色的小方格,现在任意选取一个白色的小方格涂成黑色,则使得黑色部分的图形构成轴对称图形的概率为.16.(4分)如图,在Rt△ABC中,∠ABC=90°,把△ABC沿斜边AC折叠,使点B落在B’,点D,点E分别为BC和AB′上的点,连接DE交AC于点F,把四边形ABDE沿DE折叠,使点B与点C重合,点A落在A′,连接AA′交B′C于点H,交DE于点G.若AB=3,BC=4,则GE的长为.17.(4分)一天学生小明早上从家去学校,已知小明家离学校路程为2280米(小明每次走的路程),小明从家匀速步行了105分钟后,爸爸发现小明的一科作业忘带,爸爸立刻拿起小明忘带的作业匀速跑步追赶小明,追上小明后爸爸立即将作业交给小明,小明继续以原速向学校行走(假定爸爸将作业交给小明的时间忽略不计),爸爸将作业带给小明后,原地接了2分钟的电话后,立即以更快的速度匀速返回家中.小明和爸爸两人相距的路程y(米)与小明出发的时间x(分钟)之间的关系如图所示,则爸爸到达家时,小明与学校相距的路程是米.18.(4分)某水果销售商在年末准备购进一批水果进行销售,经过市场调查,发现芒果、车厘子、奇异果、火龙果比较受顾客的喜爱,于是制定了进货方案.其中芒果、车厘子的进货量与奇异果、火龙果的进货量分别相同,而芒果、车厘子的单价与火龙果、奇异果的单价分别相同,已知芒果和车厘子的单价和为每千克180元,且芒果和车厘子的进货总价比奇异果和火龙果的进货总价多863元.由于年末资金周转不开,所以临时决定只购进芒果和车厘子,芒果和车厘子的进货量与原方案相同,且进货量总数不超过300kg,则该水果商最多需要准备元进货资金.三、解答题:(本大题2个小题,第19小题8分,第20小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡卷)中对应的位置上19.(8分)先化简,再求值:÷(a﹣2﹣)+,其中a2﹣2a﹣6=0 20.(8分)如图,直线AB∥CD,EF平分∠AEG,∠DFH=13°,∠H=21°,求∠EFG 的度数.四、解答题:(本大题5个小题,每小题10分,共50分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡卷)中对应的位置上21.(10分)如图,在平面直角坐标系中,直线l1与x轴交于点B,与y轴交于点C,直线l1与直线l2:y=﹣x交于点A,将直线l2:y=﹣x沿射线AB的方向平移得到直线l3,当l3经过点B时,与y轴交点记为D点,已知A点的纵坐标为2,sin∠ABO=.(1)求直线BC的解析式;(2)求△ABD的面积.22.(10分)距离中考体考时间越来越近,年级想了解初三年级2200名学生周末进行体育锻炼的情况,在初三年级随机抽查了20名男生和20名女生周末每天的运动时间进行了调查并收集到了以下数据(单位:min)男生:20 30 40 45 60 120 80 50 100 45 85 90 9070 90 50 90 50 70 40女生:75 30 120 70 60 100 90 40 75 60 75 75 8090 70 80 50 80 100 90根据统计数据制作了如下统计表:两组数据的极差、平均数、中位数、众数如下表所示:(1)请将上面两个表格补充完整:a=,b=,c=;(2)请根据抽样调查的数据估计初三年级周末每天运动时间在100分钟以上的同学大约有多少人?(3)李老师看了表格数据后认为初三年级的女生周末体锻坚持得比男生好,请你结合统计数据,写出支持李老师观点的理由.23.(10分)春节即将来临,根据习俗每家每户都会在门口挂红灯笼和贴对联.某商店看准了商机,准备购进一批红灯笼和对联进行销售,已知对联的进价比红灯笼的进价少10元,若用720元购进对联的数量比用720元购进红灯笼的数量多50件.(1)对联和红灯笼的单价分别为多少?(2)由于销售火爆,第一批售完后,该商店以相同的进价再购进300幅对联和200个红灯笼,已知对联的销售价格为12元一幅,红灯笼的销售价格为24元一个销售一段时间后发现对联售出了总数的,红灯笼售出了总数的,为了清仓,该店老板决定对剩下的红灯笼和对联以相同的折扣数打折销售,并很快全部售出,问商店最低打几折,才能使总的利润率不低于20%?24.(10分)已知平行四边形ABCD,过点A作BC的垂线,垂足为E,且满足AE=EC,过点C作AB的垂线,垂足为F,交AE于点G,连接BG,(1)如图1,若AC=,CD=4,求EG的长度;(2)如图2,取BE的中点K,在EC上取一点H,使得点K和点E为BH的三等分点,连接AH,过点K作AH的垂线,交AC于点Q,求证:BG=2CQ.25.(10分)阅读材料,解决问题:某数学学习小组在阅读数学史时,发现了一个有趣的故事;古希腊神话中的米诺斯王嫌别人为他建造的坟墓太小,命令将其扩大一倍,并说只要将每边扩大一倍就行,这当然是错误的,但这类问题却引出了著名的几何问题:倍立方问题.此时他们刚好学习了平面几何,所以甲同学提出:“任意给定一个正方形,是否存在另外一个正方形,它的周长和面积分别是已知正方形周长和面积的2倍呢?”,对于这个问题小组成员很快给出了解答:设原正方形的边长为a,则周长为4a,面积为a2∵另一个正方形的周长为2×4a=8a∴此时边长为2a,面积为(2a)2=4a2≠2a2∴不存在这样的正方形,它的周长和面积分别是已知正方形周长和面积的2倍.虽然甲同学的问题得到了很快的解决,但这一问题的提出触发了其他小组成员的积极思考,进一步乙同学提出:“任意给定一个矩形,是否存在另外一个矩形,它的周长和面积分别是已知矩形周长和面积的2倍呢?”通过讨论,他们决定先研究:“已知矩形的长和宽分别为m和1,是否存在另外一个矩形,它的周长和面积分别是已知矩形周长和面积的2倍呢?”,并给出了如下解答过程:设所求矩形的长为x,则根据题意可表示出所求矩形的宽为2(m+1)﹣x那么可建立方程:x•[2(m+1)﹣x]=2m∵判别式△=4m2+4>0∴原方程有解,即结论成立.根据材料解决下列问题(1)若已知一个矩形的长和宽分别为3和1,则是否存在另一个矩形,它的周长和面积分别是已知矩形周长和面积的一半呢?若存在,请求出此矩形的长和宽;若不存在,请说明理由;(2)若已知一个矩形的长和宽分别为m和1,且一定存在另一个矩形的周长和面积分别是已知矩形周长和面积的k倍,求k的取值范围(写明解答过程).五、解谷题:(本大题1个小题,共12分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上.26.(12分)如图1,抛物线y=﹣x2+x+6与x轴交于A、B(B在A的左侧)两点,与y轴交于点C,将直线AC沿y轴正方向平移2个单位得到直线A′C′,将抛物线的对称轴沿x轴正方向平移个单位得到直线l.(1)求直线AC的解析式;(2)如图2,点P为直线A′C′上方抛物线上一动点,连接PC,P A与直线AC分别交于点E、F,过点P作PP1⊥l于点P1,M是线段AC上一动点,过M作MN⊥A′C′于点N,连接P1M,当△PCA的面积最大时,求P1M+MN+NA′的最小值;(3)如图3,连接BC,将△BOC绕点A顺时针旋转60°后得到△B1O1C1,点R是直线l上一点,在直角坐标平面内是否存在一点S,使得以点O1、C1、R、S为顶点的四边形是矩形?若存在,求出点S的坐标;若不存在,请说明理由.2018-2019学年重庆市渝中区巴蜀中学九年级(上)期末数学试卷参考答案与试题解析一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑)1.【解答】解:∵﹣7<﹣6<0<3,所以最小的数是﹣7,故选:D.2.【解答】解:它的左视图是故选:A.3.【解答】解:由题意得,2﹣x≥0且x≠0,解得x≤2且x≠0.故选:B.4.【解答】解:第①个图形中有22=4块地砖,第②个图形中有32=9块地砖,第③个图形中有42=16块地砖,…,第n个图形中有(n+1)2块地砖,第9个图形中地砖的块数为102=100块地砖,故选:C.5.【解答】解:∵DE∥BC,AD:BD=1:2,∴△ADE∽△ABC,AD:AB=1:3,∴=()2=,∵△ABC的面积等于,∴△ADE的面积为,∴四边形DBCE的面积=﹣=4,故选:D.6.【解答】解:A、一组对边平行且相等的四边形是平行四边形,所以A选项错误;B、对角线互相垂直的平行四边形是菱形,所以B选项错误;C、四边都相等的矩形是正方形,所以C选项正确;D、对角线相等的平行四边形是矩形,所以D选项错误.故选:C.7.【解答】解:∵(﹣)=﹣3,<<,∴1<﹣3<2.故选:B.8.【解答】解:当y=4时,x=或x=4﹣1=3,故选:C.9.【解答】解:∵AB是⊙O的直径,∴∠BDA=∠ADC=90°,∵∠DAC=30°,DC=1,∴AC=2DC=2,∠C=60°,则在Rt△ABC中,AB=AC tan C=2,∴⊙O的半径为,故选:B.10.【解答】解:如图,作BM⊥F A交F A的延长线于M,延长DC交F A的延长线于N.∵BM:AM=3:4,AB=10.5米,∴BM=6.3(米),AM=8.4(米),在Rt△DNF中,tan21°=,∴=0.38,∴FN≈21.05(米),∴AF=FN﹣AM﹣MN=21.05﹣8.4﹣1.9≈10.8(米),故选:C.11.【解答】解:解分式方程+=2可得y=,∵分式方程+=2的解是非负实数,∴a≥﹣2,∵y=x2+(a﹣1)x+b,∴抛物线开口向上,对称轴为x=,∴当x<时,y随x的增大而减小,∵在x<﹣1时,y随x的增大而减小,∴≤﹣1,解得a≥3,综上可知满足条件的a的值为3,故选:D.12.【解答】解:如图,过点C作CM⊥OA于点M,过点B作BN⊥OA于点N,∵点B的坐标为(,4),∴BN=4,ON=,∵tan B=∴AB=2AC∵∠BAC=90°∴∠CAM+∠BAN=90°,且∠CAM+∠MCA=90°∴∠MCA=∠BAN,且∠CMA=∠BNA=90°,∴△ACM∽△BAN∴∴AM=2,AN=2CM,设点C(a,b)∴CM=b,OM=a,AN=2b∴点A(a+2,0),a+2+2b=∴b=a∵点D、E分别为边BC、AB的中点,∴点D(,),点E(,2)∵反比例函数y=的图象恰好经过D、E∴k=()(﹣)=(a)×2∴a=,k=12故选:C.二、填空题:(本大题共6个小题,每小题4分,共24分)在每个小题中,请将正确答案书写在答题卡(卷)中对应的位置上13.【解答】解:原式=﹣1+1+2=3.故答案为:3.14.【解答】解:连接OD,∵△ABC是等腰直角三角形,∴∠B=45°,∴∠DOC=90°,∵AC=BC=2,∴OD=OC=OB=1,∴图中阴影部分的面积=S△BOD+S扇形DOC=×1×1+=+,故答案为:+.15.【解答】解:如图,若要使得黑色部分的图形构成轴对称图形有如图所示的三种可能,∴使得黑色部分的图形构成轴对称图形的概率为=,故答案为:.16.【解答】解:由题意四边形ABCA′是矩形,BD=CD=2,AG=GA′=2,∵BC∥AA′,∴∠BCA=∠CAA′,∵∠ACB=∠ACB′,∴∠HCA=∠HAC,∴HC=HA,设HC=HA=x,在Rt△CA′H中,x2=32+(4﹣x)2,∴x=,∴A′H=4﹣=,由△CA′H∽△AGE,可得:=,∴=,∴EG=.17.【解答】解:由题意知,图形的纵坐标表示为两人相距的路程,横坐标表示为小明的出发时间,从0~10.5s时,小明自己走,爸爸还有出发,∴小明的速度v1=630÷10.5=60米/秒从10.5~21s时,爸爸开始从家出发,并在时间t=21s时追上小明∴此时小明的路程为:60×21=1260米∴爸爸的速度为v2=1260÷(21﹣10.5)=120米/秒∴,爸爸送完作业返回家时的速度==140,∴爸爸到家用时:21+=30,∴此时小明与学校相距的距离为:2280﹣32×60=360米,故答案为360.18.【解答】解:设芒果、车厘子的进货量为xkg,奇异果、火龙果的进货量为ykg,设芒果、车厘子单价为m元/kg,则奇异果、火龙果的单价(180﹣m)元/kg,由题意得:mx+y(180﹣m)﹣[x(180﹣m)+ym]=863,2mx﹣2my+180y﹣180x=863,由于临时决定只购进甲、乙两种组合,且进货量总数不超过300kg,x+y≤300,设进货总资金为W元,W=mx+y(180﹣m)=mx+180y﹣my=(863﹣180y+180x)+180y=+90(x+y)≤+90×300=27431.5,所以该销售商最多需要准备27431.5元进货资金.故答案为:27431.5.三、解答题:(本大题2个小题,第19小题8分,第20小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡卷)中对应的位置上19.【解答】解:÷(a﹣2﹣)+=====,∵a2﹣2a﹣6=0,∴a2=2a+6,∴原式==2.20.【解答】解:∵∠DFH=13°,∠H=21°,∴∠EGF=13°+21°=34°,∵AB∥CD,∴∠AEG+∠FGE=180°,∴∠AEG=146°,∵EF平分∠AEG,∴∠AEF=∠AEG=73°,∵AB∥CD,∴∠EFG=∠AEF=73°.四、解答题:(本大题5个小题,每小题10分,共50分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡卷)中对应的位置上21.【解答】解:(1)∵点A在直线l2上,A点的纵坐标为2,∴A(﹣4,2),∵sin∠ABO=,∴B(﹣7,0),设直线BC的解析式的解析式为:y=kx+b,把A,B两点的坐标代入得,,∴,∴直线BC的解析式为y=x+;(2)设直线l3的解析式为:y=﹣x+n,把B(﹣7,0)代入得,n=﹣,∴直线l3的解析式为:y=﹣x﹣,∴D(0,﹣),∵l2∥l3,∴S△ABD=S△BOD=OB•OD=×7×=.22.【解答】解:(1)由题意可得:a=12;20名男生周末每天的运动时间按从小到大的顺序排列为:20 30 40 40 45 45 5050 50 60 70 70 80 85 90 90 90 90 100 120,处在中间的两个数为60和70,∴b==65;∵90出现的次数最多,∴c=90;故答案为:12,65,90;(2)由题意可得:2200×=275(人)答:初三年级周末每天运动时间在100分钟以上的同学大约有275人;(3)①因为女生周末体锻时间的平均数大于男生;②因为女生周末体锻时间的中位数大于男生.23.【解答】解:(1)设对联的进货单价为x元/幅,则红灯笼的进货单价为(x+10)元/个,依题意,得:﹣=50,解得:x=8,经检验,x=8是所列分式方程的解,且符合题意,∴x+10=18.答:对联的进货单价为8元/幅,红灯笼的进货单价为18元/个.(2)设该店老板决定对剩下的红灯笼和对联打y折销售,依题意,得:×300×(12﹣8)+×200×(24﹣18)+×300×(12×﹣8)+×200×(24×﹣18)≥(300×8+200×18)×20%,解得:y≥5.答:商店最低打5折,才能使总的利润率不低于20%.24.【解答】解:(1)∵AE⊥BC,AE=EC,AC=,∴在Rt△AEC中,AE=EC=,∵AB⊥CF,∴∠ABE+∠BAE=∠ABE+∠BCF=90°,∴∠BAE=∠BCF在△AEB和△CEG中,∴△AEB≌△CEG(ASA),∵四边形ABCD为平行四边形,∴AB=CD=4,∴在Rt△AEB中,BE=,∴GE=BE=;(2)证明:取GE的中点M,连接KM,MC,∴GM=ME,∵点K和点E为BH的三等分点,∴KE=EH=BK,∴KM为△BEG的中位线,∴KM∥BG,KM=BG,由(1)知△AEB≌△CEG,∴BE=GE,∴ME=EH,∴∠MKE=∠GBE=∠ACE=45°,在△AEH和△CEM中,∴△AEH≌△CEM(SAS),∴∠EAH=∠ECM,∵AH⊥QK,∴∠EAH=∠QKE,∴∠KCM=∠QKE,在△KMC和△CQK中,∴△KMC≌△CQK(ASA),∴KM=CQ,25.【解答】解:(1)设所求矩形的长为x,则它的宽为(2﹣x).由题可得:x(2﹣x)=∵△=﹣8<0∴原方程无解∴不存在另一个矩形,它的周长和面积分别是已知矩形周长和面积的一半.(2)设所求矩形的长为x,则所求矩形的宽为:k(m+1)﹣x由题意得:x•[k(m+1)﹣x]=km整理得:x2﹣k(m+1)x+km=0△=k2m2+k2+2k2m﹣4km∵一定存在另一个矩形的周长和面积分别是已知矩形周长和面积k倍∴△≥0 即:k2m2+2k2m﹣4km+k2≥0,整理得m2+(2﹣)m+1≥0令y=m2+(2﹣)m+1,为开口向上的抛物线则由y≥0,可得:(2﹣)2﹣4≤0解得:k≥1∴当k≥1时,结论成立五、解谷题:(本大题1个小题,共12分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上.26.【解答】解:(1)令y=0,则﹣x2+x+6=0,解得x1=6,x2=﹣2,∵B在A的左侧∴A(6,0),B(﹣2,0)令x=0,则y=6,即C(0,6),设直线AC解析式为y=kx+b,把A(6,0),C(0,6)代入,∴,解得:,所以直线AC解析式为:.(2)如图,过P作PH⊥x轴交AC于点H,∴S△PCA=PH•(x A﹣x C)=3PH,∴当PH取最大值时,S△PCA最大,设P(m,m2+m+6),H(m,m+6),∴PH=m2+m,(0<m<6),=(m﹣3)2+,∴当m=3时,PH取最大值,此时P(3,),在抛物线y=﹣x2+x+6中,对称轴为x==2,∴由平移知直线l为:x=,∴P1(,),设直线l与x轴的垂足为Q,连接P1A,在Rt△P1AQ中,QA=,P1Q=,P1A=5,∴tan∠P1AQ=,∴∠P1AQ=60°,作P1关于直线AC的对称点P1′,连接P1P1′,与直线AC、A’C’分别交于S、T点,则△AP1P1′是等边三角形,∴P1′A=P1A=5,P1′(,0),∵MN⊥AC,CC'=2,∠C'A'A=30°,∴MN=,将P1′沿MN方向平移个单位得到P1′'(,),将直线A’C’绕点A’顺时针旋转45°得到直线l1,过点P1′'作P1′'G⊥l1于点G,与A’C’的交点即为N点,易知△P1′'TN和△A'GN都为等腰直角三角形,∴P1′'N=P1′'T=,A'N=A'T﹣TN=,∴GN=﹣,∴(P1M+MN+NA′)最小=+;(3)连接OO1,则△OO1B为等边三角形,∴∠O1OA=∠OAO1=∠OO1A=60°,OO1=O1A=OA=6,∴O1(3,9),B1(2,12),C1(6,12),①如图2﹣1,当四边形Q1RS1C1为矩形时,x R﹣x O1=﹣3=,∵由题意知,QR与直线l的夹角为30°,∴y Q1﹣y R=×=,∴x S1=x C1+=,y S1=y C1﹣=,∴S1(,),同理可求出S2(,),S3(,﹣),S4(,+),综上所述:在直角坐标平面内存在一点S,使得以点O1、C1、R、S为顶点的四边形是矩形,坐标是S1(,),S2(,),S3(,﹣),S4(,+).。

巴蜀中学初2017级初三数学试题

巴蜀中学初2017级初三数学试题

巴蜀中学初2017级初三数学试题一、选择题(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。

1.12017-的倒数是( ) A .2017 B .12017 C .2017- D .12017- 2.下列图形既是轴对称图形又是中心对称图形的是( )A. B. C. D. 3.下列计算中,正确的是( )A . ()532x x = B .39= C . 422x x x =+ D .32633x x x =⋅4.下列说法中正确的是( )A .“打开电视,正在播放《新闻联播》”是确定事件B .“x 2<0(x 是实数)”是随机事件C .一组数据有五个数分别是3,6,2,4,9,这组数的极差是7,中位数是4D .为了了解夏季冷饮市场上冰淇淋的质量情况,宜采用普查方式调查 5.函数y =中,自变量x 的取值范围是( ) A .x >4 B .x ≥﹣2且x ≠4 C .x >﹣2且x ≠4 D .x ≠46.如图,l 1∥l 2,l 3⊥l 4,∠1=42°,那么∠2的度数为( )A .48°B .42°C .38°D .21°7.如图,AD 是△ABC 的边BC 上的中线,DE=2AE ,且24ABC S ∆=,则ABE S ∆为( )第6题图 B第7题图 第9题图A .4B .6C .8D .128.已知2x =是一元二次方程22(2)40m x x m -+-=的一个根,则m 的值为( ) A .2 B .0或2 C .0或4 D .09.如图,四个边长为1的小正方形拼出一个大正方形,,,A B O 是小正方形的顶点,O ⊙的半径为1,P 是O ⊙上的点,且位于右上方的小正方形内,则tan APB ∠等于( ) A .1BCD .1210.观察下列砌钢管的横截面图:则第13个图中的钢管数是( )A .271B .269C .273D .26711. 已知抛物线2y ax bx c =++(a ≠0)经过点(1,1)和(-1,0).下列结论:①0a b c -+=;②2b >4ac ;③当a <0时,抛物线与x 轴必有一个交点在点(1,0)的右侧;④抛物线的对称轴为14x a=-.其中结论正确的个数有( ) A .1个 B . 2个 C .3个 D .4个12. 若关于x 的不等式组⎪⎩⎪⎨⎧-≤-≥-13213x ax 无解,且关于y 的方程1222=-++-y a y y 的解为正数,则符合题意的整数a 有( )个. A .4 B .5C .6D .7二、填空题:(本大题共6个小题,每小题4分,共24分)13. 2016年上半年我国出国游人数达到5800万人次,将5800万用科学记数法表示为 14. 计算:()()2201613132π-⎛⎫---⨯- ⎪⎝⎭=__________15. △ABC 与△DEF 的相似比为1:3,若4=∆ABC S ,则DEF S ∆= .16.如图正方形ABCD 的边长为1,分别以A ,D 圆心,1为半径画弧AC ,BD 则图中阴影部分的面积是________.17.甲、乙两组工人同时开始加工某种零件,乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y (件)与时间x (时)之间的函数图象如图所示.甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,经过__________小时恰好装满第2箱.18.在正方形ABCD 中,P 是CD 中点,PE ⊥AC 于E 点,延长AP ,BE 交于点F,若PC=3则BF=____________.三、解答题(本大题共3个小题,共24分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题..卡.中对应的位置上. 19.(7分)如图,在△ABC 中, BE ⊥AC,CD ⊥AB 其中BD=CE 。

【最新试题库含答案】2017届九年级数学上期末试卷(含答案和解释)

【最新试题库含答案】2017届九年级数学上期末试卷(含答案和解释)

2017届九年级数学上期末试卷(含答案和解释) :篇一:2017届九年级上学期期末考试数学试题带答案(人教版)2016—2017学年上学期九年级数学期末检测试卷(全卷三个大题,共23个小题,共4页;满分120分,考试用时120分钟)注意事项:本卷为试题卷。

考生必须在答题卡上解题作答。

答案应写在答题卡的相应位置,在试卷上、草稿纸上作答无效。

一、填空题(本大题共6个小题,每小题3分,共18分) 1. 二次函数y=2(x﹣3)2+5的最小值为. 2. 如图,⊙O的直径AB经过弦CD的中点E,若∠C=25°, 则∠D= .3.若反比例函数的图象经过(-2,3),则其函数表达式为________________ .4. 若两个相似六边形的周长的比是3﹕2,其中较大一个六边形的面积为81,则较小一个六边形的面积为_____________ .2x,x是方程3x?2x?2?05.若1211??_________. x1x26. 一个圆锥的侧面展开图是半径为8cm、圆心角为120°的扇形,则此圆锥底面圆的半径为 cm.二、选择题(本大题共8个小题,每小题4分,共32分) 7. 下列既是轴对称图形又是中心对称图形的是()A.B.C. D.38. 反比例函数y??的图象上有P1(x1,﹣2),P2(x2,﹣3)两点,则xx1与x2的大小关系是()A. x1<x2B.x1=x2C.x1>x2D.不确定9. 事情“父亲的年龄比儿子的年龄大”属于()A.不可能事件B.可能事件C.不确定事件D.必然事件 10.直角三角形的两直角边长分别为3cm、4cm以直角顶点为圆心,2.4cm长为半径的圆与斜边的位置关系是() A.相交 B.相切 C.相离 D.无法确定11. 若x=1是一元二次方程x2+2x+m=0的一个根,则m的值为()A.3B.-3C.1D.-112. 将抛物线y=x2向右平移2个单位,再向上平移3个单位后,平移后的抛物线的解析式为( )A.y=(x+2)2+3B.y=(x-2)2+3C.y=(x+2)2-3D.y=(x-2)2-3 13. 如图,线段AB两个端点的坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB 缩1小为原来的CD,则端点C的坐标为2( )A.(3,3)B.(4,3)C.(3,1)D.(4,1) 14. 如图,AD是正五边形ABCDE 的一条对角线,则∠BAD=().A.36°B.30°C.72°D.60°三、解答题(本大题共9个小题,共70分) 15.解方程(共2个小题,共10分)2x?27?12x (2)3x2?2x?4?0 (1)16. (8分)如图,在△ABC中,AD⊥BC,BE⊥AC,垂足分别为D,E,AD与BE相交于点F.(1)求证:△ACD∽△BFD;(2)当AD?1,AC=3时,求BF的长. BD17. (7分)如图,在平面直角坐标系中,点A、B、C的坐标分别为(﹣1,3)、(﹣4,1)(﹣2,1),先将△ABC向右平移5个单位,向上平移1个单位得△A1B1C1,再将△A1B1C1绕原点O顺时针旋转90°得到△A2B2C2,点A1的对应点为点A2.(1)画出△A1B1C1;(2)画出△A2B2C2;(3)求点A1运动到点A2的路径总长.18.(8分,第(1)题5分,第(2)题3分)随着国家“惠民政策”的陆续出台,为了切实让老百姓得到实惠,国家卫计委通过严打药品销售环节中的不正当行为,某种药品原价200元/瓶,经过连续两次降价后,现在仅卖98元/瓶,现假定两次降价的百分率相同,求:(1)该种药品平均每次降价的百分率.(2)若按(1)中的百分率再降一次,则每瓶的售价将为多少元?19. (7分)小亮与小明学习概率初步知识后设计了如下游戏,小亮手中有三张分别标有数字-1,-2,-3的卡片,小明手中有三张分别标有数字1,2,3的卡片,均背面朝上,卡片形状、大小、质地等完全相同,现随机从小亮手中任取一张卡片,卡片的数用m表示;从小明手中任取一张卡片,卡片的数用n表示并记为点(m,n)(1)请你用树状图或列表法列出所有可能的结果;(2)求点(m,n)在函数y=-x的图象上的概率.20. (6分)如图,在平面直角坐标系xOy中,双曲线y?线y=﹣2x+2交于点A(﹣1,a).(1)求a,m的值;(2)求该双曲线与直线y=﹣2x+2另一个交点的坐标.21. (8分)如图,已知直线AB经过⊙O上的点C,且OA=OB,CA =CB.(1)求证:直线AB是⊙O的切线;(2)若∠A=30°,AC=6,求⊙O 的周长.m与直 xB22、(7分)如图,已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D. (1)求证:AC=BD;(2)若大圆的半径R=10,小圆的半径r=8,且圆心O直线AB的距离为6,求AC的长.到23.(9分)如图,对称轴为直线x=2的抛物线y=x2+bx+c与x轴交于点A和点B,与y轴交于点C,且点A的坐标为(﹣1,0)(1)求抛物线的解析式;(2)直接写出B、C两点的坐标;(3)求过O,B,C三点的圆的面积.(结果用含π的代数式表示)篇二:上海市2017届九年级上期末考试数学试卷含答案2016-2017学年第一学期教学质量调研测试卷一. 选择题a2a?,那么的值为() b3a?b1233A. ; B. ; C. ; D. ; 35542. 已知Rt△ABC中,?C?90?,BC?3,AB?5,那么sinB的值是() 1. 已知A. 3344;B. ;C. ;D. ; 54533. 将抛物线y?x2先向右平移2个单位,再向下平移3个单位,所得抛物线的函数解析式是()A. y?(x?2)2?3;B. y?(x?2)2?3;C. y?(x?2)2?3;D. y?(x?2)2?3;4. 如图,在△ABC中,点D、E分别在AB、AC上,?AED??B,那么下列各式中一定正确的是()A. AE?AC?AD?AB;B. CE?CA?BD?AB;C. AC?AD?AE?AB;D. AE?EC?AD?DB;5. 已知两圆的半径分别是3和5,圆心距是1,那么这两圆的位置关系是()A. 内切;B. 外切;C. 相交;D. 内含;6. 如图所示,一张等腰三角形纸片,底边长18cm,底边上的高长18cm,现沿底边依次向下往上裁剪宽度均为3cm的矩形纸条,已知剪得的纸条中有一张是正方形,则这张正方形纸条是()A. 第4张;B. 第5张;C. 第6张;D. 第7张;二. 填空题????7. 化简:2(a?2b)?3(a?b)?8. 如果在比例1:1000000的地图上,A、B两地的图上距离为2.4厘米,那么A、B两地的实际距离为千米;9. 抛物线y?(a?2)x2?3x?a的开口向下,那么a的取值范围是;10. 一斜面的坡度i?1:0.75,一物体由斜面底部沿斜面向前推进了20米,那么这个物体升高了11. 如果一个正多边形的一个外角是36°,那么该正多边形的边数为12. 已知AB是○O的直径,弦CD⊥AB于点E,如果AB?8,CD?6,那么OE?; 13. 如图所示,某班上体育课,甲、乙两名同学分别站在C、D的位置时,乙的影子为线段AD,甲的影子为线段AC,已知甲身高1.8米,乙身高1.5米,甲的影长是6米,则甲、乙同学相距米;14. 如图,点A(3,t)在第一象限,OA与x轴正半轴所夹的锐角为?,如果tan??3,那么t的值 2为;15. 如图,平行四边形ABCD中,E是CD的延长线上一点,BE与AD 交于点F,CD?2DE,如果△DEF的面积为1,那么平行四边形ABCD的面积为;16. 如图,在矩形ABCD中,AB?3,BC?5,以B为圆心BC为半径画弧交AD于点E,如果点F是弧EC的中点,联结FB,那么tan?FBC的值为;17. 新定义:我们把两条中线互相垂直的三角形称为“中垂三角形”,如图所示,△ABC中,AF、BE是中线,且AF?BE,垂足为P,像△ABC这样的三角形称为“中垂三角形”,如果?ABE?30?,AB?4,那么此时AC的长为;18. 如图,等边△ABC中,D是边BC上的一点,且BD:DC?1:3,把△ABC折叠,使点A落在边BC上的点D处,那么三. 解答题19. 计算:AM的值为; ANcot45??tan60??cot30?; 2(sin60??cos60?)20. 已知,平行四边形ABCD中,点E在DC边上,且DE?3EC,AC与BE交于点F;????????????????(1)如果AB?a,AD?b,那么请用a、b来表示AF;????????????(2)在原图中求作向量AF在AB、AD方向上的分向量;(不要求写作法,但要指出所作图中表示结论的向量)21. 如图,已知AD∥BE∥CF,它们依次交直线l1、l2于点A、B、C 和点D、E、F, DE2?,AC?14; EF5(1)求AB、BC的长;(2)如果AD?7,CF?14,求BE的长;22. 目前,崇明县正在积极创建全国县级文明城市,交通部门一再提醒司机:为了安全,请勿超速,并在进一步完善各类监测系统,如图,在陈海公路某直线路段MN内限速60千米/小时,为了检测车辆是否超速,在公路MN旁设立了观测点C,从观测点C测得一小车从点A到达点B行驶了5秒钟,已知 ?CAN?45?,?CBN?60?,BC?200米,此车超速了吗?请说明理由;?1.41?1.73)23. 如图1,△ABC中,?ACB?90?,CD?AB,垂足为D;(1)求证:△ACD∽△CBD;(2)如图2,延长DC至点G,联结BG,过点A作AF?BG,垂足为F,AF交CD于点E,求证:CD2?DE?DG;24. 如图,在直角坐标系中,一条抛物线与x轴交于A、B两点,与y轴交于C点,其中B(3,0),C(0,4),点A在x轴的负半轴上,OC?4OA;(1)求这条抛物线的解析式,并求出它的顶点坐标;(2)联结AC、BC,点P是x轴正半轴上一个动点,过点P作PM∥BC 交射线AC于点M,联结CP,若△CPM的面积为2,则请求出点P的坐标;25. 如图,已知矩形ABCD中,AB?6,BC?8,E是BC边上一点(不与B、C重合),过点E作EF?AE交AC、CD于点M、F,过点B作BG?AC,垂足为G,BG交AE于点H;(1)求证:△ABH∽△ECM;EH?y,求y关于x的函数解析式,并写出定义域; EM(3)当△BHE为等腰三角形时,求BE的长;(2)设BE?x,中考数学一模卷一、选择题(本大题共6题,每题4分,满分24分)1.B2.C3.D4.A5.D6.B二、填空题(本大题共12题,每题4分,满分48分)??7.?a?7b8.24 9.a<-210.1611.1013.1 14.17. 18.91 15.1216.235 7三、解答题(本大题共7题,满分78分)19.(本题满分10分)【解】原式? (5)分? …………………………………………………………………1分?2 (3)分 ?2……………………………………………………………………………1分20.(本题满分10分,第1小题5分,第2小题5分)【解】(1)∵四边形ABCD是平行四边形∴AD∥BC且AD=BC,CD∥AB且CD=AB ??????????????∴BC?AD?b 又∵AB?a ?????????????? ∴AC?AB?BC?a?b ……………………………………………………2分∵DE=3EC ∴DC=4EC又∵AB=CD∴AB=4EC篇三:最新2017年九年级上期末数学试卷含答案解析九年级(上)期末数学试卷一、选择题(2015秋江北区期末)若3x=2y,则x:y的值为() A.2:3 B.3:2 C.3:5 D.2:52.如果∠A是锐角,且sinA=cosA,那么∠A=()A.30° B.45° C.60° D.90°3.圆锥的母线长为4,侧面积为12π,则底面半径为()A.6 B.5 C.4 D.34.6只黄球,5只白球,一个袋子中有7只黑球,一次性取出12只球,其中出现黑球是()A.不可能事件 B.必然事件C.随机事件 D.以上说法均不对5.下列函数中有最小值的是()C.y=2x2+3xA.y=2x﹣1 B.y=﹣ D.y=﹣x2+16.如果用表示1个立方体,用表示两个立方体叠加,用表示三个立方体叠加,那么下图由6个立方体叠成的几何体的主视图是()A. B. C. D.7.⊙O内有一点P,过点P的所有弦中,最长的为10,最短的为8,则OP的长为()A.6 B.5 C.4 D.38.下列m的取值中,能使抛物线y=x2+(2m﹣4)x+m﹣1顶点在第三象限的是()A.4 B.3 C.2 D.19.四个直立在地面上的字母广告牌在不同情况下,在地面上的投影(阴影部分)效果如图.则在字母L、K、C的投影中,与字母N属同一种投影的有()A.L、K B.C C.K D.L、K、C 10.如图,圆内接四边形ABCD的BA,CD的延长线交于P,AC,BD交于E,则图中相似三角形有()A.2对 B.3对 C.4对 D.5对11.如图,AB是⊙O的直径,弦CD⊥AB于点G.点F是CD上一点,且满足=,连接AF并延长交⊙0于点E.连接AD、DE,若CF=2,AF=3.给出下列结论:①△ADF∽△AED;②FG=2;③tan∠E=;④S△DEF=4.其中正确的是()A.①②④ B.①②③ C.②③④ D.①③④ 12.如图,在平面直角坐标系中,⊙P与y轴相切,交直线y=x于A,B两点,已知圆心P的坐标为(2,a)(a>2),AB=2,则a的值为()A.4 B.2+ C. D.二、填空题。

九年级上入学数学试卷含答案解析

九年级上入学数学试卷含答案解析

重庆市巴蜀中学2016届九年级上学期入学数学试卷一、选择题:每题4分,共48分。

1.分式的值为零,则x的值为()A.3 B.﹣3 C.±3 D.任意实数2.方程x2﹣=0的根的情况为()A.有一个实数根 B.有两个不相等的实数根C.没有实数根D.有两个相等的实数根3.一个正多边形,它的每一个外角都是45°,则该正多边形是()A.正六边形 B.正七边形 C.正八边形 D.正九边形4.在一张由复印机放大复印出来的纸上,一个多边形的一条边由原来的1cm变成了4cm,那么这次复印的面积变为原来的()A.不变 B.2倍C.3倍D.16倍5.如图,以正方形ABCD的对角线AC为一边作菱形AEFC,且点E在AB的延长线上,F在DC 的延长线上,则∠FAB=()A.22.5° B.30°C.36°D.45°6.下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是()A.B.C.D.7.对于反比例函数y=,下列说法正确的是()A.图象经过点(1,﹣1) B.图象位于第二、四象限C.图象是中心对称图形D.当x<0时,y随x的增大而增大8.目前我国建立了比较完善的经济困难学生资助体系.某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元,设每半年发放的资助金额的平均增长率为x,则下面列出的方程中正确的是()A.438(1+x)2=389 B.389(1+x)2=438 C.389(1+2x)2=438 D.438(1+2x)2=3899.如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S△ABF=4:25,则DE:EC=()A.2:5 B.2:3 C.3:5 D.3:210.如图,矩形ABCD中,点G是AD的中点,GE⊥CG交AB于E,BE=BC,连CE交BG于F,则∠BFC等于()A.45°B.60°C.67.5° D.72°11.如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D,若AC=2,则AD的长是()A.B.C.﹣1 D.+112.如图,四边形ABCD中,AC=a,BD=b,且AC⊥BD,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2,…,如此进行下去,得到四边形A n B n C n D n.下列结论正确的有()①四边形A2B2C2D2是矩形;②四边形A4B4C4D4是菱形;③四边形A5B5C5D5的周长是,④四边形A n B n C n D n的面积是.A.1个B.2个C.3个D.4个二、填空题:每题4分,共32分。

重庆市渝中区巴蜀中学2018-2019学年九年级(上)期末数学试卷(解析版)

重庆市渝中区巴蜀中学2018-2019学年九年级(上)期末数学试卷(解析版)
17.一天学生小明早上从家去学校,已知小明家离学校路程为2280米(小明每次走的路程),小明从家匀速步行了105分钟后,爸爸发现小明的一科作业忘带,爸爸立刻拿起小明忘带的作业匀速跑步追赶小明,追上小明后爸爸立即将作业交给小明,小明继续以原速向学校行走(假定爸爸将作业交给小明的时间忽略不计),爸爸将作业带给小明后,原地接了2分钟的电话后,立即以更快的速度匀速返回家中.小明和爸爸两人相距的路程y(米)与小明出发的时间x(分钟)之间的关系如图所示,则爸爸到达家时,小明与学校相距的路程是_____米.
A.8.9B.9.7C.10.8D.11.9
【答案】C
【解析】
【分析】
作BM⊥FA交FA的延长线于M,延长DC交FA的延长线于N,解直角三角形求出AM,BM,MN,FN即可解决问题.
【详解】如图,作BM⊥FA交FA的延长线于M,延长DC交FA的延长线于N.
∵BM:AM=3:4,AB=10.5米,
∴BM=6.3(米),AM=8.4(米),
∵△ABC是等腰直角三角形,
∴∠B=45°,
∴∠DOC=90°,
∵AC=BC=2,
∴OD=OC=OB=1,
∴图中阴影部分的面积=S△BOD+S扇形DOC= ×1×1+ = + ,
故答案为: + .
【点睛】本题考查了扇形的面积的计算,等腰直角三角形的性质,正确的作出辅助线是解题的关键.
15.如图,在4×4正方形网格中,有4个涂成黑色的小方格,现在任意选取一个白色的小方格涂成黑色,则使得黑色部分的图形构成轴对称图形的概率为_____.
【分析】
从左边看有2列,左数第1列有两个正方形,第2列有1个正方形,据此可得.
【详解】从左边看有2列,左数第1列有两个正方形,第2列有1个正方形,故它的左视图是

巴蜀中学初2018届16-17学年(上)期末试题——数学

巴蜀中学初2018届16-17学年(上)期末试题——数学

重庆市巴蜀中学2016-2017学年度第一学期期末考试初2018级(二上)数学试题卷出题人:杜星兰审题人:雷莹一、选择题(每小题4分,共48分)1.下列实数中是无理数的是( ) A.3 B. 0(1)π-C. 2D.2.在一些汉字的美术字中,有的是轴对称图形.下面四个美术字中可以看作轴对称图形的是( ) A .B .C .D .3. 下列说法正确的是( )A. 要了解人们对“低碳生活”的了解程度,宜采用普查的方式B. 一组数据3,4,5,5,6,7的众数是5C. 一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖D.甲乙两人射击10次,甲的方差是0.168,乙的方差是0.34,则乙的成绩比甲稳定 4.下列运算正确的是( ) A4=±B1=-C1=-D21=+5. 不等式组10235x x +⎧⎨+<⎩≤,的解集在数轴上表示为( )6.如图,将一块含有30°角的直角三角板的两个顶点放在矩形直尺的一组对边上. 如果∠2=60°,那么∠1的度数为( ) A. 60° B.50°C. 40°D. 30°7.把一次函数23y x =-的图象沿y 轴向上平移5个单位, 则此时新的函数图象与y 轴的交点坐标是( ) A .(0,3)- B .(0,5)C .(0,7)D .(0,2)8. 若x y >,则下列式子错误..的是( ) A.11x y ->-B.55x y>C.33x y +>+D.33x y ->- 9.如图,在Rt △ABC 中,∠C=90°,∠CAB 的平分线交BC 于D ,DE是AB的垂直平分线,垂足为E.若BC=3,则DE 的长为( )ABCD18题图A .1B .2C .3D .410.如图,在同一平面直角坐标系中,表示一次函数y mx n =+与正比例函数ymnx =(,m n 是常数,且 0mn ≠)图象的是( )11.在20km 越野赛中,甲乙两选手的行程y (单位:km )随时间x (单位:h)变化的图象如图所示,根据图中提供的信息,有下列说法:①两人相遇前,甲的速度小于乙的速度;②出发后1小时,两人行程均为10km ;③出发后1.5小时,甲的行程比乙多3km ;④甲比乙先到达终点.其中正确的有( )11题图 12题图A .1个B .2个C .3个D .4个12.如图,Rt △ABC 中,∠C =90°,∠ABC =30°,AC =8,△ABC 绕点C 顺时针旋转得△A 1B 1C ,当A 1落在A B 边上时,连接B 1B ,取BB 1的中点D,连接A 1D ,则A 1D 的长度是( )A.B.C.12 D .二、填空题(10个小题,每小题3分,共30分)13.已知一组数据是:2,2,3,4,5,6,则这组数据的中位数是________;140(2017)π-=________;15.如图,直线y x b =+与直线6y kx =+交于点P (3,5),则关于x 的不等式6x b kx +>+的解集是;16.如图,等边三角形的顶点A (1,1)、B (3,1),把等边△ABC 绕点B 顺时针旋转180ο后C 点的坐标变为 ; 17.已知一次函数n mx y +=的图象经过一、二、四象限,点A (1,y 1),B (3,y 2)在图像上,则1y _____2y (填“>”或“<”) ; 18.如图,AD 是△ABC 的中线,∠ADC =45°,把△ADC 沿着AD 所在直线对折,点C 落在点E 的位置.如果BC =9,那么线段BE 的长度为 ;19. 若关于x 的一元一次不等式组051x m x x ->⎧⎨-+⎩>有解,则m 的取值范围是 ;20.巴蜀中学学生会在学期末购买了一批纪念品发给会员。

2016-2017年九年级上数学期末试题及答案

2016-2017年九年级上数学期末试题及答案

2016-2017年九年级上数学期末试题及答案2016-2017学年度第一学期期末考试初三年级数学试卷一、选择题(10×3分=30分)1、下列图形中,既是中心对称图形又是轴对称图形的是(。

)2、将函数y=-3x^2+1的图象向右平移2个单位得到的新图象的函数解析式为(。

)A。

y=-3(x-2)^2+1B。

y=-3(x+2)^2+1C。

y=-3x^2+2D。

y=-3x^2-23、如图,⊙O是△ABC的外接圆,已知∠ABO=50°,则∠ACB的大小为(。

)A.40°B.30°C.45°D.50°4、方程x^2-9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为()A.12B.12或15C.15D.无法确定5、如图,有6张写有数字的卡片,它们的背面都相同,现将它们背面朝上,从中任意抽取一张是数字3的概率是(。

)A、1/4B、1/6C、2/3D、1/36、一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是(。

)A.4B.5C.6D.37、如果矩形的面积为6,那么它的长y与宽x间的函数关系用图像表示(。

)8、如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A 按顺时针方向旋转到△ABC1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于(。

)A.55°B.70°C.125°D.145°9、一次函数y=ax+b与二次函数y=ax^2+bx+c在同一坐标系中的图像可能是(。

)A.B.C.D.10、如图,已知正方形ABCD的边长为2,P为BC的中点,连接AP并延长交BD于点E,则PE的长度为(。

)A。

2B。

1C。

√2D。

1/√2二、填空题(8×4分=32分)11、方程x^2=x的解是(。

)12、正六边形的边长为10cm,那么它的边心距等于(。

重庆市巴蜀中学2016届九年级上入学数学试卷参考答案与试题解析

重庆市巴蜀中学2016届九年级上入学数学试卷参考答案与试题解析

= .
2
整理得:x +2x﹣4=0, 解方程得:x=﹣1± , ∵x 为正数, ∴x=﹣1+ . 故选 C.
【点评】本题考查的是相似三角形的判定与性质,先用两角对应相等判定两个三角形相 似,再用相似三角形的性质对应边的比相等进行计算求出 BD 的长. 12.如图,四边形 ABCD 中,AC=a,BD=b,且 AC⊥BD,顺次连接四边形 ABCD 各边中点, 得到四边形 A1B1C1D1,再顺次连接四边形 A1B1C1D1 各边中点,得到四边形 A2B2C2D2,…,如 此进行下去,得到四边形 AnBnCnDn.下列结论正确的有( )
第 1 页 共 27 页
2
【考点】相似图形. 【解析】复印前后的多边形按照比例放大与缩小,因此它们是相似多边形,本题按照相 似多边形的性质求解. 【解答】解:由题意可知,相似多边形的边长之比=相似比=1:4, 2 所以面积之比=(1:4) =1:16. 故选 D. 【点评】本题考查相似多边形的性质.相似多边形对应边之比、周长之比等于相似比, 而面积之比等于相似比的平方. 5.如图,以正方形 ABCD 的对角线 AC 为一边作菱形 AEFC,且点 E 在 AB 的延长线上,F 在 DC 的延长线上,则∠FAB=( )
第 6 页 共 27 页
①四边形 A2B2C2D2 是矩形;②四边形 A4B4C4D4 是菱形;③四边形 A5B5C5D5 的周长是 四边形 AnBnCnDn 的面积是 .
,④
A.1 个 B.2 个 C.3 个 D.4 个 【考点】中点四边形. 【专题】规律型. 【解析】首先根据题意,找出变化后的四边形的边长与四边形 ABCD 中各边长的长度关 系规律,然后对以下选项作出分析与判断: ①根据矩形的判定与性质作出判断; ②根据菱形的判定与性质作出判断; ③由四边形的周长公式:周长=边长之和,来计算四边形 A5B5C5D5 的周长; ④根据四边形 AnBnCnDn 的面积与四边形 ABCD 的面积间的数量关系来求其面积. 【解答】解:①连接 A1C1,B1D1. ∵在四边形 ABCD 中,顺次连接四边形 ABCD 各边中点,得到四边形 A1B1C1D1, ∴A1D1∥BD,B1C1∥BD,C1D1∥AC,A1B1∥AC; ∴A1D1∥B1C1,A1B1∥C1D1, ∴四边形 A1B1C1D1 是平行四边形; ∵AC 丄 BD,∴四边形 A1B1C1D1 是矩形, ∴B1D1=A1C1(矩形的两条对角线相等) ; ∴A2D2=C2D2=C2B2=B2A2(中位线定理) , ∴四边形 A2B2C2D2 是菱形; 故本选项错误; ②由①知,四边形 A2B2C2D2 是菱形; ∴根据中位线定理知,四边形 A4B4C4D4 是菱形; 故本选项正确; ③根据中位线的性质易知,A5B5= A3B3= A1B1= AC,B5C5= B3C3= B1C1= BD, ∴四边形 A5B5C5D5 的周长是 2× (a+b)= ,

重庆市渝中区巴蜀中学19-20学年九年级上学期期末数学试卷(含答案解析)

重庆市渝中区巴蜀中学19-20学年九年级上学期期末数学试卷(含答案解析)

重庆市渝中区巴蜀中学19-20学年九年级上学期期末数学试卷(含答案解析)重庆市渝中区巴蜀中学19-20学年九年级上学期期末数学试卷⼀、选择题(本⼤题共12⼩题,共48.0分)1.下列数中是⽆理数的是()B. √81C. ?3.14D. √2A. 2272.下列运算正确的是A. 5x—3x=2B. 2a+3b=5abC. —(a—b)=b+aD. 2ab—ba=ab3.如图所⽰的⼏何体的左视图为()A.B.C.D.4.如图,点P是线段AB的黄⾦分割点.若AB=2cm,则AP=()A. 0.618cmB. √5?1cm C. 1.236cm D. (√5?1)cm25.下列命题是假命题的是()A. 对⾓线互相垂直且相等的平⾏四边形是正⽅形B. 对⾓线互相垂直的矩形是正⽅形C. 对⾓线相等的菱形是正⽅形D. 对⾓线互相垂直且平分的四边形是正⽅形6.在函数y=√1?x中,⾃变量x的取值范围是()x+2A. x≤1且x≠?2B. x≤1C. x<1且x≠?2D. x>1且x≠2.7.如图,AB是⊙O的直径,CD是⊙O的弦,∠ABD=59°,则∠C等于()A. 29°B. 31°C. 59°D. 62°8.若2x2+x?4=0,则4x2+2x?3的值是()A. 4B. 5C. 6D. 89.如图,A,B是双曲线y=kx上的两个点,过点A作AC⊥x轴,交OB于点D,垂⾜为点C.若△ODC的⾯积为1,D为OB的中点,则k的值为()A. 34B. 84C. 4D. 810.如图,已知△ABC为等腰直⾓三⾓形,D为斜边AB上任意⼀点,(不与点A、B重合),连接CD,作EC⊥DC,且EC=DC,连接AE,则∠EAC的度数为()A. 45°B. 50°C. 30°D. 60°11.如果关于x的⼀次函数y=(a+1)x+(a?4)的图象不经过第⼆象限,且关于x的分式⽅程1?ax x?2+2=12?x有整数解,那么整数a值不可能是()A. 0B. 1C. 3D. 412.如图,抛物线y=ax2+bx+c的顶点为B(1,?3),与x轴的⼀个交点A在(2,0)和(3,0)之间,下列结论中:①bc>0;②2a+b=0;③a?b+c>0;④a?c=3,正确的有()个A. 4B. 3C. 2D. 1⼆、填空题(本⼤题共6⼩题,共24.0分)13.分解因式:9a?a3=______ .14.如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于E,垂⾜为D.若CE=12,则ED的长为_____.15.某校九年⼀班班委会有2名男⽣和若⼲名⼥⽣,班级准备选派2名班委会成员参加学校诗词⽐赛,若选派⼀名男⽣和⼀名⼥⽣的概率为2,则班委会⼥⽣有______⼈.316.如图,矩形ABCD中.AB=3√3,BC=6,以点B为圆⼼、BA为半径画弧,交BC于点E,以点D为圆⼼、DA为半径画弧,交BC于点F,则阴影部分的⾯积为________.17.在⼀条笔直的公路上有A、B、C三地,C地位于A、B两地之间,甲车从A地沿这条公路匀速驶向C地,⼄车从B地沿这条公路匀速驶向A地.在甲车出发⾄甲车到达C地的过程中,甲、⼄两车各⾃与C地的距离y(km)与甲车⾏驶时间t(?)之间的函数关系如图所⽰.下列结论:①甲车出发2h时,两车相遇;②⼄车出发1.5?时,两车相距170km;时,两车相遇;④甲车到达C地时,两车相距40km.其中正确的是______(填写③⼄车出发257所有正确结论的序号).18.如图,四边形ABCD是菱形,AB=2,∠ABC=30°,点E是射线DA上⼀动点,把△CDE沿CE折叠,其中点D的对应点为D′,连接D′B,若△D′BC为等边三⾓形,则DE=______.三、计算题(本⼤题共1⼩题,共10.0分)19.如图,在四边形ABCD中,AD//BC,DE⊥BC,垂⾜为点E,连接AC交DE于点F,点G为AF的中点,∠ACD=2∠ACB.(1)说明DC=DG;(2)若DG=13,EC=5,求DE的长.四、解答题(本⼤题共7⼩题,共68.0分)20.(1)计算:(12)?2+|2?√3|+2sin60°(2)解不等式组:{x?1≥012(x+4)≤321.为了调查学⽣对垃圾分类及投放知识的了解情况,从甲、⼄两校各随机抽取40名学⽣进⾏了相关知识测试,获得了他们的成绩(百分制),并对数据(成绩)进⾏了整理、描述和分析.下⾯给出了部分信息.a.甲、⼄两校40名学⽣成绩的频数分布统计表如下:(说明:成绩80分及以上为优秀,70~79分为良好,60~69分为合格,60分以下为不合格)b.甲校成绩在70≤x<80这⼀组的是:70707071727373737475767778c.甲、⼄两校成绩的平均分、中位数、众数如下:根据以上信息,回答下列问题:(1)写出表中n的值;(2)在此次测试中,某学⽣的成绩是74分,在他所属学校排在前20名,由表中数据可知该学⽣是______校的学⽣(填“甲”或“⼄”),理由是______;(3)假设⼄校800名学⽣都参加此次测试,估计成绩优秀的学⽣⼈数.22.问题:探究函数y=|x|?2的图象与性质.⼩华根据学习函数的经验,对函数y=|x|?2的图象与性质进⾏了探究.⼩华的探究过程如下:(1)列表:x…?3?2?10123…y…10?1?2?10m…①m=________;②若A(n,8),B(10,8)为该函数图象上不同的两点,则n=________;(2)描点并画出该函数的图象.(3)根据函数图象可得:①该函数的最⼩值为________;②观察函数y=|x|?2的图象,写出该图象的两条性质.23.近期猪⾁价格不断⾛⾼,引起了民众与政府的⾼度关注,当市场猪⾁的平均价格每千克达到⼀定的单价时,政府将投⼊储备猪⾁以平抑猪⾁价格.据统计:从今年年初⾄7⽉20⽇,猪⾁价格不断⾛⾼,7⽉20⽇⽐年初价格上涨了60%.某市民于某超市今年7⽉20⽇购买2.5千克猪⾁花100元钱.(1)问:那么今年年初猪⾁的价格为每千克多少元?(2)某超市将进货价为每千克30元的猪⾁,按7⽉20⽇价格出售,平均⼀天能销售出100千克,经调查表明:猪⾁的售价每千克下降1元,其⽇销售量就增加20千克,超市为了实现销售猪⾁每天有1120元的销售利润,为了尽可能让顾客优惠应该每千克定价为多少元?(3)7⽉21⽇,某市决定投⼊储备猪⾁并规定其在原销售价的基础上下调a%出售,某超市按规定价出售⼀批储备猪⾁,该超市在⾮储备猪⾁的价格不变情况下,该天的两种猪⾁总销量⽐7,两种猪⾁销售的总⾦额⽐7⽉20⽇提⾼⽉20⽇增加了a%,且储备猪⾁的销量占总销量的34a%,求a的值.了11024.已知,如图抛物线y=ax2+2ax+c(a>0)与y轴交于点C,与x轴交于A,B两点,点A在点B左侧.点B的坐标为(1,0),OC=3OB.(1)求抛物线的解析式;(2)若点D是线段AC下⽅抛物线上的动点,求四边形ABCD⾯积的最⼤值;S△BOC,若存在,请求出点P的坐标;若不存在请(3)抛物线线上是否存在⼀点P,使S△ABP=83说明理由.25.如图,在?ABCD中,E是CD的中点,连接AE并延长交BC的延长线于点F.(1)求证:AE=FE;(2)若AB=2BC,∠F=35°.求∠DAE的度数.26.有⼀边是另⼀边的√2倍的三⾓形叫做智慧三⾓形,这两边中较长边称为智慧边,这两边的夹⾓叫做智慧⾓.(1)已知Rt△ABC为智慧三⾓形,且Rt△ABC的⼀边长为√2,则该智慧三⾓形的⾯积为______;(2)如图①,在△ABC中,∠C=105°,∠B=30°,求证:△ABC是智慧三⾓形;(3)如图②,△ABC是智慧三⾓形,BC为智慧边,∠B为智慧⾓,A(3,0),点B,C在函数y=k上x (x>0)的图象上,点C在点B的上⽅,且点B的纵坐标为√2.当△ABC是直⾓三⾓形时,求k的值.-------- 答案与解析 --------1.答案:D解析:⽆理数就是⽆限不循环⼩数.理解⽆理数的概念,⼀定要同时理解有理数的概念,有理数是整数与分数的统称.即有限⼩数和⽆限循环⼩数是有理数,⽽⽆限不循环⼩数是⽆理数.由此即可判定选择项.此题主要考查了⽆理数的定义,其中初中范围内学习的⽆理数有:π,2π等;开⽅开不尽的数;以及像0.1010010001…,等有这样规律的数.解:√2是⽆理数,故选:D.2.答案:D解析:此题考查了整式的加减,去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键,原式各项计算得到结果,即可作出判断.解:A.原式=2x,错误;B. 原式不能合并,错误;C. 原式=?a+b,错误;D. 原式=ab,正确,故选D.3.答案:D解析:解:从左⾯看易得左视图为:.故选:D.找到从左⾯看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.本题考查了三视图的知识,左视图是从物体的左⾯看得到的视图.4.答案:D解析:本题考查了黄⾦分割的概念.应该识记黄⾦分割的公式:较长的线段=原线段的√5?12.根据黄⾦分割点的定义,知AP是较长线段,所以AP=√5?12AB,代⼊数据即可得出AP的长度.解:由于点P是线段AB的黄⾦分割点,由图知AP>BP,AB=2cm,则AP=√5?12AB=√5?12×2=√5?1(cm).故选D.解析:解:A、对⾓线互相垂直且相等的平⾏四边形是正⽅形是真命题,故选项A不合题意;B、对⾓线互相垂直的矩形是正⽅形是真命题,故选项B不合题意;C、对⾓线相等的菱形是正⽅形是真命题,故选项C不合题意;D、对⾓线互相垂直且平分的四边形是菱形,即对⾓线互相垂直且平分的四边形是正⽅形是假命题,故选项D符合题意;故选:D.利⽤正⽅形的判定依次判断,可求解.本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.6.答案:A解析:根据⼆次根式的性质和分式的意义,被开⽅数⼤于等于0,分母不等于0,就可以求解.本题考查的知识点为:分式有意义,分母不为0;⼆次根式的被开⽅数是⾮负数.解:由题意得,1?x≥0且x+2≠0,解得x≤1且x≠?2.故选:A.7.答案:B解析:此题考查了圆周⾓定理:在同圆或等圆中,同弧或等弧所对的圆周⾓相等,都等于这条弧所对的圆⼼⾓的⼀半.推论:半圆(或直径)所对的圆周⾓是直⾓,90°的圆周⾓所对的弦是直径.此题难度不⼤,注意掌握数形结合思想的应⽤.由AB是⊙O的直径,根据直径所对的圆周⾓是直⾓,求得∠ADB= 90°,继⽽求得∠A的度数,然后由圆周⾓定理,求得∠C的度数.解:∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABD=59°,∴∠A=90°?∠ABD=31°,∴∠C=∠A=31°.故选B.8.答案:B解析:解:因为2x2+x?4=0所以2x2+x=4,所以4x2+2x?3=2(2x2+x)?3=2×4?3=5.故选:B.根据已知求出2x2+x=4,再利⽤整体代⼊的⽅法求代数式4x2+2x?3的值.本题考查了代数式与⽅程的关系,整体代⼊求代数式的值的思想.解析:过点B作BE⊥x轴于点E,根据反⽐例函数系数k的⼏何意义,可知S△BOE=1 2k,由D为OB的中点,CD//BE,可知CD是△OBE的中位线,CD=12BE,OC=12OE,S△ODC=14S△BOE=18k=1,即可求出k的值.本题考查的是反⽐例函数系数k的⼏何意义,熟知反⽐例函数y=kx图象中任取⼀点向坐标轴作垂线,这⼀点和垂⾜以及坐标原点所构成的三⾓形的⾯积是12|k|且保持不变,是解答此题的关键.解:过点B作BE⊥x轴于点E,则S△BOE=12k.∵D为OB的中点,CD//BE,∴CD是△OBE的中位线,CD=12BE,OC=12OE,∴S△OCDS△OBE=12×OC×CD12×OE×BE=12OE×12BEOE×BE=14∴S△ODC=14S△BOE=18k=1,∴k=8.故选:D.10.答案:A解析:本题主要考查了等腰直⾓三⾓形的性质、全等三⾓形的判定与性质.注意,在证明△ACE≌△BCD时,⼀定要找准相对应的边与⾓.由等腰直⾓三⾓形ABC的两腰相等的性质推知AC=CB,再根据已知条件“∠ACB=∠DCE=90°”求得∠ACE=90°?∠ACD=∠DCB,然后再加上已知条件DC=EC,可以根据全等三⾓形的判定定理SAS判定△ACE≌△BCD;最后由全等三⾓形的对应⾓相等的性质证明结论即可.解:∵△ABC是等腰直⾓三⾓形,∠ACB=90°,∴AC=CB.∵∠ACB=∠DCE=90°,∴∠ACE=90°?∠ACD=∠DCB.在△ACE和△BCD中,{AC=BC∠ACE=∠BCD EC=DC,∴△ACE≌△BCD(SAS).∴∠B=∠EAC(全等三⾓形的对应⾓相等).∵∠B=45°,∴∠EAC=45°.故选:A.11.答案:B解析:此题考查了⼀次函数的图象与系数的关系以及分式⽅程的解.注意根据题意求得使得关于x的分式⽅程有整数解,且关于x的⼀次函数y=(a+1)x+(a?4)的图象不经过第⼆象限的a的值是关键.依据关于x的⼀次函数y=(a+1)x+(a?4)的图象不经过第⼆象限,求得a的取值范围,依据关于x的分式⽅程有整数解,即可得到整数a的取值.解:∵关于x的⼀次函数y=(a+1)x+(a?4)的图象不经过第⼆象限,∴{a+1>0a?4≤0,解得?1∵1?axx?2+2=12?x,∴x=22?a,a≠2∵关于x的分式⽅程1?axx?2+2=12?x有整数解,∴整数a=0,1,3,4,∵a=1时,x=2是增根,∴a=0,3,4综上,可得,满⾜题意的a的值有3个:0,3,4,∴整数a值不可能是1.故选B.12.答案:A解析:解:∵抛物线开⼝向上,∴a>0,∵对称轴在y轴右侧,>0,∴?b2a∴b<0,∵抛物线和y轴负半轴相交,∴c<0,∴bc>0,故①正确;∵抛物线的顶点为D(1,?3),∴?b=1,2a∴b=?2a,∴2a+b=0,故②正确;∵对称轴为x=1,且与x轴的⼀个交点A在(2,0)和(3,0)之间,∴与x轴的另⼀个交点B在(0,0)和(?1,0)之间∴当x=?1时,y>0,∴y=a?b+c>0,故③正确;∵抛物线的顶点为D(1,?3)∴a+b+c=?3,=1得b=?2a,∵抛物线的对称轴为直线x=?b2a把b=?2a代⼊a+b+c=?3,得a?2a+c=?3,∴c?a=?3,∴a?c=3,故④正确;故选:A.抛物线开⼝向上a>0,对称轴在y轴右侧,b<0,抛物线和y轴负半轴相交,c<0,则bc>0,由抛物线与x轴有两个交点得到b2? 4ac>0;有抛物线顶点坐标得到抛物线的对称轴为直线x=1,则得到b=?2a,即可得到2a+b=0;根据抛物线的对称性得抛物线与x轴的另⼀个交点在点(0,0)和(?1,0)之间,所以当x=?1时,y>0,则a?b+c>0;由抛物线的顶点为D(1,?3)得a+b+c==1得b=?2a,所以a?c=3.3,由抛物线的对称轴为直线x=?b2a本题考查了⼆次函数的图象与系数的关系:⼆次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开⼝向上;对称轴为直线x=?b;抛物线与y轴的交点坐标为(0,c);当b2?4ac>0,2a抛物线与x轴有两个交点;当b2?4ac=0,抛物线与x轴有⼀个交点;当b2?4ac<0,抛物线与x轴没有交点.13.答案:a(3+a)(3?a)解析:先提取公因式a,再对余下的多项式利⽤平⽅差公式继续分解.本题主要考查提公因式法分解因式和利⽤平⽅差公式分解因式,熟记公式是解题的关键,难点在于要进⾏⼆次分解因式.解:9a?a3,=a(9?a2),=a(3+a)(3?a).14.答案:6解析:本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.根据线段的垂直平分线的性质得到EB=EC=12,根据直⾓三⾓形的性质解答即可.解:∵DE是BC的垂直平分线,∴EB=EC=12,∵∠B=30°,∠EDB=90°,EB=6,∴DE=12故答案为:6.15.答案:2解析:解:画树状图如下:由树形图可知:P(恰好为1名男⽣和1名⼥⽣)=812=23.故答案为:2.根据题意可直接先画出列表或树状图,根据图可判断12种结果中有8种结果可以使该事件发⽣,即可得概率.本题考查了列表法与树状图法,⽤到的知识点为:概率=所求情况数与总情况数之⽐.16.答案:解析:本题主要考查的是三⾓形的⾯积,矩形的性质,勾股定理,解直⾓三⾓形,锐⾓三⾓函数的定义,扇形⾯积的计算的有关知识,如图,连接DF,解直⾓三⾓形求出CE、BE,∠EDC的度数,再根据S 阴=S扇形ABE(S矩形ABCDS扇形DAES△DCE)计算即可.解:如图,连接DF,∵四边形ABCD是矩形,∴∠B=∠C=∠ADC=90°,AB=CD=3√3,AD=DF=BC=6,∴CF=√DF2?CD2=3,BF=BC?CF=3,∴tan∠FDC=CFCD =33=√33,∴∠FDC=30°,∠ADF=60°,∴S阴=S扇形ABE(S矩形ABCDS扇形DAFS△DCF).故答案为.17.答案:②③④解析:解:①观察函数图象可知,当t=2时,两函数图象相交,∵C地位于A、B两地之间,∴交点代表了两车离C地的距离相等,并不是两车相遇,结论①错误;②甲车的速度为240÷4=60(km/?),⼄车的速度为200÷(3.5?1)=80(km/?),∵(240+200?60?170)÷(60+80)=1.5(?),∴⼄车出发1.5?时,两车相距170km,结论②正确;③∵(240+200?60)÷(60+80)=257(?),∴⼄车出发257时,两车相遇,结论③正确;④∵80×(4?3.5)=40(km),∴甲车到达C地时,两车相距40km,结论④正确.综上所述,正确的结论有:②③④.故答案为:②③④.①观察函数图象可知,当t=2时,两函数图象相交,结合交点代表的意义,即可得出结论①错误;②根据速度=路程÷时间分别求出甲、⼄两车的速度,再根据时间=路程÷速度和可求出⼄车出发1.5?时,两车相距170km,结论②正确;③根据时间=路程÷速度和可求出⼄车出发257时,两车相遇,结论③正确;④结合函数图象可知当甲到C地时,⼄车离开C地0.5⼩时,根据路程=速度×时间,即可得出结论④正确.综上即可得出结论.本题考查了⼀次函数的应⽤,根据函数图象逐⼀分析四条结论的正误是解题的关键.18.答案:2√3?2或√3+1解析:解:①如图(1)所⽰,当点E在边AD上时,∵四边形ABCD是菱形,AB=2,∠ABC=30°,∴CD=AB=2,∠D=∠A=30°,∠BCD=150°,∵△D′BC为等边三⾓形,∴∠BCD′=60°,∴∠DCD′=90°,∵△CDE沿CE折叠,得到△CD′E,∴△DCE≌△D′CE,∠DCD′=45°,∴∠DCE=12过点E作EF⊥CD,垂⾜为F,则∠CFE=90°,∴∠CEF=∠DCE=45°,∴CF=EF,在Rt△DEF中,∠D=30°,∴EF=1DE,2设EF=x,则DE=2x,CF=x,由勾股定理可得:FD=√3x,∵CF+FD=CD=2,即x+√3x=2,解得:x=√3?1,∴DE=2x=2√3?2.②当点E在DA的延长线上时,如图(2),过点B作BF⊥AD,交DA的延长线于点F。

重庆巴蜀中学九年级上册期末精选试卷检测题

重庆巴蜀中学九年级上册期末精选试卷检测题
3.随着经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家 庭,汽车消费成为新亮点.抽样调查显示,截止 2008 年底全市汽车拥有量为 14.4 万 辆.已知 2006 年底全市汽车拥有量为 10 万辆. (1)求 2006 年底至 2008 年底我市汽车拥有量的年平均增长率; (2)为保护城市环境,要求我市到 2010 年底汽车拥有量不超过 15.464 万辆,据估计从 2008 年底起,此后每年报废的汽车数量是上年底汽车拥有量的 10%,那么每年新增汽车数 量最多不超过多少辆?(假定每年新增汽车数量相同) 【答案】详见解析 【解析】 试题分析:(1)主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率)解决 问题; (2)参照增长率问题的一般规律,表示出 2010 年的汽车拥有量,然后根据关键语列出不 等式来判断正确的解. 试题解析:(1)设年平均增长率为 x,根据题意得: 10(1+x)2=14.4, 解得 x=﹣2.2(不合题意舍去)x=0.2, 答:年平均增长率为 20%; (2)设每年新增汽车数量最多不超过 y 万辆,根据题意得: 2009 年底汽车数量为 14.4×90%+y,
2010 年底汽车数量为(14.4×90%+y)×90%+y, ∴ (14.4×90%+y)×90%+y≤15.464, ∴ y≤2. 答:每年新增汽车数量最多不超过 2 万辆. 考点:一元二次方程—增长率的问题
4.如图,抛物线 y=ax2+bx+c 与 x 轴交于点 A 和点 B(1,0),与 y 轴交于点 C(0,3), 其对称轴 l 为 x=﹣1. (1)求抛物线的解析式并写出其顶点坐标; (2)若动点 P 在第二象限内的抛物线上,动点 N 在对称轴 l 上. ①当 PA⊥NA,且 PA=NA 时,求此时点 P 的坐标; ②当四边形 PABC 的面积最大时,求四边形 PABC 面积的最大值及此时点 P 的坐标.

北师大版九年级数学上重庆市巴蜀中学--第一学期期末考试.docx

北师大版九年级数学上重庆市巴蜀中学--第一学期期末考试.docx

初中数学试卷 桑水出品重庆市巴蜀中学2015--2016学年度第一学期期末考试初2016届(三上)数学试题卷参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标为(24,24b ac b a a--),对称轴为2b x a=-.一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑).1、在2、0、-1、3四个数中最小的数是( )A.-1B.0C.2D.32、下列图形是轴对称图形的是( )A B C D3、化简8的结果是( )A. 2B.2C.22D.44、计算32)(bc a 的结果是( )A. c b a 33B.339c b aC.33bc aD.336c b a5、下调查方式中,不合适的是( )A. 浙江卫视“奔跑吧兄弟”综艺节目的收视率,采用抽查的方式B. 了解某渔场中青鱼的平均重量,采用抽查的方式C. 了解iphone6s 手机的使用寿命,采用普查的方式D. 了解一批汽车的刹车性能,采用普查的方式6、如图,a//b ,AB ⊥a ,BC 交于b 于E,若∠1=47°,则∠2的度数是( )A. 137°B.133°C.120°D.100°7、数据14,10,12,13,11的中位数是( )A. 14B.12C.13D.118、已知一元二次方程062=+-c x x 有一个根为2,则另一个根为( )A. 2B.3C.4D.89、已知如图,四边形ABCD 内接于⊙O ,若∠BOD=100°,则∠C 的度数是( )A. 50°B.80°C.100°D.130°10、在物理实验课上,小明用弹簧秤将铁块悬于有水的水槽中,然后匀速向上提起(不考虑水的阻力),直至铁块完全露出水面一定高度,下图能反应弹簧称的度数y(单位:N)与铁块被提起的高度x(单位:cm)之间的函数大致图像是( )11、下列图形都是由同样大小的棋子按一定的规律组成,其中第①个图形有1颗棋子,第②图形一共有6颗棋子,第③图形一共有16颗棋子,...,第⑦图形中棋子的个数是( )A. 76B.96C.106D.116 12、如图,正方形ABCD 和正方形DEFG 的顶点在y 轴上,顶点D 、F 在x 轴上,点C 在DE 边上,反比例函数)0(≠=k xk y 的图像经过B ,C 和边EF 的中点M ,若S 四边形ABCD =8,则正方形DEFG 的面积是( )A. 923B.9128C.16D.415二、填空题:(本大题共6个小题,每小题4分,共24分)请将每小题的答案直接填写在答题卡中对应的横线上.13、中国第一汽车集团公司2015年营业额高达68000亿,把数据68000用科学记数法表示为 。

重庆巴蜀中学九年级上册压轴题数学模拟试卷含详细答案

重庆巴蜀中学九年级上册压轴题数学模拟试卷含详细答案

重庆巴蜀中学九年级上册压轴题数学模拟试卷含详细答案一、压轴题1.如图,抛物线23y ax bx =++经过点A (1,0),B (4,0)与y 轴交于点C .(1)求抛物线的解析式;(2)如图①,在抛物线的对称轴上是否存在点P ,使得四边形PAOC 的周长最小?若存在,求出四边形PAOC 周长的最小值;若不存在,请说明理由.(3)如图②,点Q 是线段OB 上一动点,连接BC ,在线段BC 上是否存在这样的点M ,使△CQM 为等腰三角形且△BQM 为直角三角形?若存在,求M 的坐标;若不存在,请说明理由.2.二次函数22(0)63m m y x x m m =-+>的图象交y 轴于点A ,顶点为P ,直线PA 与x 轴交于点B .(1)当m =1时,求顶点P 的坐标;(2)若点Q (a ,b )在二次函数22(0)63m m y x x m m =-+>的图象上,且0b m ->,试求a 的取值范围;(3)在第一象限内,以AB 为边作正方形ABCD .①求点D 的坐标(用含m 的代数式表示);②若该二次函数的图象与正方形ABCD 的边CD 有公共点,请直接写出符合条件的整数m 的值.3.在平面直角坐标系中,O 是坐标原点,抛物线2115:L y x bx a a=+-的顶点D 在第四象限,且经过(1,)A m n +,(1,)(0,0)B m n m n ->>两点直线AB 与y 轴交于点C ,与抛物线的1L 对称轴交于点E ,8AC BC ⋅=,点E 的纵坐标为1.(1)求抛物线1L 所对应的函数表达式;(2)若将直线AB 绕着点E 旋转,直线AB 与抛物线1L 有一个交点Q 在第三象限,另一个交点记为P ,抛物线2L 与抛物线1L 关于点P 成中心对称,抛物线2L 的顶点记为1D . ①若点Q 的横坐标为-1,抛物线1L 与抛物线2L 所对应的两个函数y 的值都随着x 的增大而增大,求相应的x 的取值范围;②若直线PQ 与抛物线2L 的另一个交点记为Q ,连接1PD ,11Q D ,试间:在旋转的过程中,1PDQ ∠的度数会不会发生变化?请说明理由. 4.如图,A 是以BC 为直径的圆O 上一点,AD ⊥BC 于点D ,过点B 作圆O 的切线,与CA 的延长线相交于点E ,G 是AD 的中点,连接并延长CG 与BE 相交于点F ,连接并延长AF 与CB 的延长线相交于点P .(1)求证:BF =EF ;(2)求证:PA 是圆O 的切线;(3)若FG =EF =3,求圆O 的半径和BD 的长度.5.如图1,在平面直角坐标系中,抛物线与x 轴交于点 A (-1,0) ,B (点A 在点B 的左侧),交y 轴与点(0,-3),抛物线的对称轴为直线x =1,点D 为抛物线的顶点. (1)求该抛物线的解析式;(2)已知经过点A 的直线y =kx +b (k >0)与抛物线在第一象限交于点E ,连接AD ,DE ,BE ,当2ADE ABE S S ∆∆=时,求点E 的坐标.(3)如图2,在(2)中直线AE 与y 轴交于点F ,将点F 向下平移233+到Q ,连接QB .将△OQB 绕点O 逆时针旋转一定的角度α(0°<α<360°)得到OQ B '',直线B Q ''与x 轴交于点G .问在旋转过程中是否存在某个位置使得OQ G '是等腰三角形?若存在,请直接写出所有满足条件的点Q '的坐标;若不存在,请说明理由.6.在平面直角坐标系xOy 中,函数1F 和2F 的图象关于y 轴对称,它们与直线(0)x t t =>分别相交于点,P Q .(1)如图,函数1F 为1y x =+,当2t =时,PQ 的长为_____; (2)函数1F 为3y x=,当6PQ =时,t 的值为______; (3)函数1F 为2(0)y ax bx c a =++≠, ①当b t b=时,求OPQ △的面积; ②若0c >,函数1F 和2F 的图象与x 轴正半轴分别交于点(5,0),(1,0)A B ,当1c x c ≤≤+时,设函数1F 的最大值和函数2F 的最小值的差为h ,求h 关于c 的函数解析式,并直接写出自变量c 的取值范围.7.已知抛物线y =ax 2+bx+c(a >0),顶点D 在y 轴上,与x 轴的一个交点的横坐标为6. (1)求a 、c 满足的关系式;(2)若直线y =kx-2a 与抛物线交于A 、B 两点(点A 在点B 左侧),以AB 为直径的圆恒过点D .①求抛物线的解析式;②设直线y =kx-2a 与y 轴交于点M 、直线l 1:y =px+q 过点B ,且与抛物线只有一个公共点,过点D 作x 轴的平行线l 2,l 1与l 2交于点N .分别记BDM 、NDM 的面积为S 1,S 2,求12S S . 8.公司经销某种商品,经研究发现,这种商品在未来40天的销售单价1y (元/千克)关于时间t 的函数关系式分别为11602y t =-+(040t <≤,且t 为整数); ()()21030,3033040,20t t t y t t ⎧<≤-+⎪=⎨<≤⎪⎩且为整数且为整数,他们的图像如图1所示,未来40天的销售量m (千克)关于时间t 的函数关系如图2的点列所示.(1)求m 关于t 的函数关系式;(2)那一天的销售利润最大,最大利润是多少?(3)若在最后10天,公司决定每销售1千克产品就捐赠a 元给“环保公益项目”,且希望扣除捐赠后每日的利润不低于3600元以维持各种开支,求a 的最大值(精确到0.01元).9.将一个直角三角形纸片OAB 放置在平面直角坐标系中,点()0,0O ,点()2,0A ,点B 在第一象限,90OAB ∠=︒,30B ∠=︒,点P 在边OB 上(点P 不与点,O B 重合).(1)如图①,当1OP =时,求点P 的坐标;(2)折叠该纸片,使折痕所在的直线经过点P ,并与x 轴的正半轴相交于点Q ,且OQ OP =,点O 的对应点为O ',设OP t =.①如图②,若折叠后O PQ '与OAB 重叠部分为四边形,,O P O Q ''分别与边AB 相交于点,C D ,试用含有t 的式子表示O D '的长,并直接写出t 的取值范围;②若折叠后O PQ '与OAB 重叠部分的面积为S ,当13t ≤≤时,求S 的取值范围(直接写出结果即可).10.如图1 ,一次函数1y kx b =+(k,b 为常数,k≠0)的图象与反比例函数2m y x =(m 为常数,m≠0)的图象相交于点M(1,4)和点N (4,n ).(1)填空:①反比例函数的解析式是 ; ②根据图象写出12y y <时自变量x 的取值范围是 ;(2) 若将直线MN 向下平移a(a>0)个单位长度后与反比例函数的图象有且只有一个公共点,求a 的值;(3) 如图2,函数2m y x=的图象(x >0)上有一个动点C ,若先将直线MN 平移使它过点C ,再绕点C 旋转得到直线PQ ,PQ 交轴于点A ,交轴点B ,若BC =2CA , 求OA·OB 的值.11.在Rt△ABC中,∠ACB=90°,AC=1,记∠ABC=α,点D为射线BC上的动点,连接AD,将射线DA绕点D顺时针旋转α角后得到射线DE,过点A作AD的垂线,与射线DE 交于点P,点B关于点D的对称点为Q,连接PQ.(1)当△ABD为等边三角形时,①依题意补全图1;②PQ的长为;(2)如图2,当α=45°,且BD=43时,求证:PD=PQ;(3)设BC=t,当PD=PQ时,直接写出BD的长.(用含t的代数式表示)12.如图,在平面直角坐标系xOy中,已知直线AB经过点A(﹣2,0),与y轴的正半轴交于点B,且OA=2OB.(1)求直线AB的函数表达式;(2)点C在直线AB上,且BC=AB,点E是y轴上的动点,直线EC交x轴于点D,设点E的坐标为(0,m)(m>2),求点D的坐标(用含m的代数式表示);(3)在(2)的条件下,若CE:CD=1:2,点F是直线AB上的动点,在直线AC上方的平面内是否存在一点G,使以C,G,F,E为顶点的四边形是菱形?若存在,请求出点G 的坐标;若不存在,请说明理由.13.在直角坐标平面内,O为原点,点A的坐标为(10),,点C的坐标为(0)4,,直线CM x∥轴(如图所示).点B与点A关于原点对称,直线y x b=+(b为常数)经过点B,且与直线CM相交于点D,联结OD.(1)求b的值和点D的坐标;(2)设点P在x轴的正半轴上,若POD是等腰三角形,求点P的坐标;14.如图,抛物线y=mx2﹣4mx+2m+1与x轴交于A(x1,0),B(x2,0)两点,与y轴交于点C,且x2﹣x1=2.(1)求抛物线的解析式;(2)E是抛物线上一点,∠EAB=2∠OCA,求点E的坐标;(3)设抛物线的顶点为D,动点P从点B出发,沿抛物线向上运动,连接PD,过点P做PQ⊥PD,交抛物线的对称轴于点Q,以QD为对角线作矩形PQMD,当点P运动至点(5,t)时,求线段DM扫过的图形面积.15.如图1,抛物线M1:y=﹣x2+4x交x正半轴于点A,将抛物线M1先向右平移3个单位,再向上平移3个单位得到抛物线M2,M1与M2交于点B,直线OB交M2于点C.(1)求抛物线M2的解析式;(2)点P是抛物线M1上AB间的一点,作PQ⊥x轴交抛物线M2于点Q,连接CP,CQ.设点P的横坐标为m,当m为何值时,使△CPQ的面积最大,并求出最大值;(3)如图2,将直线OB向下平移,交抛物线M1于点E,F,交抛物线M2于点G,H,则EG的值是否为定值,证明你的结论.HF16.如图,已知矩形ABCD 中,AB=8,AD=6, 点E 是边CD 上一个动点,连接AE ,将△AED 沿直线AE 翻折得△AEF.(1) 当点C 落在射线AF 上时,求DE 的长;(2)以F 为圆心,FB 长为半径作圆F ,当AD 与圆F 相切时,求cos ∠FAB 的值;(3)若P 为AB 边上一点,当边CD 上有且仅有一点Q 满∠BQP=45°,直接写出线段BP 长的取值范围.17.在平面直角坐标系中,抛物线2y ax bx c =++经过点A 、B 、C ,已知A (-1,0),B (3,0),C (0,-3).(1)求此抛物线的函数表达式;(2)若P 为线段BC 上一点,过点P 作y 轴的平行线,交抛物线于点D ,当△BCD 面积最大时,求点P 的坐标;(3)若M (m ,0)是x 轴上一个动点,请求出CM+12MB 的最小值以及此时点M 的坐标.18.如图,在直角坐标系中,点C 在第一象限,CB x ⊥轴于B ,CA y ⊥轴于A ,3CB =,6CA =,有一反比例函数图象刚好过点C .(1)分别求出过点C 的反比例函数和过A ,B 两点的一次函数的函数表达式;(2)直线l x ⊥轴,并从y 轴出发,以每秒1个单位长度的速度向x 轴正方向运动,交反比例函数图象于点D ,交AC 于点E ,交直线AB 于点F ,当直线l 运动到经过点B 时,停止运动.设运动时间为t (秒).①问:是否存在t 的值,使四边形DFBC 为平行四边形?若存在,求出t 的值;若不存在,说明理由;②若直线l 从y 轴出发的同时,有一动点Q 从点B 出发,沿射线BC 方向,以每秒3个单位长度的速度运动.是否存在t 的值,使以点D ,E ,Q ,C 为顶点的四边形为平行四边形;若存在,求出t 的值,并进一步探究此时的四边形是否为特殊的平行四边形;若不存在,说明理由.19.在平面直角坐标系中,经过点()0,2A 且与33y x =-平行的直线,交x 轴于点B ,如图1所示.(1)试求B 点坐标,并直接写出ABO ∠的度数;(2)过()1,0M 的直线与AB 成45︒夹角,试求该直线与AB 交点的横坐标;(3)如图2,现有点(,)C m n 在线段AB 上运动,点,(320)D m -+在x 轴上,N 为线段CD 的中点.①试求点N 的纵坐标y 关于横坐标x 的函数关系式;②直接写出N 点的运动轨迹长度为 .20.对于⊙C 与⊙C 上的一点A ,若平面内的点P 满足:射线..AP 与⊙C 交于点Q (点Q 可以与点P 重合),且12PA QA≤≤,则点P 称为点A 关于⊙C 的“生长点”.已知点O 为坐标原点,⊙O 的半径为1,点A (-1,0).(1)若点P 是点A 关于⊙O 的“生长点”,且点P 在x 轴上,请写出一个符合条件的点P 的坐标________;(2)若点B 是点A 关于⊙O 的“生长点”,且满足1tan BAO 2∠=,求点B 的纵坐标t 的取值范围;(3)直线3y x b =+与x 轴交于点M ,与y 轴交于点N ,若线段MN 上存在点A 关于⊙O 的“生长点”,直接写出b 的取值范围是_____________________________.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)2315344y x x =-+;(2)9;(3)存在点M 的坐标为(315,28)或(1212,77)使△CQM 为等腰三角形且△BQM 为直角三角形【解析】【分析】(1)根据抛物线经过A 、B 两点,带入解析式,即可求得a 、b 的值.(2)根据PA=PB ,要求四边形PAOC 的周长最小,只要P 、B 、C 三点在同一直线上,因此很容易计算出最小周长.(3)首先根据△BQM 为直角三角形,便可分为两种情况QM ⊥BC 和QM ⊥BO ,再结合△QBM ∽△CBO ,根据相似比例便可求解.【详解】解:(1)将点A (1,0),B (4,0)代入抛物线23y ax bx =++中,得:3016430a b a b ++=⎧⎨++=⎩ 解得:34154a b ⎧=⎪⎪⎨⎪=-⎪⎩所以抛物线的解析式为2315344y x x =-+.(2)由(1)可知,抛物线的对称轴为直线52x =.连接BC ,交抛物线的对称轴为点P ,此时四边形PAOC 的周长最小,最小值为OA+OC+BC=1+3+5=9.(3) 当QM ⊥BC 时,易证△QBM ∽△CBO 所以 QM BM OC OB =, 又因为△CQM 为等腰三角形 ,所以QM=CM.设CM=x , 则BM=5- x所以534x x -= 所以157x .所以QM=CM=157,BM=5- x=207,所以BM:CM=4:3. 过点M 作NM ⊥O B 于N ,则MN//OC, 所以 NM BM BN OC CB OB ==, 即4374NM BN == ,所以1216,77MN BN ==, 127ON OB BN =-= 所以点M 的坐标为(1212,77) 当QM ⊥BO 时, 则MQ//OC, 所以 QM BQ OC OB =, 即34QM BQ = 设QM=3t , 则BQ=4t , 又因为△CQM 为等腰三角形 ,所以QM=CM=3t,BM=5-3t 又因为QM 2+QB 2=BM 2, 所以(3t )2+(4t )2=(5-3t )2, 解得58t =MQ=3t=158,32OQ OB BQ =-=, 所以点M 的坐标为(315,28). 综上所述,存在点M 的坐标为(315,28)或(1212,77)使△CQM 为等腰三角形且△BQM 为直角三角形【点睛】本题是一道二次函数的综合型题目,难度系数较高,关键在于根据图形化简问题,这道题涉及到一种分类讨论的思想,这是这道题的难点所在,分类讨论思想的关键在于根据直角三角形的直角进行分类的.2.(1)P (2,13);(2)a 的取值范围为:a <0或a >4;(3)①D (m ,m +3); ②2,3,4.【解析】【分析】(1)把m =1代入二次函数22(0)63m m y x x m m =-+>解析式中,进而求顶点P 的坐标即可;(2)把点Q (a ,b )代入二次函数22(0)63m m y x x m m =-+>解析式中,根据0b m ->得到关于a 的一元二次不等式即一元一次不等式组,解出a 的取值范围即可; (3)①过点D 作DE ⊥x 轴于点E ,过点A 作AF ⊥DE 于点F ,求出二次函数与y 轴的交点A 的坐标,得到OA 的长,再根据待定系数法求出直线AP 的解析式,进而求出与x 轴的交点B 的坐标,得到OB 的长;通过证明△ADF ≌△ABO ,得到AF=OA=m ,DF=OB=3,DE=DF+EF= DF+OA=m+3,求出点D 的坐标;②因为二次函数的图象与正方形ABCD 的边CD 有公共点,由①同理可得:C (m+3,3),分当x 等于点D 的横坐标时与当x 等于点C 的横坐标两种情况,进行讨论m 可能取的整数值即可.【详解】解:(1)当m =1时,二次函数为212163y x x =-+, ∴顶点P 的坐标为(2,13); (2)∵点Q (a ,b )在二次函数22(0)63m m y x x m m =-+>的图象上, ∴2263m m b a a m =-+, 即:2263m m b m a a -=- ∵0b m ->, ∴2263m m a a ->0, ∵m >0,∴2263a a ->0,解得:a <0或a >4,∴a 的取值范围为:a <0或a >4;(3)①如下图,过点D 作DE ⊥x 轴于点E ,过点A 作AF ⊥DE 于点F ,∵二次函数的解析式为2263m m y x x m =-+, ∴顶点P (2,3m ), 当x=0时,y=m ,∴点A (0,m ),∴OA=m ;设直线AP 的解析式为y=kx+b(k≠0),把点A (0,m ),点P (2,3m )代入,得: 23m b m k b =⎧⎪⎨=+⎪⎩, 解得:3m k b m⎧=-⎪⎨⎪=⎩,∴直线AP 的解析式为y=3m -x+m , 当y=0时,x=3,∴点B (3,0);∴OB=3;∵四边形ABCD 是正方形,∴AD=AB ,∠DAF+∠FAB=90°,且∠OAB+∠FAB =90°,∴∠DAF=∠OAB ,在△ADF 和△ABO 中,DAF OAB AFD AOB AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ADF ≌△ABO (AAS ),∴AF=OA=m ,DF=OB=3,DE=DF+EF= DF+OA=m+3,∴点D 的坐标为:(m ,m+3);②由①同理可得:C (m+3,3),∵二次函数的图象与正方形ABCD 的边CD 有公共点,∴当x =m 时,3y m ≤+,可得322363m m m m -+≤+,化简得:32418m m -≤. ∵0m >,∴2184m m m -≤,∴218(2)4m m--≤, 显然:m =1,2,3,4是上述不等式的解,当5m ≥时,2(2)45m --≥,18 3.6m ≤,此时,218(2)4m m-->, ∴符合条件的正整数m =1,2,3,4; 当x = m +3时,y ≥3,可得2(3)2(3)363m m m m m ++-+≥, ∵0m >,∴21823m m m ++≥,即218(1)2m m++≥, 显然:m =1不是上述不等式的解,当2m ≥时,2(1)211m ++≥,189m ≤,此时,218(1)2m m++>恒成立, ∴符合条件的正整数m =2,3,4;综上:符合条件的整数m 的值为2,3,4.【点睛】本题考查二次函数与几何问题的综合运用,熟练掌握二次函数的图象和性质、一次函数的图象和性质、正方形的性质是解题的关键.3.(1)2125333y x x =--;(2)①110x ≤≤;②不会发生变化,理由见解析 【解析】【分析】(1)根据点A ,B 坐标求出对称轴为1x =,得到2b a=-,代入抛物线解析式得到216(1)y x a a =--,写出顶点61,D a ⎛⎫- ⎪⎝⎭,根据其位置,得出0a >,根据A ,B 坐标表示出AC ,BC 长度,结合AC ·BC=8,求得m 的值,代入点A ,B 得其坐标,将A 坐标代入抛物线解析式得a 的值,即可得到抛物线的解析式;(2)①将1x =-代入2125333y x x =--,求得21,3Q ⎛⎫-- ⎪⎝⎭,结合点E 求得PQ 解析式,联立2125333y x x =--,解得点P 的坐标,根据中心对称的性质,得到点1D 的横坐标为10,可得x 的取值范围;②过,P Q 分别作直线1x =的垂线,垂足分别为,F G ,设出点P ,Q 坐标,求出PQ 的解析式,联立2125333y x x =--,得到1212,x x x x +⋅,由tan 1tan DPF QDG ∠=∠,得到DPF QDG ∠=∠,结合90DPF PDF ︒∠+∠=,得到90PDQ ︒∠=,可证得结果.【详解】解:(1)∵抛物线212y x bx a a=+-过(1,),(1,)(0)A m n B m n n +->两点, ∴由抛物线对称性知:抛物线对称轴为直线1x =, 112b a∴-=⨯ 2b a∴=- 2212516(1)y x x x a a a a a ∴=--=-- 61,D a ⎛⎫∴- ⎪⎝⎭ 又∵顶点D 在第四象限,60a ∴-<,解得:10,0a a>> 0,0m n >>,∴抛物线的开口向上,其图象如图所示,1,|1|,8AC m BC m AC BC =+=-⋅=,(1)(1)8m m ∴+-=±,解得:3m =±0m >,3m ∴=,由题意可知,点E 在线段AB 上,而点E 的纵坐标为1,(4,1),(2,1)A B ∴-,把(4,1)A 代入216(1)y x a a =--得,2161(41)a a =--解得:113a = ∴抛物线1L 所对应的函数表达式为2125333y x x =-- (2)①把1x =-代入2125333y x x =--得,23y =- 21,3Q ⎛⎫∴-- ⎪⎝⎭ (1,1)E ,∴直线PQ 的解析式为5166y x =+ 由25166125333y x y x x ⎧=+⎪⎪⎨⎪=--⎪⎩可得,21255133366x x x --=+, 解得:12111,2x x =-= ∴点P 的横坐标为112由中心对称的性质可得,点1D 的横坐标为10,即抛物线2L 的对称轴为直线10x =, 结合图象:可得,x 的范围为110x ≤≤;②在旋转的过程中,1PDQ ∠的度数不会发生变化,理由如下: 连接,PD QD ,由中心对称的性质可得,11PD Q PDQ ∠=∠.过,P Q 分别作直线1x =的垂线,垂足分别为,F G ,如图所示,设()()1122,,,P x y Q x y ,直线PQ 的解析式为y kx b '=+,则∵直线PQ 过(1,1)E ,1k b '∴=+,可得,1b k '=-,∴直线PQ 的解析式为(1)y kx k =+- 由2(1)125333y kx k y x x =+-⎧⎪⎨=--⎪⎩得,2125(1)333x x kx k --=+- 整理得,2(32)(38)0x k x k -++-=121232,38x x k x x k ∴+=+⋅=-21111125(2)1333tan 13x x x DF DPF PF x -----∠===-,2222213tan 1251(2)333x QDG x x x -∠==-----, ()()()121212111tan (38)(32)11tan 999x x x x x x DPF k k QDG ---⋅++-∠--++-∴====∠ tan tan DPF QDG ∴∠=∠DPF QDG ∴∠=∠又90DPF PDF ︒∠+∠=90QDG PDF ︒∴∠+∠=90PDQ ︒∴∠=1190PDQ ︒∴∠=,即在旋转的过程中,PDQ ∠的度数不会发生变化. 【点睛】本题考查了二次函数与几何图形的综合应用,熟知其设计的知识点及相关关系,是解题的关键.4.(1)详见解析;(2)详见解析;(3)BD=22,r=32.【解析】【分析】(1)根据已知条件得到∠EBC=∠ADC=90°,根据平行线分线段成比例定理得出AG CG GD==EF CF BF,等量代换即可得到结论;(2)证明∠PAO=90°,连接AO,AB,根根据直角三角形斜边中线的性质,切线的性质和等量代换,就可得出结论;(3)连接AB,根据圆周角定理得到∠BAC=∠BAE=90°,推出FA=FB=FE=FG=3,过点F作FH⊥AG交AG于点H,推出四边形FBDH是矩形,得到FB=DH=3,根据勾股定理得到FH=22,设半径为r,根据勾股定理列方程即可得到结论.【详解】解:(1)∵EB是切线,AD⊥BC,∴∠EBC=∠ADC=90°,∴AD∥EB,(同位角相等,两直线平行)∴AG CG GD==EF CF BF,(平行线分线段成比例)∵G是AD的中点,∴AG=GD,∴EF=FB;(2)证明:连接AO,AB,∵BC是⊙O的直径,∴∠BAC=90°,(直径所对圆周角为直角)在Rt△BAE中,由(1)知,F是斜边BE的中点,直角三角形斜边中线为斜边一半,∴AF=FB=EF,且等边对等角,∴∠FBA=∠FAB,又∵OA=OB,∴∠ABO=∠BAO,∵BE是⊙O的切线,∴∠EBO=90°,∵∠EBO=∠FBA+∠ABO=∠FAB+∠BAO=∠FAO=90°,∴PA是⊙O的切线;(3)如图2,连接AB,AO,∵BC 是直径,∴∠BAC =∠BAE =90°,∵EF =FB ,∴FA =FB =FE =FG =3,过点F 作FH ⊥AG 交AG 于点H ,∵FA =FG ,FH ⊥AG ,∴AH =HG ,∵∠FBD =∠BDH =∠FHD =90°,∴四边形FBDH 是矩形,∴FB =DH =3,∵AG =GD ,∴AH =HG =1,GD =2,FH 2222AF AH =31=22--,∴BD =22设半径为r ,在Rt ADO 中,∵222AO =AD +OD , ∴222r =4+(r-22),解得:r =32综上所示:BD =22r =32【点睛】本题主要考察了平行线的性质及定理、平行线分线段成比例定理、等边对等角、直角三角形斜边中线的性质、圆周角定理、勾股定理及圆的切线及其性质,该题较为综合,解题的关键是在于掌握以上这些定理,并熟练地将其结合应用.5.(1)223y x x =--;(2)点E 的坐标为(113,289);(3)存在;点Q '的坐标为:(3232-)或(32,32)或(3,32)或(32-,3 【解析】【分析】(1)利用待定系数法代入计算,结合对称轴,即可求出解析式;(2)取AD 中点M ,连接BM ,过点A 作AE ∥BM ,交抛物线于点E ;然后求出直线AE 的解析式,结合抛物线的解析式,即可求出点E 的坐标;(3)由题意,先求出点F 的坐标,然后得到点Q 的坐标,得到OQ 和OB 的长度,然后结合等腰三角形的性质进行分类讨论,可分为四种情况进行分析,分别求出点Q '的坐标即可.【详解】解:(1)根据题意,设二次函数的解析式为2y ax bx c =++, ∵对称轴为12b x a=-=,则2b a =-, 把点(-1,0),点(0,-3)代入,有03a b c c -+=⎧⎨=-⎩, 又∵2b a =-,∴1a =,2b =-,3b =-,∴抛物线的解析式为:223y x x =--;(2)由(1)223y x x =--可知,顶点D 的坐标为(1,4-),点B 为(3,0),∵点A 为(1-,0),∴AD 的中点M 的坐标为(0,-2);如图,连接AD ,DE ,BE ,取AD 中点M ,连接BM ,过点A 作AE ∥BM ,交抛物线于点E ;此时点D 到直线AE 的距离等于点B 到直线AE 距离的2倍,即2ADE ABE S S ∆∆=,设直线BM 为y kx h =+,把点B 、点M 代入,有302k h h +=⎧⎨=-⎩, ∴直线BM 为223y x =-, ∴直线AE 的斜率为23, ∵点A 为(1-,0),∴直线AE 为2233y x =+, ∴2223323y x y x x ⎧=+⎪⎨⎪=--⎩,解得:10x y =-⎧⎨=⎩(舍去)或113289x y ⎧=⎪⎪⎨⎪=⎪⎩; ∴点E 的坐标为(113,289); (3)由(2)可知,直线AE 为2233y x =+, ∴点F 的坐标为(0,23), ∵将点F 向下平移233+个单位长度得到Q , ∴点Q 的坐标为(0,3-),∴3OQ =,∵点B 为(3,0),则OB=3,在Rt △OBQ 中,3tan 33OB OQB OQ ∠===, ∴60OQB ∠=︒,由旋转的性质,得60Q OQB '∠=∠=︒,3OQ OQ '==,①当3OG OQ '==时,OQ G '∆是等边三角形,如图:∴点G 30),∴点Q '的横坐标为32, ∴点Q '的坐标为(32,32-);②当3OQ Q G ''==,OQ G '∆是等腰三角形,如图:∵60OQ B ''∠=︒,∴30Q OG '∠=︒,∵3OQ '=,∴点Q '的坐标为(32,32); ③当3OG OQ '==时,OQ G '∆是等边三角形,如图:此时点G 的坐标为(3-0),∴点Q '的坐标为(332); ④当3Q G OQ ''=时,OQ G '∆是等腰三角形,如图:此时30Q OG '∠=︒,∴点Q '的坐标为(32-,3); 综合上述,点Q '的坐标为:(32,32-)或(32,32)或(332)或(32-,3). 【点睛】本题考查了二次函数的综合问题,也考查了解直角三角形,旋转的性质,等边三角形的性质,等腰三角形的性质,一次函数的性质,以及坐标与图形,解题的关键是熟练掌握图形的运动问题,正确的确定点Q '的位置是关键;注意运用数形结合的思想,分类讨论的思想进行解题.6.(1)4;(2)1;(3)①1OPQS ∆=;②322169(02)5552(2)c c c c h c c c ⎧++<≤⎪=⎨⎪+>⎩. 【解析】【分析】(1)由题意,先求出2F 的解析式,再求出P 、Q 两点的坐标,即可求出PQ 的长度; (2)由题意,先求出2F 的解析式,结合PQ 的长度,即可求出t 的值;(3)①根据题意,先求出2F 的解析式,然后求出点P 和点Q 的纵坐标,得到PQ 的长度,利用三角形的面积公式即可求出面积;②根据题意,先求出函数1F 和2F 的解析式,然后求出两个函数的对称轴,利用二次函数的对称性和增减性进行分类讨论:当02c <≤时,以及当2>c 时,分别求出h 与c 的关系式即可.【详解】解:(1)∵函数1F 为1y x =+,函数1F 和2F 的图象关于y 轴对称, ∴函数2F 为1y x =-+,当2x t ==时,有121=3y =+;2211y =-+=-;∴点P 为(2,3),点Q 为(2,1-),∴PQ 的长为3(1)4PQ =--=;故答案为:4;(2)∵函数1F 为3y x =,函数1F 和2F 的图象关于y 轴对称, ∴函数2F 为3y x =-; ∵(0)x t t =>,∴点P 在第一象限,点Q 在第四象限,设点P 为(t ,3t ),点Q 为(t ,3t -), ∵6PQ =, ∴33()6t t--=, 解得:1t =;故答案为:1;(3)①∵函数1F 为2(0)y ax bx c a =++≠,函数1F 和2F 的图象关于y 轴对称,∴函数2F 为:2()()y a x b x c =•-+•-+,即2y ax bx c =-+;∵t =,∴把t =1F ,则2a y a b c c b =•+=+;把t =代入函数2F ,则2a y a b c c b =•+=-;∴()a a PQ c c b b=+-=∴112OPQ S ∆==; ②由①可知,函数1F 为2y ax bx c =++,函数2F 为2y ax bx c =-+,∵函数1F 和2F 的图象与x 轴正半轴分别交于点(5,0),(1,0)A B ,∴25500a b c a b c ++=⎧⎨-+=⎩,解得:1545a c b c ⎧=-⎪⎪⎨⎪=⎪⎩, ∴函数1F 可化为:2455c c y x x c =-++,函数2F 可化为:2455c c y x x c -=-+; ∴函数1F 的对称轴为:4522()5c x c =-=⨯-, 函数2F 的对称轴为:4522()5cx c -=-=-⨯-, ∵0c >,则05a c =-<, 则函数1F ,函数2F 均是开口向下;∴函数1F 在02x <<上,y 随x 增大而增大,在2x >上是y 随x 增大而减小; 函数2F 在2x >-上,y 随x 增大而减小;∵1c x c ≤≤+,0c >,当02c <≤时,则函数1F 在2x =时取到最大值;函数2F 在1x c =+时取到最小值,则 ∴244(42)[(1)(1)]5555c c c c h c c c c =-⨯+⨯+--•+-•++, 即32169555h c c c =++(02c <≤); 当2>c 时,则函数1F 在x c =时取到最大值;函数2F 在1x c =+时取到最小值,则2244()[(1)(1)]5555c c c c h c c c c c c =-•+•+--•+-•++, 即22h c c =+(2>c );综合上述,h 关于c 的函数解析式为:322169(02)5552(2)c c c c h c c c ⎧++<≤⎪=⎨⎪+>⎩. 【点睛】本题考查了二次函数的综合问题,考查了二次函数的对称性、增减性,也考查了一次函数的图像和性质,待定系数法求函数的解析式,以及两点之间的距离,求三角形的面积等知识,解题的关键是熟练掌握二次函数和一次函数的性质进行解题,注意运用数形结合、分类讨论的思想进行分析,从而进行解题.7.(1)6c a =-;(2)①2132y x =-;②2. 【解析】【分析】(1)先根据二次函数的对称性求出抛物线与x 轴的另一个交点的横坐标,然后根据二次函数与一元二次方程的联系、一元二次方程的根与系数的关系即可得;(2)①先根据(1)可得抛物线的解析式和顶点D 的坐标,再设11222),(2)(,,A x k a B k x x a x --,从而可得直线AD 、BD 解析式中的一次项系数,然后根据一元二次方程的根与系数的关系可得12k x x a+=,124x x =-,最后根据圆周角定理可得AD BD ⊥,从而可得1212144x x k a k a x x +⋅=-+,化简可求出a 的值,由此即可得出答案;②先求出点B 、D 的坐标,再根据直线1l 与抛物线只有一个交点可得出2213,2q p x p --==,然后联立直线1l 与2l 求出点N 的坐标,最后利用三角形的面积公式分别求出12,S S ,由此即可得.【详解】(1)抛物线2(0)y ax bx c a =++>,顶点D 在y 轴上,∴抛物线的对称轴为y 轴,即0x =,0b ∴=,抛物线与x∴抛物线与x轴的另一个交点的横坐标为是关于x 的一元二次方程20(0)ax bx c a ++=>的两根,(c a∴=, 即6c a =-;(2)①由(1)可得:抛物线的解析式为26y ax a =-,顶点D 的坐标为(0,6)D a -,由题意,设点A 、B 的坐标分别为11222),(2)(,,A x k a B k x x a x --,且21x x >,由点A 、D 的坐标得:直线AD 解析式中的一次项系数为11112064x a x x k x a k a -=-++, 由点B 、D 的坐标得:直线BD 解析式中的一次项系数为22222064x a x x k x a k a -=-++,联立262y ax a y kx a⎧=-⎨=-⎩可得240ax kx a --=, 则1x 与2x 是关于x 的一元二次方程240ax kx a --=的两根, 由根与系数的关系得:1212,4k x x x x a+==-, 以AB 为直径的圆恒过点D , 90ADB ∴∠=︒,即AD BD ⊥, 则1212144x x k a k a x x +⋅=-+, 整理得:2164a =, 解得12a =或102a =-<(不符题意,舍去), 故抛物线的解析式为2132y x =-; ②由①可知,222(0,3),(,31)2D x x B --, 则直线2l 的解析式为3y =-, 联立2132y x y px q⎧=-⎪⎨⎪=+⎩可得22260px x q ---=, 1l 与抛物线只有一个公共点,∴方程22260px x q ---=只有一个实数根2x ,∴其根的判别式244(26)0p q ∆=++=,且2222260x px q ---=, 解得2132q p --=, 将2132q p --=代入2222260x px q ---=得:2x p =, 联立3y y px q =-⎧⎨=+⎩,解得33q x p y --⎧=⎪⎨⎪=-⎩, 即点N 的坐标为3(,3)q N p---, 21322p q p DN p p --∴===,121122S DM x DM p =⋅=⋅,21112224p S DM DN DM DM p =⋅=⋅=⋅, 1212124DM S p M p S D ⋅⋅∴==. 【点睛】本题考查了二次函数与一元二次方程的联系、一元二次方程的根与系数的关系以及根的判别式、二次函数的对称性、圆周角定理等知识点,较难的是题(2)①,利用圆周角定理得出AD BD ⊥,从而利用一次函数的性质建立等式是解题关键.8.(1)m=()()21200304603040t t t t +≤≤⎧⎪⎨+<≤⎪⎩, (2) t=40时w 最大=13200,(3)a 的最大值是85=2a . 【解析】【分析】(1)由图2知m 与t 是一次函数关系,设0≤t≤30时的解析式为m=k 1t+b 1,由图形的点(0,120),(30,180)在函数图像上代入解析式即可,设3040t <≤时的解析式为m=k 2t+b 2,由图形的点(40,220),(30,180)在函数图像上 代入解析式即可,(2)由商品没有成本价,为此只要商品的销售额最大,利润就最大,设y 1的总价为w 1,y 2的总价为w 2,总价=销售单价×销售量m 即可列出, w 1=2260720022103600t t t t ⎧-++⎨-++⎩与w 2=222036003801200t t t ⎧-++⎪⎨⎪+⎩两种总销售w=w 1+w 2,把w 函数配方讨论当030t ≤≤,第一段w 最大与3040t <≤,在第二段,w 最大经比较即可(3)根据题意决定每销售1千克产品就捐赠a 元给“环保公益项目”,则捐赠额a(4t+60)后10天每日销售额Q=w-am=-2t 2+(290-4a)t+4800-60a ,Q≥3600,构造抛物线Q 在Q=3600直线上方有解即可,在-2<0,开口向下,在3600上方取值,且满足3040t ≤≤,对称轴=2904-24b a a -=,只要对称轴介于30与40之间即可. 【详解】 (1)由图2知m 与t 是一次函数关系,设0≤t≤30时的解析式为m=k 1t+b 1,由图形的点(0,120),(30,180)在函数图像上,则11112030180b k b =⎧⎨+=⎩①②,解得112120k b =⎧⎨=⎩, m=2t+120,设3040t <≤时的解析式为m=k 2t+b 2,由图形的点(40,220),(30,180)在函数图像上, 则22224022030180k b k b +=⎧⎨+=⎩③④, 解得22460k b =⎧⎨=⎩, m=4t+60,m=()()21200304603040t t t t ⎧+≤≤⎪⎨+<≤⎪⎩,(2)由商品没有成本价,为此只要商品的销售总值最大,利润就最大,设y 1的总价为w 1,y 2的总价为w 2,w 1=()()1-60212021-604602t t t t ⎧⎛⎫++ ⎪⎪⎪⎝⎭⎨⎛⎫⎪++ ⎪⎪⎝⎭⎩, 整理得w 1=2260720022103600t t t t ⎧-++⎨-++⎩, w 2=()()1-302120320460t t t ⎧⎛⎫++⎪ ⎪⎝⎭⎨⎪+⎩, 整理得w 2=222036003801200t t t ⎧-++⎪⎨⎪+⎩,总销售w=w 1+w 2=22580108003-22904800t t t t ⎧-++⎪⎨⎪++⎩, 配方得w=()225-24117603145215312.52t t ⎧-+⎪⎪⎨⎛⎫⎪--+ ⎪⎪⎝⎭⎩, 当030t ≤≤,第一段w 最大=11760,而3040t <≤,145=2t >40,在第二段,w 随t 的增大而增大,t=40,w 最大=13200,经比较11760<13200,t=40时w 最大=13200,(3)根据题意决定每销售1千克产品就捐赠a 元给“环保公益项目”,则捐赠额a(4t+60), 后10天每日销售额Q=w-am=-2t 2+(290-4a)t+4800-60a ,则Q-3600=-2t 2+(290-4a)t+1200-60a ,∵-2<0,开口向下,在3600上方取值,且满足3040t ≤≤,对称轴为t=2904-24b a a -=只要3040t ≤≤, 290430404a -≤≤, 658522a ≤≤, a 的最大值是85=2a .【点睛】本题考查分段函数的解析式的求法与利用,两图象结合并利用,求日销售最大利润,抛物线顶点式,分段比较,在最后又利用捐赠构造新函数,求对称轴,利用对称轴解决问题,此题难度较大,综合能力强,必须掌握好函数的各方面的知识.9.(1)点P 的坐标为132⎛ ⎝⎭;(2)①34O D t '=-,t 的取值范围是423t <<;S ≤≤ 【解析】【分析】(1)过点P 作PH x ⊥轴,则90OHP ∠=︒,因为90OAB ∠=︒,30B ∠=︒,可得60BOA ∠=︒,进而得30OPH ∠=︒,由30°所对的直角边等于斜边的一半可得1122OH OP ==,进而用勾股定理可得2HP ==,点P 的坐标即求出; (2)①由折叠知,O PQ OPQ '≌,所以O P OP '=,O Q OQ '=;再根据OQ OP =,即可根据菱形的定义“四条边相等的四边形是菱形”可证四边形OQO P '为菱形,所以//QO OB ',可得30ADQ B ∠=∠=︒;根据点A 的坐标可知2OA =,加之OP t =,从而有2QA OA OQ t =-=-;而在Rt QAD 中,242QD QA t ==-, 又因为O D O Q QD ''=-,所以得34O D t '=-,由34O D t '=-和2QA t =-的取值范围可得t 的范围是423t <<; ②由①知,'POQ 为等边三角形,由(1)四边形OQO P '为菱形,所以'AB PQ ⊥,三角形DCQ 为直角三角形,∠Q=60°,从而11(34)22CQ DQ t ==-,(34)22CD DQ t ==-,进而可得222''3124))47POQ CDQ S S S t t =-=-=-+,又已知t 的取值范围是13t ≤≤S ≤≤ 【详解】解:(1)如图,过点P 作PH x ⊥轴,垂足为H ,则90OHP ∠=︒.90OAB ∠=︒,30B ∠=︒9060BOA B ∴∠=︒-∠=︒.9030OPH POH ∴∠=-∠=︒.在Rt OHP △中,1OP =,1122OH OP =∴=,HP =.∴点P 的坐标为12⎛ ⎝⎭.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 有整数解,那么这 5 个数中所有满足条件的 a 的值之和是( A.﹣3 B.﹣2 C.﹣ D.
10. (3 分)如图,菱形 OABC 的顶点 O 为坐标原点,顶点 A 在 x 轴正半轴上, 顶点 B、C 在第一象限,OA=2,∠AOC=60°,点 D 在边 AB 上,将四边形 ODBC 沿直线 OD 翻折,使点 B 和点 C 分别落在这个坐标平面内的 B′和 C′处,且∠ C′DB′=60°,某正比例函数图象经过 B′,则这个正比例函数的解析式为( )
2016-2017 学年重庆市渝中区巴蜀中学九年级(上)期末数学试 卷
一、选择题(4X10) 1. (3 分)下列是关于 x 的一元二次方程的是( A. B. (x﹣1) (x﹣5)=x2﹣5 )
C.x2=0 D.x2﹣2xy=1 )
2. (3 分)画出如图中物体的俯视图,正确的是(
A. 3. (3 分)若分式 A.1
6. (3 分)一个密闭不透明盒子中有若干个白球,现又放入 8 个黑球,摇匀后从 中随机摸出一个球记下颜色,再放回盒中,像这样共摸 200 次,其中 40 次摸到 黑球,估计盒中大约有白球( A.28 个 B.30 个 C.32 个 ) D.34 个
7. (3 分)如图,在▱ABCD 中,AB=3,BC=5,对角线 AC、BD 相交于点 O.过点 O 作 OE⊥AC,交 AD 于点 E.连接 CE,则△CDE 的周长为(
A.y=﹣
x
B.y=﹣
C.y=﹣
D.y=﹣x
二、填空题(4X10) 11. (3 分)方程 x2﹣4=0 的解是 .
第 2 页(共 22 页)
12. (3 分) 关于 x 的一元二次方程 2x2+kx+1=0 有两个相等的实根, 则 k= 方程的解为 .

13. (3 分)如图,已知△ACP∽△ABC,AC=4,AP=2,则 AB 的长为
20. (3 分)在正方形线
第 3 页(共 22 页)
BD 上一点且 BF=2DF, 连接 AE 交 BD 于点 G, 过点 F 作 FH⊥AE 于点 H, 连结 CH、 CF,若 HG=2cm,则△CHF 的面积是 cm2.
24. (10 分)今年前两个月,全国商品住宅市场销售出现销售量和销售价格齐跌 态势.数据显示,2016 年前两个月,鲁能地产开发公司开发的鲁能星城 13 街区 的销售面积一共 8000 平方米,其中 1 月份的销售面积不多于总面积的 40%. (1)求鲁能地产开发公司开发的鲁能星城 13 街区 2016 年 2 月份最少销售了多 少平方米?

14. (3 分) 如图: M 为反比例函数 k= .
图象上一点, MA⊥y 轴于 A, S△MAO=2 时,
15. (3 分)在分别写有﹣2,﹣1,0,1,2 的五张卡片中随机抽取两张,所抽取 的两个数差的绝对值大于 1 的概率为 .
16. (3 分)已知一个菱形的周长是 20cm,两条对角线的比是 4:3,则这个菱形 的面积是 . + =1 有增根,则 m= .
三、解答题(共 70 分) 21. (10 分)解方程: (1)x2﹣4x+1=0 (2) ﹣ = . , 其中 a 满足方程 a2+4a+1=0.
22. (10 分) 先化简, 再求值:
23. (10 分)如图,已知直线 y=mx+b(m≠0)与双曲线 y= (k≠0)交于 A(﹣ 3,﹣1)与 B(n,6)两点,连接 OA、OB. (1)求直线与双曲线的表达式; (2)求△AOB 的面积.
第 4 页(共 22 页)
(2)鲁能地产前两月每平方米的售价为 8000 元,为了解资金链问题,公司决定 从 3 月份开始,以降价促销的方式回笼资金.根据数据调查显示,每平方米销售 单价下调 a%, 3 月份销售面积将会在 2 月份最少销售面积的基础上增加 (a+10) %, 结果 3 月份总销售额为 3456 万元,求 a 的值. 25. (10 分)任意写一个个位数字不为零的四位正整数 A,将该正整数 A 的各位 数字顺序颠倒过来,得到四位正整数 B,则称 A 和 B 为一对四位回文数.例如 A=2016, B=6102, 则 A 和 B 就是一对四位回文数, 现将 A 的回文数 B 从左往右, 依次顺取三个数字组成一个新数,最后不足三个数字时,将开头的一个数字或两 个数字顺次接到末尾,在组成三位新数时,如遇最高位数字为零,则去掉最高位 数字,由剩下的两个或一个数字组成新数,将得到的所有新数求和,把这个和称 为 A 的回文数 B 作三位数的和.例如将 6102 依次顺取三个数字组成的新数分别 为:610,102,26,261,它们的和为:610+102+26+261=999,把 999 称为 2016 的回文数作三位数的和. (1)请直接写出一对四位回文数:猜想一个四位正整数的回文数作三位数的和 能否被 111 整除?并说明理由; (2)已知一个四位正整数 (千位数字为 1,百位数字为 x 且 0≤x≤9,十位
B.
C. )
D.
的值为 0,则 x 的值为(
B.﹣1 C.±1 D.0
4. (3 分)如图,四边形 ABCD 的对角线互相平分,要使它成为矩形,那么需要 添加的条件是 ( )
A.AB=CD B.AD=BC C.AB=BC
D.AC=BD )
5. (3 分) 若 x=3 是关于 x 的方程 x2﹣bx﹣3a=0 的一个根, 则 a+b 的值为 ( A.3 B.﹣3 C.9 D.﹣9
17. (3 分)若关于 x 的分式方程
18. (3 分)如图,正方形 ABCD 的边长为 2,点 E 为边 BC 的中点,点 P 在对角 线 BD 上移动,则 PE+PC 的最小值是 .
19. (3 分)如图,已知 M 是平行四边形 ABCD 中 AB 边的三等分点,BD 与 CM 交于 E,阴影部分面积为 7,则平行四边形 ABCD 的面积为 .
第 1 页(共 22 页)

A.3
B.5
C.8
D.11
8. (3 分)如图,将矩形 ABCD 的四个角向内折起,恰好拼成一个无缝隙无重叠 的四边形 EFGH,若 EH=9 厘米,EF=12 厘米,则边 AD 的长是( )
A.12 厘米 B.15 厘米 C.20 厘米 D.21 厘米 9. (3 分)从﹣3,﹣1, ,1,3 这五个数中,随机抽取一个数,记为 a,若数 a 使关于 x 的不等式组 无解,且使关于 x 的分式方程 ) ﹣ =﹣
相关文档
最新文档