整式的加减单元复习与巩固(基础)知识讲解 2

合集下载

整式的加减全章知识点总结

整式的加减全章知识点总结

整式的加减全章知识点总结第二章整式的加减知识点1:单项式的概念单项式是由数或字母的积组成的式子,其中只包含乘法运算,不能有加、减、除等运算符号。

单项式分为三种类型:数字与字母相乘组成的式子,如2ab;字母与字母组成的式子,如xy;单独的一个数或字母,如2,-a,m。

知识点2:单项式的系数单项式中的数字因数称为这个单项式的系数。

系数可以是整数、分数或小数,并且有正有负。

确定一个单项式的系数要注意包含在它前面的符号。

对于只含有字母因素的单项式,其系数是1或-1.表示圆周率的π在单项式中应作为系数的一部分。

知识点3:单项式的次数一个单项式中,所有字母的指数和称为这个单项式的次数。

计算单项式的次数时,应注意是所有字母的指数和,不要漏掉字母指数是1的情况。

单项式是一个单独字母时,它的指数是1.单项式的指数只和字母的指数有关,与系数的指数无关。

单项式通常根据指数进行命名。

知识点4:多项式的有关概念多项式是几个单项式的和,其中每个单项式称为多项式的项。

不含字母的项叫做常数项。

多项式里次数最高项的次数称为多项式的次数。

单项式与多项式统称整式。

B。

多项式是由单项式组成的,每一项都包含符号。

例如,多项式-2xy+6a-9由三个单项式-2xy、6a、-9组成,因此它是一个三项式。

多项式的次数是由组成它的单项式中次数最高的那个单项式的次数决定的。

例如,多项式-2xy+6a-9的次数是4,因为其中最高次项是-2xy,它的次数是4.这是一个四次三项式。

C。

在书写含乘法运算的式子时,需要注意以下几点:省略乘号时要小心,数字与字母相乘时数字必须写在字母前面,带分数要化成假分数。

在书写含除法运算的式子时,一般用分数线代替÷符号。

当书写含单位名称的式子时,遇到和差时要加括号,是积商时直接放。

D。

同类项指的是含有相同字母和相同指数的项。

同类项的系数和字母排列顺序不影响它们的同类性。

所有的常数项都是同类项,但单独的一项不能称为同类项,同类项至少要有两项。

《整式的加减》全章复习与巩固(提高)知识讲解

《整式的加减》全章复习与巩固(提高)知识讲解

《整式的加减》考点提要与典型习题训练一、本章知识网络二、主要考点考点一、整式的概念(一):单项式:由数字或字母的积组成的代数式叫做单项式,单独的一个数或一个字母也是单项式。

如:5、π、6a 、-12m 3n 、0.5m ²要点诠释:(1)单项式的系数是指单项式中的数字因数.(2)单项式的次数是指单项式中所有字母的指数和.例1、用代数式表示: (1)边长为a 的正方形周长为 ,面积为 . (2)设n 为整数,则奇数可表示为 ,偶数可表示为 .(3)拿158元钱去买钢笔,买了单价为5元的钢笔x 支,则剩下的钱为 元.(4)某人骑自行车m 小时行驶了48千米,则平均每小时的车速是 千米/时. 例2、用单项式填空,并指出它们的系数和次数.(1)每包书有10册,n 包书有 册.(2)一个长方体的长宽高分别是y x x ,,,则它的体积是 .(3)一台电脑原价a 元,现在按8折出售,这台电脑现在的售价为 . (4)半径为r 的圆的面积是 .例3、填空:(1)单项式y x 22的的系数是 ,次数是 ;(2)单项式232a π-的系数是 ,次数是 ; (3)单项式3π的系数是 ,次数是 ; (4)单项式8的系数是 ,次数是 .例4:典例分析:我们知道;)(2024828642;1223)62(642;622)42(42=⨯+=+++=⨯+=++=⨯+=+ n 2642++++ 的结果会是多少呢(二):多项式多项式:几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项。

如:m-3;x 2+5x-1;ab 3-m ;πr 2+6要点诠释:(1)在多项式中,不含字母的项叫做常数项.(2)多项式中次数最高的项的次数,就是这个多项式的次数.(3)多项式的次数是n 次,有m 个单项式,我们就把这个多项式称为n 次m 项式.例1:多项式623522233-++-b b a b a a 的最高次项是 ,四次项系数是 ,常数项是例2::列式表示:(1)比x 小2的数是 ;(2)x 的四分之三减y 的差是 ;(3)设礼堂里座位的行数为a ,并且行数是每行座位数的32,礼堂里共有座位 个; (4)一钢管的外径为R,内径为r ,长为a ,则该钢管的体积为 .例3:若8)1(2++--x kx x k k 是关于x 的一次多项式,求k 的值.多项式的降幂与升幂排列:把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把这个多项式按这个字母降幂排列.另外,把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把这个多项式按这个字母升幂排列.如要点诠释:(1)利用加法交换律重新排列时,各项应带着它的符号一起移动位置;(2)含有多个字母时,只按给定的字母进行降幂或升幂排列.例1:多项式3252536--+-z y x y x y x 按x 的降幂排列为: ;按y 的升幂排列为 。

《整式的加减》(二)—去括号与添括号 配套知识讲解2022人教七年级上册专练

《整式的加减》(二)—去括号与添括号 配套知识讲解2022人教七年级上册专练

整式的加减(二)—去括号与添括号(提高)知识讲解【学习目标】1.掌握去括号与添括号法则,注意变号法则的应用;2. 熟练运用整式的加减运算法则,并进行整式的化简与求值.【要点梳理】要点一、去括号法则如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.要点诠释:(1)去括号法则实际上是根据乘法分配律得到的结论:当括号前为“+”号时,可以看作+1与括号内的各项相乘;当括号前为“-”号时,可以看作-1与括号内的各项相乘.(2)去括号时,首先要弄清括号前面是“+”号,还是“-”号,然后再根据法则去掉括号及前面的符号.(3)对于多重括号,去括号时可以先去小括号,再去中括号,也可以先去中括号.再去小括号.但是一定要注意括号前的符号.(4)去括号只是改变式子形式,不改变式子的值,它属于多项式的恒等变形.要点二、添括号法则添括号后,括号前面是“+”号,括到括号里的各项都不变符号;添括号后,括号前面是“-”号,括到括号里的各项都要改变符号.要点诠释:(1)添括号是添上括号和括号前面的符号,也就是说,添括号时,括号前面的“+”号或“-”号也是新添的,不是原多项式某一项的符号“移”出来得到的.(2)去括号和添括号的关系如下:如:()a b c a b c +-+-添括号去括号, ()a b c a b c -+--添括号去括号要点三、整式的加减运算法则一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.要点诠释:(1)整式加减的一般步骤是:①先去括号;②再合并同类项.(2)两个整式相减时,减数一定先要用括号括起来.(3)整式加减的最后结果的要求:①不能含有同类项,即要合并到不能再合并为止;②一般按照某一字母的降幂或升幂排列;③不能出现带分数,带分数要化成假分数.【典型例题】类型一、去括号1.(2020•泰安模拟)化简m ﹣n ﹣(m+n )的结果是( )A . 0B . 2mC . ﹣2nD . 2m ﹣2n【答案】C【解析】解:原式=m ﹣n ﹣m ﹣n=﹣2n .故选C .【总结升华】解决此类题目的关键是熟记去括号法则,及熟练运用合并同类项的法则,其是各地中考的常考点.注意去括号法则为:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣.类型二、添括号2.按要求把多项式321a b c -+-添上括号:(1)把含a 、b 的项放到前面带有“+”号的括号里,不含a 、b 的项放到前面带有“-”号的括号里;(2)把项的符号为正的放到前面带有“+”号的括号里,项的符号为负的放到前面带有“-”号的括号里.【答案与解析】解:(1)321(32)(1)a b c a b c -+-=---+;(2)321(3)(21)a b c a c b -+-=+-+.【总结升华】在括号里填上适当的项,要特别注意括号前面的符号,考虑是否要变号.举一反三:【变式】添括号:(1)22()101025()10()25x y x y x y +--+=+-+.(2)()()[(_______)][(_______)]a b c d a b c d a a -+-+-+=-+.【答案】(1)x y +; (2),b c d b c d -+-+ .类型三、整式的加减3. 3243245348x x x x x x -+--+-一个多项式加上得,求这个多项式.【答案与解析】解:在解答此题时应先根据题意列出代数式,注意把加式、和式看作一个整体,用括号括起来,然后再进行计算,在计算过程中找同类项,可以用不同的记号标出各同类项,减少运算的错误.43232(348)(45)x x x x x x --+---+ 4323243348453813.x x x x x x x x x =--+--+-=-+- 答:所求多项式为433813x x x -+-.【总结升华】整式加减的一般步骤是:①先去括号;②再合并同类项.举一反三:【变式】化简:(1)15+3(1-x )-(1-x+x 2)+(1-x+x 2-x 3).(2)3x 2y -[2x 2z -(2xyz -x 2z+4x 2y )].(3)-3[(a 2+1)-16(2a 2+a )+13(a -5)]. (4)ab -{4a 2b -[3a 2b -(2ab -a 2b )+3ab ]}.【答案】解: (1) 15+3(1-x )-(1-x+x 2)+(1-x+x 2-x 3)=15+3(1-x )-(1-x+x 2)+(1-x+x 2)-x 3=18-3x -x 3.. ……整体合并,巧去括号(2) 3x 2y -[2x 2z -(2xyz -x 2z+4x 2y )]=3x 2y -2x 2z+(2xy -x 2z+4x 2y ) ……由外向里,巧去括号=3x 2y -2x 2z+2xyz -x 2z+4x 2y=7x 2y -3x 2z+2xyz .(3) 22113[(1)(2)(5)]63a a a a -+-++- 2213(1)(2)(5)2a a a a =-+++-- 2213352a a a a =--++-+ 21222a a =--+. (4)ab -{4a 2b -[3a 2b -(2ab -a 2b )+3ab ]}=ab -4a 2b+3a 2b -2ab+a 2b+3ab ……一举多得,括号全脱=2ab .类型四、化简求值4. 先化简,再求各式的值:(){}123225,,12x y x x y x y x y --+-++==-⎡⎤⎣⎦其中. 【答案与解析】解:原式[2(3245)][2(3)]x y x x y x y x y x x y =--+--+=--+-+(23)(43)43444().x y x x y x y x x y x x y x y =---+=--=-+=-=- 将1,12x y ==-代入,得:134[(1)]4622--=⨯=. 【总结升华】化简求值题一般采用“一化二代三计算”,此类题最后结果的书写格式一般为:当……时,原式=?举一反三:【变式】(2020春•万州区期末)先化简,再求值:﹣2x 2﹣[3y 2﹣2(x 2﹣y 2)+6],其中x=﹣1,y=﹣.【答案】解:原式=﹣2x 2﹣y 2+x 2﹣y 2﹣3=﹣x 2﹣y 2﹣3,当x=﹣1,y=﹣时,原式=﹣1﹣﹣3=﹣4.5. 已知3a 2-4b 2=5,2a 2+3b 2=10.求:(1)-15a 2+3b 2的值;(2)2a 2-14b 2的值.【答案与解析】显然,由条件不能求出a 、b 的值.此时,应采用技巧求值,先进行拆项变形.解:(1)-15a 2+3b 2=-3(5a 2-b 2)=-3[(3a 2+2a 2)+(-4b 2+3b 2)]=-3[(3a 2-4b 2)+(2a 2+3b 2)]=-3×(5+10)=-45;(2)2a 2-14b 2=2(a 2-7b 2)=2[(3a 2-2a 2)+(-4b 2-3b 2)]=2×[(3a 2-4b 2)-(2a 2+3b 2)]=2×(5-10)=-10.【总结升华】求整式的值,一般先化简后求值,但当题目中含未知数的部分可以看成一个整体时,要用整体代入法,即把“整体”当成一个新的字母,求关于这个新的字母的代数式的值,这样会使运算更简便. 举一反三:【变式】当2m π=时,多项式31am bm ++的值是0,则多项式3145_____2a b ππ++=. 【答案】∵ 3(2)210a b ππ++=, ∴ 338212(4)10a b a b ππππ++=++=,即3142a b ππ+=-. ∴31114555222a b ππ++=-+=. 6. .已知多项式2x ax y b +-+与2363bx x y -+-的差的值与字母x 无关,求代数式:22223(2)(4)a ab b a ab b ---++的值.【答案与解析】解:222(363)(1)(3)7(3)x ax y b bx x y b x a x y b +-+--+-=-++-++.由于多项式2x ax y b +-+与2363bx x y -+-的差的值与字母x 无关,可知: 10b -=,30a +=,即有1,3b a ==-.又2222223(2)(4)74a ab b a ab b a ab b ---++=---,将1,3b a ==-代入可得:22(3)7(3)1418---⨯-⨯-⨯=.【总结升华】本例解题的关键是多项式的值与字母x 无关.“无关”意味着合并同类项后,其结果不含“x ”的项,所以合并同类项后,让含x 的项的系数为0即可.类型五、整式加减运算的应用7. (湖南益阳)有一种石棉瓦(如图所示),每块宽60厘米,用于铺盖屋顶时,每相邻两块重叠部分的宽都为10厘米,那么n (n 为正整数)块石棉瓦覆盖的宽度为 ( ) .A .60n 厘米B .50n 厘米C .(50n+10)厘米D .(60n -10)厘米【答案】C .【解析】观察上图,可知n 块石棉瓦重叠的部分有(n -1)处,则n 块石棉瓦覆盖的宽度为:60n -10(n -1)=(50n+10)厘米.【总结升华】求解本题时一定要注意每相邻两块重叠部分的宽都为10厘米这一已知条件,一不小心就可能弄错.举一反三:【变式】如图所示,长方形内有两个相邻的正方形,面积分别为9和a 2(a >0).那么阴影部分的面积为________.【答案】3a-a2提示:由图形可知阴影部分面积=长方形面积29--,而长方形的长为3+a,宽为3,从而使问a题获解.第二课时【学习目标】1.理解方程,等式及一元一次方程的概念,并掌握它们的区别和联系;2.会解一元一次方程,并理解每步变形的依据;3.会根据实际问题列方程解应用题.【知识网络】【要点梳理】知识点一、一元一次方程的概念1.方程:含有未知数的等式叫做方程.2.一元一次方程:只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程.要点诠释:判断是否为一元一次方程,应看是否满足:①只含有一个未知数,未知数的次数为1;②未知数所在的式子是整式,即分母中不含未知数.3.方程的解:使方程的左、右两边相等的未知数的值叫做这个方程的解.4.解方程:求方程的解的过程叫做解方程.知识点二、等式的性质与去括号法则1.等式的性质:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.2.合并法则:合并时,把系数相加(减)作为结果的系数,字母和字母的指数保持不变.3.去括号法则:(1)括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.(2)括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号相反.知识点三、一元一次方程的解法解一元一次方程的一般步骤:(1)去分母:在方程两边同乘以各分母的最小公倍数.(2)去括号:依据乘法分配律和去括号法则,先去小括号,再去中括号,最后去大括号.(3)移项:把含有未知数的项移到方程一边,常数项移到方程另一边.(4)合并:逆用乘法分配律,分别合并含有未知数的项及常数项,把方程化为ax =b (a ≠0)的形式.(5)系数化为1:方程两边同除以未知数的系数得到方程的解b x a=(a ≠0). (6)检验:把方程的解代入原方程,若方程左右两边的值相等,则是方程的解;若方程左右两边的值不相等,则不是方程的解.知识点四、用一元一次方程解决实际问题的常见类型1.行程问题:路程=速度×时间2.和差倍分问题:增长量=原有量×增长率3.利润问题:商品利润=商品售价-商品进价4.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量5.银行存贷款问题:本息和=本金+利息,利息=本金×利率×期数6.数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+.【典型例题】类型一、一元一次方程的相关概念1.已知方程(3m -4)x 2-(5-3m )x -4m =-2m 是关于x 的一元一次方程,求m 和x 的值.【思路点拨】若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1,系数不为0,则这个方程是一元一次方程.【答案与解析】 解:因为方程(3m -4)x 2-(5-3m )x -4m =-2m 是关于x 的一元一次方程,所以3m -4=0且5-3m ≠0.由3m -4=0解得43m =,又43m =能使5-3m ≠0,所以m 的值是43. 将43m =代入原方程,则原方程变为485333x ⎛⎫--⨯= ⎪⎝⎭,解得83x =-. 所以43m =,83x =-. 【总结升华】解答这类问题,一定要严格按照一元一次方程的定义.方程(3m -4)x 2-(5-3m )x -4m =-2m 2是关于x 的一元一次方程,就是说x 的二次项系数3m -4=0,而x 的一次项系数5-3m ≠0,m 的值必须同时符合这两个条件.举一反三:【变式】下面方程变形中,错在哪里:(1)方程2x=2y两边都减去x+y,得2x-(x+y)=2y-(x+y), 即x-y=-(x-y).方程 x-y=-(x-y)两边都除以x-y, 得1=-1.(2)3721223x xx-+=+,去分母,得3(3-7x)=2(2x+1)+2x,去括号得:9-21x=4x+2+2x.【答案】(1)答:错在第二步,方程两边都除以x-y.(2)答:错在第一步,去分母时2x项没乘以公分母6.2.如果5(x+2)=2a+3与(31)(53)35a x a x+-=的解相同,那么a的值是________.【答案】7 11【解析】由5(x+2)=2a+3,解得275ax-=.由(31)(53)35a x a x+-=,解得95x a=-.所以27955aa-=-,解得711a=.【总结升华】因为两方程的解相同,可把a看做已知数,分别求出它们的解,令其相等,转化为求关于a 的一元一次方程.举一反三:【变式】(2020•温州模拟)已知3x=4y,则=.【答案】.解:根据等式性质2,等式3x=4y两边同时除以3y,得:=.类型二、一元一次方程的解法3.解方程:4621132x x-+-=.【答案与解析】解:去分母,得:2(4-6x)-6=3(2x+1).去括号,得:8-12x-6=6x+3.移项,合并同类项,得:-18x=1.系数化为1,得:118x=-.【总结升华】转化思想是初中数学中一种常见的思想方法,它能将复杂的问题转化为简单的问题,将生疏的问题转化为熟悉的问题,将未知转化为已知.事实上解一元一次方程就是利用方程的同解原理,将复杂的方程转化为简单的方程直至求出它的解.举一反三:【变式1】解方程26752254436z z z zz+---++=-【答案】解:把方程两边含有分母的项化整为零,得267522544443366z z z z z +++-=--+. 移项,合并同类项得:1122z =,系数化为1得:z =1. 【变式2】解方程: 0.10.050.20.05500.20.54x x +--+=. 【答案】 解:把方程可化为:0.520.550254x x +--+=, 再去分母得:232x =-解得:16x =-4.解方程3{2x -1-[3(2x -1)+3]}=5.【答案与解析】解:把2x -1看做一个整体.去括号,得:3(2x -1)-9(2x -1)-9=5.合并同类项,得-6(2x -1)=14. 系数化为1得:7213x -=-,解得23x =-. 【总结升华】把题目中的2x -1看作一个整体,从而简化了计算过程.本题也可以考虑换元法:设2x -1=a ,则原方程化为3[a -(3a+3)]=5.类型三、特殊的一元一次方程的解法1.解含字母系数的方程5.解关于x 的方程:11()(2)34m x n x m -=+ 【思路点拨】这个方程化为标准形式后,未知数x 的系数和常数都是以字母形式出现的,所以方程的解的情况与x 的系数和常数的取值都有关系.【答案与解析】解:原方程可化为:(43)462(23)m x mn m m n -=+=+当34m ≠时,原方程有唯一解:4643mn m x m +=-; 当33,42m n ==-时,原方程无数个解; 当33,42m n =≠-时,原方程无解; 【总结升华】解含字母系数的方程时,一般化为最简形式ax b =,再分类讨论进行求解,注意最后的解不能合并,只能分情况说明.2.解含绝对值的方程6. 解方程|x -2|=3.【答案与解析】解:当x -2≥0时,原方程可化为x -2=3,得x =5.当x -2<0时,原方程可化为-(x -2)=3,得 x =-1.所以x =5和x =-1都是方程|x -2|=3的解.【总结升华】如图所示,可以看出点-1与5到点2的距离均为3,所以|x -2|=3的意义为在数轴上到点2的距离等于3的点对应的数,即方程|x -2|=3的解为x =-1和x =5.举一反三:【变式1】若关于x 的方程230x m -+=无解,340x n -+=只有一个解,450x k -+=有两个解, 则,,m n k 的大小关系为: ( )A . m n k >> B.n k m >> C.k m n >> D.m k n >>【答案】A【变式2】若9x =是方程123x m -=的解,则__m =;又若当1n =时,则方程123x n -=的解是 . 【答案】1; 9或3. 类型四、一元一次方程的应用7.李伟从家里骑摩托车到火车站,如果每小时行30千米,那么比火车开车时间早到15分钟;若每小时行18千米,则比火车开车时间迟到15分钟,现在李伟打算在火车开车前10分钟到达火车站,求李伟此时骑摩托车的速度应是多少?【思路点拨】本题中的两个不变量为:火车开出的时间和李伟从家到火车站的路程不变.【答案与解析】解:设李伟从家到火车站的路程为y 千米,则有:151530601860y y +=-,解得:452y = 由此得到李伟从家出发到火车站正点开车的时间为4515213060+=(小时). 李伟打算在火车开车前10分钟到达火车站时,设李伟骑摩托车的速度为x 千米/时, 则有:452271010116060y x ===--(千米/时) 答:李伟此时骑摩托车的速度应是27千米/时.【总结升华】在解决问题时,当发现某种方法不能解决问题时,应该及时变换思维角度,如本题直接设未知数较难时,应迅速变换思维的角度,合理地设置间接未知数以寻求新的解决问题的途径和方法.8. (2020春•万州区校级月考)一项工程,甲单独做要10天完成,乙单独做要15天完成,两人合做4天后,剩下的部分由乙单独做,还需要几天完成?【答案与解析】解:设乙还需x 天完成,由题意得4×(+)+=1,解得x=5.答:乙还需5天完成.【总结升华】本题考查了一元一次方程的应用,解决问题的关键是找到所求的量的等量关系.当题中没有一些必须的量时,为了简便,可设其为1.举一反三:【变式】某商品进价2000元,标价4000元,商店要求以利润率不低于20%的售价打折出售,售货员最低可以打几折出售此商品?【答案】解:设售货员可以打x折出售此商品,得:x⨯=+40000.12000(120%),x=解得: 6.答:售货员最低可以打六折出售此商品.。

整式的加减单元复习与巩固(基础)知识讲解及巩固练习

整式的加减单元复习与巩固(基础)知识讲解及巩固练习

2.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项.要点诠释:合并同类项时,只是系数相加减,所得结果作为系数,字母及字母的指数保持不变.3.去括号法则:括号前面是“+”,把括号和它前面的“+”去掉后,原括号里各项的符号都不改变;括号前面是“-”,把括号和它前面的“-”号去掉后,原括号里各项的符号都要改变.4.添括号法则:添括号后,括号前面是“+”,括号内各项的符号都不改变;添括号后,括号前面是“-”,括号内各项的符号都要改变.5.整式的加减运算法则:几个整式相加减,通常用括号把每一个整式括起来,再用加、减号连接,然后去括号,合并同类项.【典型例题】类型一、整式的相关概念1.指出下列各式中的整式、单项式和多项式,是单项式的请指出系数和次数,是多项式的请说出是几次几项式.(1)3a - (2)5 (3)2b a - (4)2x y - (5)3xy (6)x π (7)5m n + (8)1+a% (9)1()2a b h + 【答案与解析】解:整式:(1)、(2)、(4)、(5)、(6)、(7)、(8)、(9)单项式:(2)、(5)、(6),其中:5的系数是5,次数是0;3xy 的系数是3,次数是2;x π的系数是1π,次数是1. 多项式:(1)、(4)、(7)、(8)、(9),其中: 3a -是一次二项式;2xy -是一次二项式;5m n +是一次二项式;1+a%是一次二项式; 1()2a b h +是二次二项式。

【总结升华】①分母中出现字母的式子不是整式,故2b a -不是整式;②π是常数而不是字母,故x π是整式,也是单项式;③(7)、(9)表示的是加、减关系而不是乘积关系,而单项式中不能有加减.如5m n +其实质为55m n +,1()2a b h +其实质为1122ah bh +. 举一反三:【变式1】(1)3xy -的次数与系数的和是________;(2)已知单项式26x y 的系数是等于单项式52m x y -的次数,则m =________;(3)若n ma b 是关于a 、b 的一个五次单项式,且系数为9,则-m+n =________.【答案】 (1)3 (2)1 (3)-5【变式2】多项式432231y y y y -+-+是________次________项式,常数项是________,三次项是________.【答案】四,五, 1 , 3y -【变式3】把多项式321325x x x --+按x 的降幂排列是________.【答案】322531x x x -+-+ 类型二、同类项及合并同类项2.(2015•遵义)如果单项式﹣xy b+1与x a ﹣2y 3是同类项,那么(a ﹣b )2015= . 【答案】1.【解析】解:由同类项的定义可知a ﹣2=1,解得a=3,b+1=3,解得b=2,所以(a ﹣b )2015=1.【总结升华】考查了同类项,要求代数式的值,首先要求出代数式中的字母的值,然后代入求解即可.举一反三:【变式】若47a x y 与579b x y -是同类项,则a =________,b =________. 【答案】 5 , 4 类型三、去(添)括号3. 计算 22232(12)[5(436)]x x x x x -----+【答案与解析】解法1: 22232(12)[5(436)]x x x x x -----+222324(5436)x x x x x =-+--+- 2234236x x x x =+---+224x x =++解法2:22232(12)[5(436)]x x x x x -----+2223245(436)x x x x x =-+-+-+ 22242436x x x x =-+-+-+224x x =++【总结升华】根据多重括号的去括号法则,可由里向外,也可由外向里逐层推进,在计算过程中要注意符号的变化.若括号前是“-”号,在去括号时,括号里各项都应变号,若括号前有数字因数,应把数字因数乘到括号里,再去括号.举一反三:【变式1】下列式子中去括号错误的是( ).A .5x -(x -2y +5z )=5x -x +2y -5zB .2a 2+(-3a -b )-(3c -2d )=2a 2-3a -b -3c +2dC .3x 2-3(x +6)=3x 2-3x -6D .-(x -2y )-(-x 2+y 2)=-x +2y +x 2-y 2【答案】C【变式2】化简:-2a+(2a -1)的结果是( ).A .-4a -1B .4a -1C .1D .-1【答案】D类型四、整式的加减4. 求比多项式22523a a ab b --+少25a ab -的多项式.【答案与解析】解:依题意,列式为:222(523)(5)a a ab b a ab --+-- 2225235a a ab b a ab =--+-+222a ab b =--+【总结升华】当整式是一个多项式,不是一个单项式时,应用括号把一个整式作为一个整体来加减.举一反三: 【变式】计算:11(812)3(22)32a abc c b ---+-+ 【答案】原式11466632a abc c b =-++-+ 1106a b =-+类型五、化简求值5. (1)直接化简代入已知12x =,1y =-,求225(23)2(43)x y x x x y ---的值. (2)条件求值 (烟台)若523m x y +与3n x y 的和是单项式,则n m =________.(3)整体代入已知x 2-2y =1,那么2x 2-4y+3=________.【答案与解析】解:(1)5(2x 2y -3x )-2(4x -3x 2y )=10x 2y -15x -8x+6x 2y=16x 2y -23x当12x =,y =-1时,原式=211233116(1)2342222⎛⎫⨯⨯--⨯=--=- ⎪⎝⎭. (2) 由题意知:523m xy +和3n x y 是同类项,所以m+5=3,n =2,解得,m =-2,n =2,所以2(2)4n m =-=.(3)因为222432(2)3x y x y -+=-+, 而221x y -=所以22432135x y -+=⨯+=.【总结升华】整体代入求值的一般做法是对代数式先进行化简,然后找到化简结果与已知条件之间的联系.举一反三:【变式1】(2015•娄底)已知a 2+2a=1,则代数式2a 2+4a ﹣1的值为( )A .0B .1C .﹣1D .﹣2【答案】B【变式2】已知25m n -+=,求25(2)6360m n n m -+--的值.【答案】225(2)63605(2)3(2)60m n n m m n n m -+--=-+-- 225m n n m -+=-=所以,原式=255356080⨯+⨯-=. 类型六、综合应用6. 已知多项式 是否存在m ,使此多项式与x 无关?若不存在,说明理由;若存在,求出m 的值.【答案与解析】 解:原式要使原式与x 无关,则需该项的系数为0,即有260m -=,所以3m = 答:存在m 使此多项式与x 无关,此时m 的值为3.【巩固练习】一、选择题1.已知a 与b 互为相反数,且x 与y 互为倒数,那么|a+b|-2xy 的值为( ).A .2B .-2C .-1D .无法确定2.(2015•厦门)已知一个单项式的系数是2,次数是3,则这个单项式可以是( )A .﹣2xy 2B . 3x 2C . 2xy 3D .2x 3()()22222mx -x +3x +1-5x -4y +3x 2222(215)(33)41(26)41m x x y m x y =--+-++=-++3.有下列式子:12x yz +,2b ,2323x x --,abc ,0,y x ,x ,a b ab+,对于这些式子下列结论正确的是( ).A .有4个单项式,2个多项式B .有5个单项式,3个多项式C .有7个整式D .有3个单项式,2个多项式4.对于式子421.210x y -⨯,下列说法正确的是( ).A .不是单项式B .是单项式,系数为-1.2×10,次数是7C .是单项式,系数为-1.2×104,次数是3D .是单项式,系数为-1.2,次数是35.下面计算正确的是( ).A .32x -2x =3B .32a +23a =55aC .3+x =3xD .-0.25ab +41ba =0 6.2a -(5b -c+3d -e )=2a □5b □c □3d □e ,方格内所填的符号依次是( ).A .+,-,+,-B .-,-,+,-C .-,+,-,+D .-,+,-,-7.某工厂现有工人a 人,若现有工人数比两年前减少了35%,则该工厂两年前工人数为( ).A .135%a +B .(1+35%)aC .135%a - D .(1-35%)a 8.若2237y y ++的值为8,则2469y y +-的值是( ).A .2B .-17C .-7D .7二、填空题9.比x 的15%大2的数是________.10.(2015•岳阳)单项式﹣x 2y 3的次数是 .11.22372x y x -++是________次________项式,最高次项的系数是________. 12.化简:2a -(2a -1)=________.13.如果24a ab +=,21ab b +=-,那么22a b -=________.14.一个多项式减去3x 等于2535x x --,则这个多项式为________.15.若单项式22m n x y +-与单项式323m y x 的和是单项式,那么3m n -= .16.如图所示,外圆半径是R 厘米,内圆半径是r 厘米,四个小圆的半径都是2厘米,则图中阴影部分的面积是________平方厘米.三、解答题17.(2014秋•镇江校级期末)合并同类项①3a ﹣2b ﹣5a+2b②(2m+3n ﹣5)﹣(2m ﹣n ﹣5) ③2(x 2y+3xy 2)﹣3(2xy 2﹣4x 2y )18.已知:2263A x x =+-,213B x x =--,2451C x x =--,当32x =-时,求代数式32A B C -+的值.19. 计算下式的值:其中114x ,y ,==-甲同学把14x =错抄成14x =-,但他计算的结果也是正确的,你能说明其中的原因吗?【答案与解析】一、选择题1. 【答案】B【解析】根据已知条件,a 与b 互为相反数,即a+b =0,x 与y 互为倒数,即xy =1,所以|a+b |-2xy =0-2×1=-2,故选B .2.【答案】D .【解析】此题规定了单项式的系数和次数,但没规定单项式中含几个字母.A 、﹣2xy 2系数是﹣2,错误;B 、3x 2系数是3,错误;C 、2xy 3次数是4,错误;D 、2x 3符合系数是2,次数是3,正确;故选D .3. 【答案】A【解析】单项式有2b ,abc ,0,x ;多项式有12x yz +,2323x x --,其中y x ,a b ab +不是整式.4.【答案】 C【解析】此单项式的系数是以科学记数法形式出现的数,所以系数为-1.2×104,次数应为x 与y 的指数之和,不包括10的指数4,故次数为3.不要犯“见指数就相加”的错误.所以正确答案为C .5. 【答案】D6.【答案】 C【解析】因为括号前是“-”号,所以去括号时,括号里各项都变号,故选C .7. 【答案】C【解析】把减少前的工人数看作整体“1”,已知一个数的(1-35%)是a ,求这个数,则是135%a -,注意列式时不能用“÷”号,要写成分数形式. 8.【答案】C)4()2()242(33432242234y y x x y y x x y x y x x -+-++----【解析】22378y y ++=,2231y y +=,22462(23)212y y y y +=+=⨯=,故24697y y +-=-.二、填空题9.【答案】15%x+210.【答案】5.11.【答案】三, 三 , 12- 【解析】多项式的次数取决于次数最高项的次数,确定系数时不要忽视前面的“-”号.12.【答案】1【解析】先根据去括号法则去括号,然后合并同类项即可,2a -(2a -1)=2a -2a+1=1.13.【答案】5【解析】用前式减去后式可得225a b -=.14.【答案】255x -【解析】要求的多项式实际上是2(535)3x x x --+,化简可得出结果.15.【答案】 1【解析】两个单项式的和是单项式,说明这两个单项式是同类项,根据同类项的定义,可得1m =,2n =.16.【答案】22(16)R r πππ--【解析】阴影部分的面积=大圆面积-最中间的圆的面积-4个小圆的面积.三、解答题17.【解析】解:(1)原式=(3a ﹣5a )+(﹣2b+2b )=﹣2a ;(2)原式=2m+3n ﹣5﹣2m+n+5=(2m ﹣2m )+(3n+n )+(﹣5+5)=4n ;(3)原式=2x 2y+6xy 2﹣6xy 2+12x 2y=(2x 2y+12x 2y )+(6xy 2﹣6xy 2)=14x 2y .18.【解析】解:∵222263,31,45 1.A x x B x x C x x ⎧=+-⎪=--+⎨⎪=--⎩ ∴ 222263,3393,2810 2.A x x B x x C x x ⎧=+-⎪⎪-=+-⎨⎪=--⎪⎩∴2321358A B C x x -+=+- 当32x =-时, 32A B C -+33915117303213()5()81388132242444=⨯-+⨯--=⨯--=--=. 19. 【解析】解: ∵化简结果与x 无关 ∴将x 抄错不影响最终结果.43224223433432242234333(242)(2)(4)242242yx x y x y x x y y x x y y x x y x y x x y y x x y y ----++-+-----+-- =+- = 。

第二章整式的加减全章知识点总结

第二章整式的加减全章知识点总结

第二章 整式的加减知识点1、单项式的概念式子x 3,m t xy a ---,6.2,,32它们都是数或字母的积,象这样的式子叫做单项式,单独的一个数或一个字母也是单项式。

注意:单项式是一种特殊的式子,它包含一种运算、三种类型。

一种运算是指数与字母、字母与字母之间只能是乘法的一种运算,不能有加、减、除等运算符号;三种类型是指:一是数字与字母相乘组成的式子,如ab 2;二是字母与字母组成的式子,如3xy ;三是单独的一个数或字母,如m a ,2-,。

知识点2、单项式的系数 单项式中的数字因数叫做这个单项式的系数。

注意:(1)单项式的系数可以是整数,也可能是分数或小数。

如42x 的系数是2;3ab 的系数是31,2.7m 的系数是2.7。

(2)单项式的系数有正有负,确定一个单项式的系数,要注意包含在它前面的符号,如-()xy 2的系数是-2.(3)对于只含有字母因素的单项式,其系数是1或-1,不能认为是0,如-2xy 的系数是-1;2xy 的系数是1。

(4)表示圆周率的π,在数学中是一个固定的常数,当它出现在单项式中时,应将其作为系数的一部分,而不能当成字母。

如2πxy 的系数就是2π. 知识点3、单项式的次数一个单项式中,所有字母的指数和叫做这个单项式的次数。

注意:(1)计算单项式的次数时,应注意是所有字母的指数和,不要漏掉字母指数是1的情况。

如单项式z y x 342的次数是字母z y x ,,的指数和,即4+3+1=8,而不是7次,应注意字母Z 的指数是1而不是0.。

(2)单项式是一个单独字母时,它的指数是1,如单项式m 的指数是1,单项式是单独的一个常数时,一般不讨论它的次数。

(3)单项式的指数只和字母的指数有关,与系数的指数无关。

如单项式-43242z y x 的次数是字母z y x ,,的指数和,即2+3+4=9而不是13次(4)单项式通常根据字母的次数进行命名。

如x 6是一次单项式,xyz 2是三次单项式。

数学讲义初一上册《整式的加减》全章复习与巩固(提高)知识讲解

数学讲义初一上册《整式的加减》全章复习与巩固(提高)知识讲解

《整式的加减》全章复习与巩固(提高)知识讲解【学习目标】1.理解并掌握单项式与多项式的相关概念;2.理解整式加减的基础是去括号和合并同类项,并会用整式的加减运算法则,熟练进行整式的加减运算、求值;3.深刻体会本章体现的主要的数学思想----整体思想.【知识网络】【要点梳理】要点一、整式的相关概念1.单项式:由数或字母的积组成的代数式叫做单项式,单独的一个数或一个字母也是单项式.要点诠释:(1)单项式的系数是指单项式中的数字因数.(2)单项式的次数是指单项式中所有字母的指数和.2.多项式:几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.要点诠释:(1)在多项式中,不含字母的项叫做常数项.(2)多项式中次数最高的项的次数,就是这个多项式的次数.(3)多项式的次数是n次,有m个单项式,我们就把这个多项式称为n次m项式.3. 多项式的降幂与升幂排列:把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把这个多项式按这个字母降幂排列.另外,把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把这个多项式按这个字母升幂排列.要点诠释:(1)利用加法交换律重新排列时,各项应连同它的符号一起移动位置;(2)含有多个字母时,只按给定的字母进行降幂或升幂排列.4.整式:单项式和多项式统称为整式.要点二、整式的加减1.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项.所有的常数项都是同类项.要点诠释:辨别同类项要把准“两相同,两无关”:(1)“两相同”是指:①所含字母相同;②相同字母的指数相同;(2)“两无关”是指:①与系数无关;②与字母的排列顺序无关.2.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项.要点诠释:合并同类项时,只是系数相加减,所得结果作为系数,字母及字母的指数保持不变.3.去括号法则:括号前面是“+”,把括号和它前面的“+”去掉后,原括号里各项的符号都不改变;括号前面是“-”,把括号和它前面的“-”号去掉后,原括号里各项的符号都要改变.4.添括号法则:添括号后,括号前面是“+”,括号内各项的符号都不改变;添括号后,括号前面是“-”,括号内各项的符号都要改变.5.整式的加减运算法则:几个整式相加减,通常用括号把每一个整式括起来,再用加、减号连接,然后去括号,合并同类项.【典型例题】类型一、整式的相关概念1.(2016春•新泰市期中)下列说法正确的是( )A .1﹣xy 是单项式B .ab 没有系数C .﹣5是一次一项式D .﹣a 2b+ab ﹣abc 2是四次三项式【思路点拨】根据多项式是几个单项式的和,数字因数是单项式的系数,字母指数和是单项式的次数,多项式中次数最高的单项式的次数是多项式的次数,每个单项式是多项式的项,可得答案.【答案】D .【解析】解:A 、1﹣xy 是多项式,故A 错误;B 、ab 的系数是1,故B 错误;C 、﹣5是单项式,故C 错误;D 、﹣a 2b+ab ﹣abc 2是四次三项式,故D 正确;故选:D .【总结升华】本题考查了单项式,单项式的系数,多项式,多项式的次数等基本概念,关键是对这些基本概念一定要熟悉.举一反三:【变式1】(2014•佛山)多项式2a 2b ﹣ab 2﹣ab 的项数及次数分别是( )A .3,3B .3,2C .2,3D .2,2【答案】A2a 2b ﹣ab 2﹣ab 是三次三项式,故次数是3,项数是3.【变式2】若多项式31(4)5(2)n m x x x n m -++---+是关于x 的二次三项式,则________m =,________n =,这个二次三项式为 .【答案】4,3,-259x x -- 类型二、同类项及合并同类项2.若315212135m n m n x y x y --+-与是同类项,求出m, n 的值,并把这两个单项式相加. 【答案与解析】 解:因为312121535m n m n x y x y --+-与是同类项,所以315,21 1.m n -=⎧⎨-=⎩ 解得2,1.m n =⎧⎨=⎩当2m =且1n =时,55553152121424214()()35353515m n m n x y x y x y x y x y x y --++-=-=-=. 【总结升华】同类项的定义中强调,除所含字母相同外,相同字母....的指数也要相同.其中,常数项也是同类项.合并同类项时,若不是同类项,则不需合并.举一反三:【变式】合并同类项.(1)2222344522x xy y x xy y -+-+-; (2)3232399111552424xy x y xy x y xy x y --+---. 【答案】(1)原式=22(35)(42)(42)x xy y -+-++- 22222x xy y =--+(2)原式3232391191554422xy x y x y x y ⎛⎫⎛⎫=--+-+-- ⎪ ⎪⎝⎭⎝⎭32345x y x y =---.类型三、去(添)括号3.化简2211()22x x x x ⎡⎤--+⎢⎥⎣⎦. 【答案与解析】 解:原式=2211()24x x x x -++22111244x x x x =-++25144x x =-. 【总结升华】根据多重括号的去括号法则,可由里向外,也可由外向里逐层推进,在计算过程中要注意符号的变化.若括号前是“-”号,在去括号时,括号里各项都应变号,若括号前有数字因数,应把数字因数乘到括号里,再去括号.举一反三:【变式1】下列去括号正确的是( ).A .2222(2)2a a b b a a b b --+=--+B .2222(2)()2x y x y x y x y -+--+=-++-C .2223(5)235x x x x --=-+D .3232[4(13)]431a a a a a a ---+-=-++-【答案】D【变式2】先化简代数式22211(351)5333a a a a a ⎧⎫⎡⎤---+--⎨⎬⎢⎥⎣⎦⎩⎭,然后选取一个使原式有意义的a 的值代入求值. 【答案】22211(351)5333a a a a a ⎧⎫⎡⎤---+--⎨⎬⎢⎥⎣⎦⎩⎭22211[(3515)]333a a a a a =---+-- 222116[(34)]333a a a a =----222116(34)333a a a a =--++ 22816(4)333a a a =--++228164333a a a =+--2814433a a =--. 当0a =时,原式=0-0-4=-4.【变式3】(1) (x +y )2-10x -10y +25=(x +y )2-10(______)+25;(2) (a -b +c -d )(a +b -c -d )=[(a -d )+(______)][(a -d )-(______)].【答案】(1)x +y ; (2)-b +c ,-b +c 类型四、整式的加减4. (2015春•无锡校级期中)已知x=2015,求代数式(2x+3)(3x+2)﹣6x (x+3)+5x+16的值”时,马小虎把“2015”看成了“2051”,但是他的运算结果却是正确的,这是为什么?请你说明原因.【答案与解析】解:原式=6x 2+4x+9x+6﹣6x 2﹣18x+16=22,结果不含x ,故原式化简后与x 的取值无关,则马小虎把“2015”看成了“2051”,但是他的运算结果却是正确的【总结升华】原式利用多项式乘以多项式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,根据结果不含x ,即可得证.此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.举一反三:【变式】已知A =x 2+2y 2-z 2,B =-4x 2+3y 2+2z 2,且A +B +C =0,则多项式C 为( ).A .5x 2-y 2-z 2B .3x 2-5y 2-z 2C .3x 2-y 2-3z 2D .3x 2-5y 2+z 2【答案】B 类型五、化简求值5.(2016春•盐城校级月考)先化简,再求值:3x 2y ﹣[2x 2﹣(xy 2﹣3x 2y )﹣4xy 2],其中|x|=2,y=,且xy <0.【思路点拨】原式去括号合并得到最简结果,利用绝对值的代数意义求出x 的值,代入原式计算即可得到结果.【答案与解析】解:原式=3x 2y ﹣2x 2+xy 2﹣3x 2y+4xy 2=5xy 2﹣2x 2,∵|x|=2,y=,且xy <0,∴x=﹣2,y=,则原式=﹣﹣8=﹣.【总结升华】化简求值题一般采用“一化二代三计算”,此类题最后结果的书写格式一般为:当x=…时,原式=….举一反三: 【变式】已知26a b a b -=+,求代数式2(2)3()2a b a b a b a b -+++-的值. 【答案】 设2a b p a b-=+,则12a b a b p +=-,原式32p p =+. 又因为p =6,所以原式31261262=⨯+=. 类型六、综合应用6. 对于任意有理数x ,比较多项式2452x x -+与2352x x --的值的大小.【答案与解析】解:22222(452)(352)4523524x x x x x x x x x -+---=-+-++=+∵240x +>∴无论x 为何值,2452x x -+>2352x x --.【总结升华】本题考查整式的加减,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.举一反三:【高清课堂:整式的加减单元复习388396 经典例题5】【变式】设22232A x xy y x y =-+-+, 224623B x xy y x y =-++-. 若22(3)0x a y -++=且2B A a -=,求a .【答案】∵ 22(3)0x a y -++=,20x a -≥, 2(3)0y +≥ ∴ 20,30.x a y -=⎧⎨+=⎩即 2,3.x a y =⎧⎨=-⎩ ∴ 222(2)3(2)(3)(3)22(3)A a a a =--+--+-228189268163a a a a a =++--=++224(2)6(2)(3)2(3)32(3)B a a a =--+⨯-+-- 2216361863164221a a a a a =++++=++ ∵ 2164221,2216326,B a a A a a ⎧=++⎪⎨⎪-=---⎩ 且2B A a -=, ∴21015B A a -=+∴1015a a +=915a =-, 53a =-.。

人教版数学七年级上册《整式的加减》全章复习与巩固(基础)知识讲解

人教版数学七年级上册《整式的加减》全章复习与巩固(基础)知识讲解

《整式的加减》全章复习与巩固(基础)知识讲解【知识网络】【要点梳理】要点一、整式的相关概念1.单项式:由数或字母的积组成的代数式叫做单项式,单独的一个数或一个字母也是单项式.要点诠释:(1)单项式的系数是指单项式中的数字因数.(2)单项式的次数是指单项式中所有字母的指数和.2.多项式:几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.要点诠释:(1)在多项式中,不含字母的项叫做常数项.(2)多项式中次数最高的项的次数,就是这个多项式的次数.(3)多项式的次数是n次,有m个单项式,我们就把这个多项式称为n次m项式.3. 多项式的降幂与升幂排列:把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把这个多项式按这个字母降幂排列.另外,把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把这个多项式按这个字母升幂排列.要点诠释:(1)利用加法交换律重新排列时,各项应连同它的符号一起移动位置;(2)含有多个字母时,只按给定的字母进行降幂或升幂排列.4.整式:单项式和多项式统称为整式.要点二、整式的加减1.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项.所有的常数项都是同类项.要点诠释:辨别同类项要把准“两相同,两无关”:(1)“两相同”是指:①所含字母相同;②相同字母的指数相同;(2)“两无关”是指:①与系数无关;②与字母的排列顺序无关.2.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项.要点诠释:合并同类项时,只是系数相加减,所得结果作为系数,字母及字母的指数保持不变.3.去括号法则:括号前面是“+”,把括号和它前面的“+”去掉后,原括号里各项的符号都不改变;括号前面是“-”,把括号和它前面的“-”号去掉后,原括号里各项的符号都要改变.4.添括号法则:添括号后,括号前面是“+”,括号内各项的符号都不改变;添括号后,括号前面是“-”,括号内各项的符号都要改变.5.整式的加减运算法则:几个整式相加减,通常用括号把每一个整式括起来,再用加、减号连接,然后去括号,合并同类项.【典型例题】类型一、整式的相关概念1.指出下列各式中的整式、单项式和多项式,是单项式的请指出系数和次数,是多项式的请说出是几次几项式.(1)3a - (2)5 (3)2b a - (4)2x y - (5)3xy (6)x π(7)5m n + (8)1+a% (9)1()2a b h +举一反三:【变式1】(1)3xy -的次数与系数的和是________;(2)已知单项式26x y 的系数是等于单项式52m x y -的次数,则m =________;(3)若nma b 是关于a 、b 的一个五次单项式,且系数为9,则-m+n =________.【变式2】多项式432231y y y y -+-+是________次________项式,常数项是________,三次项是________.【变式3】把多项式321325x x x --+按x 的降幂排列是________.类型二、同类项及合并同类项2.(2015•遵义)如果单项式﹣xy b+1与x a ﹣2y 3是同类项,那么(a ﹣b )2015= .举一反三:【变式】若47a x y 与579b x y -是同类项,则a =________,b =________.类型三、去(添)括号3. 计算 22232(12)[5(436)]x x x x x -----+举一反三:【变式1】下列式子中去括号错误的是( ).A .5x -(x -2y +5z )=5x -x +2y -5zB .2a 2+(-3a -b )-(3c -2d )=2a 2-3a -b -3c +2dC .3x 2-3(x +6)=3x 2-3x -6D .-(x -2y )-(-x 2+y 2)=-x +2y +x 2-y 2【变式2】化简:-2a+(2a -1)的结果是( ).A .-4a -1B .4a -1C .1D .-1类型四、整式的加减4. 求比多项式22523a a ab b --+少25a ab -的多项式.举一反三:【变式】计算:11(812)3(22)32a a b c c b ---+-+类型五、化简求值5. (1)直接化简代入已知12x =,1y =-,求225(23)2(43)x y x x x y ---的值.(2)条件求值(烟台)若523m x y +与3n x y 的和是单项式,则n m =________.(3)整体代入已知x 2-2y =1,那么2x 2-4y+3=________.举一反三:【变式1】(2015•娄底)已知a 2+2a=1,则代数式2a 2+4a ﹣1的值为()A .0B .1C .﹣1D .﹣2【变式2】已知25m n -+=,求25(2)6360m n n m -+--的值.类型六、综合应用6. 已知多项式 是否存在m ,使此多项式与x 无关?若不存在,说明理由;若存在,求出m 的值.【巩固练习】一、选择题1.已知a 与b 互为相反数,且x 与y 互为倒数,那么|a+b|-2xy 的值为( ).A .2B .-2C .-1D .无法确定2.(2015•厦门)已知一个单项式的系数是2,次数是3,则这个单项式可以是( )A .﹣2xy 2B . 3x 2C . 2xy 3D . 2x 33.有下列式子:12x yz +,2b ,2323x x --,abc ,0,y x ,x ,a b ab+,对于这些式子下列结论正确的是( ).A .有4个单项式,2个多项式B .有5个单项式,3个多项式C .有7个整式D .有3个单项式,2个多项式4.对于式子421.210x y -⨯,下列说法正确的是( ).A .不是单项式B .是单项式,系数为-1.2×10,次数是7C .是单项式,系数为-1.2×104,次数是3D .是单项式,系数为-1.2,次数是35.下面计算正确的是( ).A .32x -2x =3B .32a +23a =55aC .3+x =3xD .-0.25ab +41ba =0()()22222mx -x +3x +1-5x -4y +3x6.2a -(5b -c+3d -e )=2a □5b □c □3d □e ,方格内所填的符号依次是( ).A .+,-,+,-B .-,-,+,-C .-,+,-,+D .-,+,-,-7.某工厂现有工人a 人,若现有工人数比两年前减少了35%,则该工厂两年前工人数为( ).A .135%a +B .(1+35%)aC .135%a - D .(1-35%)a 8.若2237y y ++的值为8,则2469y y +-的值是( ).A .2B .-17C .-7D .7二、填空题9.比x 的15%大2的数是________.10.(2015•岳阳)单项式﹣x 2y 3的次数是 .11.22372x y x -++是________次________项式,最高次项的系数是________. 12.化简:2a -(2a -1)=________.13.如果24a ab +=,21ab b +=-,那么22a b -=________.14.一个多项式减去3x 等于2535x x --,则这个多项式为________.15.若单项式22m n x y +-与单项式323m y x 的和是单项式,那么3m n -= .16.如图所示,外圆半径是R 厘米,内圆半径是r 厘米,四个小圆的半径都是2厘米,则图中阴影部分的面积是________平方厘米.三、解答题17.(2014秋•镇江校级期末)合并同类项①3a ﹣2b ﹣5a+2b ②(2m+3n ﹣5)﹣(2m ﹣n ﹣5)③2(x 2y+3xy 2)﹣3(2xy 2﹣4x 2y )18.已知:2263A x x =+-,213B x x =--,2451C x x =--,当32x =-时,求代数式32A B C -+的值.。

初一暑假课程:《整式的加减》全章复习与巩固(提高)知识讲解

初一暑假课程:《整式的加减》全章复习与巩固(提高)知识讲解

《整式的加减》全章复习与巩固(提高)知识讲解责编:胡老师【学习目标】1.理解并掌握单项式与多项式的相关概念;2.理解整式加减的基础是去括号和合并同类项,并会用整式的加减运算法则,熟练进行整式的加减运算、求值;3.深刻体会本章体现的主要的数学思想----整体思想.【知识网络】【要点梳理】要点一、整式的相关概念1.单项式:由数或字母的积组成的代数式叫做单项式,单独的一个数或一个字母也是单项式.要点诠释:(1)单项式的系数是指单项式中的数字因数.(2)单项式的次数是指单项式中所有字母的指数和.2.多项式:几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.要点诠释:(1)在多项式中,不含字母的项叫做常数项.(2)多项式中次数最高的项的次数,就是这个多项式的次数.(3)多项式的次数是n次,有m个单项式,我们就把这个多项式称为n次m项式.3. 多项式的降幂与升幂排列:把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把这个多项式按这个字母降幂排列.另外,把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把这个多项式按这个字母升幂排列.要点诠释:(1)利用加法交换律重新排列时,各项应连同它的符号一起移动位置;(2)含有多个字母时,只按给定的字母进行降幂或升幂排列.4.整式:单项式和多项式统称为整式.要点二、整式的加减1.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项.所有的常数项都是同类项.要点诠释:辨别同类项要把准“两相同,两无关”:(1)“两相同”是指:①所含字母相同;②相同字母的指数相同;(2)“两无关”是指:①与系数无关;②与字母的排列顺序无关.2.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项.要点诠释:合并同类项时,只是系数相加减,所得结果作为系数,字母及字母的指数保持不变.3.去括号法则:括号前面是“+”,把括号和它前面的“+”去掉后,原括号里各项的符号都不改变;括号前面是“-”,把括号和它前面的“-”号去掉后,原括号里各项的符号都要改变.4.添括号法则:添括号后,括号前面是“+”,括号内各项的符号都不改变;添括号后,括号前面是“-”,括号内各项的符号都要改变.5.整式的加减运算法则:几个整式相加减,通常用括号把每一个整式括起来,再用加、减号连接,然后去括号,合并同类项. 【典型例题】类型一、整式的相关概念1.指出下列各式中的整式、单项式和多项式,是单项式的请指出系数和次数,是多项式的请说出是几次几项式. (1)3a - (2)5 (3)2b a - (4)2x y - (5)3xy (6)x π(7)5m n + (8)1+a%(9)1()2a b h + 【答案与解析】解:整式:(1)、(2)、(4)、(5)、(6)、(7)、(8)、(9)单项式:(2)、(5)、(6),其中:5的系数是5,次数是0;3xy 的系数是3,次数是2;xπ的系数是1π,次数是1.多项式:(1)、(4)、(7)、(8)、(9),其中:3a -是一次二项式;2x y -是一次二项式;5m n +是一次二项式;1+a%是一次二项式; 1()2a b h +是二次二项式。

人教版初一数学上册《整式的加减》全章复习与巩固(提高)知识讲解

人教版初一数学上册《整式的加减》全章复习与巩固(提高)知识讲解

《整式的加减》全章复习与巩固(提高)知识讲解【学习目标】1.理解并掌握单项式与多项式的相关概念;2.理解整式加减的基础是去括号和合并同类项,并会用整式的加减运算法则,熟练进行整式的加减运算、求值;3.深刻体会本章体现的主要的数学思想----整体思想.【知识网络】【要点梳理】要点一、整式的相关概念1.单项式:由数或字母的积组成的代数式叫做单项式,单独的一个数或一个字母也是单项式.要点诠释:(1)单项式的系数是指单项式中的数字因数.(2)单项式的次数是指单项式中所有字母的指数和.2.多项式:几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.要点诠释:(1)在多项式中,不含字母的项叫做常数项.(2)多项式中次数最高的项的次数,就是这个多项式的次数.(3)多项式的次数是n次,有m个单项式,我们就把这个多项式称为n次m项式.3. 多项式的降幂与升幂排列:把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把这个多项式按这个字母降幂排列.另外,把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把这个多项式按这个字母升幂排列.要点诠释:(1)利用加法交换律重新排列时,各项应连同它的符号一起移动位置;(2)含有多个字母时,只按给定的字母进行降幂或升幂排列.4.整式:单项式和多项式统称为整式.要点二、整式的加减1.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项.所有的常数项都是同类项.要点诠释:辨别同类项要把准“两相同,两无关”:(1)“两相同”是指:①所含字母相同;②相同字母的指数相同;(2)“两无关”是指:①与系数无关;②与字母的排列顺序无关.2.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项.要点诠释:合并同类项时,只是系数相加减,所得结果作为系数,字母及字母的指数保持不变.3.去括号法则:括号前面是“+”,把括号和它前面的“+”去掉后,原括号里各项的符号都不改变;括号前面是“-”,把括号和它前面的“-”号去掉后,原括号里各项的符号都要改变.4.添括号法则:添括号后,括号前面是“+”,括号内各项的符号都不改变;添括号后,括号前面是“-”,括号内各项的符号都要改变.5.整式的加减运算法则:几个整式相加减,通常用括号把每一个整式括起来,再用加、减号连接,然后去括号,合并同类项. 【典型例题】类型一、整式的相关概念1.(2016春•新泰市期中)下列说法正确的是( ) A .1﹣xy 是单项式 B .ab 没有系数C .﹣5是一次一项式D .﹣a 2b+ab ﹣abc 2是四次三项式【思路点拨】根据多项式是几个单项式的和,数字因数是单项式的系数,字母指数和是单项式的次数,多项式中次数最高的单项式的次数是多项式的次数,每个单项式是多项式的项,可得答案. 【答案】D .【解析】解:A 、1﹣xy 是多项式,故A 错误; B 、ab 的系数是1,故B 错误; C 、﹣5是单项式,故C 错误;D 、﹣a 2b+ab ﹣abc 2是四次三项式,故D 正确; 故选:D .【总结升华】本题考查了单项式,单项式的系数,多项式,多项式的次数等基本概念,关键是对这些基本概念一定要熟悉.举一反三:【变式1】(2014•佛山)多项式2a 2b ﹣ab 2﹣ab 的项数及次数分别是( ) A .3,3 B .3,2 C .2,3 D .2,2 【答案】A2a 2b ﹣ab 2﹣ab 是三次三项式,故次数是3,项数是3. 【变式2】若多项式31(4)5(2)n m x xx n m -++---+是关于x 的二次三项式,则________m =,________n =,这个二次三项式为 .【答案】4,3,-259x x --类型二、同类项及合并同类项2.若315212135m n m n x y x y --+-与是同类项,求出m, n 的值,并把这两个单项式相加. 【答案与解析】 解:因为312121535m n m n x y x y --+-与是同类项,所以315,21 1.m n -=⎧⎨-=⎩ 解得2,1.m n =⎧⎨=⎩当2m =且1n =时, 55553152121424214()()35353515m n m n x y x y x y x y x y x y --++-=-=-=. 【总结升华】同类项的定义中强调,除所含字母相同外,相同字母....的指数也要相同.其中,常数项也是同类项.合并同类项时,若不是同类项,则不需合并. 举一反三:【变式】合并同类项.(1)2222344522x xy y x xy y -+-+-; (2)3232399111552424xy x y xy x y xy x y --+---. 【答案】(1)原式=22(35)(42)(42)x xy y -+-++-22222x xy y =--+(2)原式3232391191554422xy x y x y x y ⎛⎫⎛⎫=--+-+-- ⎪ ⎪⎝⎭⎝⎭32345x y x y =---.类型三、去(添)括号3.化简2211()22x x x x ⎡⎤--+⎢⎥⎣⎦. 【答案与解析】 解:原式=2211()24x x x x -++22111244x x x x =-++25144x x =-. 【总结升华】根据多重括号的去括号法则,可由里向外,也可由外向里逐层推进,在计算过程中要注意符号的变化.若括号前是“-”号,在去括号时,括号里各项都应变号,若括号前有数字因数,应把数字因数乘到括号里,再去括号. 举一反三:【变式1】下列去括号正确的是( ). A .2222(2)2a a b b a a b b --+=--+ B .2222(2)()2x y x y x y x y -+--+=-++- C .2223(5)235x x x x --=-+D .3232[4(13)]431a a a a a a ---+-=-++- 【答案】D【变式2】先化简代数式22211(351)5333a a a a a ⎧⎫⎡⎤---+--⎨⎬⎢⎥⎣⎦⎩⎭,然后选取一个使原式有意义的a 的值代入求值. 【答案】22211(351)5333a a a a a ⎧⎫⎡⎤---+--⎨⎬⎢⎥⎣⎦⎩⎭22211[(3515)]333a a a a a =---+--222116[(34)]333a a a a =----222116(34)333a a a a =--++ 22816(4)333a a a =--++228164333a a a =+--2814433a a =--. 当0a =时,原式=0-0-4=-4.【变式3】(1) (x +y )2-10x -10y +25=(x +y )2-10(______)+25;(2) (a -b +c -d )(a +b -c -d )=[(a -d )+(______)][(a -d )-(______)]. 【答案】(1)x +y ; (2)-b +c ,-b +c类型四、整式的加减4. (2015春•无锡校级期中)已知x=2015,求代数式(2x+3)(3x+2)﹣6x (x+3)+5x+16的值”时,马小虎把“2015”看成了“2051”,但是他的运算结果却是正确的,这是为什么?请你说明原因. 【答案与解析】解:原式=6x 2+4x+9x+6﹣6x 2﹣18x+16=22, 结果不含x ,故原式化简后与x 的取值无关,则马小虎把“2015”看成了“2051”,但是他的运算结果却是正确的【总结升华】原式利用多项式乘以多项式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,根据结果不含x ,即可得证.此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键. 举一反三:【变式】已知A =x 2+2y 2-z 2,B =-4x 2+3y 2+2z 2,且A +B +C =0,则多项式C 为( ).A .5x 2-y 2-z 2B .3x 2-5y 2-z 2C .3x 2-y 2-3z 2D .3x 2-5y 2+z 2【答案】B类型五、化简求值5.(2016春•盐城校级月考)先化简,再求值:3x 2y ﹣[2x 2﹣(xy 2﹣3x 2y )﹣4xy 2],其中|x|=2,y=,且xy <0.【思路点拨】原式去括号合并得到最简结果,利用绝对值的代数意义求出x 的值,代入原式计算即可得到结果. 【答案与解析】解:原式=3x 2y ﹣2x 2+xy 2﹣3x 2y+4xy 2=5xy 2﹣2x 2,∵|x|=2,y=,且xy <0, ∴x=﹣2,y=, 则原式=﹣﹣8=﹣.【总结升华】化简求值题一般采用“一化二代三计算”,此类题最后结果的书写格式一般为:当x=…时,原式=….举一反三: 【变式】已知26a b a b -=+,求代数式2(2)3()2a b a b a b a b-+++-的值. 【答案】 设2a bp a b-=+,则12a b a b p +=-,原式32p p =+. 又因为p =6,所以原式31261262=⨯+=. 类型六、综合应用6. 对于任意有理数x ,比较多项式2452x x -+与2352x x --的值的大小.【答案与解析】解:22222(452)(352)4523524x x x x x x x x x -+---=-+-++=+ ∵240x +>∴无论x 为何值,2452x x -+>2352x x --.【总结升华】本题考查整式的加减,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点. 举一反三:【高清课堂:整式的加减单元复习388396 经典例题5】【变式】设22232A x xy y x y =-+-+, 224623B x xy y x y =-++-. 若22(3)0x a y -++=且2B A a -=,求a .【答案】∵ 22(3)0x a y -++=,20x a -≥, 2(3)0y +≥∴ 20,30.x a y -=⎧⎨+=⎩即 2,3.x a y =⎧⎨=-⎩∴ 222(2)3(2)(3)(3)22(3)A a a a =--+--+-228189268163a a a a a =++--=++224(2)6(2)(3)2(3)32(3)B a a a =--+⨯-+-- 2216361863164221a a a a a =++++=++∵ 2164221,2216326,B a a A a a ⎧=++⎪⎨⎪-=---⎩ 且2B A a -=,∴21015B A a -=+∴1015a a += 915a =-,53a =-.附录资料:方程的意义(基础)知识讲解【学习目标】1.正确理解方程的概念,并掌握方程、等式及算式的区别与联系;2. 正确理解一元一次方程的概念,并会判断方程是否是一元一次方程及一个数是否是方程的解;3. 理解并掌握等式的两个基本性质. 【要点梳理】【高清课堂:从算式到方程 一、方程的有关概念】要点一、方程的有关概念1.定义:含有未知数的等式叫做方程. 要点诠释:判断一个式子是不是方程,只需看两点:一.是等式;二.是含有未知数. 2.方程的解:使方程左右两边的值相等的未知数的值,叫做方程的解. 要点诠释:判断一个数(或一组数)是否是某方程的解,只需看两点:①.它(或它们)是方程中未知数的值;②将它(或它们)分别代入方程的左边和右边,若左边等于右边,则它们是方程的解,否则不是.3.解方程:求方程的解的过程叫做解方程. 4.方程的两个特征:(1).方程是等式;(2).方程中必须含有字母(或未知数). 【高清课堂:从算式到方程 二、一元一次方程的有关概念】要点二、一元一次方程的有关概念定义:只含有一个未知数(元),并且未知数的次数都是1,这样的方程叫做一元一次方程.要点诠释: “元”是指未知数,“次”是指未知数的次数,一元一次方程满足条件:①首先是一个方程;②其次是必须只含有一个未知数;③未知数的指数是1;④分母中不含有未知数.【高清课堂:从算式到方程 三、解方程的依据——等式的性质】要点三、等式的性质1.等式的概念:用符号“=”来表示相等关系的式子叫做等式. 2.等式的性质:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.即:如果,那么 (c为一个数或一个式子) .等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.即:如果,那么;如果,那么.要点诠释:(1)根据等式的两条性质,对等式进行变形,等式两边必须同时进行完全相同的变形; (2) 等式性质1中,强调的是整式,如果在等式两边同加的不是整式,那么变形后的等式不一定成立,如x=0中,两边加上得x+,这个等式不成立;(3) 等式的性质2中等式两边都除以同一个数时,这个除数不能为零.【典型例题】类型一、方程的概念1.下列各式哪些是方程?①3x-2=7;②4+8=12;③3x-6;④2m-3n=0;⑤3x2-2x-1=0;⑥x+2≠3;⑦251x=+;⑧28553x x-=.【答案与解析】解:②虽是等式,但不含未知数;③不是等式;⑥表示不等关系,故②、③、⑥均不符合方程的概念.①、④、⑤、⑦、⑧符合方程的定义,所以方程有:①、④、⑤、⑦、⑧.【总结升华】方程的判断必须看两点,一个是等式,二是含有未知数.当然未知数的个数可以是一个,也可以是多个.举一反三:【变式】下列四个式子中,是方程的是()A. 3+2=5B. x=1C. 2x﹣3<0D. a2+2ab+b2 【答案】B.2.(2015春•孟津县期中)下列方程中,以x=2为解的方程是()A. 4x﹣1=3x+2B. 4x+8=3(x+1)+1C. 5(x+1)=4(x+2)﹣1D. x+4=3(2x﹣1)【答案】C.【总结升华】检验一个数是不是方程的解,根据方程解的概念,只需将所给字母的值分别代入方程的左右两边,若两边的值相等,则这个数就是此方程的解,否则不是.举一反三:【变式】下列方程中,解是x=3的是( )A.x+1=4 B.2x+1=3 C.2x-1=2 D.217 3x+=类型二、一元一次方程的相关概念3.(2016春•南江县期末)在下列方程中①x 2+2x=1,②﹣3x=9,③x=0,④3﹣=2,⑤=y+是一元一次方程的有( )个.A .1B .2C .3D .4【思路点拨】根据一元一次方程的定义:只含有一个未知数,并且未知数的最高次数是1次的整式方程,可以逐一判断. 【答案】B.【解析】解:①x 2+2x=1,是一元二次方程;②﹣3x=9,是分式方程;③x=0,是一元一次方程;④3﹣=2,是等式,不是方程;⑤=y+是一元一次方程;一元一次方程的有2个,故选:B . 【总结升华】本题考查了一元一次方程的定义,解决本题的关键是熟记一元一次方程的定义.举一反三:【变式】下列方程中是一元一次方程的是__________(只填序号). ①2x-1=4;②x =0;③ax =b ;④151x-=-. 【答案】①②.类型三、等式的性质4.用适当的数或整式填空,使所得的结果仍为等式,并说明根据等式的哪一条性质,以及怎样变形得到的. (1)如果41153x -=,那么453x =+________; (2)如果ax+by =-c ,那么ax =-c +________; (3)如果4334t -=,那么t =________. 【答案与解析】解: (1). 11;根据等式的性质1,等式两边都加上11; (2).(-by ); 根据等式的性质1,等式两边都加上-by ; (3).916-; 根据等式的性质2,等式两边都乘以34-. 【总结升华】先从不需填空的一边入手,比较这一边是怎样变形的,再根据等式的性质,对另一边也进行同样的变形.举一反三:【变式】下列说法正确的是( ).A .在等式ab =ac 两边都除以a ,可得b =c.B .在等式a =b 两边除以c 2+1,可得2211a bc c =++. C .在等式b ca a=两边都除以a ,可得b =c.D.在等式2x=2a-b两边都除以2,可得x=a-b.【答案】B.类型四、设未知数列方程5.根据问题设未知数并列出方程:一次考试共有25道选择题,做对一道得4分,做错或不做一道倒扣1分.若小明想考80分,他要做对多少道题?【答案与解析】解:设小明要做对x道题,则有(25-x)道做错或没做的题,依题意有:4x-(25-x)×1=80.可以采用列表法探究其解显然,当x=21时,4x-(25-x)×1=80.所以小明要做对21道题.【总结升华】根据题意设出合适的未知量,并根据等量关系列出含有未知量的等式.举一反三:【变式】根据下列条件列出方程.(l)x的5倍比x的相反数大10;(2)某数的34比它的倒数小4;(3)甲、乙两人从学校到公园,走这段路甲用20分钟,乙用30分钟,如果乙比甲早5分钟出发,问甲用多少时间追上乙?【答案】(1)5x-(-x)=10;(2)设某数为x,则1344xx-=;(3)设甲用x分钟追上乙,由题意得11(5)3020x x+=.。

《整式的加减》全章复习与巩固(提高)七年级上学期 人教版数学 知识讲解

《整式的加减》全章复习与巩固(提高)七年级上学期 人教版数学 知识讲解

《整式的加减》全章复习与巩固(提高)知识讲解责编:杜少波【学习目标】1.理解并掌握单项式与多项式的相关概念;2.理解整式加减的基础是去括号和合并同类项,并会用整式的加减运算法则,熟练进行整式的加减运算、求值;3.深刻体会本章体现的主要的数学思想----整体思想.【知识网络】【要点梳理】要点一、整式的相关概念1.单项式:由数或字母的积组成的代数式叫做单项式,单独的一个数或一个字母也是单项式.要点诠释:(1)单项式的系数是指单项式中的数字因数.(2)单项式的次数是指单项式中所有字母的指数和.2.多项式:几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.要点诠释:(1)在多项式中,不含字母的项叫做常数项.(2)多项式中次数最高的项的次数,就是这个多项式的次数.(3)多项式的次数是n次,有m个单项式,我们就把这个多项式称为n次m项式.3. 多项式的降幂与升幂排列:把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把这个多项式按这个字母降幂排列.另外,把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把这个多项式按这个字母升幂排列.要点诠释:(1)利用加法交换律重新排列时,各项应连同它的符号一起移动位置;(2)含有多个字母时,只按给定的字母进行降幂或升幂排列.4.整式:单项式和多项式统称为整式.要点二、整式的加减1.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项.所有的常数项都是同类项.要点诠释:辨别同类项要把准“两相同,两无关”:(1)“两相同”是指:①所含字母相同;②相同字母的指数相同;(2)“两无关”是指:①与系数无关;②与字母的排列顺序无关.2.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项.要点诠释:合并同类项时,只是系数相加减,所得结果作为系数,字母及字母的指数保持不变.3.去括号法则:括号前面是“+”,把括号和它前面的“+”去掉后,原括号里各项的符号都不改变;括号前面是“-”,把括号和它前面的“-”号去掉后,原括号里各项的符号都要改变.4.添括号法则:添括号后,括号前面是“+”,括号内各项的符号都不改变;添括号后,括号前面是“-”,括号内各项的符号都要改变.5.整式的加减运算法则:几个整式相加减,通常用括号把每一个整式括起来,再用加、减号连接,然后去括号,合并同类项.【典型例题】类型一、整式的相关概念1.(2016春•新泰市期中)下列说法正确的是()A.1﹣xy是单项式 B.ab没有系数C.﹣5是一次一项式 D.﹣a2b+ab﹣abc2是四次三项式【思路点拨】根据多项式是几个单项式的和,数字因数是单项式的系数,字母指数和是单项式的次数,多项式中次数最高的单项式的次数是多项式的次数,每个单项式是多项式的项,可得答案.【答案】D.【解析】解:A、1﹣xy是多项式,故A错误;B、ab的系数是1,故B错误;C、﹣5是单项式,故C错误;D、﹣a2b+ab﹣abc2是四次三项式,故D正确;故选:D.【总结升华】本题考查了单项式,单项式的系数,多项式,多项式的次数等基本概念,关键是对这些基本概念一定要熟悉.举一反三:【变式1】(2014•佛山)多项式2a2b﹣ab2﹣ab的项数及次数分别是()A.3,3 B.3,2 C.2,3 D.2,2【答案】A2a 2b ﹣ab 2﹣ab 是三次三项式,故次数是3,项数是3. 【变式2】若多项式31(4)5(2)n m x xx n m -++---+是关于x 的二次三项式,则________m =,________n =,这个二次三项式为 .【答案】4,3,-259x x --类型二、同类项及合并同类项2.若315212135m n m n x y x y --+-与是同类项,求出m, n 的值,并把这两个单项式相加. 【答案与解析】解:因为312121535m n m n x y x y--+-与是同类项, 所以315,21 1.m n -=⎧⎨-=⎩ 解得2,1.m n =⎧⎨=⎩当2m =且1n =时, 55553152121424214()()35353515m n m n x y x y x y x y x y x y --++-=-=-=. 【总结升华】同类项的定义中强调,除所含字母相同外,相同字母....的指数也要相同.其中,常数项也是同类项.合并同类项时,若不是同类项,则不需合并. 举一反三:【变式】合并同类项.(1)2222344522x xy y x xy y -+-+-; (2)3232399111552424xy x y xy x y xy x y --+---. 【答案】(1)原式=22(35)(42)(42)x xy y -+-++-22222x xy y =--+(2)原式3232391191554422xy x y x y x y ⎛⎫⎛⎫=--+-+-- ⎪ ⎪⎝⎭⎝⎭32345x y x y =---.类型三、去(添)括号3.化简2211()22x x x x ⎡⎤--+⎢⎥⎣⎦. 【答案与解析】 解:原式=2211()24x x x x -++22111244x x x x =-++25144x x =-. 【总结升华】根据多重括号的去括号法则,可由里向外,也可由外向里逐层推进,在计算过程中要注意符号的变化.若括号前是“-”号,在去括号时,括号里各项都应变号,若括号前有数字因数,应把数字因数乘到括号里,再去括号. 举一反三:【变式1】下列去括号正确的是( ). A .2222(2)2a a b b a a b b --+=--+ B .2222(2)()2x y x y x y x y -+--+=-++- C .2223(5)235x x x x --=-+D .3232[4(13)]431a a a a a a ---+-=-++- 【答案】D【变式2】先化简代数式22211(351)5333a a a a a ⎧⎫⎡⎤---+--⎨⎬⎢⎥⎣⎦⎩⎭,然后选取一个使原式有意义的a 的值代入求值. 【答案】22211(351)5333a a a a a ⎧⎫⎡⎤---+--⎨⎬⎢⎥⎣⎦⎩⎭22211[(3515)]333a a a a a =---+--222116[(34)]333a a a a =----222116(34)333a a a a =--++ 22816(4)333a a a =--++228164333a a a =+--2814433a a =--. 当0a =时,原式=0-0-4=-4.【变式3】(1) (x +y )2-10x -10y +25=(x +y )2-10(______)+25;(2) (a -b +c -d )(a +b -c -d )=[(a -d )+(______)][(a -d )-(______)]. 【答案】(1)x +y ; (2)-b +c ,-b +c类型四、整式的加减4. (2015春•无锡校级期中)已知x=2015,求代数式(2x+3)(3x+2)﹣6x (x+3)+5x+16的值”时,马小虎把“2015”看成了“2051”,但是他的运算结果却是正确的,这是为什么?请你说明原因. 【答案与解析】解:原式=6x 2+4x+9x+6﹣6x 2﹣18x+16=22, 结果不含x ,故原式化简后与x 的取值无关,则马小虎把“2015”看成了“2051”,但是他的运算结果却是正确的【总结升华】原式利用多项式乘以多项式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,根据结果不含x ,即可得证.此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键. 举一反三:【变式】已知A =x 2+2y 2-z 2,B =-4x 2+3y 2+2z 2,且A +B +C =0,则多项式C 为( ).A .5x 2-y 2-z 2B .3x 2-5y 2-z 2C .3x 2-y 2-3z 2D .3x 2-5y 2+z 2【答案】B类型五、化简求值5.(2016春•盐城校级月考)先化简,再求值:3x2y﹣[2x2﹣(xy2﹣3x2y)﹣4xy2],其中|x|=2,y=,且xy<0.【思路点拨】原式去括号合并得到最简结果,利用绝对值的代数意义求出x的值,代入原式计算即可得到结果.【答案与解析】解:原式=3x2y﹣2x2+xy2﹣3x2y+4xy2=5xy2﹣2x2,∵|x|=2,y=,且xy<0,∴x=﹣2,y=,则原式=﹣﹣8=﹣.【总结升华】化简求值题一般采用“一化二代三计算”,此类题最后结果的书写格式一般为:当x=…时,原式=….举一反三:【变式】已知26a ba b-=+,求代数式2(2)3()2a b a ba b a b-+++-的值.【答案】设2a bpa b-=+,则12a ba b p+=-,原式32pp=+.又因为p=6,所以原式31261262=⨯+=.类型六、综合应用6. 对于任意有理数x ,比较多项式2452x x -+与2352x x --的值的大小.【答案与解析】解:22222(452)(352)4523524x x x x x x x x x -+---=-+-++=+ ∵240x +>∴无论x 为何值,2452x x -+>2352x x --.【总结升华】本题考查整式的加减,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点. 举一反三:【高清课堂:整式的加减单元复习388396 经典例题5】【变式】设22232A x xy y x y =-+-+, 224623B x xy y x y =-++-. 若22(3)0x a y -++=且2B A a -=,求a .【答案】∵ 22(3)0x a y -++=,20x a -≥, 2(3)0y +≥∴ 20,30.x a y -=⎧⎨+=⎩即 2,3.x a y =⎧⎨=-⎩∴ 222(2)3(2)(3)(3)22(3)A a a a =--+--+-gg g 228189268163a a a a a =++--=++224(2)6(2)(3)2(3)32(3)B a a a =--+⨯-+--gg g g 2216361863164221a a a a a =++++=++∵ 2164221,2216326,B a a A a a ⎧=++⎪⎨⎪-=---⎩ 且2B A a -=,∴21015B A a -=+∴1015a a += 915a =-,53a =-.。

《整式的加减》(二)—去括号与添括号同步知识讲解2022人教七年级上册专练

《整式的加减》(二)—去括号与添括号同步知识讲解2022人教七年级上册专练

整式的加减(二)—去括号与添括号(基础)【学习目标】1.掌握去括号与添括号法则,充分注意变号法则的应用; 2. 会用整式的加减运算法则,熟练进行整式的化简及求值. 【要点梳理】要点一、去括号法则如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同; 如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反. 要点诠释:(1)去括号法则实际上是根据乘法分配律推出的:当括号前为“+”号时,可以看作+1与括号内的各项相乘;当括号前为“-”号时,可以看作-1与括号内的各项相乘.(2)去括号时,首先要弄清括号前面是“+”号,还是“-”号,然后再根据法则去掉括号及前面的符号. (3)对于多重括号,去括号时可以先去小括号,再去中括号,也可以先去中括号.再去小括号.但是一定要注意括号前的符号.(4)去括号只是改变式子形式,但不改变式子的值,它属于多项式的恒等变形. 要点二、添括号法则添括号后,括号前面是“+”号,括到括号里的各项都不变符号; 添括号后,括号前面是“-”号,括到括号里的各项都要改变符号. 要点诠释:(1)添括号是添上括号和括号前面的符号,也就是说,添括号时,括号前面的“+”号或“-”号也是新添的,不是原多项式某一项的符号“移”出来得到的.(2)去括号和添括号是两种相反的变形,因此可以相互检验正误:如:()a b ca b c +-+-添括号去括号, ()a b ca b c -+--添括号去括号要点三、整式的加减运算法则一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项. 要点诠释:(1)整式加减的一般步骤是:①先去括号;②再合并同类项. (2)两个整式相加减时,减数一定先要用括号括起来.(3)整式加减的最后结果中:①不能含有同类项,即要合并到不能再合并为止;②一般按照某一字母的降幂或升幂排列;③不能出现带分数,带分数要化成假分数.【典型例题】 类型一、去括号1.去括号:(1)d -2(3a -2b+3c );(2)-(-xy -1)+(-x+y ). 【答案与解析】(1)d -2(3a -2b+3c )=d -(6a -4b+6c )=d -6a+4b -6c ; (2)-(-xy -1)+(-x+y )=xy+1-x+y .【总结升华】去括号时.若括号前有数字因数,应先把它与括号内各项相乘,再去括号. 举一反三【变式1】去掉下列各式中的括号:(1). 8m -(3n+5); (2). n -4(3-2m );(3). 2(a -2b )-3(2m -n ). 【答案】(1). 8m -(3n+5)=8m -3n -5.(2). n -4(3-2m )=n -(12-8m )=n -12+8m .(3). 2(a -2b )-3(2m -n )=2a -4b -(6m -3n )=2a -4b -6m+3n .【变式2】(2015•济宁)化简﹣16(x ﹣0.5)的结果是( )A . ﹣16x ﹣0.5B . ﹣16x+0.5C . 16x ﹣8D . ﹣16x+8 【答案】D类型二、添括号2.在各式的括号中填上适当的项,使等式成立. (1). 2345()()x y z t +-+=-=+2()x =-23()x y =+-; (2). 23452()2()x y z t x x -+-=+=-23()45()x y z t =--=--.【答案】(1). 2345x y z t --+-,2345x y z t +-+,345y z t -+-,45z t -.(2). 345y z t -+-,345y z t -+,45z t -+,23x y -+.【解析】(1)2345x y z t +-+ (2345)x y z t =---+-(2345)x y z t =++-+2(345)x y z t =--+-23(45)x y z t =+--;(2)2345x y z t -+-2(345)x y z t =+-+-2(345)x y z t =--+23(45)x y z t =---+45(23)z t x y =---+.【总结升华】在括号里填上适当的项,要特别注意括号前面的符号,考虑是否要变号.举一反三【变式】()()1 a b c d a -+-=-;()()22 ;x y z +-=-()()()()()22222223 ;4 a b a b a b a b a b a a -+-=-+---=--.【答案】b c d -+;2x y z --+;a b -;2b b +.类型三、整式的加减3.(2020秋•上杭县校级月考)下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面.(﹣x 2+3xy ﹣y 2)﹣(﹣x 2+4xy ﹣y 2)=﹣x 2+y 2,阴影部分即为被墨迹弄污的部分.那么被墨汁遮住的一项应是 .【答案】﹣xy . 【解析】解:根据题意得:﹣x 2+3xy ﹣y 2+x 2﹣4xy+y 2+x 2﹣y 2=﹣xy , 【总结升华】整式加减的一般步骤是:①先去括号;②再合并同类项.类型四、化简求值4. 先化简,再求各式的值:22131222,2,;22333x x y x y x y ⎛⎫⎛⎫+-+--=-= ⎪ ⎪⎝⎭⎝⎭其中 【答案与解析】原式=2221312232233x x y x y x y -+-+=-+, 当22,3x y =-=时,原式=22443(2)()66399-⨯-+=+=.【总结升华】化简求值题一般采用“一化二代三计算”,此类题的书写格式一般为:当……时,原式=? 举一反三【变式1】先化简再求值:(-x 2+5x+4)+(5x -4+2x 2),其中x =-2.【答案】 (-x 2+5x+4)+(5x -4+2x 2)=-x 2+5x+4+5x -4+2x 2=x 2+10x .当x =-2,原式=(-2)2+10×(-2)=-16.【变式2】先化简,再求值:3(2)[3()]2y x x x y x +----,其中,x y 化为相反数. 【答案】3(2)[3()]236322()y x x x y x y x x x y x x y +----=+-+--=+ 因为,x y 互为相反数,所以0x y +=所以3(2)[3()]22()200y x x x y x x y +----=+=⨯=5. 已知2xy =-,3x y +=,求整式(310)[5(223)]xy y x xy y x ++-+-的值.【答案与解析】由2xy =-,3x y +=很难求出x ,y 的值,可以先把整式化简,然后把xy ,x y +分别作为一个整体代入求出整式的值. 原式310(5223)xy y x xy y x =++--+3105223xy y x xy y x =++--+ 5310232x x y y xy xy =++-+- 88x y xy =++ 8()x y xy =++.把2xy =-,3x y +=代入得,原式83(2)24222=⨯+-=-=.【总结升华】求整式的值,一般先化简后求值,但当题目中含未知数的部分可以看成一个整体时,要用整体代入法,即把“整体”当成一个新的字母,求关于这个新的字母的代数式的值,这样会使运算更简便. 举一反三【变式】已知代数式2326y y -+的值为8,求2312y y -+的值. 【答案】∵ 23268y y -+=,∴ 2322y y -=. 当2322y y -=时,原式=211(32)121222y y -+=⨯+=. 6. 如果关于x 的多项式22(8614)(865)x ax x x ++-++的值与x 无关.你知道a 应该取什么值吗?试试看.【答案与解析】所谓多项式的值与字母x 无关,就是合并同类项,结果不含有“x ”的项,所以合并同类项后,让含x 的项的系数为0即可.注意这里的a 是一个确定的数.(8x 2+6ax+14)-(8x 2+6x+5) =8x 2+6ax+14-8x 2-6x -5 =6ax -6x+9 =(6a -6)x+9由于多项式(8x 2+6ax+14)-(8x 2+6x+5)的值与x 无关,可知x 的系数6a -6=0. 解得a =1.【总结升华】本例解题的题眼是多项式的值与字母x 无关.“无关”意味着合并同类项后,其结果不含“x ”的项.第二课时【学习目标】1.理解方程,等式及一元一次方程的概念,并掌握它们的区别和联系; 2.会解一元一次方程,并理解每步变形的依据; 3.会根据实际问题列方程解应用题. 【知识网络】【要点梳理】知识点一、一元一次方程的概念1.方程:含有未知数的等式叫做方程.2.一元一次方程:只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程.要点诠释:判断是否为一元一次方程,应看是否满足:①只含有一个未知数,未知数的次数为1;②未知数所在的式子是整式,即分母中不含未知数.3.方程的解:使方程的左、右两边相等的未知数的值叫做这个方程的解.4.解方程:求方程的解的过程叫做解方程.知识点二、等式的性质与去括号法则1.等式的性质:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.2.合并法则:合并时,把系数相加(减)作为结果的系数,字母和字母的指数保持不变.3.去括号法则:(1)括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.(2)括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号相反.知识点三、一元一次方程的解法解一元一次方程的一般步骤:(1)去分母:在方程两边同乘以各分母的最小公倍数.(2)去括号:依据乘法分配律和去括号法则,先去小括号,再去中括号,最后去大括号.(3)移项:把含有未知数的项移到方程一边,常数项移到方程另一边.(4)合并:逆用乘法分配律,分别合并含有未知数的项及常数项,把方程化为ax=b(a≠0)的形式.(5)系数化为1:方程两边同除以未知数的系数得到方程的解bx a=(a ≠0). (6)检验:把方程的解代入原方程,若方程左右两边的值相等,则是方程的解;若方程左右两边的值不相等,则不是方程的解.知识点四、用一元一次方程解决实际问题的常见类型 1.行程问题:路程=速度×时间2.和差倍分问题:增长量=原有量×增长率3.利润问题:商品利润=商品售价-商品进价4.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量5.银行存贷款问题:本息和=本金+利息,利息=本金×利率×期数6.数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+. 【典型例题】类型一、一元一次方程的相关概念1.已知方程(3m -4)x 2-(5-3m )x -4m =-2m 是关于x 的一元一次方程,求m 和x 的值.【思路点拨】若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1,系数不为0,则这个方程是一元一次方程. 【答案与解析】解:因为方程(3m -4)x 2-(5-3m )x -4m =-2m 是关于x 的一元一次方程, 所以3m -4=0且5-3m ≠0. 由3m -4=0解得43m =,又43m =能使5-3m ≠0,所以m 的值是43. 将43m =代入原方程,则原方程变为485333x ⎛⎫--⨯= ⎪⎝⎭,解得83x =-.所以43m =,83x =-.【总结升华】解答这类问题,一定要严格按照一元一次方程的定义.方程(3m -4)x 2-(5-3m )x -4m =-2m 2是关于x 的一元一次方程,就是说x 的二次项系数3m -4=0,而x 的一次项系数5-3m ≠0,m 的值必须同时符合这两个条件. 举一反三:【变式】下面方程变形中,错在哪里:(1)方程2x=2y 两边都减去x+y ,得2x-(x+y)=2y-(x+y), 即x-y=-(x-y). 方程 x-y=-(x-y)两边都除以x-y, 得1=-1. (2)3721223x x x -+=+,去分母,得3(3-7x)=2(2x+1)+2x ,去括号得:9-21x=4x+2+2x. 【答案】(1)答:错在第二步,方程两边都除以x-y.(2)答:错在第一步,去分母时2x 项没乘以公分母6.2. 如果5(x+2)=2a+3与(31)(53)35a x a x +-=的解相同,那么a 的值是________. 【答案】711【解析】 由5(x+2)=2a+3,解得275a x -=.由(31)(53)35a x a x +-=,解得95x a =-. 所以27955a a -=-,解得711a =.【总结升华】因为两方程的解相同,可把a 看做已知数,分别求出它们的解,令其相等,转化为求关于a的一元一次方程. 举一反三:【变式】(2020•温州模拟)已知3x=4y ,则= . 【答案】.解:根据等式性质2,等式3x=4y 两边同时除以3y , 得:=.类型二、一元一次方程的解法3.解方程:4621132x x -+-=. 【答案与解析】解:去分母,得:2(4-6x )-6=3(2x+1). 去括号,得:8-12x -6=6x+3. 移项,合并同类项,得:-18x =1. 系数化为1,得:118x =-. 【总结升华】转化思想是初中数学中一种常见的思想方法,它能将复杂的问题转化为简单的问题,将生疏的问题转化为熟悉的问题,将未知转化为已知.事实上解一元一次方程就是利用方程的同解原理,将复杂的方程转化为简单的方程直至求出它的解. 举一反三:【变式1】解方程26752254436z z z z z +---++=-【答案】解:把方程两边含有分母的项化整为零,得 267522544443366z z z z z +++-=--+. 移项,合并同类项得:1122z =,系数化为1得:z =1.【变式2】解方程: 0.10.050.20.05500.20.54x x +--+=. 【答案】解:把方程可化为:0.520.550254x x +--+=, 再去分母得:232x =-解得:16x =-4.解方程3{2x -1-[3(2x -1)+3]}=5. 【答案与解析】解:把2x -1看做一个整体.去括号,得: 3(2x -1)-9(2x -1)-9=5.合并同类项,得-6(2x -1)=14. 系数化为1得:7213x -=-,解得23x =-. 【总结升华】把题目中的2x -1看作一个整体,从而简化了计算过程.本题也可以考虑换元法:设2x -1=a ,则原方程化为3[a -(3a+3)]=5.类型三、特殊的一元一次方程的解法1.解含字母系数的方程5.解关于x 的方程:11()(2)34m x n x m -=+ 【思路点拨】这个方程化为标准形式后,未知数x 的系数和常数都是以字母形式出现的,所以方程的解的情况与x 的系数和常数的取值都有关系. 【答案与解析】解:原方程可化为:(43)462(23)m x mn m m n -=+=+当34m ≠时,原方程有唯一解:4643mn m x m +=-; 当33,42m n ==-时,原方程无数个解;当33,42m n =≠-时,原方程无解;【总结升华】解含字母系数的方程时,一般化为最简形式ax b =,再分类讨论进行求解,注意最后的解不能合并,只能分情况说明. 2.解含绝对值的方程6. 解方程|x -2|=3.【答案与解析】解:当x -2≥0时,原方程可化为x -2=3,得x =5. 当x -2<0时,原方程可化为-(x -2)=3,得 x =-1. 所以x =5和x =-1都是方程|x -2|=3的解.【总结升华】如图所示,可以看出点-1与5到点2的距离均为3,所以|x -2|=3的意义为在数轴上到点2的距离等于3的点对应的数,即方程|x -2|=3的解为x =-1和x =5.举一反三:【变式1】若关于x 的方程230x m -+=无解,340x n -+=只有一个解,450x k -+=有两个解, 则,,m n k 的大小关系为: ( )A . m n k >> B.n k m >> C.k m n >> D.m k n >>【答案】A【变式2】若9x =是方程123x m -=的解,则__m =;又若当1n =时,则方程123x n -=的解是 . 【答案】1; 9或3.类型四、一元一次方程的应用7.李伟从家里骑摩托车到火车站,如果每小时行30千米,那么比火车开车时间早到15分钟;若每小时行18千米,则比火车开车时间迟到15分钟,现在李伟打算在火车开车前10分钟到达火车站,求李伟此时骑摩托车的速度应是多少?【思路点拨】本题中的两个不变量为:火车开出的时间和李伟从家到火车站的路程不变. 【答案与解析】解:设李伟从家到火车站的路程为y 千米,则有:151530601860y y +=-,解得:452y = 由此得到李伟从家出发到火车站正点开车的时间为4515213060+=(小时).李伟打算在火车开车前10分钟到达火车站时,设李伟骑摩托车的速度为x 千米/时, 则有:452271010116060y x ===--(千米/时)答:李伟此时骑摩托车的速度应是27千米/时.【总结升华】在解决问题时,当发现某种方法不能解决问题时,应该及时变换思维角度,如本题直接设未知数较难时,应迅速变换思维的角度,合理地设置间接未知数以寻求新的解决问题的途径和方法. 8. (2020春•万州区校级月考)一项工程,甲单独做要10天完成,乙单独做要15天完成,两人合做4天后,剩下的部分由乙单独做,还需要几天完成? 【答案与解析】解:设乙还需x 天完成,由题意得 4×(+)+=1,解得x=5.答:乙还需5天完成.【总结升华】本题考查了一元一次方程的应用,解决问题的关键是找到所求的量的等量关系.当题中没有一些必须的量时,为了简便,可设其为1. 举一反三:【变式】某商品进价2000元,标价4000元,商店要求以利润率不低于20%的售价打折出售,售货员最低可以打几折出售此商品? 【答案】解:设售货员可以打x 折出售此商品,得:40000.12000(120%),x ⨯=+解得: 6.x =答:售货员最低可以打六折出售此商品.。

12整式单元复习与巩固(基础)知识讲解

12整式单元复习与巩固(基础)知识讲解

《整式》全章复习与巩固(基础)撰稿:康红梅责编:吴婷婷【学习目标】1. 理解并掌握单项式与多项式的相关概念;2. 理解整式加减的基础是去括号和合并同类项,并会用整式的加减运算法则,熟练进行整式的加减运算、求值;3. 掌握正整数幂的运算性质,并能运用它们熟练地进行运算;掌握单项式乘(或除以)单项式、多项式乘(或除以)单项式以及多项式乘多项式的法则,并运用它们进行运算;4. 会推导乘法公式(平方差公式和完全平方公式),了解公式的几何意义,能利用公式进行乘法运算;5. 掌握整式的加、减、乘、除、乘方等较简单的混合运算,并能灵活地运用运算律与乘法公式简化运算;6. 理解因式分解的意义,并感受分解因式与整式乘法是相反方向的运算,掌握提公因式法和公式法(直接运用公式不超过两次)这两种分解因式的基本方法,了解因式分解的一般步骤;能够熟练地运用这些方法进行多项式的因式分解.【知识网络】【要点梳理】要点一、整式的相关概念1.单项式:由数字或字母的积组成的代数式叫做单项式,单独的一个数或一个字母也是单项式.要点诠释:(1)单项式的系数是指单项式中的数字因数.(2)单项式的次数是指单项式中所有字母的指数和.2.多项式:几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.要点诠释:(1)在多项式中,不含字母的项叫做常数项.(2)多项式中次数最高的项的次数,就是这个多项式的次数. (3)多项式的次数是n 次,有m 个单项式,我们就把这个多项式称为n 次m项式.3. 多项式的降幂与升幂排列:把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把这个多项式按这个字母降幂排列.另外,把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把这个多项式按这个字母升幂排列.要点诠释:(1)利用加法交换律重新排列时,各项应带着它的符号一起移动位置; (2)含有多个字母时,只按给定的字母进行降幂或升幂排列. 4.整式:单项式和多项式统称为整式. 要点二、整式的加减1.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项.所有的常数项都是同类项.要点诠释:辨别同类项要把准“两相同,两无关”:(1)“两相同”是指:①所含字母相同;②相同字母的指数相同; (2)“两无关”是指:①与系数无关;②与字母的排列顺序无关.2.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项.要点诠释:合并同类项时,只是系数相加减,所得结果作为系数,字母及字母的指数保持不变.3.去括号法则:括号前面是“+”,把括号和它前面的“+”去掉后,原括号里各项的符号都不改变;括号前面是“-”,把括号和它前面的“-”号去掉后,原括号里各项的符号都要改变.4.添括号法则:添括号后,括号前面是“+”,括号内各项的符号都不改变;添括号后,括号前面是“-”,括号内各项的符号都要改变.5.整式的加减运算法则:几个整式相加减,通常用括号把每一个整式括起来,再用加、减号连接,然后去括号,合并同类项. 要点三、幂的运算 1.同底数幂的乘法:(m n ,为正整数);同底数幂相乘,底数不变,指数相加.2.幂的乘方: (mn ,为正整数);幂的乘方,底数不变,指数相乘. 3.积的乘方: (n 为正整数);积的乘方,等于各因数乘方的积.4.同底数幂的除法:(a ≠0, mn ,为正整数,并且m n >). 同底数幂相除,底数不变,指数相减.5.零指数幂:()010.a a =≠即任何不等于零的数的零次方等于1.要点诠释:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;灵活地双向应用运算性质,使运算更加方便、简洁. 要点四、整式的乘法和除法 1.单项式乘以单项式单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式. 2.单项式乘以多项式单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式).3.多项式乘以多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即()()a b m n am an bm bn ++=+++.要点诠释:运算时,要注意积的符号,多项式中的每一项前面的“+”“-”号是性质符号,单项式乘以多项式各项的结果,要用“+”连结,最后写成省略加号的代数和的形式.根据多项式的乘法,能得出一个应用比较广泛的公式:()()()2x a x b x a b x ab ++=+++.4.单项式相除把系数、相同字母的幂分别相除作为商的因式,对于只在被除式里出现的字母,则连同它的指数一起作为商的一个因式. 5.多项式除以单项式先把这个多项式的每一项分别除以单项式,再把所得的商相加. 即:()am bm cm m am m bm m cm m a b c ++÷=÷+÷+÷=++ 要点五、乘法公式1.平方差公式:22()()a b a b a b +-=-两个数的和与这两个数的差的积,等于这两个数的平方差.要点诠释:在这里,a b ,既可以是具体数字,也可以是单项式或多项式.平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.2. 完全平方公式:()2222a b a ab b +=++;2222)(b ab a b a +-=-两数和 (差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.要点诠释:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍. 要点六、因式分解把一个多项式化成几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.因式分解的方法主要有: 提公因式法, 公式法, 分组分解法, 十字相乘法, 添、拆项法等.要点诠释:落实好方法的综合运用:首先提取公因式,然后考虑用公式; 两项平方或立方,三项完全或十字; 四项以上想分组,分组分得要合适; 几种方法反复试,最后须是连乘式; 因式分解要彻底,一次一次又一次.【典型例题】类型一、整式的相关概念1.指出下列各式中的整式、单项式和多项式,是单项式的请指出系数和次数,是多项式的请说出是几次几项式. (1)3a - (2)5 (3)2b a - (4)2x y - (5)3xy (6)x π(7)5m n + (8)1%a + (9)1()2a b h + 【答案与解析】整式:(1)、(2)、(4)、(5)、(6)、(7)、(8)、(9) 单项式:(2)、(5)、(6),其中:5的系数是5,次数是0;3xy 的系数是3,次数是2;xπ的系数是1π,次数是1.多项式:(1)、(4)、(7)、(8)、(9),其中:3a -是一次二项式;2x y -是一次二项式;5m n +是一次二项式;1%a +是一次二项式;1()2a b h +是二次二项式. 【总结升华】①分母中出现字母的式子不是整式,故2b a-不是整式;②π是常数而不是字母,故xπ是整式,也是单项式;③(7)、(9)表示的是加、减关系而不是乘积关系,而单项式中不能有加减.如5m n +其实质为55m n +,1()2a b h +其实质为1122ah bh +. 举一反三:【变式1】(1)3xy -的次数与系数的和是________;(2)已知单项式26x y 的系数是等于单项式52m x y -的次数,则m =________;(3)若nma b 是关于a b 、的一个五次单项式,且系数为9,则m n -+=________.【答案】(1)3 (2)1 (3)-5【变式2】多项式432231y y y y -+-+是________次________项式,常数项是________,三次项是________.【答案】四,五, 1 , 3y -. 类型二、整式的加减2、(1)直接化简代入 已知12x =,1y =-,求225(23)2(43)x y x x x y ---的值. (2)条件求值若523m x y +与3n x y 的和是单项式,则nm =________.(3)整体代入已知221x y -=,那么2243x y -+=________. 【答案与解析】解:(1)225(23)2(43)x y x x x y --- =22101586x y x x x y --+ =21623x y x - 当12x =,1y =-时, 原式=211233116(1)2342222⎛⎫⨯⨯--⨯=--=- ⎪⎝⎭.(2)由题意知:523m x y +和3n x y 是同类项,所以53,2m n +==,解得,2,2m n =-=,所以2(2)4n m =-=.(3)因为222432(2)3x y x y -+=-+, 而221x y -=所以22432135x y -+=⨯+=.【总结升华】整体代入的一般做法是对代数式先进行化简,然后找到化简结果与已知条件之间的联系. 举一反三:【变式1】若实数a 满足2210a a -+=,则2245a a -+=________. 【答案】3;【高清课堂:整式的加减单元复习388396经典例题7】【变式2】已知25m n -+=,求25(2)6360m n n m -+--的值. 【答案】解:225(2)63605(2)3(2)60m n n m m n n m -+--=-+--225m n n m -+=-=∴原式=255356080⨯+⨯-=. 类型三、幂的运算3、计算下列各题:(1)2334(310)(10)⨯⨯- (2)2332[3()][2()]m n m n +-+ (3)26243(2)(3)xy x y -+- (4)63223(2)(3)[(2)]a a a ---+- 【答案与解析】解:(1)2334(310)(10)⨯⨯-323343(10)(10)=⨯⨯18192710 2.710=⨯=⨯. (2)2332[3()][2()]m n m n +-+36263()(2)()m n m n =⋅+⋅-⋅+661227()4()108()m n m n m n =+⋅+=+.(3)26243(2)(3)xy x y -+-6661233612(1)2(1)3x y x y =-⋅⋅+-⋅612612612642737x y x y x y=-=.(4)63223(2)(3)[(2)]a a a ---+-6662232366(1)2(1)3()(1)(2)a a a =-⋅--⋅⋅+-⋅6666649649a a a a=--=-.【总结升华】在进行幂的运算时,应注意符号问题,尤其要注意系数为-1时“-”号、括号里的“-”号及其与括号外的“-”号的区别.举一反三: 【变式】当41=a ,b =4时,求代数式32233)21()(ab b a -+-的值. 【答案】解:333223363636611771()()45628884a b ab a b a b a b ⎛⎫-+-=-==⨯⨯= ⎪⎝⎭.类型四、整式的乘除法运算4、已知312326834m n axy x y x y ÷=,求(2)n m n a +-的值.【答案与解析】解:由已知312326834m n ax y x y x y ÷=,得31268329284312m n n ax y x y x y x y +=⋅=,即12a =,39m =,2812n +=, 解得12a =,3m =,2n =.所以22(2)(23212)(4)16n m n a +-=⨯+-=-=.【总结升华】利用除法与乘法的互逆关系求出m n a 、、的值即可代入求值. 举一反三: 【变式】(1)已知1227327m m -÷=,求m 的值.(2)已知1020a=,1105b=,求293a b÷的值. (3)已知23m=,24n=,求322m n-的值.【答案】解:(1)由题意,知312(3)327m m -÷=.∴ 3(1)2333m m--=.∴ 3323m m --=,解得6m =.(2)由已知1020a =,得22(10)20a =,即210400a=.由已知1105b=,得211025b=. ∴ 221101040025ab ÷=÷,即2241010a b-=.∴ 224a b -= ∴ 22222493333381aba b a b -÷=÷===.(3)由已知23m=,得3227m=.由已知24n =,得2216n =. ∴ 32322722216m nm n -=÷=. 类型五、乘法公式5、对任意整数n ,整式(31)(31)(3)(3)n n n n +---+是否是10的倍数?为什么? 【答案与解析】解:∵(31)(31)(3)(3)n n n n +---+22222(3)1(3)919n n n n=---=--+22101010(1)n n =-=-210(1)n -是10的倍数,∴ 原式是10的倍数.【总结升华】要判断整式(31)(31)(3)(3)n n n n +---+是否是10的倍数,应用平方差公式化简后,看是否有因数10.举一反三:【变式】解下列方程(组):22(2)(4)()()32x y x y x y x y ⎧+-+=+-⎨-=-⎩【答案】解: 原方程组化简得2332x y x y -=⎧⎨-=-⎩,解得135x y =⎧⎨=⎩.6、已知3a b +=,4ab =-,求: (1)22a b +;(2)33a b +【答案与解析】解:(1) 222222a b a ab b ab +=++-()22a b ab =+-∵3a b +=,4ab =-, ∴()22232417a b +=-⨯-= (2)333223a b a a b a b b +=+-+()()()2a a b b a b a b =+-+-()()22a b a ab b =+-+ ()()2[3]a b a b ab =++-∵3a b +=,4ab =-,∴()332333463a b ⎡⎤+=-⨯-=⎣⎦.【总结升华】在无法直接利用公式的情况下,我们采取“配凑法”进行,通过配凑向公式过渡,架起了已知与未知之间桥梁,顺利到达“彼岸”.在解题时,善于观察,捕捉习题特点,联想公式特征,便易于点燃思维的火花,找到最佳思路.类型六、因式分解7、 分解因式:(1)222284a bc ac abc +-;(2)32()()()()m m n m m n m m n m n +++-+-. 【答案与解析】解:(1)2222842(42)a bc ac acb ac abc c b +-=+-. (2)32()()()()m m n m m n m m n m n +++-+-2()[()()()]m m n m n m n m n =++++-- 22()(22)m m n m mn n n =++++.【总结升华】在提取公因式时要注意提取后各项字母,指数的变化,另外分解要彻底,特别是因式中含有多项式的一定要检验是否能再分,分解因式后可逆过来用整式乘法验证其正确与否.举一反三:【变式】下列各式中,分解因式错误的是( )A .()223933x y xy xy x y -=-B .()32222269153235m mb mc m m b c -+-=--+C .()222212826a y a y ay ay a ay +-=+D .()2214862743pqx xpq px px q q -+=-+【答案】C ;提示:C 选项出现了漏项,原式=()2222128264a y a y ay ay a ay +-=+-,错误.。

《整式的加减》单元复习与巩固(基础)知识讲解

《整式的加减》单元复习与巩固(基础)知识讲解

《整式的加减》全章复习与巩固(基础)知识讲解【学习目标】1.理解并掌握单项式与多项式的相关概念;2.理解整式加减的基础是去括号和合并同类项,并会用整式的加减运算法则,熟练进行整式的加减运算、求值;3.深刻体会本章体现的主要的数学思想----整体思想.【知识网络】【要点梳理】要点一、整式的相关概念1.单项式:由数或字母的积组成的代数式叫做单项式,单独的一个数或一个字母也是单项式.要点诠释:(1)单项式的系数是指单项式中的数字因数.(2)单项式的次数是指单项式中所有字母的指数和.2.多项式:几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.要点诠释:(1)在多项式中,不含字母的项叫做常数项.(2)多项式中次数最高的项的次数,就是这个多项式的次数.(3)多项式的次数是n次,有m个单项式,我们就把这个多项式称为n次m项式.3. 多项式的降幂与升幂排列:把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把这个多项式按这个字母降幂排列.另外,把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把这个多项式按这个字母升幂排列.要点诠释:(1)利用加法交换律重新排列时,各项应连同它的符号一起移动位置;(2)含有多个字母时,只按给定的字母进行降幂或升幂排列.4.整式:单项式和多项式统称为整式.要点二、整式的加减1.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项.所有的常数项都是同类项.要点诠释:辨别同类项要把准“两相同,两无关”:(1)“两相同”是指:①所含字母相同;②相同字母的指数相同;(2)“两无关”是指:①与系数无关;②与字母的排列顺序无关.2.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项.要点诠释:合并同类项时,只是系数相加减,所得结果作为系数,字母及字母的指数保持不变.3.去括号法则:括号前面是“+”,把括号和它前面的“+”去掉后,原括号里各项的符号都不改变;括号前面是“-”,把括号和它前面的“-”号去掉后,原括号里各项的符号都要改变.4.添括号法则:添括号后,括号前面是“+”,括号内各项的符号都不改变;添括号后,括号前面是“-”,括号内各项的符号都要改变.5.整式的加减运算法则:几个整式相加减,通常用括号把每一个整式括起来,再用加、减号连接,然后去括号,合并同类项.【典型例题】类型一、整式的相关概念1.指出下列各式中的整式、单项式和多项式,是单项式的请指出系数和次数,是多项式的请说出是几次几项式.(1)3a - (2)5 (3)2b a - (4)2x y - (5)3xy (6)x π (7)5m n + (8)1+a% (9)1()2a b h + 【答案与解析】解:整式:(1)、(2)、(4)、(5)、(6)、(7)、(8)、(9)单项式:(2)、(5)、(6),其中:5的系数是5,次数是0;3xy 的系数是3,次数是2;x π的系数是1π,次数是1. 多项式:(1)、(4)、(7)、(8)、(9),其中: 3a -是一次二项式;2x y -是一次二项式;5m n +是一次二项式;1+a%是一次二项式; 1()2a b h +是二次二项式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《整式的加减》复习 学习目标
1.理解并掌握单项式与多项式的相关概念;
2.理解整式加减的基础是去括号和合并同类项,并会用整式的加减运算法则,熟练进行整式的加减运算、求值;
3.体会本章体现的主要的数学思想----整体思想
【要点梳理】
要点一、整式的相关概念
1.单项式:_________________________________,单独的一个___或一个____也是单项式.
(1)单项式的系数
(2)单项式的次数
2.多项式:____________________________.在多项式中,每个单项式叫做多项式的项.
(1)多项式的次数, 项数
(2)常数项
3.整式:____________________________统称为整式
4. 多项式的降幂与升幂排列:
把一个多项式按某一个字母的指数___________的顺序排列起来,叫做把这个多项式按这个字母降幂排列.
把一个多项式按某一个字母的指数___________的顺序排列起来,叫做把这个多项式按这个字母升幂排列.
注意: (1)利用加法交换律重新排列时,各项应带着它的符号一起移动位置;
(2)含有多个字母时,只按给定的字母进行降幂或升幂排列.

要点二、整式的加减
1.同类项:所含________相同,并且相同字母的_________也相同的项叫做同类项.所有的
____________都是同类项.
注意: 辨别同类项要把准“两相同,两无关”:
(1)“两相同”是指:①所含字母相同;②相同字母的指数相同;
(2)“两无关”是指:①与系数无关; ②与字母的排列顺序无关.
2.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项.
合并同类项的法则: 系数____________,字母及字母的指数保持不变.
3.去括号法则:括号前面是“+”,把括号和它前面的“+”去掉后,原括号里各项的符号都
不改变;括号前面是“-”,把括号和它前面的“-”号去掉后,原括号里各项的符号都要改变.
4.添括号法则:添括号后,括号前面是“+”,括号内各项的符号都不改变;添括号后,括
号前面是“-”,括号内各项的符号都要改变.
5.整式的加减运算法则:几个整式相加减,通常用括号把每一个整式括起来,再用加、减号连接,然后去括号,合并同类项.
类型一、整式的相关概念 例1.指出下列各式中的整式、单项式和多项式,是单项式的请指出系数和次数,是多项式的请说出是几次几项式.
(1)3a - (2)5 (3)2b a - (4)2x y - (5)3xy (6)x π
(7)5m n + (8)1+a%
(9)1()2
a b h + 解:单项式:______________________________
多项式:________________________________ 整式:__________________________________________________
练习: (1)3xy -的次数与系数的和是________;
(2)已知单项式26x y 的系数是等于单项式52m x y -的次数,则m =________;
(3)若n ma b 是关于a 、b 的一个五次单项式,且系数为9,则-m+n =________.
(4)多项式432231y y y y -+-+是________次________项式,常数项是________,三次项是________.
(5)若多项式31(4)5(2)n m x x x n m -++---+是关于x 的二次三项式,则________m =,________n =,这个二次三项式为 。

(6)把多项式32
1325x x x --+按x 的降幂排列是______________________. 类型二、同类项及合并同类项
例2.合并同类项.
(1)232338213223c c c c c c -+-+-+; (2)22220.50.40.20.8m n mn nm mn -+-.

练习:(1) 若47a x y 与579b x y -
是同类项,则a =________,b =________. (2)若单项式22a b x y
+-与单项式253b y x -的和是单项式,那么3a b -=
类型三、去括号
1.下列式子中去括号错误的是( ).
A .5x -(x -2y +5z )=5x -x +2y -5z
B .2a 2+(-3a -b )-(3c -2d )=2a 2-3a -b -3c +2d
C .3x 2-3(x +6)=3x 2-3x -6
D .-(x -2y )-(-x 2+y 2)=-x +2y +x 2-y 2
2. 化简:-2a+(2a-1)的结果是( ).
A .-4a-1
B .4a-1
C .1
D .-1
3. 计算 (1) 11(812)3(22)32
a a
b
c c b -
--+-+
(2)222
32(12)[5(436)]x x x x x -----+
类型四、整式的加减
1. 求比多项式22523a a ab b --+少2
5a ab -的多项式.
2.从一个多项式A 中减去234ab bc -+,由于误认为加上这个式子,得到221bc ab --, (1)试求: A (2)并求正确答案。

3.已知A =x 2+2y 2-z 2,B =-4x 2+3y 2+2z 2,且A +2B +C =0,求多项式C .
类型五、化简求值
例:(1)直接化简代入
已知12
x =,1y =-,求225(23)2(43)x y x x x y ---的值.
(2)条件求值
已知 (2a +b +3)2+|b -1|=0, 求3a -3 (3a -2b -1)+1的值.
(3)整体代入
已知x 2-2y =1,那么2x 2-4y+3=________.


【总结】整体代入的一般做法是对代数式先进行化简,然后找到化简结果与已知条件之间的联系.
【变式1】若实数a 满足2210a a -+=,则2
245a a -+=________.
【变式2】已知25m n -+=,求25(2)6360m n n m -+--的值.
. 类型六、综合应用
例. 已知多项式
是否存在m ,使此多项式与x 无关?若不存在,说明理由;若存在,求出m 的值.
()()
22222mx -x +3x +1-5x -4y +3x。

相关文档
最新文档