专题7-1 有理数相关练习

合集下载

人教版七年级数学上册《第一章有理数》同步训练-附有答案

人教版七年级数学上册《第一章有理数》同步训练-附有答案

人教版七年级数学上册《第一章有理数》同步训练-附有答案【题型1】有理数1.(2022·全国·七年级课时练习)下列说法错误的是()A.0既不是正数也不是负数B.零上6摄氏度可以写成+6℃也可以写成6℃C.向东走一定用正数表示向西走一定用负数表示D.若盈利1000元记作+1000元则-200元表示亏损200元【答案】C【解析】【分析】根据有理数的概念和性质判断即可.【详解】∵0既不是正数也不是负数∴A正确不符合题意;∵零上6摄氏度可以写成+6℃也可以写成6℃∴B 正确 不符合题意;∵正方向可以自主确定∴向东走一定用正数表示 向西走一定用负数表示 是错误的∴C 不正确 符合题意;∵盈利1000元记作+1000元 则-200元表示亏损200元∴D 正确 不符合题意;故选:C .【点睛】本题考查了有理数的基本概念 熟练掌握有理数的基本概念是解题的关键.【变式1-1】2.(2022·全国·七年级专题练习)在3- 3π1.62 0四个数中 有理数的个数为() A .4 B .3 C .2 D .1【答案】B【解析】【分析】根据有理数的定义进行判断即可.【详解】 解:在3- 3π1.62 0四个数中 3- 1.62 0是有理数∴有理数的个数为3故选:B .【点睛】本题主要考查了有理数的识别 熟练掌握有理数的定义是解决本题的关键.【题型2】有理数的分类1.(2022·全国·七年级课时练习)有理数-3 0.23 -85 206 -4 5中 非正整数有() A .6个 B .5个 C .4个 D .3个【答案】D【解析】【分析】根据有理数的分类 求解即可 非正整数包括负整数和零 也就是非正数中的整数.【详解】解:有理数-3 0.23 -85 206 -4 5中 非正整数有385,4---,共3个 故选D【点睛】本题考查了非正整数 理解非正整数包括负整数和零 也就是非正数中的整数是解题的关键.【变式2-1】2.(2020·山西省运城市实验中学七年级期中)把下列各数填在相应的大括号内:0.5 5- 2 47- 0 134- 29 2020 5.6⋅ 正数集合:{ …}; 分数集合:{ …}; 非负整数集合:{ …}.【答案】0.5 2 292020 5.6⋅; 0.5 47- 134- 29 5.6⋅; 0.5 2 0292020 5.6⋅ 【解析】【分析】 根据正数 负数 分数 非负整数的定义进行分类即可解决问题.【详解】解:正数集合:{ 0.5 2 292020 5.6⋅ …};分数集合:{0.547-134-29 5.6⋅…};非负整数集合:{0.5 2 0 292020 5.6⋅…}.所以集合里分别填:0.5 2 292020 5.6⋅;0.547-134-29 5.6⋅;0.5 2 0 292020 5.6⋅【点睛】本题考查了有理数的分类解题的关键是熟练掌握有理数的分类方法属于中考常考题型.【题型3】数轴表示数1.(2020·黑龙江·集贤县第七中学七年级期中)画出数轴并表示下列有理数并用“>”把它们连起来.4- 3 1.5 0122 -.【答案】数轴是表示见解析3>1.5>0>-212>-4.【解析】【分析】首先在数轴上确定表示各数的点的位置再根据在数轴上表示的有理数右边的数总比左边的数大用“>”号把这些数连接起来即可.【详解】解:如图所示:用“>”把它们连起来为:3>1.5>0>-212>-4.【点睛】此题主要考查了有理数的比较大小关键是正确在数轴上确定表示各数的点的位置.【变式3-1】2.(2020·黑龙江·虎林市实验中学七年级期中)a、b是有理数它们在数轴上的对应点的位置如图所示把a、-a、b、-b按从小到大的顺序排列为()A.-b<-a<a<b B.-a<-b<a<b C.-b<a<-a<b D.-b<b<-a<a【答案】C【解析】【分析】先根据a b两点在数轴上的位置判断出a、b的符号及其绝对值的大小再比较出其大小即可.【详解】解:∵由图可知a<0<b|a|<b∴0<-a<b-a<b<0 0b a-<<∴b a a b-<<-<故C正确.故选:C.【点睛】本题考查的是有理数的大小比较熟知数轴上各点所表示的数的特点是解答此题的关键.【题型4】数轴上两点之间的距离1.(2019·广东·广州市第二中学七年级阶段练习)如图:A、B两点在数轴上表示的数分别为a b则A B 两点间的距离不正确的是()A.﹣b+a B.|a﹣b| C.b﹣a D.|a|+|b|【答案】A【解析】【分析】根据A、B两点在数轴上的位置进行计算.【详解】解:A B两点间的距离=b﹣aA、由题意知﹣b+a<0 故本选项符合题意;B、由题意知|a﹣b|=b﹣a故本选项不符合题意;C、由题意知b﹣a故本选项不符合题意;D、由题意知|a|+|b|=﹣a+b故本选项不符合题意;故选:A.【点睛】本题考查了数轴上两点间的距离能够正确理解A、B两点间的距离的几何意义是解题的关键.【变式4-1】2.(2020·湖南·常德市第七中学七年级期中)数轴上一点A表示的数为-7 当点A在数轴上滑动2个单位后所表示的数是_________.【答案】-9或-5【解析】【分析】分向右滑动和向左滑动两种情况讨论求解即可.【详解】解:∵数轴上一点A表示的数为-7∴当点A在数轴上向左滑动2个单位后所表示的数是-7-2=-9;当点A在数轴上向右滑动2个单位后所表示的数是-7+2=-5故答案为:-9或-5.【点睛】本题主要考查了用数轴表示有理数利用分类讨论的思想求解是解题的关键.【题型5】相反数1.(2020·黑龙江·虎林市实验中学七年级期中)25-的相反数是()A.25B.52-C.52D.0【答案】A 【解析】根据只有符号不同的两个数互为相反数进行解答即可得.【详解】根据只有符号不同的两个数互为相反数进行解答即可得.解:25-的相反数是25故A正确.故选:A【点睛】本题主要考查了相反数掌握相反数的定义是解题的关键.【变式5-1】2.(2022·黑龙江·哈尔滨市萧红中学校期中)数轴上A、B表示的数互为相反数并且两点间的距离是12 在A、B之间有一点P P到A的距离是P到B的距离的2倍求P点表示的数_______.【答案】2±【解析】【分析】直接利用相反数的定义得出A B表示的数据再利用P到A的距离是P到B的距离的2倍得出P点位置.【详解】解:数轴上A、B表示的数互为相反数并且两点间的距离是12∴A表示-6 B表示6 或者A表示6 B表示-6①当A表示-6 B表示6时在A、B之间有一点P P到A的距离是P到B的距离的2倍∴P A=8 PB=4∴点P表示的数是:2;②A表示6 B表示-6时在A、B之间有一点P P到A的距离是P到B的距离的2倍∴P A=8 PB=4∴点P表示的数是:-2;故答案为:2±.此题主要考查了数轴以及互为相反数的定义 正确得出A B 点位置是解题关键.【题型6】绝对值1.(2021·湖北恩施·一模)﹣2的绝对值为( )A .﹣12B .12C .﹣2D .2【答案】D【解析】【分析】直接利用绝对值的性质化简得出答案.【详解】解:﹣2的绝对值为:2故选:D .【点睛】本题考查化简绝对值 解题的关键是掌握绝对值的定义.【变式6-1】2.(2021·辽宁本溪·七年级期中)化简:3π4π---=____________.【答案】2π7-【解析】【分析】根据绝对值的定义即可得.【详解】 解:3π4π3427πππ---=--+=-;故答案为:2π7-【点睛】此题考查了绝对值 掌握绝对值的定义:数轴上某个数与原点的距离叫做这个数的绝对值是解题的关键.专项训练一.选择题1.(2019·贵州安顺·中考真题)-2019的相反数是( )A .2019B .-2019C .12019 D .12019-【答案】A【解析】【分析】根据只有符号不同的两个数是互为相反数解答即可.【详解】解:-2019的相反数是2019.故选:A .【点睛】本题考查了相反数的定义 解答本题的关键是熟练掌握相反数的定义.2.(2021·贵州安顺·中考真题)如图 已知数轴上,A B 两点表示的数分别是,a b则计算b a -正确的是( )A .b a -B .-a bC .a b +D .a b --【答案】C【解析】【分析】根据数轴上两点的位置 判断,a b 的正负性 进而即可求解.【详解】解:∵数轴上,A B 两点表示的数分别是,a b∴a <0 b >0∴()b a b a a b -=--=+故选:C .【点睛】本题考查了数轴 绝对值 掌握求绝对值的法则是解题的关键.3.(2022·全国·七年级课时练习)数轴上 点A 对应的数是6- 点B 对应的数是2- 点O 对应的数是0.动点P 、Q 从A 、B 同时出发 分别以每秒3个单位和每秒1个单位的速度向右运动.在运动过程中 下列数量关系一定成立的是( )A .2PQ OQ =B .2OP PQ =C .32QB PQ =D .PB PQ = 【答案】A【解析】【分析】设运动时间为t 秒 根据题意可知AP=3t BQ=t AB=2 然后分类讨论:①当动点P 、Q 在点O 左侧运动时 ②当动点P 、Q 运动到点O 右侧时 利用各线段之间的和、差关系即可解答.【详解】解:设运动时间为t 秒 由题意可知: AP=3t BQ=tAB=|-6-(-2)|=4 BO=|-2-0|=2①当动点P 、Q 在点O 左侧运动时PQ=AB-AP+BQ=4-3t+t=2(2-t)∵OQ= BO- BQ=2-t∴PQ= 2OQ ;②当动点P 、Q 运动到点O 右侧时PQ=AP-AB-BQ=3t-4-t=2(t-2)∵OQ=BQ- BO=t-2∴PQ= 2OQ综上所述在运动过程中线段PQ的长度始终是线段OQ的长的2倍即PQ= 2OQ一定成立.故选: A.【点睛】本题考查了数轴上的动点问题及数轴上两点间的距离解题时注意分类讨论的运用.4.(2022·全国·七年级课时练习)已知1|3|a=-则a的值是()A.3 B.-3 C.13D.13+或13-【答案】D【解析】【分析】先计算出3-然后根据绝对值的定义求解即可.【详解】解:∵133 a=-=∴13 a=±∴13 a=±故选:D.【点睛】本题考查绝对值方程的求解理解绝对值的定义是解题关键.5.(2021·全国·七年级课时练习)A为数轴上表示3的点将点A沿数轴向左平移7个单位到点B再由B 向右平移6个单位到点C则点C表示的数是()A.0 B.1 C.2 D.3【答案】C【解析】【分析】根据向左平移为减法向右平移为加法利用有理数的加减法运算计算即可.【详解】376=2-+∴点C 表示的数是2故选:C .【点睛】本题主要考查有理数加减法的应用 正确的计算是关键.6.(2019·黑龙江·中考真题)实效m n 在数轴上的对应点如图所示 则下列各式子正确的是( )A .m n >B .||n m ->C .||m n ->D .||||m n <【答案】C【解析】【分析】从数轴上可以看出m 、n 都是负数 且m <n 由此逐项分析得出结论即可.【详解】解:因为m 、n 都是负数 且m <n |m|>|n|A 、m >n 是错误的;B 、-n >|m|是错误的;C 、-m >|n|是正确的;D 、|m|<|n|是错误的.故选C .【点睛】此题考查有理数的大小比较 关键是根据绝对值的意义等知识解答.二、填空题7.(2020·四川乐山·中考真题)用“>”或“<”符号填空:7-______9-.【答案】>【解析】【分析】两个负数 绝对值大的其值反而小 据此判断即可.【详解】解:∵|-7|=7 |-9|=9 7<9∴-7>-9故答案为:>.【点睛】此题主要考查了有理数大小比较的方法 要熟练掌握 解答此题的关键是要明确:两个负数 绝对值大的其值反而小.8.(2021·江苏常州·中考真题)数轴上的点A 、B 分别表示3-、2 则点__________离原点的距离较近(填“A ”或“B ”).【答案】B【解析】【分析】先求出A 、B 点所对应数的绝对值 进而即可得到答案.【详解】解:∵数轴上的点A 、B 分别表示3-、2 ∴33,22-== 且3>2∴点B 离原点的距离较近故答案是:B .【点睛】本题主要考查数轴上点与原点之间的距离 掌握绝对值的意义 是解题的关键.9.(2022·全国·七年级课时练习)如图 数轴上点A B C 对应的有理数分别是a b c2OA OC OB == 且24a b c ++=- 则a b b c -+-=______.【答案】8【解析】【分析】根据2OA OC OB ==得2c a b =-=- 代入24a b c ++=-即可求出a 和c 的值 再根据绝对值的性质化简a b b c -+- 即可求出结果.【详解】解:∵2OA OC OB ==∴2c a b =-=-∵24a b c ++=-∴4a c c -+=- 即4a =-∴4c = ∴()448a b b c b a c b c a -+-=-+-=-=--=.故答案是:8.【点睛】本题考查数轴的性质和绝对值的性质 解题的关键是掌握数轴上的点表示有理数的性质和化简绝对值的方法.10.(2019·山东德州·中考真题)33x x -=- 则x 的取值范围是______.【答案】3x ≤【解析】【分析】根据绝对值的意义 绝对值表示距离 所以30x -≥ 即可求解;【详解】根据绝对值的意义得 30x -≥3x ∴≤;故答案为3x ≤;【点睛】本题考查绝对值的意义;理解绝对值的意义是解题的关键.11.(2020·湖北·云梦县实验外国语学校七年级期末)若有理数a b c 在数轴上的位置如图所示 则|a -c |-|b +c |可化简为_________ .【答案】a b --##b a --【解析】【分析】根据数轴上的点的位置 判断a -c 和b +c 的符号 然后根据绝对值的意义求解即可.【详解】根据题意得a-c<0 b+c>0所以|a﹣c|﹣|b+c|=c-a-(b+c)=c-a-b-c=-a-b故答案为-a-b.【点睛】此题主要考查了数轴上点与绝对值的化简关键是根据数轴上点的位置求出代数式的符号.三、解答题12.(2020·广东·龙门县华南师范大学附属龙门学校七年级期末)把下列各数在数轴上表示出来 3.5 -3.5 0 2 -0.5 -2 0.5. 并按从小到大的顺序用“<”连接起来.【答案】数轴见解析-3.5<-2<-0.5<0<0.5<2<3.5;【解析】【分析】先根据数轴表示数的方法表示各数再按从左向右的顺序排列即可.【详解】在数轴上表示从小到大的顺序是:用“<”连接起来-3.5 <-2 <-0.5 <0 <0.5<2<3.5.【点睛】此题主要考查了有理数与数轴关键是正确在数轴上表示各数.13.(2022·全国·七年级专题练习)如图数轴上点A B M N表示的数分别为-1 5 m n且AM=23AB点N是线段BM的中点求m n的值.【答案】m=3 n=4或m=-5 n=0【解析】【分析】根据题意得:AB=6.再由AM=23AB可得AM=4.然后分两种情况讨论即可求解.【详解】解:∵数轴上 点A B 表示的数分别为-1 5∴AB =6.∵AM =23AB∴AM =4.①当点M 在点A 右侧时∵点A 表示的数为-1 AM =4∴点M 表示的数为3 即m =3.∵点B 表示的数为5 点N 是线段BM 的中点∴点N 表示的数为4 即n =4.② 当点M 在点A 左侧时∵点A 表示的数为-1 AM =4∴点M 表示的数为-5 即m =-5.∵点B 表示的数为5 点N 是线段BM 的中点∴点N 表示的数为0 即n =0.综上 m =3 n =4 或m =-5 n =0.【点睛】本题主要考查了数轴上两点间的距离 熟练掌握数轴上两点间的距离 并利用分类讨论思想解答是解题的关键.14.(2022·全国·七年级课时练习)阅读下面材料:如图 点A 、B 在数轴上分别表示有理数a 、b 则A 、B 两点之间的距离可以表示为a b -根据阅读材料与你的理解回答下列问题:(1)数轴上表示3与2-的两点之间的距离是________.(2)数轴上有理数x 与有理数7所对应两点之间的距离用绝对值符号可以表示为________.(3)代数式8x +可以表示数轴上有理数x 与有理数________所对应的两点之间的距离;若85x += 则x =________.【答案】(1)5;(2)7x ;(3)-8;-3或-13;【解析】【分析】(1)根据材料计算即可;(2)根据材料列代数式即可;(3)将8x +化为()8x --即可;根据绝对值的性质计算求值即可;(1)解:数轴上表示3与2-的两点之间的距离是3-(-2)=5;(2)解:数轴上有理数x 与有理数7所对应两点之间的距离用绝对值符号可以表示为7x ;(3) 解:∵8x +=()8x -- ∴代数式8x +可以表示数轴上有理数x 与有理数-8所对应的两点之间的距离; 若85x += 则当(x+8)>0时 x +8=5 x =-3当(x+8)<0时 x +8=-5 x =-13故答案为:-8;x =-3或-13;【点睛】本题考查了数轴上两点之间的距离 绝对值的化简(正数的绝对值是它本身 零的绝对值是零 负数的绝对值是它的相反数);掌握绝对值的意义是解题关键.15.(2022·河南·郑州外国语中学七年级期末)数轴是一个非常重要的数学工具 它使数和数轴上的点建立起对应关系 揭示了数与点之间的内在联系 它是“数形结合”的基础.例如:从“形”的角度看:|31|-可以理解为数轴上表示 3 和 1 的两点之间的距离;|31|+可以理解为数轴上表示 3 与﹣1 的两点之间的距离.从“数”的角度看:数轴上表示 4 和﹣3 的两点之间的距离可用代数式表示为: 4-(-3) .根据以上阅读材料探索下列问题:(1)数轴上表示 3 和 9 的两点之间的距离是 ;数轴上表示 2 和﹣5 的两点之间的距离是 ;(直接写出最终结果)(2)①若数轴上表示的数 x 和﹣2 的两点之间的距离是 4 则 x 的值为 ;②若 x 为数轴上某动点表示的数 则式子|1||3|x x ++-的最小值为 .【答案】(1)6 7;(2)①-6或2;②4【解析】【分析】(1)直接根据数轴上两点之间的距离求解即可;(2)①根据数轴上两点之间的距离公式列绝对值方程 然后解方程即可;②由于所给式子表示x 到-1和3的距离之和 当x 在-1和3之间时和最小 故只需求出-1和3的距离即可.(1)解:数轴上表示 3 和 9 的两点之间的距离是|9-3|=6 数轴上表示 2 和﹣5 的两点之间的距离是|2-(-5)|=7故答案为:6 7;(2)解:①根据题意 得:|x -(-2)|=4∴|x +2|=4∴x +2=-4或x +2=4解得:x =-6或x =2故答案为:-6或2;②∵|1||3|x x ++-表示x 到-1和3的距离之和∴当x 在-1和3之间时距离和最小 最小值为|-1-3|=4故答案为:4.【点睛】本题考查数轴上两点之间的距离 会灵活运用数轴上两点之间的距离解决问题是解答的关键.16.(2018·全国·七年级专题练习)如图 一个点从数轴上的原点开始 先向右移动3个单位长度 再向左移动5个单位长度 可以看到终点表示的数是-2.已知点A B 是数轴上的点 请参照图并思考 完成下列各题.(1) 若点A 表示数2- 将A 点向右移动5个单位长度 那么终点B 表示的数是 此时 A B 两点间的距离是________.(2)若点A 表示数3 将A 点向左移动6个单位长度 再向右移动5个单位长度后到达点B 则B 表示的数是________;此时 A B 两点间的距离是________.(3)若A 点表示的数为m 将A 点向右移动n 个单位长度 再向左移动t 个单位长度后到达终点B 此时A 、B 两点间的距离为多少?【答案】(1) 3 5 ;(2) 2 ; 1 ;(3)n t -【解析】【详解】试题分析:(1)由数轴上面的点表示的数查出结果即可 并根据绝对值求出两点间的距离;(2)由数轴上面的点表示的数查出结果即可 并根据绝对值求出两点间的距离;(3)结合(1)和(2)的距离与平移的关系直接列式即可(距离为两次移动的单位长度的差的绝对值). 试题解析:(1)(1) 3 5 ;(2) 2 ; 1 ;(3)n t -17.(2022·全国·七年级课时练习)如图 数轴上的三个点A B C 分别表示实数a b c .(1)如果点C 是AB 的中点 那么a b c 之间的数量关系是________;(2)比较4b -与1c +的大小 并说明理由;(3)化简:|2||1|||--+++a b c .【答案】(1)2c =a +b (答案不唯一)(2)4-<b 1c +;理由见解析(3)3a b c ---【解析】【分析】(1)利用C 是AB 的中点得到AC =BC 可得a c c b -=- 化简即可;(2)通过数轴得出a b c 的大小关小 从而得出b -4和c +1的大小;(3)先判断a -2 b +1 c 的正负 然后根据绝对值的性质化简即可.(1)∵C 是AB 的中点 且数轴上的三个点A B C 分别表示实数a b c∴AC =BC∴a c c b -=-∴2c =a +b故答案是:2c =a +b ;(2)4-<b 1c + 理由如下:由数轴知:01a << 10c -<< 1b <-∴b -4<-5 c +1>0∴4-<b 1c +;(3)由数轴知:01a << 10c -<< 1b <-∴a -2<0 b +1<0 ∴()()2121213a b c a b c a b c a b c --+++=---+-=-+---=---.【点睛】本题考查了数轴的意义 绝对值以及有理数大小的比较 掌握绝对值的性质以及有理数的加减法则是解题的关键.第21 页共21 页。

人教版七年级数学上册《有理数相关概念》专题训练-附参考答案

人教版七年级数学上册《有理数相关概念》专题训练-附参考答案

人教版七年级数学上册《有理数相关概念》专题训练-附参考答案目录正数和负数 ...................................................................................................................................... 1 有理数概念及其分类 ...................................................................................................................... 2 有理数的分类 .................................................................................................................................. 2 有理数的应用 .................................................................................................................................. 5 数轴的定义 ...................................................................................................................................... 8 数轴上表示有理数 .......................................................................................................................... 9 数轴上表示有理数(带字母) .................................................................................................... 10 数轴的性质 .................................................................................................................................... 12 数轴上的应用 ................................................................................................................................ 13 相反数的定义 ................................................................................................................................ 15 相反数的性质 ................................................................................................................................ 15 相反数与数轴 ................................................................................................................................ 16 绝对值的定义 ................................................................................................................................ 17 含字母的绝对值化简 .................................................................................................................... 18 非负性 ............................................................................................................................................ 20 绝对值求值 (21)【例1】在数1- 0 3.05- π- 2+ 12-中 负数有( )A .1个B .2个C .3个D .4个【解答】解:在数1- 0 3.05- π- 2+ 12-中 负数有1- 3.05- π- 12- 共4个.故选:D .【变式训练1】中国是最早采用正负数表示相反意义的量的国家.某仓库运进小麦6吨 记为6+吨 那么仓库运出小麦8吨应记为( )吨. A .8+B .8-C .8±D .2-【解答】解:仓库运进小麦6吨 记为6+吨∴仓库运出小麦8吨应记为8-吨故选:B .【变式训练2】若收入3元记为3+ 则支出2元记为( )A .2-B .1-C .1D .2【解答】解:由题意知 收入3元记为3+ 则支出2元记为2- 故选:A .【变式训练3】冬残奥会举办最理想的温度是17C ︒-至10C ︒ 若10C ︒表示零上10C ︒ 那么17C ︒-表示()A .零上17C ︒B .零上27C ︒C .零下17C ︒D .零下17C ︒-【解答】解:17C ︒-表示零下17C ︒ 故选:C .【例2】下列各数中属于负整数的是( ) A .0B .3C .5-D . 1.2-【解答】解:A 0为整数 故选项不符合题意B 3为负正整数 故选项不符合题意C 5-为负整数 故选项符合题意D 1.2-为负分数 故选项不符合题意.故选:C .【变式训练1】在 3.5- 227 0.161161116⋯ 2π中 有理数有( )个. A .1B .2C .3D .4【解答】解:A 3.5-是负分数 故是有理数B227是正分数 故为有理数 C 0.161161116⋯是无限不循环小数 是无理数 故不是有理数D2π是含有π的数 是无理数 故不是有理数 所以有理数有两个 故选:B . 【变式训练2】在122- 3.5+ 0 0.7- 5 13-中 负分数有( )A .1个B .2个C .3个D .4个【解答】解:在122- 3.5+ 0 0.7- 5 13-中负分数有0.7- 13- 共有2个故选:B .【变式训练3】下列说法中 正确的是( ) A .正有理数和负有理数统称有理数 B .正分数 零 负分数统称分数 C .零不是自然数 但它是有理数 D .一个有理数不是整数就是分数【解答】解:A .正有理数 零和负有理数统称有理数 故本选项不合题意B .正分数和负分数统称分数 故本选项不合题意C .零是自然数 也是有理数 故本选项不合题意D .一个有理数不是整数就是分数 说法正确 故本选项符合题意.故选:D .有理数的分类 有理数的分类:①按定义 有理数可分为:②按正 负 有理数可分为:【例3】将下列各数填在相应的圆圈里: 6+ 8- 75 0.4- 0 23%37 2006- 1.8- 34-.【解答】解:如图:【变式训练1】把下列各数分别填在相应的集合内:11- 4.8 73 2.7-163.141592634-73正分数集合:{ 4.8 163.141592673}⋯负分数集合:{}⋯非负整数集合:{}⋯非正整数集合:{}⋯.【解答】解:正分数集合:{4.8163.14159267}3⋯负分数集合:{2.7-3} 4-⋯非负整数集合:{730}⋯非正整数集合:{11-0}⋯.故答案为:4.8 163.1415926732.7 -3 4 -73 011-【变式训练2】把下列各数分别填入相应的集合里.224- 5 3.14 π3-0.15.(1)整数集合:{0 5 3-...}(2)分数集合:{...}(3)有理数集合:{...}(4)非负数集合:{...}.【解答】解:(1)整数集合:{0 5 3...}-(2)分数集合:22{4- 3.14 0.15...}(3)有理数集合:{0224- 5 3.14 3-0.15...}(4)非负数集合:{0 5 3.14 π0.15...}.故答案为:0 5 3-224- 3.14 0.150224- 5 3.14 3-0.150 5 3.14 π0.15.【变式训练3】把下列各数分别填入相应的集合:6+0 8-π 4.8-7-2270.658-.整数集合{6+0 8-7-}分数集合{}正有理数集合{}负有理数集合{}非负有理数集合{}自然数集合{}.【解答】解:整数集合{6+0 8-7}-分数集合{4.8-2270.65}8-正有理数集合{6+2270.6}负有理数集合{8- 4.8-7-5} 8 -非负有理数集合{6+0 2270.6}自然数集合{6+0}.故答案为:6+0 8-7- 4.8-2270.658-6+2270.6 8- 4.8-7-58-6+02270.6 6+有理数的应用【例4】某工艺厂计划一周生产工艺品2800个平均每天生产400个但实际每天生产量与计划相比有出入.下表是某周的生产情况(超产记为正减产记为负):(2)已知该厂实行每周计件工资制每生产一个工艺品可得70元若超额完成任务则超过部分每个另奖60元少生产一个扣100元.试求该工艺厂在这一周应付出的工资总额.【解答】解:(1)计划一周生产工艺品2800个=++--+-+-=(个)∴这周生产的数量2800(6261611158)2810(2)由(1)可知本周比计划多生产10个=⨯+⨯=(元).∴这一周应付出的工资2810706010197300【变式训练1】A水果超市最近新进了一批百香果每斤进价10元为了合理定价在第一周试行机动价格卖出时每斤以15元为标准超出15元的部分记为正不足15元的部分记为负超市记录第一周百香果的售价情况和售出情况:)第一周星期三超市售出的百香果单价为15元这天的利润是元.(2)第一周超市出售此种百香果的收益如何?(盈利或亏损的钱数)(3)超市为了促销这种百香果决定从下周一起推出两种促销方式:方式一:购买不超过5斤百香果每斤20元超出5斤的部分每斤降价4元方式二:每斤售价17元.林老师决定下周在A水果超市购买40斤百香果通过计算说明应选择上述两种促销方式中的哪种方式购买更省钱.【解答】解:(1)卖出时每斤以15元为标准表格中的数据表示超出15元的部分记为正不足15元的部分记为负∴星期三超市售出的百香果单价为15元这天的利润是10(1510)50⨯-=(元)故答案为:15(2)12023501013021555450225⨯-⨯+⨯-⨯+⨯+⨯-⨯=-(元)-⨯++++++=⨯=(元)(1510)(2035103015550)5165825-+=(元)(225)825600所以第一周超市出售此种百香果盈利600元(3)方式一:205(405)(204)660⨯+-⨯-=(元)方式二:4017680⨯=(元)660680<∴选择方式一购买更省钱.【变式训练2】体育课上某小组的8名男同学进行了100米测验达标成绩为15秒下表是这个小组8名男生的成绩记录(“+“表示成绩大于15秒).(2)这个小组男生的达标率为多少?(3)这个小组男生的平均成绩是多少秒?【解答】解:(1)15 1.213.8-=(秒).故这个小组男生的最好成绩是13.8秒(2)6100%75%8⨯=.故这个小组男生的达标率为75%(3)0.60.8 1.20.900.60.40.32-+--++--=-15(2)814.75+-÷=(秒).答:这个小组男生的平均成绩是14.75秒.【变式训练3】某粮仓原有大米148吨某一周该粮仓大米的进出情况如下表:(当天运进大米8吨记作8+吨:当天运出大米8吨记作8-吨.)运进或运出大米多少吨?(2)若大米进出库的装卸费用为每吨15元求这一周该粮仓需要支付的装卸总费用.【解答】解:(1)14832262316262198m-+--++-=解得10m=-.答:星期五该粮仓是运出大米运出大米10吨(2)|32|26|23||16||10|26|21|154-++-+-+-++-=154152310⨯=(元).答:这一周该粮仓需要支付的装卸总费用为2310元.【例5】如图是一些同学在作业中所画的数轴其中画图正确的是() A.B.C.D.【解答】解:A刻度不均匀故错误B正确C数据顺序不对故错误D没有正方向故错误.故选:B.【变式训练1】在下列图中正确画出的数轴是()A.B.C.D.【解答】A单位长度不一致故该选项不符合题意B有原点正方向单位长度故该选项符合题意C没有原点故该选项不符合题意D没有正方向故该选项不符合题意.故选:B.【变式训练2】如图所示下列数轴的画法正确的是()A.B.C.D.【解答】解:A单位长度不一致故此选项不符合题意B缺少原点故此选项不符合题意C规定了原点单位长度正方向的直线叫做数轴故此选项符合题意D缺少正方向故此选项不符合题意故选:C.【变式训练3】下列各图是四位同学所画的数轴其中正确的是() A.B.C.D.【解答】解:A选项中数轴缺少原点A∴选项不合题意B选项单位长度不一致B∴选项正确C选项中负方向1-和2-标错了C∴选项不合题意D选项中符合数轴的三要素D∴选项不合题意.故选:D.【例6】如图数轴上一个点被叶子盖住了这个点表示的数可能是() A.2.3B. 1.3-C.3.7D.1.3【解答】解:叶子盖住的点位于2和3之间四个选项中的数只有2.3这个适合这个位置故选:A.【变式训练1】如图在数轴上有M N两点则两点表示的数字之和不可能()A .2B .4-C . 3.45-D .7-【解答】解:设点M N 在数轴上所表示的数为m n 且0n m << 由于点N 离原点的距离比点M 到原点的距离要大0m n ∴<<-0m n ∴+< 即两点表示的数字之和不可能为正数.故选:A .【变式训练2】数32-在数轴上的位置可以是( )A .点A 与点B 之间 B .点B 与点O 之间C .点O 与点D 之间 D .点D 与点E 之间【解答】解:302-< 是负数∴在原点左侧3212-<-<-∴数32-在数轴上的位置可以是点A 与点B 之间 故选:A .【变式训练3】如图 点A 是数轴上一点 则点A 表示的数可能为( )A . 1.5-B . 2.5-C .2.5D .1.5【解答】解:根据图示可得点A 表示的数在2-和1-之间 四个选项中只能是 1.5-. 故选:A .【例7】如图 数轴上A B 两点所对应的有理数分别为a 和b 则a b -的结果可能是( )A .1-B .1C .2D .3【解答】解:由图可知 210.51b a -<<-<<<a b ∴-的结果可能是C .故选:C .【变式训练1】如图 点A B C D 四个点在数轴上表示的数分别为a b c d 则下列结论中 错误的是( )A .0a c +<B .0b a ->C .0ac >D .0b d< 【解答】解:根据数轴上点的位置得:0a b c d <<<< ||||||||c b d a <<<0a c ∴+< 0b a -> 0ac <0bd<. 故选:C .【变式训练2】有理数a b c 在数轴上所对应的点如图所示 则下列结论正确的是( )A .0a b +>B .0a b ->C .0a c +<D .0b c +>【解答】解:由数轴可知0b c a c b <-<<<<-A 0a b +< 故A 不符合题意.B 0a b -> 故B 符合题意.C 0a c +> 故C 不符合题意.D 0b c +< 故D 不符合题意.故选:B .【变式训练3】如图 若数轴上A B 两点对应的有理数分别为a b 则a b +的值可能是( )A .2B .1C .1-D .2-【解答】解:由图可知 32a -<<- 12b <<a b ∴+的结果可能是1-.故选:C .【例8】一只蚂蚁沿数轴从原点向右移动了3个单位长度到达点A则点A表示的数是() A.3B.3-C.0D.3±【解答】解:由题意知蚂蚁沿数轴从原点向右移动了3个单位长度到达点A首先点A表示的数是正数又与原点相距三个单位长度∴点A表示的数是3故选:A.【变式训练1】下列各数在数轴上所对应的点与原点的距离最远的是()A.2B.1C. 1.5-D.3-【解答】解:A.2到原点的距离是2个长度单位不符合题意B.1到原点的距离是1个长度单位不符合题意C. 1.5-到原点的距离是1.5个长度单位不符合题意D.3-到原点的距离是3个长度单位符合题意∴在数轴上所对应的点与原点的距离最远的点表示的数是3-.故选:D.【变式训练2】数轴上表示数为a和4a-的点到原点的距离相等则a的值为() A.2-B.2C.4D.不存在【解答】解:由题意知:a与4a-互为相反数40a a∴+-=解得:2a=.故选:B.【变式训练3】如图A B C D E为某未标出原点的数轴上的五个点且AB BC CD DE===则点C所表示的数是()A.2B.7C.11D.12【解答】解:17(3)20AE=--=又AB BC CD DE===AB BC CD DE AE+++=154DE AE ∴== D ∴表示的数是17512-= C 表示的数是17527-⨯=故选:B . 数轴上的应用【例9】如图 点O 为数轴的原点 点A B 均在数轴上 点B 在点A 的右侧 点A 表示的数是5-65AB OA =.(1)求点B 表示的数(2)将点B 在数轴上平移3个单位 得到点C 点M 是AC 的中点 求点M 表示的数.【解答】解:(1)65AB OA = 5OA =6AB ∴=651BO AB AO ∴=-=-=则点B 表示的数是1(2)当点B 向左平移时 3CB =∴点C 表示的数是2-点M 是AC 的中点∴点M 表示的数是5(2)3.52-+-=- 当点B 向右平移时 3CB =C ∴表示的数是4点M 是AC 的中点M ∴表示的数是54122-+=- 所以点M 表示的数是 3.5-或12-.【变式训练1】在今年720特大洪水自然灾害中 一辆物资配送车从仓库O 出发 向东走了4千米到达学校A 又继续走了1千米到达学校B .然后向西走了9千米到达学校C 最后回到仓库O .解决下列问题:(1)以仓库O 为原点 以向东为正方向 用1个单位长度表示1千米 画出数轴.并在数轴上表示A BC 的位置(2)结合数轴计算:学校C 在学校A 的什么方向 距学校A 多远?(3)若该配送车每千米耗油0.1升 在这次运送物资回仓的过程中共耗油多少升? 【解答】解:(1)如图(2)4(4)8--=(千米)答:学校C 在学校A 的西边 距学校8A 千米 (3)419418+++=(千米)180.1 1.8⨯=(升)答:共耗油1.8升.【变式训练2】出租车司机小刘某天上午营运全是在南北走向的某条大街上进行的 如果规定向北为正 向南为负 他这天上午的行程是(单位:千米):12+ 8- 10+ 13- 10+ 12- 6+ 15- 11+14-.(1)将最后一名乘客送达目的地时 小张距上午出发点的距离是多少千米?在出发点的什么方向? (2)若汽车耗油量为0.6升/千米 出车时 邮箱有油67.4升 若小张将最后一名乘客送达目的地 再返回出发地 问小张今天下午是否需要加油?若要加油至少需要加多少才能返回出发地?若不用加油 请说明理由.【解答】解:(1)(12)(8)(10)(13)(10)(12)(6)(15)(11)(14)13++-+++-+++-+++-+++-=-(千米). 答:小张距上午出发点的距离是13千米 在出发点的南方 (2)(12810131012615111413)0.674.4++++++++++⨯=(升)74.467.47-=(升)答:需要加油 要加7升油.【变式训练3】如图 已知数轴上点O 是原点 点A 表示的有理数是2- 点B 在数轴上 且满足3OB OA =.(1)求出点B 表示的有理数(2)若点C 是线段AB 的中点 请直接写出点C 表示的有理数. 【解答】解:(1)3OB OA = 2AO =326OB ∴=⨯=当点B 在点A 的左侧时 点B 表示的数为6- 当点B 在点A 的右侧时 点B 表示的数为6 综上 点B 表示的有理数是6±.(2)当点B 在点A 的左侧时 点C 表示的有理数为:|6(2)|22242-----=--=- 当点B 在点A 的右侧时|6(2)|222---=故点C 表示的有理数为4-或【例10】2022的相反数是( ) A .2022-B .2022C .12022D .12022-【解答】解:2022的相反数是2022-. 故选:A .【变式训练1】23-的相反数是( )A .32-B .32C .23 D .23-【解答】解:23-的相反数是:23.故选:C .【变式训练2】相反数等于它本身的数是( ) A .1B .0C .1-D .0或1±【解答】解:相反数等于它本身的数是 故选:B .【变式训练3】一个数的相反数是最大的负整数 则这个数为( ) A .1- B .0C .1D .不存在这样的数【解答】解:最大的负整数是1- 根据概念 (1-的相反数)(1)0+-= 则1-的相反数是1 故选:C .【例11】若1x -与2y -互为相反数 则2022()x y -= . 【解答】解:1x -与2y -互为相反数 120x y ∴-+-= 1x y ∴-=-∴原式2022(1)1=-=.故答案为:【变式训练1】若m n 为相反数 则(2021)m n +-+为 2021- . 【解答】解:m n 为相反数0m n ∴+=(2021)(2021)2021m n m n ∴+-+=++-=-.故答案为:2021-.【变式训练2】若a b 互为相反数 则(2)a b --的值为 2- . 【解答】解:因为a b 互为相反数 所以0a b +=所以(2)22022a b a b a b --=-+=+-=-=-. 故答案为:2-.【变式训练3】若a b 互为相反数 则(4)a b +-的值为 4- . 【解答】解:由题意得:0a b +=. (4)4044a b a b ∴+-=+-=-=-.故答案为:4-.相反数与数轴【例12】数轴上点A 表示3- B C 两点所表示的数互为相反数 且点B 到点A 的距离为 3 则点C 所表示的数应是 .【解答】解:设B 点表示的数是x |(3)|3BA x =--=解得0x =或6x =-∴点B 表示0或6-由B C 两点所表示的数互为相反数 得C 点表示的数是0或6故答案为:0或【变式训练1】如图 数轴上表示数2的相反数的点是( )A .点NB .点MC .点QD .点P【解答】解:2的相反数是2- 点N 表示2-∴数轴上表示数2的相反数的点是点N .故选:A .【变式训练2】已知数轴上A B 两点间的距离是6 它们分别表示的两个数a b 互为相反数()a b > 那么a = b = . 【解答】解:a b 互为相反数 ||||a b ∴=A B 两点间的距离是6||||3a b ∴==a b > 3a ∴= 3b =-.故答案为:3 3-.【变式训练3】一个数在数轴上表示的点距原点3个单位长度 且在原点的左边 则这个数的相反数是 .【解答】解:设此数是x 则||3x = 解得3x =±. 此数在原点左边∴此数是3- 3-的相反数是3故答案为:3绝对值的定义【例13】3-的绝对值是( )A .13-B .3C .13D .3-【解答】解:|3|3-=. 故选:B .【变式训练1】有理数2- 12- 0 32中 绝对值最大的数是( )A .2-B .12-C .0D .32【解答】解:2-的绝对值是2 12-的绝对值是12 0的绝对值是0 32的绝对值是32.312022>>> 2∴-的绝对值最大.故选A .【变式训练2】在3- 0.3 0 13这四个数中 绝对值最小的数是( ) A .3-B .0.3C .0D .13【解答】解:|3|3-= |0.3|0.3= |0|0= 11||33=100.333<<<∴绝对值最小的数是故选:C .【变式训练3】下列说法中正确的是( ) A .两个负数中 绝对值大的数就大 B .两个数中 绝对值较小的数就小 C .0没有绝对值D .绝对值相等的两个数不一定相等【解答】解:两个负数比较 绝对值越大 对应的数越小A ∴选项不合题意B 选项不合题意0的绝对值为0 C ∴选项不合题意绝对值相等的两个数可能相等 也可能互为相反数D ∴选项正确故选:D .【例14】有理数x y 在数轴上对应点如图所示:(1)在数轴上表示x - ||y (2)试把xy 0 x - ||y 这五个数从小到大用“<”号连接(3)化简:||||||x y y x y +--+. 【解答】解:(1)如图(2)根据图象 0||x y y x -<<<<(3)根据图象 0x > 0y < 且||||x y >0x y ∴+> 0y x -<||||||x y y x y ∴+--+ x y y x y =++--y =.【变式训练1】有理数a b c 在数轴上的位置如图:(1)判断正负 用“>”或“<”填空:b c - < 0 b a - 0 c a - (2)化简:||||||b c b a c a -+---.【解答】解:(1)观察数轴可知:0a b c <<<0b c ∴-< 0b a -> 0c a ->.故答案为:< > >.(2)0b c -< 0b a -> 0c a ->||||||0b c b a c a c b b a c a ∴-+---=-+--+=.【变式训练2】有理数a b c 在数轴上的位置如图(1)判断正负 用“>”或“<”填空:c b - > 0 a b + 0 a c - (2)化简:||||2||c b a b a c -++--.【解答】解:(1)由图可知 0a < 0b > 0c > 且||||||b a c <<0c b -> 0a b +< 0a c -<故答案为:> < <(2)原式[()][2()]c b a b a c =-+-+---22c b a b a c =---+- 2a b c =--.【变式训练3】已知a b c 三个数在数轴上对应点如图 其中O 为原点 化简|||2|||||b a a b a c c ---+--.【解答】解:根据数轴可得0c b a <<<|||2|||||(2)()20b a a b a c c a b a b a c c a b a b a c c ∴---+--=---+---=--++-+=.【例15】若|3||5|0x y ++-= 那么的值是多少? 【解答】解:由题意得 30x += 50y -= 解得3x =- 5y = 所以 352x y +=-+= 答:x y +的值是【变式训练1】已知|3||5|0a b -++= 求: (1)a b +的值 (2)||||a b +的值.【解答】解:|3||5|0a b -++=30a ∴-= 50b += 3a ∴= 5b =-(1)3(5)2a b +=+-=- (2)|||||3||5|358a b +=+-=+=.【变式训练2】如果|3|a -与|5|b +互为相反数 求a b -的值. 【解答】解:|3|a -与|5|b +互为相反数|3||5|0a b ∴-++=又|3|0a - |5|0b +30a ∴-= 50b +=解得3a = 5b =-3(5)358a b ∴-=--=+=.【变式训练3】已知|2||2|0x y x -+-= 求20202019x y -的值.【解答】解:|2||2|0x y x -+-=20x ∴-= 20y x -=2x ∴= 1y =则202020192020220192021x y -=⨯-=.绝对值求值【例16】已知||3a = ||5b = 且a b > 求2b a -的值.【解答】解:因为||3a = ||5b =所以3a =或3- 5b =或5-.又因为a b >所以3a =或3- 5b =-①当3a = 5b =-时252311b a -=--⨯=-.②当3a =- 5b =-时252(3)1b a -=--⨯-=.综上所述:2b a -的值为11-或【变式训练1】已知||3x = ||7y =.(1)若x y < 求x y +的值(2)若0xy < 求x y -的值.【解答】解:由题意知:3x =± 7y =±(1)x y <3x ∴=± 7y =10x y ∴+=或 4(2)0xy <3x ∴= 7y =-或3x =- 7y =10x y ∴-=±1.如果向东走5米记作:“5+” 那么向西走8米记作( )A .8+B .8-C .5+D .5- 【解答】解:向东走5米记作5+米∴向西走8米记作8-米.故选:B .2.如果水库的水位高于正常水位2m 时 记作2m + 那么低于正常水位3m 时 应记作( )A .3+ mB .3- mC .13+ mD .13- m 【解答】解:如果水库的水位高于正常水位2m 时 记作2m + 那么低于正常水位3m 时 应记作3m -. 故选:B .3.下面两个数互为相反数的是( )A .3-和(3)-+B .|2|-和|2|C .712和127D .14和0.25- 【解答】解:A (3)3-+=- 所以两数相等 不合题意B |2|2-= |2|2= 所以两数相等 不合题意C 712127不互为相反数 不合题意 D10.254= 所以互为相反数 符合题意. 故选:D .4.在0.2 (5)-- 1|2|2-- 15% 0 35(1)⨯- 22- 2(2)--这八个数中 非负数有( ) A .4个 B .5个 C .6个 D .7个【解答】解:0.20> (5)0--> 15%0> 00=是非负数故选:A .5.在一次数学活动课上 某数学老师在4张同样的纸片上各写了一个正整数 从中随机取2张 并将它们上面的数相加 重复这样做 每次所得的和都是5 6 7 8中的一个数 并且这4个数都能取到 根据以上信息 下列判断正确的是( )A .四个正整数中最小的是1B .四个正整数中最大的是8C .四个正整数中有两个是2D .四个正整数中一定有3【解答】解:相加得5的两个整数可能为:1 4或2 3.相加得6的两个整数可能为:1 5或2 4或3 3.相加得7的两个整数可能为:1 6或2 5或3 4.相加得8的两个整数可能为:1 7或2 6或3 5或4 4.每次所得两个整数和最小是5∴最小两个数字为2 3每次所得两个整数和最大是8∴最大数字为4或5当最大数字为4的时四个整数分别为2 3 4 4.当最大数字为5时四个整数分别为2 3 3 5.∴四个正整数中一定有3.故选:D.6.点M N P和原点O在数轴上的位置如图所示点M N P表示的有理数为a b c(对应顺序暂不确定).如果0>那么表示数c的点为()+>ab acbc<0b cA.点M B.点N C.点P D.点O【解答】解:0bc<∴c异号b+>b c所以M表示b c中的负数P表示其中的正数所以M表示数c.这样也符合条件ab ac>故选:A.7.一辆货车从超市出发向东走了3km到达小彬家继续向东走了1.5km到达小颖家然后向西走了9.5km到达小明家最后回到超市.小明家距小彬家()km.A.4.5B.6.5C.8D.13.5【解答】解:由题意画图如下:∴小明家距小彬家9.5 1.58()km -=故选:C .8.下列各组数中 互为相反数的是( )A .43和34-B .13和0.333-C .14和4D .a 和a -【解答】解:A 43和34- 虽然符号相反 但是绝对值不相等 所以它们不是相反数 故A 错误 B13和0.333- 符号相反 但绝对值不相等 所以它们不是相反数 故B 错误 C 14和4 符号相同 所以它们不是相反数 故C 错误 D a 和a - 符号相反 绝对值相等 所以它们互为相反数 故D 正确.故选:D .9.在现代生活中 手机微信支付已经成为一种新型的支付方式.如果微信零钱收入100元记为100+元 那么微信零钱支出36元记为 36-元 .【解答】解:如果微信零钱收入100元记为100+元 那么微信零钱支出36元记为36-元.故答案为:36-元.10.温度升高1C ︒记为1C ︒+ 气温下降9C ︒记为 9C ︒- 【解答】解:温度升高1C ︒记为1C ︒+∴气温下降9C ︒记为:9C ︒-.故答案为:9C ︒-.11.把25%化成小数是 0.25 .【解答】解:把25%化成小数是:0.25故答案为:0.25.12.定义:对于任意两个有理数a b 可以组成一个有理数对(,)a b 我们规定(,)1a b a b =+-.例如(2,5)2512-=-+-=.根据上述规定解决下列问题:(1)有理数对(2,1)-= 0(2)当满足等式(5,32)5x m -+=的x 是正整数时 则m 的正整数值为 .【解答】解:(1)根据题中的新定义得:原式2(1)1110=+--=-=.故答案为:0(2)已知等式化简得:53215x m -++-= 解得:1123m x -= 由x m 都是正整数 得到1129m -=或1123m -=解得:1m =或4.故答案为:1或4.13.测量一幢楼的高度 七次测得的数据分别是:79.8m 80.6m 80.4m 79.1m 80.3m 79.3m 80.5m .(1)以80为标准 用正数表示超出部分 用负数表示不足部分 写出七次测得数据对应的数(2)求这七次测量的平均值(3)写出最接近平均值的测量数据 并说明理由.【解答】解:(1)若以80为标准 用正数表示超出部分 用负数表示不足部分 他们对应的数分别是: 0.2- 0.6+ 0.4+ 0.9- 0.3+ 0.7- 0.5+(2)80(0.20.60.40.90.30.70.5)780()m +-++-+-+÷=答:这七次测量的平均值是80m .(3)参考(1)可得:因为|0.2|0.2-= 在七次测得数据中绝对值最小所以绝对值最接近80m 的测量数据为79.8m答:最接近平均值的测量数据为79.8m .14.暴雨天气 交通事故频发 一辆警车从位于一条南北走向的主干道上的某交警大队出发 一整天都在这条主干道上执勤和处理事故 如果规定向北行驶为正 这辆警车这天处理交通事故行车的里程(单位:千米)如下:4+ 5- 2- 3- 6+ 3- 2- 7+ 1+ 7- 请问:(1)第几个交通事故刚好发生在某交警大队门口?(2)当交警车辆处理完最后一个事故时 该车辆在哪个位置?(3)如果警车的耗油量为每百千米12升 那么这一天该警车从出发值勤到回到交警大队共耗油多少升?【解答】解:(1)(4)(5)(2)(3)(6)0++-+-+-++=∴第5个交通事故刚好发生在某交警大队门口(2)(4)(5)(2)(3)(6)(3)(2)(7)(1)(7)4++-+-+-+++-+-+++++-=-∴当交警车辆处理完最后一个事故时 该车辆在交警大队南边4千米的位置(3)12(|4||5||2||3||6||3||2||7||1||7||4|) 5.28100++-+-+-+++-+-+++++-+-⨯=(升) 答:这一天该警车从出发值勤到回到交警大队共耗油5.28升.15.已知下列各数:5-13 4 0 1.5- 5 133 12-.把上述各数填在相应的集合里: 正有理数集合:{ 13 4 5 133}⋯ 负有理数集合:{ }⋯分数集合:{ }⋯.【解答】解:大于0的有理数称为正有理数 ∴正有理数有13 4 5 133小于0的有理数称为负有理数∴负有理数有5- 1.5- 12- 正分数和负分数都是分数 且小数也是分数 ∴分数有131.5- 133 12-. 故答案为134 5 133 5- 1.5- 12- 13 1.5- 133 12-.。

人教版七年级数学上册 有理数单元复习练习(Word版 含答案)

人教版七年级数学上册 有理数单元复习练习(Word版 含答案)

一、初一数学有理数解答题压轴题精选(难)1.如图,已知数轴上有A、B两点(点A在点B的左侧),且两点距离为8个单位长度,动点P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.(1)图中如果点A、B表示的数是互为相反数,那么点A表示的数是________;(2)当t=3秒时,点A与点P之间的距离是________个长度单位;(3)当点A表示的数是-3时,用含t的代数式表示点P表示的数;(4)若点P到点A的距离是点P到点B的距离的2倍,请直接写出t的值.【答案】(1)-4(2)6(3)解:当点A为-3时,点P表示的数是-3+2t;(4)解:当点P在线段AB上时,AP=2PB,即2t=2(8−2t),解得,t=,当点P在线段AB的延长线上时,AP=2PB,即2t=2(2t−8),解得,t=8,∴当t=或8秒时,点P到A的距离是点P到B的距离的2倍.【解析】【解答】解:(1)设点A表示的数是a,点B表示的数是b,则|a|+|b|=8,又|a|=|b|,∴|a|=4,∴a=−4,则点A表示的数是−4;( 2 )∵P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,∴当t=3秒时,点A与点P之间的距离为6个单位长度;【分析】(1)设点A表示的数是a,点B表示的数是b,两点间的距离是8及互为相反数的两个数分别位于原点的两侧,到原点的距离相等即可判断得出答案;(2)根据路程等于速度乘以时间即可得出答案;(3)由点A表示的数结合AP的长度,即可得出点P表示的数;(4)分当点P在线段AB上时,AP=2t,BP=(8-2t),根据AP=2PB 列出方程,求解即可;当点P在线段AB的延长线上时,AP=2t,BP=(2t-8),根据 AP=2PB 列出方程,求解即可,综上所述即可得出答案.2.列方程解应用题如图,在数轴上的点A表示,点B表示5,若有两只电子蜗牛甲、乙分别从A、B两点同时出发,保持匀速运动,甲的平均速度为2单位长度秒,乙的平均速度为1单位长度秒请问:(1)两只蜗牛相向而行,经过________秒相遇,此时对应点上的数是________.(2)两只蜗牛都向正方向而行,经过多少秒后蜗牛甲能追上蜗牛乙?【答案】(1)3;2(2)解:设两只蜗牛都向正方向而行,经过y秒后蜗牛甲能追上蜗牛乙,依题意有,解得.答:两只蜗牛都向正方向而行,经过9秒后蜗牛甲能追上蜗牛乙【解析】【解答】解:(1)设两只蜗牛相向而行,经过x秒相遇,依题意有,解得..答:两只蜗牛相向而行,经过3秒相遇,此时对应点上的数是2.【分析】(1)可设两只蜗牛相向而行,经过x秒相遇,根据等量关系:两只蜗牛的速度和时间,列出方程求解即可;(2)可设两只蜗牛都向正方向而行,经过y秒后蜗牛甲能追上蜗牛乙,根据等量关系:两只蜗牛的速度差时间,列出方程求解即可.3.已知A、B、C三点在数轴上的位置如图所示,它们表示的数分别是a、b、c(1)填空:abc________0,a+b________ac,ab-ac________0;(填“>”,“=”或“<”)(2)若|a|=2,且点B到点A、C的距离相等① 当b2=16时,求c的值② 求b、c之间的数量关系③ P是数轴上B,C两点之间的一个动点设点P表示的数为x.当P点在运动过程中,bx+cx+|x-c|-10|x+a|的值保持不变,求b的值【答案】(1)<;>;>(2)解:① 且 , ,且 , .∵点B到点A,C的距离相等,∴∴ ,∴②∵ , ∴ ,③依题意,得∴原式=∵∴原式= 【此处不取-2没关系】∵当 P 点在运动过程中,原式的值保持不变,即原式的值与无关∴ ,∴【解析】【解答】解:(1)由题中的数轴可知,a<0<b<c,且∴abc<0,a+b>ac,ab-ac>0,故答案为:<,>,>;【分析】(1)根据数轴上的点所表示的数的特点得出a<0<b<c,且,从而根据有理数的乘法法则,加法法则、减法法则及有理数大小的比较方法即可一一判断得出答案;(2)①根据数轴上点的位置及绝对值的意义、有理数的乘方确定a、b的取值,进而根据点B到点A,C的距离相等,即即可求解;②根据数轴上两个点之间的距离及点B到点A,C的距离相等,即,即可得结论;③根据绝对值的意义把算式化简,再根据当P点在运动过程中,原式的值保持不变,即原式的值与无关列出方程,求解即可.4.点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数轴,根据数形结合思想,回答下列问题:(1)已知|x|=3,则x的值是________.(2)数轴上表示2和6两点之间的距离是________,数轴上表示1和﹣2的两点之间的距离为________;(3)数轴上表示x和1两点之间的距离为________,数轴上表示x和﹣3两点之间的距离为________(4)若x表示一个实数,且﹣5<x<3,化简|x﹣3|+|x+5|=________;(5)|x+3|+|x﹣4|的最小值为________,|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|+|x﹣5|的最小值为________.(6)|x+1|﹣|x﹣3|的最大值为________.【答案】(1)(2)4;3(3)|x﹣1|;|x+3|(4)8(5)7;6(6)4【解析】【解答】解:(1)∵,则;故答案为:;(2),,故答案为:4,3;(3)根据两点间距离公式可知:数轴上表示x和1两点之间的距离为:;数轴上表示x和-3两点之间的距离为:;故答案为:,;(4)x对应点在点-5和3之间时的任意一点时|x-3|+|x+5|的值都是8;故答案为:8;(5)x对应点在点-4和3之间时的任意一点,|x-3|+|x+4|的值最小是7;当x对应点是3时,|x-1|+|x-2|+|x-3|+|x-4|+|x-5|的最小值为6;故答案为:7,6;(6)当x对应点不在-1和3对应点所在的线段上,即x<-1或x>3时,|x+1|-|x-3|的最大值为4;故答案为:4.【分析】(1)根据绝对值的意义,即可得到答案;(2)(3)直接代入公式即可;(4)实质是在表示3和-5的点之间取一点,计算该点到点3和-5的距离和;(5)可知x对应点在对应-3和4的点之间时|x+3|+|x-4|的值最小;x对应点在3时,|x-1|+|x-2|+|x-3|+|x-4|+|x-5|值最小;(6)可知x对应点在表示-1和3的点所形成的线段外时,|x+1|-|x-3|的值最大.5.如图,有两条线段,AB=2(单位长度),CD=1(单位长度)在数轴上运动,点A在数轴上表示的数是-12,点D在数轴上表示的数是15.(1)点B在数轴上表示的数是________,点C在数轴上表示的数是________,线段BC的长=________;(2)若线段AB以1个单位长度/秒的速度向右匀速运动,同时线段CD以2个单位长度/秒的速度向左匀速运动.设运动时间为t秒,当BC=6(单位长度),求t的值;(3)若线段AB以1个单位长度/秒的速度向左匀速运动,同时线段CD以2个单位长度/秒的速度也向左运动.设运动时间为t秒,当0<t<24时,M为AC中点,N为BD中点,则线段MN的长为________.【答案】(1)-10;14;24(2)解:当运动时间为t秒时,点B在数轴上表示的数为t-10,点C在数轴上表示的数为14-2t,∴BC=|t-10-(14-2t)|=|3t-24|,∵BC=6,∴|3t-24|=6,解得:t1=6,t2=10.答:当BC=6(单位长度)时,t的值为6或10(3)【解析】【解答】(1)解:∵AB=2,点A在数轴上表示的数是-12,∴点B在数轴上表示的数是-10,∵CD=1,点D在数轴上表示的数是15,∴点C在数轴上表示的数是14,∴BC=14-(-10)=24,故答案为:-10;14;24( 3 )解:当运动时间为t秒时,点A在数轴上表示的数为-t-12,点B在数轴上表示的数为-t-10,点C在数轴上表示的数为14-2t,点D在数轴上表示的数为15-2t,∵0<t<24,∴点C一直在点B的右侧,∵M为AC中点,N为BD中点,∴点M在数轴上表示的数为,点N在数轴上表示的数为,∴MN= - = .故答案为:【分析】(1)根据AB、CD的长度结合点A、D在数轴上表示的数,即可找出点B、C在数轴上表示的数,再根据两点间的距离公式可求出线段BC的长度;(2)找出运动时间为t秒时,点B、C在数轴上表示的数,利用两点间的距离公式结合BC=6,即可得出关于t的含绝对值符号的一元一次方程,解之即可得出结论;(3)找出运动时间为t秒时,点A、B、C、D在数轴上表示的数,进而即可找出点M、N在数轴上表示的数,利用两点间的距离公式可求出线段MN的长.6.数轴上,,三个点对应的数分别为,,,且,到所对应的点的距离都等于7,点在点的右侧,(1)请在数轴上表示点,位置, ________, ________;(2)请用含的代数式表示 ________;(3)若点在点的左侧,且,点以每秒2个单位长度的速度沿数轴向右运动,当且点在的左侧时,求点移动的时间.【答案】(1);6(2)(3)解:点在点的左侧,且,,.设点移动的时间为秒.当点在点的左侧时,,解得:,此时点对应的数为14,在点的右侧,不合题意,舍去;当点在点的右侧且在点的左侧时,,解得:.点移动的时间为秒.【解析】【解答】(1)解:(1)根据题意得:,,,,将其表示在数轴上,如图所示.故答案为:;62)解:根据题意得:.故答案为:【分析】(1)由,到所对应的点的距离都等于7,点在点的右侧,可得出关于,的一元一次方程,解之即可得出,的值;(2)由点,对应的数,利用两点间的距离公式可找出的值;(3)由点在点的左侧及的值可得出的值,设点移动的时间为秒,分点在点的左侧和点在点的右侧且在点的左侧两种情况考虑,由,找出关于的一元一次方程,解之即可得出结论.7.阅读下列材料:我们给出如下定义:数轴上给定两点,以及一条线段,若线段的中点在线段上(点可以与点或重合),则称点与点关于线段径向对称.下图为点与点关于线段径向对称的示意图.解答下列问题:如图1,在数轴上,点为原点,点表示的数为-1,点表示的数为2.(1)①点,,分别表示的数为-3,,3,在,,三点中,________与点关于线段径向对称;②点表示的数为,若点与点关于线段径向对称,则的取值范围是________;(2)在数轴上,点,,表示的数分别是-5,-4,-3,当点以每秒1个单位长度的速度向正半轴方向移动时,线段同时以每秒3个单位长度的速度向正半轴方向移动.设移动的时间为()秒,问为何值时,线段上至少存在一点与点关于线段径向对称.【答案】(1)点C和点D;1≤x≤5(2)解:移动时间t(t>0)秒时,点H,K,L表示的数分别是-5+t,-4+3t,-3+3t,此时,线段HK的中点设为R1,表示的数为,线段HL的中点设为R2,表示的数为,当线段R1R2,在线段OM上运动时,线段KL上至少存在一点与点H关于线段OM径向对称,当R2经过点O时,2t-4=0时,t=2,当R1经过点M时,时,,所以当时,线段R1 R2在OM上运动,所以当时,线段KL上至少存在一点与点H关于线段OM径向对称.【解析】【解答】解:(1)①与点A点关于线段径向对称需要满足:这个点与A点的中点在线段OM上,点B表示的数是-3,与点A表示的-1的中点是-2,不在线段OM上,所以点B不是;点C表示的数,与点A表示的-1的中点是,在线段OM上,所以点C 是;点D表示的3与点A表示的-1的中点是1,在线段OM上,所以点D是;综上,答案为点C,点D;②结合数轴可知当点x与点A的中点落在点O与点M之间时(包括端点O与M)正确,即,解得,故答案为;【分析】(1)根据题干中给出的径向对称的定义,进行验证解答即可;(2)根据题干中给出的径向对称的定义,列出点x与点A中点的取值范围,即可求出答案;(3)用含t的代数式分别表示出点H,K,L和线段HK与线段HL的中点列式计算即可.8.观察下面的等式:回答下列问题:(1)填空:________ ;(2)已知,则的值是________;(3)设满足上面特征的等式最左边的数为,则的最大值是________,此时的等式为________ .【答案】(1)-4(2)0或-4(3)4;【解析】【解答】解:根据观察可以知道,所有的式子符合的形式,所以(1)中此时2-a=6,解得a=-4,故答案为-4;所以(2)中a=2,故2-2=0,所以x的值为0;根据绝对值的意义将原式化简可得,求得x=0或x=-4,所以x的值为0或-4;(3)根据,可知,整理得,所以,所以y的最大值为4,此时的式子是.【分析】(1)根据即可求解;(2)由(1)的规律即可求解;(3)由(1)可得进行整理,根据绝对值意义求解即可.9.如图,数轴上两点分别表示有理数-2和5,我们用来表示两点之间的距离.(1)直接写出的值=________;(2)若数轴上一点表示有理数m,则的值是________;(3)当代数式∣n +2∣+∣n -5∣的值取最小值时,写出表示n的点所在的位置;(4)若点分别以每秒2个单位长度和每秒3个单位长度的速度同时向数轴负方向运动,求经过多少秒后,点到原点的距离是点到原点的距离的2倍.【答案】(1)7(2)(3)解:n点位于线段AB上(包括A、B两点),即时有最小值7;即:(4)解:设经过x秒后点A到原点的距离是点B到原点的距离的2倍,第一种情况:2+2x=2(5-3x),解得:x=1第二种情况:2+2x=2(3x-5),解得:x=3答:经过1秒或3秒后点A到原点的距离是点B到原点的距离的2倍.【解析】【解答】解:(1)故答案为:7(2)【分析】(1)根据两点间距离公式求解即可;(2)根据两点间距离公式求解即可;(3)根据n+2和n-5以及两点间距离公式,即可得出n的取值范围;(4)设经过x秒后点A到原点的距离是点B到原点的距离的2倍,利用两点间距离公式分两种情况列出方程,求解即可.10.先阅读下列材料,再解决问题:学习数轴之后,有同学发现在数轴上到两点之间距离相等的点,可以用表示这两点表示的数来确定.如:(1)到表示数4和数10距离相等的点表示的数是7,有这样的关系7= (4+10);(2)到表示数和数距离相等的点表示的数是,有这样的关系 =.解决问题:根据上述规律完成下列各题:(1)到表示数50和数150距离相等的点表示的数是________(2)到表示数和数距离相等的点表示的数是________(3)到表示数 12和数 26距离相等的点表示的数是________(4)到表示数a和数b距离相等的点表示的数是________【答案】(1)100(2)(3)-14(4)【解析】【解答】解:(1)由题意得:到表示数50和数150距离相等的点表示的数为:(2)到表示数和数距离相等的点表示的数为:(3)到表示数 -12 和数 -26 距离相等的点表示的数为:(4)到表示数a和数b距离相等的点表示的数为: .故答案为:100,, -14,.【分析】根据题中的叙述分别表示出数轴上这些到两点之间距离相等的点,最后得出规律到两点之间距离相等的点的数等于这两点坐标之和除以2, 即x=.11.数轴上A、B两点对应的数分别是﹣4、12,线段CE在数轴上运动,点C在点E的左边,且CE=8,点F是AE的中点.(1)如图1,当线段CE运动到点C、E均在A、B之间时,若CF=1,则AB=________,AC=________,BE=________;(2)当线段CE运动到点A在C、E之间时,①设AF长为 x,用含 x 的代数式表示BE的值(结果需化简);②求BE与CF的数量关系;(3)当点C运动到数轴上表示数﹣14的位置时,动点P从点E出发,以每秒3个单位长度的速度向右运动,抵达B后,立即以原来一半速度返回,同时点Q从A出发,以每秒2个单位长度的速度向终点B运动,设它们运动的时间为t秒(t≤8),求t为何值时,P、Q 两点间的距离为1个单位长度.【答案】(1)16;6;2(2)解:∵点F是AE的中点,∴AF=EF,设AF=EF=x,∴CF=8﹣x,∴BE=16﹣2x=2(8﹣x),∴BE=2CF.故答案为① 16-2x,② BE=2CF.(3)解:①当0<t≤6时,P对应数:-6+3t,Q对应数-4+2t,,解得:t=1或3;②当6<t≤8时,P对应数, Q对应数-4+2t,,解得:或;故答案为t=1或3或或【解析】【解答】(1)数轴上A、B两点对应的数分别是-4、12,∴AB=16,∵CE=8,CF=1,∴EF=7,∵点F是AE的中点,∴AF=EF=7,,∴AC=AF﹣CF=6,BE=AB﹣AE=16﹣7×2=2,故答案为16,6,2;【分析】(1)由数轴上A、B两点对应的数分別是-4、12,可得AB的长;由CE=8,CF=1,可得EF的长,由点F是AE的中点,可得AF的长,用AB的长减去2倍的EF的长即为BE 的长;(2)设AF=FE=x,则CF=8-x,用含x的式子表示出BE,即可得出答案(3)分①当0<t≤6时;②当6<t≤8时,两种情况讨论计算即可得解12.已知有理数a,b,c在数轴上的位置如图所示:解答下列式子:(1)比较a,,c的大小(用“<”连接);(2)若,试化简等式的右边;(3)在(2)的条件下,求的值.【答案】(1)解:根据数轴上点的位置得:;(2)解:根据题意得:a+b<0,b-1<0,a-c<0,则;(3)解:根据题意得:b<0,a<0,c>0,m=-1-c,∴原式 .【解析】【分析】(1)根据数轴上点的位置判断即可;(2)由数轴可得a+b<0,b-1<0,a-c<0,然后利用绝对值的代数意义化简即可;(3)根据b<0,a<0,c>0,m=-1-c,进行计算即可.。

最新七年级上册有理数专题练习(word版

最新七年级上册有理数专题练习(word版

一、初一数学有理数解答题压轴题精选(难)1.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是________;表示-3和2两点之间的距离是________;一般地,数轴上表示数m和数n的两点之间的距离等于|m-n|.(2)如果|x+1|=3,那么x=________;(3)若|a-3|=2,|b+2|=1,且数a、b在数轴上表示的数分别是点A、点B,则A、B 两点间的最大距离是________.(4)若数轴上表示a的点位于-4与2之间,则|a+4|+|a-2=________.【答案】(1)3;5(2)2或-4(3)8(4)6【解析】【解答】解:数轴上表示4和1的两点之间的距离是:;表示和两点之间的距离是:故答案为:或或故答案为:或(3)或或当时,则两点间的最大距离是,当a=5,b=-1时,A、B两点间的距离是6,当a=1,b=-3时,A、B两点间的距离是4,当时,则两点间的最小距离是,则两点间的最大距离是,最小距离是故答案为:(4)数轴上表示a的点位于-4与2之间,则故答案为:【分析】(1)根据数轴上任意两点间的距离等于这两点所表示的数的绝对值即可算出答案;(2)根据绝对值的意义去绝对值的符号,再解方程即可;(3)根据绝对值的意义去绝对值的符号,再解方程求出a,b的值,然后分四种情况求出ab 之间的距离,再比大小即可;(4)根据数轴上的点所表示的数的特点可知-4<a<2,所以a+4>0,a-2<0,再根据绝对值的意义去绝对值符号并合并同类项即可.2.如图,在数轴上点表示的数,点表示的数,点表示的数,是最大的负整数,且满足 .(1)求,,的值;(2)若将数轴折叠,使得点与点重合,求与点重合的点对应的数;(3)点,,在数轴上同时开始运动,其中以单位每秒的速度向左运动,以单位每秒的速度向左运动,点以单位每秒的速度运动,当,相遇时,停止运动,求此时两点之间的距离.【答案】(1)解:∵是最大的负整数,∴b=-1,∵,∴a=-3,c=6(2)解:设当点与点重合时,对折点为D,则D点的坐标为(-2,0),∴此时与点重合的点对应的数是-10(3)解:由(1)和(2)可知,运动前BC=7,由题意可得,运动后,相遇时,可计算出经历的时间为7s,此时C点坐标为(-8,0),当A点向左运动时,此时C点坐标为(-24,0),可得此时两点之间的距离为16;当A点向右运动时,此时C点坐标为(18,0),可得此时两点之间的距离为26【解析】【分析】(1)根据是最大的负整数得出b=-1,根据绝对值的非负性,由两个非负数的和为0,则这两个数都为0,求出a,c的值;(2)设当点与点重合时,对折点为D,根据折叠的性质得出点D所表示的数是-2,故CD=8,在点D的左边距离点D8个单位的数就是-10,从而得出答案;(3)由(1)和(2)可知,运动前BC=7,由题意可得,运动后,相遇时,可计算出经历的时间为7s,然后根据点A向左或向右运动两种情况考虑即可得出答案.3.数轴上两点间的距离等于这两个点所对应的数的差的绝对值.例:点A、B在数轴上对应的数分别为a、b,则A、B两点间的距离表示为AB=|a﹣b|.根据以上知识解题:(1)点A在数轴上表示3,点B在数轴上表示2,那么AB=________.(2)在数轴上表示数a的点与﹣2的距离是3,那么a=________.(3)如果数轴上表示数a的点位于﹣4和2之间,那么|a+4|+|a﹣2|=________.(4)对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接写出最小值.如果没有.请说明理由.【答案】(1)1(2)1或-5(3)6(4)解:∵|a-3|+|a﹣6|表示a到3与a到6的距离的和,∴当3≤a≤6时,|a-3|+|a-6|= =3,当a>6或a<3时,|a-3|+|a﹣6|>3,∴|a-3|+|a﹣6|有最小值,最小值为3.【解析】【解答】(1)AB= =1,故答案为:1( 2 )∵数轴上表示数a的点与﹣2的距离是3,∴ =3,∴-2-a=3或-2-a=-3,解得:a=1或a=-5,故答案为:1或-5( 3 )数a位于﹣4与2之间,|a+4|+|a﹣2|表示a到-4与a到2的距离的和,∴|a+4|+|a﹣2|= =6,故答案为:6【分析】(1)根据数轴上两点间的距离等于这两个点所对应的数的差的绝对值即可算出答案;(2)根据数轴上两点间的距离等于这两个点所对应的数的差的绝对值列出方程,求解即可;(3)根据题意可知:此题其实质就是求数轴上表示数a的点到表示数字-4的点的距离与数轴上表示数a的点到表示数字2的点的距离的和,又数轴上表示数a的点位于-4与2之间,故该距离等于数轴上表示数字-4与表示数字2的点之间的距离,从而即可得出答案;(4)此题其实质就是求数轴上表示数a的点到表示数字3的点的距离与数轴上表示数a 的点到表示数字6的点的距离的和,从而分当3≤a≤6时,当a>6或a<3时三种情况考虑即可得出答案.4.如图,已知数轴上点表示的数为,是数轴上位于点左侧一点,且AB=20,动点从点出发,以每秒个单位长度的速度沿数轴向左匀速运动,设运动时间t(t>0)秒.(1)写出数轴上点表示的数________;点表示的数________(用含的代数式表示)(2)动点从点出发,以每秒个单位长度的速度沿数轴向右匀速运动,若点、同时出发,问多少秒时、之间的距离恰好等于?(3)动点从点出发,以每秒个单位长度的速度沿数轴向左匀速运动,若点、同时出发,问多少秒时、之间的距离恰好又等于?(4)若为的中点,为的中点,在点运动的过程中,线段的长度是否发生变化?若变化,请说明理由,若不变,请画出图形,并求出线段的长.【答案】(1);(2)解:若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,由题意得3t+2+5t=20,解得t=2.25;②点P、Q相遇之后,由题意得3t-2+5t=20,解得t=2.75.答:若点P、Q同时出发,2.25或2.75秒时P、Q之间的距离恰好等于2(3)解:设点P运动x秒时,P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,则5x-3x=20-2,解得:x=9;②点P、Q相遇之后,则5x-3x=20+2解得:x=11.答:若点P、Q同时出发,9或11秒时P、Q之间的距离恰好又等于2(4)解:线段MN的长度不发生变化,都等于10;理由如下:①当点P在点A、B两点之间运动时:MN=MP+NP= AP+ BP= (AP+BP)= AB= ×20=10,②当点P运动到点B的左侧时:MN=MP-NP= AP- BP= (AP-BP) AB=10,则线段MN的长度不发生变化,其值为10【解析】【解答】(1)∵点A表示的数为8,B在A点左边,AB=20,∴点B表示的数是8-20=-12,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t>0)秒,∴点P表示的数是8-5t.故答案为-12,8-5t;【分析】(1)根据已知可得B点表示的数为8-20;点P表示的数为8-5t;(2)设t秒时P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,②点P、Q相遇之后,列出方程求解即可;(3)设点P运动x秒时,P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,②点P、Q相遇之后,列出方程求解即可;(4)分①当点P 在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.5.阅读下面的材料:如图1,在数轴上A点衰示的数为a,B点表示的数为b,则点A到点B的距离记为AB.线段AB的长可以用右边的数减去左边的数表示,即AB﹣b﹣a.请用上面的知识解答下面的问题:如图2,一个点从数轴上的原点开始,先向左移动1cm到达A点,再向左移动2cm到达B 点,然后向右移动7cm到达C点,用1个单位长度表示1cm.(1)请你在数轴上表示出A.B.C三点的位置:(2)点C到点人的距离CA=________cm;若数轴上有一点D,且AD=4,则点D表示的数为________;(3)若将点A向右移动xcm,则移动后的点表示的数为________;(用代数式表示)(4)若点B以每秒2cm的速度向左移动,同时A.C点分别以每秒1cm、4cm的速度向右移动.设移动时间为t秒,试探索:CA﹣AB的值是否会随着t的变化而改变?请说明理由.【答案】(1)解:如图所示:(2)5;﹣5或3(3)﹣1+x(4)解:CA﹣AB的值不会随着t的变化而变化,理由如下:根据题意得:CA=(4+4t)﹣(﹣1+t)=5+3t,AB=(﹣1+t)﹣(﹣3﹣2t)=2+3t,∴CA﹣AB=(5+3t)﹣(2+3t)=3,∴CA﹣AB的值不会随着t的变化而变化【解析】【解答】(2)CA=4﹣(﹣1)=4+1=5(cm);设D表示的数为a,∵AD=4,∴|﹣1﹣a|=4,解得:a=﹣5或3,∴点D表示的数为﹣5或3;故答案为5,﹣5或3;( 3 )将点A向右移动xcm,则移动后的点表示的数为﹣1+x;故答案为﹣1+x;【分析】(1)根据题意容易画出图形;(2)由题意容易得出CA的长度;设D表示的数为a,由绝对值的意义容易得出结果;(3)将点A向右移动xcm,则移动后的点表示的数为-1+x;(4)表示出CA和AB,再相减即可得出结论.6.阅读材料,并回答问题如图,有一根木棒MN放置在数轴上,它的两端M、N分别落在点A、B.将木棒在数轴上水平移动,当点M移动到点B时,点N所对应的数为20,当点N移动到点A时,点M所对应的数为5.(单位:cm)由此可得,木棒长为__________cm.借助上述方法解决问题:一天,美羊羊去问村长爷爷的年龄,村长爷爷说:“我若是你现在这么大,你还要40年才出生呢,你若是我现在这么大,我已经是老寿星了,116岁了,哈哈!”美羊羊纳闷,村长爷爷到底是多少岁?(1)请你画出示意图,求出村长爷爷和美羊羊现在的年龄.(2)若羊村中的小羊均与美羊羊同岁,老羊均与村长爷爷同岁。

人教版七年级上册数学第一章《有理数》单元复习整合练(含答案)

人教版七年级上册数学第一章《有理数》单元复习整合练(含答案)

人教版七年级上册数学《有理数》单元复习整合练考点一:正负数的意义一.知识点回顾:二.典型习题1.如果收入100元记作+100元,那么支出100元记作( )A.-100元B.+100元C.-200元D.+200元2.如果电梯上升5层记为+5,那么电梯下降2层应记为( )A.+2层B.-2层C.+5层D.-5层3.大米包装袋上(10±0.1)kg的标识表示此袋大米重( )A.(9.9~10.1)kgB.10.1 kgC.9.9 kgD.10 kg4.纽约、悉尼与北京的时差如表(正数表示同一时刻比北京时间早的时数,负数表示同一时刻比北京晚的时数):当北京6月15日23时,悉尼、纽约的时间分别是( )A.6月16日1时;6月15日10时B.6月16日1时;6月14日10时C.6月15日21时;6月15日10时D.6月15日21时;6月16日12时考点二:有理数的相关概念知识点回顾:(1)绝对值为正数的有理数有两个;(2)0没有倒数;(3)倒数为本身的数有1,-1;(4)相反数为本身的数为0.典型习题1. -的相反数是( )A.6B.-6C.D.-2.-15的绝对值为()A.-15B.15C.-D.3.-的倒数是( )A.-2B.C.2D.14.-a一定是( )A.正数B.负数C.0D.以上选项都不正确5.如图,点A所表示的数的绝对值是()A.3B.-3C.D.-6.如果m是最大的负整数,n是绝对值最小的有理数,c是倒数等于它本身的自然数,那么代数式m2 019+2 020n+c2 019的值为.考点三:有理数的比较与计算知识点回顾:有理数运算的四个“注意事项”1.熟记有理数的运算顺序;2.正确运用有理数运算法则;3.灵活运用运算律;4.时刻注意符号问题.典型习题1.下列各数中,比-3小的数是( )A.-5B.-1C.0D.12.计算(-3)×9的结果等于( )A.-27B.-6C.27D.63.实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是( )A.|a|>4B.c-b>0C.ac>0D.a+c>04.计算下列各式,值最小的是( )A.2×0+1-9B.2+0×1-9C.2+0-1×9D.2+0+1-95.计算:÷= .6.计算: (1)16-(-18)+(-9)-15; (2)×24-;(3)-32+(-2)2×(-5)-|-6|.考点四:科学记数法,近似数知识点回顾:1.用科学记数法把有理数表示为“a×10n”的形式,a的条件是:1≤|a|<10;2.比较有理数a×10n和b×10m的大小,不仅要比较a和b的大小,更要比较m和n的大小.典型习题1.天文单位是天文学中计量天体之间距离的一种单位,其数值取地球与太阳之间的平均距离,即149 597 870 700 m,约为149 600 000 km.将数149 600 000用科学记数法表示为( )A.14.96×107B.1.496×107C.14.96×108D.1.496×1082. -268 000用科学记数法表示为( )A.-268×103B.-268×104C.-26.8×104D.-2.68×1053. 2020年1月至8月,沈阳市汽车产量为60万辆,其中60万用科学记数法表示为( )A.6×104B.0.6×105C.6×106D.6×1054.近似数5.0×102精确到( )A.十分位B.个位C.十位D.百位人教版七年级上册数学《有理数》单元复习整合练(解析版)考点一:正负数的意义一.知识点回顾:正负数意义的本质区别正数和负数意义的本质区别是表示具有相反意义的量,通过正(负)数表示的意义,从而确定负(正)数表示的意义.二.典型习题1.如果收入100元记作+100元,那么支出100元记作( A)A.-100元B.+100元C.-200元D.+200元2.如果电梯上升5层记为+5,那么电梯下降2层应记为( B)A.+2层B.-2层C.+5层D.-5层3.大米包装袋上(10±0.1)kg的标识表示此袋大米重( A)A.(9.9~10.1)kgB.10.1 kgC.9.9 kgD.10 kg4.纽约、悉尼与北京的时差如表(正数表示同一时刻比北京时间早的时数,负数表示同一时刻比北京晚的时数):城市悉尼纽约时差/时+2 -13当北京6月15日23时,悉尼、纽约的时间分别是( A)A.6月16日1时;6月15日10时B.6月16日1时;6月14日10时C.6月15日21时;6月15日10时D.6月15日21时;6月16日12时考点二:有理数的相关概念知识点回顾:(1)绝对值为正数的有理数有两个;(2)0没有倒数;(3)倒数为本身的数有1,-1;(4)相反数为本身的数为0.典型习题1. -的相反数是( C)A.6B.-6C.D.-2.-15的绝对值为( B )A.-15B.15C.-D.3.-的倒数是( A)A.-2B.C.2D.14.-a一定是( D)A.正数B.负数C.0D.以上选项都不正确5.如图,点A所表示的数的绝对值是(A)A.3B.-3C.D.-6.如果m是最大的负整数,n是绝对值最小的有理数,c是倒数等于它本身的自然数,那么代数式m2 019+2 020n+c2 019的值为0.考点三:有理数的比较与计算知识点回顾:有理数运算的四个“注意事项”1.熟记有理数的运算顺序;2.正确运用有理数运算法则;3.灵活运用运算律;4.时刻注意符号问题.典型习题1.下列各数中,比-3小的数是( A)A.-5B.-1C.0D.12.计算(-3)×9的结果等于( A)A.-27B.-6C.27D.63.实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是( B)A.|a|>4B.c-b>0C.ac>0D.a+c>04.计算下列各式,值最小的是( A)A.2×0+1-9B.2+0×1-9C.2+0-1×9D.2+0+1-95.计算:÷= -.6.计算: (1)16-(-18)+(-9)-15; (2)×24-;(3)-32+(-2)2×(-5)-|-6|.【解析】(1)原式=16+18-9-15=10;(2)原式=×24+×24-×24-=-4+14-9-=;(3)原式=-9+4×(-5)-6=-9-20-6=-35.考点四:科学记数法,近似数知识点回顾:1.用科学记数法把有理数表示为“a×10n”的形式,a的条件是:1≤|a|<10;典型习题1.天文单位是天文学中计量天体之间距离的一种单位,其数值取地球与太阳之间的平均距离,即149 597 870 700 m,约为149 600 000 km.将数149 600 000用科学记数法表示为( D)A.14.96×107B.1.496×107C.14.96×108D.1.496×1082. -268 000用科学记数法表示为( D)A.-268×103B.-268×104C.-26.8×104D.-2.68×1053. 2020年1月至8月,沈阳市汽车产量为60万辆,其中60万用科学记数法表示为( D)A.6×104B.0.6×105C.6×106D.6×1054.近似数5.0×102精确到( C)A.十分位B.个位C.十位D.百位。

(完整版)初一数学有理数专项练习题

(完整版)初一数学有理数专项练习题

有理数练习一、选择题(本题满分30分,每题2分)1.(2分)(2013秋•营口期末)下列说法中,正确的个数是()①一个有理数不是整数就是分数;②一个有理数不是正的,就是负的;③一个整数不是正的,就是负的;④一个分数不是正的,就是负的.A.1个B.2个C.3个D.4个2.在有理数中,绝对值等于它本身的数有()A.1个B.2个C.3个D.无穷多个3.下列说法中正确的是()A. π的相反数是-314. B. 符号不同的两个数一定是互为相反数C. 若x和y互为相反数,则x y+=0 D. 一个数的相反数一定是负数4.(2分)(2015秋•邗江区校级月考)下列正确的式子是()A.﹣|﹣|>0 B.﹣(﹣4)=﹣|﹣4| C.﹣>﹣D.﹣3.14>﹣π5.(2分)(2013秋•莱州市期中)若a+b<0,ab<0,则()A.a>0,b>0 B.a,b两数一正一负,且正数的绝对值大于负数的绝对值C.a,b两数一正一负,且负数的绝对值大于正数的绝对值D.a<0,b<06.某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg、(25±0.2)kg、(25±0.3)kg 的字样,从中任意拿出两袋,它们的质量最多相差()A.0.8kg B.0.6kg C.0.5kg D.0.4kg7.有理数a、b在数轴上的对应的位置如图所示,则()A.a+b<0 B.a+b>0 C.a﹣b=0 D.a﹣b>08.如果两个有理数的积是正数,和也是正数,那么这两个有理数()A.同号,且均为正数B.异号,且正数的绝对值比负数的绝对值大C.同号,且均为负数D.异号,且负数的绝对值比正数的绝对值大9.(2分)(2015秋•德州校级月考)如果a表示有理数,那么a+1,|a+1|,(a+1),|a|+1中肯定为正数的有()A.1个B.2个C.3个D.4个10.下列说法中正确的是()A.﹣a一定是负数 B.|a|一定是负数C.|﹣a|一定不是负数D.﹣a2一定是负数11.甲、已、丙三地的海拔高度分别为20米,﹣15米和﹣10米,那么最高的地方比最低的地方高()A.10米B.15米C.35米D.5米12.下面是小卢做的数学作业,其中算式中正确的是()①;②;③;④.A.①②B.①③C.①④D.②④13.下面说法中正确的是()A.两数之和为正,则两数均为正B.两数之和为负,则两数均为负C.两数之和为0,则这两数互为相反数D.两数之和一定大于每一个加数14.如果|a|=﹣a,下列成立的是()A.a>0 B.a<0 C.a≥0 D.a≤015.(2分)(2014秋•萧山区校级期中)如果a<2,那么|﹣1.5|+|a﹣2|等于()A.1.5﹣a B.a﹣3.5 C.a﹣0.5 D.3.5﹣a二、填空题(本题满分20分,每题2分)16.把(﹣8)+(﹣10)﹣(+9)﹣(﹣11)写成省略加号的和式是.17.数轴上点A所表示数的数是﹣18,点B到点A的距离是17,则点B所表示的数是.18.吐鲁番盆地低于海平面155米,记作﹣155m,南岳衡山高于海平面1900米,则衡山比吐鲁番盆地高m.19.一个数加上﹣12得﹣5,那么这个数为.20.﹣9,6,﹣3三个数的和比它们绝对值的和小.21.一个数的倒数的相反数是,则这个数是.22.(2分)(2012•天津模拟)+5.7的相反数与﹣7.1的绝对值的和是.23.(2分)(2016秋•灌云县月考)小明不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数的和是.24.(2分)(2013秋•象山区校级期中)若a<0,b<0,则a+b0(填“>”或“<”)三、计算题(本题满分32分)25.(8分)(2015秋•德州校级月考)比较大小,要求写出比较的过程.(1)﹣和﹣(2)﹣[﹣(﹣)]和﹣|﹣|26.(16分)(2015秋•德州校级月考)计算下列各式的值.(1)(﹣1.5)+4+2.75+(﹣5)(2)(﹣5)×(﹣3)+(﹣7)×(﹣3)+12×(﹣3)(3)[(+)+(﹣)+(﹣)]×(+60)(4)﹣39×(﹣6)四、解答题:(本题满分38分)27.(2015秋•德州校级月考)把下列各数填在相应的集合内:6,﹣3,2.5,0,﹣1,﹣|﹣9|,﹣(﹣3.15)(1)整数集合{ …} (2)分数集合{ …}(3)非负数集合{ …} (4)正有理数集合{ …}(5)负数集合{ …}.28.(6分)(2015秋•德州校级月考)在数轴上表示下列各数,并按照从小到大的顺序用“<”号连接起来.+3,﹣1,4,﹣2,|﹣0.5|,﹣(﹣1.5)29.(12分)(2015秋•德州校级月考)如图所示,一个点从数轴上的原点开始,先向右移动3单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2,已知点A,B是数轴上的点,请参照图1﹣8并思考,完成下列各题:(1)如果点A表示数﹣3,将点A向右移动7个单位长度,那么终点B表示的数是,A,B两点间的距离是;(2)如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是,A,B两点间的距离为;30.(2011春•青羊区校级期中)观察下列各式:13+23=1+8=9,而(1+2)2=9,∴13+23=(1+2)2;13+23+33=36,而(1+2+3)2=36,∴13+23+33=(1+2+3)2;13+23+33+43=100,而(1+2+3+4)2=100,∴13+23+33+43=(1+2+3+4)2;∴13+23+33+43+53=()2=.根据以上规律填空:(1)13+23+33+…+n3=()2=[ ]2.(2)猜想:113+123+133+143+153=.。

人教版七年级数学上册《有理数》专题练习-附带答案

人教版七年级数学上册《有理数》专题练习-附带答案

人教版七年级数学上册《有理数》专题练习-附带答案一、单选题1.中国人很早就开始使用负数中国古代数学著作《九章算术》的“方程”一章在世界数+元表示()学史上首次正式引入负数.如果支出100元记作100-元那么80A.支出80元B.收入80元C.支出20元D.收入20元2.若123a=-则实数a在数轴上对应的点的位置是()A.B.C.D.3.在数023-112-中是负整数的是()A.0B.2C.3-D. 1.2-4.我国倡导的“一带一路”建设将促进我国与世界一些国家的互利合作根据规划“一带一路”地区覆盖总人口为4400000000人这个数用科学记数法表示为()A.4.4×108B.4.40×108C.4.4×109D.4.4×10105.一个光点沿数轴从点A向右移动了3个单位长度到达点B若点B表示的数是2 则点A所表示的数是()A.5-B.5C.1-D.16.杨梅开始采摘啦!每筐杨梅以5千克为基准超过的千克数记为正数不足的千克数记为负数记录如图则这4筐杨梅的总质量是()A.19.7千克B.19.9千克C.20.1千克D.20.3千克7.下列各组数中互为相反数的是()A.2与0.5B.()21-与1C.1-与()21-D.2与2-8.如图是一个计算程序若输入a的值为﹣1 则输出的结果应为()A.7B.﹣5C.1D.59.实数a b c在数轴上对应的点如下图所示则下列式子中正确的是()A.ac > bc B.|a–b| = a–bC.–a <–b < c D.–a–c >–b–c10.下列各组数中互为相反数的是( )与1D.-12与1 A.-(-1)与1B.(-1)2与1C.|1|二、填空题11.−2的相反数是_______ −3的倒数是_______ 绝对值等于5的数是___________.12.用四舍五入法取近似数:2.7982≈ __________(精确到0.01).13.若︱x+3︱+︱y-4︱= 0 则x + y =__________.14.比较大小:23-______34-.15.如图小明写作业时不慎将墨水滴在数轴上墨迹盖住部分对应的整数共有_____个.16.对于有理数a 、b 定义一种新运算 规定a ☆2b a b =- 则3☆(2)-=__.17.规定图形表示运算a b c -- 图形表示运算x z y w --+.则 +=________________(直接写出答案).18.当n 为正整数时 (﹣1)2n+1+(﹣1)2n 的值是_________.19.规定一种运算:a☆b =1a b ab+-如(﹣3)☆(2)=3211(3)27-+=---⨯ 则5☆(﹣15)的值等于_____.20.某品牌汽车经过两次连续的调价 先降价10% 后又提价10% 原价10万元的汽车 现售价________万元.三、解答题21.把下列各数填在相应的集合里:24,3.5,0,,10%,,2019 2.03003000333π---,… 正分数集合:{_____________________…}负有理数集合:{____________________…} 无理数集合:{_____________________…}非负整数集合:{____________________…}22.在数轴上表示下列各数并用“>”连接起来.31 2-4 1220 -1 1.23.计算: (1)(2)(9)--- (2)011- (3)5.6( 4.8)-- (4)13(4)524--24.综合计算(1)12-(-18)+(-7)-15 (2)()127.5222.5633⎛⎫⎛⎫+-++- ⎪ ⎪⎝⎭⎝⎭(3)(-8)-(-15)+(-9)-(-12)(4)12112323⎛⎫⎛⎫⎛⎫+-+--+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭25.某检修小组乘一辆汽车沿东西走向的公路检修线路约定向东走为正某天从A地出发到收工时行走记录如下(单位:km)+3-2-12+2-5+1-1015+4+5-6+(1)收工时检修小组在A地的哪一边距A地多远?(2)若汽车每千米耗油3升已知汽车出发时邮箱里有180升汽油问收工前是否需要中途加油?若加应加多少升?若不加还剩多少升汽油?26.已知|x|=5 |y|=3.(1)若x﹣y>0 求x+y的值;(2)若xy<0 求|x﹣y|的值;27.阅读:因为一个非负数的绝对值等于它本身 负数的绝对值等于它的相反数 所以当0a ≥时a a = 当0a <时a a =- 根据以上阅读完成:()13.14π-=________.()2计算:111111111-+-+-+-+-.1...232439810928.小明早晨跑步他从自己家出发向东跑了2km到达小彬家继续向东跑了1.5km到达小红家然后又向西跑了4.5km到达学校最后又向东跑回到自己家(1)以小明家为原点向东为正方向用1个单位长度表示1km 在图中的数轴上分别用点A表示出小彬家用点B表示出小红家用点C表示出学校的位置;(2)求小彬家与学校之间的距离;(3)如果小明跑步的速度是250米/分钟那么小明跑步一共用了多长时间?参考答案1.B【分析】根据负数的意义结合相反意义的量即可得到答案.+元表示:收入80元解:如果支出100元记作100-元那么80故选B.【点拨】本题主要考查相反意义的量熟练掌握负数的意义是解题的关键.2.A【分析】首先根据a的值确定a的范围再根据a的范围确定a在数轴上的位置.解:☆123 a=-☆ 2.3a≈☆ 2.52a☆点A在数轴上的可能位置是:故选:A.【点拨】本题考查有理数与数轴解题关键是确定负数的大致范围.3.C【分析】按照负整数的概念即可选取答案.解:负整数有:-3故选:C.【点拨】本题考查有理数的分类属于基础题型4.C【分析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10 n为整数.确定n的值时要看把原数变成a时小数点移动了多少位n的绝对值与小数点移动的位数相同.当原数绝对值>1时n是正数;当原数的绝对值<1时n是负数.解:4 400 000 000=4.4×109故选C.5.A【分析】根据向右移动用加法向左移动用减法解答即可.解:点A所表示的数是-2-3=-5.故选A.【点拨】本题主要考查了数轴上的点的移动、掌握“右移动用加法向左移动用减法”成为解答本题的关键.6.C试题分析:有理数的加法:-0.1-0.3+0.2+0.3=0.1 0.1+5×4=20.1考点:有理数的加法7.C【分析】先把题目中的各数化简然后根据互为相反数的两个数的和等于零依次对各项进行判断即可.A、2+0.5=2.5≠0 不互为相反数错误B、()21120-+=≠不互为相反数错误C、()2-+-=正确110+-=≠不互为相反数错误D、2240故答案为:C.【点拨】本题主要考查相反数的概念及性质熟知其性质是解题的关键.8.B试题分析:将a=-1代入可得:×(-3)+4=-9+4=-5.考点:有理数的计算9.D【分析】先根据各点在数轴上的位置比较出其大小再对各选项进行分析即可.解:☆由图可知a<b<0<c☆A、ac<bc 故本选项错误;B、☆a<b☆a-b<0。

2019年人教版七年级数学上册《121有理数》同步练习有答案-精品推荐

2019年人教版七年级数学上册《121有理数》同步练习有答案-精品推荐

1.2.1 有理数01 基础题知识点 有理数的概念及分类知识提要:(1)正整数、0、负整数统称为整数;正分数、负分数统称为分数;整数和分数统称为有理数.(2)有理数可按正、负性质分类,也可按整数、分数分类: ①按正、负性质分类: ②按整数、分数分类:有理数⎩⎪⎨⎪⎧正有理数⎩⎪⎨⎪⎧正整数正分数0负有理数⎩⎪⎨⎪⎧负整数负分数有理数⎩⎪⎨⎪⎧整数⎩⎪⎨⎪⎧正整数0负整数分数⎩⎪⎨⎪⎧正分数负分数1.(玉林博白县期末)0是(C )A .正有理数B .负有理数C .整数D .负整数2.(北流期中)在有理数0,2,-6,-2.5中,属于负整数的是(C )A .0B .2C .-6D .-2.53.(东莞月考)既是分数又是正数的是(D )A .+2B .-413C .0D .2.34.在+1,27,0,-5,-313这几个数中,整数有(C )A .1个B .2个C .3个D .4个5.对-3.14,下面说法正确的是(B )A .是负数,不是分数B .是负数,也是分数C .是分数,不是有理数D .不是分数,是有理数6.下列说法错误的是(B )A .-2是负有理数B .0不是有理数C .25是正有理数D .-0.31是负分数7.(南宁月考)下列说法中,正确的个数是(B )①一个有理数不是整数,就是分数; ②一个有理数不是正的,就是负的; ③一个整数不是正的,就是负的; ④一个分数不是正的,就是负的.A .1B .2C .3D .48.有理数包含正有理数、负有理数和0.9.请你写出两个既是负数,又是整数的数-1,-6(答案不唯一).10.下列各数:3,-5,-12,0,2,0.97,-0.21,-6,9,23,85,1.其中正数有7个,负数有4个,正分数有2个,负分数有2个.11.把下列各数填在相应的集合里:2 016,1,-1,-2 017,0.5,110,-13,-0.75,0,20%.(1)整数集合:{2 016,1,-1,-2 017,0,…}; (2)正分数集合:{0.5,110,20%,…};(3)负分数集合:{-13,-0.75,…};(4)正数集合:{2 016,1,0.5,110,20%,…};(5)负数集合:{-1,-2 017,-13,-0.75,…}.02 中档题12.下列说法中,正确的是(A )A .正分数和负分数统称为分数B .0既是整数也是负整数C .正整数、负整数统称为整数D .正数和负数统称为有理数13.在数4.19,-56,-1,120%,29,0,-313,-0.97中,非负数有(B )A .3个B .4个C .5个D .6个14.下列说法正确的有(D )①负分数一定是负有理数;②自然数一定是正数;③3.2不是整数;④0是整数;⑤一个有理数,它不是整数就是分数.A .1个B .2个C .3个D .4个15.请按要求填出相应的2个有理数:(1)既是正数也是分数:212,34(答案不唯一);(2)既不是负数也不是分数:2,0(答案不唯一); (3)既不是分数也不是非负数:-3,-4(答案不唯一);(4)①是负数;②是整数;③能被2、3、5整除:-30,-60(答案不唯一).16.把下面的有理数填在相应的集合里:15,-38,0,-30,0.15,-128,225,+20,-2.6.(1)非负数集合:{15,0,0.15,225,+20,…};(2)负数集合:{-38,-30,-128,-2.6,…};(3)正整数集合:{15,+20,…}; (4)负分数集合:{-38,-2.6,…}.17.在下表适当的空格里打上“√”号.18.如图,两个椭圆分别表示正数集合和整数集合.请在每个椭圆内填入6个数,其中有3个数既是正数又是整数,这3个数应填在A 处(填“A”“B”或“C”),你能说出两个椭圆重叠部分表示什么数的集合吗?解:答案不唯一,如图.两个椭圆重叠部分表示正整数集合.03综合题19.观察下面一列数:1,-2,3,-4,5,-6,7,-8,9,…(1)请写出这一列数中的第100个数和2 017个数;(2)在前2 017个数中,正数和负数分别有多少个?(3)2 016和-2 016是否都在这一列数中,若在,请分别指出它们在第几个数?若不在,请说明理由.解:(1)第100个数是-100,第2 017个数是2 017.(2)在前2 017个数中,正数有1 009个,负数有1 008个.(3)2 016不在这一列数中,因为这列数的奇数是正数,偶数是负数.-2 016在这一列数中,是第2 016个数.。

(整理)七级数学有理数的运算(有理数及其运算)基础练习

(整理)七级数学有理数的运算(有理数及其运算)基础练习

七年级数学有理数的运算(有理数及其运算)基础练习试卷简介:全卷共两个大题,第一题是计算,19道,每题5分;第二题是解答,1道,5分;满分共100分,测试时间25分钟。

本套试卷立足基础,主要考察了学生对有理数运算法则及运算律的的掌握。

有些题目计算起来有点难度,学生在做题过程中可以回顾本章知识点,认清自己对知识的掌握及灵活运用程度。

学习建议:本讲主要内容是有理数的运算,是代数分支的基础,在中考时常以填空题或计算题的形式出现,内容比较简单,但需牢记运算法则及运算律,并且计算时一定要认真仔细,务必保证结果正确。

本章题目灵活多变,但万变不离其宗,只要掌握最基本的运算法则和运算律,再多加练习,就能轻松掌握。

一、计算题(共19道,每道5分)1.2.(-2×3)23.-32×234.5.6.7.8.-7×6×(-2)9.36+37+38+39+40-(-41)-(-42)-(-43)-(-44)10.(-41)+(+28)+(-59)+(+72)11.(-3)-(+4)+(-19)-(-11)12.(―8)―(―3)13.14.15.-1-[(1-0.7)×]×[3-(-2)2]16.||17.(-56)×(-32)+(-44)×3218.(-2)2×(-1)3-3×[-1-(-2)]19.[0-(-3)]×(-6)-12÷[(-3)+(-8)÷6]二、解答题(共1道,每道5分)1.某粮站在一个星期内共收五次麦子,每次收购数分别是6吨,3.5吨,4吨,5吨和2.5吨.同时在这一周内该粮站又分别运往广州15吨,上海10吨,北京12吨.请问该粮站在一周内是存粮还是从仓库中运出粮食?七年级数学暑期预习领先班(七年级上册知识系统梳理+完美衔接、领先一步) 东区总校:郑州市文化路与黄河路交叉口中孚大厦7楼B室电话:65335902 西区总校:郑州市陇海路与桐柏路交叉口凯旋门大厦B座405室电话:68856662。

人教版七年级数学上册《有理数的概念》专题训练-附带答案

人教版七年级数学上册《有理数的概念》专题训练-附带答案

人教版七年级数学上册《有理数的概念》专题训练-附带答案知识点一:有理数1.(2021秋•江阴市校级月考)把下列各数填在相应的大括号里:π2﹣2 −123.020020002 0227﹣(﹣3) 0.333整数集合:{ …}; 分数集合:{ …}; 有理数集合:{ …}; 无理数集合:{ …}.思路引领:根据实数的分类 即可解答. 解:整数集合:{﹣2 0 ﹣(﹣3)…}; 分数集合:{−122270.333…};有理数集合:{﹣2 −12227﹣(﹣3) 0.333…};无理数集合:{π23.020020002……}; 故答案为:﹣2 0 ﹣(﹣3); −122270.333;﹣2 −12227﹣(﹣3) 0.333;π23.020020002….解题秘籍:本题考查了实数 熟练掌握实数的分类是解题的关键. 2.(2019秋•天山区校级期中)下列说法中不正确的是( ) A .最小的自然数是1 B .最大的负整数是﹣1 C .没有最大的正整数D .没有最小的负整数思路引领:根据自然数、负整数、正整数的相关意义判断即可. 解:A 、最小的自然数是0 说法错误 故本选项符合题意; B 、最大的负整数是﹣1 说法正确 故本选项不符合题意; C 、没有最大的正整数 说法正确 故本选项不符合题意; D 、没有最小的负整数 说法正确 故本选项不符合题意. 故选:A .解题秘籍:本题主要考查自然数、负整数、正整数的定义 学生要做好这类题必须对其定义理解透彻.3.(2021秋•靖江市期中)下列说法中 正确的是( )A .正有理数和负有理数统称有理数B .正分数、零、负分数统称分数C .零不是自然数 但它是有理数D .一个有理数不是整数就是分数 思路引领:根据有理数分类判断即可.解:A .正有理数 零和负有理数统称有理数 故本选项不合题意; B .正分数和负分数统称分数 故本选项不合题意; C .零是自然数 也是有理数 故本选项不合题意;D .一个有理数不是整数就是分数 说法正确 故本选项符合题意. 故选:D .解题秘籍:本题考查了有理数 整数和分数统称有理数;有理数也可以分为正有理数、0和负有理数. 4.数0.3⋅21⋅−π3124﹣|﹣5| ﹣0.5中 分数有 个.思路引领:按照有理数的分类填写: 有理数{整数{正整数0负整数分数{正分数负分数 注意化简后加以判断.解:分数包括小数和无限循环小数 所以0.3⋅21⋅、﹣0.5是分数.答案:2.解题秘籍:注意先化简 再判断是整数还是分数.考查分数的定义和对分数的认识 注意分数与整数的区别.知识点二:数轴1.(2022•玉林模拟)如图所示的图形为四位同学画的数轴 其中正确的是( ) A .B .C .D .思路引领:根据数轴的概念判断所给出的四个数轴哪个正确. 解:A ﹣1、﹣2位置错误 故此选项错误 不符合题意; B 、单位长度不统一 没有正方向 故此选项错误 不符合题意; C 、没有正方向 数字顺序也有问题 故此选项错误; D 、符合数轴三要素 故此选项正确.故选:D.解题秘籍:本题主要考查了数轴的概念:规定了原点、正方向和单位长度的直线叫数轴.特别注意数轴的三要素缺一不可.2.(1)在数轴上到原点距离等于2的点所表示的数是;(2)在数轴上将点A向右移动5个单位长度再向左移动1个单位长度终点恰好是原点则点A表示的数是;(3)点A在数轴上距原点5个单位长度将A点先向左移动2个单位长度再向右移动6个单位长度此时A点所表示的数是.思路引领:(1)在数轴上到原点距离等于2的点有两个这两个点所表示的数互为相反数;(2)(3)根据数轴上的平移规律:左减右加进行计算即可.解:(1)在数轴上到原点距离等于2的点所表示的数是±2;故答案为:±2;(2)在数轴上将点A向右移动5个单位长度再向左移动1个单位长度终点恰好是原点则点A表示的数是0+1﹣5=﹣4;故答案为:﹣4;(3)当点A表示5时5﹣2+6=9当点A表示﹣5时﹣5﹣2+6=﹣1∴点A在数轴上距原点5个单位长度将A点先向左移动2个单位长度再向右移动6个单位长度此时A点所表示的数是﹣1或9.故答案为:﹣1或9.解题秘籍:本题考查了有理数的加减混合运算、数轴的定义掌握其运算法则是解决此题的关键.3.某数的绝对值小于2 在数轴上这个数表示的点到﹣0.6所表示的点的距离是1.5 则这个数是.思路引领:先求出到表示﹣0.6的点的距离是1.5的点表示的数再由绝对值小于2即可得到答案.解:在数轴上到表示﹣0.6的点的距离是1.5的点表示的数是:﹣0.6+1.5=0.9或﹣0.6﹣1.5=﹣2.1∵绝对值小于2∴符合条件的点表示的数是0.9故答案为:0.9.解题秘籍:本题考查数轴上的点表示的数掌握数轴上到表示﹣0.6的点的距离是1.5的点有两个是解题得关键.4.(2019秋•赵县期中)在数轴上表示下列各数并按从大到小的顺序用“>”号把这些数连接起来4 ﹣4 2.5 0 ﹣2 ﹣1.6 13−230.5.思路引领:有理数大小比较可以在数轴上找到各数从左到右依次增大进而得出答案.解:如图所示:故4>2.5>0.5>13>0>−23>−1.6>﹣2>﹣4.解题秘籍:此题主要考查了有理数大小比较的方法正确画出数轴是解题关键.5.(2021秋•泗水县校级月考)如图.A、B、C三点在数轴上A表示的数为﹣10 B表示的数为14 点C在点A与点B之间且AC=BC.(1)求A、B两点间的距离;(2)求C点对应的数;(3)甲、乙分别从A、B两点同时相向运动甲的速度是1个单位长度/s乙的速度是2个单位长度/s求相遇点D对应的数.思路引领:(1)用点B表示的数减去点A表示的数计算即可得解;(2)设点C对应的数是x然后列出方程求解即可;(3)设相遇的时间是t秒根据相遇问题列出方程求解得到x的值然后根据点A表示的数列式计算即可得解.解:(1)14﹣(﹣10)=14+10=24;(2)设点C对应的数是x则x﹣(﹣10)=14﹣x解得x=2;(3)设相遇的时间是t秒则t+2t=24解得t=8所以点D表示的数是﹣10+8=﹣2.解题秘籍:本题考查了数轴主要利用了数轴上两点间的距离的求法相遇问题的等量关系.知识点三:相反数1.(2021•元阳县模拟)若一个数的相反数是﹣7 则这个数为.思路引领:根据相反数的定义即可得出答案.解:﹣7的相反数是7故答案为:7.解题秘籍:本题考查了相反数的定义掌握只有符号不同的两个数互为相反数是解题的关键.2.(2021秋•邹城市校级月考)如果多项式2x﹣3与x+7互为相反数那么x的值是()A.−43B.43C.34D.0思路引领:根据相反数的性质列出方程求出方程的解即可得到x的值.解:根据题意得:2x﹣3+x+7=0移项合并得:3x=﹣4解得:x=−4 3.故选:A.解题秘籍:此题考查了解一元一次方程以及相反数熟练掌握相反数的性质及方程的解法是解本题的关键.3.在数轴上若点A和点B分别表示互为相反数的两个数并且这两点间的距离是12.8 则这两点所表示的数分别是.思路引领:直接利用相反数的定义进而得出答案.解:∵点A和点B分别表示互为相反数的两个数并且这两点间的距离是12.8∴这两点所表示的数分别是:﹣6.4 6.4.故答案为:﹣6.4 6.4.解题秘籍:此题主要考查了相反数的定义正确把握定义是解题关键.知识点四:绝对值1.(2022秋•射阳县月考)若|a﹣2020|+(﹣3)=10 则a=.思路引领:根据有理数的运算先求出|a﹣2020|的值再利用绝对值的意义求出a的值.解:∵|a﹣2020|+(﹣3)=10∴|a﹣2020|=13.∴a﹣2020=13或a﹣2020=﹣13.解得a=2033或2007.故答案为:2033或2007.解题秘籍:本题考查了绝对值的意义与有理数的运算正确理解绝对值的意义是解题的关键.2.(2022春•通川区期末)已知|a﹣1|+|b+2|=0 则(a+2b)(a﹣2b)=.思路引领:先根据非负数的性质求出a b的值再代入代数式进行计算即可.解:∵|a﹣1|+|b+2|=0∴a﹣1=0且b+2=0解得:a=1 b=﹣2∴(a+2b)(a﹣2b)=(1﹣4)(1+4)=﹣15.故答案为:﹣15.解题秘籍:本题考查的是非负数的性质熟知几个非负数的和为0时每一项必为0是解答此题的关键.3.(2022春•东台市期中)|x﹣2|+9有最小值为.思路引领:根据绝对值的非负性即可得出答案.解:∵|x﹣2|≥0∴|x﹣2|+9≥9∴|x﹣2|+9有最小值为9.故答案为:9.解题秘籍:本题考查了绝对值的非负性掌握|a|≥0是解题的关键.4.(2021秋•吉州区期末)|a﹣3|=5 且a在原点左侧则a=.思路引领:根据数轴上到3的距离等于5的数有两个并且在原点的左侧即可求得a.解:∵|a﹣3|=5∴a﹣3=5或﹣5∴a=8或﹣2∵a在原点左侧∴a<0∴a=﹣2.解题秘籍:本题考查了绝对值的几何意义掌握绝对值的性质是解题的关键难度不是很大.5.(2021秋•龙泉市期末)若实数a b满足|a|=2 |4﹣b|=1﹣a则a+b=.思路引领:根据绝对值的定义求出a、b的值再代入计算即可.解:∵|a|=2∴a=±2当a=2时|4﹣b|=1﹣2=﹣1 此时b不存在;当a=﹣2时|4﹣b|=3所以4﹣b=3或4﹣b=﹣3即b=1或b=7当a=﹣2 b=1时a+b=﹣1;当a=﹣2 b=7时a+b=5故答案为:﹣1或5.解题秘籍:本题考查绝对值理解绝对值的定义是正确解答的前提求出a、b的值是正确解答的关键.6.(2021秋•乳山市期末)若|a|=2 |b|=1 且a<b则a﹣3b=.思路引领:根据绝对值的意义求出a、b的值再代入计算即可.解:∵|a|=2∴a=±2∵|b|=1∴b=±1又∵a<b∴a=﹣2 b=1或a=﹣2 b=﹣1当a=﹣2 b=1时a﹣3b=﹣5;当a=﹣2 b=﹣1时a﹣3b=1故答案为:﹣5或1.解题秘籍:本题考查绝对值掌握“一个正数的绝对值等于它本身一个负数的绝对值等于它的相反数0的绝对值等于0”是正确计算的前提求出a、b的值是正确解答的关键.【课堂练习】1.(2022•睢阳区二模)若m与−(−13)互为相反数则m的值为()A.﹣3B.−13C.13D.3思路引领:先求出﹣(−13)的值再求它的相反数即可.解:﹣(−13)=13∵m与−(−13)互为相反数∴m=−1 3.故选:B.解题秘籍:本题考查了相反数掌握只有符号不同的两个数互为相反数是解题的关键.2.如果一个数的相反数是非负数那么这个数是()A.正数B.负数C.非正数D.非负数思路引领:根据只有符号不同的两个数叫做互为相反数解答. 解:∵一个数的相反数是非负数 ∴这个数是非正数. 故选:C .解题秘籍:本题考查了相反数的定义 熟记概念是解题的关键. 3.(2015秋•无锡校级月考)下列说法中正确的是( ) A .负有理数是负分数 B .﹣1是最大的负数C .正有理数和负有理数组成全体有理数D .零是整数思路引领:根据有理数和无理数的定义 以及有理数的分类进行判断. 解:A 、负有理数包括负分数和负整数 故本选项说法错误; B 、﹣1是最大的负整数 故本选项说法错误;C 、正有理数、负有理数和0组成全体有理数 故本选项说法错误;D 、正整数、负整数和零组成整数 所以零是整数 故本选项说法正确; 故选:D .解题秘籍:本题考查了有理数的分类:有理数{整数{正整数0负整数分数{正分数负分数. 4.(2014秋•资中县期中)如图 点O 、A 、B 在数轴上 分别表示数0、1.5、4.5 数轴上另有一点C 到点A 的距离为1 到点B 的距离小于3 则点C 位于( )A .点O 的左边B .点O 与点A 之间C .点B 的右边D .点A 与点B 之间思路引领:由数轴上点的位置 找出离A 距离为1的点 再由到B 的距离小于3判断即可确定出C 的位置.解:∵点O 、A 、B 在数轴上 分别表示数0、1.5、4.5 数轴上另有一点C 到点A 的距离为1 到点B 的距离小于3∴点C 表示的数为2.5 位于点A 与点B 之间 故选:D .解题秘籍:此题考查了数轴熟练掌握数轴上的点与实数之间的一一对应关系是解本题的关键.5.(2020秋•平山区校级期中)①﹣a 一定是负数;②若|a |=|b | 则a =b ;③一个有理数不是整数就是分数;④一个有理数不是正数就是负数.上述说法错误的有( ) A .1个B .2个C .3个D .4个思路引领:根据有理数的分类和有理数的有关定义解答即可. 解:①﹣a 不一定是负数 原说法错误; ②若|a |=|b | 则a =b 或a =﹣b 原说法错误; ③一个有理数不是整数就是分数 原说法正确;④一个有理数不是正数就是负数 也可能是0 原说法错误. 上述说法错误的有3个 故选:C .解题秘籍:此题考查有理数 解题的关键是根据有理数的分类和绝对值判断. 6.(2015秋•海陵区校级月考)|a |=a 则有理数a 为( ) A .正数B .负数C .正数和0D .负数和0思路引领:根据绝对值的性质可得. 解:∵|a |=a ∴a 为正数或0 故选:C .解题秘籍:本题主要考查绝对值的性质 熟练掌握绝对值性质是解题的关键. 7.(2021秋•启东市校级月考)已知a b c 为三个不等于0的数 且满足abc >0 a +b +c <0 则|a|a+|b|b+|c|c的值为 .思路引领:根据绝对值的定义解决此题. 解:∵abc >0 a +b +c <0∴a 、b 与c 中有两个负数 一个正数. 假设a <0 b <0 c >0 则|a|a+|b|b+|c|c=−a a+−b b+c c=−1+(−1)+1=−1.故答案为:﹣1.解题秘籍:本题主要考查绝对值 熟练掌握绝对值的定义是解决本题的关键.《有理数概念复习》配套作业1.下列几种说法中 正确的是( ) A .最小的自然数是1B .在一个数前面加上“﹣”号所得的数是负数C .任意有理数a 的倒数是1aD.任意有理数a的相反数是﹣a思路引领:根据自然数的定义求相反数的方法倒数的定义可得答案.解:A、最小的自然数是0 故A错误;B、在一个数前面加上“﹣”号所得的数是负数故B错误;C、0没有倒数故C错误;D、任意有理数a的相反数是﹣a故D正确;故选:D.解题秘籍:本题考查了有理数注意带符号的数不一定是负数小于零的数是负数.2.下列几种说法中不正确的()A.任意有理数a的相反数是﹣aB.在一个数前面加上“﹣”号所得的数是负数C.一个非0有理数a的倒数是1aD.最小的自然数是0思路引领:根据选项将不正确的选项举出反例即可解答本题.解:∵﹣(﹣1)=1∴在一个数前面加上“﹣”号所得的数是负数的说法是错误的;故选:B.解题秘籍:本题考查有理数解题的关键是明确负数的定义和有理数的相关知识.3.(2019秋•定襄县校级月考)一个数的绝对值等于它本身这个数是比其相反数小的数是一个数的倒数等于它本身这个数是.思路引领:根据绝对值的性质:当a是正有理数时a的绝对值是它本身a;当a是零时a的绝对值是零可得绝对值是它本身的数是非负数;根据相反数的概念可得比其相反数小的数是负数;根据倒数的概念可得一个数的倒数等于它本身这个数是±1.解:一个数的绝对值等于它本身这个数是非负数比其相反数小的数是负数一个数的倒数等于它本身这个数是±1.故答案为:非负数负数±1.解题秘籍:此题主要考查了倒数、相反数、绝对值关键是熟练掌握倒数、相反数、绝对值的概念和性质.4.在数轴上在原点左侧且离开原点5个单位长度的点表示的数是;离开原点4个单位长度的点表示的数是.思路引领:根据离开原点5个单位的点有两个再根据在原点左侧可得答案;根据离开原点4个单位长度的点有两个可得答案.解:在原点左侧且离开原点5个单位长度的点表示的数是﹣5;离开原点4个单位长度的点表示的数是±4故答案为:﹣5 ±4.解题秘籍:本题考查了数轴到原点距离相等的点有两个注意第一个点在原点的左侧只有一个数第二个点没限定位置有两个数.5.(2021•成都模拟)实数a、b、c、d在数轴上对应点的位置如图所示则这四个数中绝对值最大的数是()A.a B.b C.c D.d思路引领:根据绝对值的定义结合实数a、b、c、d在数轴上对应点的位置即可求出结果.解:由实数a、b、c、d在数轴上对应点的位置可知:4<|a|<5 1<|b|<2 0<|c|<1 |d|=4故选:A.解题秘籍:本题考查了实数大小的比较、绝对值、实数与数轴解题的关键是理解绝对值的定义利用数形结合的思想解答问题.6.(2020春•魏县期末)如果|x+1|=2 那么x=.思路引领:利用绝对值的定义求解即可.解:∵|x+1|=2∴x+1=2或x+1=﹣2 解得x=﹣3或1.故答案为:﹣3或1.解题秘籍:本题主要考查了绝对值解题的关键是熟记绝对值的定义.7.小明写作业时不慎将墨水滴在数轴上根据图中数值请你确定墨迹盖住部分的整数共有个.思路引领:根据数轴上已知整数求出墨迹盖住部分的整数个数.解:根据数轴得:墨迹盖住的整数共有0 1 2共3个.故答案为:3.解题秘籍:本题主要考查了数轴理解整数的概念能够首先结合数轴得到被覆盖的范围进一步根据整数这一条件是解题的关键.8.用长为4.5个单位长度的木条放在数轴上最多能覆盖()个整数点.A.3B.4C.5D.6思路引领:利用数轴即可作出判断.解:用长为4.5个单位长度的木条放在数轴上最多能覆盖5个整数点.故选:C.解题秘籍:本题考查了数轴数轴有直观、简捷举重若轻的优势.9.代数式|x﹣3|+|x﹣4|+|x﹣5|的最小值是.思路引领:可以用数形结合来解题:x为数轴上的一点|x﹣3|+|x﹣4|+|x﹣5|表示:点x 到数轴上的3个点(3、4、5)的距离之和进而分析得出最小值.解:当x=4时代数式|x﹣3|+|x﹣4|+|x﹣5|有最小值最小值=1+0+1=2.故代数式|x﹣3|+|x﹣4|+|x﹣5|的最小值是2.故答案为:2.解题秘籍:此题主要考查了绝对值的性质以及利用数形结合求最值问题利用已知得出当x=4时|x﹣3|+|x﹣4|+|x﹣5|能够取到最小值是解题关键.10.(2014秋•雨城区校级月考)当代数式|x﹣3|+|x+1|取最小值时相应的x的取值范围是.思路引领:|x+1|+|x﹣3|的最小值意思是x到﹣1的距离与到3的距离之和最小那么x 应在﹣1和3之间的线段上.解:由数形结合得若|x+1|+|x﹣3|取最小值那么表示x的点在﹣1和3之间的线段上所以﹣1≤x≤3.故答案为:﹣1≤x≤3.解题秘籍:本题主要考查了数轴和绝对值掌握数轴上两点间的距离=两个数之差的绝对值.11.(2012秋•滨湖区校级期中)如果把115分记作+15分那么96分的成绩记作分如此记分法甲生的成绩记作﹣9分那么他的实际成绩是分乙生的成绩记作6分那么他的实际成绩为分.思路引领:由题意可得100分为基准点从而可得出96的成绩应记为﹣4 也可得出甲生和乙生的实际成绩.解:∵把115分的成绩记为+15分∴100分为基准点故96的成绩记为﹣4分甲生的实际成绩为91分乙生的实际成绩为106分.故答案为:﹣4、91、106.解题秘籍:本题考查了正数与负数的知识解答本题的关键是找到基准点.12.(2021秋•滨州月考)绝对值不大于3.14的所有有理数之和等于;不小于﹣4而不大于3的所有整数之和等于.思路引领:根据绝对值不大于3.14的有理数互为相反数 根据互为相反数的和为零 可得答案;根据不小于﹣4而不大于3的所有整数 可得加数 根据有理数的加法 可得答案.解:绝对值不大于3.14的所有有理数之和等于0;不小于﹣4而不大于3的所有整数之和(﹣4)+(﹣3)+(﹣2)+(﹣1)+0+1+2+3=﹣4故答案为:0 ﹣4.解题秘籍:本题考查了有理数大小比较 利用不小于﹣5而不大于4的所有整数得出加数是解题关键 注意互为相反数的和为零.13.(2020秋•饶平县校级期末)已知:数轴上A 点表示+8 B 、C 两点表示的数为互为相反数 且C 到A 的距离为3 求点B 和点C 各对应什么数?思路引领:求出到A 点的距离是3的数 即求出C 点表示的数 即可得出答案. 解:∵当点C 在A 的左边时 +8﹣3=5当点C 在A 点的右边时 +8+3=11∴C 点表示的数是5或11∴当C 表示的数是5 B 点表示的数是﹣5 或 当C 表示的数是11 B 点表示的数是﹣11. 解题秘籍:本题考查了数轴 相反数的应用 关键是求出C 点表示的数.14. 如果a 、b 互为相反数 那么2016a +2016b ﹣100= .思路引领:根据互为相反数的和为0 得a +b =0 把所求的式子进行变形 再代入求得结论.解:因数a 、b 互为相反数所以a +b =0则2016a +2016b ﹣100=2016(a +b )﹣100=﹣100.故答案为:﹣100.解题秘籍:本题考查了相反数的概念 明确互为相反数的两个数相加为0 因此对所求式子进行变形是本题的关键.15.(2017秋•和平区校级月考)在下列各等式中 a 表示正数的有( )个式子. ①|a |=a ;②|a |=﹣a ;③|a |>﹣a ;④|a |≥﹣a ;⑤|a|a =1;⑥a <1a . A .4 B .3 C .2D .1 思路引领:根据绝对值的定义即可求解.解:①|a |=a 时 a 为非负数 即a 可以为0 不符合题意;②|a |=﹣a 时 a 为非正数 即a 可以为0 不符合题意;③|a |>﹣a 时 a 一定为正数 符合题意;④|a |≥﹣a 时 a 为非负数 即a 可以为0 不符合题意;⑤|a|a =1时 a 一定为正数 符合题意;⑥a <1a 时 0<a <1或a <﹣1 即a 可以为小于﹣1的负数 不符合题意.故选:C .解题秘籍:此题主要考查了绝对值 关键是熟悉如果用字母a 表示有理数 则数a 的绝对值要由字母a 本身的取值来确定:①当a 是正有理数时 a 的绝对值是它本身a ;②当a 是负有理数时 a 的绝对值是它的相反数﹣a ;③当a 是零时 a 的绝对值是零.16.(2021秋•姜堰区期中)在数轴上画出表示下列各数的点 并将这些数按照从小到大的顺序用“<”号连接起来:﹣(﹣2)、|﹣3|、0、+(﹣1)、﹣212思路引领:先根据相反数和绝对值进行计算 再在数轴上表示出各个数 再比较大小即可.解:+(﹣1)=﹣1 ﹣(﹣2)=2 |﹣3|=3−212<+(﹣1)<0<﹣(﹣2)<|﹣3|.解题秘籍:本题考查了数轴 有理数的大小比较 绝对值和相反数等知识点 能正确在数轴上表示出各个数|是解此题的关键 注意:在数轴上表示的数 右边的数总比左边的数大.17.已知a >0 b <0 且|a |<|b | 借助数轴 试把a ﹣a b ﹣b 四个数用“<”连接起来. 思路引领:根据|a |<|b | 可得b 距离原点比a 远 画出数轴后即可得出答案.解:如图所示:所以b <﹣a <a <﹣b .解题秘籍:本题考查了有理数的大小比较:在数轴上 右边的点所表示的数比左边的点表示的数要大;离原点越远 它表示的数的绝对值就越大.18.(2021秋•江都区校级月考)已知在纸面上有一数轴(如图) 折叠纸面:(1)若1表示的点与﹣1表示的点重合 则﹣2表示的点与数 表示的点重合;(2)若﹣1表示的点与5表示的点重合 回答以下问题:①6表示的点与数 表示的点重合;②若数轴上A、B两点之间的距离为11(A在B的左侧)且A、B两点经折叠后重合求A、B两点表示的数是多少?思路引领:(1)依题意可知两数关于原点对称所以可求出与﹣2重合的点;(2)①依题意若﹣1表示的点与5表示的点重合可知两数关于与2表示的点对称即可求出6表示的点的对称点;②由①条件可知A、B关于2表示的点对称即可求出答案.解:(1)∵1表示的点与﹣1表示的点重合∴﹣2表示的点与2表示的点重合.故答案为:2;(2)①∵﹣1表示的点与5表示的点重合∴6表示的点与﹣2表示的点重合.故答案为:﹣2;②∵A、B两点之间的距离为11经折叠后重合∴A、B距离对称点的距离为11÷2=5.5又∵且关于点2表示的点对称∴点A表示的数为2+5.5=7.5 点B表示的数为2﹣5.5=﹣3.5∴A应该为﹣3.5 B应该为7.5.解题秘籍:本题主要考查数轴上点的应用根据题意求出两个点的对称点是解决本题的关键.19.(2019秋•鼓楼区期中)已知数轴上两点A、B对应的数分别是6 ﹣8 M、N、P为数轴上三个动点点M从A点出发速度为每秒2个单位点N从点B出发速度为M 点的3倍点P从原点出发速度为每秒1个单位.(1)若点M向右运动同时点N向左运动求多长时间点M与点N相距54个单位?(2)若点M、N、P同时都向右运动求多长时间点P到点M N的距离相等?(3)当时间t满足t1<t≤t2时M、N两点之间N、P两点之间M、P两点之间分别有55个、44个、11个整数点请直接写出t1t2的值.思路引领:(1)由题意列出方程可求解;(2)分两种情况讨论列出方程可求解;(3)M、N、P三点之间整数点的多少可看作它们之间距离的大小M、N两点距离最大M、P两点距离最小可得出M、P两点向右运动N点向左运动结合数轴分类讨论分析即可.解:(1)设运动时间为t秒由题意可得:6+8+2t+6t=54∴t=5∴运动5秒点M 与点N 相距54个单位;(2)设运动时间为t 秒由题意可知:M 点运动到6+2t N 点运动到﹣8+6t P 点运动到t当t <1.6时 点N 在点P 左侧MP =NP∴t ﹣(﹣8+6t )=6+2t ﹣t∴6+t =8﹣5t∴t =13s ;当t >1.6时 点N 在点P 右侧MP =NP∴﹣8+6t ﹣t =6+2t ﹣t∴6+t =﹣8+5t∴t =72s∴运动13s 或72s 时点P 到点M N 的距离相等; (3)由题意可得:M 、N 、P 三点之间整数点的多少可看作它们之间距离的大小M 、N 两点距离最大 M 、P 两点距离最小 可得出M 、P 两点向右运动 N 点向左运动①如上图 当t 1=5s 时 P 在5 M 在16 N 在﹣38再往前一点 MP 之间的距离即包含11个整数点 NP 之间有44个整数点;②当N 继续以6个单位每秒的速度向左移动 P 点向右运动若N 点移动到﹣39时 此时N 、P 之间仍为44个整数点若N 点过了﹣39时 此时N 、P 之间为45 个整数点故t 2=16+5=316s ∴t 1=5s t 2=316s . 解题秘籍:本题考查了一元一次方程在数轴上的动点问题中的应用 理清题中的数量关系、数形结合 是解题的关键.。

完整版有理数专题训练

完整版有理数专题训练

有理数专题训练有理数专题训练专题一有理数的看法及其应用例1.已知a,b 互为相反数,c,d 互为倒数, x 的绝对值是2,求( a b cd )m cd 的值。

练习 :已知a、b互为相反数,c、d互为倒数,│ x│=3,求代数式a+b-cdx+x. 3的值。

牢固:已知 a 、b互为相反数, c 、d互为倒数,x 的平方等于4,试求x2 c d x a b 2010 c d 2009的值。

专题二非负数的性质例2.若x 1 ( y 2) 20 ,求x y的值练习:已知有理数满足 a 1 b 3 3c 1 0 ,求a b c 2011的值.牢固:若 x 1 与( y2) 2互为相反数,求x2015y 3的值专题三绝对值的化简例 3. 有理数a、b、c在数轴上的地址如图,试化简:|2a b| |b c| |c3a|。

练习 1. 数a, b在数轴上对应的点如右图所示,试化简a b b a b a aa0b牢固。

实数 a ,b,c 在数轴上的对应点如图,化简a cb a b a cb a 0c专题四有理数的本质应用例 4. 一辆汽车沿着一条南北方向的公路来回行驶。

某一天清早从 A 地出发,夜晚到达B地。

约定向北为正,向南为负,当天志录以下:(单位:千米)(1)问 B地在 A 地哪处,相距多少千米?(2)若汽车行驶每千米耗油 0.2 升,那么这日共耗油多少升?练习:某检修工人检修电话线路,乘车时设定前进为正,退后为负,某天自 A 的出发到收工时,所行行程为(单位:千米):4,3,22,8,2,17,3,2,12,5 , 7 ,问完工时距A地多远?若每千米耗油 4 升,问从 A 地出发到完工共耗油多少升?牢固:李老师在学校西面的南北路上从某点 A 出发来回检查学生的植树情况,设定向南的行程记为正数.向北的行程记为负数,那么李老师所行行程依次为(单位:百米):+ 12,- l0 ,+ 10,- 8,- 6,- 5,- 3.(1)求李老师最后可否回到出发点 A?( 2)李老师走开出发点 A 最远时有多少千米 ? (3)李老师共走了多少千米?专题五 有理数的混杂运算例 5.计算(1) 322121 5 (2) 121 3123 223练习: (1)3213 223(2)1412 (3)22( 4)6牢固:( 1) 322( 0.3)3( 1)2 ( 1) 2015(2) (3) ( 2)3( 2) 1343 3专题六 分类谈论思想例 6. 已知 a 3, b 4 且 b<a ,求 a 、 b 的值 .练习:已知且 ,求 m-n 的值 .m 5, n 7 m n m n牢固:已知m4, n 2 9 且 m n n m ,求 m+n 的值 .专题七 有理数的运算(裂项相消)例 7.计算:111 .........12 23 3 4201512014练习:222 .........21 33 55 720152013 牢固:111133 55 7.........201512013专题八 乘方的应用(错位相减)例 8.S1 22223 (22015)练习:S1 3 32 33 .......... . 32015牢固:S1 5 5253 (52015)准时练习1. 已知a、b互为相反数,c、d互为倒数,x2=9,求代数式a+b-cdx+x.的值32. 若x 5 2( y 3) 20 ,求(x2y)2015的值3、若是有理数a 、b、c在数轴上的地址以下列图,求ab ac b c 的值.b-1 c 0a14、某一出租车一天下午以鼓楼为出发地在东西方向营运,向东为正,向西为负,行车里程(单位:km)依先后次序记录以下:+9、 ?3 、 ?5 、 +4 、 ?8 、+6 、 ?3 、?6、 ?4 、 +10 。

人教版数学七年级上册 有理数专题练习(解析版)

人教版数学七年级上册 有理数专题练习(解析版)

一、初一数学有理数解答题压轴题精选(难)1.阅读下面的材料:点A、B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|当A、B两点中有一点在原点时,设点A在原点,如图①|AB|=|OB|=|b|=|a﹣b|当A、B两点都不在原点时,( 1 )如图②,点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|(2 )如图③,点A、B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a ﹣b|( 3 )如图④,点A、B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|综上所述,数轴上A、B两点之间的距离|AB|=|a﹣b|请用上面的知识解答下面的问题:(1)数轴上表示﹣2和﹣4的两点之间的距离是________,数轴上表示1和﹣3的两点之间的距离是________.(2)数轴上表示x和﹣1的两点A和B之间的距离是________,如果|AB|=2,那么x为________.(3)当|x+1|+|x﹣2|=5时的整数x的值________.(4)当|x+1|+|x﹣2|取最小值时,相应的x的取值范围是________.【答案】(1)2;4(2)x+1;1或-3(3)-2或3(4)-1≤ x≤2【解析】【解答】(1)数轴上表示﹣2和﹣4的两点之间的距离是|﹣2﹣(﹣4)|=2;数轴上表示1和﹣3的两点之间的距离是|1﹣(﹣3)|=4故答案为:2,4(2)数轴上x与-1的两点间的距离为|x-(-1)|=|x+1|,如果|AB|=2,则x+1=±2,解得x=1或-3;故答案为:|x+1|,1或-3(3)解方程|x+1|+|x﹣2|=5,且x为整数.当x+1>0,x-2>0,则(x+1)+(x-2)=5,解得x=3当x+1<0,x-2<0,则-(x+1)-(x-2)=5,解得x=-2当x+1与x-2异号,则等式不成立.故答案为:3或-2.( 4 )根据题意得x+1≥0且x-2≤0,则-1≤x≤2;【分析】(1)直接根据数轴上A、B两点之间的距离|AB|=|a−b|,代入数值运用绝对值的意义即可求解;(2)直接根据数轴上A、B两点之间的距离|AB|=|a−b|,列出方程,求解即可;(3)由数轴上A、B两点之间的距离|AB|=|a−b|可知,|x+1|+|x−2|表示点x到−1与2两点距离之和,由于,2与-1之间的距离是3小于5,故表示数x的点,不可能在-1与2之间,然后分数轴上表示x的点在数轴上表示数字1的点的右边及数轴上表示x的点在数轴上表示数字-2的点的左边两种情况考虑即可解决问题;(4)由数轴上A、B两点之间的距离|AB|=|a−b|可知,|x+1|+|x−2|表示点x到−1与2两点距离之和,根据两点之间线段最短即可得出x的取值范围.2.阅读下面的材料:如图1,在数轴上A点衰示的数为a,B点表示的数为b,则点A到点B的距离记为AB.线段AB的长可以用右边的数减去左边的数表示,即AB﹣b﹣a.请用上面的知识解答下面的问题:如图2,一个点从数轴上的原点开始,先向左移动1cm到达A点,再向左移动2cm到达B 点,然后向右移动7cm到达C点,用1个单位长度表示1cm.(1)请你在数轴上表示出A.B.C三点的位置:(2)点C到点人的距离CA=________cm;若数轴上有一点D,且AD=4,则点D表示的数为________;(3)若将点A向右移动xcm,则移动后的点表示的数为________;(用代数式表示)(4)若点B以每秒2cm的速度向左移动,同时A.C点分别以每秒1cm、4cm的速度向右移动.设移动时间为t秒,试探索:CA﹣AB的值是否会随着t的变化而改变?请说明理由.【答案】(1)解:如图所示:(2)5;﹣5或3(3)﹣1+x(4)解:CA﹣AB的值不会随着t的变化而变化,理由如下:根据题意得:CA=(4+4t)﹣(﹣1+t)=5+3t,AB=(﹣1+t)﹣(﹣3﹣2t)=2+3t,∴CA﹣AB=(5+3t)﹣(2+3t)=3,∴CA﹣AB的值不会随着t的变化而变化【解析】【解答】(2)CA=4﹣(﹣1)=4+1=5(cm);设D表示的数为a,∵AD=4,∴|﹣1﹣a|=4,解得:a=﹣5或3,∴点D表示的数为﹣5或3;故答案为5,﹣5或3;( 3 )将点A向右移动xcm,则移动后的点表示的数为﹣1+x;故答案为﹣1+x;【分析】(1)根据题意容易画出图形;(2)由题意容易得出CA的长度;设D表示的数为a,由绝对值的意义容易得出结果;(3)将点A向右移动xcm,则移动后的点表示的数为-1+x;(4)表示出CA和AB,再相减即可得出结论.3.如图1,A、B两点在数轴上对应的数分别为﹣12和4.(1)直接写出A、B两点之间的距离;(2)若在数轴上存在一点P,使得AP= PB,求点P表示的数.(3)如图2,现有动点P、Q,若点P从点A出发,以每秒5个单位长度的速度沿数轴向右运动,同时点Q从点B出发,以每秒2个单位长度的速度沿数轴向左运动,当点Q到达原点O后立即以每秒3个单位长度的速度沿数轴向右运动,求:当OP=4OQ时的运动时间t的值.【答案】(1)解:A、B两点之间的距离是:4﹣(﹣12)=16(2)解:设点P表示的数为x.分两种情况:①当点P在线段AB上时,∵AP= PB,∴x+12=(4﹣x),解得x=﹣8;②当点P在线段BA的延长线上时,∵AP= PB,∴﹣12﹣x=(4﹣x),解得x=﹣20.综上所述,点P表示的数为﹣8或﹣20(3)解:分两种情况:①当t≤2时,点Q从点B出发,以每秒2个单位长度的速度沿数轴向左运动,此时Q点表示的数为4﹣2t,P点表示的数为﹣12+5t,∵OP=4OQ,∴12﹣5t=4(4﹣2t),解得t=,符合题意;②当t>2时,点Q从原点O开始以每秒3个单位长度的速度沿数轴向右运动,此时Q点表示的数为3(t﹣2),P点表示的数为﹣12+5t,∵OP=4OQ,∴|12﹣5t|=4×3(t﹣2),∴12﹣5t=12t﹣24,或5t﹣12=12t﹣24,解得t=,符合题意;或t=,不符合题意舍去.综上所述,当OP=4OQ时的运动时间t的值为或秒【解析】【分析】(1)根据两点间的距离公式即可求出A、B两点之间的距离;(2)设点P表示的数为x.分两种情况:①点P在线段AB上;②点P在线段BA的延长线上.根据AP= PB列出关于x的方程,求解即可;(3)根据点Q的运动方向分两种情况:①当t≤2时,点Q从点B出发,以每秒2个单位长度的速度沿数轴向左运动;②当t>2时,点Q从原点O开始以每秒3个单位长度的速度沿数轴向右运动,根据OP=4OQ列出关于t的方程,解方程即可.4.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位,动点P 从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半;点P从点A出发的同时,点Q从点C出发,以1单位/秒的速度沿着“折线数轴”的负方向运动,当点P到达B点时,点P、Q均停止运动.设运动的时间为t秒.问:(1)用含t的代数式表示动点P在运动过程中距O点的距离;(2)P、Q两点相遇时,求出相遇时间及相遇点M所对应的数是多少?(3)是否存在P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等时?若存在,请直接写出t的取值;若不存在,请说明理由.【答案】(1)解:设动点P在运动过程中距O点的距离为S,当P从A运动到O时,所需时间为:(秒),当0≤t≤5时,S=10﹣2t,当P从O运动到B时,所需时间为:(秒)∴P从A运动到B时,所需时间为:15秒当5<t≤15时,S=t﹣5,即动点P在运动过程中距O点的距离S=;(2)解:设经过a秒,P、Q两点相遇,则点P运动的距离为10+(a-5),点Q运动的距离为a,10+(a-5)+a=28解得,a=,则点M所对应的数是:18﹣=,即点M所对应的数是;(3)解:存在,t=2或t=,理由:当0≤t≤5时,10﹣2t=(18﹣10﹣t)×1,解得,t=2当5<t≤8时,(t﹣10÷2)×1=(18﹣10﹣t)×1,解得,t=,当8<t≤15时,(t﹣10÷2)×1=[t﹣(18﹣10)÷1]×1该方程无解,故存在,t=2或t= .【解析】【分析】(1)分点P在AO上和点P在OB上两种情况,先求出点P在每段时t 的取值范围,再根据题意分别列出代数式可得答案;(2)根据相遇时P,Q运动的时间相等,P,Q运动的距离和等于28可得方程,根据解方程,可得答案;(3)分0≤t≤5,5<t≤8,8<t≤15三种情况,根据PO=BQ,可得方程,分别解出方程,可得答案.5.如图,数轴的单位长度为1.(1)如果点B,D表示的数互为相反数,那么图中点A、点D表示的数分别是________、________;(2)当点B为原点时,在数轴上是否存在点M,使得点M到点A的距离是点M到点D 的距离的2倍,若存在,请求出此时点M所表示的数;若不存在,说明理由;(3)在(2)的条件下,点A、点C分别以2个单位长度/秒和0.5个单位长度同时向右运动,同时点P从原点出发以3个单位长度/秒的速度向左运动,当点A与点C之间的距离为3个单位长度时,求点P所对应的数是多少?【答案】(1)-4;2(2)解:存在,如图:当点M在A,D之间时,设M表示的数为x,则x﹣(﹣2)=2(4﹣x)解得:x=2,当点M在A,D右侧时,则x﹣(﹣2)=2(x﹣4),解得:x=10,所以点M 所表示的数为2或10(3)解:设当点A与点C之间的距离为3个单位长度时,运动时间为t,A点运动到:﹣2+2t,C点运动到:3+0.5t,①﹣2+2t﹣(3+0.5t)=3,解得:t=6,所以P点对应运动的单位长度为:3×6=18,所以点P表示的数为﹣18.②3+0.5t﹣(﹣2+2t)=3,解得:t= ,所以P点对应运动的单位长度为:3× =4,所以点P表示的数为﹣4.答:点P表示的数为﹣18或﹣4.【解析】【解答】解:(1)∵点B,D表示的数互为相反数,∴点B为﹣2,D为2,∴点A为﹣4,故答案为:﹣4,2;【分析】(1)由数轴上表示的互为相反数的两个数,分别位于原点的两侧,并且到原点的距离相等得出BD的中点就是原点,进而即可得出点A,C所表示的数;(2)存在,如图:分类讨论:当点M在A,D之间时,设M表示的数为x ,则AM=x-(-2),DM=4-x,根据AM=2DM列出方程,求解即可;当点M在A,D右侧时,AM=x-(-2),DM=x-4,根据AM=2DM列出方程,求解即可;(3)设当点A与点C之间的距离为3个单位长度时,运动时间为t,A点运动到:﹣2+2t,C点运动到:3+0.5t,① 追击前根据两点间的距离公式列出方程3+0.5t﹣(﹣2+2t)=3 求解算出t的值,进而根据即可算出点P所表示的数;② 追击后根据两点间的距离公式列出方程﹣2+2t﹣(3+0.5t)=3求解算出t的值,进而根据即可算出点P所表示的数,综上所述即可得出答案。

【精选】七年级有理数专题练习(解析版)

【精选】七年级有理数专题练习(解析版)

(2)5;1 或-7 (3)-3+x (4)解:CA-AB 的值与 t 的值无关.理由如下:由题意得,点 A 所表示的数为-3+t,点 B 表 示的数是-4-3t,点 C 表示的数是 2+5t, ∵ 点 C 的速度比点 A 的速度快, ∴ 点 C 在点 A 的右侧,∴ CA=(2+5t)-(-3+t)=5+4t, ∵ 点 B 向左移动,点 A 向右移动, ∴ 点 A 在点 B 的右侧, ∴ AB=(-3+t)-(-4-3t)=1+4t, ∴ CA-AB=(5+4t)-(1+4t)=4. 【解析】【解答】(2)CA=2-(-3)=2+3=5; 当点 D 在点 A 右侧时,点 D 表示的数是:4+(-3)=1; 当点 D 在点 A 左侧时,点 D 表示的数是:-3-4=-7; 故答案为 5;1 或-7. ( 3 )点 A 表示的数为-3,则向右移动 xcm,移动到(-3+x)处. 【分析】(1)在数轴上进行演示可分别得出点 A,点 B,点 C 所表示的数; (2)由题中材料可知 CA 的距离可用右边的数减去左边的数,即 CA=2-(-3); 由 AD=4,且点 A,点 D 的位置不明确,则需分类讨论:当点 D 在点 A 右侧时,和当点 D 在点 A 左侧时,两种情况; (3)向右移动 x,在原数的基础上加“x”; (4)由字母 t 分别表示出点 A,点 B,点 C 的数,由它们的移动方向不难得出点 C 在点 A 的右侧,点 A 在点 B 的右侧,依此计算出 CA,AB 的长度,计算 CA-AB 的值即可.
2.阅读下面的材料:
如图 1,在数轴上 A 点表示的数为 a,B 点表示的数为 b,则点 A 到点 B 的距离记为 AB.线段 AB 的长可以用右边的数减去左边的数表示,即 AB=b-a.请用上面的知识解答下 面的问题: 如图 2,一个点从数轴上的原点开始,先向左移动 3cm 到达 A 点,再向左移动 1cm 到达 B 点,然后向右移动 6cm 到达 C 点,用 1 个单位长度表示 1cm. (1)请你在数轴上表示出 A、B、C 三点的位置: (2)点 C 到点 A 的距离 CA=________cm;若数轴上有一点 D,且 AD=4,则点 D 表示数 ________; (3)若将点 A 向右移动 xcm,则移动后的点表示的数为________;(用代数式表示); (4)若点 B 以每秒 3cm 的速度向左移动,同时 A、C 点分别以每秒 1cm、5cm 的速度向右 移动.设移动时间为 t 秒,试探索:CA-AB 的值是否会与 t 的值有关?请说明理由. 【答案】 (1)解:点 A 表示-3,点 B 表示-4,点 C 表示 2,如图所示,

初一数学有理数练习

初一数学有理数练习

初一数学有理数练习查字典数学网小编为大家整理了初一数学有理数练习,希望能对大家的学习带来协助!七年级数学有理数练习一、判别1、自然数是整数。

﹝﹞2、有理数包括正数和正数。

﹝﹞3、有理数只要正数和正数。

﹝﹞4、零是自然数。

﹝﹞5、正整数包括零和自然数。

﹝﹞6、正整数是自然数,﹝﹞7、任何分数都是有理数。

﹝﹞8、没有最大的有理数。

﹝﹞9、有最小的有理数。

﹝﹞二、填空1、某日,泰山的气温半夜12点为5℃,到早晨8点下降了6℃.那么这天早晨8 点的气温为。

2 、假设零上28度记作280C,那么零下5度记作3、假定上升 10m记作10m,那么-3m表示4、比海平面低20m的中央,它的高度记作海拔三、选择题5、在-3,-1 ,0,- ,2021各数中,是正数的有( )A、0个B、1个C、2个D、3个6、以下既不是正数又不是正数的是( )A、-1B、+3C、0.12D、07、飞机上升-30米,实践上就是( )A、上升30米B、下降30米C、下降- 30米D、先上升30米,再下降30米。

8、以下说法正确的选项是( )A、整数就是正整数和负整数B、分数包括正分数、负分数C、正有理数和负有理数组成全体有理数D、一个数不是正数就是正数。

9、以下一定是有理数的是( )A、 B、a C、a+2 D、四、把以下各数填在表示集合的相应大括号中:+6,-8,-0.4,25,0,- ,9. 15,1整数集合﹛﹜分数集合﹛﹜非正数集合﹛﹜正数集合﹛﹜正数集合﹛﹜五、解答题1 、博然的父母6月共支出4800元,可以将这笔支出记作+4800元;由于天气炎热,博然家用其中的1600元钱买了一台空调,又该怎样记载这笔支出呢?2 、周一证券买卖市场收盘时,某支股票的收盘价为18.18元,收盘时下跌了2.11元;周二到周五收盘时的价钱与前一天收盘价相比的涨跌状况及当天的收盘价与收盘价的涨跌状况如下表:单位:元日期周二周三周四周五收盘 +0.16 +0. 25 +0.78 +2.12收盘 -0.23 -1.32 -0.67 -0. 65当日收盘价试在表中填写周二到周五该股票的收盘价.3、春季某河流的河水因春雨先下跌了15cm,随后又下降了15cm.请你用适宜的方法来表示这条河流河水的变化状况.六、探求创新1、一种零件的直径尺寸在图纸上是30 (单位:mm ),它表示这种零件的规范尺寸是30mm,加工要求尺寸最大不超越( )A、0.03B、0.02C、30.03D、29.982、甲潜水员在海平面-50米作业,乙潜水员在海平面-28米作业,哪个离海平面比拟近?近多少?3、某水泥厂方案每月消费水泥1000t ,一月份实践消费了950t ,二月份实践消费了1000t ,三月份实践消费了1100t ,用正数和正数表示每月超额完成方案的吨数各是多少?参考答案:一、1、2、3、4、5、6、7、8、9、二、1、-1℃ 2、- 5度 3、下降3m 4、 20m三、5、B 6、D 7、B 8、B 9、D四、略五、1、支出4800元记作+4800元2、3略六、1、C 2、乙潜水员离海平面比拟近,近 22 米。

人教版七年级数学有理数必备练习:上册

人教版七年级数学有理数必备练习:上册

人教版七年级数学有理数必备练习:上册置信同窗们一定有着爱思索的头脑,聪明、矫捷的思想,查字典数学网小编正对初中先生整理的七年级数学有理数必备练习,希望同窗们在仔细的做题的同时也去了解其中的微妙。

1、写出三个有理数数,使它们满足:①是正数;②是整数;③能被2、3、5整除。

答:____________。

2、数轴上原点左边4.8厘米处的点表示的有理数是32,那么,数轴左边18厘米处的点表示的有理数是____________。

3、,那么a是__________数; ,那么a是_________数。

4、计算: =_________。

5、,那么 =_________。

6、________________________范围内的有理数经过四舍五入失掉的近似数3.142。

7、由书中知识,+5的相反数是–5,–5的相反数是5,那么数x的相反数是______,数–x的相反数是________;数的相反数是_________;数的相反数是____________。

8、由于到点2和点6距离相等的点表示的数是4,有这样的关系,那么到点100和到点999距离相等的数是_____________;到点距离相等的点表示的数是____________;到点m和点–n距离相等的点表示的数是________。

9、点4和点9之间的距离为5个单位,有这样的关系,那么点10和点之间的距离是____________;点m和点n(数n 比m大)之间的距离是_____________。

10、数5的相对值是5,是它的自身;数–5的相对值是5,是它的相反数;以上由定理非正数的相对值等于它自身,非正数的相对值等于它的相反数而来。

由这句话,正数–a的相对值为_______;正数–b的相对值为________;正数1+a的相对值为________,正数–a+1的相对值___________。

小编为大家提供的七年级数学有理数必备练习大家细心阅读了吗?最后祝同窗们学习提高。

冀教版七年级上册第一章有理数小专题训练

冀教版七年级上册第一章有理数小专题训练

冀教版七年级上册第一章有理数小专题训练类型一数轴综合运用1.将一把刻度尺按如下图放在数轴上〔数轴的单位长度是1cm〕,刻度尺上的〝0cm〞和〝8cm〞区分对应数轴上的﹣3.6和x,那么x的值为〔C〕A.4.2B.4.3C.4.4D.4.52.用长为4.5个单位长度的木条放在数轴上,最多能掩盖〔C〕个整数点.A.3B.4C.5D.63.如图,数轴上的点A和点B区分表示互为相反数的两个数a,b,且a<b,A,B两点间的距离为4,那么a=___,b=___.-2,24.如图,数轴上有三个点A、B、C,表示的数区分是﹣4、﹣2、3,请回答:〔1〕假定使C、B两点的距离与A、B两点的距离相等,那么需将点C向左移动个单位;〔2〕假定移动A、B、C三点中的两个点,使三个点表示的数相反,移动方法有种,其中移动所走的距离和最小的是个单位;解:〔1〕3或7;〔2〕3,7;解析:〔1〕有数轴可知:A、B两点的距离为2,B点、C点表示的数区分为:﹣2、3,所以当C、B两点的距离与A、B两点的距离相等时,需将点C向左移动3个单位或7个单位。

〔2〕有3种方法:①移动B、C,把点B向左移动2个单位长度,把C向左移动7个单位长度,移动距离之和为:2+7=9;②移动A、C,把点A向右移动2个单位长度,把C向左移动5个单位长度,移动距离之和为:2+5=7;③移动B、A,把点A向右移动7个单位长度,把B向左右移动5个单位长度,移动距离之和为:7+5=12.所以移动所走的距离和最小的是7个单位。

类型二相对值性质运用5. |a|=3,|b|=5,且a<b,求a﹣b的值.解:∵|a|=3,|b|=5,∴a=±3,b=±5.∵a<b,∴当a=3时,b=5,那么a﹣b=﹣2.当a=﹣3时,b=5,那么a﹣b=﹣8.6.假定|2x-4|与|y-3|互为相反数,求2 x-y的值.解:依据题意得,|2 x-4|+|y-3|=0,∴2 x-4=0,y-3=0,解得x=2,y=3,∴2 x-y=2×2-3=4-3=1.7.假定a,b,c都是有理数,且|a-1|+|b+2|+|c-4|=0,求a+|b|+c的值.解:∵|a-1|+|b+2|+|c-4|=0,∴|a-1|=0,|b+2|=0,|c-4|=0,∴a=1,b=-2,c=4,∴a+|b|+c=1+2+4=7.8.关于式子|x|+13,当x等于什么值时,有最小值?最小值是多少?关于式子2-|x|,当x等于什么值时,有最大值?最大值是多少?解:式子|x|+13,当x等于0时,有最小值,最小值是13;)式子2-|x|,当x等于0时,有最大值,最大值是2.类型三数轴、相反数、相对值及其综合运用9.假定|a|=4,|b|=2,且a<b,求表示数a的点与表示数b的点之间的距离.解:由|a|=4,那么a=±4,|b|=2,那么b=±2,又∵a<b,∴a=-4,b=±2.当a=-4,b=2时,两点间的距离为6,当a=-4,b=-2时,两点间的距离为2,即表示a,b两点间的距离为6或2.10.操作探求:在纸面上有一数轴〔如下图〕,操作一:〔1〕折叠纸面,使表示的1点与﹣1表示的点重合,那么﹣3表示的点与表示的点重合;操作二:〔2〕折叠纸面,使﹣1表示的点与3表示的点重合,回答以下效果:①5表示的点与数表示的点重合;②假定数轴上A、B两点之间距离为11,〔A在B的左侧〕,且A、B两点经折叠后重合,求A、B两点表示的数是多少..解:〔1〕3.〔2〕①﹣3.②由题意可得,A、B两点距离对称点的距离为11÷2=5.5,∵对称点是表示1的点,∴A、B两点表示的数区分是﹣4.5,6.5.11. 某景区一电瓶小客车接到义务从景区大门动身,向东走2千米抵达A景区,继续向东走2.5千米抵达B景区,然后又回头向西走8.5千米抵达C景区,最后回到景区大门.〔1〕以景区大门为原点,向东为正方向,以1个单位长表示1千米,树立如下图的数轴,请在数轴上表示出上述A、B、C三个景区的位置.〔2〕A景区与C景区之间的距离是多少?〔3〕假定电瓶车充足一次电能行走15千米,那么该电瓶车能否在一末尾充足电而途中不充电的状况下完成此次义务?请计算说明.解:〔1〕如图,〔2〕A景区与C景区之间的距离是:2﹣〔﹣4〕=6〔千米〕;〔3〕不能完成此次义务.理由如下:电瓶车一共走的路程为:|+2|+|2.5|+|﹣8.5|+|+4|=17〔千米〕,由于17>15,所以不能完成此次义务.12.三个有理数a,b,c在数轴上的对应点的位置如下图,其中数a,b互为相反数.试求解以下效果:〔1〕判别a,b,c的正负性;〔2〕化简|a-b|+2a+|b|.12.解:(1)a<0,b>0,c<0.(2)由于a,b互为相反数,所以b=-a.又由于a<0,b>0,所以|a-b|+2a+|b|=|2a|+2a+|b|=-2a+2a+b=b.小专题〔二〕有理数加减法的技巧运用类型一 加减混合运算的技巧一、相反数相结合1.计算:10-24-28+18+24.解:原式=(10+18-28)+(24-24)=0.2. -1.3+4.5-5.7+3.5;解:原式=(-1.3-5.7)+(4.5+3.5)=1.二、同分母相结合3.计算:1918+⎝⎛⎭⎫-534+⎝⎛⎭⎫-918-1.25. 解:原式=⎝⎛⎭⎫1918-918-⎝⎛⎭⎫534+114=10-7=3. 4. 计算:314+(-235)+534-825; 解:原式=(314+534)-(235+825)=9-11=-2. 三、计算结果成规律的数相结合5.计算1+2-3-4+5+6-7-8+…+2021+2021-2021-2021的结果是( D )A .0B .-1C .2021D .-20216. 计算:3-6+9-12+…+2021-2021+2021-2021.解:原式=3×〔1-2+3-4+…+665-666+667-668〕=3×[〔1-2〕+〔3-4〕+…+〔665-666〕+〔667-668〕]=3×〔-334〕=-1002.四、凑整法(或拆项法)7.计算:-87.21+542117-12.79+42214 解: 原式=〔-87.21-12.79〕+〔542117+42214〕=-100+97=-3 8.阅读下面的计算方法:计算:﹣565+〔﹣932〕+1721 解:原式=[〔﹣5〕+〔65〕]+[〔﹣9〕+〔﹣32〕]+〔17+21〕=[〔﹣5〕+〔﹣9〕+17]+[〔﹣65〕+〔﹣32〕+21=3+〔﹣1〕=2 下面的解法叫拆项法.请你运用这种方法计算:〔﹣202165〕﹣202132+40032. 解:〔﹣202165〕﹣202132+40032 =﹣2021﹣65﹣2021﹣32+400+32=〔﹣2021﹣2021+400〕+〔﹣65﹣32+32〕 =﹣3623﹣65 =﹣362365. 9. 计算:111125434236-+-+。

2022-2023学年度人教版七年级数学上册第一章 有理数专项练习试题(解析版)

2022-2023学年度人教版七年级数学上册第一章 有理数专项练习试题(解析版)

人教版七年级数学上册第一章 有理数专项练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分) 1、计算11001010-÷⨯,结果正确的是( ) A .1B .﹣1C .100D .﹣1002、生活中常用的十进制是用0~9这十个数字来表示数,满十进一,例:121102=⨯+,212210101102=⨯⨯+⨯+;计算机也常用十六进制来表示字符代码,它是用0~F 来表示0~15,满十六进一,它与十进制对应的数如下表:例:十六进制2B 对应十进制的数为2161143⨯+=,10C 对应十进制的数为1161601612268⨯⨯+⨯+=,那么十六进制中14E 对应十进制的数为( )A .28 B .62C .238D .3343、若||5m =,||2n =.且mn 异号,则||m n -的值为( ) A .7B .3或3-C .3D .7或3 4、小红解题时,将式子()()()8384-+-++-先变成()()()8834-++-+-⎡⎤⎡⎤⎣⎦⎣⎦再计算结果,则小红运用了( ).A .加法的交换律和结合律B .加法的交换律C .加法的结合律D .无法判断5、下列计算结果为负数的是( ) A .()2--B .2-C .()32-D .()22-6、实效m ,n 在数轴上的对应点如图所示,则下列各式子正确的是( )A .m n >B .||n m ->C .||m n ->D .||||m n <7、下表是12月份某一天古蔺县四个乡镇(街道)的平均气温:这四个乡镇(街道)中该天平均气温最低的是( ) A .大村镇B .黄荆镇C .石宝镇D .金兰街道8、数轴上表示﹣6和4的点分别是A 和B ,则线段AB 的长度是( ) A .﹣2B .2C .﹣10D .109、a 与﹣2互为倒数,那么a 等于( ) A .﹣2B .2C .﹣12D .1210、绝对值为1的实数共有( ). A .0个B .1个C .2个D .4个第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、数轴上点A 表示的有理数是5-,那么到点A 的距离为10的点表示的数是_________.2、在0.5,2,—3,—4,—5这五个数中任取两个数相除,得到的商最小是___.3、直接写出计算结果:(﹣8)×(﹣2020)×(﹣0.125)=________.4、下列说法:①有理数除了正数,就是负数;②相反数大于本身的数是负数;③立方等于本身的数是±1;④若||||a b =,则a b =其中正确的有:_______(填序号).5、举出一个数字“0”表示正负之间分界点的实际例子,如__________. 三、解答题(5小题,每小题10分,共计50分) 1、计算:(1)163577⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭. (2)2942510⎛⎫-- ⎪⎝⎭.(3)1512416123⎛⎫⎛⎫⎛⎫-+-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. (4)()533.7 1.844----.(5)()212 5.2233---. (6)113922624⎛⎫⎛⎫⎛⎫---+-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.2、计算题(1)3401(1)()(5)()|4|77⎡⎤+-----+--+-⎢⎥⎣⎦;(2)2121021(3)()()3434-++---+(3)4444499999999999999955555++++(4)1+(-2)+(-3)+4+5+(-6)+(-7)+8+…+97+(-98)+(-99)+100的值.(5)111118244880120++++;(6)2312|()||()|3255---+--+-3、下面是小明和小乐在学习有理数运算后的一段对话.请你完成下面的运算,并填写运算过程中的依据 解:3-5=3+( )(依据: ) =-( -3) = .4、学习有理数的乘法后,老师给同学们这样一道题目,计算()2449525⨯-,看谁算得又快又对,有两位同学的解法如下 小明:原式12491249452492555=-⨯=-=- 小军:原式()()()24244495495524925255⎛⎫=+⨯-=⨯-+⨯-=- ⎪⎝⎭(1)对于以上两种解法,你认为谁的解法较好?(2)上面的解法对你有何启发,你认为还有更好的方法吗?如果有,请把它写出来; (3)用你认为最合适的方法计算()1519816⨯- 5、已知230a b ++-=,求a+b 的值.-参考答案-一、单选题 1、B【分析】根据有理数乘除法的运算法则按顺序进行计算即可.【详解】1-÷⨯,10010101=-⨯,1010=-,1故选B.【考点】本题考查了有理数乘除混合运算,解决本题的关键是要熟练掌握有理数乘除法法则.2、D【解析】【分析】在表格中找到字母E对应的十进制数,根据满十六进一计算可得.【详解】由题意得,十六进制中14E对应十进制的数为:1×16×16+4×16+14=334,故选D.【考点】本题主要考查有理数的混合运算,解题的关键是掌握十进制与十六进制间的转换及有理数的混合运算顺序和运算法则.3、A【解析】先求出m 、n 的值,再将其代入计算m n -的值. 【详解】解:∵|m|=5,|n|=2, ∴m=±5,n=±2. ∵m n 、异号,∴m=-5,n=2或m=5,n=-2.∴527m n -=--=或()527m n -=--=. 故答案为:A . 【考点】本题主要考查了绝对值的定义及有理数的减法运算:正数的绝对值是它本身,负数是它的相反数,零的绝对值是零. 4、A 【解析】 【分析】根据有理数加法运算性质分析,即可得到答案. 【详解】将式子()()()8384-+-++-先变成()()()8834-++-+-⎡⎤⎡⎤⎣⎦⎣⎦再计算结果,则小红运用了:加法的交换律和结合律 故选:A . 【考点】本题考查了有理数加法运算的知识;解题的关键是熟练掌握有理数加法运算性质,从而完成求解.5、C【解析】【分析】根据求一个数的相反数、去绝对值符号法则、有理数的乘方运算,即可一一判定.【详解】--=,结果为正数,故该选项不符合题意;解:A、()22-=,结果为正数,故该选项不符合题意;B、22C、()328-=-,结果为负数,故该选项符合题意;-=,结果为正数,故该选项不符合题意;D、()224故选:C.【考点】本题考查了求一个数的相反数、去绝对值符号法则、有理数的乘方运算,熟练掌握和运用各运算法则是解决本题的关键.6、C【解析】【分析】从数轴上可以看出m、n都是负数,且m<n,由此逐项分析得出结论即可.【详解】解:因为m、n都是负数,且m<n,|m|>|n|,A、m>n是错误的;B、-n>|m|是错误的;C、-m>|n|是正确的;D、|m|<|n|是错误的.故选C.【考点】此题考查有理数的大小比较,关键是根据绝对值的意义等知识解答.7、B【解析】【分析】比较四个地方的平均气温的高低即可得到答案.【详解】-<0<+2,解:因为4-<3所以平均气温最低的是黄荆镇,故选:.B【考点】本题考查的是负数的应用,有理数的大小比较,掌握有理数的大小比较方法是解题的关键.8、D【解析】【分析】先根据A、B两点所表示的数分别为-6和4,得出线段AB的长为4-(-6),然后进行计算即可.【详解】解:∵A、B两点所表示的数分别为-6和4,∴线段AB的长为4-(-6)=10.【考点】此题考查了两点间的距离,关键是根据两点在数轴上表示的数,列出算式,此题较简单,是一道基础题.9、C【解析】【分析】乘积是1的两数互为倒数.据此判断即可.【详解】.解:a与﹣2互为倒数,那么a等于﹣12故选:C.【考点】本题主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.解题关键是掌握倒数的定义.10、C【解析】【详解】分析:直接利用绝对值的性质得出答案.详解:绝对值为1的实数有:1,-1共2个.故选C.点睛:此题主要考查了实数的性质以及绝对值,正确把握绝对值的性质是解题关键.二、填空题1、-15或5 5或-15【分析】根据点的移动规律解答解答.【详解】解:到点A的距离为10的点表示的数是-5+10=5或-5-10=-15,故答案为:-15或5.【考点】此题考查了数轴上点的移动规律:左减右加,熟记规律进行有理数加减法计算是解题的关键.2、-10【解析】【分析】首先根据有理数大小比较的方法,把所给的五个数从小到大排列;然后根据有理数除法的运算方法,要使任取两个相除,所得的商最小,用绝对值最大的负数除以最小的正数即可.【详解】∵−5<−4<-3<0.5<2,∴所给的五个数中,绝对值最大的负数是5,最小的正数是0.5,∴任取两个相除,其中商最小的是:-5÷0.5=−10.故答案为:−10.【考点】(1)此题主要考查了有理数除法的运算方法,要熟练掌握,解答此类问题的关键是要明确:除以一个不等于0的数,等于乘这个数的倒数.(2)此题还考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.【解析】【分析】根据乘法的交换和结合律,进行简便计算,即可求解.【详解】解:(﹣8)×(﹣2020)×(﹣0.125)=(﹣8)×(﹣0.125)×(﹣2020)=1×(﹣2020)=﹣2020.故答案为:﹣2020.【考点】本题主要考查有理数的乘法运算,掌握乘法交换律和结合律,是解题的关键.4、②【解析】【分析】据有理数的概念和乘方运算逐个检查,找出正确说法作答.【详解】对于①,有理数除了正数和负数之外还有0,故①错误;对于②,负数的相反数是正数,正数大于负数,故②正确;对于③,由3(1)1±=±,300=,得立方等于本身的数不只有±1,故③错误;对于④,由|6||6|=-,但66≠-,得④错误.故答案为:②.此题考查有理数的分类,相反数的意义,乘方的意义和绝对值的性质.其关键是要对相关知识的熟练掌握.5、0℃可以表示温度正负分界等(答案不唯一)【解析】【分析】根据数学中0表示数的意义解答即可.【详解】在实际中,数字“0”表示正负之间分界点,如:0℃可以表示温度正负分界等(答案不唯一).故答案为:0℃可以表示温度正负分界等(答案不唯一).【考点】此题考查了正数和负数的意义,熟练掌握既不是正数,也不是负数的0的意义是解本题的关键.0既不是正数也不是负数.0是正负数的分界点,正数是大于0的数,负数是小于0的数.三、解答题1、(1)527;(2)3710;(3)1112-;(4)215-;(5)8515;(6)5912【解析】【分析】(1)利用有理数的减法法则和有理数加法法则进行计算即可;(2)利用有理数的减法法则进行化简,再通分成同分母进行计算即可;(3)利用有理数的减法法则进行化简,再通分成同分母进行计算即可;(4)先利用有理数的减法法则进行化简,再利用加法交换律和结合律进行简便运算;(5)先利用有理数的减法法则进行化简,再利用加法交换律和结合律进行简便运算;(6)利用有理数的减法法则进行化简,再通分成同分母进行计算即可;解:(1)163577⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭=163577⎛⎫-+ ⎪⎝⎭=527; (2)2942510⎛⎫-- ⎪⎝⎭=2942510+=49421010+=3710; (3)1512416123⎛⎫⎛⎫⎛⎫-+-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ =1512416123⎛⎫+-+ ⎪⎝⎭ =254241121212⎛⎫+-+ ⎪⎝⎭ =34211212-+ =1112- (4)()533.7 1.844---- =()533.7 1.844⎛⎫+-+-+ ⎪⎝⎭=()53 3.7 1.844⎡⎤⎛⎫+-+-+⎡⎤ ⎪⎢⎥⎣⎦⎝⎭⎣⎦=()1 1.92+- =5191010⎛⎫+- ⎪⎝⎭=1410-=215-; (5)()212 5.2233---=21 2 5.22 33+-=2122 5.2 33-+=115 35 +=535 1515+=8515;(6)113 922624⎛⎫⎛⎫⎛⎫---+--⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=113 922624⎛⎫++-+⎪⎝⎭=10826309 12121212⎛⎫++-+⎪⎝⎭=113 12=5912.【考点】本题考查了有理数的减法法则,有理数的加法法则及有理数的加法运算律.有理数的减法法则:减去一个数等于加上这个数的相反数;有理数加法法则:①同号两数相加,取与加数相同的正负号,并把绝对值相加;②绝对值不相等的异号两数相加,取绝对值较大的加数的正负号,并用较大的绝对值减去较小的绝对值;③互为相反数的两数相加得零;④一个数与零相加仍得这个数.2、(1)10;(2)-18;(3)111109;(4)0;(5)524;(6)8330-【解析】【分析】(1)依据有理数的运算法则,先去小括号,再去中括号,最后依次进行计算即可;(2)依据有理数的运算法则,先去小括号,再依次进行计算即可;(3)将各代分数进行变形,然后利用加法结合律,进行计算即可;(4)根据各数字的规律,发现四个一组进行组合计算即可;(5)通过观察发现各分数分母规律,尽心变换,然后提取公因式进行计算,从而简化运算;(6)先化简绝对值符号内的运算,然后去绝对值再进行计算即可.【详解】(1)原式341[15]45(5)1077=--+-++=--=;(2)原式212102133434⎛⎫⎛⎫⎛⎫=-+++++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 21212133434=-++- 22112133344⎛⎫⎛⎫=-++- ⎪ ⎪⎝⎭⎝⎭ 213=-+18=-;(3)原式=1111101001000100005555⎡⎤⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+-++-++-++- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦⎣⎦11000005⎡⎤⎛⎫++- ⎪⎢⎥⎝⎭⎣⎦ 11111(10100100010000100000)55555⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+++++-+-+-+-+- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦111110(1)=+- 111109=;(4)()()()()()()12345678979899100+-+-+++-+-++⋯++-+-+()()][()()][()()12? 3456? 789798? 99100⎡⎤=+-+-+++-+-++⋯++-+-+⎣⎦000=+++⋯+,0=;(5)111118244880120++++ 111112446688101012=++++⨯⨯⨯⨯⨯ 11111111111()22446688101012=-+-+-+-+- 111()2212=- 524=; (6)原式2312||||3255=------2312()()3255⎡⎤⎡⎤=--------⎢⎥⎢⎥⎣⎦⎣⎦ 23123255=---- 8330=-. 【考点】题目主要考查有理数的加减运算,熟练掌握运算法则、运算技巧是解题关键.3、5,- 减去一个数等于加上这个数的相反数,5,2-【解析】【分析】先根据减去一个数等于加上这个数的相反数填空,再利用绝对值不相等的异号的两数相加填空即可.【详解】解:3-5=3+5(依据:减去一个数等于加上这个数的相反数)=-(53-)=2-.故答案为:5,- 减去一个数等于加上这个数的相反数,5,2-【考点】本题考查的是有理数的加法运算,减法运算,掌握“有理数的加法与减法运算的运算法则”是解本题的关键.4、(1)小军;(2)24954-;(3)11592-【解析】【分析】(1)根据计算判断小军的解法好;(2)把244925写成1(50)25-,然后利用乘法分配律进行计算即可得解;(3)把151916写成1(20)16-,然后利用乘法分配律进行计算即可得解.【详解】解:(1)小军的方法计算量较小,解法较好;(2)还有更好的解法,2449(5)25⨯-1(50)(5)25=-⨯-150(5)(5)25=⨯--⨯-12505=-+42495=-;(3)1519(8) 16⨯-1(20)(8)16=-⨯-120(8)(8)16=⨯--⨯-11602=-+11592=-.【考点】本题考查了有理数的乘法,主要是对乘法分配律的应用,把带分数进行适当的转化是解题的关键.5、1【解析】【分析】根据非负数的性质列方程求出a、b的值,然后代值进行计算即可得解.【详解】解:由题意得,a+2=0,b-3=0,解得a=-2,b=3,所以a+b=(-2)+3=1.【考点】本题主要考查绝对值的非负性及有理数的加法,熟练掌握绝对值的非负性及有理数的加法是解题的关键.。

【精选】七年级有理数单元练习(Word版 含答案)

【精选】七年级有理数单元练习(Word版 含答案)

一、初一数学有理数解答题压轴题精选(难)1.点在数轴上分别表示有理数,两点间的距离表示为 .且 .(1)数轴上表示2和5的两点之间的距离是________,数轴上表示−2和−5的两点之间的距离是________,数轴上表示1和−3的两点之间的距离是________;(2)数轴上表示x和−1的两点A和B之间的距离是________,如果|AB|=2,那么x=________;(3)当代数式|x+1|+|x−2|取最小值时,相应x的取值范围是________.【答案】(1)3;3;4(2)1;-3(3)−1⩽x⩽2【解析】【解答】解:(1)、|2−5|=|−3|=3;|−2−(−5)|=|−2+5|=3;|1−(−3)|=|4|=4;( 2 )、|x−(−1)|=|x+1|,由|x+1|=2,得x+1=2或x+1=−2,所以x=1或x=−3;( 3 )、数形结合,若|x+1|+|x−2|取最小值,那么表示x的点在−1和2之间的线段上,所以−1⩽x⩽2.【分析】(1)根据数轴上任意两点间的距离等于这两点所表示的数的差的绝对值即可算出答案;(2)根据数轴上任意两点间的距离等于这两点所表示的数的差的绝对值得出AB=,又 |AB|=2 ,从而列出方程,求解即可;(3)|x+1|+|x−2| 表示数x的点到-1的点距离与表示x的点到2的点距离和,根据两点之间线段最短得出当表示x的点在-1与2之间的时候,代数式|x+1|+|x−2|有最小值,从而得出x的取值范围.2.点A、B在数轴上表示的数如图所示,动点P从点A出发,沿数轴向右以每秒1个单位长度的速度向点B运动到点B停止运动;同时,动点Q从点B出发,沿数轴向左以每秒2个单位长度的速度向点A运动,到点A停止运动设点P运动的时间为t秒,P、Q两点的距离为d(d≥0)个单位长度.(1)当t=1时,d=________;(2)当P、Q两点中有一个点恰好运动到线段AB的中点时,求d的值;(3)当点P运动到线段AB的3等分点时,直接写出d的值;(4)当d=5时,直接写出t的值.【答案】(1)3(2)解:线段AB的中点表示的数是:=1.①如果P点恰好运动到线段AB的中点,那么AP=AB=3,t==3,BQ=2×3=6,即Q运动到A点,此时d=PQ=PA=3;②如果Q点恰好运动到线段AB的中点,那么BQ=AB=3,t=,AP=1× =,则d=PQ=AB﹣AP﹣BQ=6﹣﹣3=.故d的值为3或(3)解:当点P运动到线段AB的3等分点时,分两种情况:①如果AP=AB=2,那么t==2,此时BQ=2×2=4,P、Q重合于原点,则d=PQ=0;②如果AP=AB=4,那么t==4,∵动点Q从点B出发,沿数轴向左以每秒2个单位长度的速度向点A运动,到点A停止运动,∴此时BQ=6,即Q运动到A点,∴d=PQ=AP=4.故所求d的值为0或4(4)解:当d=5时,分两种情况:①P与Q相遇之前,∵PQ=AB﹣AP﹣BQ,∴6﹣t﹣2t=5,解得t=;②P与Q相遇之后,∵P点运动到线段AB的中点时,t=3,此时Q运动到A点,停止运动,∴d=AP=t=5.故所求t的值为或5.【解析】【分析】(1)当t=1时,求出AP=1,BQ=2,根据PQ=AB﹣AP﹣BQ即可求解;(2)分①P点恰好运动到线段AB的中点;②Q点恰好运动到线段AB的中点两种情况进行讨论;(3)当点P运动到线段AB的3等分点时,分①AP=AB;②AP=AB两种情况进行讨论;(4)当d=5时,分①P与Q相遇之前;②P与Q相遇之后两种情况进行讨论.3.同学们都知道,|3-(-1)∣表示3与-1的差的绝对值,其结果为4,实际上也可以理解为3与-1两数在数轴上所对应的两点之间的距离,其距离同样是4;同理,∣x-5|也可以理解为x与5两数在数轴上所应的两点之间的距离,试利用数轴探索:(1)试用“||”符号表示:4与-2在数轴上对应的两点之间的距离,并求出其结果;(2)若|x-2|=4,求x的值;(3)同理,|x-3|+|x+2|表示数轴上有理数x所对应的点到3和-2所对应的两点距离之和,请你直接写出所有符合条件的整数x,使得|x-3|+|x+2|=5;试求代数式|x-3|+|x+2|的最小值.【答案】(1)解:|4-(-2)|=6(2)解:x与2的距离是4,在数轴上可以找到x=-2或6(3)解:当-2≤x≤3时,x所对应的点到3和-2所对应的两点距离之和是5,∴符合条件的整数x=-2,-1,0,1,2,3;当x<-2或x>3时,x所对应的点到3和-2所对应的两点距离之和大于5,∴|x-3|+|x+2|的最小值是5【解析】【分析】(1)根据已知列式求解即可;(2)按照已知去绝对值符号即可求解.(3)当-2≤x≤3时,x所对应的点到3和-2所对应的两点距离之和是5;当x<-2或x>3时,x所对应的点到3和-2所对应的两点距离之和大于5,由此即可得出结论.4.如图A在数轴上对应的数为-2.(1)点B在点A右边距离A点4个单位长度,则点B所对应的数是________.(2)在(1)的条件下,点A以每秒2个单位长度沿数轴向左运动,点B以每秒3个单位长度沿数轴向右运动.现两点同时运动,当点A运动到-6的点处时,求A、B两点间的距离. (3)在(2)的条件下,现A点静止不动,B点以原速沿数轴向左运动,经过多长时间A、B 两点相距4个单位长度.【答案】(1)2(2)解:,∴B点到达的位置所表示的数字是2+3×2=88-(-6)=14(个单位长度).故A,B两点间距离是14个单位长度.(3)解:运动后的B点在A点右边4个单位长度,设经过t秒长时间A,B两点相距4个单位长度,依题意有3t=14-4,解得x= ;运动后的B点在A点左边4个单位长度,设经过x秒长时间A,B两点相距4个单位长度,依题意有3t=14+4,解得x=6.∴经过秒或6秒长时间A,B两点相距4个单位长度.【解析】【解答】解:(1)-2+4=2,故点B所对应的数是2;【分析】(1)根据左减右加可求得点B所对应的数;(2)先根据时间=路程÷速度,求得运动时间,再根据路程=速度×时间求解即可;(3)分两种情况:运动后的点B在点A右边4个单位长度;运动后的点B在点A左边4个单位长度,列出方程求解.5.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20,(1)写出数轴上点B表示的数________;(2)|5-3|表示5与3之差的绝对值,实际上也可理解为5与3两数在数轴上所对的两点之间的距离.如的几何意义是数轴上表示有理数的点与表示有理数3的点之间的距离.试探索:①:若,则=________.②:的最小值为________.(3)动点P从O点出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为(>0)秒.①:当 =1时,A,P两点之间的距离为________;②:当 =________时,A,P之间的距离为2.(4)动点P,Q分别从O,B两点,同时出发,点P以每秒4个单位长度沿数轴向右匀速运动,Q点以P点速度的两倍,沿数轴向右匀速运动,设运动时间为t(t>0)秒.当t=________,P,Q之间的距离为4.【答案】(1)-12(2)6或10;20(3)6;3或5(4)2或4【解析】【解答】解:(1)∵AB=20,点A表示的数是8,B是数轴上位于点A左侧一点,∴点B表示的数是8-20=-12.故答案为:-12.(2)∵|x-8|=2∴x-8=±2解之:x=10或x=6;|x-(-12)|+|x-8|的最小值为8-(-12)=20.故答案为:6或10;20.(3)动点P从O点出发,以每秒2个单位长度的速度沿数轴向右匀速运动,∴OP=2t∴AP=8-2t当t=1时,AP=8-2×1=6;当AP=2时,则|8-2t|=2,解之:t=5或t=3.故答案为:6;3或5.(4)∵点P以每秒4个单位长度沿数轴向右匀速运动,Q点以P点速度的两倍,沿数轴向右匀速运动,∴点Q的速度为每秒8个单位长度,设运动时间为t(t>0)秒时,P,Q之间的距离为4.∴8t-4t-12=4或12+4t-8t=4解之:t=4或t=2故答案为:2或4.【分析】(1)根据点A表示的数和点B的位置关系,就可得到点B所表示的数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一课时 有理数
一、选择题
1. 下列各数:2,1,0,-2.其中负数是【 】
A .2
B .1
C .0
D .-2
2. 某市2015年参加中考的考生人数约为85000人,将85000用科学记数法表示为【 】
A .8.5×104
B .8.5×105
C .0.85×104
D .0.85×105
3.有理数5
3
-
的倒数是【 】 A .
53 B .53
-
C .
35 D .3
5
- 4. 小明同学做了①2
2439
⎛⎫--= ⎪⎝⎭;②3
26-=;③()()5210-⨯-=;④22--=这四道题.如果每道题
正确得2分,不做或错误不得分,那么小明的得分为【 】 A .0分 B .2分
C .4分
D .6分
5. 杨梅开始采摘啦!每筐杨梅以5千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图,则
这4筐杨梅的总质量是【 】
-0.1 -0.3 +0.2 +0.3
A .19.7千克
B .19.9千克
C .20.1千克
D .20.3千克
6. 若0ab
≠,则
a b
a b
+的值不可能是【 】
A .2-
B .0
C .1
D .2
7. 若
()2
12102
x y -
++=,则23x y +的值是【 】 A .
38 B .18
C .18-
D .3
8
- 8. 观察下列等式:1
3
3=,239=,3327=,4381=,53243=,63729=,732187=……则
2343333++++…20133+的末位数字是【 】
A .0
B .1
C .3
D .7
二、填空题:本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在题中横线. 9.-9的相反数是 . 10.比-8大8的数是 .
11.化简:()2-+
-=⎡⎤⎣⎦ .
12.近似数4.70亿,它精确到的数位是 .
13.从数-5,1,-3,5,-2中任取两个数相乘,最大的积与最小的积之和为 . 14.小明手中的纸条上写着2
m ,小强手中的纸条上写着
()
2
5-,若这两个数相等,则m 的值为 .
15.如图,M ,N 两点在数轴上表示的数分别是m ,n ,则下列式子:①m n +<0;②m -<n -;③m n ->0;
④2m +<2n +中成立的是 .
16.计算:1-2-3+4+5-6-7+8+…+2013-2014-2015+2016= . 17.若
a b a b -=-,且1a =,2b =,则()2
a b += .
18.如图,把一个面积为1的正方形等分成两个面积为
1
2
的长方形,接着把一个面积为
12
的长方形等分成两个面积

14
的正方形,再把一个面积为
14
的正方形等分成两个面积为
1
8
的长方形……请运用图形中提示的规律计算:111111
248163264
+++
++= . 三、解答题:本大题共8小题,共64分.解答时应写出文字说明、
证明过程或演算步骤. 19.(本小题满分6分)
把下列各数填在相应的表示集合的大括号里:23-,12,()96--,3--,-4.5,0,1
3
. (1)正整数集合:{

}; (2)整数集合:
{

}; (3)负分数集合:
{

}.
20.(本小题满分8分)
在数轴上表示下列各数,并用“<”号把这些数连接起来: +5,-3.5,1
2
,1
1
2
-,-4,0,2.5.
21.(本小题满分12分)
计算下列各题: (1)
()()()16200862008++-+-+; (2)()()()35420-⨯-+÷-;
132
11618
14
12
(3)1571816⎛⎫-⨯ ⎪⎝⎭; (4)()10
1110.543⎛⎫--+⨯-÷- ⎪⎝⎭

22.(本小题满分6分)
若a >0,b >0,且
a
b
>1,则a >b ;若a <0,b <0,且
a b
>1,则a <b ,以上这种比较大小的方法,叫做作
商比较法.试利用作商比较法,比较1517-与17
19
-的大小.
23.(本小题满分8分)
学完有理数的的乘除后,数学老师给同学们出了这样的两道计算题:
(1)111132424⎛⎫⎛⎫-
+-÷- ⎪ ⎪⎝⎭⎝⎭;(2)111124324⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭
.
下面是小强和小明的解题过程.
小强:(1)原式=()1112481262324⎛⎫
-
+-⨯-=-+= ⎪⎝⎭
小明:(2)原式=()132424⎛⎫-⨯-+- ⎪⎝⎭=()1524⎛⎫
-⨯- ⎪⎝⎭
=524. 请回答:
(1)小强和小明的解答对吗?
(2)小华发现(1)、(2)这两个式子是互为倒数的关系,请你利用小华发现的规律求
1117111711728243672824367272⎛⎫⎛⎫⎛⎫⎛⎫
-÷+--++--÷- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭
的值.
24.(本小题满分8分)
小明到行政中心大楼办事,假定乘电梯向上一楼记作+1,向下一楼记作-1.小明从1楼出发,电梯上下楼依次记录如下(单位:层):+5,-3,+10,-8,+12,-6,-10. (1)小明最后是否回到出发点1楼?
(2)每层楼高2.8米,若电梯每上或下1米,需要耗电0.1度.根据小明现在所处位置,请你算算,小明办完
事电梯需要耗电多少度?
25.(本小题满分8分) 观察下列各式:
111122=-⨯;1112323=-⨯;111
3434
=-⨯;… 用上述方法计算:
(1)111122334+++⨯⨯⨯...120142015+⨯; (2)111133557+++⨯⨯⨯ (199101)
+⨯.
26.(本小题满分8分) 同学们都知道,
()52--表示5与-2之差的绝对值,实际上也可以理解为5与-2两数在数轴上所对应的两
点之间的距离.试探索: (1)
()52--= .
(2)找出所有符合条件的整数x ,使得527x x ++-=,这样的整数是__________________.
(3)对于任何有理数x ,36
x x -+-是否有最小值?如果有,写出最小值;如果没有,请说明理由.。

相关文档
最新文档