【数学】2015-2016年重庆七十一中七年级下学期期中数学试卷和答案解析PDF
2015-2016第二学期期中七年级数学参考答案

2015—2016学年度第二学期期中质量评估试题七年级数学参考答案及评分标准11. 9; 12. 80°; 13.(5,0); 14. 4; 15. 100°;16. 一 三、解答题(一)17. 解:34)2(3-----=3+2-2-3 ……………4分 =0 ……………6分 18. 解:∵a ∥b∴∠2=∠3 ……………2分 ∵∠1+∠3=180°∴∠1+∠2=180° ……………4分 ∴∠2=180°-∠1 ∵∠1=118°∴∠2=180°-118°=62° ……………6分 19.(1)图(略) 图……………4分(2)A 1(0,6);B 1(-1,2) ……………6分 四、解答题(二) 20. 解: )223(328)2(32---+-+-=2232322+--+- ……………4分 =2 ……………7分 21. 解:∵∠1=∠2∴AB ∥CD ……………2分 ∴∠3+∠4=180° ……………4分 ∴∠4=180°-∠3 ……………6分 ∵∠3=108°∴∠4=180°-108°=72° ……………7分 22.(每空1分)∵AB ∥DC (已知)∴∠1=∠CFE (两直线平行,同位角相等)……………2分 ∵AE 平分∠BAD (已知)∴∠1=∠2(角平分线的定义) ……………4分 ∴∠2=∠CFE ……………5分 ∵∠CFE=∠E (已知)∴∠2=∠E …………6分 ∴AD ∥BC (内错角相等,两直线平行). …………7分五、解答题(三) 23. 解:100)1(2=-x101±=-x …………4分 110+±=x11=x …………7分或9-=x …………9分24. 证明:∵DE ‖BC (已知)∴∠ADE =∠ABC (两直线平行,同位角相等) …………2分 ∵DF 、BE 分别平分∠ADE 、∠ABC ∴∠ADF =12∠ADE∠ABE =12∠ABC (角平分线的定义) …………4分∴∠ADF =∠ABE …………5分∴ DF ‖BE (同位角相等,两直线平行) …………7分 ∴∠FDE =∠DEB. (两直线平行,内错角相等) …………9分 25. 解:(1)C (0,2),D (4,2),…………2分(2)依题意,得S 四边形ABDC =AB ×OC=4×2=8; …………3分 (3)存在. …………4分。
2015-2016年人教版初一下学期数学期中考试试题及答案讲解

2015-2016 年人教版初一下学期 数学期中考试试题及答案讲解2013-2014 学年度第二学期七年级期中质量检测数学试卷 ( 完 卷 时 间 : 100 分 钟满分:120 分) 一、选择题:(选一个正确答案的序号填入括号内,每小题 3 分,共 30 分)1.下面的四个图形中,∠1 与∠2 是对顶角的是 ( )。
A.B.C.D.2. 1 的平方根是( )。
4A. 1 2B. 1 2C. 1 2D. 1 163.下列式子正确的是( )。
A. 49=7B. C. D. 3 7= 3 725= 5(-3)2 = 34.如图,已知 AB⊥CD,垂足为 O,EF 为过O 点的一条直线,则∠1 与∠2 的关系一定成立的是( )。
A.相等 C.互补B.互余 D.互为对 顶角5.下列说法正确的是( )。
23PEFMNA.(0,- B.(4,2)C.(4,4)D.(2,4)2) 二、填空题:(每小题 3 分,共 21 分)11. 3 11的相反数是是。
,绝对值12.如果 , 3=1.732 30=5.477 ,那么 0.0003 的平方根是。
13.命题“同角的余角相等”改写成“如果……那么……” 的形式是。
14.如图所示,想在河的两岸搭建一座桥 ,搭建方式最短的是,理由是415.小刚在小明的北偏东 60°方向的 500m 处,则小明在小刚的。
(请用方向和距离描述小明相对于小刚的位置)16.绝对值小于 8 的所有整数是.17.定义“在四边形 ABCD 中,若 AB‖CD,且 AD‖BC,则四边形 ABCD 叫做平行四边形。
”若一个平行四边形的三个顶点的坐标分别是(0,0),(3,0),(1,3),则第四个顶点的坐标是.三、解答下列各题:(共 69 分)18.(每小题 5 分,共 10 分)(1)计算 0.04 3 27 (-2)2(2)求满足条件的x值19.(7 分)根据语句画图,并回答问题。
如图,∠AOB 内有一点 P .(1)过点 P 画 PC‖OB 交 OA 于点 C,画 PD‖OA 交 OB 于点 D.5(2)写出图中与∠CPD 互补的角.(写两个即可)(3)写出图中与∠O 相等的角.(写两个即可)B.PAO20.(8 分)完成下面推理过程:如图,已知 DE‖BC,DF、BE 分别平分∠ADE、∠ABC,可推得∠FDE=∠DEB 的理由:∵DE‖BC(已知)A∴∠ADE=.(FDE)∵DF、BE 分别平分∠ADE、∠BABC,C∴∠ADF= 1,2∠ABE=1.()2∴∠ADF=∠ABE6∴‖.()∴∠FDE=∠DEB.()21.(8 分)如图,四边形 ABCD 为平行四边形,OD=3, CD=AB=5,点 A 坐标为(-2,0)(1)请写出 B、C、D 各点的坐标; (2)求四边形 ABCD 的面积。
2015-2016学年七年级下学期期中联考数学试题(含答案)

2015-2016学年七年级下数学期中测试题数 学 试 题(含答案)一、填空题(每题2分共24分)1. 在同一平面内,两条直线有 种位置关系,它们是 ;2.若直线a//b ,b//c ,则 ,其理由是 ;3.如图1直线AB ,CD ,EF 相交与点O ,图中AOE ∠的对顶角是 ,COF ∠的邻补角是 。
4.如图2,要把池中的水引到D 处,可过D 点引CD ⊥AB 于C ,然后沿CD 开渠,可使所开渠道最短,试说明设计的依据: ;5.点P (-2,3)关于X 轴对称点的坐标是 。
关于原点对称点的坐标是 。
6.把“对顶角相等”写成“如果……那么……”的形式为 。
7.如图4,170=∠,270=∠,388=∠,则4=∠_____________. 8 . 若点M (a+5,a-3)在y 轴上,则点M 的坐标为 。
9.若P (X ,Y )的坐标满足XY >0,且X+Y<0,则点P 在第 象限 。
0. 如图5,AB CD ∥,BC DE ∥,则∠B 与∠D 的关系是_____________.ABCD 图2A FC EB D图1OAB DC12 图3 图43142图4c ba5 4 32 1 图6 图511.若│x2-25│+3y -=0,则x=_______,y=_______.12.如图3,四边形ABCD 中,12∠∠与满足 关系时AB//CD ,当 时AD//BC(只要写出一个你认为成立的条件)。
二、 选择题 (下列各小题的四个选项中,有且只有一个是符合题意的,把你认为符合题意的答案代号填入答题表中,每小题2分,共12分) 题 号 1 2 3 4 56 答 案1.下列各图中,∠1与∠2是对顶角的是:( )2.一个三角形的三个内角中( )A. 至少有一个等于90°B. 至少有一个大于90°C. 不可能有两个大于89°D. 不可能都小于60°3.如图7,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐 的角∠A 是120°,第二次拐的角 ∠B 是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C 是( ) A、150°B、140°C、130° D、120°4.在直角坐标系中,点P (-2,3)向右平移3个单位长度后的坐标为( ) A .(3,6) B.(1,3) C.(1,6) D.(3,3) 5. 如图6 下列条件中,不能判断直线a//b 的是( )A 、∠1=∠3B 、∠2=∠3C 、∠4=∠5D 、∠2+∠4=180° 6.在实数范围内,下列判断正确的是 ( ) (A) .若m=n,则n m = (B) .若22b a >, 则b a >(C) .若2a =2)(b ,则b a = (D) .若3a =3b ,则b a =7.16的平方根是( )(A )2 (B )4 (C )- 2或2 (D )- 4或48. 若a 是(-3)2的平方根,则3a 等于( ) (A )-3 (B )33 (C )33或-33 (D )3或-3三.作图题。
重庆市七十一中七年级数学下学期第一次月考试题(含解析) 新人教版

重庆市七十一中2015-2016学年七年级数学下学期第一次月考试题一.选择题(本大题12小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将你认为正确的答案代号填在答题卡表格中对应的位置.1.下列方程中,解为x=2的是()A.3x+6=3 B.﹣x+6=2x C.4﹣2(x﹣1)=1 D.2.下列选项中,是方程x﹣2y=10的解是()A.B.C.D.3.方程﹣2x=的解是()A.x=B.x=﹣4 C.x=D.x=44.方程组的解为,则被遮盖的两个数分别是()A.1,2 B.5,1 C.2,﹣1 D.﹣1,95.若关于x的方程3x+a﹣2=0的解是x=﹣2,则a的值等于()A.﹣8 B.0 C.2 D.86.某班分组去两处植树,第一组26人,第二组22人.现第一组在植树中遇到困难,需第二组支援.问第二组调多少人去第一组,才能使第一组的人数是第二组的3倍?设从第二组抽调x人,则可列方程为()A.26+x=3×26B.26=3(22﹣x)C.3(26+x)=22﹣x D.26+x=3(22﹣x)7.甲、乙两种商品原来的单价和为100元,因市场变化,甲商品降价10%,乙商品提价40%,调价后两种商品的单价和比原来的单价和提高了20%、若设甲、乙两种商品原来的单价分别为x元、y元,则下列方程组正确的是()A.B.C.D.8.已知,那么x+y的值是()A.0 B.5 C.﹣1 D.19.解以下两个方程组:①,,较为简便方法的是()A.①②均用代入法B.①②均用加减法C.①用代入法,②用加减法D.①用加减法,②用代入法10.二元一次方程x+2y=5的正整数解的个数是()A.1个B.2个C.3个D.4个11.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1,图2所示,图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项.把图1表示的算筹图用我们现在所熟悉的方程组形式表述出来,就是.类似地,图2所示的算筹图我们可以表述为()A.B.C.D.12.如图,长方形ABCD中有6个形状、大小相同的小长方形,且EF=3,CD=12,则大长方形ABCD的面积为()A.105 B.106 C.107 D.108二、填空题(本大题共6小题,每小题4分,共24分,在每小题中,请将你认为正确的答案填在答题卡相应位置的横线上)13.已知二元一次方程3x+y﹣1=0,用含y的代数式表示x,则.14.方程3x=5x﹣14的解是x= .15.比a的3倍大5的数是9,列出方程式是.16.若关于x的方程x2m﹣1+8=0是一元一次方程,则m= .17.某商品的价格标签已丢失,售货员只知道“它的进价为80元,打七折售出后,仍可获利5%”.你认为售货员应标在标签上的价格为元.18.A和B两地相距140千米,甲、乙二人骑自行车分别从A和B两地同时出发,相向而行.丙驾驶摩托车,每小时行驶63千米,同时与甲从A出发,与乙相遇后立即返回,丙返回至甲时,甲、乙相距84千米.若甲车速是每小时9千米,则乙的速度为千米/时.三.解答题(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卷中对应的位置上.19.解方程(1)2(3x+4)﹣3(x﹣1)=3;(2).20.解方程(1)(2).四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卷中对应的位置上.21.方程和方程的解相同,求a的值.22.若关于x、y的方程组的解也是方程x+y=1的解,求k的值.23.A,B两地相距160km,一艘船从A出发,顺水航行8h到B,而从B出发逆水航行10h 到A,已知船顺水航行、逆水航行的速度分别是静水速度与水流速度的和与差,求船在静水中的速度和水流速度.24.列方程解应用题甲、乙两人同时从相距25千米的A地去B地,甲骑车乙步行,甲的速度是乙的速度的3倍,甲到达B地停留40分钟,然后从B地返回A地,在途中遇见乙,这时距他们出发的时间恰好3小时,求两人的速度各是多少?五、解答题:(本大题2个小题,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程做在答题卷上.25.代数式ad﹣bc可用符号来表示,称之为二阶行列式.即,用二阶行列式可以解二元一次方程组.由得三个二阶行列式即,及那么方程组的解就是.(1)求出二阶行列式的值;(2)用二阶行列式解方程组.26.三位老师周末到某家电专卖店购买冰箱和空调,正值该专卖店举行“迎新春、大优惠”活动,具体优惠情况如下表:购物总金额(原价)折扣率不超过3000元的部分九折超过3000元但不超过5000元的部分八折超过5000元的部分七折(1)李老师所购物品的原价是6000元,李老师实际付元(2)已知张老师购买了两件物品(一个冰箱和一个空调)共付费4060元.请问这两件物品的原价总共是多少元?(3)碰巧同一天赵老师也在同一家专卖店购买了同样的两件物品.但赵老师上午去购买的冰箱,下午去购买的空调,如此一来赵老师两次付款总额比张老师多花费了140元.已知此冰箱的原价比空调的原价要贵,求这两件物品的原价分别为多少元?2015-2016学年重庆七十一中七年级(下)第一次月考数学试卷参考答案与试题解析一.选择题(本大题12小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将你认为正确的答案代号填在答题卡表格中对应的位置.1.下列方程中,解为x=2的是()A.3x+6=3 B.﹣x+6=2x C.4﹣2(x﹣1)=1 D.【考点】方程的解.【分析】把x=2代入方程判断即可.【解答】解:A、把x=2代入方程,12≠3,错误;B、把x=2代入方程,4=4,正确;C、把x=2代入方程,2≠1,错误;D、把x=2代入方程,3≠0,错误;故选B【点评】此题考查方程的解问题,关键是把x=2代入方程,利用等式两边是否相等判断.2.下列选项中,是方程x﹣2y=10的解是()A.B.C.D.【考点】二元一次方程的解.【分析】根据使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解进行分析即可.【解答】解:A、2﹣2×(﹣4)=10,因此是方程x﹣2y=10的解,故此选项正确;B、2﹣2×4≠10,因此不是方程x﹣2y=10的解,故此选项错误;C、﹣2﹣2×4≠10,因此不是方程x﹣2y=10的解,故此选项错误;D、﹣2﹣2×(﹣4)=﹣6≠10,因此不是方程x﹣2y=10的解,故此选项错误;故选:A.【点评】此题主要考查了二元一次方程的解,掌握二元一次方程解的定义是本题的关键.3.方程﹣2x=的解是()A.x=B.x=﹣4 C.x=D.x=4【考点】解一元一次方程.【专题】计算题.【分析】此方程比较简单,这是一个系数不为1的方程,系数化为1得,就可得到方程的解.【解答】解:方程﹣2x=,系数化为1得:x=.故选A.【点评】解方程的过程就是一个方程变形的过程,变形的依据是等式的基本性质,变形的目的是使方程接近x=a(a为常数)的形式.4.方程组的解为,则被遮盖的两个数分别是()A.1,2 B.5,1 C.2,﹣1 D.﹣1,9【考点】二元一次方程组的解.【专题】计算题.【分析】把x=2代入方程组中第二个方程求出y的值,确定出方程组的解,代入第一个方程求出被遮住的数即可.【解答】解:把x=2代入x+y=3中,得:y=1,把x=2,y=1代入得:2x+y=4+1=5,则被遮住得两个数分别为5,1,故选B.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.5.若关于x的方程3x+a﹣2=0的解是x=﹣2,则a的值等于()A.﹣8 B.0 C.2 D.8【考点】一元一次方程的解.【分析】把x=﹣2代入方程即可得到一个关于a的方程,解方程即可求得a的值.【解答】解:把x=﹣2代入方程得﹣6+a﹣2=0,解得:a=8.故选D.【点评】本题考查了方程的解的定义,方程的解就是能使方程左右两边相等的值,理解定义是关键.6.某班分组去两处植树,第一组26人,第二组22人.现第一组在植树中遇到困难,需第二组支援.问第二组调多少人去第一组,才能使第一组的人数是第二组的3倍?设从第二组抽调x人,则可列方程为()A.26+x=3×26B.26=3(22﹣x)C.3(26+x)=22﹣x D.26+x=3(22﹣x)【考点】由实际问题抽象出一元一次方程.【分析】设从第二组抽调x人,则第一组有x+26人,第二组有22﹣x人,根据第一组的人数是第二组的3倍,列出方程.【解答】解:设从第二组抽调x人,则第一组有x+26人,第二组有22﹣x人,由题意得,x+26=3(22﹣x).故选D.【点评】本题考查了由实际问题抽象出一元一次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.7.甲、乙两种商品原来的单价和为100元,因市场变化,甲商品降价10%,乙商品提价40%,调价后两种商品的单价和比原来的单价和提高了20%、若设甲、乙两种商品原来的单价分别为x元、y元,则下列方程组正确的是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【专题】压轴题.【分析】如果设甲商品原来的单价是x元,乙商品原来的单价是y元,那么根据“甲、乙两种商品原来的单价和为100元”可得出方程为x+y=100;根据“甲商品降价10%,乙商品提价40%,调价后,两种商品的单价之和比原来的单价之和提高了20%”,可得出方程为x(1﹣10%)+y(1+40%)=100(1+20%).【解答】解:设甲商品原来的单价是x元,乙商品原来的单价是y元.根据题意列方程组:.故选:C.【点评】找到两个等量关系是解决本题的关键,还需注意相对应的原价及相应的百分比得到的新价格.8.已知,那么x+y的值是()A.0 B.5 C.﹣1 D.1【考点】解二元一次方程组.【专题】计算题.【分析】方程组两方程相加求出x+y的值即可.【解答】解:,①+②得:4(x+y)=20,则x+y=5.故选B.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.9.解以下两个方程组:①,,较为简便方法的是()A.①②均用代入法B.①②均用加减法C.①用代入法,②用加减法D.①用加减法,②用代入法【考点】解二元一次方程组.【专题】计算题.【分析】根据方程的特点进行解答.【解答】解:①是用x表示y的形式,用代入法解答合适;②中的方程中的t项互为相反数,用加减法比较合适;故选C.【点评】本题考查了解二元一次方程组,熟悉解方程是解题的关键.10.二元一次方程x+2y=5的正整数解的个数是()A.1个B.2个C.3个D.4个【考点】解二元一次方程.【专题】计算题.【分析】方程用y表示出x,即可确定出正整数解.【解答】解:x+2y=5,变形得:x=5﹣2y,当y=1时,x=5﹣2=3;当y=2时,x=5﹣4=1,则方程的正整数解个数是2个.故选B【点评】此题考查了解二元一次方程,解题的关键的是将y看做已知数,求出x.11.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1,图2所示,图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项.把图1表示的算筹图用我们现在所熟悉的方程组形式表述出来,就是.类似地,图2所示的算筹图我们可以表述为()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】根据图形,结合题目所给的运算法则列出方程组.【解答】解:图2所示的算筹图我们可以表述为:.故选A.【点评】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程组.12.如图,长方形ABCD中有6个形状、大小相同的小长方形,且EF=3,CD=12,则大长方形ABCD的面积为()A.105 B.106 C.107 D.108【考点】二元一次方程组的应用.【分析】设每小长方形的宽为x,则每小长方形的长为y,根据一个小长方形的宽+2个小长方形的长=CD,列出方程,求出x,y的值,再根据长方形的面积公式计算即可.【解答】解:设每小长方形的宽为x,则每小长方形的长为y,根据题意得:,解得:,则AD=2+2+5=9,所以大长方形ABCD的面积为9×12=108,故选D【点评】此题考查了二元一次方程组的应用,关键是根据所给出的图形,找出相等关系,列出方程,求出小长方形的宽和长.二、填空题(本大题共6小题,每小题4分,共24分,在每小题中,请将你认为正确的答案填在答题卡相应位置的横线上)13.已知二元一次方程3x+y﹣1=0,用含y的代数式表示x,则x=﹣y+.【考点】解二元一次方程.【专题】计算题.【分析】将y看做已知数,x看做未知数,求出x即可.【解答】解:3x+y﹣1=0,移项得:3x=﹣y+1,解得:x=﹣y+.故答案为:x=﹣y+【点评】此题考查了解二元一次方程,解题的关键是将x看做已知数,y看做未知数.14.方程3x=5x﹣14的解是x= 7 .【考点】解一元一次方程.【专题】推理填空题.【分析】根据方程3x=5x﹣14,可以得到方程的解,本题得以解决.【解答】解:3x=5x﹣14移项,得﹣2x=﹣14,系数化为1,得x=7故答案为:7.【点评】本题考查解一元一次方程,解题的关键是明确一元一次方程的解法.15.比a的3倍大5的数是9,列出方程式是3a+5=9 .【考点】由实际问题抽象出一元一次方程.【分析】a的3倍表示为3a,由题意可列出方程.【解答】解:由题意得:比a的3倍的数大5的数为:3a+5,所以列出的方程为:3a+5=9.故答案为3a+5=9.【点评】此题主要考查了由实际问题抽象出一元一次方程,列方程的关键是正确找出题目的相等关系,找的方法是通过题目中的关键词如:大,小,倍等.16.若关于x的方程x2m﹣1+8=0是一元一次方程,则m= 1 .【考点】一元一次方程的定义.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:因为关于x的方程x2m﹣1+8=0是一元一次方程,可得:2m﹣1=1,解得:m=1.故答案为:1.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.17.某商品的价格标签已丢失,售货员只知道“它的进价为80元,打七折售出后,仍可获利5%”.你认为售货员应标在标签上的价格为120 元.【考点】一元一次方程的应用.【专题】销售问题.【分析】依据题意建立等量关系商品标价=进价×(1+5%)÷70%【解答】解:设售货员应标在标签上的价格为x元,依据题意70%x=80×(1+5%)可求得:x=120,故价格应为120元.【点评】此题首先读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.18.A和B两地相距140千米,甲、乙二人骑自行车分别从A和B两地同时出发,相向而行.丙驾驶摩托车,每小时行驶63千米,同时与甲从A出发,与乙相遇后立即返回,丙返回至甲时,甲、乙相距84千米.若甲车速是每小时9千米,则乙的速度为7 千米/时.【考点】一元一次方程的应用.【分析】可设丙驾驶摩托车与乙相遇时,甲行驶的路程是x千米,根据等量关系:甲、乙相距84千米,列出方程求解即可.【解答】解:设丙驾驶摩托车与乙相遇时,甲行驶的路程是x千米,依题意有x+(140﹣7x)=140﹣84,解得x=18,x=31.5,(140﹣7x)=×(140﹣126)=24.5,31.5÷9=3.5(小时),24.5÷3.5=7(千米/时).答:乙的速度为7千米/时.故答案为:7.【点评】考查了一元一次方程的应用,根据速度比得到路程比是解题的关键,本题设出丙驾驶摩托车与乙相遇时,甲行驶的路程是x千米可以简化计算量.三.解答题(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卷中对应的位置上.19.解方程(1)2(3x+4)﹣3(x﹣1)=3;(2).【考点】解一元一次方程.【专题】方程与不等式.【分析】(1)先去括号,再根据解一元一次方程的方法解答解可;(2)先去分母,再根据解一元一次方程的方法解答解可.【解答】解:(1)2(3x+4)﹣3(x﹣1)=3去括号,得6x+8﹣3x+3=3移项及合并同类项,得3x=﹣8系数化为1,得x=;(2)去分母,得5(2x+1)﹣3(x﹣1)=15去括号,得10x+5﹣3x+3=15移项及合并同类项,得7x=7系数化为1,得x=1.【点评】本题考查解一元一次方程,解题的关键是明确解一元一次方程的解法.20.解方程(1)(2).【考点】解二元一次方程组.【分析】(1)根据观察看出用代入法消去x,求出y的值,再把y的值代入①,求出x的值,从而得出方程组的解;(2)先把②×3,再与①相加,消去y,求出x的值,再把x的值代入求出y的值,即可得出答案.【解答】解:(1),把①代入②得:6y﹣7﹣y=13,解得;y=4,把y=4代入①得:x=17,则原方程组的解是;(2),②×3+①得:11x=33,解得;x=3,把x=3代入②得:y=﹣2,则原方程组的解是.【点评】此题主要考查了二元一次方程组的解法,解题的关键是消元,消元的方法有两种:①加减法消元,②代入法消元.当系数成倍数关系式一般用加减法消元,系数为1时,一般用代入法消元.四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卷中对应的位置上.21.方程和方程的解相同,求a的值.【考点】同解方程.【分析】先依据解方程的步骤求出方程的解,将x的值代入方程,求出a的值即可.【解答】解:解方程,分母化为整数可得:,去分母,得:2(17﹣20x)﹣6=8+10x,去括号,得:34﹣40x﹣6=8+10x,移项、合并同类项,得:﹣50x=﹣20,系数化为1,得:x=,根据题意,将x=代入方程,得:,,,,a=.【点评】本题主要考查解方程的能力,遵循去分母、去括号、移项、合并同类项、系数化为1等基本步骤是基础,观察方程特点简便计算是关键.22.若关于x、y的方程组的解也是方程x+y=1的解,求k的值.【考点】二元一次方程组的解;二元一次方程的解.【专题】探究型.【分析】根据关于x、y的方程组的解也是方程x+y=1的解,可以得到的解也是2x+y=k的解,从而可以得到k的值.【解答】解:∵关于x、y的方程组的解也是方程x+y=1的解,∴解得,将代入2x+y=k,得k=0,即k的值是0.【点评】本题考查二元一次方程组的解,二元一次方程的解,解题的关键是明确二元一次方程组的解适合其中的每一个方程.23.A,B两地相距160km,一艘船从A出发,顺水航行8h到B,而从B出发逆水航行10h 到A,已知船顺水航行、逆水航行的速度分别是静水速度与水流速度的和与差,求船在静水中的速度和水流速度.【考点】二元一次方程组的应用.【分析】设船在静水中的速度是x千米/时,水流速度是y千米/时.根据“顺水航行8h到B,而从B出发逆水航行10h到”列出方程组并解答.【解答】解:设船在静水中的速度是x千米/时,水流速度是y千米/时,依题意得,解得.答:船在静水中的速度是18千米每小时,水流速度是2千米每小时.【点评】本题考查了二元一次方程组的应用.当问题较复杂时,有时设与要求的未知量相关的另一些量为未知数,即为间接设元.无论怎样设元,设几个未知数,就要列几个方程.24.列方程解应用题甲、乙两人同时从相距25千米的A地去B地,甲骑车乙步行,甲的速度是乙的速度的3倍,甲到达B地停留40分钟,然后从B地返回A地,在途中遇见乙,这时距他们出发的时间恰好3小时,求两人的速度各是多少?【考点】一元一次方程的应用.【分析】可设乙的速度为x千米/小时,则甲的速度为3x千米/小时,根据关于路程的等量关系:甲、乙两人行驶的路程和是两个25千米,列出方程求解即可.【解答】解:设乙的速度为x千米/小时,则甲的速度为3x千米/小时,依题意有3x(3﹣)+3x=25×2,9x﹣2x+3x=50,10x=50,x=5,3x=15答:甲的速度为15千米/小时,乙的速度为5千米/小时.【点评】本题主要考查了一元一次方程的应用的知识,解答本题的关键是设出甲和乙的速度,根据题目给出的条件,找出合适的等量关系,列出方程,再求解,此题难度不大.五、解答题:(本大题2个小题,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程做在答题卷上.25.代数式ad﹣bc可用符号来表示,称之为二阶行列式.即,用二阶行列式可以解二元一次方程组.由得三个二阶行列式即,及那么方程组的解就是.(1)求出二阶行列式的值;(2)用二阶行列式解方程组.【考点】二元一次方程组的解;解二元一次方程组.【专题】新定义.【分析】(1)根据题意可以直接算出二阶行列式的值;(2)根据题意可以算出D、D X,D Y,从而可以求得x、y的值,本题得以解决.【解答】解:(1)由题意可得,=3×4﹣5×6=12﹣30=﹣18,即的值是﹣18;(2)∵,∴,由题意可得,D==3×(﹣1)﹣2×5=﹣3﹣10=﹣13,=(﹣1)×(﹣1)﹣2×2=1﹣4=﹣3,=3×2﹣(﹣1)×5=6+5=11,∴,,方程组的解是.【点评】本题考查二元一次方程组的解和解二元一次方程,解题的关键是明确题目中的新定义,根据新定义可以解决相关的问题.26.三位老师周末到某家电专卖店购买冰箱和空调,正值该专卖店举行“迎新春、大优惠”活动,具体优惠情况如下表:购物总金额(原价)折扣率不超过3000元的部分九折超过3000元但不超过5000元的部分八折超过5000元的部分七折(1)李老师所购物品的原价是6000元,李老师实际付5000 元(2)已知张老师购买了两件物品(一个冰箱和一个空调)共付费4060元.请问这两件物品的原价总共是多少元?(3)碰巧同一天赵老师也在同一家专卖店购买了同样的两件物品.但赵老师上午去购买的冰箱,下午去购买的空调,如此一来赵老师两次付款总额比张老师多花费了140元.已知此冰箱的原价比空调的原价要贵,求这两件物品的原价分别为多少元?【考点】二元一次方程组的应用.【分析】(1)根据原价=实际价格÷折扣率分段求出各段的价格相加即可得出结论;(2)根据原价=实际价格÷折扣率分段求出各段的价格相加即可得出结论;(3)设冰箱的原价为x元,空调的原价为y元,根据原价=实际价格÷折扣率列出关于x、y的二元一次方程组,解方程组即可得出结论.【解答】解:(1)3000×0.9+(5000﹣3000)×0.8+(6000﹣5000)×0.7,=3000×0.9+2000×0.8+1000×0.7,=5000(元).故答案为:5000.(2)3000+(4060﹣3000×0.9)÷0.8,=3000+1360÷0.8,=4700(元).答:这两件物品的原价总共是4700元.(3)设冰箱的原价为x元,空调的原价为y元,当x≤3000时,根据题意有,方程无解;当3000<x<5000时,根据题意有,解得:.答:冰箱的原价为3300元,空调的原价为1400元.【点评】本题考查了二元一次方程的应用,解题的关键:(1)(2)根据数量关系分段求出原价相加;(3)列出关于x、y的二元一次方程组.本题属于中档题,(1)(2)难度不大;(3)有些难度,需要根据冰箱原价是否超过3000元来分类讨论.解决该题型题目时,根据数量关系列出方程(或方程组)是关键.。
2015—2016学年度第二学期期中考试七年级数学试卷及答案

2015--2016学年度第二学期期中考试七年级数学试卷一、选择题(本题有5小题目,每小题3分,共15分;请你将正确答案的代号填入答题卷相应的括号中)1、如图,直线a ∥b ,∠1=37º,则∠2的度数是( )(A )57º (B )37º (C )143º (D )53º2、下列个组数中,是方程⎩⎨⎧=-=+13y x y x 的解的是( ) (A )⎩⎨⎧==12y x (B )⎩⎨⎧==13y x (C )⎩⎨⎧-==13y x (D )⎩⎨⎧==21y x3、如图,点A 的坐标是( )(A )(2,-2) (B )(-2,2)(C )(0,2) (D )(-2,0)4、若⎩⎨⎧==13y x 是方程32=-ay x 的一组解,则a 的值是()(A )1 (B )2 (C )3 (D )4,如果,1-), 所在位置的坐标为 (1,1-),所在() (A )(0,0) (B )(1,1)(C )(2,1) (D )(1,2)二、、填空题(本题共有5小题,每小题4分,共20分;请你将正确的答案填在答题卷相应的横线上)6、如图,直线a ,b 相交于点O ,∠1=43º,则∠2= º,∠3= º;7、请你写出方程1-=-y x 的一组整数解;8、点)3,5(-A 在第 象限,点)3,1(-B 在第 象限;9、如图,若∠1=∠2,则互相平行的线段是_____________;10、把点A (-4,2)向右平移3个单位长度得A1的坐标是 ;把点B (-4,2)向下平移3个单位长度得B2的坐标是 ;三、解答题(本题共5题,每小题6分,共30分)11、如图,直线a 、b 被直线c 所截若∠1=30°,∠2=150°,试说明a 与b 的位置关系。
12、解方程组 ⎩⎨⎧+==+y x y x 293213、解方程组 ⎩⎨⎧=-=+827y x y x14、如图,AD ∥BC ,AD 平分∠EAC ,∠EAD=50°,求∠B 和∠C 的度数。
重庆地区专用 七年级(下)期中数学试卷 (含答案)

七年级(下)期中数学试卷一、选择题(本大题共12小题,共48.0分)1.如图,直线AB与直线CD相交于点O,E是∠AOD内一点,已知OE⊥AB,∠BOD=45°,则∠COE的度数是()A.B.C.D.2.下列语句中正确的是()A. 49的算术平方根是7B. 49的平方根是C. 的平方根是7D. 49的算术平方根是3.如图,已知∠1=70°,如果CD∥BE,那么∠B的度数为()A.B.C.D.4.下列各式正确的是()A. B. C. D.5.以方程组的解为坐标的点(x,y)在平面直角坐标系中的位置是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限6.如图,下列判断正确的是()A. 若,则B. 若,则C. 若,则D. 若,则7.将点A(-1,2)向右平移4个单位长度,再向下平移3个单位长度,则平移后点的坐标是()A. B. C. D.8.若,则(2a-5)2-1的立方根是()A. 4B. 2C.D.9.已知,则a+b等于()A. 3B.C. 2D. 110.有下列四个命题:①相等的角是对顶角;②两条直线被第三条直线所截,同位角相等;③等角的补角相等;④平面内垂直于同一条直线的两条直线互相平行.其中真A. 1B. 2C. 3D. 411.在,1.414,,,π,中,无理数的个数有()A. 2个B. 3个C. 4个D. 5个12.如图a是长方形纸带,∠DEF=20°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是()A. B. C. D.二、填空题(本大题共6小题,共24.0分)13.在二元一次方程3x-2y=6中,用含x的代数式表示y,得y= ______ .14.如图,已知直线AB、CD相交于点O,OB平分∠DOE,∠DOE=80°,则∠AOC= ______ .15.若点M(a+5,a-3)在y轴上,则点M的坐标为______.16.规定符号[a]表示实数a的整数部分,[]=0,[4.15]=4.按此规定[+2]的值为______ .17.已知点P(a,b)到x轴的距离是2,到y轴的距离是5,且|a-b|=a-b,则P点坐标是______ .18.如图所示,数轴上表示2,的对应点分别为C、B,点C是AB的中点,则点A表示的数是______.三、计算题(本大题共3小题,共24.0分)19.计算+|3-|+-.20.解方程(组):(1)3(x-2)2=27(2)2(x-1)3+16=0.(3).21.已知,直线AB∥CD,E为AB、CD间的一点,连接EA、EC.(1)如图①,若∠A=20°,∠C=40°,则∠AEC=______°.(2)如图②,若∠A=x°,∠C=y°,则∠AEC=______°.(3)如图③,若∠A=α,∠C=β,则α,β与∠AEC之间有何等量关系.并简要说明.四、解答题(本大题共7小题,共54.0分)22.如图,直线AB、CD相交于O点,∠AOC=80°,OE⊥AB,OF平分∠DOB,求∠EOF的度数.23.在下列括号中填写推理理由:如图,∠1=∠2,DE⊥BC,AB⊥BC,求证:∠A=∠3.证明:∵DE⊥BC,AB⊥BC(已知)∴∠DEC=∠ABC=90°(______ )∴DE∥AB(______ )∴∠2= ______ (______ )∠1= ______ (______ )又∠1=∠2(已知),∴∠A=∠3(等量代换)24.在平面直角坐标系中,已知点A(-4,3)、B(-2,-3)(1)描出A、B两点的位置,并连结AB、AO、BO.(2)△AOB的面积是______.(3)把△AOB向右平移4个单位,再向上平移2个单位,画出平移后的△A′O′B′,并写出各点的坐标.25.某校团委为了教育学生,开展了以感恩为主题的有奖征文活动,并为获奖的同学颁发奖品.小红与小明去文化商店购买甲、乙两种笔记本作为奖品,若买甲种笔记本20个,乙种笔记本10个,共用110元;且买甲种笔记本30个比买乙种笔记本20个少花10元.求甲、乙两种笔记本的单价各是多少元?26.已知2a-1的算术平方根是3,3a+b-1的平方根是±4,c是的整数部分,求a+2b-c的平方根.27.如图,点E在DF上,点B在AC上,∠1=∠2,∠C=∠D.试说明:AC∥DF.28.在平面直角坐标系中,A(a,0),B(b,0),C(-1,2)(见图1),且|2a+b+1|+=0(1)求a、b的值;(2)①在x轴的正半轴上存在一点M,使△COM的面积=△ABC的面积,求出点M的坐标;②在坐标轴的其它位置是否存在点M,使△COM的面积=△ABC的面积仍然成立?若存在,请直接写出符合条件的点M的坐标;(3)如图2,过点C作CD⊥y轴交y轴于点D,点P为线段CD延长线上的一动点,连接OP,OE平分∠AOP,OF⊥OE.当点P运动时,的值是否会改变?若不变,求其值;若改变,说明理由.答案和解析1.【答案】B【解析】解:∵OE⊥AB,∠BOD=45°,∴∠EOD=90°-45°=45°(余角定义),∴∠COE=180°-45°=135°(补角定义),故选:B.利用垂直的定义,结合已知条件先求∠EOD的度数,再根据补角定义,求∠COE的度数.利用互余互补的性质计算.2.【答案】A【解析】解:A,故A正确;B ,故B说法错误;C 负数没有平方根,故C说法错误;D=7,故D说法错误;故选:A.根据一个正数有一个算术平方根,有两个平方根,可得答案.本题考查了算术平方根,注意负数没有平方根,一个正数只有一个算术平方根.3.【答案】C【解析】解:如图,∵∠1=70°,∴∠2=∠1=70°,∵CD∥BE,∴∠B=180°-∠1=180°-70°=110°.故选:C.先求出∠1的对顶角,再根据两直线平行,同旁内角互补即可求出.本题利用对顶角相等和平行线的性质,需要熟练掌握.4.【答案】A【解析】解:A、±=±1,故选项正确;B、=2,故选项错误;C、=6,故选项错误;D、=-3,故选项错误.故选:A.利用立方根,平方根及算术平方根进行运算后即可得到正确的选项.本题考查了立方根,平方根及算术平方根,熟记这些概念是解题的关键.5.【答案】A【解析】解:根据题意,可知-x+2=x-1,∴x=,∴y=.∵x>0,y>0,∴该点坐标在第一象限.故选:A.此题可解出的x、y的值,然后根据x、y的值可以判断出该点在何象限内.此题考查二元一次方程组的解法及象限的符号特征:利用代入消元或加减消元求得方程组的解为x=,y=,第一象限横纵坐标都为正;第二象限横坐标为负;纵坐标为正;第三象限横纵坐标都为负;第四象限横坐标为正,纵坐标为负.6.【答案】B【解析】解:A、∵∠1=∠2,∴AB∥DC,故此选项错误;C、若∠A=∠3,无法判断AD∥BC,故此选项错误;D、若∠A+∠ADC=180°,则AB∥DC,故此选项错误;故选:B.分别利用平行线的判定定理判断得出即可.此题主要考查了平行线的判定,熟练掌握平行线的判定定理是解题关键.7.【答案】C【解析】解:将点A(-1,2)向右平移4个单位长度,再向下平移3个单位长度,则平移后点的坐标是(-1+4,2-3),即(3,-1),故选:C.直接利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减,据此可得.本题主要考查了平移中点的变化规律:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.8.【答案】B【解析】解:∵=2,∴a=4,∴(2a-5)2-1=8,则8的立方根为2.故选:B.根据已知求出a的值,代入所求式子中计算得到结果,求出结果的立方根即可.此题考查了立方根,以及算术平方根,熟练掌握各自的定义是解本题的关键.9.【答案】A【解析】解:,∵①+②得:4a+4b=12,∴a+b=3.故选:A.①+②得出4a+4b=12,方程的两边都除以4即可得出答案.本题考查了解二元一次方程组的应用,关键是检查学生能否运用巧妙的方法求出答案,题目比较典型,是一道比较好的题目.10.【答案】B【解析】解:相等的角不一定是对顶角,所以①错误;两条平行直线被第三条直线所截,同位角相等,所以②错误;等角的补角相等,所以③正确;在同一平面内,垂直于同一条直线的两条直线互相平行,所以④正确.真命题有2个,故选B.根据对顶角的定义对①进行判断;根据平行线的性质对②进行判断;根据补角的定义对③进行判断;根据平行线的判定方法对④进行判断.本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.11.【答案】B【解析】解:无理数有-,,π,共3个,故选B.无理数包括三方面的数:①含π的,②一些有规律的数,③开方开不尽的数,根据以上内容判断即可.本题考查了对无理数的定义的理解和运用,注意:无理数是指无限不循环小数,包括三方面的数:①含π的,②一些有规律的数,③开方开不尽的数.12.【答案】B解:∵AD∥BC,∴∠DEF=∠EFB=20°,在图b中∠GFC=180°-2∠EFG=140°,在图c中∠CFE=∠GFC-∠EFG=120°,故选B.由题意知∠DEF=∠EFB=20°图b∠GFC=140°,图c中的∠CFE=∠GFC-∠EFG.本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.13.【答案】【解析】解:3x-2y=6,解得:y=.故答案为:.将x看做已知数,求出y即可.此题考查了解二元一次方程,解题的关键是将x看做已知数,y看做未知数.14.【答案】40°【解析】解:∵∠DOE=80°,OB平分∠DOE,∴∠DOB=∠BOE=40°,∴∠DOB=∠AOC=40°.故答案为:40°.根据角平分线的定义和对顶角相等可求得.本题考查了对顶角和邻补角,以及角平分线的定义,解题的关键是熟练运用定义,此题比较简单,易于掌握.15.【答案】(0,-8)【解析】解:∵点M(a+5,a-3)在y轴上,∴a+5=0,解得a=-5,∴a-3=-5-3=-8,∴点M的坐标为(0,-8).故答案为:(0,-8).根据y轴上点的横坐标为0列出方程求出a,再求解即可.本题考查了点的坐标,熟记y轴上点的横坐标为0是解题的关键.16.【答案】5【解析】解:∵<<,∴3<<4,整数部分为3,∴[+2]=5.故答案为:5.利用无理数的估算方法求出的整数部分,继而可确定答案.本题考查了估算无理数的大小,注意无理数的估算方法的运用.17.【答案】(5,2)或(5,-2)【解析】【分析】本题考查了点的坐标的确定、点到坐标轴的距离,解决本题的关键是进行分类讨论,并明确到x轴的距离等于点的纵坐标的绝对值,到y轴的距离等于横坐标的绝对值,是容易出错的题.根据|a-b|=a-b,可得a-b≥0,再根据点P(a,b)到x轴的距离是2,到y轴的距离是5,即可解答.【解答】解:∵丨a-b丨=a-b,∴a-b≥0,∵P(a,b)到x轴的距离是2,到y轴的距离是5,∴|a|=5,|b|=2,∴a=5,b=±2,∴P点的坐标为(5,2)或(5,-2).故答案为(5,2)或(5,-2).18.【答案】4-【解析】解:∵数轴上表示2,的对应点分别为C、B,∴BC=,∵点C是AB的中点,∴AC=BC=,∴点A表示的数为2-()=4-.首先结合数轴利用已知条件求出线段CB的长度,然后根据中点的性质即可求出点A表示的数.此题主要考查利用求数轴上两点的距离和中点的性质.19.【答案】解:原式=-2+-3+-=-4.【解析】原式第一项利用立方根定义化简,第二项利用绝对值的代数意义化简,后两项利用平方根定义化简,计算即可得到结果.此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.【答案】解:(1)方程整理得:(x-2)2=9,开方得:x-2=3或x-2=-3,解得:x=5或x=-1;(2)方程整理得:(x-1)3=-8,开立方得:x-1=-2,解得:x=-1;(3),①×2-②得:11y=22,解得:y=2,把y=2代入①得:x=1,则方程组的解为.【解析】(1)方程整理后,利用平方根定义开方即可求出解;(2)方程整理后,利用立方根定义开立方即可求出解;(3)方程组利用加减消元法求出解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.21.【答案】60 360-x-y【解析】解:如图,过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF.(1)∵∠A=20°,∠C=40°,∴∠1=∠A=20°,∠2=∠C=40°,∴∠AEC=∠1+∠2=60°;(2)∴∠1+∠A=180°,∠2+∠C=180°,∵∠A=x°,∠C=y°,∴∠1+∠2+x°+y°=360°,∴∠AEC=360°-x°-y°;(3)∠A=α,∠C=β,∴∠1+∠A=180°,∠2=∠C=β,∴∠1=180°-∠A=180°-α,∴∠AEC=∠1+∠2=180°-α+β.首先都需要过点E作EF∥AB,由AB∥CD,可得AB∥CD∥EF.(1)根据两直线平行,内错角相等,即可求得∠AEC的度数;(2)根据两直线平行,同旁内角互补,即可求得∠AEC的度数;(3)根据两直线平行,内错角相等;两直线平行,同旁内角互补,即可求得∠AEC的度数.此题考查了平行线的性质:两直线平行,内错角相等;两直线平行,同旁内角互补.解此题的关键是准确作出辅助线:作平行线,这是此类题目的常见解法.22.【答案】解:∵∠AOC=80°,∴∠BOD=∠AOC=80°,∵OF平分∠DOB,∴∠DOF=∠DOB=40°,∵OE⊥AB,∴∠AOE=90°,∵∠AOC=80°,∴∠EOD=180°-90°-80°=10°,∴∠EOF=∠EOD+∠DOF=10°+40°=50°.【解析】根据对顶角得出∠BOD=∠AOC=80°,根据角平分线定义求出∠DOF=∠DOB=40°,求出∠AOE=90°,求出∠EOD=10°,代入∠EOF=∠EOD+∠DOF求出即可.本题考查了垂直定义,邻补角、对顶角等知识点,能求出∠DOE和∠DOF的度数是解此题的关键.23.【答案】垂直定义;同位角相等,两直线平行;∠3;两直线平行,内错角相等;∠A;两直线平行,同位角相等【解析】证明:∵DE⊥BC,AB⊥BC(已知)∴∠DEC=∠ABC=90°(垂直定义)∴DE∥AB(同位角相等,两直线平行)∴∠2=∠3(两直线平行,内错角相等)∠1=∠A(两直线平行,同位角相等)又∠1=∠2(已知),∴∠A=∠3(等量代换),故答案为:垂直定义;同位角相等,两直线平行;∠3;两直线平行,内错角相等;∠A;两直线平行,同位角相等。
2015-2016年重庆七十一中七年级下学期期中数学试卷带解析答案

2015-2016学年重庆七十一中七年级(下)期中数学试卷一.选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号在答题卡中对应的方框涂黑.1.(4分)方程2x+4=0的解是()A.2 B.﹣2 C.3 D.﹣32.(4分)方程x+2y=7在自然数范围内的解()A.有无数个B.只有一个C.只有3个D.以上都不对3.(4分)是方程mx﹣3y=2的一个解,则m为()A.8 B.﹣8 C.4 D.﹣44.(4分)方程组的解为()A.B.C.D.5.(4分)若代数式2a+7的值不大于3,则a的取值范围是()A.a≤4 B.a≤﹣2 C.a≥4 D.a≥﹣26.(4分)不等式2x﹣1≤5的解集在数轴上表示为()A.B.C.D.7.(4分)如图天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围在数轴上可表示为()A.B.C.D.8.(4分)方程7(2x﹣1)﹣3(4x﹣1)=11去括号后,正确的是()A.14x﹣7﹣12x+1=11 B.14x﹣1﹣12x﹣3=11C.14x﹣7﹣12x+3=11 D.14x﹣1﹣12x+3=119.(4分)不等式组的最小整数解是()A.0 B.1 C.2 D.﹣110.(4分)如果方程组的解中的x与y的值相等,那么a的值是()A.1 B.2 C.3 D.411.(4分)某车间56名工人,每人每天能生产螺栓16个或螺母24个,设有x 名工人生产螺栓,有y名工人生产螺母,每天生产的螺栓和螺母按1:2配套,所列方程组正确的是()A.B.C.D.12.(4分)若abc≠0,且a,b,c满足方程组,则=()A.﹣1 B.1 C.D.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答卷中对应的横线上.13.(4分)不等式x+3>5的解集为.14.(4分)当X=时,代数式3(x﹣2)与2(2+x)的值相等.15.(4分)写出一个解为的二元一次方程组是.16.(4分)已知是二元一次方程组的解,则a﹣b=.17.(4分)某校一次普法知识竞赛共有30道题.规定答对一道题得4分,答错或不答一道题得﹣1分,在这次竞赛中,小明获得优秀(90分或90分以上),则小明至少答对了道题.18.(4分)牧场上一片青草,每天牧草都匀速生长.这片牧草可供10头牛吃20天,或者可供15头牛吃10天.那么可供25头牛吃天.三、解答题(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程书写在答卷中对应的位置上.19.(7分)解方程或方程组:(1)2(x﹣3)=3(x+1)(2).20.(7分)解不等式组:,并把它的解集在数轴上表示出来.四.解答题:(本大题4个小题,每小题l0分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程书写在答卷中对应的位置上.21.(10分)不等式≤1的解集中最小整数解也是方程的解,求m的值.22.(10分)已知关于x,y的方程组的解是非负数,求整数m的值.23.(10分)甲、乙两站间的路程为297千米,一辆慢车从甲站开往乙站,走了1小时30分钟后,另一辆快车从乙站开往甲站,已知慢车每小时行46千米,快车每小时行68千米,问快车驶出后经过多少小时两辆车相遇?24.(10分)对x,y定义一种新运算,规定:(其中a,b均为非零常数),这里等式右边是通常的四则运算.例如:.已知f(1,﹣1)=﹣2;f(4,2)=1.(1)求a,b的值;(2)若关于m的不等式f(2m,5﹣4m)≤5﹣2k恰好有3个负整数解,求实数k的取值范围.五、解答题(本大题2个小题,每小题l2分,共24分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答卷中对应的位置上.25.(12分)为实现区域教育均衡发展,我市计划对某县A、B两类薄弱学校全部进行改造.根据预算,共需资金1575万元.改造一所A类学校和两所B类学校共需资金230万元;改造两所A类学校和一所B类学校共需资金205万元.(1)改造一所A类学校和一所B类学校所需的资金分别是多少万元?(2)若该县的A类学校不超过5所,则B类学校至少有多少所?(3)我市计划今年对该县A、B两类学校共6所进行改造,改造资金由国家财政和地方财政共同承担.若今年国家财政拨付的改造资金不超过400万元;地方财政投入的改造资金不少于70万元,其中地方财政投入到A、B两类学校的改造资金分别为每所10万元和15万元.请你通过计算求出有几种改造方案?26.(12分)“利海”通讯器材商场,计划用60000元从厂家购进若干部新型手机,以满足市场需求,已知该厂家生产三种不同型号的手机,出厂价分别为甲种型号手机每部1800元,乙种型号手机每部600元,丙种型号手机每部1200元.(1)若商场同时购进其中两种不同型号的手机共40部,并将60000元恰好用完.请你帮助商场计算一下如何购买;(2)若商场同时购进三种不同型号的手机共40部,并将60000元恰好用完,并且要求乙种型号手机的购买数量不少于6部且不多于8部,请你求出商场每种型号手机的购买数量.2015-2016学年重庆七十一中七年级(下)期中数学试卷参考答案与试题解析一.选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号在答题卡中对应的方框涂黑.1.(4分)方程2x+4=0的解是()A.2 B.﹣2 C.3 D.﹣3【解答】解:移项,得2x=﹣4,系数化成1得:x=﹣2.故选:B.2.(4分)方程x+2y=7在自然数范围内的解()A.有无数个B.只有一个C.只有3个D.以上都不对【解答】解:由已知,得y=,要使x,y都是自然数,合适的x值只能是x=1,3,5,7,相应的y值为y=3,2,1,0.∴解为,,,.故选:D.3.(4分)是方程mx﹣3y=2的一个解,则m为()A.8 B.﹣8 C.4 D.﹣4【解答】解:把代入方程得:m﹣6=2,解得:m=8,故选:A.4.(4分)方程组的解为()A.B.C.D.【解答】解:,②﹣①得:x=4,把x=4代入①得y=﹣3,所以方程组的解为:,故选:D.5.(4分)若代数式2a+7的值不大于3,则a的取值范围是()A.a≤4 B.a≤﹣2 C.a≥4 D.a≥﹣2【解答】解:依题意得2a+7≤3,2a≤﹣4,a≤﹣2.故选:B.6.(4分)不等式2x﹣1≤5的解集在数轴上表示为()A.B.C.D.【解答】解:解不等式得:x≤3,所以在数轴上表示为故选:A.7.(4分)如图天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围在数轴上可表示为()A.B.C.D.【解答】解:由图示得A>1,A<2,故选:A.8.(4分)方程7(2x﹣1)﹣3(4x﹣1)=11去括号后,正确的是()A.14x﹣7﹣12x+1=11 B.14x﹣1﹣12x﹣3=11C.14x﹣7﹣12x+3=11 D.14x﹣1﹣12x+3=11【解答】解:去括号得:(14x﹣7)﹣(12x﹣3)=11,即:14x﹣7﹣12x+3=11.故选:C.9.(4分)不等式组的最小整数解是()A.0 B.1 C.2 D.﹣1【解答】解:由①得,x>﹣,由②得,x≤4,所以不等式的解集为:﹣<x≤4,其最小整数解是0.故选:A.10.(4分)如果方程组的解中的x与y的值相等,那么a的值是()A.1 B.2 C.3 D.4【解答】解:∵x与y的值相等,∴3x+7x=10,解得x=y=1,把x=y=1代入2ax+(a﹣1)y=5,得2a+a﹣1=5解得a=2.故选:B.11.(4分)某车间56名工人,每人每天能生产螺栓16个或螺母24个,设有x 名工人生产螺栓,有y名工人生产螺母,每天生产的螺栓和螺母按1:2配套,所列方程组正确的是()A.B.C.D.【解答】解:根据生产螺栓人数+生产螺母人数=56人,得方程x+y=56;根据螺栓数量的2倍=螺母数量,得方程2×16x=24y.列方程组为.故选:A.12.(4分)若abc≠0,且a,b,c满足方程组,则=()A.﹣1 B.1 C.D.【解答】解:方程组整理得:,①×3+②×2得:23a=23c,即a=c,把a=c代入①得:b=2c,则原式==1,故选:B.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答卷中对应的横线上.13.(4分)不等式x+3>5的解集为x>2.【解答】解:移项得,x>5﹣3,合并同类项得,x>2.故答案为:x>2.14.(4分)当X=10时,代数式3(x﹣2)与2(2+x)的值相等.【解答】解:根据题意得:3(x﹣2)=2(2+x),去括号得:3x﹣6=4+2x,移项合并得:x=10.故答案为:10.15.(4分)写出一个解为的二元一次方程组是.【解答】解:根据题意得:.故答案为:16.(4分)已知是二元一次方程组的解,则a﹣b=﹣1.【解答】解:把代入二元一次方程组得:,解得:,∴a﹣b=2﹣3=﹣1,故答案为:﹣1.17.(4分)某校一次普法知识竞赛共有30道题.规定答对一道题得4分,答错或不答一道题得﹣1分,在这次竞赛中,小明获得优秀(90分或90分以上),则小明至少答对了24道题.【解答】解:设小明答对了x题.故(30﹣x)×(﹣1)+4x≥90,解得:x≥24.故答案为:x≥24.18.(4分)牧场上一片青草,每天牧草都匀速生长.这片牧草可供10头牛吃20天,或者可供15头牛吃10天.那么可供25头牛吃5天.【解答】解:设一天牛每天吃牧草x千克,牧场的牧草每天生长y千克,根据题意得:10×20x﹣20y=15×10x﹣10y,∴y=5x,∴牧场原有牧草10×20x﹣20y=100x.100x÷(25x﹣y)=100x÷(25x﹣5x)=5.故答案为:5.三、解答题(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程书写在答卷中对应的位置上.19.(7分)解方程或方程组:(1)2(x﹣3)=3(x+1)(2).【解答】解:(1)去括号得:2x﹣6=3x+3,移项合并得:﹣x=9,解得:x=﹣9;(2)①×2+②得:11x=22,即x=2,把x=2代入①得:y=3,则原方程组的解为.20.(7分)解不等式组:,并把它的解集在数轴上表示出来.【解答】解:不等式可化为:,即;在数轴上表示为:故不等式组的解集为:﹣2≤x<1.四.解答题:(本大题4个小题,每小题l0分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程书写在答卷中对应的位置上.21.(10分)不等式≤1的解集中最小整数解也是方程的解,求m的值.【解答】解:去分母,得:2(2x﹣1)﹣3(5x+1)≤6,去括号,得:4x﹣2﹣15x﹣3≤6,移项,得:4x﹣15x≤6+2+3,合并同类项,得:﹣11x≤11,系数化为1,得:x≥﹣1,∴不等式的最小整数解为﹣1,根据题意,将x=﹣1代入方程,得:﹣1=1+,解得:m=﹣1.22.(10分)已知关于x,y的方程组的解是非负数,求整数m的值.【解答】解:解方程组可得因为x≥0,y≥0,所以解得所以≤m≤,因为m为整数,故m=7,8,9,10.23.(10分)甲、乙两站间的路程为297千米,一辆慢车从甲站开往乙站,走了1小时30分钟后,另一辆快车从乙站开往甲站,已知慢车每小时行46千米,快车每小时行68千米,问快车驶出后经过多少小时两辆车相遇?【解答】解:设快车驶出x小时两车相遇,46(x+1.5)+68x=297 或46×1.5+(46+68)x=297解得:x=2,答:快车驶出2小时两车相遇.24.(10分)对x,y定义一种新运算,规定:(其中a,b均为非零常数),这里等式右边是通常的四则运算.例如:.已知f(1,﹣1)=﹣2;f(4,2)=1.(1)求a,b的值;(2)若关于m的不等式f(2m,5﹣4m)≤5﹣2k恰好有3个负整数解,求实数k的取值范围.【解答】解:(1)由题意得:,解得;(2)由(1)可知:f(x,y)=,∴f(2m,5﹣4m)=≤5﹣2k,3﹣2m≤5﹣2k,∴m≥﹣1+k,∵不等式f(2m,5﹣4m)≤5﹣2k恰好有3个负整数解,∴﹣4<﹣1+k≤﹣3,∴﹣3<k≤﹣2.五、解答题(本大题2个小题,每小题l2分,共24分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答卷中对应的位置上.25.(12分)为实现区域教育均衡发展,我市计划对某县A、B两类薄弱学校全部进行改造.根据预算,共需资金1575万元.改造一所A类学校和两所B类学校共需资金230万元;改造两所A类学校和一所B类学校共需资金205万元.(1)改造一所A类学校和一所B类学校所需的资金分别是多少万元?(2)若该县的A类学校不超过5所,则B类学校至少有多少所?(3)我市计划今年对该县A、B两类学校共6所进行改造,改造资金由国家财政和地方财政共同承担.若今年国家财政拨付的改造资金不超过400万元;地方财政投入的改造资金不少于70万元,其中地方财政投入到A、B两类学校的改造资金分别为每所10万元和15万元.请你通过计算求出有几种改造方案?【解答】解:(1)设改造一所A类学校和一所B类学校所需的改造资金分别为a 万元和b万元.依题意得:,解得:,答:改造一所A类学校和一所B类学校所需的改造资金分别为60万元和85万元;(2)设该县有A、B两类学校分别为m所和n所.则60m+85n=1575,,∵A类学校不超过5所,∴﹣n+≤5,∴n≥15,即:B类学校至少有15所;(3)设今年改造A类学校x所,则改造B类学校为(6﹣x)所,依题意得:解得:1≤x≤4∵x取整数∴x=1,2,3,4答:共有4种方案.26.(12分)“利海”通讯器材商场,计划用60000元从厂家购进若干部新型手机,以满足市场需求,已知该厂家生产三种不同型号的手机,出厂价分别为甲种型号手机每部1800元,乙种型号手机每部600元,丙种型号手机每部1200元.(1)若商场同时购进其中两种不同型号的手机共40部,并将60000元恰好用完.请你帮助商场计算一下如何购买;(2)若商场同时购进三种不同型号的手机共40部,并将60000元恰好用完,并且要求乙种型号手机的购买数量不少于6部且不多于8部,请你求出商场每种型号手机的购买数量.【解答】解:(1)设甲种型号手机要购买x部,乙种型号手机购买y部,丙种型号手机购买z部.①购进甲、乙:根据题意得:,解得:;②购进甲、丙:根据题意得:,解得;③购进乙、丙:根据题意得:解得:(不合题意舍去).答:有两种购买方法:甲种手机购买30部,乙种手机购买10部,或甲种手机购买20部,丙种手机购买20部;(2)根据题意得:解得:或或.答:若甲种型号手机购买26部,则乙种型号手机购买6部,丙种型号手机购买8部;若甲种型号手机购买27部,则乙种型号手机购买7部,丙种型号手机购买6部;若甲种型号手机购买28部,则乙种型号手机购买8部,丙种型号手机购买4部.。
重庆地区专用七年级(下)期中数学试卷(含答案)

七年级(下)期中数学试卷一、选择题(本大题共12小题,共48.0分)1.下列数中最小的数是()A. 0B.C.D.2.在平面直角坐标系中,点A(2,-3)在第()象限.A. 一B. 二C. 三D. 四3.下列各式中,正确的是()A. B. C. D.4.如图,已知AB∥CD,∠B=60°,则∠1的度数是()A. B. C. D.5.如图,若在象棋盘上建立直角坐标系,使“帅”位于点(-1,-2).“馬”位于点(2,-2),则“兵”位于点()A. B. C. D.6.下列说法错误的是()A. 是9的平方根B. 的平方等于5C. 的立方根是D. 9的算术平方根是37.已知:如图,由AD∥BC,可以得到()A.B.C.D.8.如图,Rt△ABC中,∠ACB=90°,DE过点C且平行于AB,若∠BCE=35°,则∠A的度数为()A. B. C. D.9.下列语句中,假命题的是()A. 如果在x轴上,那么在y轴上B. 相等的两个角是对顶角C. 如果直线a、b、c满足,,那么D. 两直线平行,同旁内角互补10.当的值为最小值时,a的取值为()A. B. 0 C. D. 111.如图①,一张四边形纸片ABCD,∠A=50°,∠C=150°.若将其按照图②所示方式折叠后,恰好MD′∥AB,ND′∥BC,则∠D的度数为()A. B. C. D.12.如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2013次碰到矩形的边时,点P的坐标为()A. B. C. D.二、填空题(本大题共6小题,共24.0分)13.-8的立方根是______.14.若二次根式有意义,则x的取值范围是______.15.若M(x-2,x+3)在y轴上,那么M点坐标是______ .16.若x,y满足,则A(x,y)在第______ 象限.17.如图,将一副三角板和一张对边平行的纸条按如图方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是______.18.如图,将边长为1的正方形OAPB沿x轴正方向连续翻转2014次,点P依次落在点P1,P2,P3,P4,…,则点P2014的坐标是______ .三、计算题(本大题共1小题,共7.0分)19.如图,AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠AEF,∠2=110°,求∠1的度数.四、解答题(本大题共7小题,共71.0分)20.若,求a+b的值.21.计算或解方程组.(1)-23÷(-2)+;(2).22.推理填空:如图AB∥CD,∠1=∠2,∠3=∠4,试说明AD∥BE.解:∵AB∥CD(已知)∴∠4=∠1+______(______)∵∠3=∠4(已知)∴∠3=∠1+______(______)∵∠1=∠2(已知)∴∠1+∠CAF=∠2+∠CAF(______)即∠______=∠______∴∠3=∠______(______)∴AD∥BE(______).23.如图,直角坐标系中,三角形ABC的顶点都在网格点上,其中,C点坐标为(1,2),(1)写出点A、B的坐标;(2)求出三角形ABC的面积;(3)若三角形A1B1C1向左平移2个单位,再向下平移2个单位,恰好得到三角形ABC,试在该直角平面坐标系中画出三角形A1B1C1.24.如图,直线AB、CD相交于点O,OE⊥AB,点O为垂足,OF平分∠AOC,且∠COE:∠AOC=2:5,求∠DOF的度数.25.已知,BC∥OA,∠B=∠A=100°,试回答下列问题:(1)如图1所示,求证:OB∥AC;(2)如图2,若点E、F在BC上,且满足∠FOC=∠AOC,并且OE平分∠BOF.试求∠EOC的度数;(3)在(2)的条件下,若平行移动AC,如图3,则∠OCB:∠OFB的值是______ .26.如图所示,在直角梯形OABC中,CB∥OA,CB=8,OC=8,OA=16.(1)直接写出点A、B、C的坐标,并且求出直角梯形OABC的面积;(2)动点P沿x轴的正方向以每秒2个单位的速度从原点出发,经过多少时间后PC直线把直角梯形OABC分成面积相等的两部分?(3)当P点运动(2)中的位置时,在y轴上是否存在一点Q,连接PQ,使S△CPQ=S (即三角形CPQ的面积=梯形OABC的面积)?若存在这样一点,求出点Q 梯形OABC的坐标;若不存在,请说明理由.答案和解析1.【答案】D【解析】解:-最小,故选:D.根据正数比0大,负数比0小,两个负数相比较,绝对值大的反而小可直接得到答案.此题主要考查了实数的比较大小,关键是掌握比较大小的法则.2.【答案】D【解析】解:点A(2,-3)在第四象限.故选:D.根据各象限内点的坐标特征解答即可.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3.【答案】A【解析】解:A、==5,故正确;B、一个正数的平方根有两个,故错误;C、36的算术平方根为6,故错误;D、==,故错误.故选A.分别利用算术平方根和平方根的定义逐项进行判断即可得到正确的答案.本题考查了平方根与算术平方根的定义,一个正数的平方根有两个,他们互为相反数.4.【答案】D【解析】解:∵AB∥CD,∠B=60°,∴∠2=∠B=60°,∴∠1=180°-60°=120°.首先根据平行线的性质,得∠B的内错角是60°,再根据邻补角的定义,得∠1的度数是180°-60°=120°.本题考查了平行线的性质以及邻补角的定义,解答本题的关键是掌握:两直线平行,内错角相等.5.【答案】C【解析】解:∵在象棋盘上建立直角坐标系,使“帅”位于点(-1,-2).“馬”位于点(2,-2),∴可得出原点位置在棋子炮的位置,∴“兵”位于点:(-3,1),故选:C.根据“帅”位于点(-1,-2).“馬”位于点(2,-2),得出原点的位置即可得出答案.此题主要考查了直角坐标系的建立以及点的坐标确定,此类题型是个重点也是难点,需要掌握确定原点的方法是解决问题的关键.6.【答案】C【解析】解:A、9的平方根是±3,故A正确;B、5的平方根是,故B正确;C、=-3,故C错误;D、=3,故D正确;故选:C.根据开平方的意义,可判断A、B、D,根据开立方的意义,可判断C.本题考查了立方根,注意一个数只有一个立方根.7.【答案】C【解析】解:A、∠1=∠2,因为它们不是两平行线被截得的同位角或内错角,故错误;B、∠3=∠4,因为它们不是两平行线被截得的同位角或内错角,不符合题意,故错误;C、∠3=∠2,因为它们是两平行线被截得的内错角,符合题意,故正确;D、∠1=∠4,因为它们不是两平行线被截得的内错角,不符合题意,故错误;此题是AD与BC两条平行线被BD所截,截得的内错角为∠2与∠3;根据两直线平行,内错角相等,可得∠2=∠3.此题考查了平行线的性质:两直线平行,内错角相等.解题的关键是找到截线与被截线.8.【答案】C【解析】解:∵AB∥DE,∠BCE=35°,∴∠B=∠BCE=35°(两直线平行,内错角相等),又∵∠ACB=90°,∴∠A=90°-35°=55°(在直角三角形中,两个锐角互余).故选:C.题中有三个条件,图形为常见图形,可先由AB∥DE,∠BCE=35°,根据两直线平行,内错角相等求出∠B,然后根据三角形内角和为180°求出∠A.两直线平行时,应该想到它们的性质,由两直线平行的关系得到角之间的数量关系,从而达到解决问题的目的.9.【答案】B【解析】解:A、正确,为真命题;B、相等的角不一定是对顶角,故错误,为假命题;C、正确,为真命题;D、正确,为真命题.故选B.利用坐标轴上的点的特点、对顶角的性质、平行线的性质等知识对各选项逐一判断后即可确定题目的答案.本题考查了命题与定理的知识,解题的关键是了解坐标轴上的点的特点、对顶角的性质、平行线的性质等知识,属于基础题,比较简单.10.【答案】C【解析】解:取最小值,即4a+1=0.得a=,故选:C.由于≥0,由此得到4a+1=0取最小值,这样即可得出a的值.本题考查的是知识点有:算术平方根恒大于等于0,且只有最小值,为0;没有最大值.11.【答案】C【解析】解:∵△MND′由△MND翻折而成,∴∠1=∠D′MN,∠2=∠D′NM,∵MD′∥AB,ND′∥BC,∠A=50°,∠C=150°∴∠1+∠D′MN=∠A=50°,∠2+∠D′NM=∠C=150°,∴∠1=∠D′MN===25°,∠2=∠D′NM===75°,∴∠D=180°-∠1-∠2=180°-25°-75°=80°.故选C.先根据翻折变换的性质得出∠1=∠D′MN,∠2=∠D′NM,再由平行线的性质求出∠1+∠=∠D′MN及∠2+∠D′NM的度数,进而可得出结论.本题考查的是翻折变换的性质及平行线的性质,解答此类题目时往往隐含了三角形的内角和是180°这一知识点.12.【答案】D【解析】解:如图,经过6次反弹后动点回到出发点(0,3),∵2013÷6=335…3,∴当点P第2013次碰到矩形的边时为第336个循环组的第3次反弹,点P的坐标为(8,3).故选:D.根据反射角与入射角的定义作出图形,可知每6次反弹为一个循环组依次循环,用2013除以6,根据商和余数的情况确定所对应的点的坐标即可.本题考查了对点的坐标的规律变化的认识,作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键.13.【答案】-2【解析】解:∵(-2)3=-8,∴-8的立方根是-2.故答案为:-2.利用立方根的定义即可求解.本题主要考查了立方根的概念.如果一个数x的立方等于a,即x的三次方等于a(x3=a),那么这个数x就叫做a的立方根,也叫做三次方根.读作“三次根号a”其中,a叫做被开方数,3叫做根指数.14.【答案】x≥2【解析】解:根据题意,使二次根式有意义,即x-2≥0,解得x≥2;故答案为:x≥2.根据二次根式有意义的条件,可得x-2≥0,解不等式求范围.本题考查二次根式的意义,只需使被开方数大于或等于0即可.15.【答案】(0,5)【解析】解:∵M(x-2,x+3)在y轴上,∴x-2=0,解得x=2,x+3=2+3=5,∴M点坐标是(0,5).故答案为:(0,5).根据y轴上点的横坐标为0列式求出x,然后求解即可.本题考查了点的坐标,熟记y轴上点的横坐标为0是解题的关键.16.【答案】二【解析】解:,①+②得,2x=-2,解得x=-1,①-②得,2y=8,解得y=4,所以,方程组的解是,∴A(x,y)为(-1,4),在第二象限.故答案为:二.先利用加减消元法求出方程组的解,再根据各象限内点的坐标特征解答.本题考查了各象限内点的坐标的符号特征以及解二元一次方程组,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).17.【答案】15°【解析】解:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故答案为15°.过A点作AB∥a,利用平行线的性质得AB∥b,所以∠1=∠2,∠3=∠4=30°,加上∠2+∠3=45°,易得∠1=15°.本题考查了平行线的性质:两直线平行,内错角相等.18.【答案】(2014,0)【解析】解:根据规律可得:P1(1,1),P2(2,0)=P3 ,P4(3,1)P5(5,1)P6(6,0)=P7 ,P8(7,1)…每4个一循环,可以判断P2014在503次循环后与P2一致,坐标应该是(2014,0)故答案为:(2014,0).观察规律可知每4个一循环,可以判断P2014在503次循环后与P2一致,以此可以求出P2014的坐标.本题主要考查了对正方形的性质,坐标与图形性质等知识点的理解和掌握,体现了由特殊到一般的数学方法,这一解答问题的方法在考查本节的知识点时经常用到,是在研究特例的过程中总结规律.19.【答案】解:∵∠AEF=180°-∠2=180°-110°=70°,而EG平分∠AEF,∴∠AEG=∠AEF=35°,∵AB∥CD,∴∠1=∠AEG=35°.【解析】先利用平角的定义得到∠AEF=180°-∠2=70°,再根据角平分线的定义得∠AEG=∠AEF=35°,然后根据两直线平行,内错角相等由AB∥CD得到∠1=∠AEG=35°.本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.20.【答案】解:由题意得,a+2=0,b2-9=0,解得a=-2,b=±3,所以,a+b=-2+3=1,或a+b=-2-3=-5.【解析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.21.【答案】解:(1)-23÷(-2)+;=2-8÷(-2)+(-3)=2+4-3=3;(2)②×5,得5x-15y+35=0③①-③,得13y=39,解得y=3把y=3代入②,得x=2.所以原方程组的解为.【解析】(1)根据求平方根、立方根、有理数的乘方解答即可;(2)用加减消元法解答即可.本题主要考查了实数的运算以及解二元一次方程组.这些是基础知识要熟练掌握.22.【答案】∠CAF;两直线平行,同位角相等;∠CAF;等量代换;等量代换;4;DAC;∠DAC;等量代换;内错角相等,两直线平行【解析】解:∵AB∥CD(已知),∴∠4=∠1+∠CAF(两直线平行,同位角相等);∵∠3=∠4(已知),∴∠3=∠1+∠CAF(等量代换);∵∠1=∠2(已知),∴∠1+∠CAF=∠2+∠CAF(等量代换),即∠4=∠DAC,∴∠3=∠DAC(等量代换),∴AD∥BE(内错角相等,两直线平行).首先由平行线的性质可得∠4=∠BAE,然后结合已知,通过等量代换推出∠3=∠DAC,最后由内错角相等,两直线平行可得AD∥BE.本题难度一般,考查的是平行线的性质及判定定理.23.【答案】解:(1)A(2,-1),B(4,3);(2)△ABC的面积=3×4-×1×3-×2×4-×1×3=12-1.5-4-1.5=12-7=5;(3)△A1B1C1如图所示.【解析】(1)根据平面直角坐标系写出点A、B的坐标即可;(2)利用△ABC所在的矩形的面积减去四周三个直角三角形的面积列式计算即可得解;(3)根据网格结构找出点A、B、C平移前的点A1、B1、C1的位置,然后顺次连接即可.本题考查了利用平移变换作图,三角形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键.24.【答案】解:∵OE⊥AB,∴∠AOE=∠BOE=90°,设∠EOC=2x,∠AOC=5x.∵∠AOC-∠COE=∠AOE,∴5x-2x=90°,解得x=30°,∴∠COE=60°,∠AOC=150°.∵OF平分∠AOC,∴∠AOF=75°.∵∠AOD=∠BOC=90°-∠COE=30°,∴∠DOF=∠AOD+∠AOF=105°.【解析】先由OE⊥AB得出∠AOE=∠BOE=90°,再设∠COE=2x,∠AOC=5x.根据∠AOC-∠COE=∠AOE,列方程求出x,再根据角平分线定义求出∠AOF=75°,根据对顶角性质及互余的性质得出∠AOD=∠BOC=90°-∠COE=30°,然后由∠DOF=∠AOD+∠AOF即可求解.本题考查了角的计算,注意此题设合适的未知数,根据垂直的定义、角的和差关系列方程进行求解,即可计算出答案,难度适中.25.【答案】1:2【解析】解:(1)∵BC∥OA,∴∠B+∠O=180°,∵∠A=∠B∴∠A+∠O=180°,∴OB∥AC;(2)∵∠A=∠B=100°,由(1)得∠BOA=180°-∠B=80°,∵∠FOC=∠AOC,并且OE平分∠BOF,∴∠EOF=∠BOF,∠FOC=∠FOA,∴∠EOC=∠EOF+∠FOC=(∠BOF+∠FOA)=∠BOA=40°;(3)结论:∠OCB:∠OFB的值不发生变化.理由为:∵BC∥OA,∴∠FCO=∠COA,又∵∠FOC=∠AOC,∴∠FOC=∠FCO,∴∠OFB=∠FOC+∠FCO=2∠OCB,∴∠OCB:∠OFB=1:2.(1)首先根据平行线的性质可得∠B+∠O=180°,再根据∠A=∠B可得∠A+∠O=180°,进而得到OB∥AC;(2)根据角平分线的性质可得∠EOF=∠BOF,∠FOC=∠FOA,进而得到∠EOC=(∠BOF+∠FOA)=∠BOA=40°;(3)∠OCB:∠OFB的值不发生变化.由BC∥OA可得∠FCO=∠COA,进而得到∠FOC=∠FCO,故∠OFB=∠FOC+∠FCO=2∠OCB,进而得到∠OCB:∠OFB=1:2.此题主要考查了平行线的判定与性质,以及角平分线的性质,关键是掌握平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.26.【答案】解:(1)A的坐标是(16,0),B的坐标是(8,8),C的坐标是(0,8),直角梯形OABC的面积是:(OA+BC)×OC=(16+8)×8=96;(2)设t秒后PC直线把直角梯形OABC分成面积相等.则×2t×8=×96,解得:t=6.(3)当t=6时,OP=2×6=12,设Q的坐标是(0,m),则×12•|8-m|=96,解得:m=-8或24.即Q的坐标是(0,-8)或(0,24).【解析】(1)根据已知中线段的长度即可直接求得A、B、C的坐标,利用梯形的面积公式求得梯形面积公式;(2)设t秒后PC直线把直角梯形OABC分成面积相等,利用三角形面积公式,即可列方程求得t的值;(3)求得OP的长度,设Q的坐标是(0,m),根据三角形的面积公式即可求得m的值,得到Q的坐标.考查了三角形的面积以及直角梯形的面积的综合应用,利用点的坐标与线段的长之间的关系是关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年重庆七十一中七年级(下)期中数学试卷一.选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号在答题卡中对应的方框涂黑.1.(4分)方程2x+4=0的解是()A.2 B.﹣2 C.3 D.﹣32.(4分)方程x+2y=7在自然数范围内的解()A.有无数个B.只有一个C.只有3个D.以上都不对3.(4分)是方程mx﹣3y=2的一个解,则m为()A.8 B.﹣8 C.4 D.﹣44.(4分)方程组的解为()A.B.C.D.5.(4分)若代数式2a+7的值不大于3,则a的取值范围是()A.a≤4 B.a≤﹣2 C.a≥4 D.a≥﹣26.(4分)不等式2x﹣1≤5的解集在数轴上表示为()A.B.C.D.7.(4分)如图天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围在数轴上可表示为()A.B.C.D.8.(4分)方程7(2x﹣1)﹣3(4x﹣1)=11去括号后,正确的是()A.14x﹣7﹣12x+1=11 B.14x﹣1﹣12x﹣3=11C.14x﹣7﹣12x+3=11 D.14x﹣1﹣12x+3=119.(4分)不等式组的最小整数解是()A.0 B.1 C.2 D.﹣110.(4分)如果方程组的解中的x与y的值相等,那么a的值是()A.1 B.2 C.3 D.411.(4分)某车间56名工人,每人每天能生产螺栓16个或螺母24个,设有x 名工人生产螺栓,有y名工人生产螺母,每天生产的螺栓和螺母按1:2配套,所列方程组正确的是()A.B.C.D.12.(4分)若abc≠0,且a,b,c满足方程组,则=()A.﹣1 B.1 C.D.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答卷中对应的横线上.13.(4分)不等式x+3>5的解集为.14.(4分)当X=时,代数式3(x﹣2)与2(2+x)的值相等.15.(4分)写出一个解为的二元一次方程组是.16.(4分)已知是二元一次方程组的解,则a﹣b=.17.(4分)某校一次普法知识竞赛共有30道题.规定答对一道题得4分,答错或不答一道题得﹣1分,在这次竞赛中,小明获得优秀(90分或90分以上),则小明至少答对了道题.18.(4分)牧场上一片青草,每天牧草都匀速生长.这片牧草可供10头牛吃20天,或者可供15头牛吃10天.那么可供25头牛吃天.三、解答题(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程书写在答卷中对应的位置上.19.(7分)解方程或方程组:(1)2(x﹣3)=3(x+1)(2).20.(7分)解不等式组:,并把它的解集在数轴上表示出来.四.解答题:(本大题4个小题,每小题l0分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程书写在答卷中对应的位置上.21.(10分)不等式≤1的解集中最小整数解也是方程的解,求m的值.22.(10分)已知关于x,y的方程组的解是非负数,求整数m的值.23.(10分)甲、乙两站间的路程为297千米,一辆慢车从甲站开往乙站,走了1小时30分钟后,另一辆快车从乙站开往甲站,已知慢车每小时行46千米,快车每小时行68千米,问快车驶出后经过多少小时两辆车相遇?24.(10分)对x,y定义一种新运算,规定:(其中a,b均为非零常数),这里等式右边是通常的四则运算.例如:.已知f(1,﹣1)=﹣2;f(4,2)=1.(1)求a,b的值;(2)若关于m的不等式f(2m,5﹣4m)≤5﹣2k恰好有3个负整数解,求实数k的取值范围.五、解答题(本大题2个小题,每小题l2分,共24分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答卷中对应的位置上.25.(12分)为实现区域教育均衡发展,我市计划对某县A、B两类薄弱学校全部进行改造.根据预算,共需资金1575万元.改造一所A类学校和两所B类学校共需资金230万元;改造两所A类学校和一所B类学校共需资金205万元.(1)改造一所A类学校和一所B类学校所需的资金分别是多少万元?(2)若该县的A类学校不超过5所,则B类学校至少有多少所?(3)我市计划今年对该县A、B两类学校共6所进行改造,改造资金由国家财政和地方财政共同承担.若今年国家财政拨付的改造资金不超过400万元;地方财政投入的改造资金不少于70万元,其中地方财政投入到A、B两类学校的改造资金分别为每所10万元和15万元.请你通过计算求出有几种改造方案?26.(12分)“利海”通讯器材商场,计划用60000元从厂家购进若干部新型手机,以满足市场需求,已知该厂家生产三种不同型号的手机,出厂价分别为甲种型号手机每部1800元,乙种型号手机每部600元,丙种型号手机每部1200元.(1)若商场同时购进其中两种不同型号的手机共40部,并将60000元恰好用完.请你帮助商场计算一下如何购买;(2)若商场同时购进三种不同型号的手机共40部,并将60000元恰好用完,并且要求乙种型号手机的购买数量不少于6部且不多于8部,请你求出商场每种型号手机的购买数量.2015-2016学年重庆七十一中七年级(下)期中数学试卷参考答案与试题解析一.选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号在答题卡中对应的方框涂黑.1.(4分)方程2x+4=0的解是()A.2 B.﹣2 C.3 D.﹣3【解答】解:移项,得2x=﹣4,系数化成1得:x=﹣2.故选:B.2.(4分)方程x+2y=7在自然数范围内的解()A.有无数个B.只有一个C.只有3个D.以上都不对【解答】解:由已知,得y=,要使x,y都是自然数,合适的x值只能是x=1,3,5,7,相应的y值为y=3,2,1,0.∴解为,,,.故选:D.3.(4分)是方程mx﹣3y=2的一个解,则m为()A.8 B.﹣8 C.4 D.﹣4【解答】解:把代入方程得:m﹣6=2,解得:m=8,故选:A.4.(4分)方程组的解为()A.B.C.D.【解答】解:,②﹣①得:x=4,把x=4代入①得y=﹣3,所以方程组的解为:,故选:D.5.(4分)若代数式2a+7的值不大于3,则a的取值范围是()A.a≤4 B.a≤﹣2 C.a≥4 D.a≥﹣2【解答】解:依题意得2a+7≤3,2a≤﹣4,a≤﹣2.故选:B.6.(4分)不等式2x﹣1≤5的解集在数轴上表示为()A.B.C.D.【解答】解:解不等式得:x≤3,所以在数轴上表示为故选:A.7.(4分)如图天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围在数轴上可表示为()A.B.C.D.【解答】解:由图示得A>1,A<2,故选:A.8.(4分)方程7(2x﹣1)﹣3(4x﹣1)=11去括号后,正确的是()A.14x﹣7﹣12x+1=11 B.14x﹣1﹣12x﹣3=11C.14x﹣7﹣12x+3=11 D.14x﹣1﹣12x+3=11【解答】解:去括号得:(14x﹣7)﹣(12x﹣3)=11,即:14x﹣7﹣12x+3=11.故选:C.9.(4分)不等式组的最小整数解是()A.0 B.1 C.2 D.﹣1【解答】解:由①得,x>﹣,由②得,x≤4,所以不等式的解集为:﹣<x≤4,其最小整数解是0.故选:A.10.(4分)如果方程组的解中的x与y的值相等,那么a的值是()A.1 B.2 C.3 D.4【解答】解:∵x与y的值相等,∴3x+7x=10,解得x=y=1,把x=y=1代入2ax+(a﹣1)y=5,得2a+a﹣1=5解得a=2.故选:B.11.(4分)某车间56名工人,每人每天能生产螺栓16个或螺母24个,设有x 名工人生产螺栓,有y名工人生产螺母,每天生产的螺栓和螺母按1:2配套,所列方程组正确的是()A.B.C.D.【解答】解:根据生产螺栓人数+生产螺母人数=56人,得方程x+y=56;根据螺栓数量的2倍=螺母数量,得方程2×16x=24y.列方程组为.故选:A.12.(4分)若abc≠0,且a,b,c满足方程组,则=()A.﹣1 B.1 C.D.【解答】解:方程组整理得:,①×3+②×2得:23a=23c,即a=c,把a=c代入①得:b=2c,则原式==1,故选:B.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答卷中对应的横线上.13.(4分)不等式x+3>5的解集为x>2.【解答】解:移项得,x>5﹣3,合并同类项得,x>2.故答案为:x>2.14.(4分)当X=10时,代数式3(x﹣2)与2(2+x)的值相等.【解答】解:根据题意得:3(x﹣2)=2(2+x),去括号得:3x﹣6=4+2x,移项合并得:x=10.故答案为:10.15.(4分)写出一个解为的二元一次方程组是.【解答】解:根据题意得:.故答案为:16.(4分)已知是二元一次方程组的解,则a﹣b=﹣1.【解答】解:把代入二元一次方程组得:,解得:,∴a﹣b=2﹣3=﹣1,故答案为:﹣1.17.(4分)某校一次普法知识竞赛共有30道题.规定答对一道题得4分,答错或不答一道题得﹣1分,在这次竞赛中,小明获得优秀(90分或90分以上),则小明至少答对了24道题.【解答】解:设小明答对了x题.故(30﹣x)×(﹣1)+4x≥90,解得:x≥24.故答案为:x≥24.18.(4分)牧场上一片青草,每天牧草都匀速生长.这片牧草可供10头牛吃20天,或者可供15头牛吃10天.那么可供25头牛吃5天.【解答】解:设一天牛每天吃牧草x千克,牧场的牧草每天生长y千克,根据题意得:10×20x﹣20y=15×10x﹣10y,∴y=5x,∴牧场原有牧草10×20x﹣20y=100x.100x÷(25x﹣y)=100x÷(25x﹣5x)=5.故答案为:5.三、解答题(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程书写在答卷中对应的位置上.19.(7分)解方程或方程组:(1)2(x﹣3)=3(x+1)(2).【解答】解:(1)去括号得:2x﹣6=3x+3,移项合并得:﹣x=9,解得:x=﹣9;(2)①×2+②得:11x=22,即x=2,把x=2代入①得:y=3,则原方程组的解为.20.(7分)解不等式组:,并把它的解集在数轴上表示出来.【解答】解:不等式可化为:,即;在数轴上表示为:故不等式组的解集为:﹣2≤x<1.四.解答题:(本大题4个小题,每小题l0分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程书写在答卷中对应的位置上.21.(10分)不等式≤1的解集中最小整数解也是方程的解,求m的值.【解答】解:去分母,得:2(2x﹣1)﹣3(5x+1)≤6,去括号,得:4x﹣2﹣15x﹣3≤6,移项,得:4x﹣15x≤6+2+3,合并同类项,得:﹣11x≤11,系数化为1,得:x≥﹣1,∴不等式的最小整数解为﹣1,根据题意,将x=﹣1代入方程,得:﹣1=1+,解得:m=﹣1.22.(10分)已知关于x,y的方程组的解是非负数,求整数m的值.【解答】解:解方程组可得因为x≥0,y≥0,所以解得所以≤m≤,因为m为整数,故m=7,8,9,10.23.(10分)甲、乙两站间的路程为297千米,一辆慢车从甲站开往乙站,走了1小时30分钟后,另一辆快车从乙站开往甲站,已知慢车每小时行46千米,快车每小时行68千米,问快车驶出后经过多少小时两辆车相遇?【解答】解:设快车驶出x小时两车相遇,46(x+1.5)+68x=297 或46×1.5+(46+68)x=297解得:x=2,答:快车驶出2小时两车相遇.24.(10分)对x,y定义一种新运算,规定:(其中a,b均为非零常数),这里等式右边是通常的四则运算.例如:.已知f(1,﹣1)=﹣2;f(4,2)=1.(1)求a,b的值;(2)若关于m的不等式f(2m,5﹣4m)≤5﹣2k恰好有3个负整数解,求实数k的取值范围.【解答】解:(1)由题意得:,解得;(2)由(1)可知:f(x,y)=,∴f(2m,5﹣4m)=≤5﹣2k,3﹣2m≤5﹣2k,∴m≥﹣1+k,∵不等式f(2m,5﹣4m)≤5﹣2k恰好有3个负整数解,∴﹣4<﹣1+k≤﹣3,∴﹣3<k≤﹣2.五、解答题(本大题2个小题,每小题l2分,共24分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答卷中对应的位置上.25.(12分)为实现区域教育均衡发展,我市计划对某县A、B两类薄弱学校全部进行改造.根据预算,共需资金1575万元.改造一所A类学校和两所B类学校共需资金230万元;改造两所A类学校和一所B类学校共需资金205万元.(1)改造一所A类学校和一所B类学校所需的资金分别是多少万元?(2)若该县的A类学校不超过5所,则B类学校至少有多少所?(3)我市计划今年对该县A、B两类学校共6所进行改造,改造资金由国家财政和地方财政共同承担.若今年国家财政拨付的改造资金不超过400万元;地方财政投入的改造资金不少于70万元,其中地方财政投入到A、B两类学校的改造资金分别为每所10万元和15万元.请你通过计算求出有几种改造方案?【解答】解:(1)设改造一所A类学校和一所B类学校所需的改造资金分别为a 万元和b万元.依题意得:,解得:,答:改造一所A类学校和一所B类学校所需的改造资金分别为60万元和85万元;(2)设该县有A、B两类学校分别为m所和n所.则60m+85n=1575,,∵A类学校不超过5所,∴﹣n+≤5,∴n≥15,即:B类学校至少有15所;(3)设今年改造A类学校x所,则改造B类学校为(6﹣x)所,依题意得:解得:1≤x≤4∵x取整数∴x=1,2,3,4答:共有4种方案.26.(12分)“利海”通讯器材商场,计划用60000元从厂家购进若干部新型手机,以满足市场需求,已知该厂家生产三种不同型号的手机,出厂价分别为甲种型号手机每部1800元,乙种型号手机每部600元,丙种型号手机每部1200元.(1)若商场同时购进其中两种不同型号的手机共40部,并将60000元恰好用完.请你帮助商场计算一下如何购买;(2)若商场同时购进三种不同型号的手机共40部,并将60000元恰好用完,并且要求乙种型号手机的购买数量不少于6部且不多于8部,请你求出商场每种型号手机的购买数量.【解答】解:(1)设甲种型号手机要购买x部,乙种型号手机购买y部,丙种型号手机购买z部.①购进甲、乙:根据题意得:,解得:;②购进甲、丙:根据题意得:,解得;③购进乙、丙:根据题意得:解得:(不合题意舍去).答:有两种购买方法:甲种手机购买30部,乙种手机购买10部,或甲种手机购买20部,丙种手机购买20部;(2)根据题意得:解得:或或.答:若甲种型号手机购买26部,则乙种型号手机购买6部,丙种型号手机购买8部;若甲种型号手机购买27部,则乙种型号手机购买7部,丙种型号手机购买6部;若甲种型号手机购买28部,则乙种型号手机购买8部,丙种型号手机购买4部.赠送初中数学几何模型【模型二】半角型:图形特征:45°4321A1FB正方形ABCD 中,∠EAF =45° ∠1=12∠BAD 推导说明:1.1在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且∠FAE =45°,求证:EF =BE +DF45°DEa +b-a45°A1.2在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且EF =BE +DF ,求证:∠FAE =45°DEa +b-aa45°ABE挖掘图形特征:a+bbx-aa 45°DBa +b-a45°A运用举例:1.正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF =45°.将△DAE 绕点D 逆时针旋转90°,得到△DCM . (1)求证:EF =FM(2)当AE =1时,求EF 的长.DE2.如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°.以D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,求△AMN的周长.ND CABM3.如图,梯形ABCD中,AD∥BC,∠C=90°,BC=CD=2AD=4,E为线段CD上一点,∠ABE=45°.(1)求线段AB的长;(2)动点P从B出发,沿射线..BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;(3)求AE-CE的值.变式及结论:4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图2),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF,BE,DF之间的数量关系.DABFEDCF。