2016年八年级数学下册 3.1 图形的平移课件 (新版)北师大版

合集下载

3.1图形的平移第1课时平移的概念及性质-北师大版八年级数学下册课件

3.1图形的平移第1课时平移的概念及性质-北师大版八年级数学下册课件
一个图形和它经过平移所得的图形中,对应点所连的线段平行(或在条直线上)且相等;对应线段平行(或在一条直线 上)且相等,对应角相等.
图形的平移与旋转
因此,平移的对象、平移的方向、平移的距离是平移的三要素.
平移中的对应关系有对应点、对应边、对应角. 再观察下面的图形运动 ,请给平移下定义.
A
线段DF的对应线段是
北师大版数学八年级(下)
第三章 图形的平移与旋转
1.图形的平移
第1 课时 平移的概念及性质
教学目标
1.通过生活实例理解平移的概念. 2.从生活实例中归纳并掌握平移的性质. (重点) 3.利用平移的性质对图形进行平移.(难点)
新课引入
观察坐在观光电梯里的人;传送带上货物;笔直公路上行驶的小车。 这些人、货和车在运动的过程中有什么变化吗?你还能举一些类似 的例子吗?
课后巩固
分层练习
第一层:课本第67页第1题、第3题;
第二层:课本第67页第3题、第5题;
谢谢
2.平移中,原图形上每个点都沿着相同方向移动了相同的距 离;
3.一个图形和它经过平移所得的图形中,对应点所连的线段 平行(或在条直线上)且相等;对应线段平行(或在一条直线 上) 且相等,对应角相等.
小试牛刀
将字母“M”沿着箭头所指的方向平 移,画出平移后的图形.
M
课堂小结
今天你学到了什么?
1.平移的定义
A
B C
D

E
请在图中找出平 行且相等的线段 及相等的角
你还有别 的方法画 出△DEF吗?

F
方法归纳
平移画图步骤: 1、选择关键点。 2、将关键点沿着相同的方向平移相同的 距离,从而找到对应点. 3、把关键点的对应点顺次连接

北师大版数学八年级下册3.1《图形的平移》教案

北师大版数学八年级下册3.1《图形的平移》教案
北师大版数学八年级下册3.1《图形的平移》教案
一、教学内容
《图形的平移》选自北师大版数学八年级下册第三章第一节课,主要内容如下:
1.理解平移的概念,掌握图形平移的基本特征;
2.学会使用坐标系描述图形的平移;
3.掌握图形平移的性质,如对应点、对应线段、对应角的关系;
4.能够运用平移变换解决实际问题,如图形的拼接、折叠等;
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解图形平移的基本概念。图形平移是指在平面内,将一个图形上的所有点都按照同一个方向和相同的距离移动。它是图形变换的一种,不改变图形的形状和大小,只改变图形的位置。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了图形平移在实际中的应用,以及它如何帮助我们解决问题。
5.了解平移在实际生活中的应用,提高学生的空间想象能力和解决实际问题的能力。
二、核心素养目标
《图形的平移》核心素养目标如下:
1.培养学生的空间观念,提高对图形平移变换的直观感知能力;
2.培养学生运用坐标系描述图形平移的能力,强化数形结合的思想;
3.培养学生逻辑推理能力,通过对图形平移性质的探究,理解对应点、对应线段、对应角的关系;
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了图形平移的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对图形平移的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
-在平面直角坐标系中,如何通过平移规律将一个点平移到另一个点?
-在折叠纸鹤的过程中,如何利用平移性质来确保折叠后的形状与原图一致?

图形的平移 第一课时-八年级数学下册课件(北师大版)

图形的平移 第一课时-八年级数学下册课件(北师大版)
易错点:不能准确地分析出平移对象
解:如图①中的△DEC 即为所求.


易错总结: 解题时要正确理解题意,切忌审题不清.本题中平移的对象是
△AOB,易错理解为平移的对象是长方形ABCD,从而得出错
误的图形,如图②所示.
1 如图,△ABC 经过平移得到△A′B′C ′,则图中平行线段共
有( D ) A.3对 B.4对 C.5对 D.6对
1.图形的平移
第1课时
五星红旗 冉冉升起
汽车沿着笔直的公路行驶
窗 户 沿 着 滑 槽 移 动
飞机在天空飞行 上述这些运动现象都给我们带来了怎样一种感觉?
知识点 1 平移的定义
定义 在平面内,把一个图形上所有的点都按同一个 方向移动相同的距离,图形这种变换称为平移.
注意: “两同”:同向、同距
∠FGH,∠ADC 与 ∠EHG 之间有什么数量关系?
导引:根据平移的性质可知:平移只改变图形的位置,不 改变图形的大小;平移得到的图形与原来的图形是 完全一样的,所以对应的线段之间是平行且相等的.
解:(1)线段AE,BF,CG,DH 的长度相等,都为2 cm. (2)AB 与EF,BC 与FG,CD 与GH,AD 与EH 平行且相等. (3)∠BAD 与∠FEH,∠ABC 与∠EFG,∠BCD 与∠FGH,∠ADC 与∠EHG 对应相等.
2 以下现象:①打开教室的门时,门的移动;②打气 筒打气时,活塞的运动;③钟摆的摆动;④传送带 上,瓶装饮料的移动,其中属于平移的是( D )
A.①②
B.①③
C.②③
D.②④
3 将如图所示的图案平移后, 可以得到的图案是( A )
知识点 2 平移的性质
平移的性质1:

北师大版初中数学八年级下册3.1 图形的平移(第1课时) 课件

北师大版初中数学八年级下册3.1 图形的平移(第1课时) 课件

课堂检测
3.1 图形的平移/
能力提升题
1.如图,将△ABC沿着某一方向平移一定的距离得△DEF, 则下列结论: ①AD=CF; ②AC∥DF; ③∠ABC=∠DFE; ④∠DAE=∠AEB. 正确的序号为:_①___②__④____
课堂检测
3.1 图形的平移/
能力提升题
2.一块矩形场地,长为101 m,宽为70 m,从中留出如图所示的宽 为1 m的小道,其余部分种草,则草坪的面积为_6__9_0_0_____m2.
探究新知
3.1 图形的平移/
知识点 1
平移的概念
问题:请你用一句话描述下面运动.




15




15
8米


李 向
4米



8 米
品 向 右 上 方 移 动
4 米
思考:尝试总结以上运动过程具备什么共同特征?
探究新知
3.1 图形的平移/
两要素
结论
在平面内,将一个图形沿某个方向移动一定的距离,这样的图 形运动称为 平移 .
使其中一个部分沿某个方向平移后能与另一个部分重合,那么
我们把这个图形叫做平移重合图形.下列图形中,平移重合图
形是 ( C )
A.平行四边形 C.正六边形
B.等腰梯形 D.圆
课堂检测
3.1 图形的平移/
基础巩固题
1.下列平移作图错误的是 ( C )
课堂检测
3.1 图形的平移/
Hale Waihona Puke 基础巩固题2.下列各组图形,可以通过平移得到的是 ( A )
课堂检测
3.1 图形的平移/

新版北师大八年级下册数学第三、四章知识要点总结

新版北师大八年级下册数学第三、四章知识要点总结

第三章图形的平移与旋转3.1图形的平移在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.平移不改变图形的形状和大小.一个图形和它经过平移所得的图形中,对应点所连的线段平行(或在一条直线上)且相等;对应线段平行(或在一条直线上)且相等,对应角相等.在平面直角坐标系中的图形,图形上点的横纵坐标加、减上一个数时,相当于图形依次沿X轴方向、Y轴方向平移后所得图形,可以看成是由原来的图形经过一次平移得到的.3.2图形的旋转在平面内,将一个图形绕一个定点按某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角称为旋转角,旋转不改变图形的形状和大小.一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角;对应线段相等,对应角相等.3.3中心对称如果把一个图形绕着某一点旋转180,它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做它们的对称中心.把一个图形绕某个点旋转180,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心.回顾与思考①平移是否改变图形的位置、形状和大小?旋转呢?②平移旋转各有哪些基本性质?③两个成中心对称的图形有哪些特性?中心对称图形又要哪些特性?第四章因式分解4.1因式分解把一个多项式化成几个整式的积的形式,这种变形叫做因式分解.例如:2(1)(1)a a a a a -=+-,()am bm cm m a b c ++=++,2221(1)x x x ++=+都是因式分解.因式分解也可成为分解因式.例题:把下列各式进行因式分解2(1)44x x ++=2(2)41x -=2(3)105x x -=4.2提公因式法多项式ab bc +的各项都含有相同的因式b .我们把多项式各项都含有的相同因式,叫做这个多项式各项的公因式.如b 就是多项式ab bc +各项的公因式.如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种因式分解的方法叫做提公因式法.例题:把下列各式因式分解2(1)7(1)(1);(2)()()();a x a x x y x y x x y -+-+--+ 32(3)(2)(23)3(2);(4)18()12();a b a b a a b a b b b a +--+--- 4.3公式法事实把乘法公式22()()a b a b a b -+=-反过来就是22()()a b a b a b -=+- 类似的还有2222()a ab b a b ±+=±,像这样的,把利用某些乘法公式把某些多项式因式分解,这种因式分解的方法叫做公式法. 例如:222222(1)21=(2)2()()(3)4x y xy a a b c b c x xy y -+-+++=++=。

图形的平移(第1课时)课件 2022—2023学年北师大版数学八年级下册

图形的平移(第1课时)课件 2022—2023学年北师大版数学八年级下册

∵CE平分∠ACF , ∠FCB=∠DCB,
.
∴∠ACF=2∠ECF,∠FCD=2∠FCB
∵∠ACD=∠ACF+∠FCD=2∠ECF+2∠FCB=80°
.
∴∠ECF+∠FCD=40°,
即∠ECB=40°
第三章 图形的平移与旋转
教学过程——典例精析
第三章 图形的平移与旋转
听一听
(3)解:这个比值不会变化,∠CBA:∠CFA=1:2.
感谢聆听
个图形对应线段平行(或在一直线上)且相等。
因为第二个图形是经过第一个图形平移得到的,原图形上的每一个
点都沿着相同的方向移动了相同的距离,所以两个图形上对应点所
连的线段线平行(或在一直线上)且相等。
平移的性质:一个图形和它经过平移得到中,应点所连的线段线平
行(或在一直线上)且相等;对应线段平行(或在一直线上)且相
教学过程——新知探究
第三章 图形的平移与旋转
知识点1 平移的概念及特征
平移的概念特征
如图△DEF是△ABC经过平移得到的.
A
D
F
C
B
E
由于两个图形经过平移得到,两个图形能完全重合,所以平移
前后的两个图形是全等形,互相重合的点叫做对应点,互相重
合的线段称为对应线段,互相重合的角就是对应角.
教学过程——新知探究
值是否随之发生变化?若变化,请说明理由,求出这个比值.
教学过程——典例精析
第三章 图形的平移与旋转
听一听
(1)证明:∵AB∥CD,
.
∴∠A+∠C=180°
∵∠A=∠D,
∴∠C+∠D=180°
∴AC∥BD..
.

北师大版数学八年级下册3.1《图形的平移》说课稿

北师大版数学八年级下册3.1《图形的平移》说课稿

北师大版数学八年级下册3.1《图形的平移》说课稿一. 教材分析《图形的平移》是北师大版数学八年级下册第3.1节的内容。

本节课主要让学生了解平移的定义,理解平移在实际生活中的应用,并学会用平移的方法来简化复杂图形。

通过学习,学生能够掌握图形的平移规律,提高空间想象能力。

二. 学情分析学生在七年级时已经学习了图形的旋转,对图形的变换有了一定的认识。

但平移与旋转存在很大的区别,平移不改变图形的方向,而旋转则会改变图形的方向。

因此,在教学过程中,需要引导学生区分这两种变换,并理解平移的性质。

三. 说教学目标1.知识与技能:理解平移的定义,掌握平移的性质,能运用平移的方法解决实际问题。

2.过程与方法:通过观察、操作、思考、交流等活动,提高空间想象能力。

3.情感、态度与价值观:培养学生的观察能力,激发学生对数学的兴趣。

四. 说教学重难点1.重点:平移的定义及其在实际中的应用。

2.难点:平移规律的探究,以及如何运用平移解决复杂图形的问题。

五. 说教学方法与手段1.采用问题驱动的教学方法,引导学生主动探究、合作交流。

2.利用多媒体课件、实物模型等教学手段,直观展示平移的过程,增强学生的空间想象力。

六. 说教学过程1.导入:通过展示生活中的平移现象,如电梯、滑滑梯等,引导学生思考平移的特点。

2.新课导入:介绍平移的定义,引导学生理解平移不改变图形的方向。

3.实例分析:分析具体图形进行平移前后的变化,让学生体会平移的性质。

4.小组讨论:让学生分组讨论平移在实际中的应用,如地图上的路线规划等。

5.总结规律:引导学生总结平移的规律,并能应用于解决实际问题。

6.练习巩固:布置一些有关平移的练习题,让学生独立完成,检验学习效果。

7.课堂小结:对本节课的内容进行总结,强调平移的性质及应用。

七. 说板书设计1.平移的定义2.平移的性质3.平移在实际中的应用八. 说教学评价1.学生能准确理解平移的定义和性质。

2.学生能运用平移的方法解决实际问题。

图形的平移(第3课时)(课件)八年级数学下册(北师大版)

图形的平移(第3课时)(课件)八年级数学下册(北师大版)

–3
“H” (2,3)(7,7)(5,3)(7,4)(7,2)(6,1)
探究新知
归纳总结 探究坐标变化后,图形的变化规律
设(x,y)是原图形上的一点,横坐标增加或减少a(a>0)、纵 坐标增加或减少b(b>0)后,平移后的图形与原图形之间的位置 有如下关系:
对应点的坐标
平移的方向和平移的距离
(x+a,y+b) 向右平移a个单位长度、向上平移b个单位长度
通过平移,使得图中的3条线段首尾相接组成一个三角形,
最少需要移动的步数是( B )
A.7步
B.8步
C.9步
D.10步
随堂练习
4.在如图所示的直角坐标系中,△ABC经过平移后得到△A1B1C1(两 个三角形的顶点都在格点上),已知在AC上一点P(2.4,2)平移后的对 应点为P1,则P1点的坐标为 ( C )
A.(-0.4,-1) B.(-1.5,-1) C.(-1.6,-1) D.(-2.4,-2)
随堂练习
5.如图,△ABC各顶点的坐标分别为A(-2,6), B(-3,2),C(0,3),将△ABC先向右平移4个单位 长度,再向上平移3个单位长度,得到△DEF. (1)分别写出△DEF各顶点的坐标.
(x+a,y-b) 向右平移a个单位长度、向下平移b个单位长度
(x-a,y+b) 向左平移a个单位长度、向上平移b个单位长度
(x-a,y-b) 向左平移a个单位长度、向下平移b个单位长度
探究新知
归纳总结 两次平移所得图形的坐标变化
(1)遵循上加下减,左减右加的平移规律. (2)对应点连线的方向就是图形平移的方向,对应 点连线的线段长度就是平移的距离.
y 4
2
平移方向是O到A,

北师大版八年级数学下册《图形的平移》图形的平移与旋转PPT精品课件

北师大版八年级数学下册《图形的平移》图形的平移与旋转PPT精品课件

横坐标减4,纵坐标减4,
所以点P的对应点P′的坐标是(m-4,n-4).
(3)△ABC的面积为
3×5-1×1×5- 1×2×2- 1×3×3=6
2
2
2
例3、如图,在平面直角坐标系中,点A,B的坐标分别是(-2,0),(4,0), 现同时将点A,B分别向上平移2个单位长度,再向右平移2个单位长度, 得到A,B的对应点C,D.连接AC,BD,CD. (1)点C的坐标为______,点D的坐标为______, 四边形ABDC的面积为________;
图形的平移
学习目标
1.掌握平面直角坐标系中图形的两次平移与一次平移的转 化,以及平移引起的点的坐标的变化规律; 2.了解平面直角坐标系是数与形之间的桥梁,感受代数与 几何的相互转化,初步建立空间观念.
新课导入
在坐标系中,将坐标作如下变化时,图形将怎样变化?
1. (x,y)(x,y+4) 2. (x,y)(x,y -2)
(1)分别写出下列各点的坐标:A′_______;B′______;C′_______;
(2)若点P(m,n)是△ABC内一点,求平移后△A′B′C′内的对应点P′的坐标;
(3)求△ABC的面积.
解:(1)由题图可知A′(-3,-4),B′(0,-1),C′(2,-3).
(2)点A(1,0)的对应点A′的坐标是(-3,-4),
,-1),则a,b的值为(A
)
A.a=-2,b=-3 C.a=2,b=-3
B.a=-2,b=3 D.a=2,b=3
3.在平面直角坐标系中,点A′(2,-3)可以由点A(-2,3)通过两次平移得到 ,正确的是(D )
A.先向左平移4个单位长度,再向上平移6个单位长度 B.先向右平移4个单位长度,再向上平移6个单位长度 C.先向左平移4个单位长度,再向下平移6个单位长度 D.先向右平移4个单位长度,再向下平移6个单位长度

北师大版八年级数学下册第三章图形的平移与旋转同步串讲课件

北师大版八年级数学下册第三章图形的平移与旋转同步串讲课件

【典例3】如图:是一块长方形的草地, 长为 21米.宽为15米 在草地上有一条宽为1米的小 道,小道两边为平移关系,长方形的草地上除 小道外长满青草。求长草部分的面积为多少?
【典例4】将RtABC 沿直角边AB向右平移2 个单位得到RtDEF,如图所示,若AB=4, ABC=90º ,且ABC 的面积为6个平方单位, 试求图中DBH的面积。
3.
4.
5.
【例3】如图,两图中A点的对应点均为A′点, 作出四边形ABCD平移后的图形A′B′C′D′。
A B D A C B A′ A′ C D
练习
1.如图,将字母A按箭头所指的方 向平移3cm,作出平移后的图形。
四.复整理
1. 2. 3.
4. 5.
平移的定义、特征。 确定平移的两要素。 平移方向的两种情形(与原图至少一边同向 或不与任何一边同向。 作图方法:五步特征法;格纸平移法。 典例
内蒙古包头瑞星教育原创精品课件——版权所有
第三章 图形的平移与旋转
八年级(下册)
点→线(两点定线)→角(两线)→(面)图→体
学习几何 基本规律
一个图(三角形、四边形---)形的定义,性质,判定
两个图形之间的关系:全等、相似、对称、位似----
两次翻折=一次平移
对称 旋转
全等变换
平移
形状大小都不变
二.平移动的特征
1. 实质:图形上的每一个点都沿同一个方向移 动了相同的距离。 平移前后图形的形状、大小完全相同(全等) 连接对应点的线段平行(或在同一条直线上) 且相等。对应线段平行(或在同一条直线上) 且相等。对应角相等。(沿某一边方向移动) 重要的关键词:平行且相等。方向、距离。 两种情形:方向与 一边相同;方向不 与任何一边相同。

北师大版八年级数学下册《图形的平移》图形的平移与旋转PPT精品课件(第1课时)

北师大版八年级数学下册《图形的平移》图形的平移与旋转PPT精品课件(第1课时)

实践探究,交流新知
( 1 ) 变换前后对应点的连线平行且相等:平移变换 是图形的每一个点的变换,一个图形沿某个方向移 动一定的距离,那么每一个点也沿着这个方向移动 相同的距离,所以对应点的连线平行且相等. ( 2 ) 变换前后的图形全等:平移变换是由一个图形 沿着某个方向移动一定的距离,所以平移前后的图 形是全等的. (3)变换前后对应角相等. (4)变换前后对应线段平行且相等.
学习重点
探索图形平移的主要特征和基本性质,会画简单图形的平移图.
学习Hale Waihona Puke 点探索和理解平移的基本性质.
创设情境,导入新课
请同学们观察如图所示的两幅图片.
问题1:你能发现传送带上的箱子和手扶电梯上的人在移动前后什么没有改变, 什么发生了改变吗? 问题2:在传送带上,如果箱子的把手向前移动了80 cm,那么箱子的其他部位 向什么方向移动?移动的距离是多少? 问题3:如果把移动前后的同一个箱子看成长方体,那么移动前后的长方体各 个面的形状、大小是否相同?
北师大版 八年级下册
第三章 图形的平移与旋转
图形的平移(第1课时)
前言
学习目标
1. 通过具体实例认识平移,理解平移的基本内涵,理解和运用平移的基本性质. 2.认识平面图形的平移,探索平移的基本性质,会进行简单的平移画图. 3.通过收集自己身边“平移”的实例,感受“生活处处有数学”,激发学生学习数学的兴趣; 通过欣赏生活中的平移图案,使学生感受数学美.
实践探究,交流新知
探究2 平移的性质 如图,将△ABC沿射线XY的方向平移一定距离后得到△DEF.
问题1:(1)平移前后的两个图形有什么关系? (2)在上图中,线段AD,BE,CF有怎样的位置关系和数量关系? (3)图中每对对应线段之间有怎样的位置关系和数量关系? (4)图中的对应角有什么关系?

北师大版八年级数学下册第三章图形的平移和旋转---中心对称课件

北师大版八年级数学下册第三章图形的平移和旋转---中心对称课件

三、知识探究二
视察下图,这些图形有什么共同特征?你还能举出 一些类似的图形吗?
共同点:(1)都绕一点旋转了180度; (2)都与原图形完全重合.
中心对称图形 把一个图形绕某个点旋转180°,如果旋转后
的图形能与本来的图形重合,那么这个图形叫做中 心对称图形,这个点叫做它的对称中心.
注意:任意经过对称中心的直线把 原图形分成全等的两部分
北师大版 八年级下册
3.3 中心对称
一、预习检测 1. 下面哪些图形是中心对称图形?
(1) 、(2) 、(3)
2.下面扑克牌中,哪些牌的牌面是中心对称图形?
(1) 、(3)
一、复习导入
在平面内,将一个图形绕一个定点按某个方向转动 一个角度,这样的图形运动称旋转.这个定点称为旋转 中心,转动的角称为旋转角。
中心对称与中心对称图形的联系
中心对称
中心对称图形
区分
联系
两个全等图形的相 互位置关系
一个图形本身成 中心对称
成中心对称的两个图形看成一个整体,则
它们是中心对称图形.
中心对称图形对称的部分看成两个图形,
则它们成中心对称.
想一想
我们平时见过的几何图形中,有哪些是 中心对称图形?并指出对称中心.
怎样的多边形是中心对称图形?
画的图形绕旋转中心旋转180º.连接旋转前后一
组对应点,你发现了什么?再选几组对应点试一
试,并与同伴交流.

C´ O .
A D
D´ A´
B
C
活动小结: 中心对称的性质:成中心对称的两个图形中,
对应点所连线段经过对称中心,且被对称中心平分.
B´ C´
A
O.
D

第三章 图形的平移与旋转(回顾与思考)(课件)-八年级数学下册(北师大版)

第三章 图形的平移与旋转(回顾与思考)(课件)-八年级数学下册(北师大版)
考点一:平移的性质 例1. 如图,已知△ABC的周长为20 cm,现将△ABC沿AB方向平移
2 cm至△A′B′C′的位置,连接CC′,则四边形AB′C′C的周长为( C )
A.20 cm B.22 cm C.24 cm D.26 cm
二、考点精讲
考点一:平移的性质 例2. 如图,△ABC是边长为2的等边三角形,将△ABC沿直线BC平移到 △DCE的位置,连接BD,求△ABC平移的距离和BD的长.
解:(1)如图,△A′B′C′即为所求 (3)△ABC 的面积=2×3-12 ×1×3-12 ×1×1-12 ×2×2=6-1.5-0.5-2=2
二、考点精讲
考点四:旋转作图
例8. 如图,在边长均为1个单位长度的小正方形组成的网格中,点A,点B,点O 均为格点(每个小正方形的顶点叫做格点).
(1)作点A关于点O的对称点A1; (2)连接A1B,将线段A1B绕点A1顺时针旋转90°得点B对应点B1,画出旋转后的线 段A1B1; (3)连接AB1,求出四边形ABA1B1的面积.
三、课堂练习
8.如图,△ABC是边长为3的等边三角形,将△ABC沿直线BC向右平移, 使B点与C点重合,得到△DCE,连接BD,交AC于点F. (1)猜想AC与BD的位置关系,并证明你的结论; (2)求线段BD的长.
三、课堂练习
解:(1)AC与BD互相垂直.证明如下: ∵△DCE由等边三角形ABC平移得到, ∴BC=CD. ∵∠ACB=∠ACD=180°-60°-60°=60°, ∴CF是等腰△BCD的角平分线. ∴CF垂直平分BD,即AC⊥BD.
解:∵△DCE 由△ABC 平移而成, ∴△ABC 平移的距离为:BC=2, ∴CD=CB=CE=2, ∴∠BDE=90°,∴△BED 是直角三角形, ∵BE=BC+CE=4,DE=CE=2, ∴BD= BE2-DE2 =2 3

新北师大版八年级数学下册《三章 图形的平移与旋转 1. 直角坐标系中图形的平移与坐标的变化》教案_12

新北师大版八年级数学下册《三章 图形的平移与旋转  1. 直角坐标系中图形的平移与坐标的变化》教案_12

第三章图形的平移与旋转3.1图形的平移第1课时平移的认识1.通过具体实例理解平移的概念,掌握平移的基本性质(重点).2.通过观察、分析、操作、欣赏以及抽象、概括等过程,体会平移来源于生活.自学指导:阅读教材P65~66内容,完成下列问题.知识探究1.平移的定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动叫平移.平移不改变图形的形状和大小,改变的是位置.2.平移的性质:(1)平移前后的两个图形大小、形状一样;(2)经过平移,对应点所连的线段平行(或在一条直线上)且相等;对应线段平行(或在一条直线上)且相等,对应角相等.自学反馈1.下列现象中,属于平移的是(1)(3)(5).(1)火车在笔直的铁轨上行驶;(2)冷水受热过程中小气泡上升变成大气泡;(3)人随电梯上升;(4)钟摆的摆动;(5)飞机起飞前在直线跑道上滑动.2.如图,若线段CD是由线段AB平移而得到的,则线段CD、AB关系是平行且相等.活动1小组讨论例1如图,经过平移,△ABC的顶点A移到了点D,作出平移后的三角形.解:如图,过点B、C分别作线段BE、CF,使得它们与线段AD平行并且相等,连接DE,DF,EF,则△DEF就是△ABC平移后的图形.设顶点B、C分别平移到了点E、F,根据“经过平移,对应点所连的线段平行且相等”,可知线段BE、CF与AD平行且相等.例2如图,点A,B,C,D分别平移到了点E,F,G,H;点A与点E,点B与点F,点C与点G,点D与点H 分别是一对对应点,AB与EF是一对对应线段,∠BAD与∠FEH是一对对应角.(1)在下图中,线段AE、BF、CG、DH有怎样的位置关系?(2)在下面图中,有哪些相等的线段、相等的角?(3)由(1)(2)两个问题,你能归纳出什么结论?解:(1)四边形EFGH是由四边形ABCD平移得到的,由演示可知:线段AE、BF、CG、DH是互相平行的,并且这四条线段又相等.(2)图中相等的线段:AB=EF、BC=FG、CD=GH、AD=EH、AE=BF=CG=DH.图中相等的角:∠ABC=∠EFG、∠BAD=∠FEH、∠ADC=∠EHG、∠BCD=∠FGH.(3)平移的基本性质:经过平移,对应线段,对应角分别相等;对应点所连的线段平行且相等.这个性质也从局部刻画了平移过程中的不变因素:图形的形状和大小.活动2跟踪训练如图,四边形ABCD平移后得到四边形EFGH.填空:(1)CD=GH;(2)∠F=∠B;(3)HE=DA;(4)∠D=∠H.活动3课堂小结1.通过本节课的学习,我们明白了什么叫平移.(在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.)2.总结出了平移的性质.(平移不改变图形的形状和大小.经过平移,对应点所连的线段平行且相等;对应线段平行且相等,对应角相等.)第2课时沿x轴或y轴方向平移的坐标变化探究横向或纵向平移一次,其坐标变化的规律,认识图形变换与坐标之间的内在联系.(重点)自学指导:阅读教材P68~69内容,完成下列问题.知识探究在平面直角坐标系中,一个图形沿x轴正(负)方向平移a(a>0)个单位长度后的图形与原图形相比,对应点的横坐标加上(减去)a,纵坐标不变;图形沿y轴正(负)方向平移a(a>0)个单位长度后的图形与原图形相比,对应点的横坐标不变,纵坐标加上(减去)a.自学反馈1.如图,在平面直角坐标系中,将点A(-2,3)向右平移3个长度单位,那么平移后对应的点A′的坐标是(C)A.(-2,-3) B.(-2,6) C.(1,3) D.(-2,1)2.将点M(-1,-5)向左平移3个单位长度得到点N,则点N所处的象限是(C)A.第一象限B.第二象限C.第三象限D.第四象限活动1小组讨论例1在平面直角坐标系中,点A(-2,3)平移后能与原来的位置关于y轴对称,则应把点A(C) A.向右平移2个单位长度B.向左平移2个单位长度C.向右平移4个单位长度D.向左平移4个单位长度解析:关于y轴成轴对称的两个点的纵坐标相同,横坐标互为相反数,∴点A(-2,3)平移后的坐标为(2,3).∵横坐标增大,∴点A是向右平移得到,平移距离为|2-(-2)|=4.故选C.例2点P(-2,1)向下平移2个单位长度后,关于x轴对称的点P′的坐标为(C)A.(-2,-1) B.(2,-1)C.(-2,1) D.(2,1)沿x轴或y轴方向平移的坐标变化可简记为“横坐标,右移加,左移减;纵坐标,上移加,下移减”.活动2跟踪训练1.将△ABC的各顶点的横坐标分别加上3,纵坐标不变,连接所得三点组成的三角形是由△ABC(B) A.向左平移3个单位长度得到的B.向右平移3个单位长度得到的C.向上平移3个单位长度得到的D.向下平移3个单位长度得到的2.将点P(2m+3,m-2)向上平移1个单位长度得到P′,且P′在x轴上,则m=1.3.线段AB是由线段CD平移得到,点A(-2,1)的对应点为C(1,1),则点B(3,2)的对应点D的坐标是(6,2).活动3课堂小结1.图形沿x轴平移的坐标变化:在平面直角坐标系中,如果把图形中点的横坐标都加上(或减去)一个正数a,相应的新图形就是把原来的图形沿着x轴向右(或向左)平移a个单位长度.2.图形沿y轴平移的坐标变化:在平面直角坐标系中,如果把图形中点的纵坐标都加上(或减去)一个正数a,相应的新图形就是把原来的图形沿着y轴向上(或向下)平移a个单位长度.第3课时沿x轴,y轴方向两次平移的坐标变化探究一次平移既有横向又有纵向时坐标的变化特点.(重点)自学指导:阅读教材P71~73内容,完成下列问题.知识探究一个图形依次沿x轴方向、y轴方向平移后所得图形,可以看成是由原来的图形经过一次平移得到的.自学反馈1.将点A(3,2)沿x轴向左平移4个单位长度,再沿y轴向下平移4个单位长度后得到点A′,则点A′的坐标是(D) A.(1,2)B.(1,-2)C.(-1,2) D.(-1,-2)2.在平面直角坐标系中,将点P(-3,2)向右平移4个单位长度,再向下平移6个单位长度后,得到的点位于(D) A.第一象限B.第二象限C.第三象限D.第四象限活动1小组讨论例如图所示,四边形ABCD各顶点的坐标为A(-3,5),B(-4,3),C(-1,1),D(-1,4),将四边形ABCD先向上平移3个单位长度,再向右平移4个单位长度,得到四边形A′B′C′D′.(1)四边形A′B′C′D′与四边形ABCD对应点的横坐标有什么关系?纵坐标呢?分别写出点A′,B′,C′,D′的坐标;(2)如果将四边形A′B′C′D′看成是由四边形ABCD经过一次平移得到的,请指出这一平移的平移方向和平移距离.解:(1)四边形A′B′C′D′与四边形ABCD相比,对应点的横坐标分别增加了4,纵坐标分别增加了3,A′(1,8),B′(0,6),C′(3,4),D′(3,7).(2)连接AA′,由图可知,AA′=32+42=5,四边形A′B′C′D′可认为是由四边形ABCD沿着由A到A′的方向,平移5个单位长度得到的.一个图形一次沿x轴方向,y轴方向平移后所得的图形,可以看成是由原来图形经过一次平移得到的.活动2跟踪训练1.如果将平面直角坐标系中的点P(a-3,b+2)平移到点(a,b)的位置,那么下列平移方法中正确的是(C) A.向左平移3个单位长度,再向上平移2个单位长度B.向下平移3个单位长度,再向右平移2个单位长度C.向右平移3个单位长度,再向下平移2个单位长度D.向上平移3个单位长度,再向左平移2个单位长度2.在平面直角坐标系中,将点(3,-1)向下平移3个单位长度,可以得到对应点(3,-4);将得到的点向右平移2个单位长度,可以得到对应点(5,-4).3.在平面直角坐标系中,△ABC三个顶点的坐标分别是A(-2,3),B(-4,-1),C(2,0),将△ABC平移至△A1B1C1的位置,点A,B,C的对应点分别是A1,B1,C1,且点A1的坐标为(3,1),请分别写出点B1,C1的坐标.解:B1(1,-3),C1(7,-2).活动3课堂小结学生试述:这节课你学到了些什么?3.2图形的旋转第1课时旋转的认识掌握旋转、旋转中心和旋转角的概念,并理解旋转的性质.(重点)自学指导:阅读教材P75~76内容,完成下列问题.知识探究1.在平面内,将一个图形绕一个定点按某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角称为旋转角.旋转不改变图形的形状和大小.2.一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所组成的角都等于旋转角;对应线段相等,对应角相等.自学反馈1.下面生活中的实例,不是旋转的是(A)A.传送带传送货物B.螺旋桨的运动C.风车风轮的运动D.自行车车轮的运动2.线段MN绕点P进行旋转后,得到线段M1N1,则点M与点P距离=点M1与点P的距离.(填“>”“<”或“=”)活动1小组讨论例1如图,点A,B,C,D都在方格纸的点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转的角度为(C)A.30°B.45°C.90°D.135°对应点与旋转中心的连线的夹角,就是旋转角,∠BOD,∠AOC都是旋转角.由图可知,OB、OD是对应边,∠BOD是旋转角,所以旋转角∠BOD=90°.例2如图,四边形ABCD是边长为4的正方形且DE=1,△ABF是△ADE旋转后的图形.(1)旋转中心是哪一点?(2)旋转了多少度?(3)AF的长度是多少?解:(1)旋转中心是A点.(2)∵△ABF是由△ADE旋转而成的,∴B是D的对应点.又∵∠DAB=90°,∴旋转了90°.(3)∵AD=4,DE=1,∴AE=42+12=17.∵对应点到旋转中心的距离相等且F是E的对应点,∴AF=AE=17.正确的理解旋转的定义和性质.活动2跟踪训练如图,已知P是等边△ABC内的一点,连接AP,BP,将△ABP旋转后能与△CBP′重合,根据图形回答:(1)旋转中心是哪一点?(2)旋转角是几度?(3)连接PP′后,△BPP′是什么三角形?解:(1)∵△ABC为等边三角形,∴AB=BC,∠ABC=60°.又∵将△ABP旋转后能与△CBP′重合,∴AB与CB重合.∴旋转中心是点B.(2)∵将△ABP绕点B顺时针旋转后能与△CBP′重合,∴旋转角等于∠ABC=60°.(3)△BPP′是等边三角形.理由如下:∵旋转角为60°,即∠PBP′=60°,BP=BP′,∴△BPP′是等边三角形.活动3课堂小结1.旋转的概念:将一个图形绕一个顶点按照某个方向转动一个角度,这样的图形运动称为旋转.2.旋转的性质:一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角,对应线段相等,对应角相等.第2课时旋转作图能画出简单图形旋转后的对应图形.(重点)自学指导:阅读教材P78~79内容,完成下列问题.知识探究旋转作图的步骤:(1)确定旋转中心,旋转方向,旋转角;(2)找出图形的关键点;(3)作出关键点经旋转后的对应点;(4)按图形的顺序连接对应点,得到旋转后的图形.自学反馈1.如图,将左边叶片图案旋转180°后,得到的图形是(D)2.把如图所示的图形绕着O点顺时针旋转90°后,得到的图形是(C)活动1小组讨论例如图,画出线段AB绕点A按顺时针方向旋转60°后的线段.解:(1)如图,以AB为一边按顺时针方向画∠BAX,使得∠BAX=60°;(2)在射线AX上取点C,使得AC=AB.线段AC就是线段AB绕点A按顺时针方向旋转60°后的线段.解决这类作图题,紧扣旋转的特征即可.活动2跟踪训练1.对如图所示的图形,下列说法错误的是(C)A.图1绕点“O”顺时针旋转270°到图4B.图1绕点“O”逆时针旋转180°到图3C.图3绕点“O”顺时针旋转90°到图2D.图4绕点“O”顺时针旋转90°到图12.如图,在平面直角坐标系中,点A的坐标为(1,4),将线段OA绕点O顺时针旋转90°得到线段OA′,则点A′的坐标是(C)A.(1,4)B.(4,1)C.(4,-1)D.(2,3)3.如图,线段AB绕点O顺时针旋转一定的角度得到线段A1B1,请用直尺和圆规作出旋转中心O.(不写作法,保留作图痕迹)解:如图所示,点O为所作.4.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点),将△ABC 绕点B顺时针旋转90°得到△A′BC′,请画出△A′BC′.解:如图所示,△A′BC′即为所求.活动3课堂小结根据旋转的性质,掌握旋转作图的步骤.3.3中心对称1.理解中心对称、对称中心、中心对称图形等概念,能识别中心对称图形.(重点)2.通过作图探索成中心对称的两个图形的性质.(重点)3.能运用中心对称的性质作出一个图形关于某点对称的图形,并确定对称中心的位置.(重点)自学指导:阅读教材P81~82内容,完成下列问题.知识探究1.如果把一个图形绕着某一点旋转180°,它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做它们的对称中心.2.成中心对称的两个图形中,对应点所连线段经过对称中心,且被对称中心平分.3.把一个图形绕某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心.自学反馈1.下列手机软件图标中,属于中心对称图形的是(D)2.关于中心对称的两个图形中,对应线段的关系是(D)A.相等B.平行C.相等且平行D.相等且平行或相等且在同一直线上活动1小组讨论例1如图,在中心对称的两个图形中,对称点A,A′和对称中心O在一直线上,并且AO=OA′,另外分别在一直线上的三点还有B,O,B′和C,O,C′,并且BO=B′O,CO=C′O.在成中心对称的两个图形中,连接对称点的连线都经过对称中心,并且被对称中心平分.也就是:(1)对称中心在任意两个对称点的连线上.(2)对称中心到一对对称点的距离相等.根据这个,可以找到关于中心对称的两个图形的对称中心,通常只需连接中心对称图形上的一对对应点,所得线段的中点就是对称中心,同时在证明线段相等时也有应用.例2如图,四边形ABCD和点O,画出四边形A′B′C′D′,使它与已知四边形关于点O成中心对称.解:(1)连接AO并延长AO到A′,使OA′=OA,于是得到点A的对称点A′.(2)同样画出点B、点C和点D的对称点B′,C′和D′.(3)顺次连接A′B′,B′C′,C′D′,D′A′.四边形A′B′C′D′即为所求的四边形.活动2跟踪训练1.下列图形中,是中心对称图形但不是轴对称图形的是(B)2.如图,四边形ABCD与四边形FGHE关于点O成中心对称,则AD=EF,∠ABC=∠FGH.3.如图,已知六边形ABCDEF是以点O为对称中心的中心对称图形,画出六边形ABCDEF的全部图形,并指出所有的对应点和对应线段.解:作法如下:图中A的对应点是D,B的对应点是E,C的对应点是F;AB对应线段是DE,BC对应线段是EF,CD对应线段是AF.4.下列图形:线段、等边三角形、正方形、等腰梯形、正五边形、圆,其中是旋转对称图形的有哪些?解:线段、等边三角形、正方形、正五边形、圆都是旋转对称图形.活动3课堂小结1.把一个图形绕着某一点旋转180°,如果它能够和另一个图形重合,那么,我们就说这两个图形成中心对称,这个点叫做对称中心.2.识别中心对称的方法:如果两个图形的对应点连成的线段都经过某一点,并且被这一点平分,那么这两个图形一定关于这一点成中心对称.3.4简单的图案设计1.能利用平移、旋转或轴对称以及它们的组合解决一些简单的图案设计问题,并会利用它们分析图案.(重点) 2.通过观察、交流、创作,培养学生的动手操作能力和创新能力.(难点)自学指导:阅读教材P85的内容,完成下列问题.自学反馈1.平移、旋转、对称的联系:都是平面内的变换,都不改变图形的形状和大小,只改变图形的位置.2.如图所示的图案由四部分组成,每部分都包括两个小“十”字,其中一部分能经过适当的旋转得到其他三部分吗?能经过平移吗?能经过轴对称吗?还有其他方式吗?解:可以.归纳:图形的平移、旋转、对称是图形变换中最基本的三种变换方式.活动1小组讨论例欣赏图中的图案,并分析这个图案形成的过程.解:图中的图案是由三个“基本图案”组成的,它们分别是三种不同颜色的“爬虫”(形状、大小完全相同).在图中,同色的“爬虫”之间是平移关系,所有同色的“爬虫”可以通过其中一只经过平移而得到的;相邻的不同色的“爬虫”之间可以通过旋转而得到,其中,旋转角为120°,旋转中心为“爬虫”头上、腿上或脚趾上一点.活动2跟踪训练1.国旗上的四个小五角星,通过怎样的移动可以相互得到(D)A.轴对称B.平移C.旋转D.平移和旋转2.下列这些复杂的图案都是在一个图案的基础上,在“几何画板”软件中拖动一点后形成的,它们中每一个图案都可以由一个“基本图案”通过连续旋转得来,旋转的角度是(C)A.30°B.45°C.60°D.90°3.广告设计人员进行图案设计,经常将一个基本图案进行轴对称、平移和旋转等.活动3课堂小结充分运用平移、旋转或轴对称,按照所要表达的意思,对基本图案进行操作,设计出相应图案.。

八年级数学北师大版下册第三章简单的图案设计课件

八年级数学北师大版下册第三章简单的图案设计课件

方形,并涂上阴影,使这两个格点正方形无重叠面积,
且组成的图形既是轴对称图形,又是中心对称图形,则
这个格点正方形的作法共有( C )
A.2种
B.3种
C.4种
D.5种
知识点 2
合作探究
设计图案
图案设计的一般步骤: (1)选择基本图案(基本图案可以是一个图案,也可
以是几个图案的结合). (2)对基本图案进行变换(变换可以是单纯的平移,
归纳新知
1 知识小结
图案案,也可
以是几个图案的结合). (2)对基本图案进行变换(变换可以是单纯的平移,
旋转或轴对称,也可以是多种变换). (3)对图案进行修饰.
2 易错小结
如图所示的图案是由一个梯形经过旋转和对称形成 的,则该梯形应该满足什么条件?
旋转或轴对称,也可以是多种变换). (3)对图案进行修饰.
例2 学校在艺术周上,要求学生制作一个精美的轴 对称图形,请你用所给出的几何图形: ○○△△--(两个圆,两个等边三角形,两条 线段)为构件,构思一个特殊、有意义的轴对称图 形,并写上一句简要的解说词.
导引:解答本例需要利用给定的六个元素,充分展开想 象的翅膀,组合成各种有意义的图形.此外,还 要有一定的生活经验和一定的文学修养.
块组成一幅图案,请仿照此图案在如图 b 所示的网格中设计
符合要求的图案(注:①不
得与原图案相同;②黑、
白方块的个数要相同).
(1)是轴对称图形也是中心对称图形; (2)是轴对称图形但不是中心对称图形;
略.
(3)是中心对称图形但不是轴对称图形.
10.以给出的图形“○,○,△,△,===”(两个相同的圆、两个 相同的等边三角形、两条线段)为构件,各设计一个构思独特 且有意义的轴对称图形或中心 对称图形.举例:如图,左框 中是符合要求的一个图形.你 还能构思出其他的图形吗? 请在右框中画出与之不同的图形.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.过点A作射线AZ∥XY;
2.在射线AZ上截取线段AB,
Y X
使AB=3cm;
3.B点即为所求作.
2.线段的平移作法 将线段AB沿着射线XY方向平移3cm. 【作法一】 1.将线段的端点A平移,得点C;
Y X
C A D B
2.将线段的端点B平移,得点D; 3.连接CD,线段CD即为所求作.
【反思】本作法运用了平移的什么性质?
【解析】1.连接AD
2.过点B作BE平行 且等于AD 3.连接DE
B
A
D
E
∴线段DE就是线段AB平移后的图形
3.图形的平移作法
如果经过平移,△ABC的顶点A移到了点D.你会 作出平移后的三角形吗? 【作法】
A D F C B E
1.将线段BC沿AD方向平移
AD长距离,得线段EF;
2.连接DE, DF;
3.则△DEF即为所求作.
【反思】本作法运用了平移的什么性质?
如果经过平移,△ABC的顶点A移到了点D.你会作出 平移后的三角形吗?想一想:还有其他作法吗?
A D
F C B N E M
【规律方法】如何进行平移作图? 关键在于按要求(方向和距离)作出对应点. 然后,顺次连接对应点即可.
【跟踪训练】
3. 将图中的字母N沿水平方向向右平移3cm,作出 平移后的图形. 【解析】 1.选择4个控制点;
2.将4个控制点分别平移;
3.连接平移后的4个控制点, 得字母N平移后的图形.
通过本课时的学习,需要我们掌握: 1.平移的基本性质,对应点所连的线段平行且相等; 对应线段平行且相等,对应角相等. 2.应用平移性质作一些简单平面图形平移后的图形. 3.掌握“以局部代整体”的平移作图方法.
的距离,这样的图形运动称为平移.
平移不改变图形的形状和大小,只改变了图形的位置.
【想一想】 1.图中线段AE,BF,CG,DH有怎样的位置关系? 2.图中每对对应线段之间有怎样的位置关系? 3.图中有哪些相等的线段、相等的角?
E 经过平移,对应点所
连的线段平行且相等; A D
H
G
F
对应线段平行且相等; B 对应角相等.
如图,将字母A按箭头所指的方向平移3cm,作出
平移后的图形.
【作法】
1. 选择5个控制点;
2. 将5个控制点分别平移; 3. 连接平移后的5个控制点, 得字母A平移后的图形.
【反思】本作法运用了平移的什么性质?
【规律方法】由局部平移实现整体平移.
1.(潼南·中考)如图,△ABC经过怎样的平移得到
△DEF ( C ) A.把△ABC向左平移4个单位,再向下平移2个单位 B.把△ABC向右平移4个单位,再向下平移2个单位 C.把△ABC向右平移4个单位,再向上平移2个单位
【规律方法】平移的性质:
对应点所连的线段平行(或在一条直线上)且相等;
对应线段平行(或在一条直线上)且相等,对应角相
等. 【说明】1.决定平移的因素是平移的方向和距离; 2.平移只改变图形的位置,图形的形状和大小不变.
简单的平移作图
1.点的平移作法 将A点沿着射线XY方向平移3cm.
【作法】
B A Z
将线段AB沿着射线XY方向平移3cm. 【作法二】
C A D B
1.将线段的端点A平移,得点C; 2.过C点作线段AB的平行线CZ;
Y
Z
X
3.在射线CZ上截取线段CD,使
CD=AB,则线段CD即为所求作.
【反思】本作法运用了平移的什么性质?
【跟踪训练】 如图所示,经过平移,线段AB的端点A移到了 点D,你能作出线段AB平移后的图形吗?
C
【例题】
【例】如图所示, △ABE沿着射线XY的方 向平移一定的距离后,
Y X
A
C
D
E
成为△CDF.找出图中
存在的平行且相等的
F
三条线段和一组全等
三角形.
B
【跟踪训练】 1.下列哪幅图可以通过(1)平移而 得?( B )
(1)
A
B
Байду номын сангаас
C
D
2.将图中的小船向右平移4格
3.下列运动中是平移的有哪些?(是的打“√”,不是 打“×”) (1)急刹车的小汽车在地面上的运动;(√ ) (2)自行车轮子的运动;( × ) (3)时钟的分针的运动;( × ) (4)高层建筑内的电梯的运动;(√ ) (5)小球从高空中自由下落.(√ )
第三章
1
图形的平移与旋转
图形的平移
1.认识平移、理解平移的基本内涵. 2.理解平移前后两个图形对应点连线平行且相等, 对应线段平行且相等,对应角相等的性质. 3.掌握有关画图的操作技能,学会平移作图,掌握 作图技巧.
升国旗
小狗拉着盒子在平整的地面上跑.
上 升 的 水 桶
E
A B
H
G
D
F
C
在平面内,将一个图形沿着某个方向移动一定
D.把△ABC向左平移4个单位,再向上平移2个单位
D A B
E
F
C
3.(济南·中考)如图所示,△DEF是△ABC 沿水平方
向向右平移后的对应图形,若∠B=31°,∠C=79°, 则∠D的度数是______度.
A D
B
C E
F
【解析】根据三角形的内角和为180°,得∠A=70°, 根据平移的性质知平移后对应角相等即∠D=70° 答案:70
相关文档
最新文档