维纳滤波原理及其matlab实现-(

合集下载

维纳滤波滤除同频的原理

维纳滤波滤除同频的原理

维纳滤波滤除同频的原理1.引言1.1 概述维纳滤波是一种广泛应用于信号处理领域的滤波算法,其主要用途是去除同频干扰。

在实际应用中,我们经常会遇到不同信号混杂在一起的情况,即使这些信号具有相同的频率,但它们可能具有不同的相位和幅度。

这些干扰信号会对我们所关注的信号产生干扰,影响我们对信号的分析和处理。

维纳滤波通过对输入信号进行加权求和的方式,将干扰信号的影响最小化,使我们能够更准确地恢复出所关注的信号。

其基本原理是通过对干扰信号和所关注信号进行统计特性的估计,然后通过最小均方误差准则确定滤波器的加权系数,最终实现对干扰信号的抑制。

同频干扰是指具有相同频率的干扰信号对所关注的信号产生的干扰作用。

由于干扰信号与我们所关注的信号相同频率,传统的滤波器往往难以区分它们并准确滤除。

而维纳滤波通过对信号的统计特性进行建模,可以较好地区分干扰信号和所关注信号,并实现对同频干扰的有效抑制。

维纳滤波在通信领域、图像处理领域等都有广泛的应用。

在通信系统中,维纳滤波可以用于抑制同频干扰信号,提高系统的抗干扰性能,从而提高通信质量。

在图像处理领域,维纳滤波可以用于去除同频干扰造成的图像噪声,提高图像的清晰度和质量。

总之,维纳滤波是一种重要的信号处理技术,能够有效地滤除同频干扰。

通过对信号的统计特性进行建模和优化滤波器的参数,维纳滤波能够在干扰较严重的情况下提供较好的抑制效果。

在实际应用中,我们可以根据具体的信号特点和要求选择合适的维纳滤波算法,以达到更好的滤波效果。

1.2文章结构文章结构部分应描述整篇文章的组织结构和各个部分的内容。

在这篇文章中,可以按照以下方式来编写文章结构的内容:文章结构:本篇长文将按照以下结构组织内容:1. 引言1.1 概述1.2 文章结构: 本节将介绍文章的结构和各个部分的内容安排。

1.3 目的2. 正文2.1 维纳滤波的基本原理: 本节将介绍维纳滤波的基本原理,包括维纳滤波的数学模型和算法。

2.2 同频干扰的特点: 本节将探讨同频干扰的特点,包括其在信号处理中的影响和表现形式。

维纳滤波原理

维纳滤波原理

维纳滤波原理维纳滤波是一种信号处理中常用的滤波方法,它的原理是基于最小均方误差准则,通过对信号和噪声的统计特性进行分析,设计一种能够最小化系统输出与期望输出之间均方误差的滤波器。

维纳滤波在图像处理、语音处理、雷达信号处理等领域都有广泛的应用,下面我们来详细了解一下维纳滤波的原理和应用。

首先,我们需要了解维纳滤波的基本模型。

维纳滤波的输入信号可以表示为s(n),噪声信号表示为v(n),系统输出信号表示为x(n),那么维纳滤波器的输出可以表示为:x(n) = w(n) s(n) + v(n)。

其中,表示卷积操作,w(n)表示滤波器的权值。

维纳滤波的目标是设计一个滤波器,使得系统输出信号x(n)与期望输出信号d(n)之间的均方误差最小,即最小化误差信号e(n)的均方值E[e^2(n)]。

根据最小均方误差准则,我们可以得到维纳滤波器的最优解为:w(n) = R_ss^(-1) p_s。

其中,R_ss表示输入信号s(n)的自相关矩阵,p_s表示输入信号s(n)与期望输出信号d(n)的互相关向量。

这个公式描述了维纳滤波器的权值与输入信号和期望输出信号的统计特性之间的关系。

维纳滤波器的设计需要对输入信号和噪声信号的统计特性有一定的了解。

通常情况下,输入信号和噪声信号被假设为高斯分布,因此可以通过它们的均值和方差来描述它们的统计特性。

在实际应用中,我们可以通过对信号和噪声的样本进行统计分析,估计它们的均值和方差,进而设计维纳滤波器。

除了基本的维纳滤波器设计原理,维纳滤波还有一些扩展应用。

例如,当输入信号和噪声信号的统计特性未知或难以估计时,我们可以通过自适应滤波的方法来实现维纳滤波。

自适应滤波器可以根据系统的实时输入信号和输出信号来动态地调整滤波器的权值,以适应信号和噪声的变化特性,从而实现更好的滤波效果。

维纳滤波在图像处理中有着广泛的应用。

在数字图像处理中,图像通常会受到噪声的影响,例如加性高斯噪声、椒盐噪声等。

维纳滤波matlab代码

维纳滤波matlab代码

维纳滤波matlab代码维纳滤波是一种经典的图像复原方法,它可以在图像受到模糊和噪声影响时进行恢复。

在Matlab中,你可以使用以下代码来实现维纳滤波:matlab.% 读取原始图像。

originalImage = imread('input_image.jpg');% 转换为灰度图像。

originalImage = rgb2gray(originalImage);% 显示原始图像。

subplot(1, 2, 1);imshow(originalImage);title('Original Image');% 添加高斯噪声。

noisyImage = imnoise(originalImage, 'gaussian', 0, 0.01);% 显示带噪声的图像。

subplot(1, 2, 2);imshow(noisyImage);title('Noisy Image');% 计算模糊点扩散函数(PSF)。

PSF = fspecial('motion', 21, 11);% 使用逆滤波器和维纳滤波器进行图像复原。

estimated_nsr = 0;wnr3 = deconvwnr(noisyImage, PSF, estimated_nsr);% 显示维纳滤波后的图像。

figure, imshow(wnr3);title('Restored Image using Wiener Filter');在这段代码中,我们首先读取原始图像,然后转换为灰度图像。

接着,我们添加高斯噪声来模拟图像受到的噪声干扰。

然后我们计算模糊点扩散函数(PSF),并使用Matlab内置的`deconvwnr`函数来进行维纳滤波处理。

最后,我们显示经过维纳滤波处理后的图像。

需要注意的是,维纳滤波的参数estimated_nsr需要根据实际情况进行调整,它代表了噪声的方差估计。

维纳自适应滤波器设计及Matlab实现

维纳自适应滤波器设计及Matlab实现

维纳自适应滤波器设计及Matlab实现摘要本文从随机噪声的特性出发,分析了传统滤波和自适应滤波基本工作原理和性能,以及滤波技术的现状和发展前景。

然后系统阐述了基本维纳滤波原理和自适应滤波器的基本结构模型,接着在此基础上结合最陡下降法引出LMS算法。

在MSE准则下,设计了一个定长的自适应最小均方横向滤波器,并通过MATLAB 编程实现。

接着用图像复原来验证该滤波器的性能,结果表明图像的质量在MSE 准则下得到了明显的改善。

最后分析比较了自适应LMS滤波和频域维纳递归滤波之间的性能。

本文还对MATLAB里面的自适应维纳滤波函数wiener2进行了简单分析。

关键字:退化图像维纳滤波自适应滤波最陡下降法LMSAbstractThis paper analyses the basic work theory, performance of traditional filter and adaptive filter based on the property of random noise, and introduce the status quo and the foreground of filter technology. Then we explain basic theory of wiener filter and basic structure model of adaptive filter, and combine the method of steepest descent to deduce the LMS. Afterward according to the MSE rule, we design a limited length transversal filter, and implement by MATLAB. And then we validate performance of adaptive LMS filter by restoring images, Test result show that the quality of the degrade images were improved under the rule of MSE. Finally, we compare the performance of adaptive LMS filter and iterative wiener filter.We also simply analyses the wiener2 () which is a adaptive filter in MATLAB. Keywords: degrade image;wiener filter;adaptive filter;ADF;LMS algorithm目录1绪论 (1)1. 1 引言 (1)1. 2 研究目标及现状 (1)1. 2 .1 图像复原技术的目标 (1)1. 2 .2 图像复原技术的研究现状 (1)2理论基础 (3)2. 1 基本自适应滤波器的模块结构 (3)2. 2 基本维纳滤波原理 (4)3自适应滤波原理及算法 (6)3.1 横向滤波结构的最陡下降算法 (7)3.1.1 最陡下降算法的原理 (7)3.1.2 最陡下降算法稳定性 (10)3.2 LMS滤波原理及算法 (11)3.2.1 从最陡下降算法导出LMS算法 (11)3.2.2 基本LMS算法的实现步骤 (11)3.2.3 基本LMS算法的实现流程图 (12)3.2.4 LMS算法的Matlab实现 (12)3.2.5 wiener2()的原理 (12)3.2.6 LMS性能分析——自适应收敛性 (13)4Matlab 实验结果 (14)4.1.LMS滤波器的收敛性 (14)4.2.LMS滤波器和频域迭代维纳滤波器的性能比较 (16)5总结 (18)致谢 (19)参考文献 (20)附录 A (21)附录 B (22)附录 C (27)1 绪论1.1引言人类传递信息的主要媒介是语言和图像。

维纳滤波推导

维纳滤波推导

维纳滤波推导维纳滤波是一种常用的信号处理方法,广泛应用于图像处理、语音处理和通信领域等。

本文将以维纳滤波推导为主题,介绍维纳滤波的基本原理和推导过程。

维纳滤波是一种最小均方误差滤波方法,通过对信号和噪声进行数学建模,找到最优的滤波器,以实现信号的恢复和噪声的抑制。

维纳滤波的基本思想是在频域将信号和噪声进行分离,然后对信号进行加权平均,以减小噪声的影响。

我们需要对信号和噪声进行数学建模。

假设原始信号为s(t),观测到的信号为x(t),噪声为n(t),则观测信号可以表示为x(t)=s(t)+n(t)。

我们假设信号和噪声都是宽平稳过程,并且它们在频域上是相互独立的。

接下来,我们将信号和噪声的频谱进行分析。

假设信号和噪声的功率谱密度分别为S(f)和N(f),则观测信号的功率谱密度为X(f)=S(f)+N(f)。

维纳滤波的目标是找到一个滤波器H(f),使得滤波后的信号Y(f)尽可能接近信号的功率谱密度S(f),即最小化信号和滤波后信号的均方误差。

根据维纳滤波的最小均方误差准则,我们可以得到维纳滤波器的频率响应函数为H(f)=S(f)/(S(f)+N(f))。

这个频率响应函数可以看作是对信号和噪声进行加权平均的结果,信号的权重比例取决于信号和噪声的功率谱密度。

我们可以通过将滤波器的频率响应函数H(f)与观测信号的频谱X(f)进行卷积运算,得到滤波后的信号的频谱Y(f)=H(f)*X(f)。

然后,我们可以通过傅里叶逆变换将滤波后的信号从频域转换到时域,得到滤波后的信号y(t)。

维纳滤波的推导过程比较复杂,需要涉及一些数学和信号处理的知识。

在实际应用中,可以利用现有的维纳滤波算法和工具包,直接对观测信号进行滤波处理,而无需进行推导。

维纳滤波在图像处理中常用于去噪,可以有效地提高图像的质量和清晰度。

在语音处理和通信领域中,维纳滤波可以用于语音增强和信号恢复,提高通信质量和语音识别的准确性。

维纳滤波是一种常用的信号处理方法,通过对信号和噪声进行数学建模,找到最优的滤波器,以实现信号的恢复和噪声的抑制。

维纳、卡尔曼滤波简介及MATLAB实现

维纳、卡尔曼滤波简介及MATLAB实现

现代数字信号处理课程作业维纳、卡尔曼、RLS、LMS算法matlab实现维纳滤波从噪声中提取信号波形的各种估计方法中,维纳(Wiener)滤波是一种最基本的方法,适用于需要从噪声中分离出的有用信号是整个信号(波形),而不只是它的几个参量。

设维纳滤波器的输入为含噪声的随机信号。

期望输出与实际输出之间的差值为误差,对该误差求均方,即为均方误差。

因此均方误差越小,噪声滤除效果就越好。

为使均方误差最小,关键在于求冲激响应。

如果能够满足维纳-霍夫方程,就可使维纳滤波器达到最佳。

维纳滤波器的优点是适应面较广,无论平稳随机过程是连续的还是离散的,是标量的还是向量的,都可应用。

维纳滤波器的缺点是,要求得到半无限时间区间内的全部观察数据的条件很难满足,同时它也不能用于噪声为非平稳的随机过程的情况,对于向量情况应用也不方便。

因此,维纳滤波在实际问题中应用不多。

下面是根据维纳滤波器给出的图像处理matlab实例,在下面实例中维纳滤波和均值滤波相比较,并且做了维纳复原、边缘提取、图像增强的实验:%****************维纳滤波和均值滤波的比较*********************I=imread('lena.bmp');J=imnoise(I,'gaussian',0,0.01);Mywiener2 = wiener2(J,[3 3]);Mean_temp = ones(3,3)/9;Mymean = imfilter(J,Mean_temp);figure(1);subplot(121),imshow(Mywiener2),title('维纳滤波器输出');subplot(122),imshow(uint8(Mymean),[]),title('均值滤波器的输出');%***********************维纳复原程序********************figure(2);subplot(231),imshow(I),title('原始图像');LEN = 20;THETA =10;PSF = fspecial('motion',LEN,THETA);Blurred = imfilter(I,PSF,'circular');subplot(232),imshow(Blurred),title('生成的运动的模糊的图像');noise = 0.1*randn(size(I));subplot(233),imshow(im2uint8(noise)),title('随机噪声');BlurredNoisy=imadd(Blurred,im2uint8(noise));subplot(234),imshow(BlurredNoisy),title('添加了噪声的模糊图像');Move=deconvwnr(Blurred,PSF);subplot(235),imshow(Move),title('还原运动模糊的图像');nsr = sum(noise(:).^2)/sum(im2double(I(:)).^2);wnr2 = deconvwnr(BlurredNoisy,PSF,nsr);subplot(236),imshow(wnr2),title('还原添加了噪声的图像');%****************维纳滤波应用于边缘提取*********************N = wiener2(I,[3,3]);%选用不同的维纳窗在此修改M = I - N;My_Wedge = im2bw (M,5/256);%化二值图像BW1 = edge(I,'prewitt');BW2 = edge(I,'canny');BW3 = edge(I,'zerocross');BW4 = edge(I,'roberts');figure(3)subplot(2,4,[3 4 7 8]),imshow(My_Wedge),title('应用维纳滤波进行边沿提取'); subplot(241),imshow(BW1),title('prewitt');subplot(242),imshow(BW2),title('canny');subplot(245),imshow(BW3),title('zerocross');subplot(246),imshow(BW4),title('roberts');%*************************维纳滤波应用于图像增强***************************for i = [1 2 3 4 5] K = wiener2(I,[5,5]);end K = K + I; figure(4);subplot(121),imshow(I),title('原始图像'); subplot(122),imshow(K),title('增强后的图像');维纳滤波器输出均值滤波器的输出原始图像生成的运动的模糊的图像随机噪声添加了噪声的模糊图像还原运动模糊的图像还原添加了噪声的图像卡尔曼滤波卡尔曼滤波的一个典型实例是从一组有限的,对物体位置的,包含噪声的观察序列预测出物体的坐标位置及速度。

维纳滤波器的设计及Matlab仿真实现

维纳滤波器的设计及Matlab仿真实现

Wiener 滤波器的设计及Matlab 仿真实现1.实验原理在许多实际应用中,人们往往无法直接获得所需的有用信号,能够得到的是退化了或失真了的有用信号。

例如,在传输或测量信号s(n)时,由于存在信道噪声或测量噪声v(n),接受或测量到的数据x(n)将与s(n)不同。

为了从x(n)中提取或恢复原始信号s(n),需要设计一种滤波器,对x(n)进行滤波,使它的输出y(n)尽可能逼近s(n),成为s(n)的最佳估计,即y(n) = )(ˆn s。

这种滤波器成为最优滤波器。

Wiener 滤波器是“理想”意义上的最优滤波器,有一个期望响应d(n),滤波器系数的设计准则是使滤波器的输出y(n)(也常用)(ˆn d表示)是均方意义上对期望响应的最优线性估计。

Wiener 滤波器的目的是求最优滤波系数],,,,,,[,1,0,1, k o o o o w w w w w ,从而使])(ˆ)([])([)(22n d n d E n e E n J 最小。

通过正交性原理,导出)()(k r k i r w xd x i oi , 2,1,0,1, k该式称为Wiener-Hopf 方程,解此方程,可得最优权系数},2,1,0,1,,{ i w oi 。

Wiener-Hopf 方程的矩阵形式为xd o x r w R ,解方程求得xd x o r R w 12.设计思路下面我们通过具体的例子来说明Wiener 滤波器的设计方法:考虑如下图所示的简单通信系统。

其中,产生信号S(n)所用的模型为)95.01/(1)(11 z z H ,激励信号为)3.0,0(~)(WGN n w 。

信号s(n)通过系统函数为)85.01/(1)(12 z z H 的信道,并被加性噪声)1.0,0(~)(WGN n v 干扰,v(n)与w(n)不相关。

确定阶数M=2的最优FIR 滤波器,以从接收到的信号x(n) = z(n) + v(n)中尽可能恢复发送信号s(n),并用MATLAB 进行仿真。

维纳滤波器的原理

维纳滤波器的原理

维纳滤波器的原理维纳滤波器是一种经典的信号处理滤波器,其原理基于最小均方误差准则,旨在通过优化滤波器的系数来最小化输出信号与期望信号之间的误差。

维纳滤波器的设计思想是将输入信号分解为两个部分:有用信号和噪声信号。

然后,通过滤波器的作用,使得输出信号中噪声的影响最小化。

维纳滤波器的设计过程可以分为两个主要步骤:信号建模和滤波器系数计算。

首先,需要对输入信号进行建模,以便准确地描述信号的统计特性。

常用的信号模型有平稳信号模型和非平稳信号模型。

在信号建模的过程中,需要估计信号的自相关函数和互相关函数,这些函数反映了信号的统计特性。

接下来,在信号建模的基础上,可以使用维纳滤波器的最小均方误差准则来计算滤波器的系数。

最小均方误差准则的基本思想是使得输出信号的均方误差最小化。

通过求解最小均方误差准则的最优化问题,可以得到滤波器的最优系数,进而实现对输入信号的滤波。

维纳滤波器的原理可以用如下的几个步骤来总结:1. 信号建模:对输入信号进行建模,估计信号的统计特性,如自相关函数和互相关函数。

2. 误差计算:计算输出信号与期望信号之间的误差。

3. 最小均方误差准则:使用最小均方误差准则来优化滤波器的系数,使得输出信号的均方误差最小化。

4. 系数计算:通过求解最小均方误差准则的最优化问题,得到滤波器的最优系数。

5. 滤波器设计:根据计算得到的滤波器系数,设计出具体的滤波器结构。

维纳滤波器在实际应用中具有广泛的应用。

例如,在通信系统中,维纳滤波器可以用于抑制信道中的噪声,提高信号的质量。

在图像处理领域,维纳滤波器可以用于去除图像中的噪声,提高图像的清晰度。

此外,维纳滤波器还可以用于语音增强、雷达信号处理等领域。

维纳滤波器是一种基于最小均方误差准则的经典滤波器。

通过对输入信号的建模和优化滤波器的系数,维纳滤波器可以有效地抑制噪声,提高信号的质量。

维纳滤波器在各种信号处理领域中都有广泛的应用,为我们提供了一种有效的信号处理工具。

维纳滤波降噪matlab函数

维纳滤波降噪matlab函数

维纳滤波降噪matlab函数维纳滤波是一种常用的信号处理方法,可以有效地降低信号中的噪声。

在matlab中,我们可以使用维纳滤波函数对信号进行降噪处理,提高信号的质量和可靠性。

维纳滤波的基本原理是基于最小均方误差准则,通过对信号和噪声的统计特性进行建模,对信号进行滤波,使得滤波后的信号与原始信号尽可能接近,同时抑制噪声的干扰。

维纳滤波的核心思想是在频域对信号进行滤波,通过对信号的频谱进行调整,削弱噪声的频谱成分,从而达到降噪的目的。

在matlab中,我们可以使用wiener2函数实现维纳滤波。

wiener2函数是matlab中的一个内置函数,可以对二维图像进行维纳滤波。

具体的使用方法如下:```matlabfiltered_signal = wiener2(noisy_signal, [m n], noise_power);```其中,noisy_signal是带有噪声的信号,m和n分别是滤波器的大小,通常设置为3或5,noise_power是噪声的功率,可以通过matlab的imnoise函数计算得到。

维纳滤波的效果取决于噪声的统计特性以及滤波器的大小。

当噪声的功率较小且统计特性已知时,维纳滤波可以有效地降低噪声的干扰,恢复出清晰的信号。

然而,当噪声的功率较大或者统计特性未知时,维纳滤波可能会导致信号失真或者增加噪声的干扰。

在实际应用中,我们通常需要根据具体场景和需求,调整滤波器的大小和噪声功率的估计值,以达到最佳的降噪效果。

同时,维纳滤波也可以与其他滤波算法结合使用,以进一步提高降噪效果。

除了wiener2函数,matlab还提供了其他一些用于降噪的函数,如medfilt2函数可以实现中值滤波,imfilter函数可以实现各种线性滤波。

根据不同的需求和信号特性,我们可以选择合适的滤波方法进行降噪处理。

维纳滤波是一种常用的信号降噪方法,可以通过调整滤波器的大小和噪声功率的估计值,对信号进行滤波,降低噪声的干扰。

matlab11种数字信号滤波去噪算法

matlab11种数字信号滤波去噪算法

matlab11种数字信号滤波去噪算法Matlab是一种强大的数学软件,广泛应用于信号处理领域。

在数字信号处理中,滤波去噪是一个重要的任务,可以提高信号的质量和准确性。

本文将介绍Matlab中的11种数字信号滤波去噪算法。

1. 均值滤波:该算法通过计算信号中一定窗口内的像素平均值来去除噪声。

它适用于高斯噪声和椒盐噪声的去除。

2. 中值滤波:该算法通过计算信号中一定窗口内的像素中值来去除噪声。

它适用于椒盐噪声的去除。

3. 高斯滤波:该算法通过对信号进行高斯模糊来去除噪声。

它适用于高斯噪声的去除。

4. 维纳滤波:该算法通过最小均方误差准则来估计信号的真实值,并去除噪声。

它适用于高斯噪声的去除。

5. 自适应滤波:该算法通过根据信号的局部特性来调整滤波器的参数,从而去除噪声。

它适用于非线性噪声的去除。

6. 小波去噪:该算法通过将信号分解为不同频率的小波系数,并对系数进行阈值处理来去除噪声。

它适用于各种类型的噪声的去除。

7. Kalman滤波:该算法通过对信号进行状态估计和观测更新来去除噪声。

它适用于线性系统的去噪。

8. 粒子滤波:该算法通过使用一组粒子来估计信号的状态,并通过重采样来去除噪声。

它适用于非线性系统的去噪。

9. 线性预测滤波:该算法通过使用线性预测模型来估计信号的未来值,并去除噪声。

它适用于平稳信号的去噪。

10. 自适应线性组合滤波:该算法通过对信号进行线性组合来估计信号的真实值,并去除噪声。

它适用于各种类型的噪声的去除。

11. 稀疏表示滤波:该算法通过使用稀疏表示模型来估计信号的真实值,并去除噪声。

它适用于各种类型的噪声的去除。

以上是Matlab中的11种数字信号滤波去噪算法。

每种算法都有其适用的场景和优缺点,根据具体的信号和噪声类型选择合适的算法进行去噪处理。

Matlab提供了丰富的函数和工具箱,可以方便地实现这些算法,并对信号进行滤波去噪。

通过合理选择和组合这些算法,可以有效提高信号的质量和准确性,为后续的信号处理任务提供更好的基础。

基于MATLAB的维纳滤波器的设计

基于MATLAB的维纳滤波器的设计

) ) ∑ h )n m , = (x— ) ( n m(
m=O
同样利用最小均方误差准则,( 足下面方程 : h满 n

) w () : 2 wz-O 常数 w) ' = ( W 所以 s ) ( 的功率谱密度可表示为 () n n z= -A zA z) ) D 2() ( w xn=()vn , xn的信号模型可表示成图 1 a ()sn十()因此 () 中 图的形式。 如果 xn 的功率谱密度也为 z () 的有理分式, 我们可以将 xn的信号 () ,、 模型直接表示成图 1 ’ 中b图的形式, 其中B z xn的形成网络的传递 () () 是 函数。同样 , 有

其中 h 0,( , hN—1 =[() 1…,( ) ) J
f ( o )
p —

(1 … 一 ) (Ⅳ+) 一 1 1
l 1 丸( )
【 1 . … . 1 ( 1丸Ⅳ 2… ( Ⅳ ) (一 0 一 ) ) 』
【 () 丸 ( … 丸 ( ) 丸 0 1 ) Ⅳ一1 】
关键 词 : 纳 滤 波 器 ; 小均 方 误 差 ; 号 长 度 ; 数 维 最 信 阶 1概述
在信号的检测与处理过程中, 通常要解决的问题就是如何从噪声中 有效提取信号, 也就是 移 撇 问题。因此, 设计一种具有最佳线性过滤 特性滤波器就成为信号睑测领域的重要任务之一。当夹杂有噪声的信号 输入到该滤派 时 器 输出端9 情 尽可能精确地阪复 隔觋 , 对噪声进行 最大限度的抑制。维纳过滤就是解决这类问题的过滤方法之一。在研究 维纳滤波器滤波原理的基础上 , 设计—个维纳滤波器 , MA I 用 TAB对其 进行仿真, 探讨影响维纳滤波器滤波效果的l能指标。 生 2 维纳滤波原理 维纳滤波是—种从噪声背景中提取信号的最佳线 瞄力怯 , ^ 而维纳滤 波器实际 匕 是—个线性系 , 假定其单位冲击响应为单位脉冲响应为 h (, n 当—个具有以下形式的随机信号 x ) s) ) ( ((为有用信号 ,n n n

现代信号处理实验报告

现代信号处理实验报告

实验报告实验课程:现代信号处理学生姓名:李行学号: 401030719013 专业:信息与通信工程指导老师:万国金实验一 维纳滤波器的设计一、 实验目的1、了解维纳滤波的实现原理2、Matlab 仿真实现加性干扰信号的维纳滤波。

3、分析影响维纳滤波效果的各种因素,从而加深对维纳滤波的理解。

二、 实验内容设计一维纳滤波器。

(1)、产生三组观测数据:首先根据)()1()(n w n as n s +-=产生信号)(n s ,将其加噪(信噪比分别为20dB ,10dB ,6dB ),得到观测数据)(1n x ,)(2n x ,)(3n x 。

(2)、估计)(n x i ,3,2,1=i 的AR 模型参数。

假设信号长度为L ,AR 模型阶数为N ,分析实验结果,并讨论改变L ,N 对实验结果的影响。

三、 实验原理维纳滤波是一种从噪声背景中提取信号的最佳线性方法。

维纳-霍夫方程为()()()()()k r k h m k r m h k r xx m xx xd *0=-=∑+∞=当()n h 是一个长度为M 的因果序列(即一个长度为M 的FIR 滤波器)时,维纳-霍夫方程表述为()()()()() ,,,210*10==-=∑-=k k r k h m k r m h k r xx M m xx xd定义()()()()()()()()()()()()⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=02120111011021xx xx xx xx xx xx xx xx xx xx xd xd xd xd M r M r M r M r r r M r r r M r r r h h h R R h则可写成矩阵的形式,即h R Rxx xd=对上式求逆,得到R R h xd xx 1-=由以上式子可知:若已知期望信号与观测数据的互相关函数及观测数据的自相关函数,则可以通过矩阵求逆运算,得到维纳滤波器的最佳解。

维纳滤波器的原理和应用

维纳滤波器的原理和应用

维纳滤波器的原理和应用维纳滤波器简介维纳滤波器是一种经典的信号处理滤波器,它基于维纳滤波理论,通过对信号进行统计分析和模型建立,实现信号的优化处理。

维纳滤波器能够降低信号中的噪声成分,提高信号的质量和可靠性,在许多领域中得到广泛的应用。

维纳滤波器原理维纳滤波器的原理是基于最小均方误差的思想,通过最小化信号与噪声之间的均方误差,实现对信号的最优估计。

其数学模型可以表示为:维纳滤波器原理公式维纳滤波器原理公式其中,x(n)是输入信号,h(n)是滤波器的冲激响应,y(n)是滤波器的输出信号,w(n)是噪声信号,E[w(n)w(m)]是噪声信号的自相关函数,Rxx(k)是输入信号的自相关函数,Rxy(k)是输入信号和噪声之间的互相关函数。

维纳滤波器根据输入信号、噪声信号和系统参数的统计特性,通过最小化均方误差优化系统参数,使得滤波器能够有效地抑制噪声成分,提取出原始信号。

维纳滤波器的设计需要基于输入信号和噪声的统计特性的准确估计,以及对滤波器参数的优化求解。

维纳滤波器应用维纳滤波器在实际应用中具有广泛的用途,以下列举了几个常见的应用领域:1.图像去噪:维纳滤波器可以应用于数字图像处理中的去噪问题,通过最小化图像中的噪声与图像信号的误差,实现对图像噪声的抑制,提高图像的质量和清晰度。

2.语音增强:在语音信号处理中,维纳滤波器可以应用于语音增强问题,通过对语音信号进行建模和分析,实现对噪声的抑制,提高语音信号的清晰度和可听性。

3.视频恢复:在视频信号处理中,维纳滤波器可以应用于视频恢复问题,通过对视频帧进行建模和分析,实现对噪声和失真的抑制,提高视频的质量和稳定性。

4.无线通信:在无线通信系统中,维纳滤波器可以应用于信号解调和接收问题,通过对接收信号进行建模和分析,实现对噪声和干扰的抑制,提高信号的可靠性和传输速率。

5.生物信号处理:在生物医学信号处理中,维纳滤波器可以应用于生物信号的去噪和增强问题,通过对生物信号进行建模和分析,实现对噪声和干扰的抑制,提高生物信号的可读性和分析能力。

08维纳滤波原理及其matlab实现

08维纳滤波原理及其matlab实现

摘要1.引言微地震是一种小型的地震(mine tremor or microseismic )。

在地下矿井深部开采过程中发生岩石破裂和地震活动,常常是不可避免的现象。

由开采诱发的地震活动,通常定义为,在开采坑道附近的岩体内因应力场变化导致岩石破坏而引起的那些地震事件。

开采坑道周围的总的应力状态.是开采引起的附加应力和岩体内的环境应力的总和。

滤波技术是信号分析、处理技术的重要分支,无论是信号的获取、传输,还是信号的处理和交换都离不开滤波技术,它对信号安全可靠和有效灵活地传递是至关重要的。

信号分析检测与处理的一个十分重要的内容就是从噪声中提取信号,实现这种功能的有效手段之一是设计一种具有最佳线性过滤特性的滤波器,当伴有噪声的信号通过这种滤波器的时候,它可以将信号尽可能精确地重现或对信号做出尽可能精确的估计,而对所伴随噪声进行最大限度地抑制。

维纳滤波器就是这种滤波器的典型代表之一。

维纳滤波通常用于深层地震勘探数据处理,特别在于深层石油天然气勘探开发中有诸多优点,然而当我们将维纳滤波的思路与原理应用于浅层地震勘探的数据处理中时,发现维纳滤波仍然能够较好地滤除噪音信号,提高信号的信噪比。

微地震勘探技术中,信噪比是衡量地震资料好坏的一个重要指标,信噪比越高,则地震资料质量越好,处理结果就越可信。

所以,信噪比的估值无论是对处理资料还是对地质解释都有一定的参考价值。

微地震勘探中,噪声是不可避免的,提高信噪比是地震资料数据处理中一项最基本的任务。

目前数字滤波技术的应用是提高信噪比最常用的方法。

维纳滤波是数字信号处理中滤波技术研究的一个主要内容。

作为最佳滤波器,其最优化的准则是使均方误差最小。

2.维纳滤波概述维纳(Wiener )是用来解决从噪声中提取信号的一种过滤(或滤波)方法。

这种线性滤波问题,可以看做是一种估计问题或一种线性估计问题。

一个线性系统,如果它的单位样本响应为错误!未找到引用源。

,当输入一个随机信号错误!未找到引用源。

维纳滤波复原的基本原理

维纳滤波复原的基本原理

维纳滤波复原的基本原理
维纳滤波(Wiener Filter)是一种经典的自适应滤波方法,可
用于信号复原和图像恢复等任务。

其基本原理是最小化输出信号与原始信号之间的均方误差,从而实现信号的最佳估计。

维纳滤波的基本假设是,原始信号和噪声是在频率域上相互独立的。

根据这一假设,维纳滤波通过对输入信号进行频域上的加权来实现信号的复原。

其具体步骤如下:
1. 将输入信号和噪声信号进行傅里叶变换,得到它们在频率域上的表示。

2. 根据信号自相关函数和噪声自相关函数的频谱表示,计算维纳滤波器的频率响应函数。

3. 将输入信号和噪声信号的频率表示与维纳滤波器的频率响应函数相乘,得到输出信号的频率表示。

4. 对输出信号进行傅里叶逆变换,得到复原后的信号。

维纳滤波的关键是确定维纳滤波器的频率响应函数。

通常情况下,维纳滤波器的频率响应函数需要对输入信号和噪声信号的功率谱进行估计。

常用的估计方法包括最小均方误差(MSE)准则、最大似然估计(MLE)准则和谱因子化方法等。

需要注意的是,维纳滤波在实际应用中并不总是能够获得满意的效果。

其有效性依赖于对输入信号和噪声信号的统计性质的
准确估计,以及对维纳滤波器的频率响应函数的合理选择。

在噪声强度较高、信号与噪声相关性较强或噪声功率谱存在峰值等情况下,维纳滤波可能失效或效果较差,此时可能需要使用其他更适合的滤波方法。

图像处理中的维纳滤波原理讲解

图像处理中的维纳滤波原理讲解

图像处理中的维纳滤波原理讲解图像处理是计算机视觉领域的重要分支,其中维纳滤波是常用的图像增强技术之一。

本文将详细介绍维纳滤波的原理和应用。

一、维纳滤波的基本概念维纳滤波是一种通过数学推导和图像处理技术实现图像去噪和增强的方法。

它通过分析图像的噪声特征和图像自身的平稳性质,将噪声信号和图像信号进行分离,从而实现图像的清晰化和增强。

在维纳滤波中,首先要了解图像的频谱性质。

图像可以看作是由不同频率的信号叠加而成的,其中高频信号对应于图像的细节信息,而低频信号则对应于图像的整体特征。

维纳滤波的目标就是通过处理图像的频谱进行图像修复和增强,使得图像的细节得到较好的保留。

二、维纳滤波的原理维纳滤波的核心原理是最小均方误差准则,即通过最小化输入信号和输出信号之间的均方误差来实现滤波。

根据此原理,我们可以将维纳滤波分为两个主要步骤:估计噪声功率谱和估计期望图像功率谱。

1. 估计噪声功率谱在维纳滤波中,首先需要估计图像中的噪声功率谱。

为了实现这一步骤,可以使用图像的局部均值作为噪声的估计值,进而计算出噪声的功率谱密度。

2. 估计期望图像功率谱维纳滤波的另一个重要步骤是估计期望图像的功率谱。

期望图像是指在没有噪声的理想情况下所得到的图像。

通过计算图像的自相关函数和噪声的功率谱密度,可以获得期望图像的功率谱。

3. 完成维纳滤波当噪声功率谱和期望图像功率谱都得到估计之后,将它们应用到维纳滤波的公式中,即可完成滤波过程。

维纳滤波器的频谱函数是期望图像功率谱与噪声功率谱的比值。

三、维纳滤波的应用维纳滤波广泛应用于图像处理的许多领域,包括医学图像处理、遥感图像处理、机器视觉等。

以下是维纳滤波常见的应用场景:1. 目标检测与跟踪在目标检测与跟踪中,维纳滤波可以通过增强图像的边缘和细节信息,使得目标更加突出。

维纳滤波可以提高图像的信噪比,减少噪声干扰,使目标的边界更加清晰。

2. 遥感图像处理遥感图像通常受到光照条件和大气扰动的影响,导致图像中存在噪声和模糊。

matlab 维纳滤波代码

matlab 维纳滤波代码

一、维纳滤波简介维纳滤波是一种经典的信号处理算法,主要用于图像去噪和恢复。

它基于最小均方误差准则,通过滤波器对输入信号进行处理,以减少噪声的影响并尽可能恢复原始信号的特征。

在 MATLAB 中,可以使用内置的函数或自行编写代码来实现维纳滤波。

二、维纳滤波的数学模型1. 维纳滤波的基本原理是利用频域上的滤波器对信号进行处理,其数学模型可以表示为:$$G(u,v) = H(u,v)F(u,v) + N(u,v)$$其中,$G(u,v)$ 是观测到的带噪声的图像的频谱,$H(u,v)$ 是系统的频率响应,$F(u,v)$ 是原始图像的频谱,$N(u,v)$ 是添加到图像中的噪声的频谱。

2. 根据维纳滤波的原理,可以通过以下公式计算维纳滤波器 $W(u,v)$: $$W(u,v) =\frac{1}{H(u,v)}\frac{|H(u,v)|^2}{|H(u,v)|^2+\frac{S_N(u,v)}{S_F(u,v )}}$$其中,$S_N(u,v)$ 是噪声功率谱,$S_F(u,v)$ 是原始图像功率谱。

三、MATLAB 中的维纳滤波函数MATLAB 提供了丰富的信号处理工具箱,其中包括了维纳滤波函数,可以方便地对图像进行去噪和恢复操作。

1. 在 MATLAB 中使用维纳滤波可以通过以下函数实现:```matlabJ = wiener2(I,[m n],noise_var);```其中,I 是输入图像,[m n] 是局部窗口的大小,noise_var 是噪声的方差。

2. 除了 wiener2 函数外,MATLAB 还提供了 imnoise 函数用于向图像中添加指定类型的噪声,可以配合维纳滤波进行实验和比较。

四、自行编写维纳滤波代码除了使用 MATLAB 提供的函数外,我们还可以根据维纳滤波的数学原理自行编写代码来实现算法。

1. 我们需要读取原始图像并将其转换为频域表示:```matlabI = imread('original.png');F = fft2(double(I));F = fftshift(F);```2. 计算噪声功率谱和原始图像功率谱:```matlabN = abs(fftshift(F_noise)).^2;S_f = abs(F).^2;```3. 接下来,根据维纳滤波的公式计算滤波器:```matlabWiener = (1./H).*(abs(H).^2./(abs(H).^2+(N./S_f)));```4. 将滤波器应用到输入图像的频谱上,并进行逆变换得到恢复图像: ```matlabF_restored = F .* Wiener;I_restored = ifft2(ifftshift(F_restored));```五、维纳滤波的应用场景维纳滤波在数字图像处理领域有着广泛的应用,尤其适用于受到高斯噪声影响的图像去噪和恢复。

维纳滤波原理

维纳滤波原理

维纳滤波原理
维纳滤波是一种常用于信号处理的滤波方法,它基于最小均方误差准则,旨在将输入信号通过滤波得到输出信号,并尽可能地减小输出信号与期望信号之间的误差。

维纳滤波方法的基本思想是,利用已知信号的统计特性以及滤波器系统的特性,通过优化滤波器的参数来实现最佳滤波效果。

在维纳滤波中,信号被假设为由观测值和噪声组成的加性噪声模型。

通过对噪声和信号的统计特性进行建模,可以得到一个最优的滤波器,使得输出信号的均方误差最小。

具体而言,维纳滤波的目标是最小化误差函数,该函数定义为期望输出与实际输出之间的均方误差。

误差函数可以通过最小二乘法来求解,将其对滤波器的系数进行求导并令导数为零,得到滤波器的最优解。

最终,通过将最优滤波器应用于输入信号,就可以得到经过优化的输出信号。

维纳滤波方法在实际应用中具有广泛的应用,特别是在图像处理和语音信号处理领域。

它可以通过对图像或语音信号进行降噪、增强和恢复等操作,从而改善信号质量和增强信息。

维纳滤波在去除图像和语音信号中的噪声方面具有较好的效果,能够有效地提高图像和语音的清晰度和可理解性。

总之,维纳滤波是一种基于最小均方误差准则的滤波方法,在信号处理领域有着重要的应用。

通过对信号和噪声的统计特性进行建模,并优化滤波器的参数,可以实现对信号进行降噪、增强和恢复等操作,从而提高信号的质量和可理解性。

维纳维纳滤波实现模糊图像恢复

维纳维纳滤波实现模糊图像恢复

维纳滤波实现模糊图像恢复摘要维纳滤波器是最小均方差准则下的最佳线性滤波器,它在图像处理中有着重要的应用。

本文主要通过介绍维纳滤波的结构原理,以及应用此方法通过MA TLAB 函数来完成图像的复原。

关键词:维纳函数、图像复原一、引言在人们的日常生活中,常常会接触很多的图像画面,而在景物成像的过程中有可能出现模糊,失真,混入噪声等现象,最终导致图像的质量下降,我们现在把它还原成本来的面目,这就叫做图像还原。

引起图像的模糊的原因有很多,举例来说有运动引起的,高斯噪声引起的,斑点噪声引起的,椒盐噪声引起的等等,而图像的复原也有很多,常见的例如逆滤波复原法,维纳滤波复原法,约束最小二乘滤波复原法等等。

它们算法的基本原理是,在一定的准则下,采用数学最优化的方法从退化的图像去推测图像的估计问题。

因此在不同的准则下及不同的数学最优方法下便形成了各种各样的算法。

而我接下来要介绍的算法是一种很典型的算法,维纳滤波复原法。

它假定输入信号为有用信号与噪声信号的合成,并且它们都是广义平稳过程和它们的二阶统计特性都已知。

维纳根据最小均方准则,求得了最佳线性滤波器的的参数,这种滤波器被称为维纳滤波。

二、维纳滤波器的结构维纳滤波自身为一个FIR 或IIR 滤波器,对于一个线性系统,如果其冲击响应为()n h ,则当输入某个随机信号)(n x 时,Y(n)=∑-n)()(m n x m h 式(1)这里的输入)()()(n v n s n x += 式(2)式中s(n)代表信号,v(n)代表噪声。

我们希望这种线性系统的输出是尽可能地逼近s(n)的某种估计,并用s^(n)表示,即)(ˆ)(y n sn = 式(3) 因而该系统实际上也就是s(n)的一种估计器。

这种估计器的主要功能是利用当前的观测值x(n)以及一系列过去的观测值x(n-1),x(n-2),……来完成对当前信号值的某种估计。

维纳滤波属于一种最佳线性滤波或线性最优估计,是一最小均方误差作为计算准则的一种滤波。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

维纳滤波滤波技术是信号分析、处理技术的重要分支,无论是信号的获取、传输,还是信号的处理和交换都离不开滤波技术,它对信号安全可靠和有效灵活地传递是至关重要的。

信号分析检测与处理的一个十分重要的内容就是从噪声中提取信号,实现这种功能的有效手段之一是设计一种具有最佳线性过滤特性的滤波器,当伴有噪声的信号通过这种滤波器的时候,它可以将信号尽可能精确地重现或对信号做出尽可能精确的估计,而对所伴随噪声进行最大限度地抑制。

维纳滤波器就是这种滤波器的典型代表之一。

1.维纳滤波概述维纳(Wiener )是用来解决从噪声中提取信号的一种过滤(或滤波)方法。

这种线性滤波问题,可以看做是一种估计问题或一种线性估计问题。

一个线性系统,如果它的单位样本响应为)(n h ,当输入一个随机信号)(n x ,且)()()(n v n s n x += (1) 其中)(n x 表示信号,)(n v )表示噪声,则输出)(n y 为 ∑-=mm n x m h n y )()()( (2)我们希望)(n x 通过线性系统)(n h 后得到的)(n y 尽量接近于)(n s ,因此称)(n y 为)(n s 的估计值,用^)(n s 表示,即^)()(n s n y =(3)则维纳滤波器的输入—输出关系可用下面图1表示。

图1实际上,式(2)所示的卷积形式可以理解为从当前和过去的观察值)(n x ,)1(-n x ,)2(-n x …)(m n x -,…来估计信号的当前值^)(n s 。

因此,用)(n h 进行过滤问题实际上是一种统计估计问题。

一般地,从当前的和过去的观察值)(n x ,)1(-n x ,)2(-n x …估计当前的信号值^)()(n s n y =成为过滤或滤波;从过去的观察值,估计当前的或者将来的信号值)0)(()(^≥+=N N n s n y 称为外推或预测;从过去的观察值,估计过去的信号值)1)(()(^>-=N N n s n y 称为平滑或内插。

因此维纳滤波器又常常被称为最佳线性过滤与预测或线性最优估计。

这里所谓的最佳与最优是以最小均方误差为准则的。

如果我们分别以)(n s 与^)(n s 表示信号的真实值与估计值,而用)(n e 表示他们之间的误差,即)()()(^n s n s n e -= (4) 显然)(n e 可能是正值,也可能是负值,并且它是一个随机变量。

因此,用它的均方误差来表达误差是合理的,所谓均方误差最小即它的平方的统计期望最小:min )]([)(2==n E n e ξ (5)采用最小均方误差准则作为最佳过滤准则的原因还在于它的理论分析比较简单,不要求对概率的描述。

2.维纳-霍夫方程的求解为了按(5)式所示的最小均方误差准则来确定维纳滤波器的冲激响应)(n h ,令)(n ξ对)(j h 的导数等于零,即可得m i m Ri h m R ixxxs ∀-=∑,)()()((6)式中,)(m R xs 是)(n s 与)(n x 的互相关函数,)(m R xx 是)(n x 的自相关函数,分别定义为)]()([m n s n x E R xs +=)]()([m n x n x E R xx +=式(6)称为维纳滤波器的标准方程或维纳-霍夫(Wiener-Hopf )方程。

如果已知)(m R xs 和)(m R xx ,那么解此方程即可求的维纳滤波器的冲激响应。

式(6)所示标准方程右端的求和范围即i 的取值范围没有具体标明,实际上有三种情况:(1) 有限冲激响应(FIR )维纳滤波器,i 从0到1-N 取得有限个整数值; (2) 非因果无限冲激响应(非因果IIR )维纳滤波器,i 从∞-到∞+取所有整数值; (3) 因果无限冲激响应(因果IIR )维纳滤波器,i 从0到∞+取正整数值。

上述三种情况下标准方程的解法不同,本文只描述FIR 维纳滤波器的求解。

设滤波器冲激响应序列的长度为N ,冲激响应矢量为TN h h h h )]1()....1()0([-= (7) 滤波器输入数据矢量为T N n x n x n x n x )]1()...1()([)(+--= (8)则滤波器的输出为)()()()(^n x h h n x n s n y TT=== (9)这样,式(6)所示的维纳-霍夫方程可写成R h P TT=或Rh P = (10)其中)]()([n s n x E P = (11) 是)(n s 与)(n x 的互相关函数,它是一个N 维列矢量;R 是)(n x 的自相关函数,是N 阶方阵)]()([n x n x E R T=(12)利用求逆矩阵的方法直接求解式(10),得P R h opt 1-=(13)这里opt 表示“最佳”,这就是FIR 维纳滤波器的冲激响应。

4.FIR 维纳滤波器的matlab 实现4.1问题描述假设一个点目标在x ,y 平面上绕单位圆做圆周运动,由于外界干扰,其运动轨迹发生了偏移。

其中,x 方向的干扰为均值为0,方差为0.05的高斯噪声;y 方向干扰为均值为0,方差为0.06的高斯噪声。

1) 产生满足要求的x 方向和y 方向随机噪声500个样本; 2) 明确期望信号和观测信号;3) 试设计一FIR 维纳滤波器,确定最佳传递函数:1opt xx xs h R R -=,并用该滤波器处理观测信号,得到其最佳估计。

(注:自行设定误差判定阈值,根据阈值确定滤波器的阶数或传递函数的长度)。

4) 分别绘制出x 方向和y 方向的期望信号、噪声信号、观测信号、滤波后信号、最小均方误差信号的曲线图;5) 在同一幅图中绘制出期望信号、观测信号和滤波后点目标的运动轨迹。

4.2 Matlab 仿真及运行结果用Matlab 实现FIR 滤波器,并将先前随机产生的500个样本输入,得到最佳估计。

具体程序如下: clear;clf;sita=0:pi/249.5:2*pi;xnoise=sqrt(0.05)*randn(1,500);%产生x轴方向噪声ynoise=sqrt(0.06)*randn(1,500);%产生y轴方向噪声x=cos(sita)+xnoise;%产生x轴方向观测信号y=sin(sita)+ynoise;%产生y轴方向观测信号%产生维纳滤波中x方向上观测信号的自相关矩阵rxx=xcorr(x);for i=1:100for j=1:100mrxx(i,j)=rxx(500-i+j);endendxd=cos(sita);%产生维纳滤波中x方向上观测信号与期望信号的互相关矩阵rxd=xcorr(x,xd);for i=1:100mrxd(i)=rxd(499+i);endhoptx=inv(mrxx)*mrxd';%由维纳-霍夫方程得到的x方向上的滤波器最优解fx=conv(x,hoptx);%滤波后x方向上的输出nx=sum(abs(xd).^2);eminx=nx-mrxd*hoptx;%x方向上最小均方误差%产生维纳滤波中y方向上观测信号的自相关矩阵ryy=xcorr(y);for i=1:100for j=1:100mryy(i,j)=ryy(500-i+j);endendyd=sin(sita);%产生维纳滤波中y方向上观测信号与期望信号的互相关矩阵ryd=xcorr(y,yd);for i=1:100mryd(i)=ryd(499+i);endhopty=inv(mryy)*mryd';%由维纳-霍夫方程得到的y方向上的滤波器最优解fy=conv(y,hopty);%滤波后y方向上的输出ny=sum(abs(yd).^2);eminy=ny-mryd*hopty;%y方向上最小均方误差subplot(2,4,1)plot(xd);title('x方向期望信号');subplot(2,4,2)title('x方向噪声信号'); subplot(2,4,3)plot(x);title('x方向观测信号'); subplot(2,4,4)n=0:500;plot(n,eminx);title('x方向最小均方误差'); subplot(2,4,5)plot(yd);title('y方向期望信号'); subplot(2,4,6)plot(ynoise);title('y方向噪声信号'); subplot(2,4,7)plot(y);title('y方向观测信号'); subplot(2,4,8)plot(n,eminy);title('y方向最小均方误差'); figure;hold on;plot(x,y,'b:');hold on;plot(fx,fy,'g-');title('最终结果');运行结果如下:图2x方向及y方向的期望信号、噪声信号、观测信号以及滤波后的最小均方误差如上图2所示。

图3滤波后的到的信号与原始信号和噪声信号的对比如上图3所示,滤波后的结果与期望信号还是很接近的,整体上达到了最优滤波的效果。

相关文档
最新文档