无穷级数和微分方程

合集下载

考研数学考试范围

考研数学考试范围

考研数学考试范围
考研数学考试范围主要涉及以下几个部分:
1.高等数学:包括函数、极限、连续、一元函数微积分学、向量代数与空间解析几何、多元函数的积分学、无穷级数、常微分方程等。

2.线性代数:包括行列式、矩阵、向量、线性方程组、矩阵的特征值和特征向量、二次型等。

3.概率论与数理统计:包括随机事件和概率、随机变量及其概率分布、多维随机变量及其分布、随机变量的数字特征、大数定律和中心极限定理、数理统计的基本概念、参数估计、假设检验等。

请注意,具体考试范围可能会根据不同年份和不同学校有所调整,请以具体考试大纲为准。

考研数学一(无穷级数,常微分方程)历年真题试卷汇编1(题后含答

考研数学一(无穷级数,常微分方程)历年真题试卷汇编1(题后含答

考研数学一(无穷级数,常微分方程)历年真题试卷汇编1(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.(2009年试题,一)设有两个数列{an},{bn},若则( ).A.当收敛时,anbn收敛B.当发散时,anbn发散C.当收敛时,an2bn2收敛D.当发散时,an2bn2发散正确答案:C解析:A选项的反例可取an=bn=;B,D选项的反例可取an=bn=故正确答案为C.解析二考察选项C.由知,{an}有界;由收敛知.即{|bn|}也有界.又0≤an2bn2=an|bn||bn|≤M|bn|(M为常数),根据比较敛法知,an2bn2收敛,正确答案为C.知识模块:无穷级数2.(2006年试题,二)若级数收敛,则级数( ).A.收敛B.收敛C.收敛D.收敛正确答案:D解析:由级数收敛推出收敛;再由线性性质推出收敛,即收敛.故选D.知识模块:无穷级数3.(2004年试题,二)设为正项级数.下列结论中正确的是( ).A.若,则级数收敛B.若存在非零常数λ,使得则级数发散C.若级数收敛,则D.若级数发散,则存在非零常数λ,使得正确答案:B解析:由题设,为正项级数,可通过举反例的方法一一排除干扰项.关于A,令则发散,但故A可排除;关于C,令则收敛,但,故C也可排除;关于D,令则发散,但.即D也排除;关于B,由于发散,则由正项级数的比较判别法知发散,综上,选B.知识模块:无穷级数4.(2002年试题,二)设un≠0(n=1,2,3,…),且则级数( ).A.发散B.绝对收敛C.条件收敛D.收敛性根据所给条件不能判定正确答案:C解析:由题设,令而由已知则根据比较判别法知发散,则原级数不是绝对收敛,排除B,考虑原级数的部分和,即由已知从而.因而所以即原级数条件收敛,选C.知识模块:无穷级数5.(2000年试题,二)设级数收敛,则必收敛的级数为( ).A.B.C.D.正确答案:D解析:观察四个选项,结合题设收敛,可知D中必然收敛,因为它是两个收敛级数和逐项相加所得,关于其余三个选项,可逐一举出反例予以排除.关于A,令不难验证是收敛的交错级数,而是发散级数;关于B,令同样有为收敛的交错级数,而是发散级数;关于C,令则是收敛的交错级数,而,当n→∞时,而级数发散,因此发散.综上,选D.一般通过举反例来排除错误选项时,常以P级数.级数(当P>1时,绝对收敛;0(当P>1时,收敛;P≤1时,发散)作为反例,其中P的取值根据具体情况而定.知识模块:无穷级数6.(2011年试题,一)设数列{an}单调减少,无界,则幂级数的收敛域为( ).A.(一1,1]B.[一1,1)C.[0,2)D.(0,2]正确答案:C解析:因为{an}单调减少所以an>0(n=1,2,…),由交错级数的莱布尼兹法则,收敛,因为无界,所以级数发散,则的收敛域为[一1,1),故原级数的收敛域为[0,2).故选C.知识模块:无穷级数7.(1999年试题,二)设其中则等于( ).A.B.C.D.正确答案:C解析:由题设,所给S(x)为余弦级数,周期为2,将f(x)作偶延拓,并由傅里叶级数收敛定理,知所求和函数值为选C。

高等数学-无穷级数ppt

高等数学-无穷级数ppt
级数分类
根据级数项的性质,无穷级数可分为正项级数、交错级数和任意 项级数。
收敛与发散性质பைடு நூலகம்
收敛性质
如果无穷级数的部分和数列有极限, 则称该无穷级数收敛,此时极限值称 为级数的和。
发散性质
如果无穷级数的部分和数列没有极限 ,或者极限为无穷大,则称该无穷级 数发散。
绝对收敛与条件收敛
绝对收敛
如果无穷级数的每一项的绝对值所构 成的级数收敛,则称原级数为绝对收 敛。
在量子力学中,波函数通常表示为无穷级数形式,用于 描述微观粒子的状态和行为。
电磁学中的场强计算
通过无穷级数的展开,可以计算电磁场中各点的场强分 布,进而分析电磁现象。
在工程学中的应用,如信号处理、控制系统设计等
信号处理中的滤波
在信号处理领域,利用无穷级数设计的滤波器可以对 信号进行平滑处理、降噪等操作。
要点二
洛朗级数展开
将函数f(z)在圆环域D内展开成双边幂级数形式,即f(z) = ... + a-2/z^2 + a-1/z + a0 + a1z + a2z^2 + ...,其中an是 洛朗系数,可通过计算f(z)在D内的各阶导数求得。
泰勒级数与洛朗级数的比较
适用范围不同
泰勒级数适用于在一点处展开 的情况,而洛朗级数适用于在 圆环域内展开的情况。
控制系统设计中的稳定性分析
在控制系统设计中,通过无穷级数的稳定性分析方法 ,可以判断控制系统的稳定性并进行相应的优化设计 。
THANK YOU
感谢聆听
幂级数展开
幂级数是指形如$sum_{n=0}^{infty} a_n x^n$的级数,其 中$a_n$为常数。幂级数在收敛域内可以逐项求导和逐项积 分,具有连续性和可微性。

唯一性定理

唯一性定理

唯一性定理唯一性定理是数学中的重要定理之一,它指出了在某些条件下,特定类型的方程或问题只有唯一解。

唯一性定理最经典的形式是微分方程的唯一性定理,它在微积分和微分方程的研究中占据重要的地位。

微分方程是描述自然现象和物理规律的重要工具,通过对微分方程的求解,可以得到问题的解析解,从而更好地理解和预测现象。

然而,并不是所有的微分方程都能够得到解析解,有些方程可能只能通过数值方法进行求解。

因此,唯一性定理提供了一种重要的判据,用于确定方程是否有唯一解。

在微分方程的唯一性定理中,通常需要满足连续性和局部利普希茨条件。

连续性要求方程中的函数在某个区域内是连续的,这是非常基本的要求,因为连续性是数学分析中的重要概念。

局部利普希茨条件则要求方程中的函数在一定范围内具有有界的导数,这个条件保证了方程的解在某个区间内是唯一的。

微分方程的唯一性定理可以通过三个步骤来证明。

首先,需要利用泰勒级数展开将微分方程转化为一个无穷级数。

其次,需要证明无穷级数的解存在且唯一。

最后,通过局部利普希茨条件和连续性条件,得到解的存在范围。

除了微分方程的唯一性定理,数学中还有一些其他类型问题的唯一性定理。

例如,线性代数中的矩阵方程的唯一性定理,数论中的素因数分解的唯一性定理等等。

这些定理都有一个共同点,即在满足一定条件下,问题的解是唯一的。

唯一性定理在数学研究和应用中有着广泛的应用。

通过这些定理,我们可以确定问题是否存在唯一解,从而帮助我们深入研究和理解问题。

唯一性定理也经常被用于证明其他定理,深化了我们对数学的认识和理解。

总之,唯一性定理是数学中的一类重要定理,它指出了在满足特定条件下,方程或问题具有唯一解的情况。

微分方程的唯一性定理是其中最经典和重要的定理之一,它在微积分和微分方程的研究中扮演着重要的角色。

唯一性定理的应用广泛,帮助我们理解和解决各种数学问题,并进一步推动数学的发展。

唯一性定理除了在微分方程中应用广泛,还在其他数学领域中有重要的应用。

高等数学(复旦大学版)第十二章 无穷级数

高等数学(复旦大学版)第十二章 无穷级数

第十二章 无穷级数无穷级数是数与函数的一种重要表达形式,也是微积分理论研究与实际应用中极其有力的工具. 无穷级数在表达函数、研究函数的性质、计算函数值以及求解微分方程等方面都有着重要的应用. 研究级数及其和,可以说是研究数列及其极限的另一种形式,但无论在研究极限的存在性还是在计算这种极限的时候,这种形式都显示出很大的优越性. 本章先讨论数项级数,介绍无穷级数的一些基本内容,然后讨论函数项级数,并着重讨论如何将函数展开成幂级数与三角级数的问题.第一节 常数项级数的概念和性质教学目的:1、理解无穷级数的概念;2、理解级数的收敛或发散的概念;3、掌握等比级数和p 级数等特殊级数的敛散性;4、了解无穷级数的基本性质。

教学重点:级数收敛或发散的判定 教学难点:级数收敛或发散的判定 教学内容:一、常数项级数的概念定义1 给定数列{}n u ,则称12n u u u ++++L L为常数项无穷级数,简称级数,记做1n n u ¥=å,即121n n n u u u u ¥==++++åL L式子中每一项都是常数,称作常数项级数,第n 项称为级数的一般项(或通项)。

级数1n n u ¥=å的前n 项和称为级数的部分和,记做n s ,即12n n s u u u =+++L级数的所有前n 项部分和n s 构成一个数列{}n s ,称此数列为级数1n n u ¥=å的部分和数列。

定义2 若级数1n n u ¥=å的部分和数列{}n s 收敛于s ,则称级数1n n u ¥=å收敛,或称1nn u ¥=å为收敛级数,称s 为这个级数的和,记作121n n n s u u u u ¥==++++=åL L而12n n n n r s s u u ++=-=++L称为级数的余项,显然有lim lim()0n n nnr s s =-=若{}n s 是发散数列,则称级数1n n u ¥=å发散,此时这个级数没有和。

高等数学考试大纲

高等数学考试大纲
3.会求解一阶线性微分方程。
(二)二阶常系数线性微分方程
1.理解二阶常系数线性微分方程解的结构。
2.会求解二阶常系数齐次线性微分方程。
3.会求解二阶常系数非齐次线性微分方程(非齐次项限定为(Ⅰ) f(x) ,其中 为x的n次多项式, 为实常数;(Ⅱ) ,其中 , 为实常数, , 分别为x的n次,m次多项式)。
2.掌握洛必达(L’Hospital)法则,会用洛必达法则求“ ”,“ ”,“ ”,“ ”,“ ”,“ ”和“ ”型未定式的极限。
3.会利用导数判定函数的单调性,会求函数的单调区间,会利用函数的单调性证明一些简单的不等式。
4.理解函数极值的概念,会求函数的极值和最值,会解决一些简单的应用问题。
六、向量代数与空间解析几何
(一)向量代数
1.理解向量的概念,掌握向量的表示法,会求向量的模、非零向量的方向余弦和非零向量在轴上的投影。
2.掌握向量的线性运算(加法运算与数量乘法运算),会求向量的数量积与向量积。
3.会求两个非零向量的夹角,掌握两个非零向量平行、垂直的充分必要条件。
(二)平面与直线
5.理解无穷区间上有界函数的广义积分与有限区间上无界函数的瑕积分的概念,掌握其计算方法。
6.会用定积分计算平面图形的面积以及平面图形绕坐标轴旋转一周所得的旋转体的体积。
四、无穷级数
(一)数项级数
1.理解ห้องสมุดไป่ตู้数收敛、级数发散的概念和级数的基本性质,掌握级数收敛的必要条件。
2.熟记几何级数 ,调和级数 和p—级数 的敛散性。会用正项级数的比较审敛法与比值审敛法判别正项级数的敛散性。
考试内容
一、函数、极限和连续
(一)函数

实验2--微分方程(基础实验)

实验2--微分方程(基础实验)

实验2--微分方程(基础实验)119 项目四 无穷级数与微分方程实验2 微分方程(基础实验)实验目的 理解常微分方程解的概念以及积分曲线和方向场的概念,掌握利用Mathematica 求微分方程及方程组解的常用命令和方法.基本命令1. 求微分方程的解的命令DSolve对于可以用积分方法求解的微分方程和微分方程组,可用Dsolve 命令来求其通解或特解.例如,求方程023=+'+''y y y 的通解, 输入DSolve[y ''[x]+3y '[x]+2y[x]==0,y[x],x]则输出含有两个任意常数C[1]和C[2]的通解:{}{}]2[C e ]1[C e ]x [y x x 2--+→注:在上述命令中,一阶导数符号 ' 是通过键盘上的单引号 ' 输入的,二阶导数符号 '' 要输入两个单引号,而不能输入一个双引号.又如,求解微分方程的初值问题:,10,6,03400='==+'+''==x x y y y y y输入Dsolve[{y''[x]+4 y'[x]+3y[x]==0,y[0]==6, y'[0]==10},y[x],x](*大括号把方程和初始条件放在一起*)则输出{}{}x 2x 3e 148(e ]x [y +-→-2. 求微分方程的数值解的命令NDSolve对于不可以用积分方法求解的微分方程初值问题,可以用NDSolve 命令来求其特解.例如要求方程5.0,032=+='=x y x y y的近似解)5.10(≤≤x , 输入NDSolve[{y'[x]==y[x]^2+x^3,y[0]==0.5},y[x],{x,0,1.5}](*命令中的{x,0,1.5}表示相应的区间*)则输出{{y->InterpolatingFunction[{{0.,1.5}},< >]}}注:因为NDSolve 命令得到的输出是解)(x y y =的近似值. 首先在区间[0,1.5]内插入一系 列点n x x x ,,,21Λ, 计算出在这些点上函数的近似值n y y y ,,,21Λ, 再通过插值方法得到 )(x y y =在区间上的近似解.3. 一阶微分方程的方向场一般地,我们可把一阶微分方程写为),(y x f y ='的形式,其中),(y x f 是已知函数. 上述微分方程表明:未知函数y 在点x 处的斜率等于函数120f 在点),(y x 处的函数值. 因此,可在Oxy 平面上的每一点, 作出过该点的以),(y x f 为斜率 的一条很短的直线(即是未知函数y 的切线). 这样得到的一个图形就是微分方程),(y x f y ='的方向场. 为了便于观察, 实际上只要在Oxy 平面上取适当多的点,作出在这些点的函数的 切线. 顺着斜率的走向画出符合初始条件的解,就可以得到方程),(y x f y ='的近似的积分曲 线.例如, 画出0)0(,12=-=y y dxdy 的方向场. 输入<<Graphics`PlotField`g1=PlotVectorField[{1,1-y^2},{x,-3,3},{y,-2,2}, Frame->True,ScaleFunction->(1&),ScaleFactor->0.16,HeadLength->0.01,PlotPoints->{20,25}];则输出方向场的图形(图2.1), 从图中可以观察到, 当初始条件为2/10=y 时, 这个微分方程的解介于1-和1之间, 且当x 趋向于-∞或∞时, )(x y 分别趋向于1-与1.-3-2-10123-2-1012 -3-2-10123-2-112下面求解这个微分方程, 并在同一坐标系中画出方程的解与方向场的图解. 输入sol=DSolve[{y'[x]==1-y[x]^2,y[0]==0},y[x],x];g2=Plot[sol[[1,1,2]],{x,-3,3},PlotStyle->{Hue[0.1],Thickness[0.005]}];Show[g2,g1,Axes->None,Frame->True];则输出微分方程的解xxe e x y 2211)(++-=,以及解曲线与方向场的图形(图2.2). 从图中可以看到, 微分方程的解与方向场的箭头方向相吻合.实验内容用Dsolve 命令求解微分方程例2.1 (教材 例2.1) 求微分方程 22x xe xy y -=+'的通解.输入Clear[x,y];DSolve[y '[x]+2x*y[x]==x*Exp[-x^2],y[x],x]或DSolve[D[y[x],x]+2x*y[x]==x*Exp[-x^2],y[x],x]则输出微分方程的通解:121 ⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧+→--]1[C e x e 21]x [y 22x 2x 其中C[1]是任意常数.例2.2 (教材 例2.2) 求微分方程0=-+'x e y y x 在初始条件e y x 21==下的特解. 输入Clear[x,y];DSolve[{x*y ' [x]+y[x]-Exp[x]==0,y[1]==2 E},y[x],x]则输出所求特解:⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+→x e e ]x [y x 例2.3 (教材 例2.3) 求微分方程x e y y y x 2cos 52=+'-''的通解.输入DSolve[y ''[x]-2y '[x]+5y[x]==Exp[x]*Cos[2 x],y[x],x]//Simplify则输出所求通解:⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧-++→])x 2[Sin ])1[c 4x (2]x 2[Cos ])2[c 81((e 81]x [y x 例2.4 (教材 例2.4) 求解微分方程x e x y +=''2, 并作出其积分曲线.输入g1=Table[Plot[E^x+x^3/3+c1+x*c2,{x,-5,5},DisplayFunction->Identity],{c1,-10,10,5},{c2,-5,5,5}];Show[g1,DisplayFunction->$DisplayFunction]; -4-224-40-20204060图2.3例2.5 (教材 例2.5) 求微分方程组⎪⎪⎩⎪⎪⎨⎧=--=++02y x dtdy e y x dt dx t 在初始条件0,100====t t y x 下的特解.输入122Clear[x,y,t];DSolve[{x' [t]+x[t]+2 y[t]==Exp[t], y'[t] -x[t]- y[t]==0,x[0]==1,y[0]==0},{x[t],y[t]},t]则输出所求特解:⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧+-→→])t [Sin ]t [Cos e (21]t [y ],t [Cos ]t [x t例2.6 验证c y y x =+--)3305(15152是微分方程2)(42-='y x x y 的通解. 输入命令<<Graphics`PlotField`<<Graphics`ImplicitPlot`sol=(-5x^3-30y+3y^5)/15==C;g1=ImplicitPlot[sol/.Table[{C->n},{n,-3,3}],{x,-3,3}];g2=PlotVectorField[{1,x^2/(y^4-2)},{x,-3,3},{y,-3,3},Frame->True,ScaleFunction->(1&),ScaleFactor->0.16,HeadLength->0.01,PlotPoints->{20,25}];g=Show[g2,g1,Axes->None,Frame->True];Show[GraphicsArray[{g1,g2,g}]];则分别输出积分曲线如图 2.4(a), 微分方程的方向场如图 2.4(b). 以及在同一坐标系中画出积分曲线和方向场的图形如下图2.4 (c).-3-2-1123-2-112-3-2-10123-3-2-10123-3-2-10123-3-2-10123图2.4从图 2.4(c)中可以看出微分方程的积分曲线与方向场的箭头方向吻合, 且当∞→x 时, 无论初始条件是什么, 所有的解都趋向于一条直线方程.例2.7 (教材 例2.6) 求解微分方程,)1(122/5+=+-x x y dx dy 并作出积分曲线. 输入<<Graphics`PlotField`DSolve[y' [x]-2y[x]/(x+1)==(x+1)^(5/2),y[x],x]则输出所给积分方程的解为 ⎭⎬⎫⎩⎨⎧⎭⎬⎫⎩⎨⎧+++→]1[C )x 1()x 1(32]x [y 22/7123 下面在同一坐标系中作出这个微分方程的方向场和积分曲线(设),3,2,1,0,1,2,3---=C 输入t=Table[2(1+x)^(7/2)/3+(1+x)^2c,{c,-1,1}];g1=Plot[Evaluate[t],{x,-1,1},PlotRange->{{-1,1},{-2,2}},PlotStyle->RGBColor[1,0,0],DisplayFunction->Identity];g2=PlotVectorField[{1,-2y/(x+1)+(x+1)^(5/2)},{x,-0.999,1},{y,-4,4},Frame->True,ScaleFunction->(1&), ScaleFactor->0.16,HeadLength->0.01,PlotPoints->{20,25},DisplayFunction->Identity];Show[g1,g2,Axes->None,Frame->True,DisplayFunction->$DisplayFunction];则输出积分曲线的图形(图2.5).-0.75-0.5-0.2500.250.50.751-1.5-1-0.50.511.52图2.5例2.8 求解微分方程,2)21(22-+='-y x y xy 并作出其积分曲线.输入命令<<Graphics`PlotField`DSolve[1-2*x*y[x]*y' [x]==x^2+(y[x])^2-2,y[x],x]则得到微分方程的解为.)2(323C y x x y ++-+= 我们在33≤≤-C 时作出积分曲线, 输入命令t1=Table[(3+Sqrt[3])Sqrt[3+24x^2-4x^4-4*c*x]/(6*x),{c,-3,3}];t2=Table[(3-Sqrt[3])Sqrt[3+24x^2-4x^4-4*c*x]/(6*x),{c,-3,3}];gg1=Plot[Evaluate[t1],{x,-3,3},PlotRange->{{-3,3},{-3,3}},PlotStyle->RGBColor[1,0,0],DisplayFunction->Identity];124gg2=Plot[Evaluate[t2],{x,-3,3},PlotRange->{{-3,3},{-3,3}},PlotStyle->RGBColor[1,0,0],DisplayFunction->Identity];g1=ContourPlot[y-x^3/3-x*(-2+y^2),{x,-3,3},{y,-3,3},PlotRange->{-3,3},Contours->7,ContourShading->False,PlotPoints->50,DisplayFunction->Identity];g2=PlotVectorField[{1,(x^2+y^2-2)/(1-2*x*y)},{x,-3,3},{y,-3,3},Frame->True,ScaleFunction->(1&),ScaleFactor->0.16,HeadLength->0.01,PlotPoints->{20,25},DisplayFunction->Identity];Show[g1,g2,Axes->None,Frame->True,DisplayFunction->$DisplayFunction];Show[gg1,gg2,g2,Axes->None,Frame->True,DisplayFunction->$DisplayFunction];则输出微分方程的向量场与积分曲线, 并输出等值线的图2.6.-3-2-10123-2-10123-2-10123-2-1123图2.6用NDSolve 命令求微积分方程的近似解例2.9 (教材 例2.7) 求初值问题:1,0)1()1(2.1=='-++=x y y xy y xy 在区间[1.2,4]上的近似解并作图.输入fl=NDSolve[{(1+x*y[x])*y[x]+(1-x*y[x])*y'[x]==0,y[1.2]==1},y,{x,1.2,4}]则输出为数值近似解(插值函数)的形式:{{y->InterpolatingFunction[{{1.2,4.}},< >]}}用Plot 命令可以把它的图形画出来.不过还需要先使用强制求值命令Evalu-ate, 输入 Plot[Evaluate[y[x]/.fl],{x,1.2,4}]则输出近似解的图形(图2.7).125 1.5 2.53 3.5410203040图2.7如果要求区间[1.2,4]内某一点的函数的近似值, 例如8.1=x y ,只要输入y[1.8]/.fl则输出所求结果{3.8341}例2.10 (教材 例2.8) 求范德波尔(Van der Pel)方程5.0,0,0)1(002-='==+'-+''==x x y y y y y y在区间[0,20]上的近似解.输入 Clear[x,y];NDSolve[{y''[x]+(y[x]^2-1)*y'[x]+y[x]==0,y[0]==0,y'[0]==-0.5},y,{x,0,20}];Plot[Evaluate[y[x]/.%],{x,0,20}]可以观察到近似解的图形(图2.8).5101520-2-112图2.8126 ⎪⎩⎪⎨⎧==+-'1)1(01sin 2y x y x y x 的数值解, 并作出数值解的图形.输入命令<<Graphics`PlotField`sol=NDSolve[{x*y'[x]-x^2*y[x]*Sin[x]+1==0,y[1]==1},y[x],{x,1,4}];f[x_]=Evaluate[y[x]/.sol];g1=Plot[f[x],{x,1,4},PlotRange->All,DisplayFunction->Identity];g2=PlotVectorField[{1,(x^2*y*Sin[x]-1)/x},{x,1,4},{y,-2,9},Frame->True,ScaleFunction->(1&),ScaleFactor->0.16,HeadLength->0.01,PlotPoints->{20,25},DisplayFunction->Identity];g=Show[g1,g2,Axes->None,Frame->True];Show[GraphicsArray[{g1,g}],DisplayFunction->$DisplayFunction];则输出所给微分方程的数值解及数值解的图2.9.1.522.533.544681 1.52 2.53 3.54-22468例2.11 (教材 例2.9) 求出初值问题⎪⎩⎪⎨⎧='==+'+''0)0(,1)0(cos sin 22y y xy x y y的数值解, 并作出数值解的图形.输入NDSolve[{y''[x]+Sin[x]^2*y'[x]+y[x]==Cos[x]^2,y[0]==1,y'[0]==0},y[x],{x,0,10}]127 Plot[Evaluate[y[x]/.%],{x,0,10}];则输出所求微分方程的数值解及数值解的图形(图2.10).2468100.20.40.60.8图2.10例2.12 (教材 例2.10) 洛伦兹(Lorenz)方程组是由三个一阶微分方程组成的方程组.这三个方程看似简单, 也没有包含复杂的函数, 但它的解却很有趣和耐人寻味. 试求解洛伦兹方程组,0)0(,4)0(,12)0()(4)()()()()(45)()()()(16)(16)(⎪⎪⎩⎪⎪⎨⎧===-='-+-='-='z y x t z t y t x t z t y t x t z t x t y t x t y t x 并画出解曲线的图形.输入Clear[eq,x,y,z]eq=Sequence[x'[t]==16*y[t]-16*x[t],y'[t]==-x[t]*z[t]-y[t]+45x[t],z'[t]==x[t]*y[t]-4z[t]];sol1=NDSolve[{eq,x[0]==12,y[0]==4,z[0]==0},{x[t],y[t],z[t]},{t,0,16},MaxSteps->10000];g1=ParametricPlot3D[Evaluate[{x[t],y[t],z[t]}/.sol1],{t,0,16},PlotPoints->14400,Boxed->False,Axes->None];则输出所求数值解的图形(图2.11(a)). 从图中可以看出洛伦兹微分方程组具有一个奇异吸引子, 这个吸引子紧紧地把解的图形“吸”在一起. 有趣的是, 无论把解的曲线画得多长, 这些曲线也不相交.128图2.11改变初值为,10)0(,10)0(,6)0(=-==z y x 输入sol2=NDSolve[{eq,x[0]==6,y[0]==-10,z[0]==10}, {x[t],y[t],z[t]},{t,0,24},MaxSteps->10000];g2=ParametricPlot3D[Evaluate[{x[t],y[t],z[t]}/.sol2],{t,0,24},PlotPoints->14400,Boxed->False,Axes->None];Show[GraphicsArray[{g1,g2}]];则输出所求数值解的图形(图2.11(b)). 从图中可以看出奇异吸引子又出现了, 它把解“吸”在某个区域内, 使得所有的解好象是有规则地依某种模式缠绕.实验习题1. 求下列微分方程的通解:(1) ;0136=+'+''y y y(2) ();024=+''+y y y(3) ;2sin 52x e y y y x =+'-''(4) .)1(963x e x y y y +=+'-''2. 求下列微分方程的特解:(1) ;15,0,029400='==+'+''==x x y y y y y(2) .1,1,02sin ='==++''==ππx x y yx y y 3. 求微分方程0cos 2)1(2=-+'-x xy y x 在初始条件10==x y 下的特解.分别求精确解和数值解)10(≤≤x 并作图.4. 求微分方程组⎪⎪⎩⎪⎪⎨⎧=--=++t t e y x dt dy e y x dt dx 235的通解.129 5. 求微分方程组⎪⎪⎩⎪⎨⎧==+-==-+==4,081,0300t t y y x dt dyxy x dt dx 的特解. 6. 求欧拉方程组324x y y x y x =-'+''的通解.7. 求方程5,0,011='==+'+''==x x y y y y x y 在区间[0,4]上的近似解.。

高等数学微积分

高等数学微积分

极限的计算涉及到各种技巧和方 法,如因式分解、等价无穷小替 换、洛必达法则等。
极限的运算
求极限的方法
求极限的方法有很多,包括直接求法、利用重要极限、利用洛必达法则等。
极限的应用
极限在很多领域都有应用,如物理、工程、经济学等。例如,在物理学中,极限被广泛应用于连续介质力学和量 子力学等领域。
02 导数与微分
极限与连续性的关系
连续函数的极限值等于函数值。
多元函数的导数与微分
导数
描述函数在某点处的变化率。
微分
函数在某点处的局部近似值。
导数与微分的应用
近似计算、优化问题等。
二元函数的极值与最值
极值
函数在某点处的局部最大或最小值。
最值
函数在整个区间上的全局最大或最小 值。
极值与最值的判定方法
导数法、二阶导数法、凹凸分析法等 。
微分方程的基本概念
微分方程是包含未知函数及其导数的等式,用来描述现实世界中的各种变化规律。
微分方程的分类
根据方程的形式和复杂程度,微分方程可以分为线性微分方程、非线性微分方程、常微分方程、偏微 分方程等。
一阶微分方程的解法
定义和例子
一阶微分方程是最简单的微分方程,如 y'=2x, xy'=1 等。
面积和体积计算
定积分在计算平面图形面积和旋转体体积等 方面有广泛应用。
物理应用
定积分在物理中有广泛应用,如计算变力做 功、引力等。
经济应用
定积分在经济中有广泛应用,如计算成本、 收益、利润等。
04 多元微积分
多元函数的极限与连续性
连续性
函数在某点处可平滑过渡,无间断。
极限
描述函数在某点处的变化趋势,是函数值的 界限。

高等数学课件完整

高等数学课件完整

要点二
二重积分的性质
二重积分具有一些基本性质,如线性性、可加性、保号性 等。这些性质在求解二重积分时非常有用。
07 无穷级数
常数项级数的概念与性质
常数项级数的定义
由一系列常数按照一定顺序排列并加上正负号组 成的无穷序列。
收敛与发散
常数项级数可能收敛于一个有限值,也可能发散 至无穷大或不存在。
级数的基本性质
特点
高等数学具有抽象性、严谨性和 应用广泛性等特点,需要学生具 备较强的逻辑思维能力和数学基 础。
高等数学的重要性
培养逻辑思维能力
高等数学的学习有助于培养学生的逻辑思维能力,提高学生的数学 素养和解决问题的能力。
为后续课程打下基础
高等数学是许多后续课程的基础,如物理学、工程学、经济学等, 掌握高等数学有助于学生更好地理解和应用这些学科的知识。
不定积分的性质
不定积分具有线性性、 可加性、常数倍性等基 本性质,这些性质在求 解积分时非常有用。
基本积分公式
掌握基本积分公式是求 解不定积分的基础,如 幂函数、指数函数、三 角函数等的基本积分公 式。
定积分的概念与性质
定积分的定义
定积分是积分学中的另一个重 要概念,它表示函数在某个区
间上的积分值。定积分记为 ∫[a,b]f(x)dx,其中a和b是积
函数的性质
函数具有有界性、单调性、奇偶性、周 期性等重要性质,这些性质对于研究函 数的图像和变化规律具有重要意义。
极限的概念与性质
1 2 3
极限的定义
极限是描述函数在某一点或无穷远处的变化趋势 的重要工具,它可以通过不同的方式定义,如数 列极限、函数极限等。
极限的性质
极限具有唯一性、有界性、保号性、四则运算法 则等重要性质,这些性质对于求解极限问题和证 明极限定理具有重要作用。

专升本高数二复习资料

专升本高数二复习资料

专升本高数二复习资料专升本高数二复习资料高等数学是专升本考试中的一门重要科目,对于许多准备参加考试的考生来说,高数二是其中的重点和难点。

为了帮助考生更好地备考高数二,提高考试成绩,本文将介绍一些高数二的复习资料和学习方法。

一、教材选择在复习高数二时,选择一本好的教材是非常重要的。

推荐的教材有《高等数学》、《高等数学(上册)》、《高等数学(下册)》等。

这些教材内容全面,讲解详细,适合考生系统地学习和复习高数二的各个知识点。

二、重点知识点高数二的知识点较多,但有一些是重点和难点,需要特别重视。

其中包括:1. 一元函数微分学:包括导数的定义、求导法则、高阶导数、隐函数求导等。

这些知识点是高数二的基础,需要熟练掌握。

2. 一元函数积分学:包括不定积分、定积分、换元积分法、分部积分法等。

这些知识点需要掌握积分的基本概念和常用的积分方法。

3. 微分方程:包括一阶微分方程和二阶线性常系数齐次微分方程。

这些知识点需要理解微分方程的概念和解法,并能够应用到实际问题中。

4. 无穷级数:包括数项级数、收敛性判定、幂级数等。

这些知识点需要熟悉级数的性质和收敛判定方法。

三、复习方法1. 制定学习计划:根据自己的时间安排和复习进度,制定合理的学习计划。

将复习内容分为小模块,每天安排一定的学习时间,有计划地进行复习。

2. 理解概念和原理:高数二的知识点较多,需要理解其中的概念和原理。

不仅要记住公式和定理,还要能够理解其背后的数学思想和推导过程。

3. 多做题:高数二的复习离不开大量的练习题。

通过做题可以巩固知识,提高解题能力。

可以选择一些习题集或者模拟试卷进行练习,同时注意分析错题和解题思路。

4. 做题技巧:在做题过程中,可以掌握一些解题技巧。

比如,对于一些复杂的题目,可以先分析题目要求,找出关键信息,然后采用适当的方法进行解题。

5. 多思考和讨论:在学习高数二的过程中,可以多思考和讨论一些问题。

可以和同学、老师或者网上的学习群组交流,互相学习和帮助。

大学微积分课件

大学微积分课件

定积分应用举例
01
面积计算
利用定积分可以计算平面图形或 立体图形的面积,如曲线围成的 面积、旋转体体积等。
物理应用
02
03
经济应用
在物理学中,定积分可以用来计 算物体的质心、转动惯量等物理 量。
在经济学中,定积分可以用来计 算总收益、总成本等经济指标, 以及进行边际分析和弹性分析。
04
多元函数微积分学
微分概念与性质
阐述微分的概念,包括微分的定义、几何意义及物理意义,探讨微分的性质,如微分与导数的关系、微分的运算法则 等。
微分中值定理及其应用
介绍微分中值定理,包括罗尔定理、拉格朗日中值定理和柯西中值定理,并探讨它们在证明不等式、求 极限等方面的应用。
积分概念及性质
定积分概念与性质
引入定积分的概念,包括定积分的定义、几何意义及物理 意义,探讨定积分的性质,如可积性、积分区间可加性等 。
大学微积分课件
contents
目录
• 微积分基本概念 • 微分学基本原理 • 积分学基本原理 • 多元函数微积分学 • 无穷级数与微分方程初步 • 微积分在实际问题中应用举例
01
微积分基本概念
函数与极限
函数定义与性质
阐述函数的基本概念,包括定义 域、值域、对应关系等,并介绍 函数的性质,如单调性、奇偶性 、周期性等。
根据加速度函数和时间的关系,利用 二次积分可以计算物体在一段时间内 的位移。
03
求解功和能量
在力学中,功是力和位移的乘积,利 用定积分可以计算变力沿直线所做的 功;能量则是功的积累,通过定积分 可以求解物体的势能或动能。
在经济学问题中应用
计算总收益和总成本
在经济学中,总收益和总成本都 是价格或产量的函数,利用定积 分可以计算在一定价格或产量范 围内的总收益或总成本。

数学分析课程

数学分析课程
定义与分类
偏微分方程是描述多个相关变量之间相互依赖的变化规律的数学模型,如热传导方程、 波动方程等。
解法与性质
偏微分方程的解法包括分离变量法、傅里叶变换法等。解的性质包括边界条件、初值条 件和整体解与局部解的关系。
差分方程与离散动力系统
定义与分类
差分方程是描述离散时间系统中状态变 化的数学模型,如离散的马尔可夫链、 离散的Lorenz系统等。
07
微分方程与差分方程
常微分方程
定义与分类
常微分方程是描述一个或多个变量的函数随时间变化的数学模型。根据变量的个数和方程的形式,可 以分为线性与非线性、一阶与高阶等类型。
解法与性质
通过分离变量法、变量代换法、积分因子法等技巧,求解常微分方程。解的性质包括唯一性、存在性 和延展性。
偏微分方程初步
VS
解法与性质
差分方程的解法包括递推法、迭代法等。 解的性质包括周期性、稳定性、吸引子等 。离散动力系统的研究有助于理解连续动 力系统的行为和性质。
THANKS
幂级数的性质
幂级数具有形式简单、可 微可积等性质,在数学分 析中有着广泛的应用。
幂级数的应用
幂级数在近似计算、函数 逼近等领域有重要应用。
傅里叶级数
傅里叶级数的定义
傅里叶级数是无穷级数的一种, 通过三角函数系来表示一个周期
函数。
傅里叶级数的性质
傅里叶级数具有正交性、完备性 等性质,是分析周期函数的重要
傅里叶级数、泰勒级数等。
无穷积分
01
02
03
04
定义
无穷积分是指对无穷区间上的 函数进行积分,得到一个有限
的数值。
条件
无穷积分需要满足一定的条件 ,如可积性、绝对可积性等, 以确保积分的值是有限的。

医学专用高等数学教材目录

医学专用高等数学教材目录

医学专用高等数学教材目录第一章函数与极限1.1 函数的定义与性质1.1.1 函数的基本概念1.1.2 函数的性质及其图像1.1.3 常见函数的定义式与性质1.2 极限的概念与性质1.2.1 极限的定义1.2.2 极限存在性的判定方法1.2.3 极限的四则运算法则1.3 无穷与极限1.3.1 无穷与无穷大1.3.2 无穷趋势与极限1.3.3 常见函数的无穷极限第二章导数与微分2.1 导数的定义与性质2.1.1 导数的定义2.1.2 导数存在性的判定方法2.1.3 导数与函数的关系2.2 常见函数的导数2.2.1 常数函数与幂函数2.2.2 指数函数与对数函数2.2.3 三角函数与反三角函数2.3 微分的概念与性质2.3.1 微分的定义2.3.2 微分存在性的判定方法2.3.3 高阶导数与微分第三章微分中值定理与导数应用3.1 微分中值定理3.1.1 罗尔中值定理3.1.2 拉格朗日中值定理3.1.3 函数单调性与极值3.2 导数应用3.2.1 函数在区间上的单调性与极值3.2.2 凸函数与切线方程3.2.3 泰勒展开与函数逼近第四章积分与不定积分4.1 积分的概念与性质4.1.1 积分的定义4.1.2 积分存在性的判定方法4.1.3 积分的性质与运算法则4.2 定积分与不定积分4.2.1 定积分的定义与计算4.2.2 不定积分的定义与性质4.2.3 常用不定积分表4.3 牛顿-莱布尼茨公式4.3.1 牛顿-莱布尼茨公式的定义4.3.2 积分中值定理及其应用第五章微分方程5.1 微分方程基本概念5.1.1 微分方程的定义与基本术语5.1.2 微分方程的解与解的存在唯一性5.1.3 一阶线性微分方程5.2 常微分方程5.2.1 隐式与显式微分方程5.2.2 可分离变量微分方程5.2.3 齐次与非齐次线性微分方程5.3 高阶线性微分方程5.3.1 高阶线性微分方程的解法5.3.2 高阶常系数线性微分方程5.3.3 变系数线性微分方程第六章多元函数与偏导数6.1 多元函数的定义与性质6.1.1 多元函数的定义与图像6.1.2 多元函数的极限与连续性6.2 偏导数与全微分6.2.1 偏导数的定义与性质6.2.2 多元函数的全微分6.2.3 隐函数求导与参数方程求导6.3 多元函数的应用6.3.1 多元函数极值与条件极值6.3.2 多元函数的泰勒展开6.3.3 多元微分方程第七章多重积分7.1 二重积分的定义与性质7.1.1 二重积分的定义7.1.2 Fubini定理与二重积分的计算7.2 三重积分的定义与性质7.2.1 三重积分的定义7.2.2 三重积分的计算7.3 曲线与曲面积分7.3.1 参数方程与曲线积分7.3.2 曲面积分的定义与计算7.3.3 Gauss散度定理与Stokes公式第八章空间解析几何与向量代数8.1 三维空间与空间曲线8.1.1 三维空间坐标系8.1.2 空间曲线的参数方程8.1.3 空间曲线的切向量与法向量8.2 空间解析几何8.2.1 空间直线与平面的方程8.2.2 空间曲线、曲面的距离与角度8.3 向量代数8.3.1 向量的定义与性质8.3.2 向量的点乘与叉乘8.3.3 向量的投影与夹角第九章参数方程与极坐标9.1 参数方程的基本概念9.1.1 参数方程的定义9.1.2 参数方程的用途9.2 参数方程的导数和积分9.2.1 参数方程的导数9.2.2 参数方程的弧长9.3 极坐标与极坐标下的函数9.3.1 极坐标的基本概念9.3.2 极坐标下的函数与性质9.3.3 极坐标与直角坐标的转换第十章无穷级数与幂级数10.1 数列与极限10.1.1 数列的定义与性质10.1.2 数列极限的概念与性质10.1.3 数列极限的计算方法10.2 无穷级数的定义与性质10.2.1 无穷级数的收敛与发散10.2.2 无穷级数的判敛方法10.2.3 常见无穷级数10.3 幂级数及其收敛域10.3.1 幂级数的定义与性质10.3.2 幂级数的收敛域的判定10.3.3 幂级数的计算与应用以上是医学专用高等数学教材的目录,涵盖了函数与极限、导数与微分、微分方程、多元函数与偏导数、多重积分、空间解析几何与向量代数、参数方程与极坐标、无穷级数与幂级数等主要内容。

医学高等数学考试知识点

医学高等数学考试知识点

《医用高等数学》考试知识点一、主要内容一元函数微积分学;空间解析䇠何;多䅃函数微积分学;无穷级数;常微分方程;二、考试基本要求1켎函数、极限与连续⑴ 理解函数的概念;会求函数的定义䟟、表达伏及函数值,了解分段函数的概念; ⑵ 理解和掌握函数的䥇偶性、䍕调性、周期性和有界性;⑶ 掌握基本初等函数的性质及䅶图形;⑷ 理解复合函数的概念,熟练掌握复合函数的分解过程;了解初等䇽数的概念。

⑸ 理解极限的概念(包括,N εεδ--定义,但不做过高要求);会求函数在一点的左、右极限;了解函数在一点极限存在的充要条件;⑹ 了解极限的有关性质,掌握极限的四则运算法则;⑺ 了解极限存在准则;掌握两个重要极限,并熟练运用重要极限求极限;⑻ 理解无穷小量的概念,了解无穷大量的概念,掌握无穷小量和无穷大量的关系和性质; ⑼ 理解函数在一点连续与间断的概念;会判断简单函数(包括分段函数)在一点的连续性,会求函数的间断点,并会判断其类型;⑽ 了解闭区间上连续函数的性质;2.导数与微分⑴ 理解导数的概念,了解导数的几何意义,会求分段函数的导数。

了解函数的连续与可导的关系,会求曲线上一点处的切线方程及法线方程;⑵ 熟练掌握基本初等函数的导数公式、导数四则运算法则;⑶ 熟练掌握复合函数的求导法则,了解反函数的求导法则;⑷ 掌握隐函数求导法、对数求导法;⑸ 理解高阶导数的概念,会求一些简单函数的n 阶导数;⑹ 理解微分的概念,了解可导与可微之间的关系;掌握微分的运算法则,会运用 此法则求函数的一阶微分;⑺ 了解罗尔(Roll )定理、拉格朗日(Lagrange )中值定理及其几何意义;⑻ 熟练掌握运用洛必达(L’Hospital )法则求000,,0,,1,,00∞∞⋅∞∞-∞∞∞未定式极限的方法; ⑼ 会用导数判断函数的单调性,并证明简单的不等式;⑽ 理解函数的极值概念,掌握利用导数求函数的极值、最值的方法,并且会解简单的应用问题;⑾ 了解函数曲线的凸、凹性和拐点的概念,利用导数会判断曲线的凸凹性,会求曲线的拐点;⑿ 会求曲线的水平、垂直渐近线;3.不定积分⑴ 理解原函数与不定积分的概念及其关系。

大学物理常用高数基础知识

大学物理常用高数基础知识

06
无穷级数
总结词
无穷级数是微积分学中一个重要的概念,它表示一个无穷序 列的和。无穷级数具有收敛和发散两种性质,收敛的级数具 有和,而发散的级数不具有和。
详细描述
无穷级数是微积分学中一个非常重要的概念,它表示一个无穷 序列的和。无穷级数由一系列无穷多个项组成,每一项都有一 个系数,表示该项在级数中的权重。无穷级数具有收敛和发散 两种性质。如果一个无穷级数的和存在,则称该级数收敛,否 则称该级数发散。收敛的级数具有和,而发散的级数不具有和。
大学物理常用高数基础知识
目录
• 函数与极限 • 导数与微分 • 积分 • 多元函数微积分 • 常微分方程 • 无穷级数
01
函数与极限
函数的定义与性质
函数的定义
函数是数学上的一个概念,它描述了 两个变量之间的关系。每个输入值都 对应一个唯一的输出值,这个输出值 称为函数的值。
函数的性质
函数具有一些基本的性质,如奇偶性、 单调性、周期性等。这些性质决定了 函数的行为和特征。
函数的极限
极限的定义
极限是描述当一个数趋近于某个值时,函数值的变化趋势的概念。如果当x趋近于某点时,函数f(x)的值趋近于一 个确定的常数,则称此常数为函数f(x)在该点的极限。
极限的性质
极限具有一些重要的性质,如极限的唯一性、四则运算法则、夹逼准则等。这些性质在研究函数的特性以及解决 与函数相关的问题时非常有用。
详细描述
常微分方程是微分学中用于描述一个或多个 变量随时间变化的数学模型。它的一般形式 为 y' = f(x, y),其中 y' 表示 y 对 x 的导数, f(x, y) 是 x 和 y 的函数。常微分方程可以分 为线性微分方程和非线性微分方程两大类。

函数级数总结归纳

函数级数总结归纳

函数级数总结归纳函数级数是数学中重要的概念,它在近代数学发展中起到了重要的作用。

本文将对函数级数进行总结归纳,并探讨其在数学中的应用。

一、函数级数的定义和性质函数级数是指形式如∑(n≥1)an(x-c)n的无穷级数,其中an是常数序列,c是实数。

函数级数与普通级数类似,但在函数级数中,每一项都是一个函数。

函数级数的收敛性与普通级数也有类似的定义和性质,包括收敛域、收敛半径、辐角等。

二、函数级数的收敛性函数级数的收敛性是指级数的和函数在一定范围内存在且有限。

函数级数的收敛性与普通级数不同,其受到了函数的性质的限制,需要满足一定的条件才能保证级数的收敛性。

在数学中,我们研究了许多函数级数的收敛性条件,比如柯西收敛准则、阿贝尔定理等。

三、常见的函数级数1. 幂级数幂级数是一类特殊的函数级数,形式如∑(n≥0)an(x-c)n。

幂级数在数学中有广泛的应用,比如在微积分、微分方程、复数分析等领域。

幂级数的收敛性与收敛域与系数an有着密切的关系,我们经常使用收敛半径和边界点来研究幂级数的性质。

2. 傅里叶级数傅里叶级数是一类特殊的函数级数,其基函数为正弦函数和余弦函数。

傅里叶级数在数学和物理学中有重要的应用,可以将任意周期函数展开成正弦函数和余弦函数的级数和。

傅里叶级数的收敛性与函数的周期性和连续性密切相关,我们可以通过傅里叶级数来分析周期信号的频谱分布。

3. 泰勒级数泰勒级数是一类特殊的函数级数,其系数由函数在某一点的各阶导数确定。

泰勒级数在微积分和数学分析中有重要的作用,可以将任意光滑函数表示为一个无穷级数。

泰勒级数的收敛性与函数的光滑性密切相关,可以通过泰勒级数来近似计算函数的值和导数的值。

四、函数级数的应用函数级数在数学中有广泛的应用,涵盖了许多不同的领域。

在分析数学中,函数级数的研究为我们理解函数的性质提供了有效的工具,比如在微分方程的求解中,可以使用幂级数展开来求解解析解。

在信号处理领域,傅里叶级数可以用来分析信号的频谱特性,从而实现滤波、压缩等处理。

考研数学一的考试范围

考研数学一的考试范围

考研数学一的考试范围
考研数学一考试范围包括高等数学、线性代数、概率论与数理统计。

具体考试范围如下:
1、高等数学:函数、极限、连续、一元函数微积分学、向量代数与空间解析几何、多元函数的微积分学、无穷级数、常微分方程;
2、线性代数:行列式、矩阵、向量、线性方程组、矩阵的特征值和特征向量、二次型;
3、概率论与数理统计:随机事件和概率、随机变量及其概率分布、二维随机变量及其概率分布、随机变量的数字特征、大数定律和中心极限定理、数理统计的基本概念、参数估计、假设检验。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当 t = – 2 时, 级数为
此级数发散;
此级数条件收敛;
因此级数的收敛域为 2 t 2 , 故原级数的收敛域为
即 1 x 3 .
三、求函数的幂级数展开式
1、对函数作恒等变形(如果需要的话) 2、利用已知结论,用变量代换或求导积分得所求 函数的幂级数 3、写出收敛范围(P34例1-37)
分离变量方程的解法: (1)分离变量 (2)两边积分
g ( y ) d y f ( x) d x
f ( x) d x

(3)得到通解
称②为方程①的隐式通解, 或通积分.

*例2. 求微分方程
的通解.
dy 解: 分离变量得 3x 2 d x y
两边积分 得 ln y x ln C
例1. 验证函数 是微分方程 解: 的解.
(C1 , C2为常数 )
k 2 ( C1 sin kt C2 cos kt )
x C1 cos k t C2 sin k t 是方程的解 .
二、解微分方程
1. 一阶微分方程 可分离变量,一阶线性 2. 高阶微分方程 可降阶微分方程,二阶线性常系数齐次,二阶线 性常系数非齐次只要求写出特解形式。
(1) 当 0 < l <∞ 时, 两个级数同时收敛或发散 ;
(2) 当 l = 0 (3) 当 l =∞
例3. 判别级数
n 1
ln 1

1 n
2
的敛散性.
1 n
1 ln(1 2 ) n 解: lim 1 n 1 n2
根据比较审敛法的极限形式知
n 1
ln 1
*例1.判断级数的敛散性:
解:该级数是下列两级数之差
1 1 是q 的等比级数 , 收敛. 2n 2 n 1

1 1 3n 是q 3 的等比级数, 收敛. n 1

故原级数收敛.
3.正项级数审敛法
(比较审敛法)
且存在 则有 (1) 若强级数 (2) 若弱级数

对一切 有
是两个正项级数,
(2)求b3 .


(1) sin 3x d x

1
0
1

0
1 sin 3xdx
4 3
微分方程
一、微分方程的基本概念 二、解微分方程 三、微分方程应用
一、微分方程的基本概念
含未知函数及其导数的方程叫做微分方程 . 方程中所含未知函数导数的最高阶数叫做微分方程 的阶 . 例如:
n

当0 p 1条件收敛; 当p 1绝对收敛.
sin n 例5. 证明下列级数绝对收敛 : n4 n 1

证:
sin n 1 4,而 4 n n

1 n 4 收敛 , n 1




n 1
sin n 收敛 4 n
sin n 因此 绝对收敛 . 4 n 1 n
一阶微分方程
(1 x 2 ) y 2x y 二阶微分方程
100 80 60 40 20 0 第一季度 第三季度 东部 西部 北部
微分方程的解 — 使方程成为恒等式的函数. 通解 — 解中所含独立的任意常数的个数与方程 的阶数相同. 特解 — 不含任意常数的解, 其图形称为积分曲线. 定解条件 — 确定通解中任意常数的条件. 初始条件(或边值条件):
n

在 x 1 处是收敛还是发散?若收敛,是条件收敛 还是绝对收敛? 解:由Abel定理 ,该幂级数在 x 3 处绝对收敛, 故在 x 1 绝对收敛。
例7. 已知 半径是多少 ?
处条件收敛 , 问该级数收敛
答: 根据Abel 定理可知, 级数在 时发散 . 故收敛半径为
收敛 ,
2.求收敛半径
则 f (x) 的傅里叶级数收敛 , 且有
x 为连续点 f (x) , f (x ) f (x ) , x 为间断点 2 其中 an , bn 为 f (x) 的傅里叶系数 .
例13. 设 f (x) 是周期为 2 的周期函数 , 它在 上的表达式为
1 , x 0 f ( x) 1, 0 x
则有
a0 f ( x) ~ (an cos nx bn sin nx) 2 n 1


定理 (收敛定理, 展开定理)
设 f (x) 是周期为2的
周期函数, 并满足狄利克雷( Dirichlet )条件: 1) 在一个周期内连续或只有有限个第一类间断点;
2) 在一个周期内只有有限个极值点,
无穷级数
一、数项级数
讨论敛散性 二、幂级数 求收敛范围,将函数展开为幂级数,求和。 三、傅立叶级数 求函数的傅立叶级数展开,讨论和函数的性质。
一、判断数项级数敛散的方法
1、利用已知结论:等比级数、P-级数及级数性质 2、利用必要条件:主要判别发散 3、求部分和数列的极限
4、正项级数的审敛法
1)比值审敛法(根值审敛法) 2)比较审敛法(或极限形式) 5、交错级数审敛法:莱布尼兹定理 6、一般级数审敛法:先判断是否绝对收敛,如果绝 对收敛则一定收敛;否则判断是否条件收敛
(常数 k > 0 ),
收敛 , 则弱级数 发散 , 则强级数
也收敛 ; 也发散 .
例2 判别级数

n 1
1 的敛散性。 n(n 1)
1 1 1 n(n 1) (n 1) 2 n 1
(比较审敛法的极限形式) 设两正项级数 满足 lim
un l , 则有 n vn
2
n2 因此级数 n n 1 e

收敛.
4.交错级数及其审敛法
设 un 0 , n 1, 2 ,, 则各项符号正负相间的级数
称为交错级数 . ( Leibnitz 判别法 ) 若交错级数满足条件:
1) un un1 ( n 1, 2 , ) ;
2)

n
lim un 0 ,
( q 称为公比 ).
当 q 1时 级数收敛 ,
级数发散 . P-级数
a 其和为 1 q
;
1 1 1 1 p p p 2 3 n
当p 1收敛, p 1发散。
2.无穷级数的基本性质 性质1. 若级数 乘以常数 c 所得级数 性质2. 设有两个收敛级数 收敛于 S , 即 S u n , 则各项

n
1 ln(1 12n 2 收敛n ) . 2
1
比值审敛法 ( D’alembert 判别法) u n 1 设 为正项级数, 且 lim , 则 n u n (1) 当 1 时, 级数收敛 ;
(2) 当 1 或 时, 级数发散 . . 根值审敛法 ( Cauchy判别法) 级数, 且
1 n! lim 1 n (n 1) !

0
例10. 解: 令 级数变为
的收敛域.
1 an R lim lim 2 n n n an 1 n
1 2 n 1 (n 1)
2 n 1 (n 1) 2 lim n 2n n
当 t = 2 时, 级数为
二、求幂级数收敛域
1.Abel定理 若幂级数
n 0
an x n
的一切 x 幂级数都绝对收敛. 时该幂级数发散 ,则对满足不等式
则对满足不等式 反之, 若当
的一切 x , 该幂级数也发散 .
收敛 发散



o



x
*例6.已知幂级数
n 0
an x 在 x 3 处收敛,则该级数
3
因此可能增、 减解.

( C 为任意常数 )
一阶线性微分方程
dy P( x) y Q( x) 一阶线性微分方程标准形式: dx 若 Q(x) 0, 称为齐次方程 ;
若 Q(x) 0, 称为非齐次方程 . dy P( x) y 0 1. 解齐次方程 dx 分离变量 两边积分得
s( x)是f ( x)的傅立叶级数的和函数
1
y
o
1
3 (1)求S (0), S ( ), S ( ), S ( )的值。 2 2


x
3 解: (1) 当x k , S ( x) f ( x), S ( ) 1, S ( ) 1 2 2 1 (1) 当x k , S ( x) 0, S (0) S ( ) 0 2
对端点 x = 1, 级数为交错级数
对端点 x =-1, 级数为 故收敛收敛域 :
规定: 0 ! = 1
解: (1)
an R lim n an 1
所以收敛域为 ( , ) . an lim n ! (2) R lim n an 1 n (n 1) ! 所以级数仅在 x = 0 处收敛 .
1 1 x 2 x3 x n (1,1) 1 x 2 n x x x 1 x (,)
e
x3 x5 x 2 n 1 x (1) 2 n 1 sin x 3! 5! (2n 1)!
2!
n!
n 1
也收敛 , 其和为 c S .
S

n 1
un ,


n 1
vn

则级数
n 1
( u n vn )
也收敛, 其和为 S .
说明: (1) 性质2 表明收敛级数可逐项相加或减 .
(2) 若两级数中一个收敛一个发散 , 则 ( u n vn )
必发散 . (用反证法可证)
相关文档
最新文档