5.2 图形的运动

合集下载

七年级数学上册 5.2 图形的运动 什么是视角素材 (新版)苏科版

七年级数学上册 5.2 图形的运动 什么是视角素材 (新版)苏科版

什么是视角
难易度:★★
关键词:画立体图形
答案:
人眼到视平面的距离视固定的(视距),视平面左右两个边缘到人眼的连线得到的角度就是视角。

【举一反三】
典例:看教室黑板上的同一幅画,是离黑板近,视角大;还是离黑板远,视角大呢?是离黑板近看得清还是远看得清呢?由此你可以得出一个什么样的结论?
思路引导:本题考查视角的知识,属于基础题,掌握视角的概念是解答本题的关键.
人眼到视平面的距离视固定的(视距),视平面左右两个边缘到人眼的连线得到的角度就是视角.根据视角的定义可得:离黑板近视角大,离黑板近看得清.结论:视角大,看得清.
标准答案:离黑板近视角大,离黑板近看得清.结论:视角大,看得清.。

5.2图形的运动(课件)-七年级数学上册(苏科版)

5.2图形的运动(课件)-七年级数学上册(苏科版)

03 典例精析
例3、一个图形无论经过翻折变换、平移变换还是旋转 变换,下列结论一定正确的是___②__③__④___。 ①对应线段平行;②对应线段相等; ③对应角相等;④图形的形状和大小都不变。
点动成线,线动成面,面动成体; 几何体是由点、线、面组成的。
课后总结
像圆柱、圆锥、球等由一个平面图形围绕它所在平面内的一条定直线旋转所形成的封闭几何体 叫做旋转体,这条定直线叫做旋转体的轴。 圆柱是由一个侧面(曲面)和两个底面(平面)围成的几何体,上、下底面形状是圆; 圆锥是由一个侧面(曲面)和一个底面(平面)围成的几何体,底面形状也是圆; 球是由一个曲面围成的几何体。
A.旋转
B.轴对称
C.平移
D.对称和旋转
03 典例精析
例2、(1)如图,在9×6的方格纸中,小树从位置A经过平移旋转后
到达位置B,下列说法中正确的是( B )
A.先向右平移6格,再绕点B顺时针旋转45° B.先向右平移6格,再绕点B逆时针旋转45° C.先向右平移6格,再绕点B顺时针旋转90° D.先向右平移6格,再绕点B逆时针旋转90°
一个图形绕着一个定点旋转一定的角度得到另一个图形的变 化,叫旋转,这个定点叫旋转中心,与时针旋转方向相同的 是顺时针旋转,与时针旋转方向相反的是逆时针旋转。
特点:位置改变,但形状、大小不变。
03 典例精析
例1、如图所示,这个图案可以看作是以“基本图案”——原图案的
四分之一经过变换形成的,但一定不能通过变换得到( C )
图形的翻折、平移 与旋转
01 情境引入
Q1:将两块相同的直角三角尺相等的边拼在一起,可以拼成哪些 不同的平面图形?你能说出这些图形的名称吗?
以斜边为公共边~
矩形

七年级数学上册《图形的变化》课件1 北师大版

七年级数学上册《图形的变化》课件1 北师大版

数学活动室
【活动二】
你能将一张长方形纸片沿一条直线剪成两部分, 使这两部分既能拼成平行四边形,又能拼成三 角形,梯形吗?试试看
动动手.比比谁有想象力
请你构造一些图案,使每一个图案中含有 2个三角形、2个圆形和两条线段,并给图 案加上适当的解说词。
稻草人,我们应该像
稻草人一样有着坚强 的意志
电灯,我们要像电灯一
5.2 图形的变化
(第一课时)
1、直角三角形绕它的一条直角边旋 转一周,形成怎样的几何体?
数学模型
三角形面
旋转
圆锥体
2、一枚硬币在桌面上竖起快速旋转, 形成怎样的几何体?
壹 元
数学模型
圆面
旋转
球体
3、长方形纸板绕它的一条边旋转 一周,形成怎样的几何体?
数学模型
长方形面
旋转
圆柱体
从以上的演示过程中我们可以感受到: 1.点运动形成—— 2.线运动形成——
3.面运动形成——
1、如图,虚线左边的图形绕虚线旋 转一周,能形成的几何体是( )
2、如图,把第一排中的平面图形绕虚线 旋转一周,能形成第二排中的某几个图形, 请把两排中的对应的图形分别用线连接起来.
1、0为三角形一 边上的点,将三 角形绕点0在平面 内旋转,你会看 到什么现象?
(1)
(2)
(3)
(4)
过程演示:
再看一次
探索(三):平移能否形成新的图形
图(1)是由图“回”向右平移而成的,将准备好的纸 片沿虚线剪开 (1)怎样改变这两部分图形的位置就能得到图(2), 你还能得到什么样的图案; (2)如果虚线下半部向右平移4格平移能否形成新的图形
样奉献自己的光和热
谢 谢

图形的变化——轴对称备战2023年中考数学考点微专题

图形的变化——轴对称备战2023年中考数学考点微专题

考向5.2 图形的变化——轴对称[知识要点] 1、定义把一个图形沿着某条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线成轴对称,该直线叫做对称轴。

2、性质(1)关于某条直线对称的两个图形是全等形。

(2)如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。

(3)两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。

3、判定如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。

4、轴对称图形把一个图形沿着某条直线折叠,如果直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。

例题1.在ABC 中,90ACB ∠=︒,ACm BC=,D 是边BC 上一点,将ABD △沿AD 折叠得到AED ,连接BE .(1)特例发现:如图1,当1m =,AE 落在直线AC 上时, ①求证:DAC EBC ∠=∠; ②填空:CDCE的值为______; (2)类比探究:如图2,当1m ≠,AE 与边BC 相交时,在AD 上取一点G ,使ACG BCE ∠=∠,CG 交AE 于点H .探究CGCE的值(用含m 的式子表示),并写出探究过程; (3)拓展运用:在(2)的条件下,当22m =,D 是BC 的中点时,若6EB EH ⋅=,求CG 的长.解:(1)①证明:延长AD 交BE 于点F .由折叠得90AFB ACB ∠=︒=∠.∴90DAC ADC BDF EBC ∠+∠=∠+∠=︒. ∵ADC BDF ∠=∠, ∴DAC EBC ∠=∠. ②当1m =,即1ACBC=时, 可知AC =BC , 在ACD △和BCE 中, 90DAC EBC ACD BCE AC BC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩, ∴ACD ≌BCE (AAS ), ∴CD CE =, ∴1CDCE=. 故答案为:1; (2)解:CGm CE=. 理由:延长AD 交BE 于点F ,由折叠得90AFB ACB ∠=︒=∠.∴90ADC DAC BDF CBE ∠+∠=∠+∠=︒, ∵ADC BDF ∠=∠,∴DAC CBE ∠=∠, ∵ACG BCE ∠=∠, ∴ACG BCE △∽△, ∴CG ACm CE BC==. (3)解:由折叠得90AFB ∠=︒,BF FE =, ∵D 是BC 的中点, ∴//DF CE ,∴90BEC BFD ∠=∠=︒,AGC ECG ∠=∠,GAH CEA ∠=∠, 由(2)知ACG BCE △∽△, ∴90AGC BEC ∠=∠=︒, 22AG CG AC m BE CE BC ====, D 是BC 的中点,2,BC CD ∴=∴2ACCD=, ∴1tan 2CG DC GAC AG AC =∠==, 设CG x =,则2AG x =,2CE x =,2BE x =, ∴AG CE =,,,GAH HEC AHG CHE ∠=∠∠=∠∴AGH ECH ≌△△, ∴AH EH =,GH CH =, ∴12GH x =, 在Rt AGH 中,由勾股定理得2232AH AG GH x EH =+==, ∵6EB EH ⋅=, ∴3262x x ⋅=,解得2x =±(负值舍去), ∴2CG =. 【点拨】本题.1、轴对称图形和折叠的关系:折叠形成的图形就是轴对称图形,其中折痕所在的直线就是对称轴;2、“对称点的连线被对称轴垂直平分”这个知识点常常是解题的突破口;3、 本题为三角形综合题,考查折叠的性质,全等三角形判定与性质,相似三角形的判定及性质,勾股定理等知识点,根据折叠性质找到角度之间的关系是解题的关键一、单选题1.(2022·重庆·模拟预测)下列图形中既是轴对称图形又是中心对称图形的是( )A .B .C .D .2.(2021·甘肃兰州·中考真题)在平面直角坐标系xOy 中,点()3,4A -关于y 轴对称的点B 的坐标是( ) A .()3,4-B .()3,4--C .()3,4-D .()3,43.(2021·山东青岛·中考真题)如图,在四边形纸片ABCD 中,//AD BC ,10AB =,60B ∠=︒.将纸片折叠,使点B 落在AD 边上的点G 处,折痕为EF .若45BFE ∠=︒,则BF 的长为( )A .5B .35C .53D 34.(2021·山东滨州·中考真题)在四张反面无差别的卡片上,其正面分别印有线段、等边三角形、平行四边形和正六边形.现将四张卡片的正面朝下放置,混合均匀后从中随机抽取两张,则抽到的卡片正面图形都是轴对称图形的概率为( ) A .12B .13C .14D .345.(2018·四川内江·中考真题)如图,将矩形ABCD 沿对角线BD 折叠,使点C 落在F 处,BF 交AD 于点E .若∠BDC =62°,则∠DEF 的度数为( )A .31°B .28°C .62°D .56°6.(2021·山东潍坊·中考真题)如图,某机器零件的三视图中,既是轴对称图形,又是中心对称图形的是( )A .主视图B .左视图C .俯视图D .不存在7.(2021·四川凉山·中考真题)如图,ABC 中,90,8,6ACB AC BC ∠=︒==,将ADE 沿DE 翻折,使点A 与点B 重合,则CE 的长为( )A .198B .2C .254 D .748.(2011·甘肃天水·中考真题) 把一张长方形的纸片按如图所示的方式折叠,EM 、FM 为折痕,折叠后的C 点落在B′M 或B′M 的延长线上,那么∠EMF 的度数是( )A .85°B .90°C .95°D .100°9.(2020·山东济南·中考真题)如图,在ABC 中,AB =AC ,分别以点A 、B 为圆心,以适当的长为半径作弧,两弧分别交于E ,F ,作直线EF ,D 为BC 的中点,M 为直线EF 上任意一点.若BC =4,ABC 面积为10,则BM +MD 长度的最小值为( )A .52B .3C .4D .5二、填空题10.(2021·四川内江·中考真题)有背面完全相同,正面分别画有等腰三角形、平行四边形、矩形、菱形、等腰梯形的卡片5张,现正面朝下放置在桌面上,将其混合后,并从中随机抽取一张,则抽中正面的图形一定是轴对称图形的卡片的概率为 __.11.(2021·河南·中考真题)小华用一张直角三角形纸片玩折纸游戏,如图1,在Rt ABC △中,90ACB ∠=︒,30B ∠=︒,1AC =.第一步,在AB 边上找一点D ,将纸片沿CD 折叠,点A落在A '处,如图2,第二步,将纸片沿CA '折叠,点D 落在D 处,如图3.当点D 恰好在原直角三角形纸片的边上时,线段A D ''的长为__________.12.(2014·贵州黔西·中考真题)如图.将长方形纸片ABCD 折叠,使边AB 、CB 均落在对角线BD 上,得折痕BE 、BF ,则∠EBF 的大小为_____ .13.(2021·湖南湘西·中考真题)如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB 、CD ,若//CD BE ,1=20∠︒,则2∠的度数是____.14.(2021·湖南株洲·中考真题)《蝶几图》是明朝人戈汕所作的一部组合家具的设计图(蜨,同“蝶”),它的基本组件为斜角形,包括长斜两只、右半斜两只、左半斜两只、闺一只、小三斜四只、大三斜两只,共十三只(图①中的“様”和“隻”为“样”和“只”).图②为某蝶几设计图,其中ABD △和CBD 为“大三斜”组件(“一様二隻”的大三斜组件为两个全等的等腰直角三角形),已知某人位于点P 处,点P 与点A 关于直线DQ 对称,连接CP 、DP .若24ADQ ∠=︒,则DCP ∠= ___________度.15.(2014·四川德阳·中考真题)如图,△ABC 中,∠A=60°,将△ABC 沿DE 翻折后,点A 落在BC 边上的点A′处.如果∠A′EC=70°,那么∠A′DE 的度数为___.16.(2017·山东泰安·中考真题)如图,30BAC ∠=︒,M 为AC 上一点,2AM =,点P 是AB 上的一动点,PQ AC ⊥,垂足为点Q ,则PM PQ +的最小值为_________.17.(2015·四川内江·中考真题)如图,在四边形ABCD 中,AD ∥BC ,∠C=90°,E 为CD 上一点,分别以EA ,EB 为折痕将两个角(∠D ,∠C )向内折叠,点C ,D 恰好落在AB 边的点F 处.若AD=2,BC=3,则EF 的长为____.18.(2012·山东潍坊·中考真题)点P 在反比例函数ky x= (k ≠0)的图象上,点Q (2,4)与点P 关于y 轴对称,则反比例函数的解析式为____ 三、解答题19.(2021·湖北武汉·二模)如图,在下列88⨯的网格中,横、纵坐标均为整点的数叫做格点,ABC 的顶点的坐标分别为()3,0A ,()0,4B ,()4,2C .(1)直接写出ABC 的形状;(2)要求在下图中仅用无刻度的直尺作图:将ABC 绕点B 逆时针旋转角度2α得到11A BC ,其中ABC α=∠,A ,C 的对应点分别为1A ,1C ,请你完成作图;(3)在网格中找一个格点G ,使得1C G AB ⊥,并直接写出G 点的坐标; (4)作点1C 关于BC 的对称点D .20.(2021·北京东城·二模)如图,在等腰△ABC中,AB=AC,直线l过点A.点B与点D 关于直线l对称,连接AD,CD.求证:∠ACD=∠ADC.21.(2017·山东威海·中考真题)如图,四边形为一个矩形纸片,,,动点自点出发沿方向运动至点后停止.以直线为轴翻折,点落到点的位置.设,与原纸片重叠部分的面积为.(1)当为何值时,直线过点?(2)当为何值时,直线过的中点?(3)求出与的函数关系式.一、单选题1.(2021·湖北荆门·中考真题)下列图形既是中心对称又是轴对称的是( )A .B .C .D .2.(2021·内蒙古鄂尔多斯·中考真题)如图,在Rt ABC 中,90,8,6ACB AC BC ∠=︒==,将边BC 沿CN 折叠,使点B 落在AB 上的点B ′处,再将边AC 沿CM 折叠,使点A 落在CB '的延长线上的点A '处,两条折痕与斜边AB 分别交于点N 、M ,则线段A M '的长为( )A .95B .85C .75D .653.(2021·黑龙江绥化·中考真题)已知在Rt ACB 中,90,75C ABC ∠=︒∠=︒,5AB =.点E 为边AC 上的动点,点F 为边AB 上的动点,则线段FE EB +的最小值是( )A 53B .52C 5D 34.(2021·江苏苏州·中考真题)如图,在平行四边形ABCD 中,将ABC 沿着AC 所在的直线翻折得到AB C ',B C '交AD 于点E ,连接B D ',若60B ∠=︒,45ACB ∠=︒,6AC =则B D '的长是( )A .1B .2C .3D .625.(2021·湖北湖北·中考真题)若抛物线2y x bx c =++与x 轴两个交点间的距离为4.对称轴为2x =,P 为这条抛物线的顶点,则点P 关于x 轴的对称点的坐标是( ) A .()2,4B .()2,4-C .()2,4--D .()2,4-6.(2021·内蒙古·中考真题)如图,在ABC 中,AB AC =,DBC △和ABC 关于直线BC 对称,连接AD ,与BC 相交于点O ,过点C 作CE CD ⊥,垂足为C ,与AD 相交于点E .若8AD =,6BC =,则2+OE AEBD的值为( )A .43B .34C .53D .547.(2021·河北·中考真题)如图,直线l ,m 相交于点O .P 为这两直线外一点,且 2.8OP =.若点P 关于直线l ,m 的对称点分别是点1P ,2P ,则1P ,2P 之间的距离可能..是( )A .0B .5C .6D .78.(2021·湖北武汉·中考真题)如图,AB 是O 的直径,BC 是O 的弦,先将BC 沿BC 翻折交AB 于点D .再将BD 沿AB 翻折交BC 于点E .若BE DE =,设ABC α∠=,则α所在的范围是( )A .21.922.3α︒<<︒B .22.322.7α︒<<︒C .22.723.1α︒<<︒D .23.123.5α︒<<︒9.(2021·四川宜宾·中考真题)如图,在矩形纸片ABCD 中,点E 、F 分别在矩形的边AB 、AD 上,将矩形纸片沿CE 、CF 折叠,点B 落在H 处,点D 落在G 处,点C 、H 、G 恰好在同一直线上,若AB =6,AD =4,BE =2,则DF 的长是( )A .2B .74C .322D .3二、填空题10.(2021·山东青岛·中考真题)已知正方形ABCD 的边长为3,E 为CD 上一点,连接AE 并延长,交BC 的延长线于点F ,过点D 作DG AF ⊥,交AF 于点H ,交BF 于点G ,N 为EF 的中点,M 为BD 上一动点,分别连接MC ,MN .若14DCG FCE S S =△△,则MN MC +的最小值为__________.11.(2021·青海西宁·中考真题)如图,ABC 是等边三角形,6AB =,N 是AB 的中点,AD 是BC 边上的中线,M 是AD 上的一个动点,连接,BM MN ,则BM MN +的最小值是________.12.(2021·辽宁鞍山·中考真题)如图,90POQ ∠=︒,定长为a 的线段端点A ,B 分别在射线OP ,OQ 上运动(点A ,B 不与点O 重合),C 为AB 的中点,作OAC 关于直线OC 对称的OA C ',A O '交AB 于点D ,当OBD 是等腰三角形时,OBD ∠的度数为_____________.13.(2021·广东广州·中考真题)如图,在ABC 中,AC BC =,38B ∠=︒,点D 是边AB 上一点,点B 关于直线CD 的对称点为B ',当//B D AC '时,则BCD ∠的度数为________.14.(2021·贵州毕节·中考真题)如图,在菱形ABCD 中,2BC =,120C ∠=︒,Q 为AB 的中点,P 为对角线BD 上的任意一点,则AP PQ +的最小值为_____________.15.(2021·辽宁大连·中考真题)如图,在菱形ABCD 中,60BAD ∠=︒,点E 在边BC 上,将ABE △沿直线AE 翻折180°,得到'AB E △,点B 的对应点是点B '若AB BD '⊥,2BE =,则BB '的长是__________.16.(2021·辽宁营口·中考真题)如图,40MON ∠=︒,以O 为圆心,4为半径作弧交OM 于点A ,交ON 于点B ,分别以点A ,B 为圆心,大于12AB 的长为半径画弧,两弧在MON ∠的内部相交于点C ,画射线OC 交AB 于点D ,E 为OA 上一动点,连接BE ,DE ,则阴影部分周长的最小值为_________.17.(2021·山东聊城·中考真题)有四张大小和背面完全相同的不透明卡片,正面分别印有等边三角形、平行四边形、菱形和圆,将这四张卡片背面朝上洗匀,从中随机抽取两张卡片,所抽取的卡片正面上的图形都既是轴对称图形,又是中心对称图形的概率是__________. 18.(2021·四川广安·中考真题)如图,将三角形纸片ABC 折叠,使点B 、C 都与点A 重合,折痕分别为DE 、FG .已知15ACB ∠=︒,AE EF =,3DE =,则BC 的长为_______.19.(2021·内蒙古鄂尔多斯·中考真题)如图,已知正方形ABCD 的边长为6,点F 是正方形内一点,连接,CF DF ,且ADF =DCF ∠∠,点E 是AD 边上一动点,连接,EB EF ,则EB EF +长度的最小值为___________.三、解答题20.(2021·辽宁阜新·中考真题)下面是小明关于“对称与旋转的关系”的探究过程,请你补充完整.(1)三角形在平面直角坐标系中的位置如图1所示,简称G ,G 关于y 轴的对称图形为1G ,关于x 轴的对称图形为2G .则将图形1G 绕____点顺时针旋转____度,可以得到图形2G .(2)在图2中分别画出....G 关于 y 轴和直线1y x =+的对称图形1G ,2G .将图形1G 绕____点(用坐标表示)顺时针旋转______度,可以得到图形2G .(3)综上,如图3,直线1:22l y x =-+和2:l y x =所夹锐角为α,如果图形G 关于直线1l 的对称图形为1G ,关于直线2l 的对称图形为2G ,那么将图形1G 绕____点(用坐标表示)顺时针旋转_____度(用α表示),可以得到图形2G .21.(2021·山东济宁·中考真题)研究立体图形问题的基本思路是把立体图形问题转化为平面图形问题. (1)阅读材料立体图形中既不相交也不平行的两条直线所成的角,就是将直线平移使其相交所成的角. 例如,正方体ABCD A B C D ''''-(图1).因为在平面AA C C ''中,//CC AA '',AA '与AB 相交于点A ,所以直线AB 与AA '所成的BAA '∠就是既不相交也不平行的两条直线AB 与CC '所成的角. 解决问题如图1,已知正方体ABCD A B C D ''''-,求既不相交也不平行的两条直线BA '与AC 所成角的大小.(2)如图2,M ,N 是正方体相邻两个面上的点.①下列甲、乙、丙三个图形中,只有一个图形可以作为图2的展开图,这个图形是 ; ②在所选正确展开图中,若点M 到AB ,BC 的距离分别是2和5,点N 到BD ,BC 的距离分别是4和3,P 是AB 上一动点,求PM PN +的最小值.22.(2021·湖北荆门·中考真题)如图,抛物线2y ax bx c =++交x 轴于(1,0)A -,(3,0)B 两点,交y 轴于点(0,3)C -,点Q 为线段BC 上的动点. (1)求抛物线的解析式; (2)求||||QO QA +的最小值;(3)过点Q 作//PQ AC 交抛物线的第四象限部分于点P ,连接P A ,PB ,记PAQ △与PBQ △的面积分别为1S ,2S ,设12S S S =+,求点P 坐标,使得S 最大,并求此最大值.1.C【解析】【分析】根据中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形就叫做中心对称图形;轴对称图形的定义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.【详解】解:A.是轴对称图形,不是中心对称图形,故本选项不符合题意;B.既不是轴对称图形,也不是中心对称图形,故本选项不符合题意;C.既是轴对称图形,又是中心对称图形,故本选项符合题意;D.既不是轴对称图形,也不是中心对称图形,故本选项不符合题意.故选:C【点拨】本题考查了中心对称图形与轴对称图形的概念,正确掌握相关定义是解题关键.2.D【解析】【分析】根据关于y轴对称的点的横坐标互为相反数,纵坐标相等,可得答案.【详解】解:点A(-3,4)关于y轴对称的点的坐标是(3,4),【点拨】本题考查了关于y 轴对称的点的坐标,明确关于y 轴对称的点的横坐标互为相反数,纵坐标相等是解题的关键 3.C 【解析】【分析】过点A 作AH BC ⊥ 于H ,由折叠知识得:90BFG ∠=︒ ,再由锐角三角函数可得53AH =,然后根据//AD BC ,可证得四边形AHFG 是矩形,即可求解.【详解】解:过点A 作AH BC ⊥ 于H ,由折叠知:BF =GF ,∠BFE =∠GFE ,45BFE ∠=︒, 90BFG ∴∠=︒ ,在Rt ABH 中,10AB =,60B ∠=︒, 3sin sin 60101053AH B AB =⨯=︒⨯==, //AD BC ,90GAH AHB ∴∠=∠=︒ , 90GAH AHB BFG ∴∠=∠=∠=︒ ,∴ 四边形AHFG 是矩形, 3FG AH ∴==, 3BF GF ∴==.故选:C .【点拨】本题主要考查了折叠变换,解直角三角形,矩形的判定和性质,熟练掌握相关知识点是解题的关键. 4.A 【解析】【分析】首先判断各图形是否是轴对称图形,再根据题意画出树状图,然后由树状图求得所有等可能的结果与抽到卡片上印有的图案都是轴对称图形的情况,再利用概率公式求解即可求得答案.解:∵线段是轴对称图形,等边三角形是轴对称图形,平行四边形不是轴对称图形,正六边形是轴对称图形,分别用A 、B 、C 、D 表示线段、等边三角形、平行四边形和正六边形,∴随机抽取两张,则抽到的卡片正面图形都是轴对称图形的概率为612=12, 故选:A .【点拨】本题考查概率公式、轴对称图形,解答本题的关键是写出题目中的图形是否为轴对称图形,明确两张都是轴对称图形是同时发生的. 5.D 【解析】【分析】先利用互余计算出∠BDE =28°,再根据平行线的性质得∠CBD =∠BDE =28°,接着根据折叠的性质得∠FBD =∠CBD =28°,然后利用三角形外角性质计算∠DEF 的度数,于是得到结论. 【详解】解:∵四边形ABCD 为矩形, ∴AD ∥BC ,∠ADC =90°,∵90906228BDE BDC ∠︒-∠︒-︒︒===, ∵AD ∥BC ,∴∠CBD =∠BDE =28°, ∵矩形ABCD 沿对角线BD 折叠, ∴∠FBD =∠CBD =28°,∴∠DEF =∠FBD +∠BDE =28°+28°=56°. 故选:D .【点拨】本题考查了矩形的性质,平行线和折叠的性质,综合运用以上性质是解题的关键. 6.C 【解析】【分析】根据该几何体的三视图,结合轴对称图形的定义:如果一个平面图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形及中心对称的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形称为中心对称图形进行判断即可.【详解】解:该几何体的三视图如下:三视图中既是轴对称图形,又是中心对称图形的是俯视图,故选:C.【点拨】本题考查简单几何体的三视图,中心对称、轴对称,理解视图的意义,掌握简单几何体三视图的画法以及轴对称、中心对称的意义是正确判断的前提.7.D【解析】【分析】先在RtABC中利用勾股定理计算出AB=10,再利用折叠的性质得到AE=BE,AD=BD=5,设AE=x,则CE=AC-AE=8-x,BE=x,在Rt△BCE中根据勾股定理可得到x2=62+(8-x)2,解得x,可得CE.【详解】解:∵∠ACB=90°,AC=8,BC=6,∴AB22AC BC+,∵△ADE沿DE翻折,使点A与点B重合,∴AE=BE,AD=BD=12AB=5,设AE=x,则CE=AC-AE=8-x,BE=x,在Rt△BCE中∵BE2=BC2+CE2,∴x2=62+(8-x)2,解得x=254,∴CE=2584-=74,故选:D.【点拨】本题考查了折叠的性质:折叠前后两图象全等,即对应角相等,对应边相等.也考查了勾股定理.8.B 【解析】【分析】根据折叠性质可得∠EMB′=∠EMB=12∠BMC′,∠FMB′=∠FMC=12∠CMC′,再根据平角定义即可解答.【详解】解:∠EMF=∠EMB′+∠FMB′=12∠BMC′+12∠CMC′=12×180°=90°,故选:B.【点拨】本题考查折叠的性质、平角定义,熟练掌握折叠的性质求角度是解答的关键.9.D【解析】【分析】由基本作图得到得EF垂直平分AB,则MB=MA,所以BM+MD=MA+MD,连接MA、DA,如图,利用两点之间线段最短可判断MA+MD的最小值为AD,再利用等腰三角形的性质得到AD⊥BC,然后利用三角形面积公式计算出AD即可.【详解】解:由作法得EF垂直平分AB,∴MB=MA,∴BM+MD=MA+MD,连接MA、DA,如图,∵MA+MD≥AD(当且仅当M点在AD上时取等号),∴MA+MD的最小值为AD,∵AB=AC,D点为BC的中点,∴AD⊥BC,∵110,2ABCS BC AD==∴1025,4AD⨯==∴BM+MD长度的最小值为5.故选:D.【点拨】本题考查的是线段的垂直平分线的性质,利用轴对称求线段和的最小值,三角形的面积,两点之间,线段最短,掌握以上知识是解题的关键.10.45【解析】【分析】卡片中,轴对称图形有等腰三角形、矩形、菱形、等腰梯形,再根据概率公式P =满足条件的样本个数÷总体的样本个数,可求出最终结果.【详解】解:卡片中,轴对称图形有等腰三角形、矩形、菱形、等腰梯形,根据概率公式,P (轴对称图形)45=. 故答案为:45. 【点拨】本题主要考查概率问题,属于基础题,掌握轴对称图形的性质以及概率公式是解题关键.11.12或2【解析】【分析】因为点D 恰好在原直角三角形纸片的边上,所以分为当D 落在AB 边上和BC 边上两种情况分析,勾股定理求解即可.【详解】解:当D 落在AB :设DD '交AB 于点E ,由折叠知:60EA D A '∠=∠=︒, AD A D A D '''==,DD A E ''⊥,A C AC '=90ACB ∠=︒,30B ∠=︒,1AC =2,AB BC ∴==设AD x =,则在Rt A ED '中,12A E x '=在Rt ECB 中,12EC BC ==A C AC '=112x ∴=即2x =当D 落在BC 边上时,如图(2)因为折叠,30,ACD A CD A CD '''∠=∠=∠=︒∴ 11,122A D A C A B A C A B AC ''''''===== 12AD A D ''∴==.故答案为:12或23【点拨】本题考查了轴对称变换,勾股定理,直角三角形中30的性质,正确的作出图形是解题的关键.12.45°【解析】【分析】根据折叠的性质可以得出∠EBD=12∠ABD, ∠FBD=12∠CBD,即可求出∠EBF.【详解】解:将长方形纸片ABCD 折叠,使边AB 、CB 均落在对角线BD 上,得折痕BE 、BF 得到∠EBD=∠ABE=12∠ABD, ∠FBD=∠CBF=12∠CBD∵ ∠ABC=90°∴∠EBF=∠EBD+∠FBD=12∠ABD+12∠CBD=12∠ABC=45°故答案为:45°【点拨】本题主要考查了折叠的性质及角度的计算,掌握概念是解题的关键.13.40°【解析】【分析】如图,由折叠的性质可得1=20BAF ∠=∠︒,进而可得40CHB HAB HBA ∠=∠+∠=︒,然后易得四边形CHBD 是平行四边形,最后根据平行四边形的性质可求解.【详解】解:如图所示:∵1=20∠︒,由折叠的性质可得1=20BAF ∠=∠︒,∵//CD BE ,∴20HBA BAF ∠=∠=︒,∴40CHB HAB HBA ∠=∠+∠=︒,∵//CH BD ,∴四边形CHBD 是平行四边形,∴240CHB ∠=∠=︒;故答案为40°.【点拨】本题主要考查平行四边形的性质与判定、平行线的性质及折叠的性质,熟练掌握平行四边形的性质与判定、平行线的性质及折叠的性质是解题的关键.14.21【解析】【分析】由题意易得四边形ABCD 是正方形,进而根据轴对称的性质可得AD =DP ,24PDQ ADQ ∠=∠=︒,则有CD =DP ,然后可得138CDP ∠=︒,最后根据等腰三角形的性质可求解.【详解】解:∵CBD ABD ≌,且都为等腰直角三角形,∴四边形ABCD 是正方形,∴90,CDA CD AD ∠=︒=,∵点P 与点A 关于直线DQ 对称,24ADQ ∠=︒,∴24PDQ ADQ ∠=∠=︒,AD =DP ,∴CD =DP ,48ADP ∠=︒,∴138CDP ∠=︒, ∴180212CDP DCP DPC ︒-∠∠=∠==︒, 故答案为21.【点拨】本题主要考查正方形的判定与性质、轴对称的性质及等腰三角形的性质,熟练掌握正方形的判定与性质、轴对称的性质及等腰三角形的性质是解题的关键.15.65°.【解析】【详解】试题分析::∵∠AEA′=180°﹣∠A′EC=180°﹣70°=110°,又∵∠A′ED=∠AED=12∠AEA′=55°,∠DA′E=∠A=60°,∴∠A′DE=180°﹣∠A′ED ﹣∠DA′E=180°﹣55°﹣60°=65°.故答案是65°.考点:翻折变换(折叠问题).16. 【解析】【详解】试题分析:作点M 关于AB 的对称点N ,过N 作NQ ⊥AC 于Q 交AB 于P ,则NQ 的长即为PM+PQ 的最小值,连接MN 交AB 于D ,则MD ⊥AB ,DM=DN ,∵∠NPB=∠APQ ,∴∠N=∠BAC=30°,∵∠BAC=30°,AM=2,∴MD=AM=1,∴MN=2,∴NQ=MN•cos∠N=2×=,故答案为.考点:轴对称﹣最短路线问题17.6.【解析】【详解】试题分析:先根据折叠的性质得DE=EF,CE=EF,AF=AD=2,BF=CB=3,则DC=2EF,AB=5,再作AH⊥BC于H,由于AD∥BC,∠B=90°,则可判断四边形ADCH为矩形,所以AH=DC=2EF,HB=BC﹣CH=BC﹣AD=1,然后在Rt△ABH中,利用勾股定理计算出AH=2,所以EF=.考点:翻折变换(折叠问题)..18.8yx=-.【解析】【分析】根据轴对称的定义,利用点Q(2,4),求出P点坐标,将P点坐标代入解析式,即可求出反比例函数解析式.【详解】解:∵点Q(2,4)和点P关于y轴对称,关于y轴对称的点的坐标特征是纵坐标不变,横坐标互为相反数∴P点坐标为(-2,4).将(-2,4)解析式kyx=得,k=xy=-2×4=-8.∴函数解析式为8yx=-.故答案为:8yx=-.【点拨】本题考查了待定系数法求反比例函数解析式、关于x轴、y轴对称的点的坐标,熟悉待定系数法是解题的关键.19.(1)ABC 是直角三角形;(2)见解析;(3)图见解析,()0,3G ;(4)见解析【解析】【分析】(1)利用勾股定理以及勾股定理的逆定理解决问题即可.(2)利用数形结合的思想解决问题即可.(3)利用数形结合的思想解决问题即可.(4)取格点T ,作直线1TC ,取格点P ,连接OP 交1TC 于点D ,点D 即为所求作.【详解】解:(1)∵()3,0A ,()0,4B ,()4,2C , ∴22345AB =+=,22521AC =+=,224225BC =+=,∴222AB AC BC =+,∴90ACB ∠=︒,∴ABC 是以AB 为斜边的直角三角形.(2)11A BC 如图所示.先将AB 绕点B 逆时针旋转2α到达1BA ,点1(5,4)A ;再将CB 绕点B 逆时针旋转2α到达1BC ,点1(4,6)C , 连接11A C ,即可得到11A BC ;(3)如图,过点1C 作直线1C G AB ⊥ 交y 轴于点G ,由图可知:点()0,3G . (4)如图,取格点T (1,0),作直线1TC ,取格点P (4,-2),连接OP 交1TC 于点D ,点D 即为所求作.【点拨】本题考查作图-旋转变换,轴对称,勾股定理以及逆定理等知识,解题的关键是学会利用数形结合的思想解决问题.20.证明见解析【解析】【分析】要证明∠ACD=∠ADC,只需证明AD=AC,又AB=AD,AB=AC,等量代换即可.【详解】证明:∵点B与点D关于直线l对称,∴AB=AD,又∵AB=AC,∴AD=AC.∴∠ACD=∠ADC.【点拨】本题考查的是等腰三角形的相关定理,能根据要求进行条件的等量转换是解题关键.21.(1)当x=时,直线AD1过点C(2)当x=时,直线AD1过BC的中点E(3)当0<x≤2时,y=x;当2<x≤3时,y=【解析】【详解】试题分析:(1)根据折叠得出AD=AD1=2,PD=PD1=x,∠D=∠AD1P=90°,在Rt△ABC中,根据勾股定理求出AC,在Rt△PCD1中,根据勾股定理得出方程,求出即可;(2)连接PE,求出BE=CE=1,在Rt△ABE中,根据勾股定理求出AE,求出AD1=AD=2,PD=PD1=x,D1E=﹣2,PC=3﹣x,在Rt△PD1E和Rt△PCE中,根据勾股定理得出方程,求出即可;(3)分为两种情况:当0<x≤2时,y=x;当2<x≤3时,点D1在矩形ABCD的外部,PD1交AB于F,求出AF=PF,作PG⊥AB于G,设PF=AF=a,在Rt△PFG中,由勾股定理得出方程(x﹣a)2+22=a2,求出a即可.试题解析:(1)如图1,∵由题意得:△ADP≌△AD1P,∴AD=AD1=2,PD=PD1=x,∠D=∠AD1P=90°,∵直线AD1过C,∴PD1⊥AC,在Rt△ABC中,AC=,CD1=﹣2,在Rt△PCD1中,PC2=PD12+CD12,即(3﹣x)2=x2+(﹣2)2,解得:x=,∴当x=时,直线AD1过点C;(2)如图2,连接PE,∵E为BC的中点,∴BE=CE=1,在Rt△ABE中,AE==,∵AD1=AD=2,PD=PD1=x,∴D1E=﹣2,PC=3﹣x,在Rt△PD1E和Rt△PCE中,x2+(﹣2)2=(3﹣x)2+12,解得:x=,∴当x=时,直线AD1过BC的中点E;(3)如图3,当0<x≤2时,y=x,如图4,当2<x≤3时,点D1在矩形ABCD的外部,PD1交AB于F,∵AB∥CD,∴∠1=∠2,∵∠1=∠3(根据折叠),∴∠2=∠3,∴AF=PF,作PG⊥AB于G,设PF=AF=a,由题意得:AG=DP=x,FG=x﹣a,在Rt△PFG中,由勾股定理得:(x﹣a)2+22=a2,解得:a=,所以y==,综合上述,当0<x≤2时,y=x;当2<x≤3时,y=.考点:1、勾股定理,2、折叠的性质,3、矩形的性质,4、分类推理思想1.C【解析】【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【详解】解:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项不符合题意.B 、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,不是轴对称图形,故此选项不符合题意;C 、此图形旋转180°后能与原图形重合,此图形是中心对称图形,是轴对称图形,故此选项符合题意;D 、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,也不是轴对称图形,故此选项不符合题意.故选:C .【点拨】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.2.B【解析】【分析】利用勾股定理求出AB =10,利用等积法求出CN =245,从而得AN =325,再证明∠NMC =∠NCM =45°,进而即可得到答案.【详解】解:∵90,8,6ACB AC BC ∠=︒==∴AB 10,∵S △ABC =12×AB ×CN =12×AC ×BC∴CN =245,∵AN 325=, ∵折叠∴AM =A'M ,∠BCN =∠B'CN ,∠ACM =∠A'CM ,∵∠BCN +∠B'CN +∠ACM +∠A'CM =90°,∴∠B'CN +∠A'CM =45°,∴∠MCN =45°,且CN ⊥AB ,∴∠NMC =∠NCM =45°,∴MN =CN =245, ∴A'M =AM =AN −MN =325-245=85. 故选B .【点拨】本题考查了翻折变换,勾股定理,等腰直角三角形的性质,熟练运用折叠的性质是本题的关键.3.B【解析】【分析】作点F关于直线AB的对称点F’,如下图所示,此时EF+EB=EF’+EB,再由点到直线的距离垂线段长度最短求解即可.【详解】解:作点F关于直线AB的对称点F’,连接AF’,如下图所示:由对称性可知,EF=EF’,此时EF+EB= EF’+EB,由“点到直线的距离垂线段长度最小”可知,当BF’⊥AF’时,EF+EB有最小值BF0,此时E位于上图中的E0位置,由对称性知,∠CAF0=∠BAC=90°-75°=15°,∴∠BAF0=30°,由直角三角形中,30°所对直角边等于斜边的一半可知,BF0=12AB=15522⨯=,故选:B.【点拨】本题考查了30°角所对直角边等于斜边的一半,垂线段最短求线段最值等,本题的核心思路是作点F关于AC的对称点,将EF线段转移,再由点到直线的距离最短求解.4.B【解析】【分析】利用平行四边形的性质、翻折不变性可得△AEC为等腰直角三角形,根据已知条件可得CE得长,进而得出ED的长,再根据勾股定理可得出B D';【详解】解:∵四边形ABCD是平行四边形∴AB=CD∠B=∠ADC=60°,∠ACB=∠CAD由翻折可知:BA=AB′=DC,∠ACB=∠AC B′=45°,∴△AEC为等腰直角三角形。

苏科版数学七年级上册5.2《图形的运动》教学设计

苏科版数学七年级上册5.2《图形的运动》教学设计

苏科版数学七年级上册5.2《图形的运动》教学设计一. 教材分析《图形的运动》是苏科版数学七年级上册第五章第二节的内容。

本节内容主要让学生初步认识图形的平移和旋转,了解它们的基本性质和运用。

通过学习,学生能够掌握图形平移和旋转的规律,能够运用平移和旋转变换解决一些实际问题。

二. 学情分析学生在之前的学习中已经初步接触过图形的变换,对于图形的平移和旋转有一定的了解。

但部分学生对于平移和旋转的规律和运用还不够熟练。

因此,在教学过程中,需要关注学生的学习差异,针对不同程度的学生进行引导和辅导。

三. 教学目标1.知识与技能目标:让学生掌握图形的平移和旋转的基本性质和运用,能够运用平移和旋转变换解决一些实际问题。

2.过程与方法目标:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和思维能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队协作精神和自主学习能力。

四. 教学重难点1.教学重点:让学生掌握图形的平移和旋转的基本性质和运用。

2.教学难点:如何引导学生理解和掌握平移和旋转的规律,并能够运用到实际问题中。

五. 教学方法1.情境教学法:通过生活中的实例,引发学生对图形运动的兴趣,提高学生的学习积极性。

2.启发式教学法:引导学生通过观察、思考、交流,自主探索图形的平移和旋转规律。

3.小组合作学习:鼓励学生分组讨论,培养学生的团队协作精神和沟通能力。

六. 教学准备1.教学课件:制作课件,展示图形的平移和旋转实例。

2.教学素材:准备一些图形,用于引导学生进行观察和操作。

3.教学设备:准备电脑、投影仪等教学设备。

七. 教学过程1.导入(5分钟)利用课件展示一些生活中的图形运动实例,如滑滑梯、旋转门等,引导学生关注图形的运动。

提问:你们观察到这些图形有哪些运动?学生回答:平移、旋转等。

教师总结:今天我们要学习的就是图形的平移和旋转。

2.呈现(10分钟)教师通过课件展示图形的平移和旋转的定义和性质。

5.2 图形的运动

5.2  图形的运动
3.一枚硬币在桌面上竖直快速旋转. 它们分别形成怎样的几何体?
想一想
1.长方形纸板绕它的一条边旋转 一周,形成怎样的几何体?
长方形面
旋转
圆柱体
想一想
2.直角三角形绕它的一条直角边旋 转一周,形成怎样的几何体?
三角形面
旋转
圆锥体
想一想
3.一枚硬币在桌面上竖起快速旋转, 形成怎样的几何体?
圆面
旋转
4.说一说下列图形的变化.
(A)
(B)
(C)
1.AB 翻折 2.BC 平移 3.CD 旋转
(D)
1.下列各图形中,不是由翻折 而形成的是( C )
2.下列四个图形中,形成方法 与另外三个不同的是( B )
2.在5×5的方格纸中,将图1中的图形N平移,平移后的位置 如图2所示,那么正确的平移方法是_________
球体
从以上的演示过程中我们可以感受到:
圆 面
长方形面 三角形面
旋转
球 体 圆柱体 圆锥体
旋转
旋转
面动成体
旋转可以形成新的图形.
做一做
1.下列图形绕轴线旋转1周, 能形成怎样的几何体?
做一做
2.在下列两行图形中,分别找出 相互对应的图形,并用线连接.
做一做
想一想
3.你还能举出生活中的“ 点 动成线,线动成面,面动成体”吗?
3.观察下列图形,你能说出它们是 分别根据什么基本图形经过怎样的变化形 成的吗?
课后作业
用“平移、旋转、翻折”三种技 法中的一种或几种设计一幅图案.
(1)
(2)
(3)
1.如图,将两块相同的直角三角尺 的相等边拼在一起,能拼出几种不同的平 面图形?你能说出这些图形的名称吗?

《5.2旋转》作业设计方案-初中数学湘教版12七年级下册

《5.2旋转》作业设计方案-初中数学湘教版12七年级下册

《旋转》作业设计方案(第一课时)一、作业目标通过本次作业,学生应能够理解旋转的基本概念,掌握旋转的基本性质,能正确识别并运用旋转变换,从而提高学生们的空间想象能力和解题能力。

二、作业内容(一)基本知识点掌握1. 旋转的定义:绕着某个点转动的图形运动称为旋转。

了解旋转的基本特性,如旋转中心、旋转角度等。

2. 旋转的性质:理解旋转过程中图形各点的移动规律,以及如何利用旋转来创造对称图形。

(二)课后习题巩固1. 识别和运用问题:设计一系列有关旋转的问题,要求学生识别图形的旋转变换,并能准确应用相关知识解答问题。

2. 探究性问题:设置几个探究性问题,让学生们通过小组讨论或个人思考的方式,进一步理解和掌握旋转的知识点。

(三)创意作业拓展设计一份创意作业,要求学生运用所学的旋转知识,设计一幅具有创新性和美感的旋转图形作品。

三、作业要求1. 准确掌握基础知识:学生应准确理解并掌握旋转的基本概念和性质。

2. 独立完成习题:课后习题要求学生独立完成,不得抄袭他人答案。

3. 小组合作探究:探究性问题需通过小组合作完成,培养学生们的团队协作能力。

4. 创意作业要求:创意作业需具备创新性、美观性和实用性,鼓励学生发挥想象力。

四、作业评价1. 评价标准:根据学生对基础知识的掌握程度、习题的完成情况和创意作业的质量进行评价。

2. 评价方式:采用教师评价和同学互评相结合的方式,以全面了解学生的学习情况。

3. 反馈方式:通过课堂讲解、作业评语等方式,及时向学生反馈评价结果,鼓励进步,指出不足。

五、作业反馈1. 对于学生在作业中出现的错误,教师应及时进行纠正,并引导学生分析错误原因,防止类似错误再次发生。

2. 对于学生的优秀表现和进步,教师应给予肯定和表扬,激发学生的学习兴趣和自信心。

3. 根据学生的作业情况,教师可调整教学计划,针对学生的薄弱环节进行重点讲解和练习。

4. 通过作业反馈,教师可及时了解学生的学习需求和困难,为后续教学提供参考和依据。

高考物理一轮基础复习:5.2运动的合成与分解

高考物理一轮基础复习:5.2运动的合成与分解

高考物理一轮基础复习:5.2运动的合成与分解一、一个平面运动的实例1.蜡块的位置:如图所示,蜡块沿玻璃管匀速上升的速度设为v y,玻璃管向右匀速移动的速度设为v x,从蜡块开始运动的时刻开始计时,在某时刻t,蜡块的位置P可以用它的x、y两个坐标表示:x=v x t,y=v y t.2.蜡块运动的速度:大小v=v2x+v2y,方向满足tan θ=vyvx .3.蜡块运动的轨迹:y=vyvxx,是一条过原点的直线.二、运动的合成与分解1.合运动与分运动如果物体同时参与了几个运动,那么物体实际发生的运动就是合运动,参与的几个运动就是分运动.2.运动的合成与分解:已知分运动求合运动的过程,叫运动的合成;已知合运动求分运动的过程,叫运动的分解.3.运动的合成与分解实质是对运动的位移、速度和加速度的合成和分解,遵循矢量运算法则.1.思考判断(正确的打“√”,错误的打“×”)(1)合运动与分运动是同时进行的,时间相等.(√)(2)合运动一定是实际发生的运动.(√)(3)合运动的速度一定比分运动的速度大.(×)(4)两个互成角度的匀速直线运动的合运动,一定也是匀速直线运动.(√)2.雨滴由静止开始下落,遇到水平方向吹来的风,下述说法中正确的是( )①风速越大,雨滴下落时间越长②风速越大,雨滴着地时速度越大③雨滴下落时间与风速无关④雨滴着地速度与风速无关A.①②B.②③C.③④ D.①④B [将雨滴的运动在水平方向和竖直方向分解,两个分运动相互独立,雨滴下落时间与竖直高度有关,与水平方向的风速无关,故①错误,③正确.风速越大,落地时,雨滴水平方向分速度越大,合速度也越大,故②正确,④错误,故选B.]3.如图所示,在玻璃管的水中有一红蜡块正在匀速上升,若红蜡块在A点匀速上升的同时,使玻璃管从AB位置水平向右做匀加速直线运动,则红蜡块实际运动的轨迹是图中的( )A.直线P B.曲线QC.曲线R D.三条轨迹都有可能B [红蜡块参与了竖直方向的匀速直线运动和水平方向的匀加速直线运动这两个分运动,实际运动的轨迹即是合运动的轨迹.由于它在任意一点的合速度方向是向上或斜向右上的,而合加速度就是水平方向的加速度,方向是水平向右的,合加速度和合速度之间有一定夹角,故轨迹是曲线.又因为物体做曲线运动的轨迹总向加速度方向偏折(或加速度方向总指向曲线的凹侧),故选项B正确.]运动的合成与分解[观察探究]如图所示,跳伞运动员打开降落伞后正在从高空下落.(1)跳伞员在无风时竖直匀速下落,有风时运动员的实际运动轨迹还竖直向下吗?竖直方向的运动是跳伞员的合运动还是分运动?(2)已知跳伞员的两个分运动速度,怎样求跳伞员的合速度?提示:(1)有风时不沿竖直向下运动.无风时跳伞员竖直匀速下落,有风时,一方面竖直匀速下落,一方面在风力作用下水平运动.因此,竖直匀速下落的运动是跳伞员的分运动.(2)应用矢量运算法则求合速度.[探究归纳]1.合运动与分运动(1)如果物体同时参与了几个运动,那么物体实际发生的运动就是合运动,参与的几个运动就是分运动.(2)物体实际运动的位移、速度、加速度就是它的合位移、合速度、合加速度,而分运动的位移、速度、加速度就是它的分位移、分速度、分加速度.2.合运动与分运动的四个特性等时性各分运动与合运动同时发生和结束,时间相同等效性各分运动的共同效果与合运动的效果相同同体性各分运动与合运动是同一物体的运动独立性各分运动之间互不相干,彼此独立,互不影响3.(1)运动的合成与分解:已知分运动求合运动,叫运动的合成;已知合运动求分运动,叫运动的分解.(2)运动合成与分解的法则:合成和分解的对象是位移、速度、加速度,这些量都是矢量,遵循的是平行四边形定则.【例1】竖直放置的两端封闭的玻璃管中注满清水,内有一个蜡块能在水中以0.1 m/s的速度匀速上浮.在蜡块从玻璃管的下端匀速上浮的同时,使玻璃管水平向右匀速运动,测得蜡块实际运动方向与水平方向成30°角,如图所示.若玻璃管的长度为1.0 m,在蜡块从底端上升到顶端的过程中,下列关于玻璃管水平方向的移动速度和水平运动的距离计算结果正确的是( )A.0.1 m/s,1.73 m B.0.173 m/s,1.0 mC.0.173 m/s,1.73 m D.0.1 m/s,1.0 mC [由题图知竖直位移与水平位移之间的关系为tan 30°=y x由分运动具有独立性和等时性得:y=v y t、x=v x t联立解得:x=1.73 m,v x=0.173 m/s.故C项正确.]上例中,若将玻璃管水平向右匀速运动改为从静止开始匀加速运动;将蜡块实际运动方向与水平方向成30°角改为蜡块最终位移方向与水平方向成45°角,其他条件不变,则玻璃管水平方向的加速度多大?提示:由tan 45°=yx,则x=1.0 m,由x=12at2,y=vyt得t=10 s,a=0.02 m/s2.“三步走”求解合运动或分运动(1)根据题意确定物体的合运动与分运动.(2)根据平行四边形定则作出矢量合成或分解的平行四边形.(3)根据所画图形求解合运动或分运动的参量,求解时可以用勾股定理、三角函数、三角形相似等数学知识.1.两个互成角度的匀变速直线运动,初速度分别为v1和v2,加速度分别为a1和a2,它们的合运动的轨迹( )A.如果v1=v2≠0,那么轨迹一定是直线B .如果v 1=v 2≠0,那么轨迹一定是曲线C .如果a 1=a 2,那么轨迹一定是直线D .如果a 1a 2=v 1v 2,那么轨迹一定是直线D [本题考查两直线运动合运动性质的确定,解题关键是明确做曲线运动的条件是合外力的方向(即合加速度的方向)与速度的方向不在一条直线上.如果a 1a 2=v 1v 2,那么,合加速度的方向与合速度的方向一定在一条直线上,所以D 正确.]小船渡河问题[观察探究]小船渡河问题中,小船渡河参与了哪两个运动?怎样过河时间最短?怎样过河位移最短?提示:小船渡河参与了相对于静水的运动和随河水漂流的运动;船头垂直河岸渡河时时间最短,合位移垂直河岸时位移最短.[探究归纳]1.模型特点:小船参与的两个分运动:小船在河流中实际的运动(站在岸上的观察者看到的运动)可视为船同时参与了这样两个分运动:(1)船相对水的运动(即船在静水中的运动),它的方向与船身的指向相同. (2)船随水漂流的运动(即速度等于水的流速),它的方向与河岸平行.船在流水中实际的运动(合运动)是上述两个分运动的合成.2.两类最值问题(1)渡河时间最短问题:若要渡河时间最短,由于水流速度始终沿河道方向,不能提供指向河对岸的分速度.因此,只要使船头垂直于河岸航行即可.由图可知,t短=dv船,此时船渡河的位移x=dsin θ,位移方向满足tan θ=v船v水.(2)渡河位移最短问题甲情况一:v水<v船最短的位移为河宽d,此时渡河所用时间t=dv船sin θ,船头与上游河岸夹角θ满足v船cos θ=v水,如图甲所示.情况二:v水>v船如图乙所示,以v水矢量的末端为圆心,以v船的大小为半径作圆,当合速度的方向与圆相切时,合速度的方向与河岸的夹角最大(设为α),此时航程最短.由图可知sin α=v船v水,最短航程为x=dsin α=v水v船d.此时船头指向应与上游河岸成θ′角,且cos θ′=v船v水.乙【例2】一小船渡河,河宽d=180 m,水流速度为v1=2.5 m/s.船在静水中的速度为v2=5 m/s,求:(1)小船渡河的最短时间为多少?此时位移多大?(2)欲使船渡河的航程最短,船头应朝什么方向?用多长时间?[解析] (1)欲使船在最短时间内渡河,船头应朝垂直河岸方向.当船头垂直河岸时,如图甲所示,甲合速度为倾斜方向,垂直分速度为v2=5 m/s.t=dv⊥=dv2=1805s=36 sv合=v21+v22=525 m/sx=v合t=90 5 m.(2)欲使船渡河的航程最短,船的合运动方向应垂直河岸.船头应朝上游与河岸成某一角度β.如图乙所示,由v2sin α=v1得α=30°.所以当船头朝上游与河岸成一定角度β=60°时航程最短.乙x=d=180 mt=dv′⊥=dv2cos 30°=180523s=24 3 s.[答案] (1)36 s 90 5 m(2)偏向上游与河岸成60°角24 3 s小船渡河问题要注意三点(1)研究小船渡河时间时→常对某一分运动进行研究求解,一般用垂直河岸的分运动求解.(2)分析小船速度时→可画出小船的速度分解图进行分析.(3)研究小船渡河位移时→要对小船的合运动进行分析,必要时画出位移合成图.2.一艘船的船头始终正对河岸方向行驶,如图所示.已知船在静水中行驶的速度为v1,水流速度为v2,河宽为d.则下列判断正确的是( )A.船渡河时间为d v 2B.船渡河时间为dv21+v22C.船渡河过程被冲到下游的距离为v2v1·dD.船渡河过程被冲到下游的距离为dv21+v22·dC [船正对河岸运动,渡河时间最短t=dv1,沿河岸运动的位移s2=v2t=v2v1·d,所以A、B、D选项错误,C选项正确.]“绳联物体”的速度分解问题[观察探究绳联物体问题中,如何判断合速度和分速度?速度怎样分解?提示:物体的实际运动是合运动;将物体的实际速度分解为垂直于绳(杆)和沿绳(杆)的两个分量.[探究归纳]1.“绳联物体”指物体拉绳(杆)或绳(杆)拉物体的问题(下面为了方便,统一说“绳”),要注意以下两点:(1)物体的实际速度一定是合速度,分解时两个分速度方向应取沿绳方向和垂直于绳方向.(2)由于绳不可伸长,一根绳两端物体沿绳方向的速度分量相等.2.常见的速度分解模型【例3】如图所示,以速度v沿竖直杆匀速下滑的物体A用轻绳通过定滑轮拉物体B,当绳与水平面夹角为θ时,物体B的速度为( )A.vB.v sin θC.v cos θD.v sin θD [将A的速度分解为沿绳子方向和垂直于绳子方向,如图所示,根据平行四边形定则得,v B=v sin θ,故D正确.]上例中,若物体B以速度v向左匀速运动,则物体A做什么运动?提示:v A′=v sin θ由于θ变小,故v A′变大,故物体A向上做加速运动.3.如图所示,AB杆和墙的夹角为θ时,杆的A端沿墙下滑的速度大小为v1,B端沿地面的速度大小为v2,则v1、v2的关系是( )A.v1=v2B.v1=v2cos θC.v1=v2tan θD.v1=v2sin θC [可以把A、B两点的速度分解,如图所示,由于杆不能变长或变短,沿杆方向的速度应满足v1x=v2x,即v1cos θ=v2sin θ,v1=v2tan θ,C正确.]课堂小结知识脉络1.物体实际发生的运动是合运动,参与的几个运动是分运动,合运动与分运动遵循平行四边形定则.2.小船渡河问题中,船头垂直河岸渡河时间最短,合速度垂直河岸位移最小.3.“绳联物体”问题中,将物体的实际速度分解为垂直于绳(杆)和沿绳(杆)的两个分量.【课堂同步练习】1.关于合运动与分运动的关系,下列说法正确的是( )A.合运动速度一定不小于分运动速度B.合运动加速度不可能与分运动加速度相同C.合运动的速度与分运动的速度没有关系,但合运动与分运动的时间相等D.合位移可能等于两分位移的代数和D [根据平行四边形定则,作出以两个互成角度的分速度为邻边的平行四边形,过两邻边夹角的对角线表示合速度,对角线的长度可能等于邻边长度,也可能小于邻边长度,也可能大于邻边长度,选项A错误;合运动的加速度可能大于、等于或小于分运动的加速度,选项B错误;合运动与分运动具有等效性、同体性、等时性等关系,选项C错误;如果两个分运动在同一直线上,且方向相同,其合位移就等于两分位移的代数和,选项D正确.]2.(多选)已知河水自西向东流动,流速为v1,小船在静水中的速度为v2,且v2>v1,用小箭头表示船头的指向及小船在不同时刻的位置,虚线表示小船过河的路径,则下图中可能正确的是( )A BC DCD [小船的路径应沿合速度方向,不可能与船头指向相同,故A、B错误,C、D正确.]3.如图所示,在不计滑轮摩擦和绳子质量的条件下,当小车以速度v匀速向右运动到如图所示位置时,物体P的速度为( )A.v B.v cos θC.vcos θD.v cos2θB [如图所示,绳子与水平方向的夹角为θ,将小车的速度沿绳子方向和垂直于绳子方向分解,沿绳子方向的速度等于P的速度,根据平行四边形定则得vP=v cos θ,故B正确,A、C、D错误.]4.飞机在航行时,它的航线方向要严格地从东到西,如果飞机的速度是160 km/h,风从南面吹来,风的速度为80 km/h,那么:(1)飞机应朝哪个方向飞行?(2)如果所测地区长达80 3 km,飞机飞过所测地区所需时间是多少?[解析] (1)根据平行四边形定则可确定飞机的航向,如图所示,有sin θ=v1v2=80160=12,θ=30°即西偏南30°.(2)飞机的合速度v=v2cos 30°=80 3 km/h所需时间t=xv=1 h.[答案] (1)西偏南30°(2)1 h《5.2 运动的合成与分解》专题训练一、一个平面运动的实例——观察蜡块的运动1.建立坐标系研究蜡块在平面内的运动,可以选择建立平面直角坐标系.如图1所示,以蜡块开始匀速运动的位置为原点O,以水平向右的方向和竖直向上的方向分别为x轴和y轴的方向,建立平面直角坐标系.图12.蜡块运动的位置:玻璃管向右匀速平移的速度设为v x,蜡块沿玻璃管匀速上升的速度设为v y,在某时刻t,蜡块的位置P的坐标:x=v x t,y=v y t.3.蜡块运动的轨迹:将x、y消去t,得到y=vyvxx,可见蜡块的运动轨迹是一条过原点的直线.4.蜡块运动的速度:大小v=v2x+v2y,方向满足tan θ=vyvx .二、运动的合成与分解1.合运动与分运动如果物体同时参与了几个运动,那么物体实际发生的运动就是合运动,同时参与的几个运动就是分运动.2.运动的合成与分解:已知分运动求合运动的过程,叫作运动的合成;已知合运动求分运动的过程,叫作运动的分解.3.运动的合成与分解遵循矢量运算法则.1.判断下列说法的正误.(1)合运动与分运动是同时进行的,时间相等.( √)(2)合运动一定是实际发生的运动.( √)(3)合运动的速度一定比分运动的速度大.( ×)(4)两个夹角为90°的匀速直线运动的合运动,一定也是匀速直线运动.( √)2.竖直放置的两端封闭的玻璃管中注满清水,内有一个蜡块能在水中以0.3 m/s的速度匀速上浮.在蜡块从玻璃管的下端匀速上浮的同时,使玻璃管沿水平方向匀速向右运动,测得蜡块实际运动方向与水平方向成37°角,如图2所示.若玻璃管的长度为0.9 m,在蜡块从底端上升到顶端的过程中,玻璃管水平方向的移动速度和沿水平方向运动的距离分别约为________m/s和________m.(sin 37°=0.6,cos 37°=0.8)图2答案0.4 1.2解析设蜡块沿玻璃管匀速上升的速度为v1,位移为x1,蜡块随玻璃管水平向右移动的速度为v2,位移为x2,如图所示,v2=v1tan 37°=0.334m/s=0.4 m/s.蜡块沿玻璃管匀速上升的时间t=x1v1=0.90.3s=3 s.由于两分运动具有等时性,故玻璃管水平移动的时间为3 s.水平运动的距离x2=v2t=0.4×3 m=1.2 m.一、运动的合成与分解1.合运动与分运动(1)如果物体同时参与了几个运动,那么物体实际发生的运动就是合运动,参与的几个运动就是分运动.(2)物体实际运动的位移、速度、加速度是它的合位移、合速度、合加速度,而分运动的位移、速度、加速度就是它的分位移、分速度、分加速度.2.合运动与分运动的四个特性等时性各分运动与合运动同时发生和结束,时间相同等效性各分运动的共同效果与合运动的效果相同同体性各分运动与合运动是同一物体的运动独立性各分运动之间互不相干,彼此独立,互不影响3.运动的合成与分解(1)运动的合成与分解是指位移、速度、加速度的合成与分解.其合成、分解遵循平行四边形定则.(2)对速度v进行分解时,不能随意分解,应按物体的实际运动效果进行分解.跳伞是人们普遍喜欢的观赏性体育项目,当运动员在某高度从直升机上由静止跳下后,在下落过程中将会受到水平风力的影响,下列说法中正确的是( )A.风力越大,运动员下落时间越长,运动员可完成更多的动作B.风力越大,运动员着地速度越大,有可能对运动员造成伤害C.运动员下落时间与风力有关D.运动员着地速度与风力无关答案 B解析运动员同时参与了两个分运动:竖直方向向下落的运动和水平方向随风飘的运动.这两个分运动同时发生,相互独立.所以水平风力越大,运动员着地速度越大,但下落时间由下落的高度决定,与风力无关,故选B.针对训练1 竖直放置的两端封闭的玻璃管中注满清水,内有一个红蜡块能在水中匀速上浮.如图3所示,当红蜡块从玻璃管的下端匀速上浮的同时,第一次使玻璃管水平向右匀速运动,测得红蜡块运动到顶端所需时间为t1;第二次使玻璃管水平向右加速运动,测得红蜡块从下端运动到顶端所需时间为t2,则( )图3A.t1=t2B.t1>t2C.t1<t2D.无法比较答案 A解析由于分运动的独立性,故玻璃管水平向右的分运动不影响红蜡块向上的运动,t1=t2,所以A正确.(多选)玻璃生产线的最后有一台切割机,能将一定宽度但很长的原始玻璃板按需要的长度切成矩形.假设送入切割机的原始玻璃板的宽度是L=2 m,它沿切割机的轨道(与玻璃板的两侧边平行)以v1=0.15 m/s的速度水平向右匀速移动;已知割刀相对玻璃板的切割速度v2=0.2 m/s,为了确保割下的玻璃板是矩形,则相对地面( )A.割刀运动的轨迹是一段直线B.割刀完成一次切割的时间为10 sC.割刀运动的实际速度大小为0.057 m/sD.割刀完成一次切割的时间内,玻璃板的位移大小是1.5 m 答案 ABD解析 为了使割下的玻璃板都成规定尺寸的矩形,割刀相对玻璃板的运动速度应垂直于玻璃板侧边,割刀实际参与了两个分运动,即沿玻璃板侧边方向的运动和垂直于玻璃板侧边方向的运动.两个分运动都是匀速直线运动,则合运动为匀速直线运动,故A 正确;对于垂直于玻璃板侧边方向的运动,运动时间t =20.2s =10 s ,故B 正确;割刀运动的实际速度v =v 21+v 22=0.152+0.22 m/s =0.25 m/s ,故C 错误;10 s 内玻璃板沿轨道方向的位移x =v 1t =1.5 m ,故D 正确.二、合运动的性质与运动轨迹1.分析两个互成角度的直线运动的合运动的性质时,应先求出合运动的合初速度v 和合加速度a ,然后进行判断.(1)是否为匀变速的判断: 加速度或合力⎩⎨⎧变化:变加速运动不变:匀变速运动(2)曲、直判断:加速度或合力与速度方向⎩⎨⎧共线:直线运动不共线:曲线运动2.两个互成角度的直线运动的合运动轨迹的判断:轨迹在合初速度v 0与合加速度a 之间,且向加速度一侧弯曲.(多选)质量为2 kg 的质点在xOy 平面内做曲线运动,在x 方向的速度-时间图像和y 方向的位移-时间图像如图4所示,下列说法正确的是( )图4A.质点的初速度为5 m/sB.质点所受的合外力为3 N,做匀变速曲线运动C.2 s末质点速度大小为6 m/sD.2 s内质点的位移大小约为12 m答案ABD解析由题图x方向的速度-时间图像可知,在x方向的加速度为1.5 m/s2,x方向受力Fx=3 N,由题图y方向的位移-时间图像可知在y方向做匀速直线运动,速度大小为v y=4 m/s,y方向受力F y=0.因此质点的初速度为5 m/s,A 正确;受到的合外力恒为3 N,质点初速度方向与合外力方向不在同一条直线上,故做匀变速曲线运动,B正确;2 s末质点速度大小为v=62+42 m/s=213m/s,C错误;2 s内,x=v x0t+12at2=9 m,y=8 m,合位移l=x2+y2=145 m≈12m,D正确.针对训练2 质量为1 kg的物体在水平面内做曲线运动,已知该物体在两个互相垂直方向上的分运动的速度-时间图像分别如图5甲、乙所示,则下列说法正确的是( )图5A.2 s末物体速度大小为7 m/sB.物体所受的合外力大小为3 NC.物体的初速度大小为5 m/sD.物体初速度的方向与合外力方向垂直,做匀变速曲线运动答案 D解析根据题意可知,物体在两个互相垂直方向上运动,即x方向与y方向垂直,且物体在x方向做初速度为零的匀加速直线运动,在y方向做匀速直线运动,2 s 末,v x =3 m/s ,v y =4 m/s ,因而v =v 2x +v 2y =5m/s ,A 错误;a x =ΔvΔt=1.5 m/s 2,a y =0,根据牛顿第二定律F x =ma x =1×1.5 N=1.5 N ,F y =0,因而F =1.5 N ,B 错误;t =0时,v x =0,v y =4 m/s.因而初速度v 0=4 m/s ,C 错误;由于初速度v 0=4 m/s ,且沿y 方向,F =1.5 N ,且沿x 方向,故物体做匀变速曲线运动,D 正确.如图6所示,在光滑水平面上有两条互相平行的直线l 1、l 2,AB 是这两条平行直线的垂线,其中A 点在直线l 1上,B 、C 两点在直线l 2上.一个物体正沿直线l 1以恒定的速度匀速向右运动,如果物体要从A 点运动到C 点,图中1、2、3为可能的路径,则可以使物体通过A 点时( )图6A.获得由A 指向B 的任意瞬时速度,物体的路径是2B.获得由A 指向B 的确定瞬时速度,物体的路径是2C.持续受到平行AB 的任意大小的恒力,物体的路径可能是1D.持续受到平行AB 的确定大小的恒力,物体的路径可能是3 答案 B解析 获得由A 指向B 的确定瞬时速度,即两个匀速直线运动的合运动轨迹可能是2,A 错误,B 正确.持续受到平行AB 的确定大小的恒力,即合加速度与合初速度垂直,轨迹偏向加速度一侧,轨迹可能是1,C 、D 错误.1.(运动的合成和分解)(多选)关于运动的合成和分解,下列说法正确的是( )A.合运动的时间就是分运动的时间之和B.已知两分运动的速度大小,就可以确定合速度的大小C.已知两分运动的速度大小和方向,可以用平行四边形定则确定合速度的大小和方向D.若两匀速直线运动的速度大小分别为v 1、v 2,则合速度v 大小的范围为|v 1-v 2|≤v ≤v 1+v 2答案 CD解析 合运动与分运动具有等时性,故A 错误;已知两分运动的速度大小和方向,可以用平行四边形定则确定合速度的大小和方向,故B 错误,C 正确;两匀速直线运动的速度大小分别为v 1、v 2,则合速度v 大小的范围为|v 1-v 2|≤v ≤v 1+v 2,故D 正确.2.(运动的合成和分解)在第十一届珠海国际航展上,歼-20战机是此次航展最大的“明星”.如图7,歼-20战机在降落过程中水平方向的初速度为60 m/s ,竖直方向的初速度为6 m/s ,已知歼-20战机在水平方向做加速度大小为2 m/s 2的匀减速直线运动,在竖直方向做加速度大小为0.2 m/s 2的匀减速直线运动,则歼-20战机在降落过程中,下列说法正确的是( )图7A.歼-20战机的运动轨迹为曲线B.经20 s ,歼-20战机水平方向的分速度与竖直方向的分速度大小相等C.在前20 s 内,歼-20战机在水平方向的分位移与竖直方向的分位移大小相等D.歼-20战机在前20 s 内,水平方向的平均速度为40 m/s 答案 D解析 歼-20战机的合初速度方向与水平方向夹角的正切值tan θ=660=110,歼-20战机的合加速度方向与水平方向夹角的正切值tan β=0.22=110,可以知道歼-20战机的合初速度的方向与合加速度的方向在同一直线上,歼-20战机做匀变速直线运动,故A 错误;经20 s ,歼-20战机水平方向的分速度v 1=60 m/s -2×20 m/s=20 m/s ,竖直方向上的分速度为v 2=6 m/s -0.2×20 m/s=2 m/s ,故B 错误;在前20 s 内,歼-20战机水平方向的平均速度v 水平=60+202m/s =40 m/s ,D 正确.歼-20战机在水平方向的分位移s 1=v水平×20 s=800 m ,在竖直方向的分位移h =6 m/s +2 m/s 2×20 s=80 m ,故C 错误. 3.(合运动轨迹的判断)如图8所示,在一次救灾工作中,一架离水面高为H m 、沿水平直线飞行的直升机A ,用悬索(重力可忽略不计)救护困在湖水中的伤员B ,在直升机A 和伤员B 以相同的水平速率匀速运动的同时,悬索将伤员吊起.设经t s 时间后,A 、B 之间的距离为l m ,且l =H -t 2,则在这段时间内伤员B 的受力情况和运动轨迹是下列哪个图( )图8答案 A解析 根据l =H -t 2,位移h =H -l =t 2,可知伤员B 在竖直方向上是匀加速上升的,悬索中拉力大于重力,即表示拉力F 的线段要比表示重力G 的线段长,伤员B 在水平方向匀速运动,所以F 、G 都在竖直方向上;向上加速,运动轨迹向上偏转,只有A 符合,所以在这段时间内伤员B 的受力情况和运动轨迹是A.4.(合运动性质的判断)(多选)如图9甲所示,在杂技表演中,猴子沿竖直杆向上运动,其v -t 图像如图乙所示,同时人顶着杆沿水平地面运动的x -t 图像如图丙所示.若以地面为参考系,下列说法正确的是( )。

图形的运动:五年级下册数学教案

图形的运动:五年级下册数学教案

图形的运动:五年级下册数学教案
课程目标
本节课的目标是让学生理解图形的运动,并能够使用合适的术语描述图形的位置和方向。

通过实际操作和问题解决,培养学生的观察力和逻辑思维能力。

教学准备
- 幻灯片或黑板
- 图形模型(可以使用卡片或平面图形)
- 学生练册
- 班级分组名单
教学步骤
引入
1. 展示一个简单的图形,如正方形,问学生这个图形有哪些特征。

2. 引导学生讨论图形的位置和方向,如上下左右。

3. 引入新的概念:图形的运动,即图形在平面上的移动。

探究
1. 将学生分成小组,给每个小组分发一些图形模型。

2. 让学生观察模型并描述它们的位置和方向。

3. 引导学生尝试将图形按照不同的方式移动,如上下左右、旋转等。

4. 让学生通过模型的实际操作来理解图形的运动。

讨论
1. 引导学生回顾他们的实际操作,并提出问题,如:“移动后的图形和原来的图形有什么不同?”、“这个图形在向上移动后,它的位置和方向变化了吗?”等。

2. 鼓励学生用合适的术语描述图形的位置和方向变化。

深化
1. 引导学生思考更复杂的图形运动,如图形的镜像、翻转等。

2. 给学生提供练册,并指导他们解决相关问题。

总结
1. 总结本节课的内容,强调图形的运动是指图形在平面上的移动。

2. 鼓励学生在日常生活中观察和描述图形的运动。

课后作业
1. 完成练册中的相关题目。

2. 观察身边的图形运动,并用合适的术语描述它们的位置和方向。

数学教案:五年级下册《图形的运动学》

数学教案:五年级下册《图形的运动学》

数学教案:五年级下册《图形的运动学》教学目标1. 了解图形的运动学概念。

2. 能够描述图形在平面上的运动。

3. 掌握图形的平移、旋转和翻转操作。

4. 能够应用图形的运动学知识解决实际问题。

教学准备1. 教材:五年级下册数学教材。

2. 教具:图形卡片、白板、彩色笔、尺子。

3. 辅助工具:投影仪、电脑、幻灯片。

教学步骤1. 导入:通过展示一些具有不同运动方式的图形,引起学生对图形运动的兴趣,并激发他们的思考。

2. 引入概念:通过幻灯片或白板展示,向学生介绍图形的运动学概念,包括平移、旋转和翻转。

3. 实践操作:将图形卡片分发给学生,让他们进行平移、旋转和翻转的操作,并观察图形的变化。

4. 讨论与总结:引导学生讨论他们观察到的规律和特点,总结出图形运动的基本规则。

5. 练与应用:提供一些练题和实际问题,让学生运用所学的图形运动学知识进行解答。

6. 拓展延伸:对于研究较快的学生,可以引导他们进行更复杂的图形运动操作,如多次旋转或组合运动。

7. 归纳总结:帮助学生总结所学的图形运动学知识,强化他们的理解和记忆。

8. 练与检测:布置一些练题和小测验,检验学生对图形运动学的掌握程度。

9. 总结反思:与学生一起回顾本节课的内容,澄清疑惑,强化重点,留下必要的复提示。

教学评估1. 教师观察学生在实践操作中的表现,评估他们对图形运动的理解和操作能力。

2. 批改练题和小测验,评估学生对图形运动学知识的掌握程度。

3. 学生之间的互动讨论,评估他们对图形运动规律的理解和表达能力。

教学拓展1. 引导学生探索三维图形的运动学,了解在空间中的平移、旋转和翻转操作。

2. 探索更复杂的图形变换,如镜像对称、相似变换等。

3. 引导学生应用图形运动学知识解决实际问题,如地图上的路径规划、机器人的运动轨迹等。

教学反思在教学过程中,我发现学生对图形运动学的概念理解较快,但在实践操作中还存在一些困难。

下次可以增加更多的实践环节,让学生通过自己的操作经验巩固所学知识。

最新2019-2020年度苏科版七年级数学上册《图形的运动》综合练习及答案解析-精编试题

最新2019-2020年度苏科版七年级数学上册《图形的运动》综合练习及答案解析-精编试题

5.2 图形的运动一.选择题1.小明想用图形1通过作图变换得到图形2,下列这些变化中不可行的是()A.轴对称变换B.平移变换C.旋转变换 D.中心对称变换2.如图,A,B,C,D 四点在同一条直线上,AB=CD,AE=BF,CE=DF.则下列结论正确的是()A.△ACE和△BDF成轴对称B.△ACE经过旋转可以和△BDF重合C.△ACE和△BDF成中心对称D.△ACE经过平移可以和△BDF重合3.如图,如果将其中的甲图变成乙图,那么经过的变换正确的是()A.旋转、平移B.对称、平移C.旋转、对称D.旋转、旋转4.如图所示的图形绕着虚线旋转一周形成的几何体是由下边的()A.B.C.D.5.一个平面截圆柱,则截面形状不可能是()A.圆B.三角形C.长方形D.梯形6.下列说法不正确的是()A.用一个平面去截一个正方体可能截得五边形B.五棱柱有10个顶点C.沿直角三角形某条边所在的直线旋转一周,所得的几何体为圆柱D.将折起的扇子打开,属于“线动成面”的现象7.下列说法正确的是()A.平移不改变图形的形状和大小,而旋转则改变图形的形状和大小B.在成中心对称的两个图形中,连结对称点的线段都被对称中心平分C.在平面直角坐标系中,一点向右平移2个单位,纵坐标加2D.在平移和旋转图形中,对应角相等,对应线段相等且平行8.以下变换可以改变图形的大小的是()A.位似变换B.旋转变换C.轴对称变换D.平移变换9.如图,矩形ABCD,AB=a,BC=b,a>b;以AB边为轴将矩形绕其旋转一周形成圆柱体甲,再以BC边为轴将矩形绕其旋转一周形成圆柱体乙;记两个圆柱体的体积分别为V 、V乙,侧面积分别为S甲、S乙,则下列式子正确的是()甲A.V甲>V乙S甲=S乙B.V甲<V乙S甲=S乙C.V甲=V乙S甲=S乙D.V甲>V乙S甲<S乙10.视力表的一部分如图,其中开口向上的两个“E”之间的变换是()A.平移B.旋转C.对称 D.位似11.观察图,在下列四种图形变换中,该图案不包含的变换是()A.旋转 B.轴对称C.位似 D.平移12.观察下图,请把如图图形绕着给定的直线旋转一周后可能形成的几何体选出来()A.B.C. D.二.填空题13.将一个长4cm宽2cm的矩形绕它的一边所在的直线旋转一周,所得几何体的体积为cm3.14.如图,一个表面涂满颜色的正方体,现将每条棱三等分,再把它切开变成若干个小正方体,两面都涂色的有个;只有一面涂色的小正方体有个.15.用一个平面去截长方体,截面是平行四边形(填“可能”或“不可能”).16.一个图形无论经过平移变换还是旋转变换,下列结论一定正确的是(把所有你认为正确的序号都写上)①对应线段平行;②对应线段相等;③对应角相等;④图形的形状和大小都不变.17.用一个平面去截一个几何体,截面形状为三角形,则这个几何体可能为:①正方体;②圆柱;③圆锥;④正三棱柱(写出所有正确结果的序号).18.如图,Rt△AOB和Rt△COD中,∠AOB=∠COD=90°,∠B=50°,∠C=60°,点D在边OA上,将图中的△AOB绕点O按每秒20°的速度沿逆时针方向旋转一周,在旋转的过程中,在第t秒时,边CD恰好与边AB平行,则t的值为.19.用一根长28分米的木条截开后刚好能搭一个长方体的架子,这个长方体的长、宽、高的长度都是整数分米,且都不相等,那么这个长方体的体积等于立方分米.20.如图所示,1条直线将平面分成2个部分,2条直线最多可将平面分成4个部分,3条直线最多可将平面分成7个部分,4条直线最多可将平面分成11个部分.现有n条直线最多可将平面分成56个部分,则n的值为.三.解答题21.如图,试说明△A′B′C′是由△ABC通过怎样的图形变换或变换组合(平移、旋转、轴对称)得到的?22.小明学习了“面动成体”之后,他用一个边长为3cm、4cm和5cm的直角三角形,绕其中一条边旋转一周,得到了一个几何体.(1)请画出可能得到的几何体简图.(2)分别计算出这些几何体的体积.(锥体体积=底面积×高)23.用平面截几何体可得到平面图形,在表示几何体的字母后填上它可截出的平面图形的号码.如A(1、5、6);则B();C();D();E().24.如图,在由边长为1的小正方形组成的方格纸中,有两个全等的三角形,即△A1B1C1和△A2B2C2.请你指出在方格纸内如何运用平移、旋转变换,将△A1B1C1重合到△A2B2C2上.25.将第一行的图形绕轴旋转一周,便得到第二行的几何体,用线连一连.26.如图1至图3是将正方体截去一部分后得到的多面体.(1)根据要求填写表格:面数(f)顶点数(v)棱数(e)图1图2图3(2)猜想f、v、e三个数量间有何关系;(3)根据猜想计算,若一个多面体有顶点数2013个,棱数4023条,试求出它的面数.27.如图,有三个菱形位于同一个平面直角坐标系中,解答下列问题:(1)这三个菱形的对称中心坐标分别为:①、②、③,而面积都等于.(2)菱形②可以看做是由菱形①如何旋转得到的?答:.(3)菱形③与菱形②可看做是关于直线l对称的,则直线l所对应的函数关系式是.(4)从菱形①变换到菱形③,可以满足什么几何变换?请你设计两种不同的变换方法.28.探究:有一弦长6cm,宽4cm的矩形纸板,现要求以其一组对边中点所在直线为轴,旋转180°,得到一个圆柱,现可按照两种方案进行操作:方案一:以较长的一组对边中点所在直线为轴旋转,如图①;方案二:以较短的一组对边中点所在直线为轴旋转,如图②.(1)请通过计算说明哪种方法构造的圆柱体积大;(2)如果该矩形的长宽分别是5cm和3cm呢?请通过计算说明哪种方法构造的圆柱体积大;(3)通过以上探究,你发现对于同一个矩形(不包括正方形),以其一组对边中点所在直线为轴旋转得到一个圆柱,怎样操作所得到的圆柱体积大(不必说明原因)?参考答案与解析一.选择题1.小明想用图形1通过作图变换得到图形2,下列这些变化中不可行的是()A.轴对称变换B.平移变换C.旋转变换 D.中心对称变换【分析】根据轴对称变换、平移变换、旋转变换和中心对称变换的概念进行判断即可.【解答】解:连接AB,作线段AB的垂直平分线,垂足为O,∴图形1以直线l为对称轴通过轴对称变换得到图形2,A可行;图形1以O为旋转中心,旋转180°得到图形2,C、D可行;故选:B.【点评】本题考查的是几何变换的类型,掌握轴对称变换、平移变换、旋转变换和中心对称变换的概念是解题的关键.2.如图,A,B,C,D 四点在同一条直线上,AB=CD,AE=BF,CE=DF.则下列结论正确的是()A.△ACE和△BDF成轴对称B.△ACE经过旋转可以和△BDF重合C.△ACE和△BDF成中心对称D.△ACE经过平移可以和△BDF重合【分析】先证明△AEC≌△BFD,然后根据平移变换、旋转变换、位似变换和对称轴变换的性质进行判断.【解答】解:∵AB=CD,∴AC=BD,∵AE=BF,CE=DF,∴△AEC≌△BFD,∴△ACE向右平移AB的长度单位可以和△BDF重合.故选D.【点评】本题考查了几何变换的类型:熟练掌握平移变换、旋转变换、位似变换和对称轴变换的性质.3.如图,如果将其中的甲图变成乙图,那么经过的变换正确的是()A.旋转、平移B.对称、平移C.旋转、对称D.旋转、旋转【分析】观察本题中图案的特点,根据对称、旋转的性质即可得出答案.【解答】解:观察图形可得:将甲图先轴对称变化,再逆时针旋转即可变成乙图;故选C.【点评】本题考查了几何变换的类型,用到的知识点是轴对称、旋转变化的性质:如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变,两组对应点连线的交点是旋转中心.4.如图所示的图形绕着虚线旋转一周形成的几何体是由下边的()A.B.C.D.【分析】根据题意,一个长方形沿虚线旋转一周,所围成的几何体是圆柱.【解答】解:结合图形特征可知,所围成的几何体是圆柱.故选A.【点评】本题考查的是图形的旋转,考法较新颖,解题关键是正确理解常见图形的旋转情况.5.一个平面截圆柱,则截面形状不可能是()A.圆B.三角形C.长方形D.梯形【分析】根据圆柱的特点,考虑截面从不同角度和方向截取的情况.【解答】解:用平面截圆柱,横切就是圆,竖切就是长方形,如果底面圆的直径等于高时,是正方形,从底面斜着切向侧面是梯形,不论怎么切不可能是三角形.故选B.【点评】考查了截一个几何体,截面的形状既与被截的几何体有关,还与截面的角度和方向有关.对于这类题,最好是动手动脑相结合,亲自动手做一做,从中学会分析和归纳的思想方法.6.下列说法不正确的是()A.用一个平面去截一个正方体可能截得五边形B.五棱柱有10个顶点C.沿直角三角形某条边所在的直线旋转一周,所得的几何体为圆柱D.将折起的扇子打开,属于“线动成面”的现象【分析】根据几何体的特征以及面动成体、线动成面的概念进行判断即可.【解答】解:(A)用一个平面去截一个正方体,截面可能为三角形、四边形、五边形或六边形,故(A)正确;(B)五棱柱的上下底面上各有5个顶点,所以共有10个顶点,故(B)正确;(C)沿直角三角形某条边所在的直线旋转一周,所得的几何体为圆锥或底面重合的两个圆锥,故(C)错误;(D)将折起的扇子打开,属于“线动成面”的现象,故(D)正确.故选(C)【点评】本题主要考查了截一个几何体以及点、线、面、体的定义.截面的形状随截法的不同而改变,一般为多边形或圆,也可能是不规则图形.从运动的观点来看,点动成线,线动成面,面动成体.7.下列说法正确的是()A.平移不改变图形的形状和大小,而旋转则改变图形的形状和大小B.在成中心对称的两个图形中,连结对称点的线段都被对称中心平分C.在平面直角坐标系中,一点向右平移2个单位,纵坐标加2D.在平移和旋转图形中,对应角相等,对应线段相等且平行【分析】分别利用图形的平移以及中心对称图形的性质和旋转的性质分别判断得出即可.【解答】解:A、平移不改变图形的形状和大小,旋转也不改变图形的形状和大小,故此选项错误;B、在成中心对称的两个图形中,连结对称点的线段都被对称中心平分,此选项正确;C、在平面直角坐标系中,一点向右平移2个单位,横坐标加2,故此选项错误;D、在平移中,对应角相等,对应线段相等且平行,旋转则对应线段有可能不平行,故此选项错误.故选:B.【点评】此题主要考查了几何变换的类型,利用平移的性质分析得出是解题关键.8.以下变换可以改变图形的大小的是()A.位似变换 B.旋转变换C.轴对称变换D.平移变换【分析】根据题意,结合选项一一分析,排除错误答案.【解答】解:A、形状不变,但大小可以改变的变换是相似变换,故正确;B、旋转变换是原图形中的点都绕着一个固定的中心点转动一个恒等的角度,故错误;C、轴对称变换是由反射产生一个图形的映象的过程,故错误;D、平移变换是原图形中的点都沿着平行的途径运动一个恒等的距离,故错误;故选A.【点评】本题考查的是相似变换定义,即形状相同,但大小不一定相同的变换是相似变换.9.如图,矩形ABCD,AB=a,BC=b,a>b;以AB边为轴将矩形绕其旋转一周形成圆柱体甲,再以BC边为轴将矩形绕其旋转一周形成圆柱体乙;记两个圆柱体的体积分别为V 、V乙,侧面积分别为S甲、S乙,则下列式子正确的是()甲A.V甲>V乙S甲=S乙B.V甲<V乙S甲=S乙C.V甲=V乙S甲=S乙D.V甲>V乙S甲<S乙【分析】根据圆柱体的体积=底面积×高求解,再利用圆柱体侧面积求法得出答案.【解答】解:V甲=π•b2×a=πab2,V乙=π•a2×b=πba2,∵πab2<πba2,∴V甲<V乙,∵S甲=2πb•a=2πab,S乙=2πa•b=2πab,∴S甲=S乙,故选:B.【点评】此题主要考查了面动成体,关键是掌握圆柱体的体积和侧面积计算公式.10.视力表的一部分如图,其中开口向上的两个“E”之间的变换是()A.平移 B.旋转C.对称 D.位似【分析】开口向上的两个“E”形状相似,但大小不同,因此它们之间的变换属于位似变换.如果没有注意它们的大小,可能会误选A.【解答】解:根据位似变换的特点可知它们之间的变换属于位似变换.故选D.【点评】本题考查了位似的相关知识,位似是相似的特殊形式,平移、旋转、对称的图形都是全等形.11.观察图,在下列四种图形变换中,该图案不包含的变换是()A.旋转 B.轴对称C.位似 D.平移【分析】根据平移是沿直线移动一定距离得到新图形,旋转是绕某个点旋转一定角度得到新图形,轴对称是一个图形沿一条直线对着直线两旁的部分能完全重合,位似是相似图形的每组对应点所在的直线都经过同一个点,可得答案.【解答】解:A、大小相同的图形是旋转得到的,故A正确;B、一个图形沿一条直线对着直线两旁的部分能完全重合,故B正确;C、位置相同、形状相同的图案、大小不同的图形是位似得到的,故C正确;D、图形没有平移,故D错误;故选:D.【点评】本题考查了几何变换的类型,平移是沿直线移动一定距离得到新图形,旋转是绕某个点旋转一定角度得到新图形,轴对称是一个图形沿一条直线对着直线两旁的部分能完全重合,位似是相似图形的每组对应点所在的直线都经过同一个点,观察时要紧扣图形变换特点,认真判断.12.观察下图,请把如图图形绕着给定的直线旋转一周后可能形成的几何体选出来()A.B.C. D.【分析】根据面动成体的原理以及空间想象力即可解.【解答】解:由图形可以看出,左边的长方形的竖直的两个边与已知的直线平行,因而这两条边旋转形成两个柱形表面,因而旋转一周后可能形成的立体图形是一个管状的物体.故选D.【点评】考查学生立体图形的空间想象能力及分析问题,解决问题的能力.二.填空题13.将一个长4cm宽2cm的矩形绕它的一边所在的直线旋转一周,所得几何体的体积为16π或32πcm3.【分析】根据圆柱体的体积=底面积×高求解,注意底面半径和高互换得圆柱体的两种情况.【解答】解:分两种情况:①绕长所在的直线旋转一周得到圆柱体积为:π×22×4=16π(cm3);②绕宽所在的直线旋转一周得到圆柱体积为:π×42×2=32π(cm3).故它们的体积分别为16πcm3或32πcm3.故答案为:16π或32π.【点评】本题考查圆柱体的体积的求法,注意分情况讨论,难度适中.14.如图,一个表面涂满颜色的正方体,现将每条棱三等分,再把它切开变成若干个小正方体,两面都涂色的有12 个;只有一面涂色的小正方体有 6 个.【分析】根据图示可发现除顶点外位于棱上的小方块两面,涂色位于表面中心的一面涂色.【解答】解:根据以上分析:有一条边在棱上的正方体有12个两面涂色;每个面的正中间的一个只有一面涂色的有6个.故答案为:12,6.【点评】主要考查了正方体的组合与分割.要熟悉正方体的性质,在分割时有必要可动手操作.15.用一个平面去截长方体,截面可能是平行四边形(填“可能”或“不可能”).【分析】让截面不垂直于长方体,又经过长方体的4个面,动手操作可得到答案.【解答】解:当截面不垂直于长方体,又经过长方体的4个面时,得到截面为四边形,对边平行且相等,为平行四边形.【点评】解决本题的关键是理解截面经过几个面,得到的截面形状就是几边形;经过面相同,从不同的位置截取得到的多边形的形状也不相同.16.一个图形无论经过平移变换还是旋转变换,下列结论一定正确的是②③④(把所有你认为正确的序号都写上)①对应线段平行;②对应线段相等;③对应角相等;④图形的形状和大小都不变.【分析】根据平移和旋转的性质及其区别,平移变换对应线段平行,但旋转后对应线段不平行,即可得出答案.【解答】解:∵平移后对应线段平行;对应线段相等;对应角相等;图形的形状和大小没有发生变化;旋转后对应线段不平行;对应线段相等;对应角相等;图形的形状和大小没有发生变化;∴结论一定正确的是②③④;故答案为:②③④.【点评】此题考查了图形变换的性质及其区别,关键是根据平移和旋转的性质及其区别解答.17.用一个平面去截一个几何体,截面形状为三角形,则这个几何体可能为:①正方体;②圆柱;③圆锥;④正三棱柱①③④(写出所有正确结果的序号).【分析】当截面的角度和方向不同时,圆柱体的截面无论什么方向截取圆柱都不会截得三角形.【解答】解:①正方体能截出三角形;②圆柱不能截出三角形;③圆锥沿着母线截几何体可以截出三角形;④正三棱柱能截出三角形.故截面可能是三角形的有3个.故答案为:①③④.【点评】本题考查几何体的截面,截面的形状既与被截的几何体有关,还与截面的角度和方向有关.18.如图,Rt△AOB和Rt△COD中,∠AOB=∠COD=90°,∠B=50°,∠C=60°,点D在边OA上,将图中的△AOB绕点O按每秒20°的速度沿逆时针方向旋转一周,在旋转的过程中,在第t秒时,边CD恰好与边AB平行,则t的值为 5.5秒或14.5秒.【分析】分两种情况:①旋转的角度小于180°;②旋转的角度大于180°;进行讨论即可求解.【解答】解:①50°+60°=110°,110°÷20°=5.5(秒);②110°+180°=290°,290°÷20°=14.5(秒).答:t的值为5.5秒或14.5秒.故答案为:5.5秒或14.5秒.【点评】考查了点、线、面、体,从运动的观点来看:点动成线,线动成面,面动成体.19.用一根长28分米的木条截开后刚好能搭一个长方体的架子,这个长方体的长、宽、高的长度都是整数分米,且都不相等,那么这个长方体的体积等于8 立方分米.【分析】根据长方体的棱长总和=(长+宽+高)×4,求出长、宽、高的和是6米,因为长、宽、高的长度均为整数米,且互不相等,所以推断长、宽、高分别为3米、2米、1米,再根据长方体的体积v=abh,列式解答.【解答】解:28÷4=7(分米),7=4+2+1,所以长、宽、高分别为4分米、2分米、1分米,体积:4×2×1=8(立方分米);即:这个长方体体积是8立方米.故答案为:8.【点评】本题考查了截一个几何体,解答此题关键是先求出长宽高的和,再由条件推断出长、宽、高,然后根据体积公式解答.20.(2016•衡阳)如图所示,1条直线将平面分成2个部分,2条直线最多可将平面分成4个部分,3条直线最多可将平面分成7个部分,4条直线最多可将平面分成11个部分.现有n条直线最多可将平面分成56个部分,则n的值为10 .【分析】n条直线最多可将平面分成S=1+1+2+3…+n=n(n+1)+1,依此可得等量关系:n条直线最多可将平面分成56个部分,列出方程求解即可.【解答】解:依题意有n(n+1)+1=56,解得n1=﹣11(不合题意舍去),n2=10.答:n的值为10.故答案为:10.【点评】考查了点、线、面、体,规律性问题及一元二次方程的应用;得到分成的最多平面数的规律是解决本题的难点.三.解答题21.如图,试说明△A′B′C′是由△ABC通过怎样的图形变换或变换组合(平移、旋转、轴对称)得到的?【分析】观察此图可知此图形状,大小没变,只是位置发生了变化.由旋转平移的性质可知此图是通过旋转、平移得到.【解答】解:通过旋转、平移得到.以B为中心,逆时针旋转90°,向下平移1个单位,再向右平移5个单位.【点评】本题考查几何变换的类型及几种几何变换的特点,解答此题的关键是掌握旋转、平移的性质并熟悉图形特征.22.小明学习了“面动成体”之后,他用一个边长为3cm、4cm和5cm的直角三角形,绕其中一条边旋转一周,得到了一个几何体.(1)请画出可能得到的几何体简图.(2)分别计算出这些几何体的体积.(锥体体积=底面积×高)【分析】(1)根据三角形旋转是圆锥,可得几何体;(2)根据圆锥的体积公式,可得答案.【解答】解:(1)以4cm为轴,得;以3cm为轴,得;以5cm为轴,得;(2)以4cm为轴体积为×π×32×4=12π,以3cm为轴的体积为×π×42×3=16π,以5cm为轴的体积为×π()2×5=9.6π.【点评】本题考查了点线面体,利用三角形旋转是圆锥是解题关键.23.用平面截几何体可得到平面图形,在表示几何体的字母后填上它可截出的平面图形的号码.如A(1、5、6);则B();C();D();E().【分析】分别分析其余四种图形的所有的截面情况,再写出答案.【解答】解:B三棱锥,截面有可能是三角形,正方形,梯形C正方体,截面有可能是三角形,四边形(矩形,正方形,梯形),五边形,六边形D球体,截面只可能是圆E圆柱体,截面有可能是椭圆,圆,矩形,因此应该写B(1、3、4);C(1、2、3、4);D(5);E(3、5、6).【点评】截面的形状既与被截的几何体有关,还与截面的角度和方向有关.对于这类题,最好是动手动脑相结合,亲自动手做一做,从中学会分析和归纳的思想方法.24.如图,在由边长为1的小正方形组成的方格纸中,有两个全等的三角形,即△A1B1C1和△A2B2C2.请你指出在方格纸内如何运用平移、旋转变换,将△A1B1C1重合到△A2B2C2上.【分析】根据△A1B1C1和△A2B2C2的位置,结合各几何变换的类型进行判断即可.【解答】解:将△A1B1C1向上平移4个单位,再向右平移3个单位,然后绕点C1顺时针旋转90°即可得出将△A1B1C1重合到△A2B2C2上.【点评】本题考查了几何变换的类型,属于基础题,解答本题的关键是掌握几种几何变换的特点.25.将第一行的图形绕轴旋转一周,便得到第二行的几何体,用线连一连.【分析】根据图形,结合想象,即可选出答案.【解答】解:如图所示,A旋转后得出图形c,B旋转后得出图形d,C旋转后得出图形a,D旋转后得出图形e,E旋转后得出图形b.【点评】本题考查了点、线、面、体等知识点的应用,主要考查学生的理解能力、空间想象能力和观察能力.26.如图1至图3是将正方体截去一部分后得到的多面体.(1)根据要求填写表格:面数(f)顶点数(v)棱数(e)图1 7 9 14图2 6 8 12图3 7 10 15(2)猜想f、v、e三个数量间有何关系;(3)根据猜想计算,若一个多面体有顶点数2013个,棱数4023条,试求出它的面数.【分析】(1)根据图形数出即可.(2)根据(1)中结果得出f+v﹣e=2.(3)代入f+v﹣e=2求出即可.【解答】解:(1)题1,面数f=7,顶点数v=9,棱数e=14,题2,面数f=6,顶点数v=8,棱数e=12,题3,面数f=7,顶点数v=10,棱数e=15,故答案为:7,9,14.6,8,12,7,10,15.(2)f+v﹣e=2.(3)∵v=2013,e=4023,f+v﹣e=2∴f+2013﹣4023=2,f=2012,即它的面数是2012.【点评】本题考查了截一个几何体,图形的变化类的应用,关键是能根据(1)中的结果得出规律.27.如图,有三个菱形位于同一个平面直角坐标系中,解答下列问题:(1)这三个菱形的对称中心坐标分别为:①(8,0)、②(0,8)、③(﹣8,0),而面积都等于12 .(2)菱形②可以看做是由菱形①如何旋转得到的?答:以坐标原点O为旋转中心,按逆时针方向旋转90°.(3)菱形③与菱形②可看做是关于直线l对称的,则直线l所对应的函数关系式是y=﹣x .(4)从菱形①变换到菱形③,可以满足什么几何变换?请你设计两种不同的变换方法.【分析】(1)根据对称中心的概念即可找出答案,(2)根据旋转的特点即可得出答案,(3)根据对称特点及坐标即可得出解析式,(4)根据几何变换的特点即可得出答案.【解答】解:(1)根据对称中心的概念可知①(8,0)②(0,8)③(﹣8,0),S=12,故答案为①(8,0)②(0,8)③(﹣8,0),S=12,(2)根据旋转的特点可知:以坐标原点O为旋转中心,按逆时针方向旋转90°,故答案为以坐标原点O为旋转中心,按逆时针方向旋转90°,(3)根据题意得解析式为y=﹣x,(4)平移变换:菱形①沿x轴反方向(或从右往左)平移16各单位得到菱形③,旋转变换:菱形①以原点为旋转中心顺时针(或逆时针)旋转180°得到菱形③.【点评】本题主要考查了对称中心的概念、旋转的特点、解析式的求法、几何变换特点,难度适中.28.探究:有一弦长6cm,宽4cm的矩形纸板,现要求以其一组对边中点所在直线为轴,旋转180°,得到一个圆柱,现可按照两种方案进行操作:方案一:以较长的一组对边中点所在直线为轴旋转,如图①;方案二:以较短的一组对边中点所在直线为轴旋转,如图②.(1)请通过计算说明哪种方法构造的圆柱体积大;。

5-2 图形的运动(教师版)2021-2022学年七年级数学上册讲义(苏科版)

5-2 图形的运动(教师版)2021-2022学年七年级数学上册讲义(苏科版)

第5章 走进图形世界 5.2 图形的运动课程标准课标解读1. 初步认识轴对称图形的基本特征2. 理解对称轴的含义;能画出轴对称图形的对称轴1. 初步感受生活中的平移现象;初步体会平移的特点2. 初步感知旋转这种生活中常见的现象知识点01 图形的运动1. 不改变图形的形状和大小的图形运动:平移、旋转、轴对称。

2. 只改变大小,不改变形状的图形运动:图形的放大和缩小。

【即学即练1】1.自行车的车轮辐条是一条线,当车轮飞速旋转时,辐条就飞速转动形成( ) A .点 B .线C .面D .体【答案】C 【分析】根据点动成线,线动成面,面动成体可得答案. 【详解】解:∵点动成线,线动成面,面动成体, ∵辐条(线段)飞速转动形成面(圆), 故选:C .知识点02 轴对称图形如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就叫轴对称图形,折痕所在的这条直线叫做对称轴。

【即学即练2】2.将下面四个图形绕着虚线旋转一周,能够得到如图所说的立体图形的是( )目标导航知识精讲A.B.C.D.【答案】A【分析】根据面动成体结合常见立体图形的形状解答即可.【详解】解:根据面动成体结合常见立体图形的形状得出只有A选项符合,故选A.知识点03 平移和旋转平移和旋转是两种基本的图形变换形式,变换后物体的形状和大小都不发生变化,只是位置发生了变化。

【微点拨】1. 平移:物体或图形在同一平面内沿直线运动,而本身没有发生方向上的变化,像这样的物体或图形所做的运动叫做平移。

平移的两个要素:一是平移的方向,二是平移的距离。

描述平移现象时,要描述成“某物体或图形向某方向平移了几个单位或多远” 。

2. 旋转:物体或图形绕着一个点或一个轴运动,像这样的物体或图形所做的运动叫做旋转。

旋转的三个要素:一是旋转点或轴,二是旋转方向(逆时针方向或顺时针方向),三是旋转角度。

描述旋转现象时,要描述成“某物体或图形沿某一点按某方向旋转了多少度” 。

江苏科学技术出版社初中数学七年级上册 5.2 图形的运动-优秀奖

江苏科学技术出版社初中数学七年级上册 5.2 图形的运动-优秀奖

课题:图形的运动授课教师:肖亮(宿迁市南师附中宿迁分校)教材:苏科版义务教育教科书·数学(七年级上册)【教学目标】1.通过具体实例,从图形运动变化的角度感悟“点动成线,线动成面,面动成体”的形象.2.通过观察、操作等活动,认识图形的平移、旋转、翻折,感悟到复杂图形是由简单图形组合而成,感悟到图形的运动可以转化成点的运动,感悟到让图形“动”起来,是研究图形性质的重要方法.3.经历“观察—思考—探究—实践”的过程,感受数学之美,感受生活与数学的密切联系,体会转化、分类等数学思想,培养学生观察、分析问题的能力.【教学重难点】重点:从图形运动变化的角度感悟“点动成线,线动成面,面动成体”的形象;通过观察、操作等活动,认识图形的平移、旋转、翻折运动.难点:“面的运动”实验操作及三角板拼图.【教学方法与教学手段】教法:实验操作、启发探究.学法:自主探究、合作交流、感悟提升.教学手段:多媒体教学.【教学过程】一、生活·数学1.生活中的运动现象(1)课前播放三组视频:地球的自转与公转、飞机在天空中翱翔、采棉机收割棉花;(2)你还能举出生活中类似的运动例子吗(3)把生活中物体的运动用数学的眼光看成图形的运动.(板书课题)[设计意图]史宁中教授:“数学教学的最终目标是要让学习者会用数学的眼光观察现实世界,会用数学的思维思考现实世界,会用数学的语言表达现实世界.”由生活中的运动抽象出图形的运动,让学生感受数学来源于生活,并学会用数学的眼光观察世界.2.点的运动(1)把笔尖看成点,这个点在纸上运动时形成了.(2)你还能举出生活中这样的例子吗(3)多媒体展示;(4)用语言概括从这些运动中观察到的数学现象.[设计意图]学生的学习应该是现实的、有意义的、富有挑战的.在学生认知发展水平和已有的知识经验基础之上,发现点的运动可以形成线,再让学生举出生活中的例子,并通过多媒体的动态展示,在此基础上感悟得出“点动成线”.3.线的运动(1)笔可以看成一条线,这条线可以如何运动运动形成了什么图形(2)你还能举出生活中这样的例子吗(3)多媒体展示;(4)用语言概括从这些运动中观察到的数学现象.[设计意图]使用多媒体展示,学生更加直观的感受知识的发生过程,激发学生探究欲望.通过举例、动画展示及自制学具展示加深对“线动成面”感悟,在此基础上概括得出“线动成面”.二、实验·探究活动1面的运动(1)利用长方形纸板、三角板、硬币进行实验操作,探究它们如何运动形成了怎样的图形,步骤:独立思考、小组交流、代表展示;(2)画板展示;(3)用语言概括从这些运动中观察到的数学现象;[设计意图]数学实验是培养学生数学素养的重要载体,本环节以数学实验为载体,通过开放性问题,给学生足够的独立思考时间和交流的机会,类比线的运动研究面的运动,放手让学生经历操作、探究,注重知识的发生、形成过程,让学生成为参与者、研究者,既获得了数学知识、积累了数学活动经验,同时又发展学生勇于探究的精神和开拓创新的意识.运用画板演示给学生观察,让学生的思维活动从直观感知上升到抽象归纳.由于数学概念的高度抽象性,通过实验操作,让学生感受探索、发现的乐趣,再逐步对观察、操作的结论进行抽象总结,做到将操作与思维的完美结合.(4)通过几何画板动画展示进行回顾;(5)构成图形的最基本元素是什么[设计意图]及时总结所学,得出“点是构成图形的最基本元素”.三、操作·体验活动2拼一拼(1)将两块相同的直角三角尺相等的边拼在一起,可以拼成哪些不同的平面图形你能说出这些图形的名称吗[设计意图]本环节以数学活动为载体,组织学生“自主、合作、探究”,强化对问题的体验,使学生体会复杂的图形是由简单图形运动组合而成,渗透数学思想方法(分类讨论思想),培养学生观察、分析问题的能力;同桌两人,资源共享,也培养学生的合作意识.(2)试一试:对于上题中拼出的每一个图形,如何操作其中一块三角板,使它运动后能与另一块三角板完全重合[设计意图]通过操作活动,初步探索图形之间的变化关系, 感悟让图形“动”起来,是研究图形性质的重要方法, 认识图形的“平移、旋转、翻折”运动;通过操作活动,有效地帮助学生识别复杂图形中能够完成重合的三角形,为他们学习全等三角形知识奠定基础;引导学生用语言描述怎样运动,对学生概念的形成有重要作用,训练学生数学语言表达能力,同时加深对概念的理解.活动3画一画(1)在空白方格中画出相应的图形,使直线一旁的图形沿直线翻折后能与直线另一旁的图形完全重合.(2)图(1)是由“”向右平移而成的. 把图(1)沿虚线剪开,虚线以下的部分向右平移4格,得到怎样的图形在图(2)中把它画出来.[设计意图]通过“画一画1”体会“图形的翻折可以转化成点的翻折”,渗透图形翻折(对称)的思想.通过“画一画2”体会“图形的平移可以转化成点的平移”,渗透图形平移的思想. 四、数学·生活活动4剪一剪 1.如何用剪刀把“”中小正方形内部剪空且不会把外面部分剪断2.收集三种运动方式在生活中的应用实例,和同学进行交流.[设计意图]通过剪纸活动,欣赏传统文化的魅力,感受图形“翻折”运动在生活中的应用,发展学生思维并积累数学活动经验. 剪纸过程中,所有同学都能想到至少一种方法,体现“人人都能获得良好的数学教育”;部分同学能想到剪2刀甚至1刀,体现“不同的人在数学上得到不同的发展”.五、总结反思通过本节课的学习,你有哪些收获[设计意图]小结的目的是为了使学生对所学的知识及时巩固,使其条理化、清晰化,实现了学生的自我反馈,从而构建起自己的知识经验,形成自己的见解.六、作业布置必做:课本128页习题 第1、2、3题 .选做:试选用简单的几何图形,在方格纸上,运用平移、翻折、旋转设计图案,并简述设计思路.[设计意图]实践是知识通向能力的桥梁.通过设计方案,认识并运用图形的“平移、翻折、旋转”运动,体会图形的运动实际上就是点的运动,画图时只要找出关键点运动后的位置即可,培养学生分析问题、解决问题的能力,增强学生的数学应用意识.七、板书设计八、教后反思图(1) 图(2)设计说明中国学生发展核心素养以培养“全面发展的人”为核心.数学核心素养包含数学抽象、逻辑推理、数学建模、数学运算、直观想象、数据分析等六个方面.《义务教育数学课程标准(2011年版)》指出:“对于平移、翻折、旋转的要求是‘了解’或‘认识’.”;“对于它们的基本性质要求通过‘探索’得到,即通过图形的运动变化去发现这些性质,而不是单纯地把这些性质作为现成的结论呈现给学生.”.基于这些精神、思想的指导,本节课设计如下:首先借助学生的生活经验,让学生举出生活中运动的例子,让学生感受数学与生活的紧密联系.史宁中教授:“数学教学的最终目标是要让学习者会用数学的眼光观察现实世界,会用数学的思维思考现实世界,会用数学的语言表达现实世界. ”由生活中的运动抽象出图形的运动,让学生学会用数学的眼光观察世界,进而得出“点动成线、线动成面”.学生核心素养的形成不是依赖单纯的课堂教学,而是依赖学生参与其中的教学活动.作为初中图形运动的起始课,本节课以启迪学生思维、发展学生数学能力的数学实验活动为载体,通过设置长方形面、直角三角形面、圆面通过怎样运动形成怎样图形等开放性问题,给学生足够的独立思考时间和交流的机会,让学生经历观察、思考、操作、探究等过程,对问题进行思考并总结得出“面动成体”;通过多媒体的动态展示,使学生更加直观的感受知识的发生过程,再逐步对观察、操作的结论进行抽象总结,让学生的思维活动从直观感知上升到抽象归纳,做到将操作与思维的完美结合.注重知识的发生、形成过程,设计了“拼一拼、画一画、剪一剪”等活动,使学生认识图形的平移、旋转、翻折运动,给学生充分的操作、思考的时间组织学生“自主、合作、探究”,强化对问题的体验,培养学生观察、分析问题的能力,使学生体会到“图形运动的实质就是点的运动;复杂的图形是由简单图形运动组合而成”,感悟到让图形“动”起来,是研究图形性质的重要方法,渗透数学思想方法(转化、分类思想),并为他们学习全等三角形知识奠定基础.寻找生活中三种运动方式应用的实例,让学生带着深化、拓展本节课知识的问题走出课堂,是对本节课认识上的发展与升华.“方案设计”培养学生分析问题、解决问题的能力,增强学生的数学应用意识.。

专题5.2图形的运动-2020-2021七上数学尖子生同步培优题典(解析版)

专题5.2图形的运动-2020-2021七上数学尖子生同步培优题典(解析版)

2020-2021学年七年级数学上册尖子生同步培优题典专题5.2图形的运动姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共20题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2019秋•道外区期末)下面图形中,以直线为轴旋转一周,可以得到圆柱体的是()A.B.C.D.【分析】根据面动成体进行解答即可.【解析】A、以直线为轴旋转一周可以得到圆锥,故此选项不合题意;B、以直线为轴旋转一周可以得到两个圆锥,故此选项不合题意;C、以直线为轴旋转一周可以得到圆柱,故此选项符合题意;D、以直线为轴旋转一周可以得到球,故此选项不合题意;故选:C.【点评】此题主要考查了点、线、面、体,关键是掌握点动成线,线动成面,面动成体,人是常见几何体.2.(2019秋•越秀区期末)将一个直角三角形绕着它的一条直角边所在直线旋转一周,得到的立体图形是()A.圆柱B.圆锥C.圆台D.球【分析】根据“点动成线,线动成面,面动成体”,将一个直角三角形绕着它的一条直角边所在直线旋转一周,得到的立体图形是圆锥体.【解析】根据“点动成线,线动成面,面动成体”,将一个直角三角形绕着它的一条直角边所在直线旋转一周,所得到的立体图形是圆锥体.故选:B .【点评】本题考查生活中的立体图形,理解“点动成线,线动成面,面动成体”,是正确判断的前提.3.(2019秋•宿豫区期末)如图:CD 是直角三角形ABC 的高,将直角三角形ABC 按以下方式旋转一周可以得到右侧几何体的是( )A .绕着AC 旋转B .绕着AB 旋转C .绕着CD 旋转 D .绕着BC 旋转【分析】根据直角三角形的性质,只有绕斜边旋转一周,才可以得出组合体的圆锥,进而解答即可.【解析】将直角三角形ABC 绕斜边AB 所在直线旋转一周得到的几何体是,故选:B . 【点评】本题考查了点、线、面、体,培养学生的空间想象能力及几何体的三视图.4.(2019秋•永吉县期末)如图,下面的平面图形绕轴旋转一周,可以得到圆柱体的是( )A .B .C .D . 【分析】根据面动成体,14圆绕半径旋转是半球体,直角梯形绕高边旋转是圆台,直角三角形绕直角边旋转是圆锥,矩形绕边旋转是圆柱,依此可得答案.【解析】矩形绕边旋转是圆柱.故选:D .【点评】本题考查了点、线、面、体,熟记各种图形旋转得出的立体图形是解题关键.5.(2019秋•白云区期末)将左面的平面图形绕轴旋转一周,得到的立体图形是( )A.B.C.D.【分析】根据面动成体,梯形绕上底边旋转是圆柱减圆锥,可得答案.【解析】梯形绕上底边旋转是圆柱减圆锥,故C正确;故选:C.【点评】本题考查了点、线、面、体,利用面动成体,直角三角形绕直角边旋转是圆锥,矩形绕边旋转是圆柱.6.(2019秋•洛宁县期末)圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,那么下列四个选项绕直线旋转一周可以得到如图立体图形的是()A.B.C.D.【分析】如图本题是一个平面图形围绕一条边为中心对称轴旋转一周根据面动成体的原理即可解.【解析】由长方形绕着它的一边所在直线旋转一周可得到圆柱体,如图立体图形是两个圆柱的组合体,则需要两个一边对齐的长方形,绕对齐边所在直线旋转一周即可得到,故选:A.【点评】本题考查面动成体,需注意可把较复杂的体分解来进行分析.7.(2020春•武邑县校级月考)已知柱体的体积V=S•h,其中S表示柱体的底面面积,h表示柱体的高.现将矩形ABCD绕轴l旋转一周,则形成的几何体的体积等于()A.πr2h B.2πr2h C.3πr2h D.4πr2h【分析】根据柱体的体积V=S•h,求出形成的几何体的底面积,即可得出体积.【解析】∵柱体的体积V=S•h,其中S表示柱体的底面面积,h表示柱体的高,现将矩形ABCD绕轴l 旋转一周,∴柱体的底面圆环面积为:π(2r)2﹣πr2=3πr2,∴形成的几何体的体积等于:3πr2h.故选:C.【点评】此题主要考查了圆柱体体积公式,根据已知得出柱体的底面面积是解决问题的关键.8.(2019秋•宁德期末)如图,将一个直角三角形绕它的一条直角边所在的直线旋转一周,得到的几何体是()A.长方体B.球C.圆柱D.圆锥【分析】根据直角三角形绕直角边旋转是圆锥,可得答案.【解析】将一个直角三角形绕它的一条直角边旋转一周得到的几何体是圆锥.故选:D.【点评】本题考查了点线面体,熟记各种平面图形旋转得到的立体图形是解题的关键.9.(2019秋•中山市期末)如图,将长方形ABCD绕CD边旋转一周,得到的几何体是()A.棱柱B.圆锥C.圆柱D.棱锥【分析】根据面动成体可得长方形ABCD绕CD边旋转可得答案.【解析】将长方形ABCD绕CD边旋转一周,得到的几何体是圆柱,故选:C.【点评】此题主要考查了点线面体,是基础题,熟悉常见几何体的形成是解题的关键.10.(2019秋•海港区期末)如图,将直角三角形绕其斜边旋转一周,得到的几何体为()A.B.C.D.【分析】根据面动成体的原理:一个直角三角形绕它的最长边旋转一周,得到的是两个有公共底面且相连的圆锥.【解析】将直角三角形绕斜边所在直线旋转一周得到的几何体为:故选:D.【点评】本题主要考查了面动成体,解决本题的关键是掌握各种面动成体的体的特征.二.填空题(共10小题)11.(2020秋•盐田区期末)(多选)下列几何体中,截面可能为圆的是BCD.A.棱柱B.圆柱C.圆锥D.球【分析】用一个平面去截一个几何体,根据截面的形状即可得出结论.【解析】用一个平面去截一个几何体,截面可能为圆的是圆柱、圆锥、球.故答案为:BCD.【点评】此题主要考查了截一个几何体和认识立体图形.解题的关键是明确截面的形状既与被截的几何体有关,还与截面的角度和方向有关.对于这类题,最好是动手动脑相结合,亲自动手做一做,从中学会分析和归纳的思想方法.12.(2020秋•滕州市月考)夜晚的流星划过天空时留下一道明亮的光线,由此说明了点动成线的数学事实.【分析】根据点动成线进行回答.【解析】夜晚的流星划过天空时留下一道明亮的光线,由此说明了点动成线,故答案为:点动成线.【点评】此题主要考查了点、线、面、体,关键是掌握点动成线,线动成面,面动成体.13.(2018秋•宁德期末)如图是一个三棱柱,用平面从中截去一个三棱柱后,剩下的几何体是三棱柱或四棱柱(写出所有可能的结果).【分析】此题是截去一个三棱柱,切法很关键,我们可以选择最简单、最直观的做法,从三棱柱正中切下一刀,那么切下一个三棱柱,还剩一个三棱柱.从三棱柱竖直方向切下一刀,那么切下一个三棱柱,还剩一个四棱柱.依此即可求解【解析】由分析可知,一个三棱柱,用平面从中截去一个三棱柱后,剩下的几何体是三棱柱或四棱柱.故答案为:三棱柱或四棱柱.【点评】本题考查三棱柱的截面,切法很关键,可选择较简单的切法.14.(2019秋•兰州期中)用一个平面去截一个几何体,截面形状为三角形,则这个几何体可能为:①正方体;②三棱锥;③圆柱;④圆锥①②④(写出所有正确结果的序号).【分析】当截面的角度和方向不同时,圆柱体的截面无论什么方向截取圆柱都不会截得三角形.【解析】①正方体能截出三角形;②三棱锥能截出三角形;③圆柱不能截出三角形;④圆锥沿着母线截几何体可以截出三角形.故截面可能是三角形的有3个.故答案为:①②④【点评】本题考查几何体的截面,截面的形状既与被截的几何体有关,还与截面的角度和方向有关.15.(2018秋•龙岗区期末)下列平面图形中,将编号为②(只需填写编号)的平面图形绕轴旋转一周,可得到图中所示的立体图形.【分析】面动成体.由题目中的图示可知:此圆台是直角梯形转成圆台的条件是:绕垂直于底的腰旋转.【解析】①是两个圆台,故①错误;②上面大下面小,侧面是曲面,故②正确;③上面小下面大,侧面是曲面,故③错误;④是一个圆台,故④错误;故答案为:②.【点评】本题考查直角梯形转成圆台的条件:应绕垂直于底的腰旋转.16.(2018秋•织金县期末)将一个半圆绕它的直径所在的直线旋转一周得到的几何体是球.【分析】根据根据球体的定义判断即可.【解析】将一个半圆绕它的直径所在的直线旋转一周得到的几何体是球,故答案为:球【点评】本题主要考查了点、线、面、体问题,关键是根据球体的定义解答.17.(2018秋•简阳市期末)用一个平面去截一个三棱柱,截面可能是三角形(答案不唯一).(填一个即可)【分析】根据平面截三棱柱的不同角度与位置判断相应截面形状即可.【解析】当截面与底面平行时,得到的截面形状是三角形;当截面与底面垂直且经过三棱柱的四个面时,得到的截面形状是长方形;当截面与底面斜交且经过三棱柱的四个面时,得到的截面形状是等腰梯形.故答案为:三角形(答案不唯一).【点评】此题主要考查了截一个几何体,解决本题的关键是理解截面经过三棱柱的几个面,得到的截面形状就是几边形;经过截面相同,经过位置不同,得到的形状也不相同.18.(2018秋•渝中区校级期中)如图,一个长方形ABCD边长AB=2cm,BC=3cm绕轴l旋转一周得到的立体图形的体积是12πcm3(结果保留π).【分析】一个矩形绕着它的一边旋转一周,根据面动成体的原理和圆柱的体积即可解.【解析】一个长方形绕轴l 旋转一周得到的立体图形是圆柱.圆柱的体积=π×22×3=12πcm 3,故答案为:12π【点评】本题主要考查点、线、面、体,圆柱的定义,根据圆柱体的形成可作出判断.19.(2018秋•锦江区校级期中)一个长方形长AB 为5cm ,宽CD 为3cm ,则绕其一边旋转一周,得到一个圆柱体,则该圆柱体的体积是 45π或75π cm 3(保留π).【分析】根据圆柱体的体积=底面积×高求解,注意底面半径和高互换得圆柱体的两种情况.【解析】分两种情况:①绕长所在的直线旋转一周得到圆柱体积为:π×32×5=45π(cm 3);②绕宽所在的直线旋转一周得到圆柱体积为:π×52×3=75π(cm 3).故它们的体积分别为45πcm 3或75πcm 3.故答案为:45π或75π.【点评】本题考查圆柱体的体积的求法,注意分情况讨论,难度适中.20.(2019秋•香坊区期末)一个直角三角形的两条直角边的长分别为3厘米和4厘米,绕它的直角边所在的直线旋转所形成几何体的体积是 12π或16π 立方厘米.(结果保留π)【分析】根据题意可得绕它的直角边所在的直线旋转所形成几何体是圆锥,再利用圆锥的体积公式进行计算即可.【解析】绕它的直角边所在的直线旋转所形成几何体是圆锥,①当绕它的直角边为3cm 所在的直线旋转所形成几何体的的体积是:13π×32×4=12π, ②当绕它的直角边为4cm 所在的直线旋转所形成几何体的的体积是:13π×42×3=16π,故答案为:12π或16π.【点评】此题主要考查了点、线、面、体,关键是掌握圆锥的体积公式.。

《图形的运动》教案:五年级下册数学

《图形的运动》教案:五年级下册数学

《图形的运动》教案:五年级下册数学图形的运动教案:五年级下册数学教学目标1. 了解图形的运动是指图形在平面上的位置的变化。

2. 能够描述和表达图形的运动方式。

3. 能够通过给出的图形运动方式,预测图形的位置变化。

教学内容1. 图形的运动概念- 图形的运动是指图形在平面上的位置的变化。

图形可以向左、向右、向上、向下等方向进行运动。

2. 图形的运动方式- 向左运动:图形的位置在平面上向左移动,横坐标减小。

- 向右运动:图形的位置在平面上向右移动,横坐标增大。

- 向上运动:图形的位置在平面上向上移动,纵坐标增大。

- 向下运动:图形的位置在平面上向下移动,纵坐标减小。

3. 图形的位置变化- 根据给出的图形运动方式,预测图形的位置变化。

- 给出不同的图形运动方式,让学生描述图形的位置变化。

教学步骤1. 导入:通过展示一些图形的运动方式,引起学生对图形运动的兴趣,并介绍本节课的学习目标。

2. 概念讲解:讲解图形的运动概念和各种运动方式的含义。

3. 示例演示:给出一些图形的运动方式,让学生观察图形的位置变化,并描述图形的运动方式和位置变化。

4. 练习活动:让学生根据给出的图形运动方式,预测图形的位置变化,并相互交流讨论。

5. 拓展应用:设计一些拓展问题,让学生运用所学知识解决实际问题。

6. 总结回顾:复习本节课学到的内容,并和学生一起总结图形的运动方式和位置变化规律。

7. 课后作业:布置一些相关的练习题,巩固学生对图形运动的理解和应用能力。

教学资源1. 教材:五年级下册数学教材。

2. 图形示例:包括箭头、正方形、三角形等各种形状的图形。

教学评估1. 在示例演示环节,观察学生对图形运动方式和位置变化的描述是否准确。

2. 在练习活动和拓展应用环节,观察学生对图形运动方式的理解和应用能力。

教学延伸1. 可以引入更复杂的图形运动方式,如旋转、翻转等,扩展学生的思维能力。

2. 可以组织学生进行实地观察,寻找身边存在的图形运动,并记录下来进行分析和讨论。

苏科版七年级数学上册教案:5.2图形的运动(2)

苏科版七年级数学上册教案:5.2图形的运动(2)

课时编号备课时间课题 5.2图形的运动(2)教学目标1、通过对图案设计的“实验”,进一步了解图形的旋转、平移、对称、拼合等变化,初步探索图形之间的变换关系,发展空间观念,培养创新能力;2、通过学生之间的合作、交流,培养学生的集体观念;3、经历“观察——思考——探究——实践——创作”过程,培养学生观察、分析问题以及认识美、欣赏美、创造美的能力教学重点引导学生运用旋转、平移、对称、拼合等方式,设计出富有创意的图案教学难点在动手实验中领会图形的平移、旋转、翻折等变化教学过程教学内容教师活动学生活动你们见过奥林匹克运动会的会旗图案吗?请说说它是由哪些简单的图形组合而成的?关于奥林匹克会旗的介绍,理解奥林匹克五环图案的含义。

投影“弦图”并介绍它是2002年北京国际数学家大会的会标。

我国古代数学家赵爽曾利用这个图案发现并证明了直角三角形三边之间的关系。

投影课本第84页“数学实验室”的第1个问题:请你构造一些图案,使每一个图案中含有2个三角形、2个圆和2条线段,并给图案加上恰当的解说词。

(为了更大限度地发挥学生的创造力,将课本中“平行”条件去掉)投影奥林匹克运动会的会旗图案,请学生说说这个图案的含义。

奥林匹克运动会的会旗为白色,中间印有五个相互套连的圆环,即我们所说的奥林匹克环。

五个环的含义象征五大洲的团结,全世界的运动员以公正、坦率的比赛和友好的精神,在奥运会上相见。

要求每个学生独立思考,设计出符合题意的图案,并加上恰当的解说词。

提醒学生过会儿将评选出若干幅富有创意的作品教师巡视,与有些小组一起争论回忆奥林匹克运动会的会旗图形状,思考并回答它是如何组合的踊跃回答问题鼓励学生动手拚出这个图案阅读该图案设计的要求。

活动四请你构造一些图案,使每一个图案中含有2个三角形、2个圆形和一组平行线,并给图案加上适当的解说词。

领会“数学实验室”2的要求。

用两种颜色不同的等腰直角三角形木板各四块,拼出各种图案。

[说明]此活动内容与1中的方法一样。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.观察下列图形,你能说出它们是 分别根据什么基本图形经过怎样的变化形 成的吗?
【活动】 动动手,比比谁有想象力.
请你构造一些图案,使每一个图案中含 有2个三角形、2个圆形和2条线段,并给图案 加上适当的解说词.
稻草人:我们
应该像稻草人一样 有着坚强的意志
电灯:我们要
像电2)
探索(二):2.平移能否形成新的图形
平移可以形成新的图形.
议一议: 你能说出下面的图案是怎样形成的吗?
(1)
(2)
(3)
1.如图,将两块相同的直角三角尺 的相等边拼在一起,能拼出几种不同的平 面图形?你能说出这些图形的名称吗?
效果图
等腰三角形 等腰三角形 平行四边形
平行四边形
探索(二):1.翻折能否形成新的图形
将图沿点划线翻折后形成怎样的图形?请 试着上台描画出来.
翻折后图形与原图形比较,位置相反. 翻折可以形成新的图形.
探索(二):2.平移能否形成新的图形
图(1)是由图“回”向右平移而成的,将准备 好的纸片沿虚线剪开, (1)怎样改变图形的位置可以得到图(2), 你还能得到什么样的图案? (2)如果虚线以下的部分向右平移4格,得到 怎样的图形?
球体
从以上的演示过程中我们可以感受到:
圆 面
长方形面 三角形面
旋转
球 体 圆柱体 圆锥体
旋转
旋转
面动成体
旋转可以形成新的图形.
做一做
1.下列图形绕轴线旋转1周, 能形成怎样的几何体?
做一做
2.在下列两行图形中,分别找出 相互对应的图形,并用线连接.
做一做
想一想
3.你还能举出生活中的“ 点 动成线,线动成面,面动成体”吗?
长方形
筝形
2.画出图案(1)沿虚线翻折后的图案
(1)
(2)
翻折
3.将下图绕着点A旋转180 请你画出所得的图形.
°,
· A
4.说一说下列图形的变化.
(A)
(B)
(C)
1.AB 翻折 2.BC 平移 3.CD 旋转
(D)
1.下列各图形中,不是由翻折 而形成的是( C )
2.下列四个图形中,形成方法 与另外三个不同的是( B )
投篮:经常锻
炼身体棒
看一看
小 鸟
看一看
两 根 棒 棒 糖
看一看
两 盏 电 灯
看一看
履带传送零件
看一看
一辆小车
经历了本节课的 学习,你有什么收获吗?
课后作业
用“平移、旋转、翻折”三种技 法中的一种或几种设计一幅图案.
初中数学 七年级(上册)
5.2
图形的运动
问题引入
笔尖可以看作一个点,这个点在纸上运 动时就形成 线 点动成线
把汽车的雨刷看成一条线,这条线在挡 风玻璃上运动时形成 面 线动成面
知识回顾
点动成线
线动成面
【探索新知】(试一试,看一看,动动手)
探索(一) 旋转能否形成新的图形
1.长方形纸板绕它的一条边旋转1周; 2.直角三角尺绕它的一条直角边旋转1周;
3.一枚硬币在桌面上竖直快速旋转. 它们分别形成怎样的几何体?
想一想
1.长方形纸板绕它的一条边旋转 一周,形成怎样的几何体?
长方形面
旋转
圆柱体
想一想
2.直角三角形绕它的一条直角边旋 转一周,形成怎样的几何体?
三角形面
旋转
圆锥体
想一想
3.一枚硬币在桌面上竖起快速旋转, 形成怎样的几何体?
圆面
旋转
相关文档
最新文档