江苏省海安高级中学2020学年高二数学12月月考试题(无答案)
江苏省海安高级中学2020届高三12月月考数学试题 含答案
江苏省海安高级中学2020届高三12月月考数学试题 Ⅰ参考公式:样本数据1x ,2x ,…,n x 的方差2211()ni i s x x n ==-∑,其中11ni i x x n ==∑.锥体的体积13V Sh =,其中S 为底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上......... 1. 设全集U ={1,2,3,4,5}.若U A =ð{1,2,5},则集合A = ▲ . 2. 已知复数z 满足(z 2)i 1i -=+(i 为虚数单位),则复数z 的实部是 ▲ .3. 已知样本数据1234a a a a ,,,的方差为2,则数据123421212121a a a a ++++,,,的方差为 ▲ . 4. 右图是一个算法的伪代码,其输出的结果为 ▲ .5. 从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,则该三位数为奇数的概率为 ▲ .6. 在平面直角坐标系xOy 中,若双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的离心率为10,则双曲线C 的渐近线方程为 ▲ .7. 将函数f (x )的图象向右平移π6个单位后得到函数()π4sin 23y x =-的图象,则()π4f 的值为 ▲ .8. 设定义在R 上的奇函数()f x 在区间[0 )+∞,上是单调减函数,且2(3)f x x -(2)f +0>,则实数x 的取值范围是 ▲ .9. 在锐角三角形ABC 中,若3sin 5A =,1tan()3A B -=-,则3tan C 的值为 ▲ .10. 设S n 为数列{}n a 的前n 项和.若S n =na n -3n (n -1)(n ∈N *),且211a =,则S 20的值为 ▲ .11. 设正实数x ,y 满足x yxy x y+=-,则实数x 的最小值为 ▲ .(第4题)正切为12-,b 与c 的夹角的正切为13-,2=b ,则⋅a c 的值为 ▲ .14.已知()()()23f x m x m x m =-++,()22x g x =-,若同时满足条件:①x ∀∈R ,()0f x <或()0g x <;②()4x ∃∈-∞-,,()()0f x g x ⋅<,则实数m 的取值范围是 ▲ .二、解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本题满分14分)已知△ABC 的面积为()18AC AB CB ?=u u u r u u u ru u u r,向量(tan tan sin 2)A B C =+,m 和(1cos cos )A B =,n 是共线向量.(1)求角C 的大小; (2)求△ABC 的三边长.16.(本题满分14分)如图,在四棱锥P -ABCD 中,已知底面ABCD 为矩形,且AB =2,BC =1,E ,F 分别是AB ,PC 的中点,PA ⊥DE .(1)求证:EF ∥平面PAD ; (2)求证:平面PAC ⊥平面PDE .17.(本题满分14分)如图,OM ,ON 是某景区的两条道路(宽度忽略不计,OM 为东西方向),Q 为景区内一景点,A 为道路OM 上一游客休息区.已知tan ∠MON =-3,OA =6(百米),Q 到直线OM ,ON 的距离分别为3(百米),6105(百米).现新修一条自A 经过Q 的有轨观光直路并延伸至道路ON 于点B ,并在B处修建一游客休息区.(第12题)(第16题)AOBPQMN(第17题)(1)求有轨观光直路AB 的长;(2)已知在景点Q 的正北方6 百米的P 处有一大型组合音乐喷泉,喷泉表演一次的时长为9 分钟.表演时,喷泉喷洒区域以P 为圆心,r 为半径变化,且t 分钟时,r =百米)(0≤t ≤9,0<a <1).当喷泉表演开始时,一观光车S (大小忽略不计)正从休息区B 沿(1)中的轨道BA 以2(百米/分钟)的速度开往休息区A ,问:观光车在行驶途中是否会被喷泉喷洒到,并说明理由.18.(本题满分16分)在平面直角坐标系xOy 中,已知椭圆E :22221(0)x y a b a b+=>>过点(1,. (1)求椭圆E 的标准方程;(2)若A ,B 分别是椭圆E 的左,右顶点,动点M 满足MB AB ⊥,且MA 交椭圆E 于点P .①求证:OP OM ⋅u u u r u u u u r为定值;②设PB 与以PM 为直径的圆的另一交点为Q ,求证:直线MQ 经过定点.19.(本题满分16分)已知数列{}n a 满足:123a a a k ===(常数k >0),112n n n n k a a a a -+-+=(n ≥3,*n ∈N ).数列{}n b 满足:21n n n n a a b a +++=(*n ∈N ). (1)求b 1,b 2的值;(2)求数列{}n b 的通项公式;(3)是否存在k ,使得数列{}n a 的每一项均为整数? 若存在,求出k 的所有可能值;若不存在,请说明理由.20.(本题满分16分)设函数f (x )=(x -a )ln x -x +a ,a ∈R . (1)若a =0,求函数f (x )的单调区间;(2)若a <0,且函数f (x )在区间()22e e -,内有两个极值点,求实数a 的取值范围; (3)求证:对任意的正数a ,都存在实数t ,满足:对任意的x ∈(t ,t +a ), f (x )<a -1.数学Ⅰ一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上.........1. 【答案】{3,5}2. 【答案】33. 【答案】84. 【答案】10115. 【答案】356. 【答案】y =±3x7. 【答案】48. 【答案】(1,2)9. 【答案】79 10. 【答案】1 24011. 1 12. 【答案】9 13.【答案】4514.【答案】()42--,二、解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本题满分14分)解:(1)因为向量(tan tan sin 2)A B C =+,m 和(1cos cos )A B =,n 是共线向量,所以()cos cos tan tan sin 20A B A B C +-=, ……2分 即sin A cos B +cos A sin B -2sin C cos C =0,化简得sin C -2sin C cos C =0,即sin C (1-2cos C )=0. ……4分 因为0πC <<,所以sin C >0,从而1cos 2C =,π.3C = ……6分(2)()()218AC AB CB AC BC BA AC =?=?=u u u r u u u r u u u r u u u r u u u ru u u r u u u r ,于是AC 32=. ……8分因为△ABC 的面积为93193sin 2CA CB C ?, 即1π9332sin 23CB 鬃,解得6 2.CB = …… 11分 在△ABC 中,由余弦定理得()(2222212cos 32622326254.2AB CA CB CA CB C=+-?+-创所以3 6.AB = …… 14分16.(本题满分14分)证明:(1)取PD 中点G ,连AG ,FG , 因为F ,G 分别为PC ,PD 的中点,所以FG ∥CD ,且FG =12C D . ……2分又因为E 为AB 中点,所以AE //CD ,且AE =12C D . ……4分所以AE //FG ,AE =FG .故四边形AEFG 为平行四边形. 所以EF //AG ,又EF ⊄平面PAD ,AG ⊂平面PAD ,故EF //平面PA D . ……6分(2)设AC ∩DE =H ,由△AEH ∽△CDH 及E 为AB 中点得AG CG =AE CD =12,又因为AB =2,BC =1,所以AC =3,AG =13AC =33.所以AG AE =AB AC =23,又∠BAD 为公共角,所以△GAE ∽△BA C . 所以∠AGE =∠ABC =90︒,即DE ⊥A C . ……10分 又DE ⊥PA ,PA ∩AC =A ,所以DE ⊥平面PA C . ……12分 又DE ⊂平面PDE ,所以平面PAC ⊥平面PDE . ……14分17.(本题满分14分)解:(1)以点O 为坐标原点,直线OM 为x 轴,建立平面直角坐标系,如图所示.则由题设得:A (6,0),直线ON 的方程为()()003 30y x Q x x =->,,. 03361010x +03x =,所以()3 3Q ,. ……2分 故直线AQ 的方程为()6y x =--,由360y x x y =-⎧⎨+-=⎩,得39x y =-⎧⎨=⎩,,即()3 9B -,,故()2236992AB =--+= …… 5分答:水上旅游线AB 的长为92. ……6分 (2)将喷泉记为圆P ,由题意可得P (3,9),生成t 分钟时,观光车在线段AB 上的点C 处, 则BC =2t ,0≤t ≤9,所以C (-3+t ,9-t ).若喷泉不会洒到观光车上,则PC 2>r 2对t ∈[0,9]恒成立,即PC 2=(6-t )2+t 2=2t 2-12t +36>4at , ……10分 当t =0时,上式成立,当t ∈(0,9]时,2a <t +18t -6,(t +18t-6)min =62-6,当且仅当t =32时取等号,因为a ∈(0,1),所以r <PC 恒成立,即喷泉的水流不会洒到观光车上.……13分 答:喷泉的水流不会洒到观光车上. ……14分18.解:(1)设椭圆焦距为2c ,所以223121 2 a b c a ⎧⎪+=⎪⎨⎪⎪⎩,且222c a b =-,解得224 2 a b ⎧=⎪⎨=⎪⎩,,所以椭圆E 的方程为22142x y +=; ……4分(2)设0(2 )M y ,,11( )P x y ,, ①易得直线MA 的方程为:0042y yy x =+, 代入椭圆22142x y +=得,()2222000140822y y y x x +++-=, 由()201204828y x y --=+得,()20120288y x y --=+,从而012088y y y =+, ……8分 所以()20002200288 (2 )88y y OP OM y y y --⎛⎫⋅=⋅ ⎪++⎝⎭u u u r u u u u r ,, ()22002200488488y y y y --=+=++. ……10分 ②直线MQ 过定点(0 0)O ,,理由如下:依题意,()02020208822828PB y y k y y y +==----+,由MQ PB ⊥得,02MQ y k =, 则MQ 的方程为:00(2)2y y y x -=-,即02y y x =,所以直线MQ 过定点(0 0)O ,. ……16分 19.(本题满分16分)解:(1)由已知得,41a k =+, 所以1312=2a a b a +=,2423121a a k k kb a k k ++++===. ……2分 (2)由条件可知:()1213n n n n a a k a a n +--=+≥,①所以()21+12n n n n a a k a a n +-=+≥.② ……4分①-②得122111n n n n n n n n a a a a a a a a +-+--+-=-. 即:121121n n n n n n n n a a a a a a a a +-+-+-+=+. 因此:2211n n n nn n a a a a a a +-+-++=, ……6分故()23n n b b n -=≥,又因为12b =,221k b k+=,所以221n n b k n k⎧⎪=⎨+⎪⎩,为奇数,为偶数. ……8分(3)假设存在k ,使得数列{}n a 的每一项均为整数,则k 为正整数. ……10分由(2)知21221222122(123)21n n n n n n a a a n k a a a k +-++=-⎧⎪=⎨+=-⎪⎩L ,,③ 由162Z 4Z a k a k k=∈=++∈,,所以k =1或2, ……12分检验:当1k =时,312=+kk 为整数, 利用123Z a a a ∈,,结合③,{a n }各项均为整数; ……14分 当2k =时③变为21221222122(123)52n n n n n n a a a n a a a +-++=-⎧⎪=⎨=-⎪⎩L ,, 消去2121n n a a +-,得:222223(2)n n n a a a n +-=-≥ 由24Z a a ∈,,所以偶数项均为整数,而2221252n n n a a a ++=-,所以21n a +为偶数,故12a k ==,故数列{}n a 是整数列. 综上所述,k 的取值集合是{}12,. ……16分 20.(本题满分16分)解:(1)当a =0时,f (x )=x ln x -x ,f ’(x )=ln x ,令f ’(x )=0,x =1,列表分析x (0,1) 1 (1,+∞)f ’(x ) - 0 + f (x )单调递减单调递增故f (x )的单调递减区间为(0,1),单调递增区间为(1,+∞). (3)分(2)f (x )=(x -a )ln x -x +a ,f ’(x )=ln x -a x,其中x >0,令g (x )=x ln x -a ,分析g (x )的零点情况.g ’(x )=ln x +1,令g ’(x )=0,x =1e,列表分析x(0,1e )1e (1e,+∞) g ’(x ) - 0 + g (x ) 单调递减单调递增g (x )min =g (1e)=-1e-a , ……5分而f ’(1e )=ln 1e-a e =-1-a e ,()2e f -'=-2-a e 2=-(2+a e 2),f ’(e 2)=2-a e2=1e2(2e 2-a ),①若a ≤-1e ,则f ’(x )=ln x -ax ≥0,故f (x )在()22e e -,内没有极值点,舍;②若-1e <a <-2e 2,则f ’(1e )=ln 1e-a e <0,f ’(e -2)=-(2+a e 2)>0,f ’(e 2)=1e2(2e 2-a )>0,因此f ’(x )在()22e e -,有两个零点,设为1x ,2x ,所以当()21e x x -∈,时,f (x )单调递增,当()12x x x ∈,时,f (x )单调递减, 当()22e x x ∈,时,f (x )单调递增,此时f (x )在()22e e -,内有两个极值点;③若-2e 2≤a <0,则f ’(1e )=ln 1e-a e <0,f ’(e -2)=-(2+a e 2)≤0,f ’(e 2)=1e2(2e 2-a )>0,因此f ’(x )在()22e e -,有一个零点,f (x )在()22e e -,内有一个极值点;综上所述,实数a 的取值范围为(-1e ,-2e 2). ……10分(3)存在1t =:x ∈(1,1+a ),f (x )<a -1恒成立. ……11分 证明如下:由(2)得g (x )在(1e,+∞)上单调递增,且g (1)=-a <0,g(1+a )=(1+a )ln(1+a )-a .因为当x >1时,ln x >1-1x (*),所以g(1+a )>(1+a )(1-1a +1)-a =0.故g (x )在(1,1+a )上存在唯一的零点,设为x 0.由x (1,x 0) x 0(x 0,1+a )f ’(x ) - 0 + f (x )单调递减单调递增知,x ∈(1,1+a ),f (x )<max{f (1),f (1+a )}. ……13分又f (1+a )=ln(1+a )-1,而x >1时,ln x <x -1(**), 所以f (1+a )<(a +1)-1-1=a -1=f (1). 即x ∈(1,1+a ),f (x )<a -1.所以对任意的正数a ,都存在实数t =1,使对任意的x ∈(t ,t +a ),使 f (x )<a-1. ……15分补充证明(*):令F (x )=ln x +1x -1,x ≥1.F ’(x )=1x -1x 2=x -1x2≥0,所以F (x )在[1,+∞)上单调递增. 所以x >1时,F (x )>F (1)=0,即ln x >1-1x.补充证明(**)令G (x )=ln x -x +1,x ≥1.G ’(x )=1x-1≤0,所以G (x )在[1,+∞)上单调递减.所以x >1时,G (x )<G (1)=0,即ln x <x -1.……16分数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 三小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.A . 选修4-2:矩阵与变换【解】由特征值、特征向量定义可知,A 1α1λ=1α,即11111 a b c d ⎡⎤⎡⎤⎡⎤=-⨯⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦,得11.a b c d -=-⎧⎨-=⎩, ……5分 同理可得3212328a b c d +=⎧⎨+=⎩,, 解得2321, , , a b c d ====.因此矩阵A 2321 ⎡⎤=⎢⎥⎣⎦. ……10分B .解:因为A ( 1,π3 ),B ( 9,π3),所以线段AB 的中点坐标为(5,π3), ……2分设点P (ρ,θ)为直线l 上任意一点, 在直角三角形OMP 中,ρcos(θ-π3)=5,所以,l 的极坐标方程为ρcos(θ-π3)=5, (6)分令θ=0,得ρ=10,即C (10,0). …… 8分 所以,△ABC 的面积为:12×(9-1)×10×sin π3=203. (10)分C .证明:因为|a +b |≤2,所以|a 2+2a -b 2+2b |=|a +b ||a -b +2| =|a +b ||2a -(a +b )+2| ≤|a +b |(|2a |+|a +b |+2)≤4(|a |+2). ……10分22.解:依题意,以A 为坐标原点,AB ,AD ,AP 分别为x ,y ,z 轴建立空间直角坐标系A -xyz 则B (1,0,0),D (0,2,0),P (0,0,2),因为DC →=λAB →,所以C (λ,2,0), (2)分(1)从而PC →=(λ,2,-2),BD →=(-1,2, 0), 则cos <PC →,BD →>=PC →·BD→|PC →|·|BD →|=4-λλ2+8×5=1515, 解得λ=2; …… 5分(2)易得PC →=(2,2,-2),PD →=(0,2,-2), 设平面PCD 的法向量n =(x ,y ,z ), 则n ·PC →=0,且n ·PD →=0, 即x +y -z =0,且y -z =0, 所以x =0,不妨取y =z =1,则平面PCD 的一个法向量n =(0,1,1), …… 8分 又易得PB →=(1,0,-2), 故cos <PB →,n >=PB →·n |PB →|·|n |=-22×5=-105,所以直线PB 与平面PCD 所成角的正弦值为105. ……10分 23.(本小题满分10分)解:(1)S 1=C 11a 1=1,S 2=C 12a 1+C 22a 2=3. ……2分 (2)记α=1+52,β=1-52.则S n =15∑ni =1C i n (αi -βi)=15∑ni =0C i n (αi -βi)=15(∑ni =0C in αi-∑ni =0C in βi) =15[(1+α)n -(1+β)n]=15[(3+52)n -(3-52)n ]. (6)分因为(3+52)×(3-52)=1.PAB D (第22题)xy z故S n +2=15{[(3+52)n +1-(3-52)n +1][ (3+52)+(3-52)]-[(3+52)n-(3-52)n]}=3S n +1-S n .所以存在=3λ,使得213n n n S S S +++=恒成立. ……10分。
江苏省南通市海安高级中学2022-2023学年高二下学期第一次月考数学试题
2022-2023学年第二学期高二年级阶段检测(一)数学一、单顶选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设2i1i3i z +=-+,则||z =( )A. 1B.32C. 2D.522. 已知()πcos 2cos π2αα⎛⎫+=- ⎪⎝⎭,则πtan 4α⎛⎫-= ⎪⎝⎭( )A -3B. 3C. 13-D.133. 已知圆锥内切球(与圆锥侧面、底面均相切的球)的半径为2,当该圆锥的表面积最小时,其外接球的表面积为( )A. 81πB. 96πC. 108πD. 126π4. 设2012(12)n nn x a a x a x a x +=++++ ,若78a a =,则n =( )A. 8B. 9C. 10D. 115. 春节期间,某地政府在该地的一个广场布置了一个如图所示的圆形花坛,花坛分为5个区域.现有5种不同的花卉可供选择,要求相邻区域不能布置相同的花卉,且每个区域只布置一种花卉,则不同的布置方案有( )A 120种B. 240种C. 420种D. 720种6. 从集合{1,2,3}U =的非空子集中随机选择两个不同的集合A ,B ,则{1}A B ⋂=的概率为( )A.421B.542C.17D.5567. 某公园有如图所示A 至H 共8个座位,现有2个男孩2个女孩要坐下休息,要求相同性别的孩子不坐在同一行也不坐在同一列,则不同的坐法总数为( )..ABC DE F GHA. 168B. 336C. 338D. 848. 已知两点A ,M 在双曲2222:1(0,0)x y C a b a b -=>>右支上,点A 与点B 关于原点对称,BM 交y 轴于点N ,若AB AM ⊥ ,且280ON OA ON+⋅=,则双曲线C 的离心率为( )A.B.C.D. 二、多项选择题:本题共4小题,每小题5分,共20分,在每小题给出的选项中,至少有两项是符合题目要求的.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 已知m ,n 为异面直线,直线l 与m ,n 都垂直,则下列说法正确的是( )A. 若l⊥平面α,则m α∥,n α∥B. 存在平面α,使得l α⊥,m α⊂,n α∥C. 有且只有一对互相平行平面α和β,其中m α⊂,n β⊂D. 至多有一对互相垂直的平面α和β,其中m α⊂,n β⊂10. 已知甲袋中有5个大小、质地相同的球,其中有4个红球,1个黑球;乙袋中有6个大小、质地相同的球,其中有4个红球,2个黑球.下列说法中正确的是( )A. 从甲袋中随机摸出1个球是红球的概率为45B. 从乙袋中随机摸出1个球是黑球的概率为23C. 从甲袋中随机摸出2个球,则2个球都是红球的概率为35D. 从甲、乙袋中各随机摸出1个球,则这2个球是1红1黑的概率为2511. 关于712x x ⎛⎫- ⎪⎝⎭的二项展开式,下列说法正确的是( )A. 二项式系数和为128 B. 各项系数和为7-C. 1x -项的系数为280- D. 第三项和第四项的系数相等12. 已知函数()2tan f x x x =-,则( )A. 函数()f x 不是周期函数的的B. 函数()f x 的图象只有一个中心对称点C. 函数()f x 的单调减区间为ππ2π,2π,44k k k ⎛⎫-+∈ ⎪⎝⎭Z D. 曲线()ππ22y f x x ⎛⎫=-<< ⎪⎝⎭只有一条过点()1,0的切线三、填空题:本题共4小题,每小题5分,共20分.13. 431x x ⎛⎫- ⎪⎝⎭的展开式中常数项是______.(用数字作答)14. 数列{}n a 的各项均为正数,其前n 项和为11()2n n na S a +=,则100S =__________.15. 在一次晚会上,9位明星共上演n 个“三人舞”节目,若在这些节目中,任两个人都曾合作过一次,且仅合作一次,则n =___________.16. 三棱锥-P ABC 中,,,PA PB PC两两垂直,PA PB PC ===M 为平面ABC 内的动点,且满足PM =,记直线PM 与直线AB 的所成角的余弦值的取值范围为_____________.四、解答题:本题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17. 设2012()(1)(1)(1)(1)nknk n a x a a x a x a x a x +=++++++++++ ,其中,a n *∈∈R N .(1)当0,2023a n ==时,求1352023a a a a ++++ 的值;(2)当2a =时,化简:31202341n a a a a a n ++++++ .18. 已知数列{}n a 中,11a =,()11232n n n a a n -*+=+⨯∈N .(1)判断数列2n n a ⎧⎫⎨⎬⎩⎭否为等差数列,并说明理由;(2)求数列{}n a 的前n 项和nS 19. 在ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,满足()()a b c a b c ab +++-=(1)求角C ;(2)若角C 的平分线交AB 于点D ,且2CD =,求2a b +的最小值.20. 如图所示,四棱锥S ABCD -中,底面ABCD 为矩形,AC 与BD 交于点O ,点E 在线段SD 上,且//OE 平面SAB ,二面角S AB C --,二面角S AD C --均为直二面角.是(1)求证:SE DE =;(2)若2SA AD ==,且钝二面角A BE C --的余弦值为,求AB 的值.21. 已知椭圆:C 22184x y +=,直线l :(0)y kx n k =+>与椭圆C 交于,M N 两点,且点M 位于第一象限.(1)若点A 是椭圆C 的右顶点,当0n =时,证明:直线AM 和AN 的斜率之积为定值;(2)当直线l 过椭圆C 的右焦点F 时,x 轴上是否存在定点P ,使点F 到直线NP 的距离与点F 到直线MP 的距离相等?若存在,求出点P 的坐标;若不存在,说明理由.22. 设函数()e 2x f x ax =--(1)求()f x 的单调区间(2)若1a =,k 为整数,且当0x >时()()10x k f x x '-++>,求k 的最大值2022-2023学年第二学期高二年级阶段检测(一)数学一、单顶选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】D【2题答案】【答案】C【3题答案】【答案】A【4题答案】【答案】D【5题答案】【答案】C【6题答案】【答案】A【7题答案】【答案】B【8题答案】【答案】D二、多项选择题:本题共4小题,每小题5分,共20分,在每小题给出的选项中,至少有两项是符合题目要求的.全部选对的得5分,部分选对的得2分,有选错的得0分.【9题答案】【答案】BC【10题答案】【答案】ACD【11题答案】【答案】AC【12题答案】【答案】AD三、填空题:本题共4小题,每小题5分,共20分.【13题答案】【答案】4-【14题答案】【答案】10【15题答案】【答案】12【16题答案】【答案】⎡⎢⎣四、解答题:本题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.【17题答案】【答案】(1)20222 (2)()11211+-+n n 【18题答案】【答案】(1)是等差数列,理由见解析 (2)()12342n n S n -=+-⋅【19题答案】【答案】(1)23π(2)6+【20题答案】【答案】(1)证明见解析. (2)3AB =.【21题答案】【答案】(1)见解析; (2)存在,(4,0)P .【22题答案】【答案】(1)答案见解析 (2)2。
江苏省海安高级中学2019_2020学年高一数学12月月考试题
江苏省海安高级中学2019-2020学年高一数学12月月考试题一、选择题:(本大题共13小题,每小题4分,其中1-10题为单选题,11-13为多选题.) 1.已知集合A ={x |-1≤x ≤3},B ={x ∈Z|x 2<5},则A ∩B=( )A .{0,1}B .{-1,0,1,2}C .{0,1,2}D .{-2,-1,0,1,2} 2.函数f (xx +1)的定义域为 ( )A .[12-,2]B .[12-,2)C .(12-,2]D .(12-,2)3.2πsin()=3-( )A. B. 12- C. 2 D.124.向量a =(1,x +1),b =(1- x ,2),a ⊥b ,则(a +b )∙(a -b )=( ) A .-15 B .15 C .-20 D .20 5. 已知a =log52,b =log 73,c =12,则a ,b ,c 的大小关系是( )A .a < b < cB .a < c < bC .b < a < cD .c < b < a6.已知将函数f (x )=sin(2ωx +π6)(ω>0)的图象向左平移π3个单位长度得到函数g (x )的图象,若函数g (x )图象的两条相邻的对称轴间的距离为π2,则函数g (x )的—个对称中心为( ) A .(-π6,0) B .(π6,0) C .(-π12,0) D .(π12,0)7.如图,已知△ABC 与△AMN 有一个公共顶点A ,且MN 与BC 的 交点O 平分 BC,若AB mAM =uu u r uuu r ,AC nAN =uuu r uuu r,则m n +的值为( )A .4B .3C .2D .68.已知函数f (x )=log a x (a >0,a ≠1)的图象经过点(2,12).若函数g (x )的定义域为R ,当x ∈[-2,2]时,有g (x )=f (x ),且函数g (x +2)为偶函数,则下列结论正确的是:( )A .g (π)<g (3)<g .g (π)<g )<g (3) C .g g (3)<g (π)D .g )<g (π)<g (3)9.已知函数()f x 是定义域为R 的奇函数且(1)()f x f x +=-,则(1)(2)(3)(4)(5)(6)f f f f f f +++++=( )A .4B .0C .3D .210.对于实数a ,b 定义运算“⊗”:22,b a a ba b b a a b -<⎧⊗=⎨-⎩≥,设f (x )=(2x -3)⊗(x -3),若关于x 的方程f (x )=k (k ∈R)恰有三个互不相同的实根x 1,x 2,x 3则x 1x 2x 3取值范围为( )A .(0,3)B .(-1,0)C .(-∞,0)D .(-3,0)11.下列四个说法中,错误的选项有( ).A .若函数()f x 在(,0]-∞,(0,)+∞上都是单调增函数,则函数()f x 在R 上是单调增函数B .已知函数的解析式为2y x =,它的值域为[1,4],这样的函数有无数个 C .把函数22xy =的图像向右平移2个单位长度,就得到了函数222x y -=的图像 D .若函数()f x 为奇函数,则一定有(0)0f = 12.下列命题中,正确的是( ).A.已知非零向量,a b 满足4a b =,且()2b a b ⊥+,则a 与b 的夹角为56π. B.若,,a b c 是平面内三个非零向量,则()()a b c a b c ⋅=⋅;C.若(sin ,1a θ=+,()1,1cos b θ=-,其中3,2πθπ⎛⎫∈ ⎪⎝⎭,则a b ⊥;D.若O 是ABC ∆所在平面上一定点,动点P 满足AB AC OP OA AB AC λ⎛⎫⎪=++ ⎪⎝⎭,()0,λ∈+∞,则直线AP 一定经过ABC ∆的内心. 13.函数()()()2a xb f x x b c-=-+()0,,0a b R c ≠∈>,()()2g x m f x n =-⎡⎤⎣⎦()0mn >,下列结论:A.函数()f x 的图像关于x 轴上某点成中心对称;B.函数()f x 在R 上单调递增;C.存在实数q p ,,使得()p f x q ≤≤对于任意的实数x 恒成立;D.关于x 的方程()0g x =的解集可能为{}4,2,0,3--.正确结论为( ) 二、填空题:本大题共4个小题,每小题4分,共20分. 14. 函数()f x =的单调递减区间为 ▲ .15.已知角θ的终边过点(3,4)-,则cos θ=_____▲______.16.已知函数(21),(1)()1log ,(01)3a a x x f x x x ->⎧⎪=⎨-<≤⎪⎩,当120,0x x >>且12x x ≠时,()()12120f x f x x x -<-,则实数a 的取值范围是 ▲ .17.已知函数()()sin f x x ωϕ=+(016ω<<,02πϕ-<<),()04f π-=,对任意x R ∈恒有()()4f x f π≤且()f x 在区间(,)3216ππ上单调,则ϕ=____,ω的可能值有__________.三、解答题(本大题共6小题,共82分.解答应写出文字说明、证明过程或演算步骤.) 18.已知实数a 为常数,U =R ,设集合A ={x |31x x -+>0},B ={x |y=},C ={x |x 2﹣(4+a )x +4a ≤0}.(1)求A ∩B ;(2)若∁U A ⊆C ,求a 的取值范围.19.设a =(x ,1),b =(2,-1),c =(x -m ,m -1)(x ∈R ,m ∈R).(1)若a 与b 的夹角为钝角,求x 的取值范围; (2)解关于x 的不等式|a +c |<|a -c |.20.我国西部某省4A 级风景区内住着一个少数民族村,该村投资了800万元修复和加强民俗文化基础设施,据调查,修复好村民俗文化基础设施后,任何一个月内(每月按30天计算)每天的旅游人数()f x 与第x 天近似地满足()88f x x=+(千人),且参观民俗文化村的游客人均消费()g x 近似地满足()g 14322x x =--(元).(1)求该村的第x 天的旅游收入()p x ,并求最低日收入为多少?(单位:千元,130x ≤≤,*N x ∈); (2)若以最低日收入的20%作为每一天的纯收入计量依据,并以纯收入的5%税率收回投资成本,试问该村在两年内能否收回全部投资成本?21.已知函数())f x x ϕ=+02πϕ⎛⎫-<< ⎪⎝⎭的图象过点(0,1).(1)求724f π⎛⎫⎪⎝⎭的值;(2)利用五点作图作出函数在一个周期内的图像; (3)当5,248x ππ⎡⎤∈-⎢⎥⎣⎦时,方程()f x k =恰有两个不同的实数解,求实数k 的取值范围.22.对于函数f 1(x ),f 2(x ),h (x ),如果存在实数a ,b 使得h (x )=af 1(x )+bf 2(x ),,那么称h (x )为f 1(x ),f 2(x ),的生成函数. (1)给出函数f 1(x )=lg 10x,f 2(x )=lg(10x ),h (x )=lg x ,h (x )是否为f 1(x ),f 2(x )的生成函数?并说明理由.(2)设f 1(x )=log 2x ,f 2(x )=log 12x ,a =2,b =1,生成函数.若不等式3h 2(x )+2h (x )+t >0在x∈[2,4]上恒成立,求实数t 的取值范围.23.已知函数()2327mx n h x x +=+为奇函数,()13x mk x -⎛⎫ ⎪⎝⎭=,其中m n R ∈、.(1)若函数()h x 的图像过点()1,1A ,求实数m 和n 的值; (2)若3m =,试判断函数()()()11f x h x k x =+在[3,)x ∈+∞上的单调性并证明; (3)设函数()()(),39,3h x x g x k x x ⎧≥⎪=⎨<⎪⎩若对每一个不小于3的实数1x ,都恰有一个小于3的实数2x ,使得()()12g x g x =成立,求实数m 的取值范围.阶段测试(二)一、选择题:(本大题共13小题,每小题4分,其中1-10题为单选题,11-13为多选题.) 1. B 2. D 3. A 4. A 5. A 6.D 7. C 8. C 9. B 10. D 11. ACD 12. CD 13. AC三、填空题:本大题共4个小题,每小题5分,共20分. 14. (],3-∞- . 15. ________35___. 16. 10,3⎛⎤ ⎥⎝⎦.17 ϕ=__4π-__, ____3,7,11______.三、解答题(本大题共6小题,共82分.解答应写出文字说明、证明过程或演算步骤.) 18.解:(1)()()[)3,,1,2,A B =+∞⋃-∞-=+∞则[)2,A B ⋂=+∞. (2) []1,3U C A =-,当[]{}[]4,4,;4,4;4,,4a C a a C a C a >===<=因为∁U A ⊆C ,则4,1a a <⎧⎨≤-⎩解得1a ≤-.19.解:(1)依题意得0a b ∙<且,a b 不反向共线,即210,2x x -<⎧⎨≠-⎩解得12x <且 2.x ≠- (2)依题意得0a c ∙<,即210x mx m -+-=当2,m =不等式的解集为空集; 当2m >,不等式的解集为()1,1m -;当2m <不等式的解集为()1,1m -.20.解:(1)依据题意,有()()()()8g 814322x f x x x p x ⎛⎫=⋅=+⋅-- ⎪⎝⎭(130x ≤≤,*N x ∈) 即()**9688976,122,N 132081312,2230,N x x x xp x x x x x ⎧++≤≤∈⎪⎪=⎨⎪-++<≤∈⎪⎩,1当*122,N x x ≤≤∈时,()96889769761152x p x x =++≥= (当且仅当11x =时,等号成立) . 因此,()()p 111152min p x == (千元) .2当*2230,N x x <≤∈时,()132081312p x xx =-++. 易知函数132081312xy x =-++ 在(]22,30上单调递减,于是,()()301116min p x p == (千元) . 又11521116>,所以,日最低收入为1116千元.(2)该村两年可收回的投资资金为111620%5%301228035.2⨯⨯⨯⨯⨯=(千元)= 803.52 (万元).因为803.52万元> 800万元,所以,该村两年内能收回全部投资资金. 21.【详解】(1)由题知()01fϕ==,∴cosϕ=,又02πϕ-<<,∴4πϕ=-,∴772242442fπππ⎛⎫⎛⎫=⨯-=⎪ ⎪⎝⎭⎝⎭.(2)作图略(3)∵5,2,24843x xπππππ⎡⎤⎡⎤∈-∴-∈-⎢⎥⎢⎥⎣⎦⎣⎦当2,043xππ⎡⎤-∈-⎢⎥⎣⎦即在区间,248ππ⎡⎤-⎢⎥⎣⎦上f(x)为增函数; []20,,4xππ-∈即在区间5,88ππ⎡⎤⎢⎥⎣⎦上f(x)为减函数,又242fπ⎛⎫-=⎪⎝⎭,8fπ⎛⎫=⎪⎝⎭58fπ⎛⎫=⎪⎝⎭∴当方程()f x k=恰有两个不同实根时,2k∈⎣.22.解:(1)由题意得lg lg lg(10)()lg10xx a b x a b x b a=+=++-由1a bb a+=⎧⎨-=⎩解得1212ab⎧=⎪⎪⎨⎪=⎪⎩所以h(x)是f1(x),f2(x)的生成函数.(2)由题意得,2()log xh x=,令[]2log,1,2xm m=∈即232t m m>--在[]1,2m∈上恒成立解得5t>-.23.解;()1()2327mx nh xx+=+为奇函数()()h x h x ∴-=-,即22()327327mx n mx nx R x x -++=+∈-+恒成立,0n ∴=()h x 的图像过点()1,1A()11,h ∴=130m n+= 30,0m n ∴==()2有题意知()393x f x x x-=++,()f x 在[)3,+∞上单调递增证明:任取123x x ≤≤,则()()12331212129933x x f x f x x x x x --⎛⎫⎛⎫-=+-++- ⎪ ⎪⎝⎭⎝⎭ ()()1221123312933x x x x x x x x ----=+-123x x ≤≤210x x ∴->,129x x >,1233x x -<-()()21121290x x x x x x -∴-<123333x x --<()()12f x f x ∴<,函数()f x 在区间[3,)+∞上单调递增;()3当3x ≥时,()()2273273mx mg x h x x x x===++当3x <时,()()1993x mg x k x -⎛⎫==⋅ ⎪⎝⎭① 当0m ≤时, 3x ∀≥,()211111027327(3)mx mg x x h x x x ===≤++不满足条件()()2213,9903x mx g x k x -⎛⎫∀<==⋅> ⎪⎝⎭,舍;②当0 3m <<时,3x ∀≥,()211111()0,27327183mx m m g h x x x x x ⎛⎤===∈ ⎥+⎝⎦+ 23,0,x x m ∀<-≥()()(]221990,93x mg x k x -⎛⎫==⋅∈ ⎪⎝⎭由题可知(]0,0,918m ⎛⎤∈ ⎥⎝⎦,即918m ≤,162m ≤ 03m ∴<<③当3m ≥时,3x ∀≥,()211111()0,27327183mx m m g h x x x x x ⎛⎤===∈ ⎥+⎝⎦+ 23,30,x x m m ∀<->-≥()()32211990,933x mm g x k x --⎛⎤⎛⎫⎛⎫==⋅∈⋅ ⎥ ⎪⎪ ⎝⎭⎝⎭⎥⎝⎦ 由题可知310,0,9183m m -⎛⎤⎛⎤⎛⎫∈⋅ ⎥ ⎪⎥ ⎝⎦⎝⎭⎥⎝⎦,即5318mm -<令()5318xxH x -=-单调递减,()60H = 5318x x-<,可得6m < 36m ∴≤<综上:()0,6m ∈。
江苏省海安高级中学2019-2020学年高二12月月考 数学
江苏省海安高级中学2019-2020学年度第一学期第二次阶段检测高二数学试卷一、选择题:本大题共13小题,每小题4分,共52分.在每小题给出的四个选项中,第1~10题只有一项符合题目要求;第11~13题,有多项符合题目要求,全部选对的得4分,两个都选对但不全的得2分,有选错或只选一个或不选的不得分. 1. 命题“0x ∀>,20x x +≥”的否定是( )A .0x ∀>,20x x +<B .0x ∀>,20x x +≤C .00x ∃>,2000x x +<D .00x ∃>,2000x x +≤2. 在△ABC 中,AC =3,AB =4,BC =6,则△ABC 的最大内角的余弦值为( )A .4348B .14-C .712-D .1124-3. 若{}n a 是首项为1的等比数列,则“869a a >”是“23a >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 4. 已知函数()11f x x +=,则()12f '-=( )A .4B .1C .-4D .14-5. 若数列{}n a 的通项公式是()()132nn a n --=,则1210a a a +++=( )A .15B .12C .-12D .-156. 已知椭圆22195y x +=的左焦点为F ,点P 在椭圆上且在x 轴的上方.若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是( )A B C . D .27. 已知△ABC 的顶点分别为()1,1,2A -,()5,6,2B -,()1,3,1C -,则AC 边上的高BD 等于( )A .5BC .4D .8. 直三棱柱111ABC A B C -中,∠BCA =90°,M ,N 分别是11A B ,11A C 的中点,BC =CA =1CC ,则BM 与AN 所成角的余弦值为( )A .110B .25C D9. 已知1F 、2F 是双曲线C :22221y x a b-=(a >0,b >0)的左、右焦点,若直线y 与双曲线C 在第一象限交于点P ,过P 向x 轴作垂线,垂足为D ,且D 为2OF (O 为坐标原点)的中点,则该双曲线离心率为( )A B C 1 D 1+10.设函数()m f x x ax +=的导数为()21f x x '+=,则数列()1f n ⎧⎫⎨⎬⎩⎭(n *∈N )的前n 项和是( )A .1n n +B .21n n ++C .1n n -D .1n n +11.下列结论正确的是( )A .若22a b >,则11a b <B .若x >0,则44x x+≥C .若a >b >0,则lg lg a b >D .若ab >0,a +b =1,则114a b+≥12.在正方体1111ABCD A B C D -中,下列直线或平面与平面1ACD 平行的是( )A .直线1AB B .直线1BBC .平面11A DCD .平面11A BC 【答案】AD13.若函数()e 1x f x -=与()g x ax =的图象恰有一个公共点,则实数a 可能取值为( ) A .2 B .0 C .1 D .-1若函数()322f x x ax -=(a <0)在()6,23a a +上有最大值,则a 的取值可能为( )A .-6B .-5C .-4D .-3二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡中的横线上.14.若0<x <1,则181x x+-的最小值为 ▲ .已知等差数列{}n a 满足:2355a a a +==,n *∈N ,则数列sin π2na⎧⎫⎛⎫⎨⎬ ⎪⎝⎭⎩⎭的前2019项和等于 ▲ .15.设函数()e ln x f x a b x +=,且()1e f '=,()12f 'a +b = ▲ .在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若△ABC 的面积S ,222sin sin sin sin sin A B C A B ++=,则c 的取值范围为 ▲ .16.已知三棱锥P -ABC 的三条侧棱PA ,PB ,PC 两两互相垂直,且PA =PB =PC =2,则三棱锥P -ABC 的外接球与内切球的半径比为 ▲ .17.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则自上而下的第1节的容积为 ▲ ,这9节竹子的总容积为 ▲ . 三、解答题:本大题共6小题,共82分.解答应写出文字说明,证明过程或演算步骤. 18.(本小题满分12分)已知命题p :“11x ∀-≤≤,不等式20x x m --<成立”是真命题. (1)求实数m 的取值范围;(2)若q :-4<m -a <4是p 的充分不必要条件,求实数a 的取值范围.19.(本小题满分14分)设函数()1f x ax x b++=(a ,b ∈Z ),曲线()y f x =在点()()2,2f 处的切线方程为y =3.(1)求()f x 的解析式;(2)证明:曲线()y f x =上任一点的切线与直线x =1和直线y =x 所围成的三角形的面积为定值,并求出此定值.20.(本小题满分14分)设数列{}n a 的前n 项和为n S ,且231n n S a -=. (1)求数列{}n a 的通项公式; (2)若()()1311nn n n b a a +++=,求{}n b 的前n 项和n T ,并比较n T 与1316的大小.AB()C H ()D G EF图1 B C D EFHGA 图2图1是由菱形ABCD ,平行四边形ABEF 和矩形EFGH 组成的一个平面图形,其中AB BE =EH =1,π3ABC ∠=,π4ABE ∠=,将其沿AB ,EF 折起使得CD 与HG 重合,如图2.(1)证明:图2中的平面BCE ⊥平面ABEF ; (2)求图2中点F 到平面BCE 的距离; (3)求图2中二面角E -AB -C 的余弦值.22.(本小题满分14分)已知抛物线C :22x py =(0<p <2)的焦点为F ,()02,M y 是C 上的一点,且52MF =.(1)求C 的方程;(2)直线l 交C 于A 、B 两点,2OA OB k k ⋅-=且△OAB 的面积为16,求直线l 的方程.已知椭圆C:22214yxa+=(a>2),直线l:y=kx+1(k≠0)与椭圆C相交于A,B两点,D为AB的中点(O为坐标原点).(1)若直线l与直线OD的斜率之积为12-,求椭圆C的方程;(2)在(1)的条件下,y轴上是否存在定点M,使得当k变化时,总有AMO BMO∠∠=.若存在,求出定点M的坐标;若不存在,请说明理由.某市城郊有一块大约500m×500m的接近正方形的荒地,地方政府准备在此建一个综合性休闲广场,首先要建设如图所示的一个矩形体育活动场地,其中总面积为3000平方米,其中阴影部分为通道,通道宽度为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为S平方米.(1)分别用x表示y及S的函数关系式,并给出定义域;(2)请你设计规划该体育活动场地,使得该塑胶运动场地占地面积S最大,并求出最大值江苏省海安高级中学2019-2020学年度第一学期第二次阶段检测高二数学试卷1. 【答案】C 2. 【答案】D 3.【答案】B 4. 【答案】C 5. 【答案】A 6.【答案】A 7.【答案】A 8. 【答案】C 9. 【答案】D 10.【答案】A 11.【答案】BCD 12.【答案】AD 13.【答案】BCD若函数()322f x x ax -=(a <0)在()6,23a a +上有最大值,则a 的取值可能为( )A .-6B .-5C .-4D .-3 【答案】ABC14.若0<x <1,则181x x+-的最小值为 ▲ .【答案】9+已知等差数列{}n a 满足:2355a a a +==,n *∈N ,则数列sin π2na⎧⎫⎛⎫⎨⎬ ⎪⎝⎭⎩⎭的前2019项和等于 ▲ .【答案】015.设函数()e ln x f x a b x +=,且()1e f '=,()12f 'a +b = ▲ .【答案】1在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若△ABC 的面积S ,222sin sin sin sin sin A B C A B ++=,则c 的取值范围为 ▲ .【答案】c ≥216.已知三棱锥P -ABC 的三条侧棱PA ,PB ,PC 两两互相垂直,且PA =PB =PC =2,则三棱锥P -ABC 的外接球与内切球的半径比为 ▲ .【答案】)31217.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则自上而下的第1节的容积为 ▲ ,这9节竹子的总容积为 ▲ .【答案】1322升 20122升18.(本小题满分12分)已知命题p :“11x ∀-≤≤,不等式20x x m --<成立”是真命题. (1)求实数m 的取值范围;(2)若q :-4<m -a <4是p 的充分不必要条件,求实数a 的取值范围. 【答案】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知30A =,a =8,b = (1)求tan B ;(2)若△ABC 不是直角三角形,求△ABC 的面积. 【答案】19.(本小题满分14分)设函数()1f x ax x b++=(a ,b ∈Z ),曲线()y f x =在点()()2,2f 处的切线方程为y =3.(1)求()f x 的解析式;(2)证明:曲线()y f x =上任一点的切线与直线x =1和直线y =x 所围成的三角形的面积为定值,并求出此定值. 【答案】(1)f ′(x )=a -1(x +b )2,于是⎩⎨⎧2a +12+b =3,a -1(2+b )2=0.解得⎩⎪⎨⎪⎧a =1,b =-1,或⎩⎨⎧a =94,b =-83.因为a ,b ∈Z ,故f (x )=x +1x -1. (2)证明:在曲线上任取一点⎝⎛⎭⎫x 0,x 0+1x 0-1,由f ′(x 0)=1-1(x 0-1)2知,过此点的切线方程为y -x 20-x 0+1x 0-1=⎣⎡⎦⎤1-1(x 0-1)2(x -x 0).令x =1,得y =x 0+1x 0-1,切线与直线x =1的交点为⎝ ⎛⎭⎪⎫1,x 0+1x 0-1;令y =x ,得y =2x 0-1,切线与直线y =x 的交点为(2x 0-1,2x 0-1);直线x =1与直线y =x 的交点为(1,1),从而所围成的三角形的面积为12⎪⎪⎪⎪⎪⎪x 0+1x 0-1-1|2x 0-1-1|=12⎪⎪⎪⎪2x 0-1|2x 0-2|=2.所以所围成的三角形的面积为定值2.已知函数()e ax f x x a -⋅=(a >0).(1)求曲线()y f x =在点()()0,0f 处的切线方程; (2)若()0f x <恒成立,求a 的取值范围. 【答案】20.(本小题满分14分)设数列{}n a 的前n 项和为n S ,且231n n S a -=.AB()C H ()D G EF图1BC DEFHGA图2(1)求数列{}n a 的通项公式;(2)若()()1311n n n n b a a +++=,求{}n b 的前n 项和n T ,并比较n T 与1316的大小.【答案】21.(本小题满分14分)图1是由菱形ABCD ,平行四边形ABEF 和矩形EFGH 组成的一个平面图形,其中AB BE =EH =1,π3ABC ∠=,π4ABE ∠=,将其沿AB ,EF 折起使得CD 与HG 重合,如图2.(1)证明:图2中的平面BCE ⊥平面ABEF ; (2)求图2中点F 到平面BCE 的距离; (3)求图2中二面角E -AB -C 的余弦值.【答案】(1)由题知,在BEC ∆中:222BC EC BE =+ 所以BE CE ⊥ ····································· 2分又在矩形EFGH 中:EF CE ⊥ ······· 3分 且E BE EF =所以⊥CE 平面ABEF ······················· 4分 又因为⊂CE 平面BCE所以平面⊥BEC 平面ABEF ············ 5分 (2)由(1)知:⊥CE 平面ABEF ,所以CE AE ⊥因为菱形ABCD 中的3ABC π∠=,所以ABC ∆为等边三角形,AC AB ==, 所以在Rt AEC ∆中:222||=||||1,1AE AC CE AE -== ······················································ 6分所以在AEB ∆中,222||=||||,AB AE BE AE BE +⊥ ······························································ 7分 又因为平面⊥BCE 平面ABEF ,且平面 BCE 平面BE ABEF =所以AE ⊥平面BCE ············································································································· 8分又因为//AF 平面BCE ,所以点F 到平面BCE 的距离为||1AE = ································· 9分 (3)以E 为坐标原点,分别以EA EC EB 、、为z y x 、、轴建立空间直角坐标系E xyz - 所以)1,0,0(),0,1,0(),0,0,1(),0,0,0(A C B E ······································································· 10分 由(1)知平面ABE 的法向量为(0,1,0)m EC ==, ························································ 11分 设平面ABC 的法向量(,,)n x y z =,因为(1,0,1)BA =-,(1,1,0)BC =- 由00n BA n BC ⎧⋅=⎪⎨⋅=⎪⎩,得⎩⎨⎧=+-=+-00y x z x ,取1x =得,(1,1,1)n = ············································· 12分 所以||3cos ||||m n m n θ⋅==,即二面角C AB E -- 14分22.(本小题满分14分)已知抛物线C :22x py =(0<p <2)的焦点为F ,()02,M y 是C 上的一点,且52MF =. (1)求C 的方程;(2)直线l 交C 于A 、B 两点,2OA OB k k ⋅-=且△OAB 的面积为16,求直线l 的方程【答案】(1)将M (2,y 0)代入x 2=2py 得y 0=,又|MF|=y0﹣(﹣)=+=,∴p=1,∴抛物线的方程为x2=2y,-------5分(2)直l的斜率显然存在,设直线l:y=kx+b,A(x1,y1)、B(x2,)由得:x2﹣2kx﹣2b=0∴x1+x2=2k,x1x2=﹣2b由,k OA k OB=•==﹣=﹣2,∴b=4∴直线方程为:y=kx+4,所以直线恒过定点(0,4),原点O到直线l的距离d=,∴S OAB=×d|AB|=ו==2=16,∴4k2+32=64,解得k=±2所以直线方程为:y=±2x+4.---------14分23.(本小题满分14分)已知椭圆C:22214yxa+=(a>2),直线l:y=kx+1(k≠0)与椭圆C相交于A,B两点,D为AB的中点(O为坐标原点).(1)若直线l与直线OD的斜率之积为12-,求椭圆C的方程;(2)在(1)的条件下,y轴上是否存在定点M,使得当k变化时,总有AMO BMO∠∠=.若存在,求出定点M的坐标;若不存在,请说明理由.【答案】(1)由得,显然,设,,,则,,∴,.∴.∴.所以椭圆方程为.-------6分(2)假设存在定点,且设,由得.∴.即,∴.由(1)知,,∴.∴.所以存在定点使得.------14分某市城郊有一块大约500m×500m的接近正方形的荒地,地方政府准备在此建一个综合性休闲广场,首先要建设如图所示的一个矩形体育活动场地,其中总面积为3000平方米,其中阴影部分为通道,通道宽度为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为S平方米.(1)分别用x表示y及S的函数关系式,并给出定义域;(2)请你设计规划该体育活动场地,使得该塑胶运动场地占地面积S 最大,并求出最大值【答案】(1)由已知30003000,,xy y x=∴=其定义域是(6,500).……………2分 (4)(6)(210),S x a x a x a =-+-=-150015000(210)(3)30306S x x x x∴=--=--,其定义域是(6,500).……………6分 (2)150003030(6)3030303023002430,S x x x x =-+≤-=-⨯=………9分当且仅当15000=6x x,即50(6,500)x =∈时,上述不等式等号成立, 此时,max 5060,2430.x y S ===,………………………………………11分答:设计50m 60m x y ,== 时,运动场地面积最大,最大值为2430平方米. ……12分 已知函数)(1ln )(R a xx a x f ∈-=。
2020年江苏省南通市海安高级中学高二数学理月考试卷含解析
2020年江苏省南通市海安高级中学高二数学理月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 若a<b<0,c>d>0,则一定有()A.>B.<C.>D.<参考答案:D2. 已知集合A={0,1,2,3},B={x|(x+1)(x﹣2)<0},则A∩B=()A.{0,2} B.{1,0} C.{0,1,2,3} D.{﹣1,0,1,2,3}参考答案:B【考点】交集及其运算.【分析】化简集合B,求出A∩B即可.【解答】解:集合A={0,1,2,3},B={x|(x+1)(x﹣2)<0}={x|﹣1<x<2},所以A∩B={0,1}.故选:B.3. 已知正四棱柱中,=,为中点,则异面直线与所形成角的余弦值为( )(A) (B) (C) (D) .参考答案:C略4. 已知的二项展开式中常数项为1120,则实数a的值是()A -1 B. 1 C. -1或1 D. 不确定参考答案:C【分析】列出二项展开式的通项公式,可知当时为常数项,代入通项公式构造方程求得结果.【详解】展开式的通项为:令,解得:,解得:本题正确选项:C【点睛】本题考查根据二项展开式指定项的系数求解参数值的问题,属于基础题.5. 如果满足∠ABC=60 , AC=12, BC=k的△ABC恰有一个, 那么k的取值范围是(A)k=8(B)0<k≤12(C)k≥12(D)0<k≤12或k=8参考答案:D6. 平行四边形ABCD中,AB=4,AD=2, ?=4,点P在边CD上,则?的取值范围是()A.[﹣1,8] B.[﹣1,+∞)C.[0,8] D.[﹣1,0]参考答案:A【考点】平面向量数量积的运算.【分析】先根据向量的数量积的运算,求出A=60°,再建立坐标系,得到?=x(x﹣4)+3=x2﹣4x+3=(x﹣2)2﹣1,构造函数f(x),利用函数的单调性求出函数的值域m,问题得以解决.【解答】解:∵AB=4,AD=2, ?=4,∴||?||cosA=4,∴cosA=,∴A=60°,以A为原点,以AB所在的直线为x轴,以AB的垂线为y轴,建立如图所示的坐标系,∴A(0,0),B(4,0),D(1,),设P(x,),则1≤x≤5,∴=(﹣x,﹣),=(4﹣x,﹣),∴?=x(x﹣4)+3=x2﹣4x+3=(x﹣2)2﹣1,设f(x)=(x﹣2)2﹣1,∴f(x)在[1,2)上单调递减,在[2,5]上单调递增,∴f(x)min=f(2)=﹣1,f(x)max=f(5)=8,∴?的取值范围是[﹣1,8],故选:A.7. 设,且,则下列结论中正确的是()A. B. C.D.参考答案:A8. 等差数列{a n}前n项和为S n,公差d=﹣2,S3=21,则a1的值为()A.10 B.9 C.6 D.5参考答案:B【考点】等差数列的前n项和.【分析】直接运用等差数列的求和公式,计算即可得到所求值.【解答】解:公差d=﹣2,S3=21,可得3a1+×3×2×(﹣2)=21,解得a1=9,故选:B.【点评】本题考查等差数列的求和公式的运用,考查运算能力,属于基础题.9. 若抛物线的焦点是的一个焦点,则p=()A. 2B. 4C. 6D. 8参考答案:D【分析】根据焦点定义形成等式解得答案.【详解】若抛物线的焦点是的一个焦点故答案选D【点睛】本题考查了抛物线和双曲线的焦点,属于基础题型.10. 已知正三棱锥P﹣ABC的高PO为h,点D为侧棱PC的中点,PO与BD所成角的余弦值为,则正三棱锥P﹣ABC的体积为()A.B.C.D.参考答案:C【考点】棱柱、棱锥、棱台的体积;异面直线及其所成的角.【专题】计算题;空间位置关系与距离.【分析】利用异面直线所成的角,得到底面边长与高h的关系,易求,V P﹣ABC===.【解答】解:设底面边长为a,连接CO交AB于F,过点D作DE∥PO交CF于E,连接BE,则∠BDE即PO与BD所成角,∴cos∠BDE=,∵PO⊥面ABC,∴DE⊥面ABC,∴△BDE是直角三角形,∵点D为侧棱PC的中点,∴DE=h,∴BE=h,在正三角形ABC中,BF=a,EF=CF=a,在Rt△BEF中,BE2=EF2+BF2,∴,∴V P﹣ABC===故选:C.【点评】本题考查了异面直线所成的角,三棱锥的体积,充分利用线面的位置关系,考查空间想象能力,计算能力.二、填空题:本大题共7小题,每小题4分,共28分11. 对于平面上的点集,如果连接中任意两点的线段必定包含于,则称为平面上的凸集。
2019-2020学年江苏省海安高级中学高二12月月考数学试题 含答案
江苏省海安高级中学2019-2020学年高二12月月考数学试卷一、选择题:本大题共13小题,每小题4分,共52分.在每小题给出的四个选项中,第1~10题只有一项符合题目要求;第11~13题,有多项符合题目要求,全部选对的得4分,两个都选对但不全的得2分,有选错或只选一个或不选的不得分. 1. 命题“0x ∀>,20x x +≥”的否定是( )A .0x ∀>,20x x +<B .0x ∀>,20x x +≤C .00x ∃>,2000x x +<D .00x ∃>,2000x x +≤2. 在△ABC 中,AC =3,AB =4,BC =6,则△ABC 的最大内角的余弦值为( )A .4348B .14-C .712-D .1124-3. 若{}n a 是首项为1的等比数列,则“869a a >”是“23a >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 4. 已知函数()11f x x +=,则()12f '-=( )A .4B .1C .-4D .14-5. 若数列{}n a 的通项公式是()()132nn a n --=,则1210a a a +++L =( )A .15B .12C .-12D .-156. 已知椭圆22195y x +=的左焦点为F ,点P 在椭圆上且在x 轴的上方.若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是( )A B C . D .27. 已知△ABC 的顶点分别为()1,1,2A -,()5,6,2B -,()1,3,1C -,则AC 边上的高BD 等于( )A .5BC .4D .8. 直三棱柱111ABC A B C -中,∠BCA =90°,M ,N 分别是11A B ,11A C 的中点,BC =CA =1CC ,则BM 与AN 所成角的余弦值为( )A .110B .25C D9. 已知1F 、2F 是双曲线C :22221y x a b-=(a >0,b >0)的左、右焦点,若直线y 与双曲线C 在第一象限交于点P ,过P 向x 轴作垂线,垂足为D ,且D 为2OF (O 为坐标原点)的中点,则该双曲线离心率为( )A B C 1 D 110.设函数()m f x x ax +=的导数为()21f x x '+=,则数列()1f n ⎧⎫⎨⎬⎩⎭(n *∈N )的前n 项和是( )A .1n n +B .21n n ++C .1n n -D .1n n +11.下列结论正确的是( )A .若22a b >,则11a b <B .若x >0,则44x x+≥C .若a >b >0,则lg lg a b >D .若ab >0,a +b =1,则114a b+≥12.在正方体1111ABCD A B C D -中,下列直线或平面与平面1ACD 平行的是( )A .直线1AB B .直线1BBC .平面11A DCD .平面11A BC13.若函数()e 1x f x -=与()g x ax =的图象恰有一个公共点,则实数a 可能取值为( )A .2B .0C .1D .-1二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡中的横线上. 14.若0<x <1,则181x x+-的最小值为 ▲ .15.设函数()e ln x f x a b x +=,且()1e f '=,()11ef '-=,则a +b = ▲ .16.已知三棱锥P -ABC 的三条侧棱PA ,PB ,PC 两两互相垂直,且PA =PB =PC =2,则三棱锥P -ABC 的外接球与内切球的半径比为 ▲ .17.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则自上而下的第1节的容积为 ▲ ,这9节竹子的总容积为 ▲ .三、解答题:本大题共6小题,共82分.解答应写出文字说明,证明过程或演算步骤. 18.(本小题满分12分)已知命题p :“11x ∀-≤≤,不等式20x x m --<成立”是真命题.(1)求实数m 的取值范围;(2)若q :-4<m -a <4是p 的充分不必要条件,求实数a 的取值范围.19.(本小题满分12分)设函数()1f x ax x b ++=(a ,b ∈Z ),曲线()y f x =在点()()2,2f 处的切线方程为y =3.(1)求()f x 的解析式;(2)证明:曲线()y f x =上任一点的切线与直线x =1和直线y =x 所围成的三角形的面积为定值,并求出此定值.20.(本小题满分14分)设数列{}n a 的前n 项和为n S ,且231n n S a -=. (1)求数列{}n a 的通项公式; (2)若()()1311nn n n b a a +++=,求{}n b 的前n 项和n T ,并比较n T 与1316的大小.21.(本小题满分14分)图1是由菱形ABCD ,平行四边形ABEF 和矩形EFGH 组成的一个平面图形,其中ABAB()C H()D GEF图1 BCDEFHGA图2BE =EH =1,π3ABC ∠=,π4ABE ∠=,将其沿AB ,EF 折起使得CD 与HG 重合,如图2.(1)证明:图2中的平面BCE ⊥平面ABEF ; (2)求图2中点F 到平面BCE 的距离; (3)求图2中二面角E -AB -C 的余弦值.22.(本小题满分15分)已知抛物线C :22x py =(0<p <2)的焦点为F ,()02,M y 是C 上的一点,且52MF =.(1)求C 的方程;(2)直线l 交C 于A 、B 两点,2OA OB k k ⋅-=且△OAB 的面积为16,求直线l 的方程.23.(本小题满分15分)已知椭圆C :22214y x a+=(a >2),直线l :y =kx +1(k ≠0)与椭圆C 相交于A ,B 两点,D 为AB 的中点(O 为坐标原点).(1)若直线l 与直线OD 的斜率之积为12-,求椭圆C 的方程;(2)在(1)的条件下,y轴上是否存在定点M,使得当k变化时,总有AMO BMO=.若∠∠存在,求出定点M的坐标;若不存在,请说明理由.高二数学试卷一、选择题:本大题共13小题,每小题4分,共52分.在每小题给出的四个选项中,第1~10题只有一项符合题目要求;第11~13题,有多项符合题目要求,全部选对的得4分,两个都选对但不全的得2分,有选错或只选一个或不选的不得分.1.【答案】C2.【答案】D3.【答案】B4.【答案】C5.【答案】A6.【答案】A7.【答案】A8.【答案】C9.【答案】D10.【答案】A11.【答案】BCD12.【答案】AD13.【答案】BCD二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡中的横线上.14.【答案】9+15.【答案】116.【答案】) 312+17.【答案】1322升20122升三、解答题:本大题共6小题,共82分.解答应写出文字说明,证明过程或演算步骤.18.(本小题满分12分)【答案】19.(本小题满分12分) 【答案】 (1)f ′(x )=a -1(x +b )2, 于是⎩⎨⎧2a +12+b=3,a -1(2+b )2=0.解得⎩⎪⎨⎪⎧a =1,b =-1,或⎩⎨⎧a =94,b =-83.因为a ,b ∈Z ,故f (x )=x +1x -1. (2)证明:在曲线上任取一点⎝⎛⎭⎫x 0,x 0+1x 0-1,由f ′(x 0)=1-1(x 0-1)2知,过此点的切线方程为y -x 20-x 0+1x 0-1=⎣⎡⎦⎤1-1(x 0-1)2(x -x 0). 令x =1,得y =x 0+1x 0-1,切线与直线x =1的交点为⎝ ⎛⎭⎪⎫1,x 0+1x 0-1;令y =x ,得y =2x 0-1,切线与直线y =x 的交点为(2x 0-1,2x 0-1);直线x =1与直线y =x 的交点为(1,1),从而所围成的三角形的面积为12⎪⎪⎪⎪⎪⎪x 0+1x 0-1-1|2x 0-1-1|=12⎪⎪⎪⎪2x 0-1|2x 0-2|=2.所以所围成的三角形的面积为定值2.20.(本小题满分14分) 【答案】21.(本小题满分14分) 【答案】(1)由题知,在BEC ∆中:222BC EC BE =+ 所以BE CE ⊥ ····································· 2分 又在矩形EFGH 中:EF CE ⊥ ······· 3分 且E BE EF =I所以⊥CE 平面ABEF ······················· 4分 又因为⊂CE 平面BCE所以平面⊥BEC 平面ABEF ············ 5分(2)由(1)知:⊥CE 平面ABEF ,所以CE AE ⊥ 因为菱形ABCD 中的3ABC π∠=,所以ABC ∆为等边三角形,2AC AB ==,所以在Rt AEC ∆中:222||=||||1,1AE AC CE AE -== ······················································ 6分 所以在AEB ∆中,222||=||||,AB AE BE AE BE +⊥ ······························································ 7分 又因为平面⊥BCE 平面ABEF ,且平面I BCE 平面BE ABEF =所以AE ⊥平面BCE ············································································································· 8分 又因为//AF 平面BCE ,所以点F 到平面BCE 的距离为||1AE =································· 9分(3)以E 为坐标原点,分别以EA EC EB 、、为z y x 、、轴建立空间直角坐标系E xyz - 所以)1,0,0(),0,1,0(),0,0,1(),0,0,0(A C B E ······································································· 10分由(1)知平面ABE 的法向量为(0,1,0)m EC ==u r u u u r, ························································ 11分 设平面ABC 的法向量(,,)n x y z =r ,因为(1,0,1)BA =-u u u r ,(1,1,0)BC =-u u u r由00n BA n BC ⎧⋅=⎪⎨⋅=⎪⎩r u u u rr u u u r,得⎩⎨⎧=+-=+-00y x z x ,取1x =得,(1,1,1)n =r ············································· 12分 所以||3cos 3||||m n m n θ⋅==u r r u r r ,即二面角C AB E --的余弦值为33 14分22.(本小题满分15分)【答案】(1)将M (2,y 0)代入x 2=2py 得y 0=, 又|MF |=y 0﹣(﹣)=+=,∴p =1, ∴抛物线的方程为x 2=2y ,-------5分(2)直l 的斜率显然存在,设直线l :y =kx +b ,A (x 1,y 1)、B (x 2,)由得:x 2﹣2kx ﹣2b =0∴x 1+x 2=2k ,x 1x 2=﹣2b 由,k OA k OB =•==﹣=﹣2,∴b =4∴直线方程为:y =kx +4,所以直线恒过定点(0,4), 原点O 到直线l 的距离d =,∴S OAB=×d|AB|=ו==2=16,∴4k2+32=64,解得k=±2所以直线方程为:y=±2x+4.---------14分23.(本小题满分15分)【答案】(1)由得,显然,设,,,则,,∴,.∴.∴. 所以椭圆方程为.-------6分(2)假设存在定点,且设,由得.∴. 即,∴.由(1)知,,∴. ∴. 所以存在定点使得.------14分。
江苏省南通市海安高级中学2020-2021学年高三上学期12月测试数学试题含答案
江苏省海安高级中学2020年12月测试试卷数 学参考公式:1.随机变量X 的方差()21()ni i i D X x p μ==-∑,其中μ为随机变量X 的数学期望.2.球的体积公式:343V R π=. 一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给岀的四个选项中,只有一项是符合题目要求.1.已知集合{42}M x x =-<<∣,{}2560N x x x =--<∣,则M N =( )A.{12}xx -<<∣ B.{42}xx -<<∣ C.{46}x x -<<∣ D.{26}xx <<∣ 2.若2z i =+,则22z z -=( )A.03.已知,a b ∈R ,下列四个条件中,使a b <成立的充分不必要的条件是( ) A.1a b <-B.1a b <+C.22a b <D.33a b <4.赵爽是我国古代数学家、天文学家,约公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方程”,亦称“赵爽弦图”,它是由四个全等的直角三角形与一个小正方形拼成的一个大正方形.如图是一张弦图,已知大正方形的面积为25,小正方形的面积为1,若直角三角形较小的锐角为α,则tan 2α的值为( )A.34B.2425C.127D.2475.函数ln ||()x f x x x=-的图象大致为( )A. B. C. D.6.已知随机变量X 的概率分布如表所示.当a 在(1,1)-内增大时,方差()D X 的变化为( ) A.增大B.减小C.先增大再減小D.先减小再增大7.在平行四边形ABCD 中,M ,N 分别为AB ,AD 上的点,连接AC ,MN 交于点P .已知13AP AC =且34AM AB =,若AN AD λ=,则实数λ的值为( ) A.12 B.35 C.23 D.348.三棱锥A BCD -中,60ABC CBD DBA ∠=∠=∠=︒,2BC BD ==,ACD △,则此三棱锥外接球的体积为( ) A.16πB.4πC.163π D.323π 二、多项选择题:本题共4小题,每小题5分,共20分.在每小题绐出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.某城市为了解景区游客人数的变化规律,提高旅游服务质量,收集并整理了2020年2月至7月A ,B 两景区旅游人数(单位:万人),得到如下的折线图,则下列说法正确的是( )A.根据A 景区的旅游人数折线图可知,该景区旅游人数的平均值在[34,35]内B.根据B 景区的旅游人数折线图可知,该景区旅游人数总体呈上升趋势C.根据A ,B 两景区的旅游人数的折线图,可得A 景区旅游人数极差比B 景区大D.根据A ,B 两景区的旅游人数的折线图,可得B 景区7月份的旅游人数比A 景区多10.已知F 为抛物线22(0)y px p =>的焦点,过点F l 交抛物线于A 、B 两点(点A 第一象限),交拋物线的准线于点C ,则下列结论正确的是( ) A.AF FC = B.||2||AF BF =C.||3AB p =D.以AF 为直径的圆与y 轴相切11.下列命题正确的有( )A.若a b c >>,0ac >,则()0bc a c ->B.若0x >,0y >,2x y +=,则22x y +的最大值为4C.若0x >,0y >,x y xy +=,则2x y xy ++的最小值为5+D.若实数2a ≥,则12log (2)1a a a a +++<+ 12.在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它得名于荷兰数学家鲁伊兹布劳威尔(L.E.Brouwer )简单的讲就是对于满足一定条件的连续函数()f x ,存在一个点0x ,使得()00f x x =,那么我们称该函数为“不动点”函数,而称0x 为该函数的一个不动点,依据不动点理论,下列说法正确的是( )A.函数()sin f x x =有3个不动点B.函数2()(0)f x ax bx c a =++≠至多有两个不动点C.若定义在R 上的奇函数()f x ,其图像上存在有限个不动点,则不动点个数是奇数D.若函数()f x =[0,1]上存在不动点,则实数a 满足l a e ≤≤(e 为自然对数的底数) 三、填空题:本题共4小题,每小题5分,共20分13.已知数列{}n a ,{}n b 满足2log ,n n b a n N +=∈,其中{}n b 是等差数列且1020112a a =,则122020b b b ++⋅⋅⋅+=______.14.双曲线2222:1(0,0)x y C a b a b -=>>的一条渐近线与圆22:(3)8M x y -+=相交于A 、B 两点,||AB =______.15.《九章算术》是我国古代数学名著,它在几何学中的研究比西方早一千多年,书中将四个面均为直角三角形的四面体称为鳖臑.如图,四面体P ABC -为鳖臑,PA ⊥平面ABC ,AB BC ⊥,且1PA AB ==,BC =A PC B --的正弦值为______.16.函数()sin()0,||2f x x πωϕωϕ⎛⎫=+>≤⎪⎝⎭,已知,06π⎛⎫- ⎪⎝⎭为()f x 图象的一个对称中心,直线1312x π=为()f x 图象的一条对称轴,且()f x 在1319,1212ππ⎡⎤⎢⎥⎣⎦上单调递减.记满足条件的所有ω的值的和为S ,则S 的值为______.四、解笞题:本题共6小题,共70分.解答应写岀文字说明、证明过程或演算步骤.. 17.在①2cos 22cos 12BB +=;②2sin tan b A a B =;③()sin sin()sin a c A c A B b B -++=这三个条件中任选一个,补充在下面的横线上,并加以解答.已知ABC △的内角A ,B ,C 所对的边分别是a ,b ,c ,若______, (1)求角B 的大小;(2)若4a c +=,求ABC △的最小值.注:如果选择多个条件分別解答,按第一个解答计分.18.已知数列{}n a 中,11a =,其前n 项的和为n S ,且满足22(2)21nn n S a n S =≥-.(1)求证:数列1n S ⎧⎫⎨⎬⎩⎭是等差数列;(2)设1n n b S =,()211n n n n b c b b ++=⋅,求数列{}n c 的前n 项和n T .19.如图,在三棱锥P ABC -中,AB BC ==2PA PB PC AC ====.(1)证明:平面PAC ⊥平面ABC ;(2)点M 在棱BC 上,且PC 与平面P AM 所成角的正弦值为4,求BM . 20.某校高三年级举行班小组投篮比赛,小组是以班级为单位,每小组均由1名男生和2名女生组成.比赛中每人投篮n 次()*n N ∈,每人每次投篮及相互之间投篮都是相互独立的.已知女生投篮命中的概率均为13.男生投篮命中的概率均为23. (1)当2n =时,求小组共投中4次的概率;(2)当n l =时,若三人都投中小组获得30分,投中2次小组获得20分,投中1次小组获得10分,三人都不中,小组减去60分,随机变量X 表示小组总分,求随机变量X 的分布列及数学期望.21.在平面直角坐标系xOy 中,已知椭圆2222:1(0)x y C a b a b+=>>的长轴长为4,离心率为2,左右顶点为A ,B ,斜率存在的直线l 与椭圆交于M ,N 两点(M 在x 轴上方,N 在x 轴下方),记直线MA ,NB 的斜率分别为1k ,2k .(1)求椭圆的标准方程;(2)若213k k =,证明:直线MN 过定点,并求出该定点坐标. 22.已知函数()1xf x e =-,()sing x x =.(1)判断()()()F x f x g x =-在[0,)x ∈+∞上零点的个数;(2)当[0,]x π∈时,()()()f x ag x a R ≥∈恒成立,求实数a 的取值范围.江苏省海安高级中学2020年12月数学学科测试试卷答案一、单项选择题:本题共8小题,每题5分,共40分.在每小题绐岀的四个选项中,只有一项是符合题目要求.1.【答案】C2.【答案】B3.【答案】A4.【答案】D5.【答案】A6.【答案】D7.【答案】B 解:34AM AB =,则43AB AM = AN AD λ=,则1AD AN λ=1141()3393AP AC AB AD AM AN λ==+=+ ∵P ,M ,N 共线,∴41193λ+=,∴35λ=,选B.8.【答案】D解:取CD 中点E ,连接AE ,BE ,∵ABC ABD ∠=∠ ∴A 在底面BCD 上的锤子数学射影落在CBD ∠的平分线上由AB ABABC ABD ABC ABD BC BD =⎧⎪∠=∠⇒⎨⎪=⎩△≌△,∴AC AD = ∴AE CD ⊥,∵ACD S =△2CD =,∴22AE=AE =∴AD =设AB x =,在ABD △中,由余弦定理214221242x x x ⇒+-⋅⋅=⇒=,即4AB =,BE =,cos AEB ∠=,过A 作AM BE ⊥交其延长线于M ,∴EM ==AM ==在BE 上取一点G 使23BG BE =,∴G 为BCD △的锤子数学中心也为外心过G 作GH ⊥底面BCD ,∴O 在直线GH ,设OG t =由2222OA OB t t t ⎫=⇒+=+⇒=⎪⎪⎝⎭⎝⎭⎝⎭∴2224R =+=⎝⎭⎝⎭,2R =,3432233V ππ=⨯=,选D.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给岀的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分. 9.【答案】ABD 10.【答案】AD 11.【答案】ACD解:a b c >>,0ac <,则a ,b ,c 同号,∴0bc >0a c ->,∴()0bc a c ->,A 正确224x y +≥==当且仅当1x y ==时取“=”,即()min224x y+=,B 错误x y xy +=,则1yx y =- 221111222(1)21111y y y y x y xy y y y y y y -+-+++=++=+-++----112212(1)212(1)43(1)561111y y y y y y y y y =++-++++=-+++=-++≥----,C 正确 另一解法x y xy +=可得111x y+= 11232223(23)235x yx y xy x y x y x y x y x y y x ⎛⎫++=+++=+=++=+++≥+ ⎪⎝⎭要锤子数学比较1log (2)a a ++与21a a ++大小,即比较ln(2)ln(1)a a ++与21a a ++大小,即比较ln(2)2a a ++与ln(1)1a a ++大小 令ln ()x f x x =,21ln ()0xf x x-'==,x e = ()f x 在(0,)e ,(,)e +∞2a ≥,∴1a +,2a e +>,∴(1)(2)f a f a +>+,即ln(1)ln(2)12a a a a ++>++ ∴2ln(2)1ln(1)a a a a ++>++,D 正确. 12.【答案】BCD解:令()sin g x x x =-,()1cos 0g x x '=-≥()g x 在R 上单调增,(0)0g =∴()g x 在R 有且仅有一个零点即()f x 有且仅有一个“不动点”,A 错误∵20ax bx c x ++-=至多有两个根,∴()f x 至多有两个“不动点”,B 正确()f x 为定义在R 上的奇函数,则()-y f x x =为定义在R 上的奇函数0x =是y 的一个“不动点”,其它的“不动点”都锤子数学关于原点对称,个数和为偶数 ∴一定有奇数个“不动点”,C 正确()f x 在[0,1]存在“不动点”,则()f x x =在[0,1]有解 则2x a e x x =+-在[0,1]有解,令2()xm x e x x =+-()12x m x e x '=+-,令()12x n x e x '=+-,()20x n x e '=-=,ln 2x =()n x 在(0,ln 2),(ln 2,1)∴max ()(ln 2)212ln 232ln 20n x n ==+-=-> ∴()0m x '>在[0,1]恒成立,∴()m x 在[0,1]min ()(0)1m x m ==,max ()(1)m x m e ==∴1a e ≤≤,D 正确.三、填空题:本题共4小题,每小题5分,共20分 13.【答案】1010 14.15.【答案】3解:如图补成一个长方体,建系(0,0,0)A ,(1,0,0)B ,(0,0,1)P,C设平面APC 的锤子数学法向量为()1111,,n x y z =1100n AC n AP ⎧⋅=⎪⎨⋅=⎪⎩,∴11100z x =⎧⎪⎨=⎪⎩ 不妨设11y =,则1x =1(2,1,0)n =- 设平面PBC 的法向量为()2222,,n x y z =2200n BC n PB ⎧⋅=⎪⎨⋅=⎪⎩,∴22200y x y =⎧⎨-=⎩ 不妨设21x =,则21z =,20y =,2(1,0,1)n = 设A PB B --为α,则1212122coscos ,33n n n n n n α⋅====⋅,sin 3α=.16.【答案】125解:由题意知131264T kT ππ+=+或133,1264T kT k Z ππ+=+∈ ∴51244k ππω⎛⎫=+⋅⎪⎝⎭或53244k ππω⎛⎫=+⋅ ⎪⎝⎭∴2(14)5k ω=+或2(34),5k k Z ω=+∈ ∵()f x 在1319,1212ππ⎡⎤⎢⎥⎣⎦上单调递减,∴191312122T ππ-≤∴12222ππωω≤⋅⇒≤ ①当2(14)5k ω=+时,取0k =知25ω=此时2()sin 515f x x π⎛⎫=+⎪⎝⎭,当1319,1212x ππ⎡⎤∈⎢⎥⎣⎦时, 27,515210x πππ⎡⎤+∈⎢⎥⎣⎦满足()f x 在1319,1212ππ⎡⎤⎢⎥⎣⎦上单调递减,∴25ω=符合 取1k =时,2ω=,此时()sin 23f x x π⎛⎫=+⎪⎝⎭,当1319,1212x ππ⎡⎤∈⎢⎥⎣⎦时,572,322x πππ⎛⎫+∈ ⎪⎝⎭满足()f x 在锤子数学1319,1212ππ⎡⎤⎢⎥⎣⎦上单调递减,∴2ω=符合 当1k ≤-时,0ω<,舍去,当2k ≥时,2ω>也舍去 ②当2(34)5k ω=+时,取0k =知65ω= 此时6()sin 55f x x π⎛⎫=+⎪⎝⎭,当1319,1212x ππ⎡⎤∈⎢⎥⎣⎦时, 6321,55210x πππ⎡⎤+∈⎢⎥⎣⎦,此时()f x 锤子数学在1319,1212ππ⎡⎤⎢⎥⎣⎦上单调递增了,舍去 当1k ≤-时,0ω<,舍去,当1k ≥时,2ω>也舍去 综上:25ω=或2,212255S =+=.四、解答题:本题共6小题,共70分.解答应写岀文字说明、证明过程或演算步骤. 17.解:选①(1)∵2cos 22cos 12B B +=,∴22cos cos 10B B +-=,1cos 2B =,3B π=.(2)222122a c ac b +-⋅=,∴222()316316342a c b a c ac ac +⎛⎫=+-=-≥-= ⎪⎝⎭∴2b ≥,当且仅当2a c ==时取“=”∴ABC △周长为46a b c b ++=+≥,即ABC △周长锤子数学的最小值为6.18.解:(1)∵22(2)21n n n S a n S =≥-,∴21221nn n n S S S S --=- ∴1111122n n n n n n S S S S S S ----=⇒-= ∴1n S ⎧⎫⎨⎬⎩⎭是首项为1,公差为2的等差数列. (2)由(1)知112(1)21nn n S =+-=-,∴21n b n =- ∴2244111111(21)(21)(21)(21)22121n n n c n n n n n n -+⎛⎫===+- ⎪-+-+-+⎝⎭∴11111111112335212122121n nT n n n n n n n ⎛⎫⎛⎫=+-+-+⋅⋅⋅+-=+-=+ ⎪ ⎪-+++⎝⎭⎝⎭. 19.解:(1)证明:取AC 中点E ,连接PE ,BE∵2PA PC AC ===,∴PE AC ⊥且PE =∵AB BC ==2224AB BC AC +==,∴ABC △为Rt △且90ABC ∠=︒∴112BE AC ==,∴2224PE BE PB +==,∴PE BE ⊥ ∵ACBE E =,∴PE ⊥平面ABC∵PE ⊂平面P AC ,∴平面PAC ⊥平面ABC . (2)法一:设BM x =,∴AM,PM ==∴22cos PAM∠===∴sin PAM∠==∴124PAMS=⨯==△AMCS==△设C到平面P AM的锤子数学距离为h,PC与平面P AM所成角为θ由1133C PAM P AMC PAM AMCV V S h S--=⇒⋅=△△h=sin2hθ==,∴h=∴)4223x=⇒=或x=∵0x≤≤3x=即3BM=.(2)法二:如图建立锤子数学空间直角坐标系,∴P,(1,0,0)B,(0,1,0)A-,(0,1,0)C设(,1,0)M x x-,01x≤≤,∴(0,1,PA=-,(,2,0)AM x x=-设平面P AM的法向量()000,,n x y z=∴0000)00(2)001xxxn PA yyx x y xn AM z⎧-=⎪⎪⎧⎧⋅=-=⎪⎪⎪⇒⇒=⎨⎨⎨+-=⋅=⎪⎪⎩⎪⎩=⎪⎪⎩∴3(2n⎛⎫-= ⎪⎪⎝⎭设PC与平面P AM所成角为θ,PC与n所成角为ϕ,(0,1,PC =∴2sin|cos|43||||3(22PC nxPC nθϕ⋅====⇒=⋅⋅∴21,,033M ⎛⎫ ⎪⎝⎭,此时3BM ==.20.解:(1)①男生投中2次,女生投中2次概率为22221221221212433333333C ⎛⎫⎛⎫⎛⎫⎛⎫⨯⋅⨯+⨯⨯⨯⨯⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 32649632729729729243=+==②男生投中1次,女生投中3次的概率为211222111232233333729C C ⎛⎫⨯⨯⨯⋅⨯⋅⨯= ⎪⎝⎭ ③男生投中0次,女生投中4次的概率为2221111333729⎛⎫⎛⎫⎛⎫⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∴共投中4次的锤子数学概率为3232143243729729243P =++=. (2)2212(30)3327P X ⎛⎫==⨯= ⎪⎝⎭,2122221211811(20)3333327273P X C C ⎛⎫==⨯⋅⨯+⋅⨯=+= ⎪⎝⎭ 212221124(10)333339P X C ⎛⎫==⨯+⨯⋅⨯= ⎪⎝⎭2124(60)3327P X ⎛⎫=-=⨯=⎪⎝⎭ ∴X 的分布列如下∴()302010602739279E X =⨯+⨯+⨯-⨯=. 21.解:(1)由题意知2222421a a cb a a bc =⎧⎪=⎧⎪=⇒⎨⎨=⎩⎪=+⎪⎩∴椭圆的标准方程为2214x y +=.(2)∵14MA MB k k ⋅=-,即114BM k k ⋅=- 又∵213k k =,∴2134BM k k ⋅=-,34NB MB k k ⋅=-设直线MN 的锤子数学方程为y kx m =+,()11,M x y ,()22,N x y ,(2,0)B()22222242444y kx mx k x kmx m x y =+⎧⇒+++=⎨+=⎩ ()222148440k xkmx m +++-=0∆>,12221228144414km x x k m x x k ⎧+=-⎪⎪+⎨-⎪=⎪+⎩,∴21113224y y x x ⋅=--- ∴()()()12121243240kx m kx m x x x x +++-++=⎡⎤⎣⎦()()22121243(46)4120kx x km x x m ++-+++=()2222244843(46)41201414m km k km m k k--+⋅+-⋅++=++ 22230k m km ++=,∴(2)()0k m k m ++=∴2m k =-或m k =-但当2m k =-时,()22y kx m kx k k x =+=-=-,直线MN 恒过(2,0) M ,N 有一点与B 重合了,舍去∴m k =-,∴()1y kx m k x =+=-,直线MN 恒过定点(1,0). 22.解:(1)()1sin sin xF x e x x x =--≥- 令()sin x x x ϕ=-,∴()1cos 0x x ϕ'=-≥∴()x ϕ在[0,)+∞上锤子数学单调递增,故()(0)0x ϕϕ≥=,∴()0F x ≥ 当且仅当0x =时取“=”,∴()()()F x f x g x =-在[0,)x ∈+∞上只有一个零点.(2)1sin 0xe a x --≥在[0,]π上恒成立,令()1sin x G x e a x =--,()cos xG x e a x '=-注意到(0)0G =,∴()(0)G x G ≥在[0,]π上恒成立 首先有(0)101G a a '=-≥⇒≤(必要性)当1a ≤时,()1sin 1sin 0x xG x e a x e x =--≥--≥符合题意 综上:实数a 的锤子数学取值范围为(,1]-∞.。
2020届江苏省海安高级中学高三12月月考数学试题含答案
阶段性测试(三)数学Ⅰ参考公式:样本数据1x ,2x ,…,n x 的方差2211()ni i s x x n ==-∑,其中11ni i x x n ==∑.锥体的体积13V Sh =,其中S 为底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上......... 1. 设全集U ={1,2,3,4,5}.若U A =ð{1,2,5},则集合A = ▲ . 2. 已知复数z 满足(z 2)i 1i -=+(i 为虚数单位),则复数z 的实部是 ▲ .3. 已知样本数据1234a a a a ,,,的方差为2,则数据123421212121a a a a ++++,,,的方差为 ▲ . 4. 右图是一个算法的伪代码,其输出的结果为 ▲ .5. 从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,则该三位数为奇数的概率为 ▲ .6. 在平面直角坐标系xOy 中,若双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为10,则双曲线C 的渐近线方程为 ▲ .7. 将函数f (x )的图象向右平移π6个单位后得到函数()π4sin 23y x =-的图象,则()π4f 的值为 ▲ .8. 设定义在R 上的奇函数()f x 在区间[0 )+∞,上是单调减函数,且2(3)f x x -(2)f +0>,则实数x 的取值范围是 ▲ .9. 在锐角三角形ABC 中,若3sin 5A =,1tan()3A B -=-,则3tan C 的值为 ▲ .10. 设S n 为数列{}n a 的前n 项和.若S n =na n -3n (n -1)(n ∈N *),且211a =,则S 20的值为 ▲ . 11. 设正实数x ,y 满足x yxy x y+=-,则实数x 的最小值为 ▲ . 12. 如图,正四棱柱1111ABCD A B C D -的体积为27,点E ,F分别为棱1B B ,1C C 上的点(异于端点),且//EF BC , 则四棱锥1A AEFD -的体积为 ▲ .S ←0For i From 1 To 10 Step 1 S ←S +1i (i +1)End For Print S(第4题)D 1CD 1B11C EBPN13.已知向量a ,b ,c 满足++=0a b c ,且a 与b 的夹角的正切为12-,b 与c 的夹角的正切为13-,2=b ,则⋅a c 的值为 ▲ .14.已知()()()23f x m x m x m =-++,()22x g x =-,若同时满足条件:①x ∀∈R ,()0f x <或()0g x <;②()4x ∃∈-∞-,,()()0f x g x ⋅<,则实数m 的取值范围是 ▲ .二、解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本题满分14分)已知△ABC 的面积为3()18AC AB CB ?=u u u r u u u ru u u r,向量(tan tan sin 2)A B C =+,m 和(1cos cos )A B =,n 是共线向量.(1)求角C 的大小; (2)求△ABC 的三边长.16.(本题满分14分)如图,在四棱锥P -ABCD 中,已知底面ABCD 为矩形,且 AB =2,BC =1,E ,F 分别是AB ,PC 的中点,PA ⊥DE . (1)求证:EF ∥平面PAD ; (2)求证:平面PAC ⊥平面PDE .17.(本题满分14分)如图,OM ,ON 是某景区的两条道路(宽度忽略不计,OM 为东西方向),Q 为景区内一景点,A 为道路OM 上一游客休息区.已知tan ∠MON =-3,OA =6(百米),Q 到直线OM ,ON 的距离分别为3(百米),6105(百米).现新修一条自A 经过Q 的有轨观光直路并延伸至道路ON 于点B ,并在B 处修建一游客休息区. (1)求有轨观光直路AB 的长;(2)已知在景点Q 的正北方6 百米的P 处有一大型组合音乐喷泉,喷泉表演一次的时长为9 分钟.表演时,喷泉喷洒区域以P 为圆心,r 为半径变化,且t 分钟时,2r at =百米)(0≤t ≤9,0<a <1).当喷泉表演开始时,一观光车S (大小忽略不计)正从休息区B 沿(1)中的轨道BA 以2(百米/分钟)的速度开往休息区A ,问:观光车在行驶途中是否会被喷泉喷洒到,并说明理由.FDP(第16题)18.(本题满分16分)在平面直角坐标系xOy 中,已知椭圆E :22221(0)x y a b a b+=>>过点(61,2. (1)求椭圆E 的标准方程;(2)若A ,B 分别是椭圆E 的左,右顶点,动点M 满足MB AB ⊥,且MA 交椭圆E 于点P .①求证:OP OM ⋅u u u r u u u u r为定值;②设PB 与以PM 为直径的圆的另一交点为Q ,求证:直线MQ 经过定点.19.(本题满分16分)已知数列{}n a 满足:123a a a k ===(常数k >0),112n n n n k a a a a -+-+=(n ≥3,*n ∈N ).数列{}n b 满足:21nn n n a a b a +++=(*n ∈N ).(1)求b 1,b 2的值; (2)求数列{}n b 的通项公式;(3)是否存在k ,使得数列{}n a 的每一项均为整数? 若存在,求出k 的所有可能值;若不存在,请说明理由.20.(本题满分16分)设函数f (x )=(x -a )ln x -x +a ,a ∈R . (1)若a =0,求函数f (x )的单调区间;(2)若a <0,且函数f (x )在区间()22e e -,内有两个极值点,求实数a 的取值范围;(3)求证:对任意的正数a,都存在实数t,满足:对任意的x∈(t,t+a),f (x)<a-1.数学Ⅰ一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上.........1. 【答案】{3,5}2. 【答案】33. 【答案】84. 【答案】1011 5. 【答案】356. 【答案】y =±3x7. 【答案】48. 【答案】(1,2)9. 【答案】79 10. 【答案】1 240 11. 【答案21 12. 【答案】9 13.【答案】4514.【答案】()42--,二、解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本题满分14分)解:(1)因为向量(tan tan sin 2)A B C =+,m 和(1cos cos )A B =,n 是共线向量,所以()cos cos tan tan sin 20A B A B C +-=, ……2分 即sin A cos B +cos A sin B -2sin C cos C =0,化简得sin C -2sin C cos C =0,即sin C (1-2cos C )=0. ……4分 因为0πC <<,所以sin C >0,从而1cos 2C =,π.3C = ……6分(2)()()218AC AB CB AC BC BA AC =?=?=u u u r u u u r u u u r u u u r u u u ru u u r u u u r ,于是AC 32=. ……8分因为△ABC 的面积为3193sin 2CA CB C ?, 即1π9332sin 23CB 鬃,解得6 2.CB = …… 11分 在△ABC 中,由余弦定理得()()2222212cos 32622326254.2AB CA CB CA CB C=+-?+-创所以3 6.AB = …… 14分16.(本题满分14分)证明:(1)取PD 中点G ,连AG ,FG , 因为F ,G 分别为PC ,PD 的中点,所以FG ∥CD ,且FG =12C D . ……2分又因为E 为AB 中点,所以AE //CD ,且AE =12C D . ……4分所以AE //FG ,AE =FG .故四边形AEFG 为平行四边形. 所以EF //AG ,又EF ⊄平面PAD ,AG ⊂平面PAD ,故EF //平面PA D . ……6分(2)设AC ∩DE =H ,由△AEH ∽△CDH 及E 为AB 中点得AG CG =AE CD =12,又因为AB =2,BC =1,所以AC =3,AG =13AC =33. 所以AG AE =AB AC =23,又∠BAD 为公共角,所以△GAE ∽△BA C .所以∠AGE =∠ABC =90︒,即DE ⊥A C . ……10分 又DE ⊥PA ,PA ∩AC =A ,所以DE ⊥平面PA C . ……12分 又DE ⊂平面PDE ,所以平面PAC ⊥平面PDE . ……14分17.(本题满分14分)解:(1)以点O 为坐标原点,直线OM 为x 轴,建立平面直角坐标系,如图所示.则由题设得:A (6,0),直线ON 的方程为()()003 30y x Q x x =->,,. 03361010x +=03x =,所以()3 3Q ,. ……2分 故直线AQ 的方程为()6y x =--,由360y x x y =-⎧⎨+-=⎩,得39x y =-⎧⎨=⎩,,即()3 9B -,,故()2236992AB --+= …… 5分答:水上旅游线AB 的长为92. ……6分 (2)将喷泉记为圆P ,由题意可得P (3,9),生成t 分钟时,观光车在线段AB 上的点C 处, 则BC =2t ,0≤t ≤9,所以C (-3+t ,9-t ).若喷泉不会洒到观光车上,则PC 2>r 2对t ∈[0,9]恒成立,即PC 2=(6-t )2+t 2=2t 2-12t +36>4at , ……10分 当t =0时,上式成立,当t ∈(0,9]时,2a <t +18t -6,(t +18t -6)min =62-6,当且仅当t =32时取等号, 因为a ∈(0,1),所以r <PC 恒成立,即喷泉的水流不会洒到观光车上.……13分 答:喷泉的水流不会洒到观光车上. ……14分18.解:(1)设椭圆焦距为2c ,所以223121 2 a b c a ⎧⎪+=⎪⎨⎪=⎪⎩,且222c a b =-, 解得224 2 a b ⎧=⎪⎨=⎪⎩,,所以椭圆E 的方程为22142x y +=; ……4分(2)设0(2 )M y ,,11( )P x y ,,①易得直线MA 的方程为:0042y y y x =+, 代入椭圆22142x y +=得,()2222000140822y y y x x +++-=, 由()201204828y x y --=+得,()20120288y x y --=+,从而012088y y y =+, ……8分所以()20002200288 (2 )88y y OP OM y y y --⎛⎫⋅=⋅ ⎪++⎝⎭u u u r u u u u r ,, ()22002200488488y y y y --=+=++. ……10分 ②直线MQ 过定点(0 0)O ,,理由如下:依题意,()02020208822828PB y y k y y y +==----+,由MQ PB ⊥得,02MQ y k =, 则MQ 的方程为:00(2)2y y y x -=-,即02yy x =,所以直线MQ 过定点(0 0)O ,. ……16分 19.(本题满分16分)解:(1)由已知得,41a k =+, 所以1312=2a a b a +=,2423121a a k k kb a k k ++++===. ……2分 (2)由条件可知:()1213n n n n a a k a a n +--=+≥,①所以()21+12n n n n a a k a a n +-=+≥.② ……4分 ①-②得122111n n n n n n n n a a a a a a a a +-+--+-=-. 即:121121n n n n n n n n a a a a a a a a +-+-+-+=+. 因此:2211n n n nn n a a a a a a +-+-++=, ……6分故()23n n b b n -=≥,又因为12b =,221k b k+=,所以221n n b k n k⎧⎪=⎨+⎪⎩,为奇数,为偶数. ……8分(3)假设存在k ,使得数列{}n a 的每一项均为整数,则k 为正整数. ……10分由(2)知21221222122(123)21n n n n n n a a a n k a a a k +-++=-⎧⎪=⎨+=-⎪⎩L ,,③ 由162Z 4Z a k a k k=∈=++∈,,所以k =1或2, ……12分检验:当1k =时,312=+kk 为整数, 利用123Z a a a ∈,,结合③,{a n }各项均为整数; ……14分 当2k =时③变为21221222122(123)52n n n n n n a a a n a a a +-++=-⎧⎪=⎨=-⎪⎩L ,, 消去2121n n a a +-,得:222223(2)n n n a a a n +-=-≥ 由24Z a a ∈,,所以偶数项均为整数,而2221252n n n a a a ++=-,所以21n a +为偶数,故12a k ==,故数列{}n a 是整数列. 综上所述,k 的取值集合是{}12,. ……16分 20.(本题满分16分)解:(1)当a =0时,f (x )=x ln x -x ,f’(x )=ln x ,令f’(x )=0,x =1,列表分析x (0,1) 1 (1,+∞)f’(x ) - 0 + f (x ) 单调递减单调递增故f (x )的单调递减区间为(0,1),单调递增区间为(1,+∞). ……3分(2)f (x )=(x -a )ln x -x +a ,f’(x )=ln x -ax ,其中x >0,令g (x )=x ln x -a ,分析g (x )的零点情况.g ’(x )=ln x +1,令g ’(x )=0,x =1e ,列表分析x (0,1e ) 1e (1e ,+∞)g ’(x ) - 0 + g (x ) 单调递减单调递增g (x )min =g (1e )=-1e -a , ……5分而f’(1e )=ln 1e -a e =-1-a e ,()2e f -'=-2-a e 2=-(2+a e 2),f’(e 2)=2-a e 2=1e 2(2e 2-a ),①若a ≤-1e ,则f’(x )=ln x -ax ≥0, 故f (x )在()22e e -,内没有极值点,舍;②若-1e <a <-2e 2,则f’(1e )=ln 1e -a e <0,f’(e -2)=-(2+a e 2)>0,f’(e 2)=1e 2(2e 2-a )>0,因此f’(x )在()22e e -,有两个零点,设为1x ,2x ,所以当()21e x x -∈,时,f (x )单调递增,当()12x x x ∈,时,f (x )单调递减, 当()22e x x ∈,时,f (x )单调递增,此时f (x )在()22e e -,内有两个极值点;③若-2e 2≤a <0,则f’(1e )=ln 1e -a e <0,f’(e -2)=-(2+a e 2)≤0, f’(e 2)=1e 2(2e 2-a )>0,因此f’(x )在()22e e -,有一个零点,f (x )在()22e e -,内有一个极值点;综上所述,实数a 的取值范围为(-1e ,-2e 2). ……10分 (3)存在1t =:x ∈(1,1+a ),f (x )<a -1恒成立. ……11分 证明如下:由(2)得g (x )在(1e ,+∞)上单调递增, 且g (1)=-a <0,g(1+a )=(1+a )ln(1+a )-a .因为当x >1时,ln x >1-1x (*),所以g(1+a )>(1+a )(1-1a +1)-a =0.故g (x )在(1,1+a )上存在唯一的零点,设为x 0.由x (1,x 0) x 0 (x 0,1+a )f’(x ) - 0 + f (x )单调递减单调递增知,x ∈(1,1+a ),f (x )<max{f (1),f (1+a )}. ……13分又f (1+a )=ln(1+a )-1,而x >1时,ln x <x -1(**),所以f (1+a )<(a +1)-1-1=a -1=f (1).即x ∈(1,1+a ),f (x )<a -1.所以对任意的正数a ,都存在实数t =1,使对任意的x ∈(t ,t +a ),使 f (x )<a -1. ……15分补充证明(*):令F (x )=ln x +1x -1,x ≥1.F ’(x )=1x -1x 2=x -1x 2≥0,所以F (x )在[1,+∞)上单调递增. 所以x >1时,F (x )>F (1)=0,即ln x >1-1x . 补充证明(**)令G (x )=ln x -x +1,x ≥1.G ’(x )=1x -1≤0,所以G (x )在[1,+∞)上单调递减.所以x >1时,G (x )<G (1)=0,即ln x <x -1.……16分数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 三小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A . 选修4-2:矩阵与变换【解】由特征值、特征向量定义可知,A 1α1λ=1α,即11111 a b c d ⎡⎤⎡⎤⎡⎤=-⨯⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦,得11.a b c d -=-⎧⎨-=⎩,……5分 同理可得3212328a b c d +=⎧⎨+=⎩,, 解得2321, , , a b c d ====.因此矩阵A 2321 ⎡⎤=⎢⎥⎣⎦. ……10分B .解:因为A ( 1,π3 ),B ( 9,π3),所以线段AB 的中点坐标为(5,π3), ……2分设点P (ρ,θ)为直线l 上任意一点, 在直角三角形OMP 中,ρcos(θ-π3)=5,所以,l 的极坐标方程为ρcos(θ-π3)=5, ……6分令θ=0,得ρ=10,即C (10,0). …… 8分所以,△ABC 的面积为:12×(9-1)×10×sin π3=203. ……10分C .证明:因为|a +b |≤2,所以|a 2+2a -b 2+2b |=|a +b ||a -b +2| =|a +b ||2a -(a +b )+2| ≤|a +b |(|2a |+|a +b |+2)≤4(|a |+2). ……10分22.解:依题意,以A 为坐标原点,AB ,AD ,AP 分别为x ,y ,z 轴建立空间直角坐标系A -xyz 则B (1,0,0),D (0,2,0),P (0,0,2),因为DC →=λAB →,所以C (λ,2,0), ……2分 (1)从而PC →=(λ,2,-2),BD →=(-1,2, 0), 则cos <PC →,BD →>=PC →·BD →|PC →|·|BD →|=4-λλ2+8×5=1515,解得λ=2; …… 5分(2)易得PC →=(2,2,-2),PD →=(0,2,-2), 设平面PCD 的法向量n =(x ,y ,z ), 则n ·PC →=0,且n ·PD →=0, 即x +y -z =0,且y -z =0, 所以x =0,不妨取y =z =1,则平面PCD 的一个法向量n =(0,1,1), …… 8分 又易得PB →=(1,0,-2),故cos <PB →,n >=PB →·n |PB →|·|n |=-22×5=-105,所以直线PB 与平面PCD 所成角的正弦值为105. ……10分 23.(本小题满分10分)解:(1)S 1=C 11a 1=1,S 2=C 12a 1+C 22a 2=3. ……2分(2)记α=1+52,β=1-52.则S n =15∑n i =1C i n (αi -βi )=15∑n i =0C i n (αi -βi )=15(∑n i =0C i n αi -∑n i =0C i n βi)PA BD (第22题) xy z=15[(1+α)n -(1+β)n ]=15[(3+52)n -(3-52)n ]. ……6分因为(3+52)×(3-52)=1.故S n +2=15{[(3+52)n +1-(3-52)n +1][ (3+52)+(3-52)]-[(3+52)n - (3-52)n]}=3S n +1-S n .所以存在=3λ,使得213n n n S S S +++=恒成立. ……10分。
2019-2020学年江苏省海安高级中学高二上学期12月月考数学试题(解析版)
2019-2020学年江苏省海安高级中学高二上学期12月月考数学试题一、单选题1.命题“0x ∀>,20x x +≥”的否定是( ) A .0x ∀>,20x x +<B .0x ∀>,20x x +≤C .00x ∃>,2000x x +<D .00x ∃>,2000x x +≤【答案】C【解析】根据全称命题的否定变为特称命题,结论否定即可得出选项. 【详解】由全称命题的否定变特称,结论否定,故命题“0x ∀>,20x x +≥”的否定是:00x ∃>,2000x x +<.故选:C 【点睛】本题考查了全称命题的否定,需掌握全称、特称命题的否定变换形式,属于基础题. 2.在ABC ∆中,3AC =,4AB =,6BC =,则ABC ∆的最大内角的余弦值为() A .4348B .14-C .712-D .1124-【答案】D【解析】由三角形的性质可得BC 边最长,所以A 最大,再结合余弦定理222cos 2AB AC BC A AB AC+-=⋅运算可得解.【详解】解:因为BC 边最长,所以A 最大,由余弦定理可得2229163611cos 223424AB AC BC A AB AC +-+-===-⋅⨯⨯,故选D. 【点睛】本题考查余弦定理的应用,考查运算求解能力.3.若{}n a 是首项为1的等比数列,则“869a a >”是“23a >”的() A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 【答案】B【解析】由已知有2a q =,因为869a a >时,则29q >,可得33q q ><-或,即“869a a >”不能推出“23a >”,由3q >可得869a a >,即“23a >”能推出“869a a >”,结合充分必要条件的判断即可得解. 【详解】解:若869a a >时,则29q >,则33q q ><-或,又2a q = 则23a <-或23a >; 若23a q =>时,则6289a q a =>, 即“869a a >”是“23a >”的必要不充分条件, 故选B . 【点睛】本题考查充分条件、必要条件,考查推理论证能力. 4.已知函数11f x x ⎛⎫=+ ⎪⎝⎭,则12f ⎛⎫'-= ⎪⎝⎭( )A .4B .1C .4-D .14-【答案】C【解析】首先根据换元法求出函数()f x 的表达式,再求出导函数即可求解. 【详解】 令()10t t x =≠,则1x t= ()11f t t ∴=+,所以()()110f x x x =+≠()21f x x '∴=-,所以142f ⎛⎫'-=- ⎪⎝⎭.故选:C 【点睛】本题考查了换元法求解析式、求导,需熟记常见函数的导数公式,属于基础题. 5.若数列{}n a 的通项公式是()()132nn a n =--,则1210a a a +++=L( )A .15B .12C .12-D .15-【答案】A【解析】根据通项公式求出前十项,由此求得前十项的和. 【详解】 由于()()132nn a n =--,故1210a a a +++=L ()()()()()()()()()()14710131619222528-++-++-++-++-+3333315=++++=.故选A.【点睛】本小题主要考查数列求和,考查运算求解能力,属于基础题.6.已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方.若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是( ) A .15 B .3C .23D .2【答案】A【解析】结合图像利用三角形中位线定理,将线段长度用坐标表示圆的方程,与椭圆方程联立进一步求解,求出交点坐标即可求解. 【详解】由题意可知2OF OM c ===, 由中位线定理可得124PF OM ==,设(),P x y 可得()22216x y -+=,与椭圆方程22195x y +=联立,解得32x =-或212(舍),点P 在椭圆上且在x轴的上方,求得3,22P ⎛- ⎝⎭所以()02322PFk -==--- 故选:A 【点睛】本题主要考查椭圆的标准方程、椭圆的几何性质,利用数形结合思想,是解答解析几何问题的重要途径.7.△ABC 的三个顶点分别是A(1,-1,2),B(5,-6,2),C(1,3,-1),则AC 边上的高BD 长为 ( ) A .5 BC .4D.【答案】A【解析】设AD u u u r=λAC u u u r ,又AC u u u r =(0,4,-3),则AD u u u r=(0,4λ,-3λ),AB u u u r=(4,-5,0), BD u u u r=(-4,4λ+5,-3λ),由AC u u u r ·BD u u u r=0.得λ=-45,∴BD u u u r =(-4,95,125).∴|BD u u u r|=5.8.直三棱柱ABC -A 1B 1C 1中,∠BCA =90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与AN 所成角的余弦值为( ) A .110B .25C.10D.2【答案】C【解析】以C 为原点,直线CA 为x 轴,直线CB 为y 轴,直线1CC 为z 轴,则设CA=CB=1,则(0,1,0)B ,11(,,1)22M ,A (1,0,0),1(,0,1)2N ,故11(,,1)22BM =-u u u u r ,1(,0,1)2AN u u u r =-,所以cos ,BM AN BM AN BM AN ⋅〈〉==⋅u u u u r u u u ru u u u r u u u r u u u u r u u ur 3=C. 【考点】本小题主要考查利用空间向量求线线角,考查空间向量的基本运算,考查空间想象能力等数学基本能力,考查分析问题与解决问题的能力.9.已知1F 、2F 是双曲线C :22221x y a b-= (00)a b >>,的左、右焦点,若直线y =与双曲线C 在第一象限交于点P ,过P 向x 轴作垂线,垂足为D ,且D 为2OF (O 为坐标原点)的中点,则该双曲线离心率为( ) ABC1D1+【答案】D【解析】 由题意得,连接12,PF PF ,则2POF ∆为等边三角形,所以12OP OF OF ==, 则12PF F ∆为直角三角形,且21,PF c PF =, 又因为122PF PF a -=2c a -=,所以1ce a==,故选D. 点睛:本题考查了双曲线的几何性质——离心率的求解,其中根据条件转化为圆锥曲线的离心率的方程是解答的关键.求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,a c ,代入公式ce a=;②只需要根据一个条件得到关于,,a b c 的齐次式,转化为,a c 的齐次式,然后转化为关于e 的方程(不等式),解方程(不等式),即可得e (e 的取值范围).10.设函数()m f x x ax =+的导函数()21f x x '=+,则数列*1N ()n f n ⎧⎫∈⎨⎬⎩⎭()的前n 项和是( ) A .+1n n B .+2+1n n C .1n n - D .1n n+ 【答案】A【解析】由题意,根据导数,求解,m a 的值,得到数列()1f n ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭,即可求解数列的和. 【详解】由题意,函数()mf x x ax =+,则()1m f x mxa -'=+,又由()21f x x '=+,所以2,1m a ==,即()2f x x x =+,所以()2(1)f n n n n n =+=+,所以()1111(1)1f n n n n n ==-++, 所以()1f n ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前n 项和为111111(1)()()1223111n n n n n =-+-++-=-=+++L ,故选A. 【点睛】本题主要考查了导数的运算及数列的裂项求和问题,其中解答中根据函数的导数,求解数列的通项公式,再由裂项法求解数列的和是解答的关键,着重考查了分析问题和解答问题的能力.二、多选题11.下列结论正确的是( ) A .若22a b >,则11a b< B .若0x >,则44x x+≥ C .若0a b >>,则lg lg a b > D .若0ab >,1a b +=,则114a b+≥ 【答案】BCD【解析】根据不等式的性质举反例可判断A ;利用基本不等式可判断B ;由对数函数的单调性可判断C ;由基本不等式可判断D. 【详解】对于A ,若22a b >,则a b >,当2a =,1b =-时,11a b<不成立,故A 错;对于B ,由0x >,则44x x +≥=,当且仅当2x =取等号,故B 正确; 对于C ,由lg y x =为单调递增函数,由0a b >>,则lg lg a b >,故C 正确;对于D ,由0ab >,1a b +=,则()111124b a a b a b a b ⎛⎫++=+++≥+=⎪⎝⎭,当且仅当12a b ==时取等号,故D 正确; 故选:BCD【点睛】本题考查了基本不等式的性质、基本不等式以及对数函数的单调性,属于基础题. 12.在正方体1111ABCD A B C D -中,下列直线或平面与平面1ACD 平行的是( ) A .直线1A B B .直线1BBC .平面11A DCD .平面11A BC【答案】AD【解析】作出正方体,由线面平行的判定定理可判断A 、B ;由面面平行的判定定理可判断C 、D. 【详解】 如图由11A B D C P ,且1A B ⊄平面1ACD ,1D C ⊂平面1ACD , 故直线1A B 与平面1ACD 平行,故A 正确;直线11BB DD ∥,1DD 与平面1ACD 相交,故直线1BB 与平面1ACD 相交,故B 错误; 由图,显然平面11A DC 与平面1ACD 相交,故C 错误;由11A B D C P ,11AC AC P ,且1111A B A C A =I ,1AC D C C =I , 故平面11A BC 与平面1ACD 平行,故D 正确; 故选:AD 【点睛】本题主要考查了线面平行、面面平行的判定定理,考查了学生的空间想象能力,属于基础题.13.若函数()1xf x e =-与()g x ax =的图象恰有一个公共点,则实数a 可能取值为( ) A .2B .0C .1D .1-【答案】BCD【解析】作出()1xf x e =-的图像,利用数形结合可判断0a ≤满足恰有一个公共点;当0a >时,需直线与曲线相切即可. 【详解】由()1xf x e =-与()g x ax =恒过()0,0,如图,当0a ≤时,两函数图象恰有一个公共点,当0a >时,函数()1xf x e =-与()g x ax =的图象恰有一个公共点,则()g x ax =为()1xf x e =-的切线,且切点为()0,0,由()xf x e '=,所以()001a f e '===,综上所述,0,1a =-或1. 故选:BCD 【点睛】本题考查了指数函数图像、导数的几何意义,考查了数形结合在解题中的应用,属于基础题.三、填空题 14.若01x <<,则181x x+-的最小值是_______; 【答案】942+【解析】将181x x +-变成18(1)18911x x x x x x x x x x+-+--+=++--后再用基本不等式可得. 【详解】 因为181x x +-18(1)x x x x x x+-+-=+11881x xx x-=++⋅+- 19281x xx x-≥+⋅⋅- (当且仅当11x x x x -=-,即12x =时,等号成立) 928=+942=+.故答案为:942+. 【点睛】本题考查了基本不等式求最小值,解题关键是利用11x x =+-将原式变为积为定值的形式,才能用基本不等式.本题属于中档题.15.设()ln x f x ae b x =+,且1'(1),'(1)f e f e=-=,则a b += . 【答案】1 【解析】【详解】 因为,所以,,故,,故a b +=1. 【考点】导数点评:本题先求导,再进行简单的解方程运算即可,属基础题.16.已知三棱锥P ABC -的三条侧棱PA ,PB ,PC 两两互相垂直,且2PA PB PC ===,则三棱锥P ABC -的外接球与内切球的半径比为______.【答案】)3312【解析】将三棱锥放在长方体中,外接球半径即为长方体对角线的一半,内切球的半径利用等体法进行求解. 【详解】以PA ,PB ,PC 为过同一顶点的三条棱,作长方体, 由2PA PB PC ===,可知此长方体即为正方体.设外接圆半径为R ,则4443R ++== 设内切圆半径为r ,则内切圆的圆心到四个面的距离均为r ,由()1133ACP APB PCB ABC PCBS S S S r S AP +++⋅=⋅⋅,解得33r =+ 所以)33132233Rr ==+,故答案为:)3312【点睛】本题主要考查了多面体的内切球外接球问题、等体法求距离,考查了学生的空间想象能力,属于中档题.17.《九章算术》“竹九节”问题;现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则自上而下的第1节的容积为_______,这9节竹子的总容积为_______. 【答案】1322升 20122升【解析】由题意可知12343a a a a +++=,7894a a a ++=, 解得766d =,11322a =,再由959S a =计算可得解.【详解】解:将自上而下各节竹子的容积分别记为1a ,2a ,…,9a , 依题意可得12343a a a a +++=,7894a a a ++=,即1463a d +=①,13214a d +=②,43⨯-⨯②①,得667d =,解得766d =,把766d =代入①,得11322a =, 故9567201996622S a ==⨯=升. 【点睛】 本题考查数学文化与等差数列,考查运算求解能力与应用意识.四、解答题18.已知命题:11p x ∀-≤≤“,不等式2x x m --<0成立”是真命题. (I)求实数m 的取值范围;(II)若:44q m a -<-<是p 的充分不必要条件,求实数a 的取值范围.【答案】(I )()2,+∞(II )[)6,+∞【解析】(Ⅰ)根据命题P 是真命题,得不等式恒成立,将不等式恒成立转化为最大值成立,即可得到;(Ⅱ)先化简命题:44q a m a -<<+,再根据q 是p 的充分不必要条件列式可解得.【详解】(I )由题意2m x x >-在11x -≤≤恒成立,所以2max ()m x x >-(11)x -≤≤,因为221124x x x ⎛⎫-=-- ⎪⎝⎭, 所以2124x x -≤-≤,即2max ()2x x -=, 2m >,所以实数m 的取值范围是()2,+∞(II )由q 得44a m a -<<+,因为q p ⇒,所以42a -≥,,即6a ≥所以实数a 的取值范围是[)6,+∞【点睛】本题考查了不等式恒成立转化为最值成立以及充分不必要条件的应用,属于中档题. 19.设函数f(x)=ax +(a ,b ∈Z),曲线y =f(x)在点(2,f(2))处的切线方程为y =3.(1)求f(x)的解析式;(2)证明:曲线y =f(x)上任一点的切线与直线x =1和直线y =x 所围三角形的面积为定值,并求出此定值.【答案】(1) f(x)=x +;(2)证明见解析【解析】【详解】(1)解 f′(x)=a -, ()()'2023f f ⎧=⎪⎨=⎪⎩解得或因为a ,b ∈Z ,故f(x)=x +.(2)在曲线上任取一点,由f′(x 0)=1-知,过此点的切线 方程为y -=[1-] (x -x 0).令x =1,得y =, 切线与直线x =1的交点为 (1,);令y =x ,得y =2x 0-1,切线与直线y =x 的交点为(2x 0-1,2x 0-1);直线x =1与直线y =x 的交点为(1,1),从而所围三角形的面积为|2x 0-1-1|=2.所以,所围三角形的面积为定值2.20.设数列{}n a 的前n 项和为n S ,且231n n S a =-.(1)求{}n a 的通项公式;(2)若()()1311n n n n b a a +=++,求{}n b 的前n 项和n T ,并比较n T 与1316的大小. 【答案】(1)13-=n n a (2)334232n n T =-⨯+,1316n T < 【解析】(1)由,n n S a 的关系,因为231n n S a =-,则 1122233n n n n n S S a a a ---==-,可得13(2)n n a n a -=…,即数列{}n a 是以1为首项,3为公比的等比数列,运算可得解; (2)由(1)可得1311()23131n n n b -=⨯-++,再累加求和得33344232n n T =-<⨯+,命题可得证.【详解】解:(1)因为231n n S a =-,所以1112231S a a ==-,即11a =, 当2n …时,11231n n S a --=-,则1122233n n n n n S S a a a ---==-, 整理得13(2)n n a n a -=…, 则数列{}n a 是以1为首项,3为公比的等比数列,故1113n n n a a q --==.(2)因为13(1)(1)n n n n b a a +=++,所以113311()(31)(31)23131n n n n n n b --==⨯-++++, 所以0112231311111111[()()()()]23131313131313131n n n T -=⨯-+-+-++-++++++++L , 即31133()22314232n n n T =⨯-=-+⨯+, 因为313416n T <<, 所以1316n T <. 【点睛】本题考查了利用,n n S a 的关系求数列的通项公式及裂项求和法求数列前n 项和,属中档题.21.图1是由菱形ABCD ,平行四边形ABEF 和矩形EFGH 组成的一个平面图形,其中AB =1BE EH ==,π3ABC ∠=,π4ABE ∠=,将其沿AB ,EF 折起使得CD 与HG 重合,如图2.(1)证明:图2中的平面BCE ⊥平面ABEF ;(2)求图2中点F 到平面BCE 的距离;(3)求图2中二面角E AB C --的余弦值.【答案】(1)证明见解析 (2)1 (3) 33【解析】(1)证出CE BE ⊥、CE EF ⊥,利用线面垂直的判定定理以及面面垂直的判定定理即可证出.(2)证出AE BE ⊥,由(1)可得AE ⊥平面BCE ,求出AE 即可求出点F 到平面BCE 的距离.(3)以E 为坐标原点,分别以EB 、EC 、EA 为x 、y 、z 轴建立空间直角坐标系E xyz -,求出平面ABC 的法向量与平面ABE 的法向量,利用向量的夹角即可求出.【详解】(1)由题知,在BEC △中,222BC EC BE =+,所以CE BE ⊥.又在矩形EFGH 中,CE EF ⊥,且EF BE E =I ,所以CE ⊥平面ABEF .又因为CE ⊂平面BCE ,所以平面BEC ⊥平面ABEF .(2)由(1)知:CE ⊥平面ABEF ,所以CE AE ⊥.因为菱形ABCD 中的π3ABC ∠=,所以ABC V 为等边三角形,2AC AB == 所以在Rt AEC △中,2221AE AC CE =-=,1AE =.所以在AEB △中,222AB AE BE =+,AE BE ⊥.又因为平面BCE ⊥平面ABEF ,且平面BCE I 平面ABEF BE =,所以AE ⊥平面BCE .又因为AF P 平面BCE ,所以点F 到平面BCE 的距离为1AE =.(3)以E 为坐标原点,分别以EB 、EC 、EA 为x 、y 、z 轴建立空间直角坐标系E xyz -,所以()0,0,0E ,()1,0,0B ,()0,1,0C ,()0,0,1A .由(1)知平面ABE 的法向量为()0,1,0m EC ==u u u rr , 设平面ABC 的法向量(),,n x y z =r ,因为()1,0,1BA =-u u u r ,()1,1,0BC =-uu u r ,由00n BA n BC ⎧⋅=⎨⋅=⎩u u u v r u u u v r ,得00x z x y -+=⎧⎨-+=⎩,取1x =得,()1,1,1n =r .所以cos 3m n m n θ⋅==r r r r ,即二面角E AB C --的余弦值为3. 【点睛】本题主要考查了面面垂直的判定定理、点到面的距离以及用空间向量求二面角,考查了学生的推理能力和计算能力,属于中档题.22.已知抛物线2:2(02)C x py p =<<的焦点为0,(2,)F M y 是曲线C 上的一点,且52MF =. (1)求C 的方程;(2)直线l 交C 于A 、B 两点,2OA OB k k ⋅=-且OAB ∆的面积为16,求l 的方程.【答案】(1)22x y =;(2)4y =±+【解析】(1)将0(2,)M y 代入22x py =得02y p=,再根据抛物线的定义可得1p =,即可求得抛物线的方程;(2)联立直线与抛物线,根据斜率公式和韦达定理以及三角形的面积公式,即可求解.【详解】(1)由题意,将0(2,)M y 代入22x py =,得02y p=, 又025()222p p MF y p =--=+=,解得1p =, ∴抛物线的方程为22x y =。
江苏省2020版高二上学期数学12月第二次月考试卷A卷
江苏省 2020 版高二上学期数学 12 月第二次月考试卷 A 卷姓名:________班级:________成绩:________一、 单选题 (共 12 题;共 24 分)1. (2 分) (2017 高二上·四川期中) 已知椭圆的左、右焦点分别为上,若的面积的最大值为 12,则椭圆的方程为( ),,点 在椭圆A.B.C.D.2. (2 分) (2019 高二下·南山期末) 已知等差数列 的前 n 项和为 Sn , 若A.6B . 12C . 18D . 363. (2 分) 下列命题中的假命题是( )A.B . “ ”是“”的充分不必要条件C.D . 若 为假命题,则 均为假命题,则 S12=( )4. (2 分) 一动圆过点 A(0,1),圆心在抛物线 y= x2 上,且恒与定直线相切,则直线 l 的方程为( )A . x=1第 1 页 共 12 页B . x= C . y=﹣ D . y=﹣15.(2 分)已知 P 是以为焦点的椭圆上的一点,若,则此椭圆的离心率为( )A.B.C.D.6.(2 分)(2019 高二下·湖北期中) 已知过双曲线的右焦点且倾斜角为的直线仅与双曲线的右支有一个交点,则双曲线的离心率 的取值范围是( )A.B.C.D. 7. (2 分) (2019 高二上·兴宁期中) 原点到直线 A.的距离为( ).B. C.第 2 页 共 12 页D. 8. (2 分) (2020 高二上·钦州期末) 若双曲线 心率 e 的取值范围是( )A.与直线有交点,则离B.C.D.9. (2 分) (2019 高二上·荔湾期末) 设弦,则的周长是( )是椭圆A.的一个焦点, 是经过另一个焦点 的B.C.D.10. (2 分) (2015 高二上·蚌埠期末) 若直线 l 的方向向量为 3,3,﹣6),则( )=(1,1,2),平面 α 的法向量为=(﹣A . l∥αB . l⊥αC . l⊂ α第 3 页 共 12 页D . l 与 α 与斜交 11. (2 分) (2018 高三上·邢台月考) 若双曲线 A. B. C. D.的离心率为 2,则其实轴长为( )12. (2 分) (2019 高三上·北京月考) 双曲线 垂直,则双曲线的离心率为( )的一条渐近线与直线A. B.C. D.二、 填空题 (共 4 题;共 4 分)13. (1 分) (2019 高三上·通州期中) 设等差数列 列 的公差等于________.的前 项和为 ,若,,则数14. (1 分) (2017·南京模拟) 在平面直角坐标系 xOy 中,抛物线 x2=2py(p>0)上纵坐标为 1 的一点到焦 点的距离为 3,则焦点到准线的距离为________.15. (1 分) (2019 高三上·郑州期中) 已知 , , 分别为边,,且,则面积的最大值为________.的三个内角 , , 的对16. (1 分) 已知直二面角 α﹣l﹣β,点 A∈α,AC⊥l,C 为垂足,点 B∈β,BD⊥l,D 为垂足.若 AB=2,第 4 页 共 12 页AC=BD=1,则 CD=________三、 解答题 (共 6 题;共 60 分)17. (10 分) (2017 高二下·中原期末) 已知函数 f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|. (1) 当 a=1 时,求不等式 f(x)≥g(x)的解集; (2) 若不等式 f(x)≥g(x)的解集包含[﹣1,1],求 a 的取值范围.18. (5 分) (2018 高二上·宜昌期末) 已知,,.(Ⅰ)若 是 的充分条件,求实数 的取值范围;(Ⅱ)若,“ 或 ”为真命题,“ 且 ”为假命题,求实数 的取值范围.19. (10 分) (2020 高二下·台州期末) 已知函数.(1) 求的值(2) 若,求的取值范围;20. (10 分) (2020 高三上·浙江月考) 已知点圆 的右焦点,.(1) 求椭圆 的标准方程;在椭圆上,点 为椭(2) 设点 、 两点,求,点 为抛物线 面积 的最大值.上的动点,若过 作抛物线 的切线与椭圆 交于21. (15 分) (2018 高二上·浙江月考) 已知椭圆,过点的直线分别交椭圆于点的左,右焦点为 .(1) 设动点 ,满足,求点 的轨迹方程;,左,右顶点为(2) 当时,求点的坐标;第 5 页 共 12 页(3) 设,求证:直线过 轴上的定点.22. (10 分) (2020·广东模拟) 已知直线 的面积为 16( 为坐标原点).与抛物线 :交于 , 两点,且(1) 求 的方程.(2) 直线 经过 的焦点 且 不与 轴垂直, 与 交于 , 两点,若线段 的垂直平分线与 轴交于点 ,试问在 轴上是否存在点 ,使 不存在,请说明理由.为定值?若存在,求该定值及 的坐标;若第 6 页 共 12 页一、 单选题 (共 12 题;共 24 分)1-1、 2-1、 3-1、 4-1、 5-1、 6-1、 7-1、 8-1、 9-1、 10-1、 11-1、 12-1、二、 填空题 (共 4 题;共 4 分)13-1、 14-1、 15-1、参考答案第 7 页 共 12 页16-1、三、 解答题 (共 6 题;共 60 分)17-1、17-2、18-1、第 8 页 共 12 页19-1、 19-2、 20-1、第 9 页 共 12 页20-2、 21-1、第 10 页 共 12 页21-2、21-3、22-1、22-2、。
江苏省海安高级中学2020届高三上学期12月月考数学试题含解析
高三年级阶段测试(三)数学试卷一.填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上.)1.设全集.若集合,,则.【答案】【解析】因为,所以考点:集合运算2.已知复数满足,则_____________.【答案】【解析】分析:设,代入,由复数相等的条件列式求得的值得答案.详解:由,得,设,由得,即,解得,所以,则.点睛:本题考查复数代数形式的乘除运算,考查了复数相等的条件以及复数模的求法,是基础题,着重考查了考生的推理与运算能力.3.执行如图所示的程序框图,输出的s值为_______.【答案】【解析】【分析】直接模拟运行程序即得解.【详解】s=1-,k=2,s=,k=3,输出s=.故答案为:【点睛】本题主要考查程序框图,意在考查学生对这些知识的掌握水平和分析推理能力. 4.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是_______.【答案】【解析】【分析】利用列举法先求出不超过30的所有素数,利用古典概型的概率公式进行计算即可.【详解】在不超过30的素数中有,2,3,5,7,11,13,17,19,23,29共10个,从中选2个不同的数有45种,和等于30的有(7,23),(11,19),(13,17),共3种,则对应的概率P,故答案为:【点睛】本题主要考查古典概型的概率和组合数的计算,意在考查学生对这些知识的掌握水平和分析推理能力.5.已知双曲线的离心率为,则该双曲线的渐近线方程为__________.【答案】【解析】试题分析:由题意,则,而双曲线的渐近线方程为,因此方法为.考点:双曲线的性质.6.在中,,,,则__________.【答案】【解析】试题分析:考点:正余弦定理解三角形7.方程的解为.【答案】【解析】设,则考点:解指对数不等式8.若圆锥的侧面积与过轴的截面面积之比为,则其母线与轴的夹角的大小为.【答案】【解析】由题意得:母线与轴的夹角为考点:圆锥轴截面【名师点睛】掌握对应几何体的侧面积,轴截面面积计算方法.如圆柱的侧面积,圆柱的表面积,圆锥的侧面积,圆锥的表面积,球体的表面积,圆锥轴截面为等腰三角形.视频9.若,则【答案】【解析】试题分析:∵,∴,∵,∴,∴,∴,故答案为.考点:三角恒更变化.视频10.已知数列和,其中,,的项是互不相等的正整数,若对于任意,的第项等于的第项,则________【答案】2【解析】由,若对于任意的第项等于的第项,则,则所以,所以.11.设函数,若无最大值,则实数的取值范围是__.【答案】【解析】【分析】若f(x)无最大值,则,或,解得答案.【详解】f′(x),令f′(x)=0,则x=±1,若f(x)无最大值,则,或,解得:a∈(﹣∞,﹣1).故答案为:【点睛】本题主要考查导数和分段函数的最值,意在考查学生对这些知识的掌握水平和分析推理能力.12.在锐角三角形中,,为边上的点,与的面积分别为和.过作于,于,则.【答案】【解析】由题意得:,又,因为DEAF四点共圆,因此考点:向量数量积,解三角形13.已知圆O:,定点,过点A的直线l与圆O相较于B,C两点,两点B,C 均在x轴上方,若OC平分,则直线l的斜率为________.【答案】【解析】【分析】由角平分线的定义知,设出点B(x1,y1),由此求出点C的坐标,代入圆的方程求出x1,y1,得出点B的坐标,从而求出直线l的斜率k AB.【详解】由OC平分∠AOB知,,设点B(x1,y1),点C(x,y),则,即(x﹣x1,y﹣y1)(3﹣x,﹣y),由向量相等解得x,y y1;又1, ①x2+y21,∴,②;由①②解得x1,y1=±,∴点B(,);∴直线l的斜率为k AB.故答案为:.【点睛】本题考查了角平分线定理与直线和圆的方程应用问题,是中档题.14.已知正实数a,b满足,则的最小值是_______.【答案】【解析】【分析】由=2a++,代换后利用基本不等式即可求解.【详解】正实数a,b满足2a+b=3,∴2a+b+2=5,则=2a++=2a+b+2+﹣4=1+=1+()[2a+(b+2)]=1+(4+)=,当且仅当且2a+b=3即a=,b=时取等号,即的最小值是.故答案为:【点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误二.解答题(本大题共6小题,共计90分,请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.)15.如图,在四棱锥P−ABCD中,底面ABCD为平行四边形,平面PAD⊥平面ABCD,PA=PD,E,F 分别为AD,PB的中点.(1)求证:PE⊥BC;(2)求证:EF∥平面PCD.【答案】(1)详见解析;(2)详见解析.【解析】【分析】(1)先证明平面PE⊥BC即得证.(2) 取中点,连接.证明,再证明EF∥平面PCD.【详解】(1)∵,且为的中点,∴.∵平面平面,平面平面,∴平面.∵面,∴PE⊥BC.(2)如图,取中点,连接.∵分别为和的中点,∴,且.∵四边形为平行四边形,且为的中点,∴,∴,且,∴四边形为平行四边形,∴.又平面,平面,∴平面.【点睛】本题主要考查空间位置关系的证明,意在考查学生对这些知识的掌握水平和空间想象分析推理能力.16.已知函数="4tan" xsin()cos().(Ⅰ)求f(x)的定义域与最小正周期;(Ⅱ)讨论f(x)在区间[]上的单调性.【答案】(Ⅰ),;(Ⅱ)在区间上单调递增, 在区间上单调递减.【解析】试题分析:(Ⅰ)先利用诱导公式、两角差余弦公式、二倍角公式将函数化为基本三角函数:,再根据正弦函数的性质求定义域、最小正周期;(Ⅱ)根据(Ⅰ)的结论,研究函数f(x)在区间[]上单调性.试题解析:(Ⅰ)的定义域为..所以,的最小正周期(Ⅱ)令函数的单调递增区间是由,得设,易知.所以, 当时,在区间上单调递增,在区间上单调递减.【考点】三角函数性质,诱导公式、两角差余弦公式、二倍角公式【名师点睛】三角函数是以角为自变量的函数,因此解三角函数题,首先从角进行分析,善于用已知角表示所求角,即注重角的变换.角的变换涉及诱导公式、同角三角函数基本关系式、两角和与差的正、余弦公式、二倍角公式、辅助角公式等,选用恰当的公式,是解决三角问题的关键,明确角的范围,开方时正负取舍是解题正确的保证. 对于三角函数来说,常常是先化为y=Asin(ωx+φ)+k的形式,再利用三角函数的性质求解.三角恒等变换要坚持结构同化原则,即尽可能地化为同角函数、同名函数、同次函数等,其中切化弦也是同化思想的体现;降次是一种三角变换的常用技巧,要灵活运用降次公式.视频17.在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市A(看做一点)的东偏南角方向,300 km的海面P处,并以20km / h的速度向西偏北45°方向移动.台风侵袭的范围为圆形区域,当前半径为60 km,并以10km / h的速度不断增大.(1)问10小时后,该台风是否开始侵袭城市A,并说明理由;(2)城市A受到该台风侵袭的持续时间为多久?【答案】(1)否;(2)小时.【解析】【分析】建立直角坐标系,则城市A(0,0),当前台风中心,设t小时后台风中心P 的坐标为(x,y),由题意建立方程组,能求出10小时后,该台风还没有开始侵袭城市A.(2)t小时后台风侵袭的范围可视为以为圆心,60+10t为半径的圆,由此利用圆的性质能求出结果.【详解】(1)如图建立直角坐标系,则城市,当前台风中心,设t小时后台风中心P的坐标为,则,此时台风的半径为,10小时后,km,台风的半径为160km,因为,故10小时后,该台风还没有开始侵袭城市A.(2)因此,t小时后台风侵袭的范围可视为以为圆心,为半径的圆,若城市A受到台风侵袭,则,即,解得答:该城市受台风侵袭的持续时间为12小时.【点睛】本题考查圆的性质在生产生活中的实际应用,是中档题,解题时要认真审题,注意挖掘题意中的隐含条件,合理地建立方程.18.已知椭圆的离心率为,焦距为.斜率为k的直线l与椭圆M有两个不同的交点A,B.(Ⅰ)求椭圆M的方程;(Ⅱ)若,求的最大值;(Ⅲ)设,直线PA与椭圆M的另一个交点为C,直线PB与椭圆M的另一个交点为D.若C,D和点共线,求k.【答案】(Ⅰ)(Ⅱ)(Ⅲ)【解析】分析:(1)根据题干可得的方程组,求解的值,代入可得椭圆方程;(2)设直线方程为,联立,消整理得,利用根与系数关系及弦长公式表示出,求其最值;(3)联立直线与椭圆方程,根据韦达定理写出两根关系,结合三点共线,利用共线向量基本定理得出等量关系,可求斜率.详解:(Ⅰ)由题意得,所以,又,所以,所以,所以椭圆的标准方程为.(Ⅱ)设直线的方程为,由消去可得,则,即,设,,则,,则,易得当时,,故的最大值为.(Ⅲ)设,,,,则①,②,又,所以可设,直线的方程为,由消去可得,则,即,又,代入①式可得,所以,所以,同理可得.故,,因为三点共线,所以,将点的坐标代入化简可得,即.点睛:本题主要考查椭圆与直线的位置关系,第一问只要找到三者之间的关系即可求解;第二问主要考查学生对于韦达定理及弦长公式的运用,可将弦长公式变形为,再将根与系数关系代入求解;第三问考查椭圆与向量的综合知识,关键在于能够将三点共线转化为向量关系,再利用共线向量基本定理建立等量关系求解.19. (本小题满分14分)已知数列与满足:,,且.(Ⅰ)求的值;(Ⅱ)设,证明:是等比数列;(Ⅲ)设证明:.【答案】(Ⅰ)【解析】参考标准答案.本小题主要等比数列的定义、数列求和等基础知识,考查运算能力、推理论证能力、综合分析能力和解决问题的能力及分类讨论的思想方法.视频20.已知函数,.(1)求在点P(1,)处的切线方程;(2)若关于x的不等式有且仅有三个整数解,求实数t的取值范围;(3)若存在两个正实数,满足,求证:.【答案】(1);(2);(3)见解析.【解析】【分析】(1)求出P(1,0),x>0,,f′(1)=1,利用导数的几何意义能求出f(x)在点P(1,f(1))处的切线方程.(2)求出,x>0,则f′(x)=0,得x=e,列表讨论能求出实数t的取值范围.(3)h(x)=x2﹣2x+4lnx,从而(x1+x2)2﹣2(x1+x2)﹣4lnx1x2,令t=x1x2,=t2+2t﹣4lnt,(t>0),…(11分)则=2t+2﹣=,由此利用导数性质能证明x1+x2≥3.【详解】(1),,所以点坐标为;又,,则切线方程为,所以函数在点处的切线方程为.(2)由,得;时,或,满足条件的整数解有无数个,舍;时,,得且,满足条件的整数解有无数个,舍;时,或,当时,无整数解;当时,不等式有且仅有三个整数解,又,,因为在递增,在递减;所以,即,即;所以实数的取值范围为.(3),因为,所以,即,令,,则,当时,,所以函数在上单调递减;当时,,所以函数在上单调递增.所以函数在时,取得最小值,最小值为3.因为存在两个正实数,满足,所以,即,所以或.因为为正实数,所以.【点睛】本题考查函数的切线方程的求法,考查实数取值范围的求法,考查不等式的证明,考查导数的几何意义、导数性质、函数的单调性、最值等基础知识,考查运算求解能力,是难题.。
江苏省海安高级中学2019-2020学年度第一学期第二次阶段检测高二数学(含答案)
江苏省海安高级中学2019-2020学年度第一学期第二次阶段检测高二数学试卷一、选择题:本大题共13小题,每小题4分,共52分.在每小题给出的四个选项中,第1~10题只有一项符合题目要求;第11~13题,有多项符合题目要求,全部选对的得4分,两个都选对但不全的得2分,有选错或只选一个或不选的不得分. 1. 命题“0x ∀>,20x x +≥”的否定是( )A .0x ∀>,20x x +<B .0x ∀>,20x x +≤C .00x ∃>,2000x x +<D .00x ∃>,2000x x +≤2. 在△ABC 中,AC =3,AB =4,BC =6,则△ABC 的最大内角的余弦值为( )A .4348B .14-C .712-D .1124-3. 若{}n a 是首项为1的等比数列,则“869a a >”是“23a >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 4. 已知函数()11f x x +=,则()12f '-=( )A .4B .1C .-4D .14-5. 若数列{}n a 的通项公式是()()132nn a n --=,则1210a a a +++=( )A .15B .12C .-12D .-156. 已知椭圆22195y x +=的左焦点为F ,点P 在椭圆上且在x 轴的上方.若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是( )A B C . D .27. 已知△ABC 的顶点分别为()1,1,2A -,()5,6,2B -,()1,3,1C -,则AC 边上的高BD 等于( )A .5BC .4D .8. 直三棱柱111ABC A B C -中,∠BCA =90°,M ,N 分别是11A B ,11A C 的中点,BC =CA =1CC ,则BM 与AN 所成角的余弦值为( )A .110B .25C D9. 已知1F 、2F 是双曲线C :22221y x a b-=(a >0,b >0)的左、右焦点,若直线y 与双曲线C 在第一象限交于点P ,过P 向x 轴作垂线,垂足为D ,且D 为2OF (O 为坐标原点)的中点,则该双曲线离心率为( )A B C 1 D 1+10.设函数()m f x x ax +=的导数为()21f x x '+=,则数列()1f n ⎧⎫⎨⎬⎩⎭(n *∈N )的前n 项和是( )A .1n n +B .21n n ++C .1n n -D .1n n +11.下列结论正确的是( )A .若22a b >,则11a b <B .若x >0,则44x x+≥C .若a >b >0,则lg lg a b >D .若ab >0,a +b =1,则114a b+≥12.在正方体1111ABCD A B C D -中,下列直线或平面与平面1ACD 平行的是( )A .直线1AB B .直线1BBC .平面11A DCD .平面11A BC 【答案】AD13.若函数()e 1x f x -=与()g x ax =的图象恰有一个公共点,则实数a 可能取值为( ) A .2 B .0 C .1 D .-1若函数()322f x x ax -=(a <0)在()6,23a a +上有最大值,则a 的取值可能为( )A .-6B .-5C .-4D .-3二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡中的横线上.14.若0<x <1,则181x x+-的最小值为 ▲ .已知等差数列{}n a 满足:2355a a a +==,n *∈N ,则数列sin π2na⎧⎫⎛⎫⎨⎬ ⎪⎝⎭⎩⎭的前2019项和等于 ▲ .15.设函数()e ln x f x a b x +=,且()1e f '=,()12f 'a +b = ▲ .在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若△ABC 的面积S ,222sin sin sin sin sin A B C A B ++=,则c 的取值范围为 ▲ .16.已知三棱锥P -ABC 的三条侧棱PA ,PB ,PC 两两互相垂直,且PA =PB =PC =2,则三棱锥P -ABC 的外接球与内切球的半径比为 ▲ .17.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则自上而下的第1节的容积为 ▲ ,这9节竹子的总容积为 ▲ . 三、解答题:本大题共6小题,共82分.解答应写出文字说明,证明过程或演算步骤. 18.(本小题满分12分)已知命题p :“11x ∀-≤≤,不等式20x x m --<成立”是真命题. (1)求实数m 的取值范围;(2)若q :-4<m -a <4是p 的充分不必要条件,求实数a 的取值范围.19.(本小题满分14分)设函数()1f x ax x b++=(a ,b ∈Z ),曲线()y f x =在点()()2,2f 处的切线方程为y =3.(1)求()f x 的解析式;(2)证明:曲线()y f x =上任一点的切线与直线x =1和直线y =x 所围成的三角形的面积为定值,并求出此定值.20.(本小题满分14分)设数列{}n a 的前n 项和为n S ,且231n n S a -=. (1)求数列{}n a 的通项公式; (2)若()()1311nn n n b a a +++=,求{}n b 的前n 项和n T ,并比较n T 与1316的大小.AB()C H ()D G EF图1 B C D EFHGA 图2图1是由菱形ABCD ,平行四边形ABEF 和矩形EFGH 组成的一个平面图形,其中AB BE =EH =1,π3ABC ∠=,π4ABE ∠=,将其沿AB ,EF 折起使得CD 与HG 重合,如图2.(1)证明:图2中的平面BCE ⊥平面ABEF ; (2)求图2中点F 到平面BCE 的距离; (3)求图2中二面角E -AB -C 的余弦值.22.(本小题满分14分)已知抛物线C :22x py =(0<p <2)的焦点为F ,()02,M y 是C 上的一点,且52MF =.(1)求C 的方程;(2)直线l 交C 于A 、B 两点,2OA OB k k ⋅-=且△OAB 的面积为16,求直线l 的方程.已知椭圆C:22214yxa+=(a>2),直线l:y=kx+1(k≠0)与椭圆C相交于A,B两点,D为AB的中点(O为坐标原点).(1)若直线l与直线OD的斜率之积为12-,求椭圆C的方程;(2)在(1)的条件下,y轴上是否存在定点M,使得当k变化时,总有AMO BMO∠∠=.若存在,求出定点M的坐标;若不存在,请说明理由.某市城郊有一块大约500m×500m的接近正方形的荒地,地方政府准备在此建一个综合性休闲广场,首先要建设如图所示的一个矩形体育活动场地,其中总面积为3000平方米,其中阴影部分为通道,通道宽度为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为S平方米.(1)分别用x表示y及S的函数关系式,并给出定义域;(2)请你设计规划该体育活动场地,使得该塑胶运动场地占地面积S最大,并求出最大值江苏省海安高级中学2019-2020学年度第一学期第二次阶段检测高二数学试卷1. 【答案】C 2. 【答案】D 3.【答案】B 4. 【答案】C 5. 【答案】A 6.【答案】A 7.【答案】A 8. 【答案】C 9. 【答案】D 10.【答案】A 11.【答案】BCD 12.【答案】AD 13.【答案】BCD若函数()322f x x ax -=(a <0)在()6,23a a +上有最大值,则a 的取值可能为( )A .-6B .-5C .-4D .-3 【答案】ABC14.若0<x <1,则181x x+-的最小值为 ▲ .【答案】9+已知等差数列{}n a 满足:2355a a a +==,n *∈N ,则数列sin π2na⎧⎫⎛⎫⎨⎬ ⎪⎝⎭⎩⎭的前2019项和等于 ▲ .【答案】015.设函数()e ln x f x a b x +=,且()1e f '=,()12f 'a +b = ▲ .【答案】1在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若△ABC 的面积S ,222sin sin sin sin sin A B C A B ++=,则c 的取值范围为 ▲ .【答案】c ≥216.已知三棱锥P -ABC 的三条侧棱PA ,PB ,PC 两两互相垂直,且PA =PB =PC =2,则三棱锥P -ABC 的外接球与内切球的半径比为 ▲ .【答案】)31217.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则自上而下的第1节的容积为 ▲ ,这9节竹子的总容积为 ▲ .【答案】1322升 20122升18.(本小题满分12分)已知命题p :“11x ∀-≤≤,不等式20x x m --<成立”是真命题. (1)求实数m 的取值范围;(2)若q :-4<m -a <4是p 的充分不必要条件,求实数a 的取值范围. 【答案】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知30A =,a =8,b = (1)求tan B ;(2)若△ABC 不是直角三角形,求△ABC 的面积. 【答案】19.(本小题满分14分)设函数()1f x ax x b++=(a ,b ∈Z ),曲线()y f x =在点()()2,2f 处的切线方程为y =3.(1)求()f x 的解析式;(2)证明:曲线()y f x =上任一点的切线与直线x =1和直线y =x 所围成的三角形的面积为定值,并求出此定值. 【答案】(1)f ′(x )=a -1(x +b )2,于是⎩⎪⎨⎪⎧2a +12+b =3,a -1(2+b )2=0.解得⎩⎪⎨⎪⎧a =1,b =-1,或⎩⎨⎧a =94,b =-83.因为a ,b ∈Z ,故f (x )=x +1x -1.(2)证明:在曲线上任取一点⎝ ⎛⎭⎪⎫x 0,x 0+1x 0-1,由f ′(x 0)=1-1(x 0-1)2知,过此点的切线方程为y -x 20-x 0+1x 0-1=⎣⎢⎡⎦⎥⎤1-1(x 0-1)2(x -x 0).令x =1,得y =x 0+1x 0-1,切线与直线x =1的交点为⎝ ⎛⎭⎪⎫1,x 0+1x 0-1;令y =x ,得y =2x 0-1,切线与直线y =x 的交点为(2x 0-1,2x 0-1);直线x =1与直线y =x 的交点为(1,1),从而所围成的三角形的面积为12⎪⎪⎪⎪⎪⎪x 0+1x 0-1-1|2x 0-1-1|=12⎪⎪⎪⎪⎪⎪2x 0-1|2x 0-2|=2. 所以所围成的三角形的面积为定值2.已知函数()e ax f x x a -⋅=(a >0).(1)求曲线()y f x =在点()()0,0f 处的切线方程; (2)若()0f x <恒成立,求a 的取值范围. 【答案】20.(本小题满分14分)设数列{}n a 的前n 项和为n S ,且231n n S a -=. (1)求数列{}n a 的通项公式; (2)若()()1311nn n n b a a +++=,求{}n b 的前n 项和n T ,并比较n T 与1316的大小.【答案】21.(本小题满分14分)图1是由菱形ABCD ,平行四边形ABEF 和矩形EFGH 组成的一个平面图形,其中AB BE =EH =1,π3ABC ∠=,π4ABE ∠=,将其沿AB ,EF 折起使得CD 与HG 重合,如图2.(1)证明:图2中的平面BCE ⊥平面ABEF ; (2)求图2中点F 到平面BCE 的距离;AB()C H ()D G EF图1BC DEFHGA图2(3)求图2中二面角E -AB -C 的余弦值.【答案】(1)由题知,在BEC ∆中:222BC EC BE =+ 所以BE CE ⊥ ····································· 2分又在矩形EFGH 中:EF CE ⊥ ······· 3分 且E BE EF =所以⊥CE 平面ABEF ······················· 4分 又因为⊂CE 平面BCE所以平面⊥BEC 平面ABEF ············ 5分(2)由(1)知:⊥CE 平面ABEF ,所以CE AE⊥ 因为菱形ABCD 中的3ABC π∠=,所以ABC ∆为等边三角形,AC AB ==,所以在Rt AEC ∆中:222||=||||1,1AE AC CE AE -== ······················································ 6分 所以在AEB ∆中,222||=||||,AB AE BE AE BE +⊥ ······························································ 7分 又因为平面⊥BCE 平面ABEF ,且平面 BCE 平面BE ABEF =所以AE ⊥平面BCE ············································································································· 8分 又因为//AF 平面BCE ,所以点F 到平面BCE 的距离为||1AE = ································· 9分 (3)以E 为坐标原点,分别以EA EC EB 、、为z y x 、、轴建立空间直角坐标系E xyz - 所以)1,0,0(),0,1,0(),0,0,1(),0,0,0(A C B E ······································································· 10分 由(1)知平面ABE 的法向量为(0,1,0)m EC ==, ························································ 11分 设平面ABC 的法向量(,,)n x y z =,因为(1,0,1)BA =-,(1,1,0)BC =-由00n BA n BC ⎧⋅=⎪⎨⋅=⎪⎩,得⎩⎨⎧=+-=+-00y x z x ,取1x =得,(1,1,1)n = ············································· 12分 所以||3cos ||||m n m n θ⋅==,即二面角C AB E -- 14分22.(本小题满分14分)已知抛物线C :22x py =(0<p <2)的焦点为F ,()02,M y 是C 上的一点,且52MF =. (1)求C 的方程;(2)直线l 交C 于A 、B 两点,2OA OB k k ⋅-=且△OAB 的面积为16,求直线l 的方程【答案】(1)将M (2,y 0)代入x 2=2py 得y 0=,又|MF |=y 0﹣(﹣)=+=,∴p =1,∴抛物线的方程为x 2=2y ,-------5分(2)直l 的斜率显然存在,设直线l :y =kx +b ,A (x 1,y 1)、B (x 2,)由得:x 2﹣2kx ﹣2b =0∴x 1+x 2=2k ,x 1x 2=﹣2b由,k OA k OB =•==﹣=﹣2,∴b =4∴直线方程为:y =kx +4,所以直线恒过定点(0,4),原点O到直线l的距离d=,∴S OAB =×d |AB |=ו==2=16,∴4k 2+32=64,解得k =±2所以直线方程为:y =±2x +4.---------14分23.(本小题满分14分)已知椭圆C:22214yxa+=(a>2),直线l:y=kx+1(k≠0)与椭圆C相交于A,B两点,D为AB的中点(O为坐标原点).(1)若直线l与直线OD的斜率之积为12-,求椭圆C的方程;(2)在(1)的条件下,y轴上是否存在定点M,使得当k变化时,总有AMO BMO∠∠=.若存在,求出定点M的坐标;若不存在,请说明理由.【答案】(1)由得,显然,设,,,则,,∴,.∴.∴.所以椭圆方程为.-------6分(2)假设存在定点,且设,由得.∴.即,∴.由(1)知,,∴ . ∴. 所以存在定点使得.------14分某市城郊有一块大约500m ×500m 的接近正方形的荒地,地方政府准备在此建一个综合性休闲广场,首先要建设如图所示的一个矩形体育活动场地,其中总面积为3000平方米,其中阴影部分为通道,通道宽度为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为S 平方米.(1)分别用x 表示y 及S 的函数关系式,并给出定义域;(2)请你设计规划该体育活动场地,使得该塑胶运动场地占地面积S 最大,并求出最大值【答案】(1)由已知30003000,,xy y x=∴=其定义域是(6,500).……………2分 (4)(6)(210),S x a x a x a =-+-=-150015000(210)(3)30306S x x x x∴=--=--,其定义域是(6,500).……………6分 (2)150003030(6)3030303023002430,S x x x x =-+≤-=-⨯=………9分当且仅当15000=6x x,即50(6,500)x =∈时,上述不等式等号成立, 此时,max 5060,2430.x y S ===,………………………………………11分答:设计50m 60m x y ,== 时,运动场地面积最大,最大值为2430平方米. ……12分已知函数)(1ln )(R a xx a x f ∈-=。
2019-2020江苏省海安高级中学2019-2020学年高二12月月考 数学
江苏省海安高级中学2019-2020学年度第一学期第二次阶段检测高二数学试卷编制:王忠一、选择题:本大题共13小题,每小题4分,共52分.在每小题给出的四个选项中,第1~10题只有一项符合题目要求;第11~13题,有多项符合题目要求,全部选对的得4分,两个都选对但不全的得2分,有选错或只选一个或不选的不得分. 1. 命题“0x ∀>,20x x +≥”的否定是( )A .0x ∀>,20x x +<B .0x ∀>,20x x +≤C .00x ∃>,2000x x +<D .00x ∃>,2000x x +≤2. 在△ABC 中,AC =3,AB =4,BC =6,则△ABC 的最大内角的余弦值为( )A .4348B .14-C .712-D .1124-3. 若{}n a 是首项为1的等比数列,则“869a a >”是“23a >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 4. 已知函数()11f x x +=,则()12f '-=( )A .4B .1C .-4D .14-5. 若数列{}n a 的通项公式是()()132nn a n --=,则1210a a a +++=( )A .15B .12C .-12D .-156. 已知椭圆22195y x +=的左焦点为F ,点P 在椭圆上且在x 轴的上方.若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是( )A B C . D .27. 已知△ABC 的顶点分别为()1,1,2A -,()5,6,2B -,()1,3,1C -,则AC 边上的高BD 等于( )A .5BC .4D .8. 直三棱柱111ABC A B C -中,∠BCA =90°,M ,N 分别是11A B ,11A C 的中点,BC =CA =1CC ,则BM 与AN 所成角的余弦值为( )A .110B .25C D9. 已知1F 、2F 是双曲线C :22221y x a b-=(a >0,b >0)的左、右焦点,若直线y 与双曲线C 在第一象限交于点P ,过P 向x 轴作垂线,垂足为D ,且D 为2OF (O 为坐标原点)的中点,则该双曲线离心率为( )A B C 1 D 1+10.设函数()m f x x ax +=的导数为()21f x x '+=,则数列()1f n ⎧⎫⎨⎬⎩⎭(n *∈N )的前n 项和是( )A .1n n +B .21n n ++C .1n n -D .1n n +11.下列结论正确的是( )A .若22a b >,则11a b <B .若x >0,则44x x+≥C .若a >b >0,则lg lg a b >D .若ab >0,a +b =1,则114a b+≥12.在正方体1111ABCD A B C D -中,下列直线或平面与平面1ACD 平行的是( )A .直线1AB B .直线1BBC .平面11A DCD .平面11A BC 【答案】AD13.若函数()e 1x f x -=与()g x ax =的图象恰有一个公共点,则实数a 可能取值为( ) A .2 B .0 C .1 D .-1若函数()322f x x ax -=(a <0)在()6,23a a +上有最大值,则a 的取值可能为( )A .-6B .-5C .-4D .-3二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡中的横线上.14.若0<x <1,则181x x+-的最小值为 ▲ .已知等差数列{}n a 满足:2355a a a +==,n *∈N ,则数列sin π2na⎧⎫⎛⎫⎨⎬ ⎪⎝⎭⎩⎭的前2019项和等于 ▲ .15.设函数()e ln x f x a b x +=,且()1e f '=,()12f 'a +b = ▲ .在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若△ABC 的面积S ,222sin sin sin sin sin A B C A B ++=,则c 的取值范围为 ▲ .16.已知三棱锥P -ABC 的三条侧棱PA ,PB ,PC 两两互相垂直,且PA =PB =PC =2,则三棱锥P -ABC 的外接球与内切球的半径比为 ▲ .17.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则自上而下的第1节的容积为 ▲ ,这9节竹子的总容积为 ▲ . 三、解答题:本大题共6小题,共82分.解答应写出文字说明,证明过程或演算步骤. 18.(本小题满分12分)已知命题p :“11x ∀-≤≤,不等式20x x m --<成立”是真命题. (1)求实数m 的取值范围;(2)若q :-4<m -a <4是p 的充分不必要条件,求实数a 的取值范围.19.(本小题满分14分)设函数()1f x ax x b++=(a ,b ∈Z ),曲线()y f x =在点()()2,2f 处的切线方程为y =3.(1)求()f x 的解析式;(2)证明:曲线()y f x =上任一点的切线与直线x =1和直线y =x 所围成的三角形的面积为定值,并求出此定值.20.(本小题满分14分)设数列{}n a 的前n 项和为n S ,且231n n S a -=. (1)求数列{}n a 的通项公式; (2)若()()1311nn n n b a a +++=,求{}n b 的前n 项和n T ,并比较n T 与1316的大小.AB()C H ()D G EF图1 B C D EFHGA 图221.(本小题满分14分)图1是由菱形ABCD ,平行四边形ABEF 和矩形EFGH 组成的一个平面图形,其中AB BE =EH =1,π3ABC ∠=,π4ABE ∠=,将其沿AB ,EF 折起使得CD 与HG 重合,如图2.(1)证明:图2中的平面BCE ⊥平面ABEF ; (2)求图2中点F 到平面BCE 的距离; (3)求图2中二面角E -AB -C 的余弦值.22.(本小题满分14分)已知抛物线C :22x py =(0<p <2)的焦点为F ,()02,M y 是C 上的一点,且52MF =.(1)求C 的方程;(2)直线l 交C 于A 、B 两点,2OA OB k k ⋅-=且△OAB 的面积为16,求直线l 的方程.23.(本小题满分14分)已知椭圆C:22214yxa+=(a>2),直线l:y=kx+1(k≠0)与椭圆C相交于A,B两点,D为AB的中点(O为坐标原点).(1)若直线l与直线OD的斜率之积为12-,求椭圆C的方程;(2)在(1)的条件下,y轴上是否存在定点M,使得当k变化时,总有AMO BMO∠∠=.若存在,求出定点M的坐标;若不存在,请说明理由.某市城郊有一块大约500m×500m的接近正方形的荒地,地方政府准备在此建一个综合性休闲广场,首先要建设如图所示的一个矩形体育活动场地,其中总面积为3000平方米,其中阴影部分为通道,通道宽度为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为S平方米.(1)分别用x表示y及S的函数关系式,并给出定义域;(2)请你设计规划该体育活动场地,使得该塑胶运动场地占地面积S最大,并求出最大值江苏省海安高级中学2019-2020学年度第一学期第二次阶段检测高二数学试卷1. 【答案】C 2. 【答案】D 3.【答案】B 4. 【答案】C 5. 【答案】A 6.【答案】A 7.【答案】A 8. 【答案】C 9. 【答案】D 10.【答案】A 11.【答案】BCD 12.【答案】AD 13.【答案】BCD若函数()322f x x ax -=(a <0)在()6,23a a +上有最大值,则a 的取值可能为( )A .-6B .-5C .-4D .-3 【答案】ABC14.若0<x <1,则181x x+-的最小值为 ▲ .【答案】9+已知等差数列{}n a 满足:2355a a a +==,n *∈N ,则数列sin π2na⎧⎫⎛⎫⎨⎬ ⎪⎝⎭⎩⎭的前2019项和等于 ▲ .【答案】015.设函数()e ln x f x a b x +=,且()1e f '=,()12f 'a +b = ▲ .【答案】1在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若△ABC 的面积S ,222sin sin sin sin sin A B C A B ++=,则c 的取值范围为 ▲ .【答案】c ≥216.已知三棱锥P -ABC 的三条侧棱PA ,PB ,PC 两两互相垂直,且PA =PB =PC =2,则三棱锥P -ABC 的外接球与内切球的半径比为 ▲ .【答案】)31217.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则自上而下的第1节的容积为 ▲ ,这9节竹子的总容积为 ▲ .【答案】1322升 20122升18.(本小题满分12分)已知命题p :“11x ∀-≤≤,不等式20x x m --<成立”是真命题.(1)求实数m 的取值范围;(2)若q :-4<m -a <4是p 的充分不必要条件,求实数a 的取值范围. 【答案】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知30A =,a =8,b = (1)求tan B ;(2)若△ABC 不是直角三角形,求△ABC 的面积. 【答案】19.(本小题满分14分)设函数()1f x ax x b++=(a ,b ∈Z ),曲线()y f x =在点()()2,2f 处的切线方程为y =3.(1)求()f x 的解析式;(2)证明:曲线()y f x =上任一点的切线与直线x =1和直线y =x 所围成的三角形的面积为定值,并求出此定值. 【答案】(1)f ′(x )=a -1(x +b )2,于是⎩⎪⎨⎪⎧2a +12+b=3,a -1(2+b )2=0.解得⎩⎪⎨⎪⎧a =1,b =-1,或⎩⎨⎧a =94,b =-83.因为a ,b ∈Z ,故f (x )=x +1x -1. (2)证明:在曲线上任取一点⎝ ⎛⎭⎪⎫x 0,x 0+1x 0-1,由f ′(x 0)=1-1(x 0-1)2知,过此点的切线方程为y -x 20-x 0+1x 0-1=⎣⎢⎡⎦⎥⎤1-1(x 0-1)2(x -x 0).令x =1,得y =x 0+1x 0-1,切线与直线x =1的交点为⎝ ⎛⎭⎪⎫1,x 0+1x 0-1;令y =x ,得y =2x 0-1,切线与直线y =x 的交点为(2x 0-1,2x 0-1);直线x =1与直线y =x 的交点为(1,1),从而所围成的三角形的面积为12⎪⎪⎪⎪⎪⎪x 0+1x 0-1-1|2x 0-1-1|=12⎪⎪⎪⎪⎪⎪2x 0-1|2x 0-2|=2. 所以所围成的三角形的面积为定值2.已知函数()e ax f x x a -⋅=(a >0).(1)求曲线()y f x =在点()()0,0f 处的切线方程; (2)若()0f x <恒成立,求a 的取值范围. 【答案】20.(本小题满分14分)设数列{}n a 的前n 项和为n S ,且231n n S a -=. (1)求数列{}n a 的通项公式; (2)若()()1311nn n n b a a +++=,求{}n b 的前n 项和n T ,并比较n T 与1316的大小.【答案】21.(本小题满分14分)图1是由菱形ABCD ,平行四边形ABEF 和矩形EFGH 组成的一个平面图形,其中AB BE =EH =1,π3ABC ∠=,π4ABE ∠=,将其沿AB ,EF 折起使得CD 与HG 重合,如图2.(1)证明:图2中的平面BCE ⊥平面ABEF ; (2)求图2中点F 到平面BCE 的距离;A B ()C H ()D G E F 图1 B C D E F H G A 图2(3)求图2中二面角E -AB -C 的余弦值.【答案】 (1)由题知,在BEC ∆中:222BC EC BE =+所以BE CE ⊥ ····································· 2分又在矩形EFGH 中:EF CE ⊥ ······· 3分 且E BE EF =所以⊥CE 平面ABEF ······················· 4分 又因为⊂CE 平面BCE所以平面⊥BEC 平面ABEF ············ 5分 (2)由(1)知:⊥CE 平面ABEF ,所以CE AE⊥因为菱形ABCD 中的3ABC π∠=,所以ABC ∆为等边三角形,AC AB ==, 所以在Rt AEC ∆中:222||=||||1,1AE AC CE AE -== ······················································ 6分所以在AEB ∆中,222||=||||,AB AE BE AE BE +⊥ ······························································ 7分 又因为平面⊥BCE 平面ABEF ,且平面 BCE 平面BE ABEF =所以AE ⊥平面BCE ············································································································· 8分又因为//AF 平面BCE ,所以点F 到平面BCE 的距离为||1AE = ································· 9分 (3)以E 为坐标原点,分别以EA EC EB 、、为z y x 、、轴建立空间直角坐标系E xyz - 所以)1,0,0(),0,1,0(),0,0,1(),0,0,0(A C B E ······································································· 10分 由(1)知平面ABE 的法向量为(0,1,0)m EC ==, ························································ 11分 设平面ABC 的法向量(,,)n x y z =,因为(1,0,1)BA =-,(1,1,0)BC =-由00n BA n BC ⎧⋅=⎪⎨⋅=⎪⎩,得⎩⎨⎧=+-=+-00y x z x ,取1x =得,(1,1,1)n = ············································· 12分 所以||3cos ||||m n m n θ⋅==,即二面角C AB E -- 14分22.(本小题满分14分)已知抛物线C :22x py =(0<p <2)的焦点为F ,()02,M y 是C 上的一点,且52MF =. (1)求C 的方程;(2)直线l 交C 于A 、B 两点,2OA OB k k ⋅-=且△OAB 的面积为16,求直线l 的方程【答案】(1)将M (2,y 0)代入x 2=2py 得y 0=,又|MF |=y 0﹣(﹣)=+=,∴p =1,∴抛物线的方程为x 2=2y ,-------5分(2)直l 的斜率显然存在,设直线l :y =kx +b ,A (x 1,y 1)、B (x 2,)由得:x 2﹣2kx ﹣2b =0∴x 1+x 2=2k ,x 1x 2=﹣2b由,k OA k OB =•==﹣=﹣2,∴b =4∴直线方程为:y =kx +4,所以直线恒过定点(0,4),原点O到直线l的距离d=,∴S OAB =×d |AB |=ו==2=16,∴4k 2+32=64,解得k =±2所以直线方程为:y =±2x +4.---------14分23.(本小题满分14分)已知椭圆C:22214yxa+=(a>2),直线l:y=kx+1(k≠0)与椭圆C相交于A,B两点,D为AB的中点(O为坐标原点).(1)若直线l与直线OD的斜率之积为12-,求椭圆C的方程;(2)在(1)的条件下,y轴上是否存在定点M,使得当k变化时,总有AMO BMO∠∠=.若存在,求出定点M的坐标;若不存在,请说明理由.【答案】(1)由得,显然,设,,,则,,∴,.∴.∴.所以椭圆方程为.-------6分(2)假设存在定点,且设,由得.∴.即,∴.由(1)知,,∴ . ∴. 所以存在定点使得.------14分某市城郊有一块大约500m ×500m 的接近正方形的荒地,地方政府准备在此建一个综合性休闲广场,首先要建设如图所示的一个矩形体育活动场地,其中总面积为3000平方米,其中阴影部分为通道,通道宽度为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为S 平方米.(1)分别用x 表示y 及S 的函数关系式,并给出定义域;(2)请你设计规划该体育活动场地,使得该塑胶运动场地占地面积S 最大,并求出最大值【答案】(1)由已知30003000,,xy y x=∴=其定义域是(6,500).……………2分 (4)(6)(210),S x a x a x a =-+-=-150015000(210)(3)30306S x x x x∴=--=--,其定义域是(6,500).……………6分 (2)150003030(6)3030303023002430,S x x x x =-+≤-=-⨯=………9分当且仅当15000=6x x,即50(6,500)x =∈时,上述不等式等号成立, 此时,max 5060,2430.x y S ===,………………………………………11分答:设计50m 60m x y ,== 时,运动场地面积最大,最大值为2430平方米. ……12分已知函数)(1ln )(R a xx a x f ∈-=。
江苏省2020年高二上学期数学12月月考试卷A卷
江苏省 2020 年高二上学期数学 12 月月考试卷 A 卷姓名:________班级:________成绩:________一、 单选题 (共 4 题;共 8 分)1. (2 分) 有下列说法:(1)“ ”为真是“ ”为真的充分不必要条件;(2)“ ”为假是“ ” 为真的充分不必要条件;(3)“ ”为真是“ ”为假的必要不充分条件;(4)“ ”为真是“ ”为假 的必要不充分条件。
其中正确的个数为( )A.1B.2C.3D.42. (2 分) 动圆 经过点 圆 的面积( )A . 有最大值 B . 有最小值 C . 有最小值 D . 有最小值, 并且与直线相切,若动圆 与直线总有公共点,则3. (2 分) (2018 高二上·成都月考) 设椭圆的左、右焦点分别为 、 ,是 上的点,,,则 的离心率为( ).A. B. C.D.第1页共9页4. ( 2 分 ) (2019· 金 华 模 拟 ) 如 图 ,是平面,且在平面 内运动,则( )的斜线段,为斜足,点满足A.当时,点 的轨迹是抛物线B.当时,点 的轨迹是一条直线C.当时,点 的轨迹是椭圆D.当时,点 的轨迹是双曲线抛物线二、 填空题 (共 12 题;共 12 分)5. (1 分) (2017 高二上·安阳开学考) 设 F1 , F2 分别是椭圆的左、右焦点,过F1 的直线 l 与 E 相交于 A,B 两点,且|AF2|,|AB|,|BF2|成等差数列,则|AB|的长为________.6. ( 1 分 ) (2020· 丽 江 模 拟 ) 已 知 双 曲 线的两条渐近线均与圆相切,且双曲线的右焦点为圆 的圆心,则双曲线的方程为________.7. (1 分) (2018 高三上·贵阳月考) 若圆 切,则双曲线 的渐近线方程是________.与双曲线 :的渐近线相8. (1 分) (2017·怀化模拟) 已知双曲线 C: ﹣ =1(a>0,b>0)的离心率 e= 顶点到较近焦点的距离为 ﹣1,则双曲线 C 的方程为________,且它的一个9. (1 分) 若点 M 是以椭圆 + =1 的短轴为直径的圆在第一象限内的一点,过点 M 作该圆的切线交椭圆 E 于 P,Q 两点,椭圆 E 的右焦点为 F2 , 则△PF2Q 的周长是________ .10. (1 分) (2017 高二上·阜宁月考) 已知椭圆第2页共9页的焦点分别为,离心率为 ,过 的直线交椭圆于 A、B 两点,则的周长为________.11. (1 分) (2016 高一下·大丰期中) 已知两点 A(﹣2,0),B(0,2),点 C 是圆 x2+y2﹣2x=0 上的任意一 点,则△ABC 的面积最小值是________.12. ( 1 分 ) (2020· 济 宁 模 拟 ) 设 双 曲 线的左、右焦点分别为,过 作 轴的垂线,与双曲线在第一象限的交点为 A,点 Q 坐标为且满足,若在双曲线 C 的右支上存在点 P 使得 ________.成立,则双曲线的离心率的取值范围是13.(1 分)(2019 高三上·浙江月考) 已知点 在圆上,点 在椭圆上,且的最大值等于 ,则椭圆的离心率的最大值等于________,当椭圆的离心率取到最大值时,记椭圆的右焦点为 ,则的最大值等于________.14. (1 分) (2019 高三上·上海月考) 设命题 函数的值域为 ;命题 不等式对一切正实数 均成立,若命题 和 不全为真命题,则实数 的取值范围是________.15. (1 分) (2018 高三上·连云港期中) 椭圆分别作与 垂直的直线交椭圆 与,若的两个顶点 ,则椭圆的离心率________.过 A,B16. (1 分) 某租赁公司拥有汽车 100 辆.当每辆车的月租金为 3000 元时,可全部租出.当每辆车的月租金 每增加 50 元时,未出租的车将会增加一辆.租出的车每辆每月需要维护费 150 元,未租出的车每辆每月需要维护 费 50 元,要使租赁公司的月收益最大,则每辆车的月租金应定为________元.三、 解答题 (共 5 题;共 60 分)17. (10 分) 已知圆 C 的圆心坐标为(3,2),且过定点 O(0,0).(1) 求圆 C 的方程;(2) P 为圆 C 上的任意一点,定点 Q(8,0),求线段 PQ 中点 M 的轨迹方程.18. (10 分) (2018 高二上·儋州月考) 直线 经过点 P(5,5),且和圆 C:相交,截得的弦第3页共9页长为.求 的方程.19. (10 分) (2016 高二上·温州期末) 已知动圆 Q 过定点 F(0,﹣1),且与直线 y=1 相切;椭圆 N 的对称 轴为坐标轴,中心为坐标原点 O,F 是其一个焦点,又点(0,2)在椭圆 N 上.(1) 求动圆圆心 Q 的轨迹 M 的方程和椭圆 N 的方程;(2) 过点(0,﹣4)作直线 l 交轨迹 M 于 A,B 两点,连结 OA,OB,射线 OA,OB 交椭圆 N 于 C,D 两点,求 △OCD 面积的最小值.(3) 附加题:过椭圆 N 上一动点 P 作圆 x2+(y﹣1)2=1 的两条切线,切点分别为 G,H,求 值范围.的取20. (15 分) (2020 高二下·应城期中) 已知点,中 e 为椭圆的离心率.在椭圆上,其(1) 求椭圆 C 的方程;(2) 直线 l 经过 C 的上顶点且 l 与抛物线交于 P,Q 两点,F 为椭圆的焦点,直线 , 与M 分别交于点 D(异于点 ),E(异于点 ),证明:直线 DE 的斜率为定值.21. (15 分) (2017·柳州模拟) 已知椭圆 C: 点 A,B 分别为椭圆 C 的左右顶点,点 P 在椭圆 C 上.(a>b>0)经过点(2, )且离心率等于 ,(1) 求椭圆 C 的方程;(2) M,N 是椭圆 C 上非顶点的两点,满足 OM∥AP,ON∥BP,求证:三角形 MON 的面积是定值.第4页共9页一、 单选题 (共 4 题;共 8 分)1-1、 2-1、 3-1、 4-1、二、 填空题 (共 12 题;共 12 分)5-1、 6-1、 7-1、 8-1、 9-1、 10-1、 11-1、参考答案12-1、13-1、 14-1、第5页共9页15-1、 16-1、三、 解答题 (共 5 题;共 60 分)17-1、17-2、18-1、 19-1、第6页共9页19-2、19-3、第7页共9页20-1、20-2、21-1、21-2、第8页共9页第9页共9页。
江苏省海安高级中学2019-2020学年高二上学期12月月考数学试题
五、解答题
江苏省海安高级中学2019-2020学年高二上学期12月月考数学试题
18. 已知命题
,不等式
成立”是真命题.
(I)求实数 的取值范围;
(II)若
是 的充分不必要条件,求实数 的取值范围.
19. 设函数f(x)=ax+
(a,b∈Z),曲线y=f(x)在点(2,f(2))处的切线方
程为y=3. (1)求f(x)的解析式; (2)证明:曲线y=f(x)上任一点的切线与直线x=1和直线y=x所围三角形的面积为定值, 并求出此定值.
的最小值是_______;
D.平面 D.
15. 设
,且
,则
.
16. 已知三棱锥 ______.
的三条侧棱 , , 两两互相垂直,且
,则三棱锥
的外接球与内切球的半径比为
四、双空题
17. 《九章算术》“竹九节”问题;现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则自上 而下的第1节的容积为_______,这9节竹子的总容积为_______.
A.
B.
C.
D.
9. 已知 、 是双曲线 :
的左、右焦点,若直线
线,垂足为 ,且 为 A.
( 为坐标原点)的中点,则该双曲线离心率为( )
B.
C.
与双曲线 在第一象限交于点 ,过 向 轴作垂 D.
10. 设函数 A.
的导函数 B.
,则数列
的前n项和是( )
C.
D.
二、多选题
11. 下列结论正确的是( )
A.若 C.若
,则 ,则
江苏省海安高级中学2019-2020学年高二上学期12月月考数学试题
江苏省海安高级中学2020学年高一数学12月月考试题(创新班)(最新整理)
B。 ;
C。 ;
D。 .
对于点 , , , ,落在阴影区域内(不含边界)的有_____.
二、填空题(本大题共4小题,每小题4分,共16分,把答案填在题中横线上)
14。已知角 的终边过点 ,则 ____________。
15.已知数列 的前n项和为 ,且 ,则 等于____________。
16.函数 ( )是区间 上的增函数,则 的取值范围
是_____________.
17.已知 的终边与单位圆交于点 ,点 关于直线 对称后的点为 ,点 关于 轴对称后的点为 ,设角 终边为射线 。
(1) 与 的关系为______;
(2)若 ,则 ______。
三、解答题(本大题共6小题,共82分。18题12分,其余每题14分,解答应写出文字说明,证明过程或演算步骤)
C.若 , ,则 D.若 , ,则
6。 在锐角△ABC中,角A,B,C的对边分别为a,b,c,若b=2asinB,则A=( )
A。30° B.45° C.60° D.75°
7.已知数列 的前n项和为 ,且 ,则 等于( )
A.4 B.2 C.1 D.-2
8. 函数 的图象如图所示,为了得到函数 的图象,可以把函数 的图象 ( )
22.某水产养殖户制作一体积为 立方米的养殖网箱(无盖),网箱内部被隔成体积相等的三块长方体区域(如图),网箱。上底面的一边长为 米,网箱的四周与隔栏的制作价格是 元/平方米,网箱底部的制作价格为 元/平方米.设网箱上底面的另一边长为 米,网箱的制作总费用为 元。
(1)求出 与 之间的函数关系,并指出定义域;
又因为 , 平面 , 平面 , ,
可得 平面 ,则 ,
由四边形 是菱形,可得 ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省海安高级中学2020学年高二数学12月月考试题(无答案)
(I 卷)
一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卡相应的位置上)
1.已知椭圆C :110
22
=+y x ,则它的右准线方程为 ▲ . 2.命题“若0x >,则20x ≥”的否定为 ▲ .
3.设x ∈R ,则234x x ->是2x >的 ▲ .条件(填“充分不必要”,“必要不充分”,“充要”,“既不充分也不必要”).
4.已知等差数列{}n a 的前n 项和为n S ,若23108a a a ++=,则9S = ▲ .
5.已知实数x ,y 满足约束条件⎪⎩
⎪⎨⎧≤≤≥-+2,2,02y x y x ,则z =2x +y 的最小值是 ▲ .
6.已知()f x '是函数()sin cos f x x x =-的导函数,实数α满足()()3f f αα'=,则tan 2α的值为
▲ .
7.过点()1,2M 的直线l 与圆C :()()22
3425x y -+-=交于,A B 两点,C 为圆心,当ACB ∠最小时,直线l 的方程是 ▲ .
8.已知双曲线()22
2210,0x y a b a b
-=>>的渐近线与圆22650x y y +-+=相切,则双曲线离心率的值是 ▲ .
9.若命题“x R ∃∈,210x ax -+<”是真命题,则实数a 的取值范围是 ▲ .
10.已知双曲线22
221(0,0)x y a b a b
-=>>
2y =的焦点重合,则该双曲线的方程为 ▲ .
11.已知直线03=--by ax 与x
xe x f =)(在点P (1,e )处的切线相互垂直,则=b
a ▲ . 12.在等腰梯形ABCD 中,AB ∥CD ,2AB =,1AD =,60DAB ∠=︒,若3BC CE =u u u r u u u r ,
AF AB λ=u u u r u u u r ,且1AE DF ⋅=-u u u r u u u r ,则实数λ的值为 ▲ .
13.设集合⎭⎬⎫⎩⎨⎧=+-=22(|),(222m y x y x A ),{}R y x m y x m y x B ∈+≤+≤-=,,21|),(,若B A ⊆,则实数m 的取值范围是 ▲ .
14.()331f x ax x =-+对于[]1,1x ∈-总有()f x ≥0 成立,则a = ▲ .
二、解答题:(本大题共6道题,计90分.解答应写出必要的文字说明、证明过程或演算
步骤)
15.(本题14分)
已知命题关于
的方程有实数根,命题.
(1)若
是真命题,求实数的取值范围; (2)若
是的必要非充分条件,求实数
的取值范围.
16.(本题14分)
如图,在直三棱柱ABC-A 1B 1C 1中,D ,E 分别为AB ,AC 的中点.
(1)证明:B 1C 1∥平面A 1DE ;
(2)若平面A 1DE ⊥平面ABB 1A 1,证明:AB ⊥DE.
17.(本小题满分14分)
在数列{}n a ,{}n b 中,已知12a =, 14b =,且n a ,n b -,1n a +成等差数列,n b ,n a -,
1n b +也成等差数列,数列{}n b 的前n 项和为n S .
(1)求证: {}n n a b +是等比数列;
(2)求n a 及n S ;
18.(本小题满分16分)
某中学新校区内有一块以O 为圆心,R (单位:米)为半径的半圆形荒地(如图),学校计划
对其开发利用,其中弓形BCD 区域(阴影部分)用于种植观赏植物,△OBD 区域用于种植花卉出售,其余区域用于种植草皮出售。
已知种植观赏植物的成本是每平方米20元,种植花卉的利润是每平方米80元,种植草皮的利润是每平方米30元。
(1)设BOD θ∠=(单位:弧度),用θ表示弓形BCD 的面积()S f θ=弓
(2)如果该校邀请你规划这块土地。
如何设计BOD ∠的大小才能使总利润最大?并求出该最大值
19.(本题16分)
在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b
+=>>的离心率是3,且直线
1l :1x y a b
+=被椭圆C (1)求椭圆C 的标准方程; (2)若直线1l 与圆D :22640x y x y m +--+=相切:
(i )求圆D 的标准方程;
(ii )若直线2l 过定点()3,0,与椭圆C 交于不同的两点E 、F ,与圆D 交于不同
的两点M 、N ,求EF MN ⋅的取值范围.
20.(本题16分)
设函数2
()ln f x x bx a x =+-
(1)若2x =是函数()f x 的极值点,1和0x 是函数()f x 的两个不同零点,且()0,1,x n n n N ∈+∈,
求n ;
(2)若对任意[]2,1b ∈--,都存在()1,x e ∈(e 为自然对数的底数),使得()0f x <成
立,求实数a 的取值范围.
数学附加题
(II 卷)
1.(本题10分) 已知函数()sin(2)6f x x x π=-
,求()f x 在6x π=处的切线方程.
2.(本题10分)
如图,已知定点R (0,-3),动点P ,Q 分别在x 轴和y 轴上移动,延长PQ 至
点M ,使PQ →=12
QM →,且PR →·PM →=0.求动点M 的轨迹C 1;
3.(本题10分)
如图,已知正方形ABCD 和矩形ACEF 所在的平面互相垂直,2AB =,1AF =,M
B 是线段EF 的中点.
(1))求二面角A DF B --的大小;
(2)试在线段AC 上确定一点P ,使PF 与BC 所成的角是60o .
4.(本题10分)
如图,已知抛物线C :y 2=4x 的焦点为F ,过F 的直线l 与抛物线C 交于点A (x 1,y 1)(y 1>0),和点B (x 2,y 2),T 为抛物线的准线与x 轴的交点.
(1)若TA →·TB →=1,求直线l 的斜率;
(2)求∠ATF 的最大值.。