2.2。2等差数列前n项和
2.2.2等差数列的通项公式(第4课时)等差数列前n项和的性质 学案(含答案)
2.2.2等差数列的通项公式(第4课时)等差数列前n项和的性质学案(含答案)第4课时等差数列前n项和的性质学习目标1.会利用等差数列性质简化求和运算.2.会利用等差数列前n 项和的函数特征求最值知识点一等差数列an的前n项和Sn的性质性质1等差数列中依次k项之和Sk,S2kSk,S3kS2k,组成公差为k2d的等差数列若等差数列的项数为2nnN*,则S2nnanan1,S 偶S奇nd,S奇0;性质2若等差数列的项数为2n1nN*,则S2n12n1anan是数列的中间项,S奇S偶an,S奇0知识点二等差数列an的前n项和公式与函数的关系1将公式Snna1变形,得Snn2n.若令A,a1B,则上式可以写成SnAn2Bn,1等差数列前n项和Sn不一定是关于n的二次函数当公差d0时,Snna1,不是项数为n的二次函数当d0时,此公式可看成二次项系数为,一次项系数为,常数项为0的二次函数,其图象为抛物线yx2x上的点集,坐标为n,SnnN*因此,由二次函数的性质可以得出结论当d0时,Sn有最小值;当d0时,Sn有最大值2关于n的二次函数也不一定是等差数列的前n项和,由SnAn2BnC,当C0时,Sn不是某等差数列的前n项和;当C0时,令A,a1B,则能解出a1和d,因此这时一定是某等差数列的前n项和2若an为等差数列,公差为d,则为等差数列,公差为.1等差数列的前n项和一定是常数项为0的关于n的二次函数2等差数列an的前n项和SnAn2Bn.即an 的公差为2A.3若等差数列an的公差为d,前n项和为Sn.则的公差为.4数列an的前n项和Snn21,则an不是等差数列题型一等差数列前n项和的性质的应用例11等差数列an的前m项和为30,前2m项和为100,求数列an的前3m项的和S3m;2已知某等差数列an共有10项,若其奇数项之和为15,偶数项之和为30,求其公差解1在等差数列中,Sm,S2mSm,S3mS2m成等差数列,30,70,S3m100成等差数列27030S3m100,S3m210.2依题意有a1a3a5a7a915,a2a4a6a8a1030,得5d15,d3.反思感悟等差数列前n项和Sn的有关性质在解题过程中,如果运用得当可以达到化繁为简.化难为易.事半功倍的效果跟踪训练11等差数列an的前n项和为Sn,若S33,S69,则S9________.2等差数列an的公差为,且S100145,则奇数项的和a1a3a5a99________.答案118260解析1S3,S6S3,S9S6成等差数列,2S6S3S3S9S6,即2933S99,S918.2设a1a3a5a99S奇,a2a4a6a100S偶,则S奇S偶S100145.S偶S奇50d25.得2S奇120,S奇60.题型二Sn与函数的关系命题角度1SnAn2Bn的应用例21两个等差数列an,bn的前n项和分别为Sn和Tn,已知,求的值解方法一设Snk7n22n,Tnkn23n,k0,则a5S5S4k75225k7422465k,b5T5T4k5235k423412k..方法二.2已知an为等差数列,Sn为数列an的前n项和,且S77,S1575,求数列的前n项和Tn.解设等差数列an的公差为d,则Snna1d.S77,S1575,即解得a1d2,,数列是等差数列,且其首项为2,公差为.Tnn2nnN*反思感悟将等差数列前n项和公式Snna1d整理成关于n的函数,可得Snn2n.即Snna1dn2n,利用Sn与函数的关系可以使运算更简便跟踪训练21在例21的条件下,求的值2已知等差数列an的前n项和为Sn,若S33,S515,求S9.解1设Snk7n22n,Tnkn23n,则a565k,b6T6T5k6236k523514k,.2为等差数列,设公差为d,则d1,n3d1n3n2,927,S97963.命题角度2等差数列an的前n项和Sn的最值例3在等差数列an中,若a125,且S9S17,求Sn的最大值解方法一S9S17,a125,925d1725d,解得d2.Sn25n2n226nn132169.当n13时,Sn有最大值169.方法二同方法一,求出公差d2.an25n122n27.a1250,由得又nN*,当n13时,Sn有最大值169.方法三同方法一,求出公差d2.S9S17,a10a11a170.由等差数列的性质得a13a140.a130,a140.当n13时,Sn有最大值169.方法四同方法一,求出公差d2.设SnAn2Bn.S9S17,二次函数fxAx2Bx的对称轴为x13,且开口方向向下,当n13时,Sn取得最大值169.反思感悟1等差数列前n项和Sn取得最大小值的情形若a10,d0,则Sn 存在最大值,即所有非负项之和若a10,d0,则Sn存在最小值,即所有非正项之和2求等差数列前n项和Sn最值的方法寻找正.负项的分界点,可利用等差数列性质或利用或来寻找运用二次函数求最值跟踪训练3已知等差数列an中,a19,a4a70.1求数列an的通项公式;2当n为何值时,数列an的前n 项和取得最大值解1由a19,a4a70,得a13da16d0,解得d2,ana1n1d112nnN*2方法一由1知,a19,d2,Sn9n2n210nn5225,当n5时,Sn取得最大值方法二由1知,a19,d20,an是递减数列令an0,则112n0,解得n.nN*,n5时,an0,n6时,an0.当n5时,Sn取得最大值数形结合感悟事物本质典例在等差数列an中,a17,公差为d,前n项和为Sn,当且仅当n8时Sn取得最大值,则d的取值范围为________答案解析方法一由当且仅当n8时Sn 最大,知a80且a90,于是解得1d,故d的取值范围为.方法二Snn2n,由题意知d0,对称轴x,n8时,Sn取最大值7.58.5,即87,d.素养评析利用数形结合抓住事物本质,解决问题才能思路清晰,方法简捷等差数列ana10,d0或a10,d0中,andna1d,其图象为ydxa1d上的一系列点,要求Sn的最大小值,只需找出距x轴最近的两个点;Snn2n,其图象为yx2x上的一系列点要求Sn的最大小值,只需找出距对称轴最近的点.1若数列an的前n项和Snn22n,则an1an的值为A1B2C3D4答案B解析由Snn22n可判断an为等差数列,公差为2.an1an2.2若等差数列an的前5项和为25,则a3的值为A2B3C4D5答案D解析S55a325,a35.3设Sn是等差数列an的前n项和,已知a23,a611,则S7________.答案49解析S77749.4等差数列an中,若公差为2,a1a4a76,则a3a6a9________.答案18解析a3a6a9a1a4a7a3a1a6a4a9a76d12,a3a6a912618.5等差数列an中,公差d0,前n项和为Sn,S100,则Sn 取最小值n________.答案5解析S100,可设Snnn10,对称轴n5,且d0.n5时,Sn最小1等差数列an的前n项和Sn,有下面几种常见变形1Sn;2Snn2n;3n.2求等差数列前n项和最值的方法1二次函数法用求二次函数的最值方法来求其前n项和的最值,但要注意nN*,结合二次函数图象的对称性来确定n的值,更加直观2通项法当a10,d0,时,Sn取得最大值;当a10,d0,时,Sn取得最小值。
等差数列的前n项和教案
等差数列的前n项和教案一、教学目标1. 理解等差数列的概念及其性质。
2. 掌握等差数列的前n项和的计算公式。
3. 能够运用等差数列的前n项和公式解决实际问题。
二、教学重点1. 等差数列的概念及其性质。
2. 等差数列的前n项和的计算公式。
三、教学难点1. 等差数列的前n项和的公式的推导过程。
2. 运用等差数列的前n项和公式解决实际问题。
四、教学方法1. 采用问题驱动法,引导学生主动探究等差数列的前n项和的计算方法。
2. 通过实例分析,让学生掌握等差数列的前n项和的应用。
3. 利用数形结合法,帮助学生直观地理解等差数列的前n项和的性质。
五、教学内容1. 等差数列的概念及其性质。
2. 等差数列的前n项和的计算公式。
3. 等差数列的前n项和的性质。
4. 运用等差数列的前n项和公式解决实际问题。
第一章:等差数列的概念及其性质1.1 等差数列的定义1.2 等差数列的性质1.3 等差数列的通项公式第二章:等差数列的前n项和的计算公式2.1 等差数列前n项和的定义2.2 等差数列前n项和的计算公式2.3 等差数列前n项和的性质第三章:等差数列的前n项和的性质3.1 等差数列前n项和的单调性3.2 等差数列前n项和的奇偶性3.3 等差数列前n项和的最值问题第四章:运用等差数列的前n项和公式解决实际问题4.1 等差数列前n项和在实际问题中的应用4.2 等差数列前n项和的优化问题4.3 等差数列前n项和与数学竞赛第五章:等差数列的前n项和公式的推导过程5.1 等差数列前n项和公式的推导方法5.2 等差数列前n项和公式的证明5.3 等差数列前n项和公式的拓展与应用六、等差数列的前n项和的图形直观6.1 等差数列前n项和的图形表示6.2 等差数列前n项和的图形性质6.3 等差数列前n项和的图形应用7.1 等差数列前n项和的数值方法7.2 等差数列前n项和的数值例子7.3 等差数列前n项和的数值分析八、等差数列的前n项和的实际应用8.1 等差数列前n项和在经济学中的应用8.2 等差数列前n项在工程学中的应用8.3 等差数列前n项在和生物学中的应用九、等差数列的前n项和的问题拓展9.1 等差数列前n项和的相关问题拓展9.2 等差数列前n项和的问题研究进展9.3 等差数列前n项和的问题解决策略十、等差数列的前n项和的教学设计10.1 等差数列前n项和的教学目标设计10.2 等差数列前n项和的教学方法设计10.3 等差数列前n项和的教学评价设计重点和难点解析一、等差数列的概念及其性质补充和说明:等差数列是一种常见的数列,其特点是相邻两项的差值是常数。
2.2.2等差数列的前n项和
2.2.2等差数列的前n 项和1、掌握等差数列前项和公式及其推到方法;2、能够利用等差数列前n 项和公式解决一些简单的等差数列问题;3、熟练掌握等差数列中的五个基本量n n a S n d a ,,,,1之间的关系并能够做到知三求二。
一、复习回顾1.等差数列的概念2.等差数列的通项公式3.等差数列的性质二、新课导学※ 探索新知探究1:1.如图堆放着一堆钢管,最上层放了4根,下面每一层比上一层多放一根,共7层,这堆钢管共有多少根?这个问题可以看成是求等差数列4,5,6,7,8,9,10的和。
2.1+2+3+…+100=?如何计算更简便?这个问题,可看成是求等差数列 1,2,3,…,n ,…的前100项的和。
问题:我们如何求一个以a 1为首项,d 为公差的等差数列的前n 项和呢? 设等差数列{a n }前n 项的和为S n ,即S n =a 1+a 2+…+ a n所以Sn=_______ ______(公式1,已知___和___时用此公式)尝试练习1:等差数列{a n }中a 1=-4,a 8=-18,n=8,求S n ?当求一个等差数列前n 项和时,若知a 1,d ,但未知a n ,那又该如何求Sn 呢?刚刚学习了2)(1n n a a n S +=,an 如何用a 1,d 来表示呢?自己尝试把a n 的表达式代入? S n =_____________(公式2,已知___和___时用此公式)尝试练习2:等差数列{a n }中,已知a 1=5,d=3, 求这个数列的前10项的和。
等差数列前n 项和公式:公式一:公式二:两个公式的共同点是需知 a 1和 n ,不同点是前者还需知 a n ,后者还需知 d ,解题时需根据已知条件决定选用哪个公式。
在两个求和公式中,各有五个元素,只要知道其中三个元素,结合通项公式就可求出另两个元素.(知三求二) 记忆公式:用梯形面积公式记忆等差数列前n 项和公式,这里对图形进行了割、补两种处理,对应着等差数列前n 项和的两个公式.例1.已知等差数列}{n a 中,(1)751=a ,1057=a , 求7S ;(2)101-=a ,4=d , 54=n S ,求n ;(3)255=S ,10010=S ,求1a 及d 。
等差数列的前N项和
等差数列的前n项和公式类同于
梯形的面积公式
;
用梯形面积公式记忆等差数列前n项和公式, 这里对图形进行了割、补两种处理,对应着等差 数列前n项和的两个公式.
n
返回
三、等差数列前n项和公式的应用: 例1 某长跑运动员7天里每天的训练量(单位: m)是: , 8000 , 8500 , 9000 , 9500 , 10000 ,10500 这位运动员7天共跑了多少米? 解:这位长跑运动员每天的训练量成等差数列 记为{an}, 其中 a1=7500, a7=10500. 有等差数列前n项和公式知 Sn=7(a1+a7)/2=63000 答:这位长跑运动员7天共跑了63000m
3、等差数列4,3,2,1,…前多少项的和是-18?
4、所有被7除余3的两位数之和为____________.
五、综合提升
例1.在等差数列{an}中,a4=0.8,a11=2.2, 求a51+a52+„+a80
a1 3d 0.8 解 :由 通 项 公 式得 , a1 10d 2.2
二、等差数列前n项和公式的推导: 设等差数列{an},Sn为前n项和, Sn=a1+a2+…+an-1+an (1)
若把次序颠倒,Sn=an+an-1+…+a2+a1 (2)
又因
a1+an=a2+an-1=a3+an-2=…
(1)+(2),得2sn=(a1+an)+(a1+an)+(a1+an)+..
(3)等差数列的性质
等差数列的性质: 等差数列﹛an﹜中,如果m+n=p+q (m,n,p,q∈N),那么: an+am=ap+aq
2.2.2等差数列的前n项和公式3
已知 S n 7 n 45 ,则 a n 为整数的正整数 n
Tn n 3bn来自的个数是()A.2 B.3 C .4 D.5
例 (1)等差数列{an}的前n项和为Sn, 若S12=84,S20=460,求S28
(2)等差数列{an}中,S4=1,S8=4, 则a17+a18+a19+a20=
谢谢聆听!
2.2.2等差数列的前n项和公式3
任课教师:
&2.2.2等差数列的前n项和(3)
例1、(1)在等差数列{an}中,已知 a5+a10=58,a4+a9=50,求它的前10项 之和S10;
(2)已知{an}为等差数列,Sn=m,Sm=n, 其中m、n∈N*,求Sm+n
(3)在等差数列{an}中,公差为d,已知
例、设Sn是等差数列{an}的前n项和,
(1)S3 1,则 S6
;
S6 3
S12
(2)a5 5,则S9
。
a3 9
S5
例、设 S n , T n是等差数列 {a n }和 {bn }的前 n 项和,
已知 S n 7 n 45 ,则 a 5
。
Tn n 3
b5
变式:设 S n , T n是等差数列 {a n }和 {bn }的前 n 项和,
10
S10=4S5,则ad1
.
例2、设数列{an}为等差数列,其前n项和 为Sn,且S4=-62,S6=-75 (1)求通项an及前n项和Sn; (2)求|a1|+|a2|+|a3|+……+|an|的值。
例、
1.项数为 2n的等差数列 {an}中
求证(1) S偶 S奇 nd;
2.2.2等差数列前n项和公式
练习3 已知一个共有n项的等差数列前4项之 和为26,末四项之和为110,且所有项的和为 187,求n.
n=11
提示:a1+a2+a3+a4=26
a1+an=34
an+an-1+an-2+an-3=110
Sn
n(a1 2
an )
34n 2
187,n
11
课堂小结
1.等差数列前n项和的公式;(两个)
解:(1)由已知得 12a1+6×11d>0
13a1+13×6d<0
24 d 3 7
(2)
∵
Sn
na1
1 2
n(n
1)d
1
n(12 2d ) n(n 1)d
2
d n2 (12 5d )n
2
2 5 12
∴Sn图象的对称轴为 n
由(1)知 24 7
+ S =100 + 99 + 98 + … + 3 + 2 + 1
2S = 101 +101+101 + … + 101 + 101 + 101
100101
S=
2
=5050
实例2
如图,表示堆放的钢管共8层,自上而下各 层的钢管数组成等差数列4, 5, 6, 7, 8, 9, 10, 11, 求钢管的总数 .
Sn
n(a1 2
an )
Sn
na1
n(n 1) 2
d
2.等差数列前n项和公式的推导方法— —倒序相加法;
等差数列的前n项和PPT优秀课件1
(2)100元“零存整取”的月利息为 100×1.725‰=0.1725(元), 存3年的利息是
0.1725×(1+2+3+……+36)=114.885(元), 因此李先生多收益
179.82-114.885×(1-20%)=87.912元.
答:李先生办理“教育储蓄”比“零存整 取”多收益87.912元
解:(1)100元“教育储蓄”存款的月利息是 100×2.7‰=0.27(元), 第1个100元存36个月,得利息0.27×36(元); 第2个100元存35个月,得利息0.27×35(元); ………… 第36个100元存1个月,得利息0.27×1(元),
此时李先生获得利息
0.27×(1+2+3+……+36)=179.82(元), 本息和为3600+179.82=3779.82元;
解 得 30AB2
S 3 0 9 0 0 A 3 0 B 3 0 ( 3 0 A B ) 6 0
解法三: 设a1+a2+……+a10=A, a11+a12+……+a20=B,
a21+a22+……+a30=C, 则A,B,C成等差数列, 且A=10,A+B=30, 解得B=20,
2.2.2等差数列的前n项和
如图堆放一堆钢管,最上一层放了4根, 下面每一层比上一层多放一根,共8层,这 堆钢管共有多少根?
这堆钢管从上到下的数 量组成一个等差数列。
其中a1=4,公差d=1. 最下一层中a8=11。
即求4+5+6+……+11=?
我们设想,在这堆钢管旁,如图所示堆放同 样数量的钢管,这时每层都有钢管(4+11)根.
《步步高 学案导学设计》2013-2014学年 高中数学 人教B版必修5【配套备课资源】第二章2.2.2(一)
整理得n2+13n-420=0.解之得n=15,n=-28(舍去). 第2次相遇是在开始运动后15分钟.
小结 建立等差数列的模型时,注意相遇时甲、乙两人的路程 和是两个等差数列的前n项和.
研一研·问题探究、课堂更高效
2.2.2(一)
跟踪训练3 现有200根相同的钢管,把它们堆成正三角形垛, 要使剩余的钢管尽可能少,那么剩余钢管的根数为( B ) A.9
解之得n=4. 又由an=a1+(n-1)d,即-512=1+(4-1)d, 解之得d=-171.
研一研·问题探究、课堂更高效
例2
2.2.2(一)
(1)等差数列{an}的前m项和为30,前2m项和为100,求数列{an} Sn Tn =
的前3m项的和S3m; (2)两个等差数列{an},{bn}的前n项和分别为Sn和Tn,已知
研一研·问题探究、课堂更高效
2.2.2(一)
例3 甲、乙两物体分别从相距70 m的两处同时相向运动,甲第1 分钟走2 m,以后每分钟比前1分钟多走1 m,乙每分钟走5 m. (1)甲、乙开始运动后几分钟相遇? (2)如果甲、乙到达对方起点后立即返回,甲继续每分钟比前
本 课 时 栏 目 开 关
1分钟多走1 m,乙继续每分钟走5 m,那么开始运动几分钟 后第二次相遇?
2.2.2(一)
2.2.2 等差数列的前n项和(一)
学习要求 1.理解等差数列前n项和公式的推导过程. 2.熟练掌握等差数列的五个量a1,d,n,an,Sn的关系,能够由
本 课 时 栏 目 开 关
其中三个求另外两个. 3.掌握等差数列前n项和公式及性质的应用. 学法指导 1.运用等差数列的前n项和公式的关键在于准确把握它们的结构 特征,这样才能根据具体情境(已知条件和待求目标)选用恰当 的公式解决问题. 2.要善于从推导等差数列的前n项和公式中,归纳总结出一般的 求和方法——倒序相加法.
等差数列的前n项和公式的性质省公开课获奖课件市赛课比赛一等奖课件
(1)当1≤n≤6(n∈N*)时, Tn=|a1|+|a2|+…+|an|=a1+a2+…+an=12n-n2.
(2)当n≥7(n∈N*)时,Tn=|a1|+|a2|+…+|an| =(a1+a2+…+a6)-(a7+a8+…+an) =-(a1+a2+…+an)+2(a1+…+a6) =-Sn+2S6=n2-12n+72.
∵a1<0,∴d>0,∴Sn=na1+21n(n-1)d=12dn2-221dn
=d2n-2212-4841d.
∵d>0,∴Sn 有最小值.
又∵n∈N*,∴n=10或n=11时,Sn取最小值.
解法 2:同解法 1,由 S9=S12 得 a1=-10d
代入aann=+1=a1+a1+nn-d≥1d>0≤0 得,- -1100dd+ +nnd-≥10>d≤0
∵a1<0,∴d>0, 解得 10<n≤11. ∴n 取 10 或 11 时,Sn 取最小值.
解法 3:∵S9=S12,∴a10+a11+a12=0, ∴3a11=0,∴a11=0.∵a1<0,∴前 10 项或前 11 项和最小.
小结:求等差数列{an}前n项和Sn旳最值常用措施: 措施1:二次函数性质法,即求出Sn=an2+bn,
2.2.2等差数列前n项和公式 旳性质及其应用
思(2分钟)
1.等差数列旳递推公式是什么?
an- an-1=d(n≥2) an-1+an+1=2an(n≥2)
2.等差数列通项公式是什么?构造上它有什么特征? an=a1+(n-1)d=am+(n-m)d=pn+k. 在构造上是有关n旳一次函数.
3.等差数列前n项和旳两个基本公式是什么?
『变式探究』
§2.2.2 等差数列的前n项和的性质
学习目标:1. 进一步熟练掌握等差数列的通项公式和前n 项和公式;2. 理解等差数列的一些性质,并会用它们解决一些相关问题;3、激情投入、高效学习,培养良好的数学思维品质以及发散思维。
二、问题导学:自学课本,思考并回答下列问题:复习1:等差数列{n a }中, 4a =-15, 公差d =3,求5S .复习2:等差数列{n a }中,已知31a =,511a =,求和8S .新知:与前n 项和有关的等差数列的性质:1. 若数列{}n a 的前n 项的和2n S An Bn =+(A 0≠,A 、B 是与n 无关的常数),则数列{}n a 是等差数列.2. 已知数列{},n a 是公差为d 的等差数列,S n 是其前n 项和,设232,,,k k k k k k N S S S S S +∈--也成等差数列,公差为2k d .3. 等差数列奇数项与偶数项的性质如下:1°若项数为偶数2n ,则S S nd 偶奇-=;1(2)n n S an S a +≥奇偶=;2°若项数为奇数2n +1,则1n S S a +奇偶-=;1n S na +=偶;1(1)n S n a ++奇=;1S n S n +偶奇=大家试推到这些性质。
例1:已知等差数列{}n a 的前n 项为212n S n n =+,求这个数列的通项公式. 这个数列是等差数列吗? 如果是,它的首项与公差分别是什么? 拓展: 已知数列{}n a 的前n 项为212343n S n n =++,求这个数列的通项公式,并判断此数咧是否是等差数列。
小结: 例2:已知等差数列{a n }的前n 项和为Sn ,若S 12=84,S 20=460,求s 28.(你能找到多少种方法?) 小结:n 2(1) 求证:数列{}n a 是等差数列;(2) 问数列{}n a 的前多少项和做大;(3) 设数列{b n }的每一项都有bn=|a n|,求数列{b n }的前n 项和Tn.小结:四、深化提高:1. 等差数列{n a }中,已知1590S =,那么8a =( ).A. 3B. 4C. 6D. 122. 有两个等差数列2,6,10,…,190及2,8,14,…200,由这两个等差数列的公共项按从小到大的顺序组成一个新数列,求这个新数列的各项之和.3. 等差数列{n a }中, 4a =-15, 公差d =3, 求数列{n a }的前n 项和n S 的最小值.4. 已知等差数列2454377,,,....的前n 项和为n S ,求使得n S 最大的序号n 的值.5. 已知等差数列{}n a 的前四项和为25,后四项和为63,前n 项和为286,n 五、我的学习总结:(1)我对知识的总结 (2)我对数学思想及方法的总结。
&2.2.2等差数列的前n项和公式
等差数列前n 等差数列前n项和公式
2 S n = n(a1 + an )
an = a1 + (n − 1)d
n(a1 + an ) Sn = 2
n(n − 1) S n = na1 + d 2
1。对于这两个公式分别有四个未知数,如果 已知其中的任何三个可以求另外一个 2。请注意这两个公式的灵活运用
1 练习: 的前n项和为 练习: 已知数列 {an } 的前 项和为Sn = n + n 2 求这个数列的通项公式。 求这个数列的通项公式。这个数列是等 差数列吗?如果是,它的首项与公差分 差数列吗?如果是, 别是什么? 别是什么?
2
练习:
• 等差数列{an}中,a1<0,S9=S12,则该数列前多 少项和最小? • 在首项为正数的等差数列{an}中,它的前3项 和与前11项和相等,问此数列的前多少项和 最大? • 设等差数列{an}的前n项和为Sn,已知a3=12, 且S12>0,S13<0, (1)求公差d的取值范围; (2)该数列前几项的和最大.
an − an −1 = d (n ≥ 2且n ∈ N * ) 1.等差数列的定义 .等差数列的定义:
2.等差数列的通项公式:(1)an = a1 + (n − 1)d .等差数列的通项公式: (2)an = am + (n − m)d
a+b 3.等差中项:A = 2 ⇔ a, A, b 成等差数列 .等差中项:
实际上高斯解决了1+ 2 + 3 + ... + n + ... 等差数列的前 n 项和的问题
1 + 2 + ... + n-1 + n n + n-1 + ... + 2 + 1
§2.2等差数列的前n项和
• 3.若等差数列{an}的通项公式为an=2n-3(n∈N+且n≤10) ,则a1+a3+a5+a7+a9=35,a2+a4+a6+a8+a10=45,结合 等差数列的性质和前n项和公式,上面的问题可以有多种求法 ,若记S奇=a1+a3+a5+a7+a9,S偶=a2+a4+a6+a8+a10, 则
• 一个等差数列的前10项之和为100,前100项之和为10, 求前110项之和.
• 本题既可以按照基本方法先求首项和公差,写出前n项和 公式来求解,也可以利用等差数列的前n项和性质进行求解.
[解题过程] 方法一:设等差数列{an}的公差为 d,前 n 项和为 Sn,
则 Sn=na1+nn-2 1d.
1.等差数列的前 n 项和公式与函数
由于等差数列的前 n 项和公式
Sn=na1+nn-2 1d=d2n2+a1-d2n. • (1)当d=0,a1≠0时,Sn= na1 ,它是n的
一次
函数.
• 2.等差数列的前n项和的性质
• 设{an}是公差为d的等差数列,则
• (1)Sm,S2m-Sm,S3m-S2m,…,也成等差数列,公差为 m2d .
S偶+S奇=354, ∴SS偶 奇=3227,
∴SS偶 奇= =119622, , ∴d=192-6 162=5, 又∵S 奇=a1+a211×6=3(2a1+10d)=162, ∴a1=2, ∴an=a1+(n-1)d=5n-3.
• [题后感悟] 等差数列{an}中,a1,a3,a5,…是首项为a1 ,公差为2d的等差数列,a2,a4,a6,…是首项为a2,公差为 2d的等差数列.当项数为2n时,S偶-S奇=nd,方法二中运用 到了这些性质.
• 有两个等差数列{an},{bn},其前n项和分别为Sn,Tn, 若TSnn=7nn++32,求ab55.
等差数列求和性质
数),那么这个数列一定是等差数列吗?
开 关
3.如果{an}是一个等差数列,那么{|an|}还是等差数列吗?如果不再
是等差数列,如何求{|an|}的前n项和?
这一节课我们就来解答上面的问题.
研一研·问题探究、课堂更高效
2.2.2(二)
探究点一 数列{an}的前n项和Sn与an的关系
问题 我们已经知道,如果通项公式an已知,就能求出Sn;反
正整数时,Sn 取到最值.
研一研·问题探究、课堂更高效
2.2.2(二)
探究 按要求,把下列表格填充完整,并观察使等差数列前 n项和Sn取到最值时序号n的规律.
序
本号
等差数列
基本量 前 n 项和 Sn Sn 的最值
课
时 栏 目 开
1 1,3,5,7,9,…,
a1=_1_, d=_2_
Sn=_n_2
(Sn)min=1, 此时 n=1__
前n项和Sn的最小值.
解 方法一 ∵an=2n-14,∴a1=-12,d=2.
本 ∴a1<a2<…<a6<a7=0<a8<a9<….
课 时
∴当n=6或n=7时,Sn取到最小值.
栏 目
易求S7=-42,∴(Sn)min=-42.
开
关
研一研·问题探究、课堂更高效
2.2.2(二)
方法二 ∵an=2n-14,∴a1=-12.
时
栏
故S23=S24最小.
目
开
关
研一研·问题探究、课堂更高效
2.2.2(二)
[问题情境]
1.如果已知数列{an}的前n项和Sn的公式,那么这个数列确定了吗?
本
如果确定了,那么如何求它的通项公式?应注意一些什么问题?
高中数学 第二章 数列 2.2.2 等差数列的前n项和(一)课
以用这三个基本量来表示,五个量a1,d,n,an,Sn中可知三
求二,注意利用等差数列的性质以简化计算过程,同时在具体
求解过程中还应注意已知与未知的联系及整体思想的运用.
2.2.2 等差数列的前n项和(一)
11
预课当跟习堂踪导讲检演学义测练1 在等差数列{a栏n}中目.索引 CONTENTS PAGE
挑重当战点堂自难训我点练,点个体点个验落击成实破功
CONTENTS PAGE
[学习目标]
1.体会等差数列前n项和公式的推导过程.
2.掌握等差数列前n项和公式.
3.熟练掌握等差数列的五个量a1,d,n,an,Sn的关系,能够由
其中三个求另外两个.
2.2.2 等差数列的前n项和(一)
2
预课当习堂导讲检学义测
栏目索引
CONTENTS PAGE
挑重当战点堂自难训我点练,点个体点个验落击成实破功
(1)a1=65,an=-32,Sn=-5,求 n 和 d.
挑重当战点堂自难训我点练,点个体点个验落击成实破功
解 由题意,得 Sn=na1+ 2 an=n56- 2 23=-5,
解得n=15.
又 a15=56+(15-1)d=-32,∴d=-61.
2.2.2 等差数列的前n项和(一)
12
预课当习堂导讲检学义测
栏目索引
CONTENTS PAGE
(2)a1=4,S8=172,求a8和d.
挑重当战点堂自难训我点练,点个体点个验落击成实破功
解 由已知,得 S8=8a1+2 a8=84+2 a8=172,解得 a8=39,
又∵a8=4+(8-1)d=39,∴d=5.
2.2.2 等差数列的前n项和(一)
13
2.2.2等差数列的前n项和
2.2.2等差数列的前n 项和峡山中学 数学组一、课标点击(一)学习目标:1.掌握等差数列前n 项和公式及其获取思路;会用等差数列的前n 项和公式解决一些简单的与前n 项和有关的问题2通过公式的推导和公式的运用,使学生体会从特殊到一般,再从一般到特殊的思维规律,初步形成认识问题,解决问题的一般思路和方法(二)教学重、难点:重点:等差数列n 项和公式的理解、推导及应用难点:灵活应用等差数列前n 项公式解决一些简单的有关问题 二、教学过程: (一)知识链接1.等差数列的定义是什么? 2.等差数列的通项公式是什么? (二)问题导引高斯是伟大的数学家,天文学家,高斯十岁时,有一次老师出了一道题目,老师说: “现在给大家出道题目:1+2+…100=?”过了两分钟,正当大家在:1+2=3;3+3=6;4+6=10…算得不亦乐乎时,高斯站起来回答说: “1+2+3+…+100=5050。
教师问:“你是如何算出答案的?高斯回答说:因为1+100=101;2+99=101;…50+51=101,所以101×50=5050”(三)自主探究自主学习课本第35页至37页例3前的部分内容,并完成以下问题。
知识点梳理:1.等差数列的前n 项和等于首末两项的和与项数乘积的一半2)(1n n a a n S += 2.2)1(1dn n na S n -+= 思考与讨论:(1) 等差数列前n 项和公式有何特点,应用时如何选取合适的公式?(2) 如果一个数列的前n 项和的公式为c bn an S n ++=2(c b a ,,为常数), 那么这个数列一定是等差数列吗?(3) 在等差数列中通项n a 与前n 项和n S 之间满足什么关系? (四) 典例探讨例1 已知等差数列{n a }的公差为2,第20项2920=a ,求前20项的和点拨:n n S n a d a ,,,,1这五个量知三求二,根据题意选取不同的公式。
2.2.2 等差数列的前n项和-王后雄学案
张喜林制2.2.2 等差数列的前n 项和教材知识检索考点知识清单1.等差数列的前n 项和公式为=n S =2.若数列}{n a 的前n 项和公式为B A Bn An S n ,(2+=为常数),则数列}{n a 为 3.以前n 项的项数为横坐标,前n 项和为纵坐标的图象为抛物线上的一些4.等差数列}{n a 的公差为d ,前n 项和为,n S 那么数列-k k 2S ,S )(,,23+∈-N k S S S k k k 是等差数列,其公差等于5.若在等差数列}{n a 中,,0,01<>d a 则n s 存在 ;若在等差数列}{n a 中,,0,01><d a 则n s 存在6.等差数列的项数若为)(2+∈N n n 项,则=n S 2 .且=-奇偶S S =偶奇S S ,7.等差数列的项数若为)(12+∈-N n n 项,则=-12n S ,).12(n a n -且1,S S -==-n nS S a n 偶奇偶奇(其中 =奇S =偶S , )8.若}{},{n n b a 为等差数列,,,11k nk n k n k n b B a A ∑∑====则=mmb a 要点核心解读1.等差数列的前n 项和公式及应用公式1:;2)(1n n a a n s +=公式2:;2)1(1d n n na s n -+= 公式3:Bn An S n +=2一般地,若已知首项1a 和n a 或,1n a a +求n S 用公式1;若已知首项1a 和公差d ,求n S 用公式2;其他情况下,应视条件灵活运用所学知识(等差数列的性质、通项公式、前n 项和公式等)进行转化,使问题得到解决.如:已知等差数列}{n a 中,(1)若,1285=+a a 求;12s (2)若,18,684==a a 求;20S (3)若,5,12125==S S 求⋅10s对于(1)可利用等差数列的性质得.72126)(62)(128512112=⨯=+=+=a a a a S对于(2)可先由条件求出首项1a 和公差d ,再由公式2求⋅20S对于(3)可先由条件利用公式3得到关于A 、B 的方程组,解出A 和B 的值,再由公式3求⋅10S 2.前n 项和公式与通项公式的结合,即方程思想的运用等差数列的通项公式与前n 项和公式反映了等差数列的首项、1a 公差d 、通项n a 前n 项和n s 以及项数n 之间的关系,通过它们可由n n t S a d a ,,,和n 五个量中的任意三个求出另外两个,即“知三求二”,运用这一方法可以解决等差数列中基本量的求解,如求1a 和d ,项数n 等问题.3.等差数列前n 项和的主要性质等差数列}{n a 的前n 项和n s 具有以下常用性质:,,,,)1(34232n n n n n n n S s s S S s s ---仍成等差数列.Bn An S n +=2)2(即n s 是n 的缺常数项的二次函数.(3)若等差数列首项1a 与公差d 异号,即01<d a 时,前n 项和n s 必有最值,若1a 与d 同号,即,01>d a 则11a s =即是n S 的最值(此种情况较明显,一般不必研究).(4)等差数列}{n a 中,当n 为奇数时,+=-1,a S S h 偶2121+=-n a d n (中间项); 21.+=n n a n S (项数与中间项的积); 11-+=n n s s 偶奇(项数加1比项数减1).当n 为偶数时,;2d n s s =-⋅奇偶 12122S ,22.++=+=nnn a n a S a n an s 偶奇4.等差数列前n 项和的最值解决等差数列前n 项和最值的基本思想是利用前n 项和公式与函数方法解决,常用的有以下几种: (1)找转折项:若给出等差数列的通项公式或首项、公差易求时,一般可找转折项来求n s 的最值,若n S d a ,01<必有最值,当0,01><d a 时,n s 有最小值;当0,01<>d a 时,n S 有最大值,由通项0≥n a (或)0≤n a 便可求出转折项,从而求出n S 的最值.(2)二次函数法:利用前n 项和公式=-+=d n n na s n 2)1(1,)2(212n da n d -+结合二次函数的性质讨论最大值或最小值.(将n s 看做自变量n 的二次函数).(3)图象法:利用二次函数图象的对称性来确定n 的值,使n S 取最值. 5.数列的前n 项和n S 与通项n a 的关系由n n n a a a a a s +++++=-1321 与++=-211a a s n ,123--+++n n a a a 可得n n n a S S =--1).2≥n (又,11a S =⎩⎨⎧⋅≥-==∴-)2(),1(11n S S n s a n nn利用此关系式可由n S 求n a 或进行n S 与n a 的相互转化.典例分类剖析考点1 前n 项和公式的运用命题规律(1)利用前n 项和公式求其他的量(如首项,1a 公差d .项数n 等).(2)利用前n 项和公式解决一些简单的求和问题. [例1] (2010年浙江模拟题)在小于100的正整数中共有多少个数被3除余27这些数的和是多少? [解析] 被3除余2的正整数可以写成)(23N n n ∈+的形式.[答案] 由,10023<+n 得,3232<n 即n 可取0,1,2,3,…,31,32,所以在小于100的正整数中共有33个数被3除余2.把这些数从小到大排列出来就是2,5,8,…,98,它们组成一个等差数列},{n a 其中,33,98,2331===n a a 因此它们的和为.16502)982(3333=+⨯=S[启示] 本题运用等差数列通项公式和前n 项和公式解题.[例2] 已知}{n a 为等差数列,,,n S m S m n ==其中,n m =/,,+∈N n m 求⋅+n m S [答案] 解法一:(常规解法,方程思想)思路:⎪⎪⎩⎪⎪⎨⎧-+=-+=d m m m a n d n n na m 2)1(,2)1(11由可解出.,1d a故 .2)1)(()(1d n m n m a n m S n m -++++=+解法二:(常规方法,整体代换,不求),1d a⎪⎪⎩⎪⎪⎨⎧-+=-+=-+=-+=],)1(2[22)1(],)1(2[22)1(1111d m a m d m m m a n d n a n d n n na m 以上两式相减,即=+--+-])()(2[21221d m m n n m n a .n m -.0,=/-∴=/n m n m∴ 上式可化为.2)1(21=--+-d n m a 即.2)1(21-=-++d n m a 由 2)1)(()(1dn m n m a n m s n m -++++=+])1(2[2)(1d n m a n m -+++=.)2(2n m n m --=-⋅+=解法三:设),(2+∈+=N x Bx Ax s x则⎩⎨⎧=+=+②①.,22m Bn An n Bm Am ①一②得.)()(22m n n m B n m A -=-+-.1)(,-=++∴=/B n m A n m故),()()(2n m n m B n m A +-=+++即.)(n m n m S n m --=+-=+ 解法四:(利用性质,简化运算)等差数列中若,q p n m +=+则⋅+=+q p n m a a a a 不妨设,n m >m m n n n m a a a a S S ++++=--++121⋅+-=-=+)(2)(1m n a a n m m n .2)(211-=--=+=+∴++nm m n a a a a m n n m.)()(2)(1n m n m a a n m S n m n m --=+-=++=∴++注意多种方法的比较.[启示] 由于本题是字母系数,用解法一太繁琐,此法不可取.d a ,1是等差数列的基本元素,通常是先求出基本元素,1a ,d 再解决其他问题.但本题解法二关键在于求出了-+-(|21a .2)=-d n m解法三的关键在于求出了,1)(4-=++B n m 这种设而不解的“整体化”思想,在解决有关数列的问题中要注意运用,同时要注意等差数列中Bn An s n +=2的应用.母体迁移 1.(1)(上海高考题)已知数列}{n a 中,=1a ,2,71+=-+n n a a 求=+++1721a a a (2)(2010年湖北省重点中学联考题)已知数列}{n a 中,,2,3,7221+==-=+n n a a a a 则=100S 考点2 等差数列的性质 命题规律(1)利用等差数列前n 项和的性质简化运算过程. (2)等差数列的性质在求和中的灵活运用.[例3] (1)等差数列}{n a 的前12项和为354,前12项中奇数项与偶数项的和之比为27:32,求公差d .(2)有两个等差数列},{},{n n b a 满足=++++++++n n b b b b a a a a 321321,327++n n 求⋅55b a[解析] (1)前12项中奇数项,偶数项分别构成以21,a a 为首项,2d 为公差的新的等差数列,n n b b b a a a ++++++ 2121,)2(分别为等差数列}{},{n n b a 的前玮项和,因此可用等差数列前n项和公式或其他相关性质解答.[答案] (1)解法一: 前12项中=⨯⨯+=d a S 225661奇,3061d a +,3662256)(611d a d d a S +=⨯⨯++=偶 ⎪⎩⎪⎨⎧=+++=++∴,354)366()306(,3236630611127:d a d a d a d a l 解得⎩⎨⎧==.2,51a d 解法二:)()(11311242a a a a a a S S +++-+++=- 奇偶)()()(11123412a a a a a a -++-+-=⋅=d 6⎪⎩⎪⎨⎧=+=,354,3227偶奇偶奇S S S S ⎩⎨⎧==∴.162,192S 奇偶S.5,6162192=∴=-=-∴d d S S 奇偶(2)解法一:设等差数列}{},{n n b a 的公差分别为,,21d d 则,21212)1(2)1(211121112121d n b d n a d n n nb d n n na b b b a a a n n -+-+=-+-+=++++++ 则有 ⋅++=-+-+32721212111n n d n b d n a ①又由于,44211155d b d a b a ++= ② 观察①②,可在①中取,9=n得⋅=++⨯=++126539297442111d b d a 故⋅=126555b a解法二:设}{},{n n b a 的前n 项和分别为,,n n B A 则有=n n B A ,327++n n 其中2)(1na a A n n +=由于,2591a a a =+即,2591a a a =+ 故.929)(5919⨯=⨯+=a a a A同理.959⨯=b B 故995599⨯⨯=b a B A 故⋅=++⨯==1265392979955B A b a解法三:因为等差数列前n 项和.2a bn an s n =+=⋅+)(abn n 根据已知,可令=+=n n B kn n A ,)27( .)3(kn n +,654)247(5)257(455k k k A A a =⨯+⨯-⨯+⨯=-=∴ .124)34(5)35(455k k k B B b =⨯+-⨯+=-=⋅==∴1265126555k k b a 解法四:由⋅=++⨯==-=--126539297,99551212B A b a k b a B A n n n n [启示] (1)把目标式用o .与d 两个基本量来表示,此法具有普遍性.若能进一步利用好等差数列的性质,则可使求解过程简捷.(2)等差数列的项随项数而均匀变化,这是等差数列的最本质特征,而等差数列的性质则是这一特征的具体反映,利用等差数列的性质解题,就是要从等差数列的本质特征入手去思考,分析题目,这样做必定会获得事半功倍的效果.母体迁移 2.(1)在等差数列}{n a 中,=++1272a a a ,24求⋅13S (2)等差数列}{n a 的公差,21=d 且,145S 001=求++31a a ⋅++995|a a (3)已知等差数列}{n a 的前n 项和为377,项数n 为奇数,且前n 项和中奇数项和与偶数项和之比为7:6,求中间项.(4)已知等差数列}{n a 的前4项和为25,后四项和为63,前n 项和为286,求项数n . 考点3 等差数列}{n a 各项取绝对值后组成的数列|}{|n a 的前n 项和 命题规律(1)将不熟悉的数列问题转化为熟悉的数列问题.(2)利用数列与二次函数的关系确定哪些项为正,哪些项为负.[例4] 在等差数列}{n a 中,,12,60171-=-=a a 求数列|}{|n a 的前n 项和.[解析] 本题实质是求等差数列}{n a 前n 项绝对值的和,需要先搞清哪些项是正的,哪些项是负的. [答案] 等差数列}{n a 的公差.316)60(12117117=---=--=a a d)1(360)1(1-+-=-+=∴n d n a a n.633-=n又.21,0633,0<<-∴<⋅n n a n∴ 等差数列}{n a 的前20项是负数,第20项以后的项是非负数.设n S 和/n S 分别表示数列}{n a 和|}{|n a 的前n 项和.当20≤n 时,]2)1(360[/-+--=-=n n n S S n n .2161232n n +-=当20>n 时,202020/2)(S S S S S S n n n -=-+-=)3219202060(22)1(360⨯⨯+⨯---+-=n n n .12602161232+-=n n ∴ 数列|}{|n a 的前n 项和为⎪⎪⎩⎪⎪⎨⎧>+-≤+-=.20,1260216123,20,21612322/n n n n n n S n[特别提醒] (1)对于这类数列的求和问题,一是要弄清哪些项为正,哪些项为负;二是要尽量将不熟悉的问题转化为熟悉的问题,即等差数列的问题.(2)解答本题的关键是确定等差数列}{n a 的前20项是负数,第20项以后的项是非负数.母体迁移3.(2010年烟台模拟题)数列}{n a 的前n 项和为,102n n S n -=求数列|}{|n a 的前n 项之和.考点4 n S 的最值问题 命题规律(1)用求二次函数的最值方法求其前,n 项和的最值,但要注意的是⋅∈+N n (2)利用二次函数图象的对称性来确定n 的值,使n S 取最值. (3)利用“通项法”来求n s 的最值.[例5]等差数列}{n a 中,,,0941S S a =>则n S 取最大时,=n [解析] 解法一:n S 有最大值,n S ∴是开口向下的抛物线.由于,94s s =故对称轴为.5.6294=+=n 从而6=n 或7时,n S 最大,如图2 -2 -2 -1所示.解法二:=⨯+∴=d a S S 2344,194 .6,289911d ka d a -=⨯+ .0,01<∴>d a-=-+-⋅=-+=∴2122)1()6(2)1(n d d n n d n d n n na S n .213n d∴<,0d 开口向下,且对称轴⋅∈==+N n n ,5.62136=∴n 或7时,n S 最大.解法三:由解法二中①得-+-=-+=n d d n a a n (6)1(1.)7()1d n d -=由⎩⎨⎧≤≥+,0,01n n a a 得⎩⎨⎧≤-≥-.0)6(,0)7(d n d n ⎩⎨⎧≥-≤-∴<.06,07,0n n d 解得,76≤≤n 故6=n 或.7 [答案] 6或7[方法点拨] 解法一利用等差数列的前n 项和n S 是关于n 的二次函数,结合二次函数的性质解答此题;解法二是从写出n s 的二次函数表达式入手;解法三是采用正负项分界法,解法更为简便.母题迁移 4.(2010年广东省部分重点中学联考题)数列}{n a 是等差数列,.6.0,501-==d a (1)从第几项开始有;0<n a(2)求此数列的前n 项和的最大值,考点5 等差数列的前n 项和公式的实际应用 命题规律(1)从实际生活应用中抽象出等差数列的前n 项和公式模型. (2)利用等差数列的前n 项和公式解决一些简单的实际问题.[例6] 某地在抗洪抢险中接到预报,24 h 后有一个超历史最高水位的洪峰到达,为保证万无一失,抗洪指挥部决定在24 h 内另筑起一道堤坝作为第二道防线.经计算,如果有20辆大型翻斗车同时工作25 h ,可以筑起第二道防线,但是除了现有的一辆车可以立即投入作业外,其余车辆需从各处紧急抽调,每隔20 min 就有一辆车到达并投入工作,问指挥部至少还需组织多少辆车这样陆续工作,才能保证24 h 内完成第二道防堤,请说明理由.[解析] 本题利用总工时来计算总工作量的应用问题,而每辆车工时之和可以表示成一个等差数列的和,问题的本身可转化为求解关于翻斗车数量的不等式即可. [答案] 设从现有的一辆车投入工作算起,各车的工作时间,依次组成数列},{n a 则⋅-=--311n n a a ∴ 数列}{n a 构成首项为24,公差为31-的等差数列,设还需组织(n-l )辆车,则=+++n a a a 21 ≥--+)31.(2)1(24n n n .2520⨯ .0)120)(25(,030001452≤--≤+-∴n n J n n η.241,2512025[]=-∴=≤≤∴n n n m i故至少还需组织24辆车陆续工作,才能保证在24 h 内完成第二道防堤[启示] 本题的基本关系是每辆车每小时的工作量×车数×时间=工作总量,母题迁移5.(原创题)假设某市2010年新建住房面积400万平方米,其中有250万平方米是中低价房.预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米.那么,到哪一年底,(1)该市历年所建中低价房的累计面积(以2010年为累计的第一年)将首次不少于4750万平方米? (2)当年建造的中低价房的面积占该年建造的住房面积的比例首次大于85%?优化分层测讯学业水平测试1.已知}{n a 是等差数列,,1010=a 前10项和,7010=s 则其公差=d ( ).23.-A 31.-B 31.C 32.D 2.等差数列}{n a 的前n 项和为,n s 若,10,242==S s 则6s 等于( ).12.A 18.B 24.C 42.D3.已知两个等差数列}{n a 和}{n b 的前n 项和分别为n A 和,n B 且,3457++=n n B A n n 则使得n n b a 为整数的正整数n 的个数有( ).A.2个B.3个C.4个 D .5个4.在项数为2n +1的等差数列中,所有奇数项的和为165.所有偶数项的和为150,则n 等于( ).A .9 B.10 C .11 D .125.等差数列的前4项和为40,最后4项的和为80,所有各项的和为720,则这个数列一共有 项.6.设,221)(+=x x f 利用课本中推导等差数列前n 项和的方法,求+-+-)4()5(f f f f +++ )0( )6()(5)f +的值为7.在数列}{n a 中,,66,2171==a a 且它的通项公式是关于正自然数n 的一次函数,则它的前10项和为8.(2010年济南市模拟题)近日国内某大报纸有如下报道:加薪的学问学数学,其实是要使人聪明,使人思维更加缜密.在美国广为流传的一道数学题目是:老板给你两种加工资的方案,一是每年增加薪水1000元;二是每半年增加薪水300元,请选一种.一般不擅数学的,很容易选前者,因为一年加1000元总比两个半年共加600元要多.其实,由于加工资是累计的,时间稍长,往往第二种方案更有利.例如:在第二年的年末依第一种方案可以加得l 000 +2000 =3000(元);而第二种方案在第一年加得300+ 600= 900(元),第二年加得900 +1200=2100(元),总数也是3000元.但到第三年,第一种方案加得1000+2000 +3000=6000(元);第二种方案则为300+600 +900 +1200 +1500 +1800=6300(元),比第一种方案多了300元.第四年、第五年会更多.因此,你若能在该公司干三年以上,则应选第二种方案根据以上材料,如果在该公司干10年,问选择第二种方案比选择第一种方案多加薪多少元?高考能力测试(测试时间:90分钟测试满分:100分)一、选择题(本题包括8小题,每小题5分,共40分.每小题只有一个选项符合题意)1.(2011年全国高考题)设n S 为等差数列}{n a 的前n 项和,若,11=a 公差,24,22=-=+k k S S d 则k=( ).8.A 7.B 6.C 5.D2.若数列}{n a 是等差数列,首项.,0,020*********a a a a >+>ω,02006<a 则使前n 项和0>n S 成立的最大自然数n 是( ).4009.A 4010.B 4011.C 4012.D3.等差数列}{n a 与},{n b 它们的前n 项之和分别为n S 与,n S 若),(27417+∈++=N n n n S S n n 则1111b a 的值是( ). 47.A 23.B 34.C 7178.D 4.已知等差数列的前n 项和为,n s 若,0,01213><S S 则此数列中绝对值最小的项为( ),A .第5项B .第6项C .第7项D .第8项5.(2009年安徽高考题)已知}{n a 为等差数列,=++531a a a .99,105642=++a a a 以n S 表示 }{n a 的前n 项和,则使得n S 达到最大值的n 是( ).21.A 20.B 19.C 18.D6.根据市场调查结果,预测某种家用电器从年初开始的n 个月内累积的需求量n S (万件),近似地满足--=2ln 2(90n n S n )12,,2,1)(5 =n 按此预测,在本年度内,需求量超过1.5万件的月份是( ). A.5月、6月 B.6月、7月 C.7月、8月 D .8月、9月7.等差数列}{n a 中,,51-=a 它的前11项的平均值为5,若从中抽去一项.余下的10项的平均值为4.则抽去的是( ).8.a A 6.a B 10.a C 11.a D8.设等差数列}{n a 满足,53138a a =且,01>a 则前n 项和n S 中最大的是( ).10.s A 11.S B 20.S C 21.s D二、填空题(本题包括4小题,每小题5分,共20分)9.等差数列}{n a 中,其前n 项和为100,其后的2n 项和为500,则紧随其后的3n 项和为10.(2009年辽宁高考题)等差数列}{n a 的前n 项和为,n S 且==-435,556a s S11.若一个等差数列前3项和为34,最后3项的和为146,且所有项的翱为390,则这个数列有 项.12.(北京高考题)定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列}{n a 是等和数列,且,21=a 公和为5,那么8]a 的值为____,这个数列的前n 项和n s 的计算公式为三、解答题(本题包括3小题,共40分.解答应写出文字说明、证明过程或演算步骤)13.(13分)等差数列}{n a 的前n 项和记为,n s 已知,3010=a .5020=a(1)求通项,n a(2)令,242=n s 求n .14.(13分)甲、乙两物体分别从相距70 m 的两处同时相向运动,甲第1分钟走2m ,以后每分钟比前1分钟多走Im ,乙每分钟走5 m .(1)甲、乙开始运动后几分钟相遇?(2)如果甲、乙到达对方起点后立即折返,甲继续每分钟比前1分钟多走1m ,乙继续每分钟走5m ,那么开始运动几分钟后第二次相遇?15.(14分) (2010年湖北省部分重点中学联考题)已知}{n b 是首项为l ,公差为34的等差数列,且 nna a a b n n ++++++= 21221 (1)求证:}{n a 也是等差数列;(2)若++=++=+==874654332211,,,a a c a a a c a a c a c ,109a a +如此构成数列},{n c 求数列 }{n c 的通项公式,。
§2 2.2 第1课时 等差数列的前n项和
20×(20 −1) S= ×20 = 3 800(m). 2
答 植树工人共走了3 800m路程 路程. 植树工人共走了3 800m路程.
九江抗洪指挥部接到预报,24h后有一洪峰到达 后有一洪峰到达. 例11 九江抗洪指挥部接到预报,24h后有一洪峰到达. 为确保安全, 为确保安全,指挥部决定在洪峰来临前筑一道堤坝作为第 二道防线.经计算,需调用20台同型号翻斗车, 20台同型号翻斗车 二道防线.经计算,需调用20台同型号翻斗车,平均每辆 工作24h后方可筑成第二道防线. 24h后方可筑成第二道防线 工作24h后方可筑成第二道防线.但目前只有一辆车投入施 其余的需从昌九高速公路沿线抽调,每隔20min 20min能有 工,其余的需从昌九高速公路沿线抽调,每隔20min能有 一辆车到达,指挥部最多可调集25辆车,那么在24h 25辆车 24h内能 一辆车到达,指挥部最多可调集25辆车,那么在24h内能 否构筑成第二道防线? 否构筑成第二道防线? 从第一辆车投入工作算起,各车工作时间(单位: 解 从第一辆车投入工作算起,各车工作时间(单位: h)依次设为 依次设为: h)依次设为:
∵a1 =1 a120 =120, n =120 ,
120×(1+120) ∴S120 = = 7 260 支) ( . 2
支铅笔. 答:V形架上共放着7 260支铅笔. 形架上共放着7 260支铅笔
1.回顾从特殊到一般的研究方法; 1.回顾从特殊到一般的研究方法; 回顾从特殊到一般的研究方法 2.倒序相加的算法及数形结合的数学思想; 2.倒序相加的算法及数形结合的数学思想; 倒序相加的算法及数形结合的数学思想 3.掌握等差数列的两个求和公式及简单应用, 3.掌握等差数列的两个求和公式及简单应用,及函数与方 掌握等差数列的两个求和公式及简单应用 程的思想. 程的思想.
人教社2024中职数学拓展模块一教学课件-等差数列的前n项和(第1课时)
.
等差数列前 n 项的和等于首末两项的和乘项数除以 2 .
新知探究
➢
等差数列的前 n 项和公式 Sn
n
a1 + an 2
的推导
对于公差为d的等差数列,我们用两种方法表示Sn.
Sn a1 (a1 d ) (a2 2d ) Sn an (an d ) (an 2d )
[a1 (n 1)d](1) [an (n 1)d](2)
新知探究
➢
等差数列的前 n 项和公式 Sn
n
a1 + an 2
的推导
(1)+(2)得到
2Sn (a1 an ) (a1 an ) (a1 an )
n a1 an .
由此得到
Sn
n
a1 + an 2
.
(a1 an )
新知探究
➢ 等差数列的前 n 项和公式
因为 an = a1+(n-3; an 2
又可写成
Sn = na1+
n (n-1)
2
d.
问题 (1)你能说出两个公式中包含的变量有哪些吗? Sn ,a1,n ,d ,an
(2)两个公式从哪些角度反映等差数列性质,公式如何选择?
巩固练习
1.在等差数列 {an}中,a1 5,a10 95,n 10,求Sn .
解:依题意得,S10
2
作业布置
教材第52页,练习第 1题的(3)(4).
再见
10
5 95 2
500.
2.在等差数列{an}中,a1 = 100,d = -2,n = 50,求 S50.
解:依题意得,S50
50 100
50
2
等差数列的前n项和的最值教学文稿
6
213+23+33+ +n3=nn2+12
(3)裂项法:设{an}是等差数列,公差d≠0
1+1+1++ 1 =n
a1a2 a2a3 a3a4
anan + 1 a1an + 1
其中ana1n+1
1 1 =dan
1 -
an+1
求 和 S n= 1 1 3+ 3 1 5+ 5 1 7++ 2 n -1 1 2 n + 1
例3设等差数列 an 的前n项和为s n ,
已知a324,s110 求:
①数列an 的通项公式 an=-8n+48
②当n为何值时,s
s22最大
n
最大,
求等差数列前n项的最大(小)的方法
方法1:由Sn
dn2 2
(a1
d)n利用二次函 2
数的对称轴求得最值及取得最值时的n的值.
方法2:利用an的符号
①当a1>0,d<0时,数列前面有若干项为正,此 时所有正项的和为Sn的最大值,其n的值由 an≥0且an+1≤0求得.
等差数列的前n项的最值问题
例1.已知等差数列{an}中,a1=13且S3=S11, 求n取何值时,Sn取最大值.
解法3 由S3=S11得 d=-2
∴ an=13+(n-1) ×(-2)=-2n+15
由
a a
n
n1
0
0
n
15 2
得
n
13 2
∴当n=7时,Sn取最大值49.
等差数列的前n项的最值问题
课时作业4:2.2.2 等差数列的前n项和(一)
2.2.2 等差数列的前n 项和(一)一、基础过关1.已知数列{a n }的前n 项和S n =n 2,则a n 等于( )A .nB .n 2C .2n +1D .2n -1答案 D解析 当n =1时,a 1=S 1=1,当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1,又因a 1=1适合a n =2n -1,所以a n =2n -1.2.数列{a n }为等差数列,它的前n 项和为S n ,若S n =(n +1)2+λ,则λ的值是( )A .-2B .-1C .0D .1答案 B解析 等差数列前n 项和S n 的形式为S n =an 2+bn ,∴λ=-1.3.已知数列{a n }满足a n =26-2n ,则使其前n 项和S n 取最大值的n 的值为( )A .11或12B .12C .13D .12或13 答案 D解析 ∵a n =26-2n ,∴a n -a n -1=-2,∴数列{a n }为等差数列.又a 1=24,d =-2,∴S n =24n +n (n -1)2×(-2)=-n 2+25n =-⎝⎛⎭⎫n -2522+6254. ∵n ∈N +,∴当n =12或13时,S n 最大,故选D.4.已知等差数列{a n }中,a 23+a 28+2a 3a 8=9,且a n <0,则S 10为( )A .-9B .-11C .-13D .-15答案 D解析 由a 23+a 28+2a 3a 8=9得(a 3+a 8)2=9,∵a n <0,∴a 3+a 8=-3,∴S 10=10(a 1+a 10)2=10(a 3+a 8)2=10×(-3)2=-15. 5.已知数列{a n }的通项公式是a n =2n -48,则S n 取得最小值时,n 为________. 答案 23或24解析 ∵a 24=0,∴a 1,a 2,…,a 23<0,故S 23=S 24最小.6.设S n 为等差数列{a n }的前n 项和,若a 4=1,S 5=10,则当S n 取得最大值时,n 的值为________.答案 4或5解析 由⎩⎪⎨⎪⎧ a 4=a 1+3d =1S 5=5a 1+5×42d =10, 解得⎩⎪⎨⎪⎧a 1=4,d =-1, ∴a 5=a 1+4d =0,∴S 4=S 5同时最大.∴n =4或5.7.设S n 为等差数列{a n }前n 项和,若S 3=3,S 6=24,求a 9.解 设等差数列的公差为d ,则S 3=3a 1+3×22d =3a 1+3d =3,即a 1+d =1, S 6=6a 1+6×52d =6a 1+15d =24,即2a 1+5d =8. 由⎩⎪⎨⎪⎧ a 1+d =1,2a 1+5d =8,解得⎩⎪⎨⎪⎧a 1=-1,d =2. 故a 9=a 1+8d =-1+8×2=15.二、能力提升8.等差数列{a n }的前n 项和为S n ,已知a m -1+a m +1-a 2m =0,S 2m -1=38,则m 等于( )A .38B .20C .10D .9答案 C解析 因为{a n }是等差数列,所以a m -1+a m +1=2a m ,由a m -1+a m +1-a 2m =0,得:2a m -a 2m =0,由S 2m -1=38知a m ≠0,所以a m =2,又S 2m -1=38,即(2m -1)(a 1+a 2m -1)2=38,即(2m -1)×2=38,解得m =10,故选C.9.已知数列{a n }的前n 项和S n =n 2-9n ,第k 项满足5<a k <8,则k 为( )A .9B .8C .7D .6答案 B解析 由a n =⎩⎪⎨⎪⎧S 1, n =1S n -S n -1, n ≥2, 得a n =2n -10.由5<2k -10<8,得7.5<k <9,∴k =8.10.若数列{a n }是等差数列,首项a 1>0,a 2 013+a 2 014>0,a 2 013·a 2 014<0,则使前n 项和S n >0成立的最大自然数n 是________.答案 4 026解析 由条件可知数列单调递减,故知a 2 013>0,a 2 014<0,故S 4 026=4 026(a 1+a 4 026)2=2 013(a 2 013+a 2 014)>0, S 4 027=4 027(a 1+a 4 027)2=4 027×a 2 014<0, 故使前n 项和S n >0成立的最大自然数n 是4 026.11.设等差数列{a n }满足a 3=5,a 10=-9.(1)求{a n }的通项公式;(2)求{a n }的前n 项和S n 及使得S n 最大的序号n 的值.解 (1)由a n =a 1+(n -1)d 及a 3=5,a 10=-9得⎩⎪⎨⎪⎧ a 1+2d =5,a 1+9d =-9,可解得⎩⎪⎨⎪⎧a 1=9,d =-2, 所以数列{a n }的通项公式为a n =11-2n .(2)由(1)知,S n =na 1+n (n -1)2d =10n -n 2. 因为S n =-(n -5)2+25,所以当n =5时,S n 取得最大值.12.设等差数列{a n }的前n 项和为S n ,已知a 3=12,且S 12>0,S 13<0.(1)求公差d 的范围;(2)问前几项的和最大,并说明理由.解 (1)∵a 3=12,∴a 1=12-2d ,∵S 12>0,S 13<0,∴⎩⎪⎨⎪⎧ 12a 1+66d >0,13a 1+78d <0,即⎩⎪⎨⎪⎧24+7d >0,3+d <0, ∴-247<d <-3. (2)∵S 12>0,S 13<0,∴⎩⎪⎨⎪⎧ a 1+a 12>0a 1+a 13<0.∴⎩⎪⎨⎪⎧a 6+a 7>0a 7<0. ∴a 6>0,又由(1)知d <0.∴数列前6项为正,从第7项起为负. ∴数列前6项和最大.三、探究与拓展13.已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足:a 3a 4=117,a 2+a 5=22.(1)求数列{a n }的通项公式a n ;(2)若数列{b n }是等差数列,且b n =S n n +c,求非零常数c . 解 (1)设等差数列{a n }的公差为d ,且d >0. ∵a 3+a 4=a 2+a 5=22,又a 3a 4=117, ∴a 3,a 4是方程x 2-22x +117=0的两个根. 又公差d >0,∴a 3<a 4,∴a 3=9,a 4=13. ∴⎩⎪⎨⎪⎧ a 1+2d =9a 1+3d =13,∴⎩⎪⎨⎪⎧a 1=1d =4,∴a n =4n -3. (2)由(1)知,S n =n ×1+n (n -1)2×4=2n 2-n , ∴b n =S n n +c =2n 2-n n +c. ∴b 1=11+c ,b 2=62+c ,b 3=153+c. ∵{b n }是等差数列,∴2b 2=b 1+b 3,∴2c 2+c =0,∴c =-12 (c =0舍去).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小结
n(a1 an ) 2、求和公式 ( ) Sn 2 n( n 1) ( )Sn na1 d 2
1、用倒序相加法推导等差数列前n项和公式;
3、应用公式求和.“知三求二”,方程的思想.
②应用求和公式时一定弄清项数n. ③当已知条件不足以求出a1和d时,要认真观察,
①已知首项、末项用公式Ⅰ;已知首项、公差用公式Ⅱ.
a n a1 ( n 1) d
公式2
n(n 1) Sn na1 d 2
应用:知 三 求 二
公式记忆
—— 类比梯形面积公式记忆
(a1 an ) n Sn 2
(n 1) n Sn na1 d 2
a1
n
an
等差数列前n项和公式的函数特征:
1 d 2 d Sn na1 n n 1 d n a1 n 2 2 2
第3项与倒数第3项的和: ··· ···
3+98 =101,
第50项与倒数第51项的和:50+51=101, 100 5050. 于是所求的和是: 101 2
高斯算法用到了等差数列的什么性质?
m n p q a m a n a p aq .
情景2
如图,是一堆钢管,自上而下每层钢管数为4、 5、6、7、8、9、10,求钢管总数。
d d 2 设A , B a1 , 则Sn An Bn A, B是常数 2 2
结论:
an 是公差为2 A的等差数列
S n An 2 Bn( A, B为常数)
举例
例1、等差数列 {a n } 的公差是2,第20项是29,求前 20项的和 S 20 .
例 2:分别按等差数列{an}的下列要求计算: 1 (1)已知 a1 005= ,求 S2 009; 41 (2)已知 d=2,S100=10 000,求 an.
高斯(1777---1855), 德 国数学家、物理学家和天文学 家。他和牛顿、阿基米德,被 誉为有史以来的三大数学家。 有“数学王子”之称。
求 S=1+2+3+···+100=? 你知道高斯是 ··· 怎么计算的吗? 高斯算法:
首项与末项的和:
第2项与倒数第2项的和:
1+100=101,
2+99 =101,
灵活应用等差数列的性质,看能否用整体思想求
a +a 的值.
(4 10) 7.
(4 10) 7 S 49. 2
新课
设等差数列an 的前n项和为Sn , 即Sn a1 a2 an .
怎样求一般等差数列的前n项和呢?
Sn a1 a2 an . Sn an an1 a1.
即求:S=4+5+6+7+8+9+10.
高斯算法:
还有其它算 法吗?
S=(4+10) +(5+9)+(6+8)+7 = 14×3+7=49.
S=4+5+6+7+8+9+10. S=10+9+8+7+6+5+4. 相加得:
倒序相加法
2S (4 10) (5 9) (6 8) (7 7) (8 6) (9 5) (10 4)
例3.等差数列的前10项和为30,前30项和为 90,求它的前20项和.
已知数列{an }的前n项和为Sn 2n 30 n 例4、
2
(1)这个数列是等差数列吗?求出它的通项公式;
(2)求使得 S n 最小序号n的值。
变式.数列{an}是等差数列,a1=50,d=-0.6. (1)从第几项开始有an<0; (2)求此数列的前n项和的最大值.
2Sn (a1 an ) (a2 an 1 ) (an a1 )
n(a1 an ).
a1 an a2 an 1 an a1
n(a1 an ) Sn . 2
等差数列的前n项和公式
公式1
n(a1 an ) Sn 2