概率论第四章自测题参考答案

合集下载

概率论与数理统计第四章习题及答案

概率论与数理统计第四章习题及答案

概率论与数理统计习题 第四章 随机变量的数字特征习题4-1 某产品的次品率为,检验员每天检验4次,每次随机地取10件产品进行检验,如发现其中的次品数多于1个,就去调整设备,以X 表示一天中调整设备的次数,试求)(X E (设诸产品是否为次品是相互独立的).解:设表示一次抽检的10件产品的次品数为ξP =P (调整设备)=P (ξ>1)=1-P (ξ≤1)= 1-[P (ξ=0)+ P (ξ=1)]查二项分布表1-=.因此X 表示一天调整设备的次数时X ~B (4, . P (X =0)=⎪⎪⎭⎫ ⎝⎛04××=.P (X =1)=⎪⎪⎭⎫ ⎝⎛14××=, P (X =2)= ⎪⎪⎭⎫⎝⎛24××=.P (X =3)=⎪⎪⎭⎫ ⎝⎛34××=, P (X =4)= ⎪⎪⎭⎫ ⎝⎛44××=. 从而E (X )=np =4×=习题4-2 设随机变量X 的分布律为Λ,2,1,323)1(1==⎭⎬⎫⎩⎨⎧-=+j j X P jjj ,说明X的数学期望不存在.解: 由于1111133322(1)((1))3j j j j j j j j j P X j j j j ∞∞∞++===-=-==∑∑∑,而级数112j j ∞=∑发散,故级数11133(1)((1))j jj j j P X j j∞++=-=-∑不绝对收敛,由数学期望的定义知,X 的数学期望不存在. 习题X-2 0 2 k p求)53(),(),(22+X E X E X E .解 E (X )=(-2)+0+2=由关于随机变量函数的数学期望的定理,知E (X 2)=(-2)2+02+22=E (3X 2+5)=[3 (-2)2+5]+[3 02+5]+[322+5]=如利用数学期望的性质,则有E (3X 2+5)=3E (X 2)+5=3+5=4.135)(3)53(,8.23.04.0)(,2.03.023.004.02)(222222)2(=+=+=⨯+⨯=-=⨯+⨯+⨯-=-X E X E X E X E习题4-4 设随机变量X 的概率密度为⎩⎨⎧≤>=-0,0,0,)(x x e x f x 求XeY X Y 2)2(;2)1(-==的数学期望.解22)(2)0(2)(2)2()()(00=-=+-=+⋅===∞-∞+-∞-+∞-∞-+∞∞-⎰⎰⎰⎰xx xx e dx e xe dx xe dx x dx x xf X E Y E I3131)()()(0303022=-==⋅==∞-∞+-∞+---⎰⎰xx x x X edx e dx e e e E Y E II 习题4-5 设),(Y X 的概率密度为⎩⎨⎧≤≤≤=其它,0,10,12),(2x y y y x f求)(),(),(),(22Y X E XY E Y E X E +.解 各数学期望均可按照⎰⎰+∞∞-+∞∞-=dxdy y x f y x g Y X g E ),(),()],([计算。

概率论第四章作业附答案

概率论第四章作业附答案

由列维定理知, 所求的概率
70 60 300 P X i 70 1.29 0.9015 300 0.2
山东建筑大学理学院信息与计算科学教研室
概率论与数理统计
正态分布与极限定理
解 设事件 A 在每次试验中发生的概率为 p, 在这10000次试验中
发生了X 次, 则 E ( X ) np 10000 p, D( X ) 10000 p1 p,
因此所求事件的概率为
X P 10000 p 0.01 P X 10000 p 100 P X E ( X ) 100 2 D( X ) 1 2 3 1 1 p 1 p 1 p p p 0.75. 100 2 4 2


30 20 30 20 40 40
出现的次数, 设Y 表示在三次独立测量中事件 X 30
0.25 1.25 0.25 1 1.25 0.4931
). ∴所求的概率为: 则 Y ~ B(3 , 0.4931
8. X , Y 独立且服从相同分布 N
2
144

, ,则 2 X Y 3 ~
2
N ( 3,5 2 )
D(3 X Y ) 7.4
2

9. 设 X ~ N (10,0.6),Y ~ N (1,2) ,且 X 与 Y 相互独立,则 10.
2 2 。 4 设 X,Y 独立且服从相同分布 N ( , ), Z X Y 2 ,则 E ( Z )
7
2017年3月23日11时23分 山东建筑大学理学院信息与计算科学教研室

概率论与数理统计第四章答案

概率论与数理统计第四章答案
当ij,根据独立性Cov(Xi,Yj)=0.那么,
证:
由于X1与X2分布相同,所以二者方差相等,所以上式为0.
解:矩母函数:
验证
解:根据切比雪夫不等式
解:设一个学生成绩X,根据马尔科夫不等式
根据切比雪夫不等式
设有n人参加考试,其中Xi为第i个学生的成绩,它们相互独立,均值75,方差25。那么总成绩(注意:并不是nX)为 ,平均成绩
E[X22]=12×1/2+22×1/2=5/2
Var(X2)= E[X22]-( E[X2])2=1/4
E(X1X2)=0+0+1*1*1/16+1*2*1/16+2*1*3/16+2*2*1/8+3*1*1/8+3*2*1/4=47/16
Cov(X1,X2)= E(X1X2)- E[X1]E[X2]=1/8
解:
从而a=3/5, b=6/5.
解:(a)令Y=Xn,先求分布函数
FY(y)=P(Y<=y)=P(Xn<=y)
当y<=0, FY(y)=0.当y>=1, FY(y)=1.当0<y<1,
求导得到密度函数
求数学期望
(b)(本题改为利用命题4.5.1.)
解:(a)令
那么P(Xi=1)=17/40.这样
E[Xi]= 17/40, i=1,2, ..., 10
根据数学期望的性质
E[X]=E[X1]+E[X2]+...+E[X10]=17/4.
(b)将白球按1~17编号,取10个球,令
那么P(Yi=1)=10/40=1/4.这样
E[Yi]= 1/4, i=1,2, ..., 17

概率论第四章 习题答案

概率论第四章 习题答案

1 ⎛2⎞ 1 DX = EX − ( EX ) = − ⎜ ⎟ = . 2 ⎝ 3 ⎠ 18 1 2 DZ = 4 DX = 4 × = . 18 9
【解毕】
9.在一次拍卖中,两人竞买一幅名画,拍卖以暗标的形式进行,并以最高价成交.设两人 的出价相互独立且均服从(1,2)上的均匀分布,求这幅画的期望成交价. 解:设两人的出价分别为随机变量 X , Y ,则这幅画的期望成交价为 Z = max { X , Y } 由题意知, X 与Y 独立,且 X ∼ U (1, 2); Y ∼ U (1, 2) 先求 Z 的分布函数 当 1 < z < 2 时, F ( z ) = P ( Z £ z ) = P (max { X , Y } £ z ) = P ( X £ z ,Y £ z )
= P( X £ z ) P (Y £ z ) = ( z -1)2
当 z £ 1 时, F ( z ) = 0 ;当 z ³ 2 时, F ( z ) = 1 于是 Z 的密度函数为 f ( z ) = ï í
ì2( z -1),1 < z < 2 ï ï 0, 其它 ï î 5 3
EZ = ò

3 X .求: ( 1)常数 a, b, c; (2) Ee . 4
【解】 (1)由概率密度的性质知,有
+∞ 2 4
1=
又因为
−∞

f ( x )dx = ∫ axdx + ∫ ( cx + b )dx = 2a + 6c + 2b.
0 2
+∞
2
4
2 = EX =
−∞
∫ xf ( x )dx = ∫ xiaxdx + ∫ x ( cx + b )dx

《概率论与数理统计》习题及答案第四章

《概率论与数理统计》习题及答案第四章

·34·《概率论与数理统计》习题及答案第四章1.一个袋子中装有四个球,它们上面分别标有数字1,2,2,3,今从袋中任取一球后不放回,再从袋中任取一球,以,X Y 分别表示第一次,第二次取出的球上的标号,求(,)X Y 的分布列.解(,)X Y的分布列为12311106121112666113126其中(1,1)(1)(1|1)P X Y P X P Y X (1,2)(1)(2|P XYP X P Y X 121436余者类推。

2.将一枚硬币连掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与出现反面次数之差的绝对值,试写出(,)X Y 的分布列及边缘分布列。

解一枚硬币连掷三次相当于三重贝努里试验,故1~(3,).2X B 331()(),0,1,2,32kP Xk C k,于是(,)X Y 的分布列和边缘分布为XY·35·012333610088811230088813318888jip p 其中(0,1)(0)(1|0)P X Y P X P Y X ,13313(1,1)(1)(1|1)()128P XYP XP YXC ,余者类推。

3.设(,)X Y 的概率密度为1(6),02,24,(,)8,.x y x y f x y 其它又(1){(,)|1,3}D x y x y;(2){(,)|3}Dx y xy。

求{(,)}P X Y D 解(1)1321{(,)}(6)8P x y D xy d xd x y1194368228;(2)1321{(,)}(6)8xP X Y D x y d x d y112113(1)[(3)4]82x x d xx d x524.4.设(,)X Y 的概率密度为22222(),,(,),.C Rxy xyR f x y 其他求(1)系数C ;(2)(,)X Y 落在圆222()xyr rR 内的概率.解(1)22222232001()RxyRCRxy d xd y C R Cr d rdYX xx+y=3422y·36·333233R R C RC,33CR.(2)设222{(,)|}Dx y x yr ,所求概率为2222233{(,)}()xyrP X Y D R xy d x d yR322323232133r r r R rRRR.5.已知随机变量X 和Y 的联合概率密度为4,1,01(,)0,.x y xyf x y 其它求X 和Y 的联合分布函数.解1设(,)X Y 的分布函数为(,)F x y ,则(,)(,)xyF x y f u v d u d v01001000,00,4,1,01,4,01,1,4,1,01,1,1, 1.xyxyxy uv du d v xyu yd u d y x y xvd xd v x y xy 或22220,00,,01,01,,01,1,,1,01,1,1,1.x yx y x y x xy yx y xy或解2由联合密度可见,,X Y 独立,边缘密度分别为2,1,()0,;X x xf x 其他2,01,()0,.Y y yf y 其它边缘分布函数分别为(),()X Y F x F y ,则·37·20,0,()(),01,1, 1.xX X x F x f u d u x x x 20,0,()(),01,1,1.yY Xy F y fv d v y y y设(,)X Y 的分布函数为(,)F x y ,则22220,00,,01,01(,)()(),01,1,,1,01,1,1,1.X Y x y x y x y F x y F x F y x xy y x y x y或6.设二维随机变量(,)X Y 在区域:01D x,||y x 内服从均匀分布,求边缘概率密度。

《概率论与数理统计》第4-7 章复习与自测题

《概率论与数理统计》第4-7 章复习与自测题

《概率论与数理统计》第4-7章复习第四章 随机变量的数字特征常用分布的期望与方差第五章 大数定律及中心极限定理第六章 数理统计的基本概念第七章参数估计常用概率分布的参数估计表自测题第四章﹑数字特征1. 设随机变量X 的密度函数f(x)= ⎩⎨⎧5x 4 0≤x ≤1 0 其他, 求数学期望EX 。

2.设随机变量X ~N (-1,3),Y ~N (0,5),Cov(X ,Y )=0.4,求D (X +Y )的值。

3. 设随机变量X 和Y 的密度函数分别为f X (x)= ⎩⎨⎧0.5, 1≤x ≤30, 其它 ,f Y (y)= ⎩⎨⎧3e -3y , y>00, y ≤0, 若X ,Y 相互独立,求: E(XY)4. 设 X 服从参数为 λ 的普阿松分布(λ>0),则下列6个等式中那几个是错误的。

DX=1λ, E(X)D(X) =1 , E(X 2)=E(X)[E(X)+1] , E(X) = λ , E (X - λ)2 = 0, EX=λ2+λ5.设随机变量的联合分布律为⎣⎢⎡⎦⎥⎤X ╲Y 1 2 0 1/4 1/12 2 1/6 1/2 求:(1) E(X), E(Y);(2)D(X), D(Y);(3) ρxy 。

6.设二维随机变量(X ,Y)的联合分布律为⎣⎢⎡⎦⎥⎤X ╲Y 0 1 3 0 0.1 0.2 0.1 1 0.2 0.4 0,求(1)E(XY); (2)Cov(X,Y)。

试问:X 与Y 是否相互独立?为什么?7. 设随机变量X 的分布律为 ⎣⎡⎦⎤X -2 0 1 2P 0.2 0.3 0.4 0.1.记Y =X 2, 求:(1)D (X ),D (Y );(2)Cov(X,Y ), ρxy .8. 已知投资某短期项目的收益率R 是一随机变量,其分布为:⎣⎡⎦⎤R -2% 0% 3% 10%P 0.1 0.1 0.3 0.5 。

(1) 求R 的数学期望值E(R)与方差D(R);(2) 若一位投资者在该项目上投资100万元,求他预期获得多少收益(纯利润)(万元)?9. 假定暑假市场上对冰淇淋的需求量是随机变量X 盒,它服从区间[200,400]上的均匀分布,设每售出一盒冰淇淋可为小店挣得1元,但假如销售不出而屯积于冰箱,则每盒赔3元。

概率论第四章习题解答(全)

概率论第四章习题解答(全)

P{Y 3}
1 5C3 15 1 30 30 2
当 Y 4 时,包含的 4 个字母的单词只有 1 个,故
1 C4 4 2 P{Y 4} 30 30 15
当 Y 9 时,包含的 9 个字母的单词只有 1 个,故
P{Y 9}
9 9 3 30 30 10 Y p
X p
0 0.2936
1 0.4211
2 0.2263
3 0.054
4 0.0049
(4)求数学期望
E ( X ) 0 0.2936 1 0.4211 2 0.2263 3 0.0542 4 0.0049
1.0556 。
3 有 3 只球 4 个盒子的编号为 1,2,3,4。将球逐个独立地随机地放入 4 个盒子中去, 以 X 表示其中至少有一只球的盒子的最小号码(例如 X=3,表示第 1 号、第 2 号盒子是空 的,第 3 个盒子至少有一只球。 )试求 E ( X ) 。 解 (1)求 X 的分布律
X 1 2 3 4 5 7 8 9 10 11 12
p
1 6 E( X )
1 6
1 6
1 6
1 6
1 36
1 36
1 36
1 36
1 36
1 36
1 6 1 12 21 57 59 i i 6 i 1 36 i 7 6 36 12
2
某产品的次品率为 0.1,检验员每天检验 4 次,每次随机地取 10 件产品进行检验,
P (Ck ) P ( Ak | A1 A2 Ak 1 ) P ( Ak 1 | A1 A2 Ak 2 ) P ( A2 | A1 ) P ( A1 )

概率论第四章习题答案

概率论第四章习题答案

第四章复习题答案一、单项选择1.设随机变量X 具有分布P{X=k}=51,k=1,2,3,4,5,则E (X )=( B ) A.2 B.3 C.4D.52.设随机变量X 与Y 相互独立,X 服从参数为2的指数分布,Y ~B (6,21),则E(X-Y)=( A )A .-1B .21C .2D .5 3.设二维随机变量(X ,Y )的协方差Cov(X ,Y )=61,且D (X )=4,D (Y )=9,则X 与Y 的相关系数XY ρ为( B )()(),XY Cov X Y D X D Y ρ=A .2161 B .361 C .61 D .1 4. 设随机变量X 和Y 独立同分布,X ~N (μ,σ2),则( B ) A.2X ~N (2μ,2σ2) B.2X -Y ~N (μ,5σ2) C.X +2Y ~N (3μ,3σ2)D.X -2Y ~N (3μ,5σ2)5.设EX 2=8,DX =4,则E (2X )=( D ) A.1 B.2 C.3 D.46.对任意两个随机变量X 和Y ,由D (X +Y )=D (X )+D (Y )可以推断( A ) A.X 和Y 不相关B.X 和Y 相互独立C.X 和Y 的相关系数等于-1D.D (XY )=D (X )D (Y )7.已知随机变量X 服从参数为2的泊松分布,则随机变量X 的方差为( D ) A .-2 B .0 C .21D .2 8.设随机变量X 与Y 相互独立,且X ~B (16,0.5),Y 服从参数为9的泊松分布,则D (X -2Y +3)=( C )A.-14B.-11C.40D.439.已知随机变量X 服从参数为2的指数分布,则随机变量X 的期望为( D )A .-21B .0C .21D .2 二、填空1.设随机变量X 服从正态分布N (2,4),Y 服从均匀分布U (3,5),则E (2X-3Y )= ___-8___. 2.设随机变量X 与Y 相互独立,其分布律分别为则E (XY )=__2______.3.设X ,Y 为随机变量,已知协方差Cov(X ,Y )=3,则Cov(2X ,3Y )=____18___. 4.设X~N (0,1),Y~B (16,21),且两随机变量相互独立,则D(2X+Y)= __8______ 5.设随机变量X 的概率密度为⎩⎨⎧≤≤=,,0;10,2)(其他x x x f 则E (X )=__23______.6.已知E (X )=2,E (Y )=2,E (XY )=4,则X ,Y 的协方差Cov (X,Y )=____0_____. 7.设随机变量X ~N (0,4),则E (X 2)=_____4____.8.设X ~N (0,1),Y =2X -3,则D (Y )=____4__. 三、计算1.某柜台做顾客调查,设每小时到达柜台的顾额数X 服从泊松分布,则X~P (λ),若已知P (X=1)=P (X=2),且该柜台销售情况Y (千元),满足Y=21X 2+2.试求:(1)参数λ的值;21!2!e e λλλλ--=,=2λ.(2)一小时内至少有一个顾客光临的概率;{}{}21101-P X P X e -≥=-== (3)该柜台每小时的平均销售情况E (Y ). ()==2E Y λ2. 2021年东京奥运会即将召开,某射击队有甲、乙两个射手,他们的射击技术可用下表给出。

概率论与数理统计第四章习题参考答案

概率论与数理统计第四章习题参考答案

=
⎡ E⎢
1
⎢⎣ n −1
n i =1
(Xi

⎤ X )2 ⎥
⎥⎦
=
1 n −1
⎡ E⎢
⎢⎣
n i =1
X
2 i

nX
2⎤ ⎥ ⎥⎦
=
1 n −1
⎡n ⎢ ⎢⎣ i=1
E
(
X
2 i
)

nE( X
2⎤ )⎥ ⎥⎦
∑[ ] [ ] =
1 n −1
⎧ ⎨ ⎩
n i =1
D(X i ) + E 2 (X i )
X −µ 3/2
<
⎫ 1.96⎬
=
0.95

故,正态总体均值 µ 的 95%的置信区间为 (X − 2.94, X + 2.94)
代入样本值得正态总体均值 µ 的 95%的置信区间为(-2.565,3.315)。
(2)当σ 未知时,由 T = X − µ ~ t(n − 1) 即T = X − µ ~ t(3) ,所以
n
−a n
=0 =0
无解。由此不能求得
a,
b
的极大似然估计量。
⎩ ∂b
b−a
解:X
的概率密度为
f
(x)
=
⎪⎧ ⎨b
1 −
a
,
a

x

b

⎪⎩ 0, 其它
似然函数为 L(a, b) = 1 , θ1 ≤ xi ≤ θ 2 ,i = 1,2,L, n , (b − a)n
对于给定的样本值 (x1 , x2 ,L, xn )

n
D(

概率论第四章习题答案

概率论第四章习题答案

概率论第四章习题答案概率论是数学中的一个重要分支,它研究了随机现象的规律性和不确定性。

在概率论的学习过程中,习题是不可或缺的一部分,通过解答习题可以加深对概率论知识的理解和运用。

本文将针对概率论第四章的习题进行解答,以帮助读者更好地掌握这一章节的内容。

第一题:某班级有30名学生,其中有10名男生和20名女生。

从中随机选取2名学生,求选出的两名学生都是男生的概率。

解答:首先,计算总的样本空间。

从30名学生中选取2名学生,共有C(30, 2)= 435种可能的选法。

然后,计算选出的两名学生都是男生的样本空间。

从10名男生中选取2名学生,共有C(10, 2) = 45种可能的选法。

所以,选出的两名学生都是男生的概率为P = 45/435 = 1/9。

第二题:某班级有30名学生,其中有10名男生和20名女生。

从中随机选取4名学生,求选出的学生中至少有1名男生的概率。

解答:首先,计算总的样本空间。

从30名学生中选取4名学生,共有C(30, 4)= 27,405种可能的选法。

然后,计算选出的学生中全是女生的样本空间。

从20名女生中选取4名学生,共有C(20, 4) = 4,845种可能的选法。

所以,选出的学生中至少有1名男生的概率为P = 1 - 4,845/27,405 =22,560/27,405 ≈ 0.822。

第三题:某班级有30名学生,其中有10名男生和20名女生。

从中随机选取6名学生,求选出的学生中至少有3名男生的概率。

解答:首先,计算总的样本空间。

从30名学生中选取6名学生,共有C(30, 6) = 593,775种可能的选法。

然后,计算选出的学生中全是女生或者只有1名男生或者只有2名男生的样本空间。

从20名女生中选取6名学生,共有C(20, 6) = 38,760种可能的选法。

从10名男生中选取1名学生,共有C(10, 1) = 10种可能的选法。

从10名男生中选取2名学生,共有C(10, 2) = 45种可能的选法。

概率论与数理统计 4,5章自测题答案

概率论与数理统计 4,5章自测题答案
4、
x = r cos θ , y = r sin θ EZ = ∫ dr ∫
0 2 +∞ 0 +∞ 2π 0
π 1 − r2 r e rdθ = 2π 2
1 − r2 r e rdθ = 2 2π
2
2
2
EZ = ∫ dr ∫ DZ = 2 −

0
π
2
2
5、 E ( X + Y ) 四、综合题(35 分) 1、
2、对随机变量 X 来说,如果 EX ≠ DX ,则可断定 X 不服从( (A) 二项分布 (C) 正态分布 (B) 指数分布 (D) 泊松分布

3、设ξ1,ξ2,…,ξn,…为独立随机变量序列,且ξi(i=1,2,…)服从参数为λ的指数 分布,则下列选项正确的是( (A) )
lim P⎨ ⎢∑ ξ ⎩⎣
(
) = E( X
2
+ 2 XY + Y 2 ) = DX + DY + 2 EXEY = 2 .
x 1 − 1 −4 P (Y = 300) = ∫ e dx = 1 − 1.25e 4 0 4 ; 设盈利为 Y,则 1
P (Y = 100) = 1.25e EY = 300 − 250e
2、
− 1 4
n 2 ≤ y) = ϕ ( y)
X− P(| X− P(| n 4 n
n 2 |< 0.1) ≥ 0.9
n 2 |< 0.2 n ) ≥ 0.9
ϕ (0.2 n ) ≥ 0.95
n ≥ 68
五、 (1) EX =

b
a
xp( x)dx ≥ a ∫ p( x)dx = a

概率论第四章习题解答

概率论第四章习题解答

X9
EX 9
9
9
8 9
20
2024年8月31日7时4分
P104 练习4.2 题1 SD 1
1,1
f XY
x,
y
1 0
0 x 1, x y x 其它
yx
DZ D2X 1 4DX
EX xf x, ydxdy
0D
y x 1
1 0
x x
xdy
dx
1 2x2dx 2
P113 习题四 一 填空题 7 X与Y相互独立
f
X
x
2x
0
0
x 其它
1,fY
y
x y t
FT t PT t P X Y t fXY x, y dxdy
x yt
1当t 0时:FT t 0dxdy 0
0
x yt
2 当0 t时:FT
t
t
dx
tx 25e5x5 ydy
0
0
1 e5t 5te5t
t,0
x
FT
t
1
e5t
0
5te5t
t0 t0
33
2 EX 2
xi2 pij
i1 j1
20.1 30.3 30.1 2
33
3 EY 2
yi2 pij
12 0.212 0.112 0.1 22 0.1
22 0.132 0.332 0.1 4.8
i1 j1
12 0.2 12 0.1 12 0.1
12 0.1 12 0.1 0.6
2024年8月31日7时4分
P100 练习4.1 题12
2
f XY
x,
y
x

概率论与数理统计练习题第四章答案

概率论与数理统计练习题第四章答案

概率论与数理统计练习题________ 系 _______ 专业 _______ 班 姓名 __________________ 学号 _________ 第四章 随机变量的数字特征(一)、选择题:1 •设随 机变量 X ,且E(X)存在 , 则E(X)是[B ](A ) X 的函数(B )确定常数(C ) 随机变量(D ) x的函数1x9x2 •设 X 的 概率密度 为f(x)e 9 0 , 则E(9X〈)x 0[C ](A )1 9 x e 9dx(B )1xx e 9dx(C ) 1(D ) 1993 •设是 随 机变量E()存 在,若2 则E( )3,[D ](A ) E()(B ) E()(C ) E( )2(D ) E()23334 •设随机变量 X 和Y 独立且在(0,)上服从均匀分布,则E{min( X,Y)}(考研题2011 )14.设随机变量 X 的密度函数为f (x) e |x| ( x ),则E(X) 02*5 •设随机变量 X j (i, j 1,2,L ,n)独立且同分布,E(X j ) 2,则行列式(A ) — (B )2、填空题:(C)—3(D)—41 •设随机变量 X 的可能取值为0, 1 , 2,相应的概率分布为 060.3,0.1,贝U E(X)2 .设X 为正态分布的随机变量,概率密度为f(x) 1 2「2 e(X 1)2~8~ ,则2 E(2X3 •设随机变量 116/15,贝V E(X1)93X 2) X 的概率分布二、计算题:1 .袋中有5个乒乓球,编号为1,2,3,4,5,从中任取3个,以X表示取出的3个球中最大编号,求E(X).叫切"詁斋+5詁.52•设随机变量X〜N( , 2),求E(| X I).(1) £(I;) = J e^x e~x dx = -o 3xe~x dx = 2 + e~'⑶上口)=(“幺+ [XnX21MX nlX12X22MX n2XmX2nMX nn的数学期望E(Y) 0 (考研题1999 )三、1.X34516p101010xe x3 •设随机变量X的密度函数为f (x)0 x0,试求下列随机变量的数学期望。

(完整版)概率论第四章答案

(完整版)概率论第四章答案

习题4-11. 设随机变量X求()E X ;E (2-3 X );2()E X ;2(35)E X +.解 由定义和数学期望的性质知2.03.023.004.0)2()(-=⨯+⨯+⨯-=X E ; (23)23()23(0.2) 2.6E X E X -=-=-⨯-=; 8.23.023.004.0)2()(2222=⨯+⨯+⨯-=X E ; 4.1358.235)(3)53(22=+⨯=+=+X E X E . 2. 设随机变量X 的概率密度为,0,()0,0.xe xf x x -⎧>⎪=⎨⎪⎩≤求Xe Z X Y 22-==和的数学期望.解()(2)2()22x E Y E X E X x x ∞-====⎰e d ,2201()()3Xx x E Z E ee e dx ∞---==⋅=⎰. 3. 游客乘电梯从底层到电视塔顶观光, 电梯于每个整点的第5分钟、第25分钟和第55分钟从底层起行. 假设一游客在早八点的第X 分钟到达底层侯梯处, 且X 在区间[0, 60]上服从均匀分布. 求该游客等候电梯时间的数学期望. 解已知X 在[0,60]上服从均匀分布, 其概率密度为1,060,()600,.x f x =⎧⎪⎨⎪⎩≤≤其它记Y 为游客等候电梯的时间,则5,05,25,525,()55,2555,65,5560.X X X X Y g X X X X X -<-<==-<-<⎧⎪⎪⎨⎪⎪⎩≤≤≤≤因此, 6001()[()]()()()60E Y E g X g x f x dx g x dx ∞-∞===⎰⎰()5255560525551(5)(25)(55)(65)60x dx x dx x dx x dx =-+-+-+-⎰⎰⎰⎰=11.67(分钟)..14. 某保险公司规定, 如果在一年内顾客的投保事件A 发生, 该公司就赔偿顾客a 元. 若一年内事件A 发生的概率为p , 为使该公司受益的期望值等于a 的10%, 该公司应该要求顾客交多少保险费?解 设保险公司要求顾客交保费c 元. 引入随机变量⎩⎨⎧=.A ,0,A 1不发生事件发生事件,X 则{1},{0}1P X p P X p ====-. 保险公司的受益值1,,0.c a X Y c X -=⎧=⎨=⎩, 于是 ()(){1}{0}E Y c a P X c P X ap c =-⨯=+⨯==-+. 据题意有10%ap c a -+=⨯, 因此应要求顾客角保费(0.1)c p a =+.习题4-21. 选择题(1) 已知(1,(3))E D X X =-= 则2[3(2)]()E X-=.(A) 9. (B) 6. (C) 30. (D) 36. 解22[3(2)]3(44)E X E X X -=-+23[()4()4]E X E X =-+23{()[()]4()4}D X E X E X =+-+ 3(3144)36=⨯+++=.可见,应选(D).(2) 设~(,),(6,( 3.6))B n p E D X X X ==, 则有( ).(A)10, 0.6n p ==. (B) 20, 0.3n p ==. (C) 15, 0.4n p ==. (D) 12, 0.5n p ==.解 因为~(,),B n p X 所以E (X )=n p,D (X )=np (1-p ), 得到np =6, np (1-p )=3.6 . 解之,n=15 , p =0.4 . 可见,应选(C).(3) 设X 与Y 相互独立,且都服从2(,)N μσ, 则有( ).(A) ()()()E X Y E X E Y -=+. (B) ()2E X Y μ-=.(C)()()()D X Y D X D Y -=-. (D) 2()2D X Y σ-=.解 注意到0)()()(=-=-Y E X E Y XE .由于X 与Y 相互独立,所以22)()()(σ=+=-Y D X D Y X D . 选(D).(4) 在下列结论中, 错误的是( ).(A) 若~(,),().X B n p E X np =则(B) 若()~1,1X U -,则()0D X =. (C) 若X 服从泊松分布, 则()()D X E X =.(D) 若2~(,),X N μσ 则~(0,1)X N μσ-.解)1,1(~-U X , 则3112212)()(22==-=a b X D . 选(B). 2. 已知X , Y 独立, E (X )= E (Y )=2, E (X 2)= E (Y 2)=5, 求E (3X -2Y ),D (3X -2Y ).解 由数学期望和方差的性质有E (3X -2Y )= 3E (X )-2 E (Y )=3×2-2×2=2,(32)9()4()D X Y D X D Y -=+})]([)({4})]([)({92222Y E Y E X E X E -⨯+-⨯=13)45(4)45(9=-⨯+-⨯=.3. 设随机变量X 1, X 2, X 3相互独立, 其中X 1服从区间[0, 6]上的均匀分布,22~0,2X N (), 3~3X P (), 记12323Y X X X =-+, 求E (Y )和D (Y ) .解 由题设知21122(60)()3,()3,()0,()4,12E X D X E X D X -=====3321111(),()39E X D X λλ====.由期望的性质可得123123()(23)()2()3()13203 4.3E Y E X X X E X E X E X =-+=-+=-⨯+⨯=又123,,X X X 相互独立, 所以123123()(23)()4()9()1344920.9D Y D X X X D X D X D X =-+=++=+⨯+⨯=4. 设两个随机变量X 和Y 相互独立, 且都服从均值为0, 方差为12的正态分布, 求||X Y -的的期望和方差.解 记UX Y =-. 由于11~(0,),~(0,)22X N Y N , 所以()()()0,E U E X E Y =-= ()()()1D U D X D Y =+=.由此~(0,1)U N . 进而2222220 (||)(||)||x x xE X Y E U x dx xe dx e+∞---+∞+∞-∞-====⎰2222(||)()()[()]101E U E U D U E U==+=+=.故而2222 (||)(||)(||)[(||)]11D X Y D UE U E Uπ-==-=-=-.5. 设随机变量]2,1[~-UX, 随机变量⎪⎩⎪⎨⎧<-=>=.0,1,0,0,0,1XXXY求期望()E Y和方差)(YD.解因为X的概率密度为1,12,()30,.Xxf x-=⎧⎪⎨⎪⎩≤≤其它于是Y的分布率为00--11{1}{0}31()d d3XP Y P X f x x x∞=-=<===⎰⎰,{0}{0}0P Y P X====,+2002{1}{0}31()d d3XP Y P X f x x x∞==>===⎰⎰.因此121()1001333E Y=-⨯+⨯+⨯=,222212()(1)001133E Y=-⨯+⨯+⨯=.故有2218()()[()]199D YE Y E Y=-=-=.6. 设随机变量U在区间[-2, 2]上服从均匀分布, 随机变量1,1,1, 1.UXU--=>-⎧⎨⎩若≤若1,1,1, 1.UYU-=>⎧⎨⎩若≤若求E(X+Y), D(X+Y).解(1) 随机变量(X, Y)的可能取值为(-1,-1),(-1,1),(1,-1),(1,1).{1,1}{P X Y P U =-=-=≤1,U -≤-1-211}{1}41d 4P U x =-==⋅⎰≤, {1,1}{P X Y P U =-==≤1,U -1}0>=, {1,1}{1P X Y P U ==-=>-,U ≤1111}21d 4x -==⋅⎰, 211{1,1}{1,1}41d 4P X Y P U U x ===>->==⋅⎰.于是得X 和Y 的联合密度分布为(2) Y X +和)(Y X +的概率分布分别为由此可见22()044E X Y +=-+=;2()[()]2D X Y E X Y +=+=.习题4-31. 选择题(1) 在下列结论中, ( )不是随机变量X 与Y 不相关的充分必要条件(A) E (XY )=E (X )E (Y ). (B) D (X +Y )=D (X )+D (Y ). (C) Cov(X ,Y )=0. (D) X 与 Y 相互独立.解 X 与 Y 相互独立是随机变量X 与Y 不相关的充分条件,而非必要条件. 选(D).(2) 设随机变量X 和Y 都服从正态分布, 且它们不相关, 则下列结论中不正确的是( ).(A) X 与Y 一定独立. (B) (X , Y )服从二维正态分布. (C) X 与Y 未必独立. (D) X +Y 服从一维正态分布.解 对于正态分布不相关和独立是等价的. 选(A).(3) 设(X , Y )服从二元正态分布, 则下列说法中错误的是( ).(A) (X , Y )的边缘分布仍然是正态分布.(B) X 与Y 相互独立等价于X 与Y 不相关. (C) (X , Y )是二维连续型随机变量.(D)由(X , Y )的边缘分布可完全确定(X , Y )的联合分布. 解 仅仅由(X , Y )的边缘分布不能完全确定(X , Y )的联合分布. 选(D)2 设D (X )=4, D (Y )=6, ρXY =0.6, 求D (3X -2Y ) .解(32)9()4()12Cov(,)D X Y D X D Y X Y -=+-)()(126449Y D X D XY ⨯⨯-⨯+⨯=ρ727.24626.0122436≈⨯⨯⨯-+=.3. 设随机变量X , Y 的相关系数为5.0, ,0)()(==Y E X E 22()()2E X E Y ==,求2[()]E XY +.解222[()]()2()()42[Cov(,)()()]E X Y E X E XY E Y X Y E X E Y +=++=++42420.526.ρ=+=+⨯⨯=4. 设随机变量(X , Y )若E (XY )=0.8, 求常数a ,b 解 首先由∑∑∞=∞==111i j ijp得4.0=+b a . 其次由0.8()100.420110.2210.22E XY a b b ==⨯⨯+⨯⨯+⨯⨯+⨯⨯=+ 得3.0=b . 进而1.0=a . 由此可得边缘分布律于是 , . 故 Cov(,)()()()0.8 1.40.50.1X Y E XY E X E Y =-=-⨯=.5. 已知随机变量(,)~(0.5,4;0.1,9;0)X Y N , Z =2X -Y , 试求方差D (Z ), 协方差Cov(,)X Z , 相关系数ρXZ .解 由于X ,Y 的相关系数为零, 所以X 和Y 相互独立(因X 和Y 服从正态分布). 因此25944)()(4)2()(=+⨯=+=-=Y D X D Y X D Z D ,Cov(,)Cov(,2)2Cov(,)Cov(,)2()08X Z X X Y X X X Y D X =-=-=-=.因此80.825XZ ρ===⨯. 6. 设随机变量(X , Y )服从二维正态分布: 2~(1,3)X N , 2~(0,4)Y N ; X 与Y 的相关系数1,232XYX YZ ρ=-=+. 求: (1) E (Z ), D (Z ); (2) X 与Z 的相关系数ρXZ ; (3)问X 与Z 是否相互独立?为什么?解 (1) 由于)3,1(~2N X , )4,0(~2N Y , 所以16)(,0)(,9)(,1)(====Y D Y E X D X E ,而1Cov(,)3462XY X Y ρ==-⨯⨯=-.因此 31021131)(21)(31)23()(=⨯+⨯=+=+=Y E X E Y X E Z E ,1111()()()()2Cov(,)329432X Y D Z D D X D Y X Y =+=++111916Cov(,)943X Y =⨯+⨯+3)6(3141=-⨯++=.(2) 由于1111Cov(,)Cov(,)()Cov(,)9(6)0,323232XY X Z X D X X Y =+=+=⨯+⨯-= 所以0XZ ρ==.(3) 由0=XZ ρ知X 与Z 不相关, 又X 与Z 均服从正态分布, 故知X 与Z 相互独立.7.证明: 对随机变量(X , Y ), E (XY )=E (X )E (Y )或者D (X ±Y )=D (X )+D (Y )的充要条件是X与Y 不相关.证 首先我们来证明)()()(Y E X E XY E =和()()()D X Y D X D Y ±=+是等价的.事实上, 注意到()()()2Cov(,)D X Y D X D Y X Y ±=+±.因此()()()D X Y D X D Y ±=+Cov(,)0()()()X Y E XY E X E Y ⇔=⇔=.其次证明必要性. 假设E (XY )=E (X )E (Y ), 则Cov(,)()()()0X Y E XY E X E Y =-=.进而0XYρ==, 即X 与Y 不相关.最后证明充分性. 假设X 与Y 不相关, 即0=XYρ, 则Cov(,)0X Y =. 由此知)()()(Y E X E XY E =.总习题四1. 设X 和Y 是相互独立且服从同一分布的两个随机变量, 已知X 的分布律为1{},1,2,33P X i i ===. 又设max{,},min{,}U X Y V X Y ==.(1) 写出二维随机变量(U , V )的分布律; (2) 求()E U .解 (1) 下面实际计算一下{1,3}P UV ==.注意到max{,},min{,}U X Y V X Y ==, 因此{1,3}{1,3}{3,1}P U V P X Y P X Y =====+=={1}{3}{3}{1}P X P Y P X P Y ===+==9231313131=⨯+⨯=.(2) 由(,)U V 的分布律可得关于U 的边缘分布律所以13522()1239999E U =⨯+⨯+⨯=. 2. 从学校乘汽车到火车站的途中有3个交通岗. 假设在各个交通岗遇到红灯的事件是相互独立的, 并且概率是25. 设X 为途中遇到红灯的次数, 求随机变量X 的分布律、分布函数和数学期望.解 令X 表示途中遇到红灯的次数, 由题设知2~(3,)XB . 即X 的分布律为从而3127543686(){}01231251251251255k E X kP X k ====⨯+⨯+⨯+⨯=∑. 3. 设随机变量),(Y X 的概率密度为212,01,(,)0,.y y x f x y ⎧⎪=⎨⎪⎩≤≤≤其它求22(),(),(),()E X E Y E XY E X Y +.解 112404()(,)1245xE X xf x y dxdy dx x y dy x dx ∞∞-∞-∞==⋅==⎰⎰⎰⎰⎰. 11240003()(,)1235xE X yf x y dxdy dx y y dy x dx ∞∞-∞-∞==⋅==⎰⎰⎰⎰⎰.112500031()(,)12362x E XY xyf x y dxdy dx xy y dy x dx ∞∞-∞-∞==⋅===⎰⎰⎰⎰⎰.122222220()()(,)()12xE X Y x y f x y dxdy dx x y y dy ∞∞-∞-∞+=+=+⋅⎰⎰⎰⎰155012423216(4)5653015x x dx =+=+==⎰. 4. 设随机变量(X ,Y )的概率密度为1sin(),0,0,222(,)0,.≤≤≤≤其它ππx y x y f x y ⎧+⎪=⎨⎪⎩求E (X ),D (X ),E (Y ),D (Y ),E (XY )和 Cov(X ,Y ).解22001()(,)sin()24E X xf x y dxdy x x y dxdy πππ+∞+∞-∞-∞==+=⎰⎰⎰⎰.22222200()(,)1sin() 2.282E X x f x y dxdyx x y dxdy ππππ+∞+∞-∞-∞==+=+-⎰⎰⎰⎰于是有2216)]([)()(222-+=-=ππX E X E X D . 利用对称性,有2216)(,4)(2-+==πππY D Y E .又()(,)E XY xyf x y dxdy +∞+∞-∞-∞=⎰⎰22001sin()2xy x y dxdy ππ=+⎰⎰220022001sin()21[sin cos cos sin ]2xdx y x y dyxdx y x y x y dyππππ=+=+⎰⎰⎰⎰12-=π.所以协方差2Cov(,)()()()1216X Y E XY E X E Y ππ=-=--.5. 设随机变量X 与Y 独立, 同服从正态分布1(0,)2N , 求(1)();()E X Y D X Y --;(2) (max{,});(min{,})E X Y E X Y .解 (1) 记Y X -=ξ.由于)21,0(~),21,0(~N Y N X ,所以,0)()()(=-=Y E X E E ξ 1)()()(=+=Y D X D D ξ.由此)1,0(~N ξ. 所以2222(||)(||)||x x E X Y E x dx xedx ξ+∞+∞---∞-==⎰22x e+∞-==101)]([)()()|(|2222=+=+==ξξξξE D E E .故而ππξξξ2121|)](|[)|(||)(||)(|222-=⎪⎪⎭⎫ ⎝⎛-=-==-E E D Y X D .(2) 注意到2||)(),max(Y X Y X Y X -++=, 2||),min(Y X Y X Y X --+=.所以ππ21221|]}[|)()({21)],[max(==-++=Y X E Y E X E Y X E ,ππ21221|]}[|)()({21)],[min(-=-=--+=Y X E Y E X E Y X E .6. 设随机变量),(Y X 的联合概率密度为,02,02,8(,)0,.x yx y f x y +⎧⎪=⎨⎪⎩≤≤≤≤其它求: E (X ), E (Y ), Cov(X ,Y ), ρXY , D (X+Y ).解 注意到),(y x f 只在区域2≤≤0,2≤≤0:y x G 上不为零, 所以()(,)8Gx yE X xf x y dxdy x x y ∞∞-∞-∞+==⎰⎰⎰⎰d d222000117()(1)846dx x x y dy x x dx =+=+=⎰⎰⎰,22()(,)E Xx f x y dxdy ∞∞-∞-∞=⎰⎰222232000115()()843dx x x y dy x x dx =+=+=⎰⎰⎰, 因而 36116735)]([)()(2222=-=-=X E X E X D .又()(,)E XY xyf x y dxdy ∞∞-∞-∞=⎰⎰22220001144()()8433dx xy x y dy x x dx =+=+=⎰⎰⎰. 由对称性知2275()(),()()63E Y E X E Y E X ====, 3611)()(==X D Y D . 这样,4491Cov(,)()()()33636X Y E XY E X E Y =-=-=-, 111XY ρ==-,5()()()2Cov(,)9D X Y D X D Y X Y +=++=.7. 设A , B 为随机事件, 且111(),(|),(|)432P A P B A P A B ===, 令 10A X A =⎧⎨⎩,发生,,不发生, 10B Y B =⎧⎨⎩,发生,,不发生.求: (1) 二维随机变量(X , Y )的概率分布; (2) X 与Y 的相关系数XY ρ.解 由1()(|)3()P AB P B A P A ==得1111()()33412P AB P A ==⨯=, 进而由1(|)2P A B = ()()P AB P B =得1()2()6P B P AB ==. 在此基础上可以求得(1)1{1,1}()12P X Y P AB ====,111{0,1}()()()61212P X Y P AB P B P AB ====-=-=,111{1,0}()()()4126P X Y P AB P A P AB ====-=-=,{0,0}()1()1[()()()]P X Y P AB P A B P A P B P AB ====-=-+-U 11121[]46123=-+-=.故(X , Y )的概率分布为(2) 由(1)因此211(),(),44E X E X ==22113()()[()]41616D XE X E X =-=-=, 22211115(),(),()()[()]6663636E Y E Y D Y E Y E Y ===-=-=. 又由(X , Y )的分布律可得21111()00011011312121212E XY =⨯⨯+⨯⨯+⨯⨯+⨯⨯=. 故11115XYρ-⨯===.。

概率论第4章习题参考解答

概率论第4章习题参考解答

概率论第4章习题参考解答 1. 若每次射击中靶的概率为0.7, 求射击10炮, 命中3炮的概率, 至少命中3炮的概率, 最可能命中几炮. 解: 设ξ为射击10炮命中的炮数, 则ξ~B (10,0.7), 命中3炮的概率为 =⨯⨯==733103.07.0}3{C P ξ0.0090至少命中3炮的概率, 为1减去命中不到3炮的概率, 为=⨯⨯-=<-=≥∑=-2010103.07.01}3{1}3{i i i i C P P ξξ0.9984因np +p =10×0.7+0.7=7.7不是整数, 因此最可能命中[7.7]=7炮. 2. 在一定条件下生产某种产品的废品率为0.01, 求生产10件产品中废品数不超过2个的概率. 解: 设ξ为10件产品中的废品数, 则ξ~B (10,0.01), 则废品数不超过2个的概率为=⨯⨯=≤∑=-20101099.001.0}2{i i i iC P ξ0.99993. 某车间有20部同型号机床, 每部机床开动的概率为0.8, 若假定各机床是否开动彼此独立, 每部机床开动时所消耗的电能为15个单位, 求这个车间消耗电能不少于270个单位的概率. 解: 设每时刻机床开动的数目为ξ, 则ξ~B (20,0.8), 假设这个车间消耗的电能为η个单位, 则η=15ξ, 因此2061.02.08.0}18{}15270{}27015{}270{20182020=⨯⨯==≥=≥=≥=≥∑=-i i i iC P P P P ξξξη4. 从一批废品率为0.1的产品中, 重复抽取20个进行检查, 求这20个产品中废品率不大于0.15的概率. 解: 设这20个产品中的废品数为ξ, 则ξ~B (20,0.1), 假设这20个产品中的废品率为η, 则η=ξ/20. 因此∑=-⨯⨯=≤=≤=≤320209.01.0}3{}15.020{}15.0{i i i iC P P P ξξη=0.8675. 生产某种产品的废品率为0.1, 抽取20件产品, 初步检查已发现有2件废品, 问这20件中, 废品不少于3件的概率. 解: 设ξ为这20件产品中的废品数, 则ξ~B (20,0.1), 又通过检查已经知道ξ定不少于2件的条件, 则要求的是条件概率}2{}23{}2|3{≥≥⋂≥=≥≥ξξξξξP P P因事件}3{}2{≥⊃≥ξξ, 因此2}23{≥=≥⋂≥ξξξ因此5312.06083.02852.019.01.0209.019.01.01}{1}2{1}{}2{1}{}2{}{}{}{}2{}3{}2|3{192018222010202202202202203=-=⨯⨯--⨯⨯-==-=-===-===-=====≥≥=≥≥∑∑∑∑∑∑======C i P P i P P i P P i P i P i P P P P i i i i i i ξξξξξξξξξξξξξ6. 抛掷4颗骰子, ξ为出现1点的骰子数目, 求ξ的概率分布, 分布函数, 以及出现1点的骰子数目的最可能值. 解: 因掷一次骰子出现一点的概率为1/6, 则ξ~B (4,1/6), 因此有⎪⎪⎩⎪⎪⎨⎧≥<≤⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛<==⎪⎭⎫ ⎝⎛⨯⨯==∑≤--4140656100)(),4,3,2,1,0(6561}{4444x x C x x F k C k P x k kk k kk kξ或者算出具体的值如下所示:ξ0 1 2 3 4 P0.48230.38580.11570.01540.0008⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥<≤<≤<≤<≤<=41439992.0329838.0218681.0104823.000)(x x x x x x x F从分布表可以看出最可能值为0, 或者np +p =(4/6)+1/6=5/6小于1且不为整数, 因此最可能值为[5/6]=0. 7. 事件A 在每次试验中出现的概率为0.3, 进行19次独立试验, 求(1)出现次数的平均值和标准差; (2)最可能出现的次数. 解: 设19次试验中事件A 出现次数为ξ, 则ξ~B (19,0.3), 因此 (1)ξ的数学期望为E ξ=np =19×0.3=5.7 方差为Dξ=np (1-p )=19×0.3×0.7=3.99标准差为997.199.3===ξσξD(2)因np +p =5.7+0.3=6为整数, 因此最可能值为5和6. 8. 已知随机变量ξ服从二项分布, E ξ=12, D ξ=8, 求p 和n . 解: 由E ξ=np =12 (1) 和D ξ=np (1-p )=8 (2) 由(1)得n =12/p , 代入到(2)得 12(1-p )=8, 解出p =(12-8)/12=1/3=0.3333 代回到(1)式得n =12/p =12×3=36 9. 某柜台上有4个售货员, 并预备了两个台秤, 若每个售货员在一小时内平均有15分钟时间使用台秤, 求一天10小时内, 平均有多少时间台秤不够用. 解: 每个时刻构成一n =4的贝努里试验, 且p =15/60=0.25, 因此, 设ξ为每个时刻要用秤的售货员数, 则ξ~B (4, 0.25), 当ξ>2时, 台秤不够用. 因此每时刻台秤不够用的概率为=+⨯⨯=>433425.075.025.0)2(C P ξ0.0508因此10个小时内平均有0.0508×10=0.508个小时台秤不够用. 10. 已知试验的成功率为p , 进行4重贝努里试验, 计算在没有全部失败的情况下, 试验成功不止一次的概率. 解: 设ξ为4次试验中的成功数, 则ξ~B (4,p ), 事件"没有全部失败"即事件{ξ>0}, 而事件"试验成功不止一次"即事件{ξ>1}, 因此要求的是条件概率P {ξ>1|ξ>0}, 又因事件{ξ>1}被事件{ξ>0}包含, 因此这两个事件的交仍然是{ξ>1}, 因此434141}0{1}1{}0{1}0{}1{}0|1{q pq q P P P P P P ---===-=-=-=>>=>>ξξξξξξξ其中q =1-p 11. ξ服从参数为2,p 的二项分布, 已知P (ξ≥1)=5/9, 那么成功率为p 的4重贝努里试验中至少有一次成功的概率是多少?解: 因ξ~B (2,p ), 则必有9/5)1(1)0(1)1(2=--==-=≥p P P ξξ, 解得3/13/213/219/49/51)1(2=-==-=-=-p p p 则假设η为成功率为1/3的4重贝努里试验的成功次数, η~B (4,1/3), 则802.081161321)1(1)0(1)1(44=-=⎪⎭⎫⎝⎛-=--==-=≥p P P ηη12. 一批产品20个中有5个废品, 任意抽取4个, 求废品数不多于2个的概率解: 设ξ为抽取4个中的废品数, 则ξ服从超几何分布, 且有==≤∑=-204204155}2{i i i C C C P ξ0.968 13. 如果产品是大批的, 从中抽取的数目不大时, 则废品数的分布可以近似用二项分布公式计算. 试将下例用两个公式计算, 并比较其结果. 产品的废品率为0.1, 从1000个产品中任意抽取3个, 求废品数为1的概率. 解: 设任抽3个中的废品数为ξ, 则ξ服从超几何分布, 废品数为0.1×1000=100 ===3100029001100}1{C C C P ξ0.2435 而如果用二项分布近似计算, n =3, p =0.1, ξ~B (3,0.1)=⨯⨯≈=2139.01.0}1{C P ξ0.2430近似误差为0.0005, 是非常准确的.14. 从一副朴克牌(52张)中发出5张, 求其中黑桃张数的概率分布. 解: 设ξ为发出的5张中黑桃的张数, 则ξ服从超几何分布, 则)5,4,3,2,1,0(}{5525135213===--i C C C i P i i ξ则按上式计算出概率分布如下表所示:ξ0 1 2 3 4 5 P0.22150.41140.27430.08150.01070.000515. 从大批发芽率为0.8的种子中, 任取10粒, 求发芽粒数不小于8粒的概率. 解: 设ξ为10粒种子中发芽的粒数, 则ξ服从超几何分布, 但可以用二项分布近似, 其中p =0.8, n =10, 则∑=-⨯⨯=≥10810102.08.0}8{i i i iC P ξ=0.677816. 一批产品的废品率为0.001, 用普哇松分布公式求800件产品中废品为2件的概率, 以及不超过2件的概率. 解: 设ξ为800件产品中的废品数, 则ξ服从超几何分布, 可以用二项分布近似, 则ξ~B (800, 0.001), 而因为试验次数很大废品率则很小, 可以用普阿松分布近似, 参数为 λ=np =800×0.001=0.89526.0!8.0}2{1438.028.0}2{28.08.02=≈≤=≈=∑=--i i e i P e P ξξ 17. 某种产品表面上的疵点数服从普哇松分布, 平均一件上有0.8个疵点, 若规定疵点数不超过1个为一等品, 价值10元, 疵点数大于1不多于4为二等品, 价值8元, 4个以上为废品, 求产品为废品的概率以及产品的平均价值. 解: 设ξ为产品表面上的疵点数, 则ξ服从普哇松分布, λ=0.8, 设η为产品的价值, 是ξ的函数. 则产品为废品的概率为0014.0!8.01}4{1}4{48.0=-=≤-=>∑=-i i e i P P ξξ==≤==∑=-18.0!8.0}1{}10{i i e i P P ξη0.8088==≤<==∑=-428.0!8.0}41{}8{i i e i P P ξη0.1898则产品的平均价值为Eη = 10×P {η=10}+8×P {η=8}=10×0.8088+8×0.1898=9.6064(元) 18. 一个合订本共100页, 平均每页上有两个印刷错误, 假定每页上印刷错误的数目服从普哇松分布, 计算该合订本中各页的印刷错误都不超过4个的概率. 解: 设ξ为每页上的印刷错误数目, 则ξ服从普哇松分布, λ=2, 则1页印刷错误都不超过4个的概率为 ==≤∑=-402!2}4{i i e i P ξ0.9473而100页上的印刷错误都不超过4个的概率为[]=≤100}4{ξP 0.00445419. 某型号电子管的“寿命”ξ服从指数分布, 如果它的平均寿命E ξ=1000小时, 写出ξ的概率密度, 并计算P (1000<ξ≤1200). 解: 因Eξ=1000=1/λ, 其概率密度为⎪⎩⎪⎨⎧≤>=-0010001)(1000x x ex xϕ0667.0)12001000(2.111000120010001000=-=-=≤<----e e ee P ξ20. ξ~N (0,1), Φ0(x )是它的分布函数, φ0(x )是它的概率密度, Φ0(0), φ0(0), P (ξ=0)各是什么值? 解: 因有 20221)(x ex -=πϕ, ⎰∞--=Φxt dt ex 20221)(π, 因此φ0(x )为偶函数, 由对称性可知Φ0(0)=0.5, 并有πϕ21)0(0=,因ξ为连续型随机变量, 取任何值的概率都为0, 即P (ξ=0)=0.21. 求出19题中的电子管在使用500小时没坏的条件下, 还可以继续使用100小时而不坏的概率?解: 要求的概率为P (ξ>600|ξ>500), 因此905.0}500{}600{}500|600{1.010005001000600===>>=>>---e e eP P P ξξξξ22. 若ξ服从具有n 个自由度的χ2-分布, 证明ξ的概率密度为⎪⎪⎩⎪⎪⎨⎧<≥⎪⎭⎫ ⎝⎛Γ=---022)(21212x x e n x x x nn ϕ称此分为为具有n 个自由度的χ-分布 证: 设ξη=, 则因ξ的概率密度函数为⎪⎪⎩⎪⎪⎨⎧≤>⎪⎭⎫ ⎝⎛Γ=--0221)(2122x x e x n x xn nξϕη的分布函数为)0()()()()()(22>=≤=≤=≤=x x F x P x P x P x F ξηξξη对两边求导得)0(22222)(2)(2121222222>⎪⎭⎫ ⎝⎛Γ=⎪⎭⎫ ⎝⎛Γ==-----x en x en x xx x x x n n x n n ξηϕϕ23. ξ~N (0,1), 求P {ξ≥0}, P {|ξ|<3}, P {0<ξ≤5}, P {ξ>3}, P {-1<ξ<3} 解: 根据ξ的对称性质及查表得: P {ξ≥0}=1-Φ0(0)=0.5 P {|ξ|<3}=2Φ0(3)-1=2×0.99865-1=0.9973 P {0<ξ≤5}=Φ0(5)-0.5=0.5P {ξ>3}=1-Φ0(3)=1-0.99865=0.00135P {-1<ξ<3}=Φ0(3)-Φ0(-1)=Φ0(3)+Φ0(1)-1=0.99865+0.8413-1=0.83995 24. ξ~N (μ,σ2), 为什么说事件"|ξ-μ|<2σ"在一次试验中几乎必然出现?解: 因为)1,0(~N σμξ- 19545.0197725.021)2(2}2{}2|{|0≈=-⨯=-Φ=<-=<-σμξσμξP P因此在一次试验中几乎必然出现.25. ξ~N (10,22), 求P (10<ξ<13), P (ξ>13), P (|ξ-10|<2). 解: 因为)1,0(~210N -ξ6826.018413.021)1(2}1210{}2|10{|0.0668193319.01)5.1(1}5.1210{}13{43319.05.093319.0)0()5.1(}5.12100{}1310{0000=-⨯=-Φ=<-=<-=-=Φ-=>-=>=-=Φ-Φ=<-<=<<ξξξξξξP P P P P P26. 若上题中已知P {|ξ-10|<c }=0.95, P {ξ<d }=0.0668, 分别求c 和d .解: 因为)1,0(~210N -ξ, 则有95.01)2(2}2210{}|10{|0=-Φ=<-=<-cc P c P ξξ 解得975.0295.01)2(0=+=Φc, 查表得,96.12=c得c =3.92 再由5.00668.0)210(}210210{}{0<=-Φ=-<-=<d d P d P ξξ知,0210<-d 因此0668.0)210(1)210(00=-Φ-=-Φd d即9332.00668.01)210(0=-=-Φd ,查表得5.1210=-d , 解得7310=-=d27. 若ξ~N (μ,σ2), 对于P {μ-kσ<ξ<μ+kσ}=0.90, 或0.95, 或0.99, 分别查表找出相应的k值.解: 先求P {μ-kσ<ξ<μ+kσ}=0.90对应的k 值. 因)1,0(~N σμξ-, 因此 90.01)(2}{}{0=-Φ=<-=+<<-k k P k k P σμξσμξσμ 即95.0290.01)(0=+=Φk , 查表得k =1.64 同理, 由975.0295.01)(0=+=Φk , 查表得k =1.96 由995.0299.01)(0=+=Φk , 查表得k =2.57 28. 某批产品长度按N (50, 0.252)分布, 求产品长度在49.5cm 和50.5cm 之间的概率, 长度小于49.2cm 的概率.解: 设ξ为产品长度, 则ξ~N (50, 0.252), 且有)1,0(~25.050N -ξ, 则9545.0197725.021)2(2}225.050{}225.0502{}5.505.49{0=-⨯=-Φ=<-=<-<-=<<ξξξP P P0006871.09993129.01)2.3(1)2.3(}25.0502.4925.050{}2.49{00=-=Φ-=-Φ=-<-=<ξξP P29. ξi ~N (0,1)(i =1,2,3), 并且ξ1,ξ2,ξ3相互独立, ∑==3131i i ξξ,∑=-=312)(i i ξξη, 求),cov(,),,cov(1ηξηξξE解: 此题要用到, 两个独立的服从正态分布的随机变量相加后得到的随机变量仍然服从正态分布. 因此, 因为3131,031=⎪⎭⎫ ⎝⎛==∑=i i D D E ξξξ, 则)31,0(~N ξ313131)()cov(2131111==⎪⎭⎫ ⎝⎛==∑=ξξξξξξξE E E i i32313121)cov(2)2()(22222=+⨯-=+-=+-=-ξξξξξξξξξξE E E E i i i i i因此2323)()(312312=⨯=-=⎪⎭⎫ ⎝⎛-=∑∑==i i i i E E E ξξξξη ξξ-i 也服从正态分布, 且有03131)]([),cov(2=-=-=-=-ξξξξξξξξξE E E i i i即ξ与ξξ-i 不相关, 而因为它们服从正态分布, 因此也就是ξ与ξξ-i 相互独立,则ξ与2)(ξξ-i 也相互独立, 则ξ与η中的加和中的每一项相互独立, 当然也与η相互独立, 因此有0),cov(=ηξ, 因为相互独立的随机变量一定不相关.30. (ξ,η)有联合概率密度22)(21,2122ηξζπ+=+-y x e , 求ζ的概率密度.解: 由联合概率密度看出, ξ与η相互独立服从标准正态分布, 则有 ξ2与η2也相互独立且服从自由度为1的χ2-分布, 即ξ2~χ2(1), η2~χ2(1), 因此ζ=ξ2+η2~χ2(2), 即它的概率密度为⎪⎩⎪⎨⎧<>=-00212x x exζϕ即ζ服从λ=1/2的指数分布.。

概率论与数理统计第四章自测题

概率论与数理统计第四章自测题

《概率论与数理统计》第四单元自测题时间:120分钟,卷面分值:100分一、填空题:(每空2分,共12分)得分1.设随机变量X与Y,方差D(X)=4,D(Y)=9,相关系数ρXY=0.6,则D(3X-2Y)= 。

2.已知随机变量X~N(0, σ2)(σ>0),Y在区间]上服从均匀分布,如果D(X-Y)=σ2,则X与Y的相关系数ρXY= 。

3.二维随机变量(X, Y)服从正态分布,且E(X)=E(Y)=0,D(X)=D(Y)=1,X与Y的相关系数ρXY=-1/2,则当a= 时,随机变量aX+Y与Y相互独立。

4.设随机变量X~N(0, 4),Y服从指数分布,其概率密度函数为1210 ()200xe xf xx-⎧>⎪=⎨⎪≤⎩,,,,如果Cov(X, Y)=-1,Z=X-aY,Cov(X, Z)=Cov(Y, Z),则a= ,此时X与Z的相关系数为ρXZ= 。

5.设随机变量X在区间(-1, 2)上服从均匀分布,随机变量-100010XY XX>⎧⎪==⎨⎪<⎩,,,,,,则方差D(Y)= 。

6.设随机变量X服从参数为2的泊松分布,用切比雪夫不等式估计P{∣X-2∣≥4}≤。

二、单选题:(每题2分,共12分)得分1.随机变量X, Y和X+Y的方差满足D(X+Y)=D(X)+D(Y),该条件是X与Y( )。

(A)不相关的充分条件,但不是必要条件;(B)不相关的必要条件,但不是充分条件;(C)独立的必要条件,但不是充分条件;(D)独立的充分必要条件。

2.若随机变量X与Y的方差D(X), D(Y)都大于零,且E(XY)=E(X)E(Y),则有( )。

(A) X与Y一定相互独立;(B) X与Y一定不相关;(C) D(XY)=D(X)D(Y);(D) D(X-Y)=D(X)-D(Y)。

3.设随机变量X与Y独立同分布,记随机变量U=X+Y,V=X-Y,且协方差Cov(U.V)存在,则U和V必然( )。

陈国华等主编概率论与数理统计第四章习题答案

陈国华等主编概率论与数理统计第四章习题答案

( A) 1;
( B) −1 ;
(C )
( D) ρ XY < 1 .
) .
4.若随机变量 X 和 Y 的协方差等于 0,则以下结论正确的是(
( A) X 和 Y 相互独立;
(C ) D( X − Y ) = D( X ) − D(Y ) ;
( B) D( X + Y ) = D( X ) + D(Y ) ;
则Z = ⎨
⎧1000 X + 500(Y − X ), X ≤ Y 1 , f ( x) = f ( y ) = ,10 ≤ X , Y ≤ 20 Y≤X 10 ⎩ 1000Y ,
E (Z ) =
20
10≤ x , y ≤ 20
20
∫∫
Z
20 x 20 y 1 dxdy = ∫ ∫ 10 ydydx + ∫ ∫ 5( x + y ) dydy 0 0 0 0 100
答案: fY ( y ) =
试求 E ( X | Y = y )

1
0
f ( x, y )dx =
1 f ( x, y ) 2( x + y ) + y (0 < y < 1), f X |Y ( x | y ) = = 2 1+ 2 y fY ( y )
1 0
E ( X | Y = y) = ∫
+∞
的单位数(1 单位等于 1000 千克) ,它在[200,400]上服从均匀分布,又设每卖出一个单位, 而因卖不出去油失效每单位将损失 1000 元, 问工厂在每年开工前 工厂可获得 3000 元利润, 应决定生产多少单位的润滑油,才能使期望利润最大? 答案:解:设 X 表示该厂一年内卖出润滑油的单位数,Y 表示利润,且工厂在每年开工前 应决定生产 a 单位的润滑油,才能使期望利润最大.则

概率论与数理统计 第四章 随堂测验_详细答案

概率论与数理统计 第四章 随堂测验_详细答案

第四章 随堂测验答案1.(,),2.4, 1.44,____,_____.X b n p EX DX n p ==== 则答:n =6, p =0.4因为(,)X b n p ,所以EX =np =2.4, DX =npq =np (1-p )=1.44.所以() 1.440.6,2.(1)41DX p p E n p np X -====-从而 2.40.4, 6.0.4EX p n p ==== 2.(),[(1)(2)]1____.,X P E X X λλ-=-= 则答:1,λ=解法同习题课例题1.23.1,()______.X X E X e -+=设服从参数为的指数分布则答:4/3.根据期望的性质可知,22()(),X X E X e EX E e --+=+其中因为X 服从参数为1的指数分布(1λ=),所以,(,)000x x x e f x ->⎧=⎨≤⎩且EX =1,DX =1.另外,根据随机变量函数的期望的定义,可知2223300011().(3)3X x x x x x f x dx e d E e e e e dx e x +∞+∞+∞+∞-------∞====-=⎰⎰⎰ 故221()()1.334X X E X e EX E e --+=+=+=224.,0.5,0,2,X Y EX EY E EY X ====已知的相关系数为2[()]_____.E X Y +=则 答:6.因为2220,,EX EY EX EY ====所以DX=DY=2.又22222[()]22()E X Y E X XY Y EX E XY EY ⎡⎤+=++=++⎣⎦,其中已知222E E Y X ==,而()Cov(,)XY E XY X Y EX E Y EY XE ρ=+=0.5001=⨯=, 于是2[()]21.226E X Y ⨯++=+=2125.,,...,,(),(),n i i X X X E X a D X b ==设随机变量是相互独立的且1,2,...,,i n =1,()_____,()____1_.ni i X X X E D X n ====∑记则 答:a, b 2/n.11222211111;11())1(.n n i i i i n n i i i i X na a n n n b D X nb n n E E X n EX D n X DX ====⎛⎫=== ⎪⎝⎭⨯==⨯⎛⎫=== ⎪⎝⎭∑∑∑∑6.,,,1,1,X Y Z EX EY EZ ===-已知三个随机变量中1,DX DY DZ === 0,0.5,0.5,XY XZ YZ ρρρ===-()_____,()_____.E X Y Z D X Y Z ++=++=则 答:1, 3.()1111E X Y Z E X E Y E Z ++=++=+-=[][][]()()()2Cov(,)2Cov(,)2Cov(X,Z)Cov(Y,Z)2Cov(X,Y)+2Cov(X,Z)+2Cov(Y,Z)111201120.5112(0.5)12321.XZ YZ D X Y Z D X Y Z D X Y DZ X Y Z DX DY X Y DZ DX DY DZ DX DY DZ ρρρ++=++=++++=+++++=+++=+=+++⨯⨯⨯+⨯⨯⨯+⨯-⨯⨯=++7.(),[,,,]E XY EXEY C G H I =选择题:若则(可多选)(A)(),(B)()(C)(),(D),(E),,(F),(G),(H)0,(I)Cov(,)0.XY D XY DXDY D X Y DX DY D X Y DX DY X Y X Y X Y X Y X Y ρ=-=-+=+==独立不独立相关,不相关,。

概率论与数理统计课后习题答案 第四章

概率论与数理统计课后习题答案 第四章

(2) 令
,求 Y 的概率密度 fY(y).
解:
(1)
(2)
由 Y=2X-1 得
, X’=
=
七、 设二维随机变量(X,Y)的概率密度为
其他
求: (1)E(X+Y); (2)E(XY); (3)
.
解:
(1)
(2)
(3)
八、 设随机变量 X 的分布律为
X
-1
0
1
P
记 Y=X2,求: (1)D(X), D(Y); 解:
ρ
ρ
ρ
ρ
5. 证明 D(X-Y)=D(X)+D(Y)-2Cov(X,Y). 证:
6. 设(X,Y)的协方差矩阵为 解:
,求 X 与 Y 的相关系数 ρxy.
ρ
自测题 4
一、 选择题
1. 设随机变量 X 服从参数为 0.5 的指数分布,则下列各项中正确的是 B .
A. E(X)=0.5, D(X)=0.25
2. 设二维随机变量(X,Y)的概率密度为
求 Cov(X,Y). 解:
其他
3. 设二维随机变量(X,Y)的概率密度为
求 X 与 Y 的相关系数 ρxy. 解:
其他
运用分部积分法. 服从λ =1 的指数分布
所以 ρ
4. 设二维随机变量(X,Y)服从二维正态分布,且 E(X)=0, E(Y)=0, D(X)=16, D(Y)=25, Cov(X,Y)=12,求(X,Y)的联合概 率密度函数 f(x,y). 解:
解: Cov(X,Y)=0
2. 设随机变量 X 的分布律为 3 .
X
-1
0
1
2
P
0.1 0.2 0.3 0.4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章 自测题参考答案与提示
时间:120分钟
一、单项选择题 (每题2分,共10分)
1.随机变量X, Y 和X+Y 的方差满足D(X+Y)=D(X)+D(Y)是X 与Y (A) 不相关的充分条件,但不是必要条件; (B) 不相关的必要条件,但不是充分条件; (C) 独立的必要条件,但不是充分条件;
(D) 独立的充分必要条件。

( C ) 2.若方差D(X), D(Y)为非零数,且E(XY)=E(X)E(Y),则有
(A) X 与Y 一定相互独立; (B) X 与Y 一定不相关;
(C) D(XY)=D(X)D(Y); (D) D(X-Y)=D(X)-D(Y)。

( B ) 3.设随机变量X 与Y 独立同分布,记U=X+Y ,V=X-Y ,则随机变量U 和V 必然
(A) 不独立;(B) 相互独立;(C) 不相关;(D) 无法判断。

( C ) 4.若随机变量X 与Y 不相关,则与之等价的条件是 (A) D(XY)=D(X)D(Y);(B) D(X+Y)=D(X-Y);(C) D(XY)≠D(X)D(Y);(D) D(X+Y)≠D(X-Y)。

( B )
5.现有10张奖券,其中8张为2元,2张为5元,某人从中随机地无放回地抽取3张,则此人所得奖金的数学期望为
(A) 6元; (B) 12元; (C) 7.8元; (D) 9元。

( C )
二、填空题 (每题3分,共18分)
1.设D(X)=4,D(Y)=9,ρXY =0.6,则D(3X-2Y)= 28.8 。

2.已知随机变量X~N(0, σ2)(σ>0),Y
在区间]上服从均匀分布,如果D(X-Y)=σ2, 则X 与Y 的相关系数ρXY = 1/4 。

3.二维随机变量(X, Y)服从正态分布,且E(X)=E(Y)=0,D(X)=D(Y)=1,X 与Y 的相关系数ρXY =-1/2,则当a = 2 时,a X+Y 与Y 相互独立。

4.设X~N(0, 4),Y 服从指数分布,其概率密度为
12
10()2
00
x e x f x x -⎧>⎪=⎨⎪≤⎩
如果Cov(X, Y)=-1,Z=X-a Y ,Cov(X, Z)=Cov(Y , Z),则a = -1 ,X 与Z 的相关系数 ρXZ
4。

5.设随机变量X 在区间[-1, 2]上服从均匀分布,随机变量
-1X >0Y =0
X =01X <0
⎧⎪
⎨⎪⎩
则D(Y)= 8/9 。

6.设随机变量X 服从参数为2的泊松分布,用切比雪夫不等式估计P{∣X-2∣≥4}≤ 1/8 。

三、基本计算题 (共54分)
1.(10分) 设ξ, η是相互独立且服从同一分布的随机变量,已知ξ的分布律为 P{ξ=i}=1/3,i =1, 2, 3 又设X=max(ξ, η),Y=min(ξ, η),
求 (1) 随机变量X 的数学期望E(X),(2) X 与Y 的相关系数ρXY 。

答:E(X)=22/9,ρXY =8/19。

提示:X 与Y 的联合分布律为:
2.(8分) 设随机变量X, Y 的相关系数ρXY =0.6,且X 与Y 的分布律分别为:
试求X 与Y 的联合分布律。

答:
提示:由边缘分布及相关系数确定联合分布,设X 与Y 的联合分布律为
3.(8分) 设(X, Y)的概率密度为 201, 01
(,)0
x y
x y f x y --≤≤≤≤⎧=⎨

其他
(1) 判别X 与Y 是否相互独立?是否相关?(2) 求 D(X+Y)。

答:(1) 不独立,相关。

(2) D(X+Y)=5/36。

解 1
X 0301()(,)(2)2
x
x f x f x y dy x y dy +∞
-∞
⎧-<<⎪=
=--=⎨⎪⎩

⎰其他
,同理
Y 301()(,)2
0y
y f y f x y dx +∞
-∞
⎧-<<⎪=
=⎨⎪⎩

其他
在0<x <1, 0<y <1内,f (x , y )≠f X (x )⋅f Y (y ),所以X 与Y 不相互独立。

1
35E (X )(,)(
)2
12
xf x y dxdy x x dx +∞+∞
-∞-∞
=
=
-=
⎰⎰

,由x 与y 的对称性知 E(Y)=
512
111
21E (X Y )(,)(2)(
)3
3
6
x xyf x y dxdy xdx y x y dy x dx +∞+∞-∞-∞=
=
--=
-
=
⎰⎰

⎰⎰
1
2
2
2
2
X 0
31E (X )()(
)E (Y )2
4
x f x dx x x dx +∞
-∞
=
=
-=
=⎰

D(X)=E(X 2)-(E(X))2=11/144=D(Y),Cov(X, Y)=E(XY)-E(X)E(Y)=-1/144,
X Y 1ρ11
=
=-
,ρXY ≠0,故X 与Y 相关。

因此 D(X+Y)=D(X)+D(Y)+2Cov(X, Y)=5/36, 。

4.(10分)设(X, Y)的联合概率密度为 1, 0<<1
(,)0
y x x f x y ⎧<=⎨
⎩其他
求 E(X),E(Y),D(X),D(Y),ρXY 。

答:E(X)=2/3,E(Y)=0(由奇偶性及对称性),D(X)=1/18,D(Y)=1/6,ρXY =0。

提示:利用公式D(X)=E(X 2)-(E(X))2
及X Y ρ=
5.(8分) 设随机变量X 1, X 2, …, X n 相互独立,且都服从数学期望为1的指数分布, 求Z=min{ X 1, X 2, …, X n }的数学期望与方差。

答:E(Z)=1/n ,D(Z)=1/n 2。

提示:F Z (z)=1-(1-F X (z))n 。

6.(10分) 某系某班共有n 名新生,班长从系里领来他们所有的学生证,随机地发给每一同学,
求恰好拿到自己的学生证的人数X 的数学期望与方差。

答:E(X)=1,D(X)=1。

提示:采用随机变量的分解方法求数学期望。


1X 1, 2, , 0
i i i i n ⎧==⎨
⎩ 若第名学生拿到自己的学生证若第名学生没拿到自己的学生证

则 X=X 1+X 2+…+X n , 注意:X 1,X 2,…,X n 不相互独立, 因此在计算方差时,应利用公式
1
1
1D (X )D (X )D (X
)2
(X ,X )n
n
i i
i j i i i j n
C ov ==≤<≤==
+∑∑∑
四、综合题 (共18分)
1.(8分) 设某种商品每周需求量X 是服从区间[10, 30]上均匀分布的随机变量,而经销商店进货数量为区间[10, 30]中的某一整数,商店每销售一单位商品可获利500元,若供大于求则削价处理,每处理一单位商品亏损100元,若供不应求,则可从外部调剂供应,此时每单位商品仅获利300元,
求最优进货量。

答: 23单位商品(近似值)。

提示:求进货量a =何值时E(X)最大。

2.(10分) 设X 1, X 2, …, X n (n>2)为独立同分布的随机变量,且均服从N(0, 1),记
n
1
1
X =
X n
i
i =∑, Y i =X i -X ,i =1, 2, …, n
求 (1) Y i 的方差D(Y i ),i =1, 2, …, n ;
(2) Y 1与Y n 的协方差Cov(Y 1, Y n );
(3) P{Y 1+Y n ≤0}。

答:D(Y i )=(n-1)/n ,Cov(Y 1, Y n )=-1/n ,P{Y 1+Y n ≤0}=1/2。

提示:Cov(Y 1, Y n )=E(Y 1Y n )-E(Y 1)⋅E(Y n )=E ((X 1-X )(X n -X ))。

相关文档
最新文档