选修极坐标系(课堂PPT)(20200824195211)

合集下载

《高二数学极坐标系》PPT课件

《高二数学极坐标系》PPT课件
这样就建立了一个极坐标系。
二、极坐标系内一点的极坐标的规定
对于平面上任意一点M,用 表示线段OM的长度,用 表示从 OX到OM 的角度, 叫做点M的 极径, 叫做点M的极角,有序数 对(,)就叫做M的极坐标。
指出:(1)一般地,不作特殊说明时 ,我们认为ρ≥0, 可取任意实数。
(2)当M在极点时,它的极坐标为 (0,θ), 可取任意值。
题组一:说出下图中各点的极坐标
2
4
5
6
C
E
D
B
A
O
X
4 F 3
G 5 3
在极坐标系中,(4,)(,4,2)(,4,2)
66
6
表示的点有什么关系?
想一想?
①平面上一点的极坐标是否唯一? ②若不唯一,那有多少种表示方法? ③坐标不唯一是由谁引起的? ④不同的极坐标是否可以写出统一表达式?
一般地,极坐标 (, ) 与
小结
(1)建立一个极坐标系需要哪些要素 极点;极轴;长度单位;角度单位和 它的正方向。 (2)极坐标系内一点的极坐标有多少 种表达式? 无数,极角有无数个。 (3)一点的极坐标有否统一的表达式
(ρ,2kπ+θ)( ρ≥0)
极坐标和直角坐标的互化
平面内的一个点的直角坐标是(1, 3 ) 这个点如何用极坐标表示?
A (3, )
B (2, )
6
2
C (1, )
2
D (2, 3), 1)
化成极坐标.
练习: 已知点的直角坐标, 求它们 的极坐标.
A (3, 3) B (5,0)
C (3,3) D (0,2)
题组二:在极坐标系里描出下列各点
A(1, ) 4
C (3, ) 4

最新人教版高中数学选修4-4《极坐标系》课件

最新人教版高中数学选修4-4《极坐标系》课件

化成直角坐标. 解:
5 3 3 x 3cos 6 2 5 3 y 3sin 6 2
3 3 3 点M的直角坐标为 ( 2 , 2 )
所以,
例2.(2) 将点M的直角坐标 (
3, 1)
化成极坐标. 解:
( 3) ( 1) 2
2 2
7 因为点在第三象限, 所以 6 7 因此, 点M的极坐标为( 2, ) 6
1 3 tan 3 3
练习: 已知点的直角坐标, 求它们 的极坐标.
A ( 3, 3 )
B (1, 3 )
C ( 5 ,0 ) E ( 3,3)
D (0,2)
F (3, 0)
小结
极坐标与直角坐标的互化关系式: 设点M的直角坐标是 (x, y) 极坐标是 (ρ,θ) x=ρcosθ, y=ρsinθ
y x y , tan ( x 0) x
2 2 2
例1.(1)在极坐标系中,画出以下点
A(2, ) 6 B(3, ) 6 2 C (1, ) 3

E (5, 0)
F (0, )
G (0, ) 3Βιβλιοθήκη D(4, )
特别规定: 当点M在极点时,它的 极坐标=0,可以取任意值
例1.(2)说出下图中各点的极坐标


2
5 6
C E D O B A X
二、极坐标和直角坐标的互化
在直角坐标系中, 以原点作为极点, x轴的正半轴作为极轴, 并且两种坐标系中取相 同的长度单位
点M的直角坐标为 ( x, y ) 极坐标为(ρ,θ)
y x y , tan ( x 0) x
2 2 2
x=ρcosθ, y=ρsinθ

选修4-4极坐标PPT课件

选修4-4极坐标PPT课件

CHENLI
9
(一)直线的极坐标方程
1、求过极点,倾角为5 的射线的极
坐标方程。
4
易得 5 ( 0)
4Hale Waihona Puke 2、求过极点,倾角为 坐标方程。
4
的直线的极
或 5
4
4
CHENLI
10
结论:直线的极坐标方程
(0)表示极角 的为一条射线 =(R)表示极角 的为一条直线
CHENLI
11
(一)直线的极坐标方程
15
练习习::3 4、已知直线的程 极为 坐 si标 n(方 ) 2
42
求点 A(2,7)到这条直线的距离。
解:将直线
4
sin(
)
2 化为直角坐标方
42
程为x y 1 0,点A(2, 7 )化为直角坐标为
4
( 2,- 2)
点到直线的距离为
2-
2-1 =
2
CHENLI
2
2 16
练习:4 6、确定极坐标方程 4sin( )与
CHENLI
18
(3)M(,)也可以表示为
(, 2 k )或 ( , (2 k 1 ))
CHENLI
6
三.极坐标与直角坐标的互化
互化公式的三个前提条件: 1. 极点与直角坐标系的原点重合; 2. 极轴与直角坐标系的x轴的正半
轴重合; 3. 两种坐标系的单位长度相同.
CHENLI
7
三.极坐标与直角坐标
点M 互化 公式
4
如果限定ρ>0,0≤θ<2π
那么除极点外,平面内的点和极坐 标 就可以一一对应了.
我们约定,极点的极坐标是极径=0,极 角是任意角.

极坐标系公开课精品PPT课件

极坐标系公开课精品PPT课件

(2)当M在极点时,它的极坐标为(0,θ), 可取任意值。
题组一. 如图,写出各点的极坐标:
2
5
4
6
D• Q E•
•C
。 O
•P
B
A

7 x
A(4,0)
B(3, )
4
C(2,
2
)
D(5,
5 6
)
E(4.5, )
F
•R
4
G
• 5
F(6, 4) 3
G(7, 5) 3
3 在图中描出点P(3,
9
),
3 Q(5,-
办公
(1)他向东偏北60 °方向 楼E
走120m后到达什么位置? 120m
ቤተ መጻሕፍቲ ባይዱ
45°
(2)如果有人打听体育馆
和办公楼的位置,他应
50m
60°
如何描述?
A教 60m 学楼
B体 育馆
从这向北 走2000米.
请问:去屠宰场怎么走?
思考:“从这向南走2000米”这句话包含哪些要素? 它为何能使问路人明确屠宰场的位置?
7
),
R(6, 10
)
4
6
3
想一想?
①平面上一点的极坐标是否唯一? ②若不唯一,那有多少种表示方法? ③坐标不唯一是由谁引起的? ④不同的极坐标是否可以写出统一表达式?
一般地,极坐标 (, ) 与
(, 2k )( k Z ) 表示同一个点。
三、极坐标系下点与它的极坐标的对应情况
P
[1]给定(,),就可以在极坐标 M
More You Know, The More Powerful You Will Be

极坐标系 课件

极坐标系    课件
所以 θ=34π,所以直角坐标(-2,2)化为极坐标为2 2,34π.
(2)ρ= 22+-2 32=4,tan θ=-22 3=- 3, θ∈[0,2π),由于点(2,-2 3)
在第四象限,所以 θ=53π,所以直角坐标(2,-2 3)化为极坐标为4,53π.
(3)ρ =
- 23π2+-32π2 =
【例题 2】 写出下列各点的直角坐标.
(1)4,23π;(2)2,56π;(3)4,-π3.
思维导引:由公式yx==ρρscions
θ, θ
结合点的极坐标(ρ,θ)求解.
解析:(1)由x=4cos23π=4×-12=-2, y=4sin23π=4× 23=2 3,
得4,23π的直角坐标为(-2,2 3).
(2)由x=2cos56π=2×- 23=- 3, y=2sin56π=2×12=1,
得2,56π的直角坐标为(- 3,1). (3)由yx==44scions--π3π3==44××12-=223,=-2 3, 得4,-π3的直角坐标为(2,-2 3).
•考点三 将点的直角坐标化为极坐标
• (1)牢记将直角坐标化为极坐标的公式; • (2)注意极径和极角的取值范围.
1+4-4×cosπ3= 3.
【例题 3】 分别将下列各点的直角坐标化为极坐标(限定 ρ≥0,0≤θ<2π). (1)(-2,2);(2)(2,-2 3);(3)- 23π,-32π.
借助ρ= x2+y2求ρ 思维导引:由已知―由―t―an―θ―=―yx―x≠―0―求―θ→转化为极坐标. 解析:(1)ρ= -22+22=2 2,tan θ=-22=-1,θ∈[0,2π),由于点(-2,2)在第 二象限,
【例题 1】 在极坐标系中,设点 A4,π6,直线 l 为过极点且垂直于极轴的直线,

《极坐标系的概念》课件(共27张PPT)

《极坐标系的概念》课件(共27张PPT)
Page 14
4、极坐标系下点与它的极坐标的对应情况
M
P (ρ,θ)
[1]给定(,),就可以在极坐标平 面内确定唯一的一点M
O
X
[2]给定平面上一点M,但却有无数个极坐标与之对应。 原因在于:极角有无数个。 如果限定ρ >0,0≤θ <2π 那么除极点外,平面内的点和极坐标就可以一一对应了.
Page 5
以天河路为X轴 以广州大道为Y轴...
请问: 去广州塔怎么走?
Page 6
以天河路为X轴 以广州大道为Y轴...
Page 7
从这向东 2000米。
请问: 去广州塔怎么走?
Page 8
请分析这句话,他告诉了问路人什么? 从 这 向 东 走 2 0 0 0 米 !
出发点
Page 13

3、点的极坐标的表达式的研究
如图:OM的长度为4,

4

M
请说出点M的极坐标的表达式? 思考:这些极坐标之间有何异同? 极径相同,不同的是极角. 思考:这些极角有何关系?
O X π +2kπ 4, 4
这些极角的始边相同,终边也相同。也就是说它们 是终边相同的角。
Page 23
在生命进入倒计时的那段日子,他日夜思念的 还是街头偶遇的那张温暖的笑脸。他每天坚持给她 写信,盼望着她的回音。然而,这些信都被国王拦 截下来,公主一直没有收到他的任何消息。在笛卡 尔给克里斯汀寄出第十三封信后,他永远地离开了 这个世界。此时,被软禁在宫中的小公主依然徘徊 在皇宫的走廊里,思念着远方的情人。这最后一封 信上没有写一句话,只有一个方程:r=a(1-sinθ)。 国王看不懂,以为这个方程里隐藏着两个人不可告 人的秘密,便把全城的数学家召集到皇宫,但是没 有人能解开这个函数式。他不忍看着心爱的女儿每 天闷闷不乐,便把这封信给了她。

极坐标系 课件

极坐标系  课件
4
3
(2)将下列各点的直角坐标化为极坐标(ρ>0,0≤θ<2π):
①( 3, 3); ②(−1, −1); ③(−3,0).
= cos,
分析:根据极坐标与直角坐标的互化公式
= sin
2 = 2 + 2 ,


进行求解.
tan = ( ≠ 0)

解:(1)设所求点的直角坐标为(x,y).
(0,0),可以在极坐标平面内确定唯一的一点,即极点,③正确;点M与
π

4
4
点 N 的极角分别是 θ1= , 2 =
, 二者的终边互为反向延长线,④
错误;由于动点M(5,θ)(θ∈R)的极径ρ=5,极角是任意角,故点M的轨
迹是以极点O为圆心,以5为半径的圆,⑤正确.
答案:①③⑤
3.极坐标和直角坐标的互化
(1)互化的前提条件
①极坐标系中的极点与直角坐标系中的原点重合;②极轴与x轴
的正半轴重合;③在两种坐标系中取相同的长度单位.
(2)互化公式
= cos,
①极坐标化为直角坐标
= sin;
2 = 2 + 2 ,
②直角坐标化为极坐标

tan = ( ≠ 0).

名师点拨1.极坐标与直角坐标的互化,常用方法有代入法、平方
极角,记为θ.有序数对(ρ,θ)叫做点M的极坐标,记为M(ρ,θ).
一般地,不作特殊说明时,我们认为ρ≥0,θ可取任意实数.
(2)一般地,极坐标(ρ,θ)与(ρ,θ+2kπ)(k∈Z)表示同一个点.特别地,
极点O的坐标为(0,θ)(θ∈R).和直角坐标不同,平面内一个点的极坐
标有无数种表示.

极坐标系ppt(精选)人教版1

极坐标系ppt(精选)人教版1

C.ρ2sin2θ=1
D.ρ2cos2θ=1
极坐标系p pt(精 选)人教 版1( 精品课 件)
极坐标系p pt(精 选)人教 版1( 精品课 件)
解:本题涉及到两类互化,即先将参数程化为普通方 程,再化为极坐标方程即可。消去参数φ,化为普 通方程为x2-y2=1,再由x=ρcosθ,y=ρsinθ,就可化 为极坐标方程ρ2cos2θ-ρ2sin2θ=1, 即ρ2cos2θ=1,而选D。
极坐标系p pt(精 选)人教 版1( 精品课 件)
极坐标系p pt(精 选)人教 版1( 精品课 件)
1
4.极坐标方程ρ=cosθ与ρcosθ= 的2 图形是( ) B
A
B
C
D
解x=:12把,ρc故os排θ=除A,、12 化D;为又直圆角ρ坐=c程os,θ显得然: 过点 (0,1),又排除C,故选B。
M (, )
0
x
极坐标系p pt(精 选)人教 版1( 精品课 件)
极坐标系p pt(精 选)人教 版1( 精品课 件)
2
4
5
6
C
1.如图,在极坐标系中,写出点 AF(,6B, ,4C3 ,)D的, G极(坐5, 标53,所) 并在标的出位E置( 72 , ) ,
E D BA
O
X
4 F
3
G 5
3
解:如图可得A,B,C,D的坐标分别为
1.解:将A的直角坐标代入极坐标与直角坐标
互化公式,得
2 12 ( 3)2 22
tan 3 3
1
因此点A的极坐标为
(2, )
3
同理,点B的极坐标为 (
5 3
, 3
2
)

选修4-4-极坐标系》课件(共22张PPT)

选修4-4-极坐标系》课件(共22张PPT)
6
(((123)))点点点AAA关 关 关于 于 于极 极 直轴点线对对=称称2的的点点的是的对极_称_(坐点_3_,标的1_16_是极_)__坐__(_标_3_,_7是__6____(_)3___,_5__6__)__ 对称性
(, )关于极轴的对称点为(,2 )
关于极点的对称点为 (, )
关于过极点且垂直于极轴的直线的对称点
2023最新整理收集 do
something
从这向北 2000米。
请问:去菜 市场怎么走?
请分析上面这句话,他告诉了问路人 什么?
从这向北走2000米!
出发点 方向
距离
在生活中人们经常用方向和距离来 表示一点的位置。这种用方向和距离表 示平面上一点的位置的思想,就是极坐 标的基本思想。
一、极坐标系的建立:
在直角坐标系中, 以原点作为极点, x轴的正半轴作为极轴, 并且两种坐标系中取相 同的长度单位
点M的直角坐标为 设点M的极坐标为(ρ,θ)
y
θ
O
x
M ( 2, ∏ / 3)
极坐标与直角坐标的互化关系式: 设点M的直角坐标是 (x, y)
极坐标是 (ρ,θ)
x=ρcosθ, y=ρsinθ
互化公式的三个前提条件: 1. 极点与直角坐标系的原点重合; 2. 极轴与直角坐标系的x轴的正半
π 解:∠AOB =
用余弦定理求
6
A
AB的长即可.
推广:在极坐标下,任意两点P1
o
(1
,1
),
P2
(
2
,2
)
x
之间的距离可总结如下:
P1P2 12 22 212 cos(1 2 )

感 谢 阅

极坐标系的概念课件ppt

极坐标系的概念课件ppt

C
3
5
2
3
(-, +)
E(3,- )
6
11 6
F(-4,-
3
)
都是同一点的
Page ▪ 17 (, 2k+) (-, +(2k+1))
极坐标.
寒假来临,不少的高中毕业生和大学 在校生 都选择 去打工 。准备 过一个 充实而 有意义 的寒假 。但是 ,目前 社会上 寒假招 工的陷 阱很多
课堂小结
[1]建立一个极坐标系需要哪些要素? 极点;极轴;长度单位;计算角度的正方向.
[2]极坐标系内一点的极坐标有多少种表达式? 无数,极角有无数个.
[3]一点的极坐标有否统一的表达式?
有。(ρ,2kπ+θ)
Page ▪ 18
寒假来临,不少的高中毕业生和大学 在校生 都选择 去打工 。准备 过一个 充实而 有意义 的寒假 。但是 ,目前 社会上 寒假招 工的陷 阱很多
课后作业
思考:
从这向南 走2000米.
请问:去屠宰场怎么走?
思考:“从这向南走2000米”这句话包含哪些要素?
它为何能使问路人明确屠宰场的位置?
Page ▪ 4
寒假来临,不少的高中毕业生和大学 在校生 都选择 去打工 。准备 过一个 充实而 有意义 的寒假 。但是 ,目前 社会上 寒假招 工的陷 阱很多
以天河路为X轴 以广州大道为Y轴...
Page ▪ 16
寒假来临,不少的高中毕业生和大学 在校生 都选择 去打工 。准备 过一个 充实而 有意义 的寒假 。但是 ,目前 社会上 寒假招 工的陷 阱很多
5
2
3•
F
6 B•
A•
2
D
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档