8.2.1消元-代入法解二元一次方程组_(第一课时)PPT课件
合集下载
人教版数学七年级下册第八章《8.2加减消元法解二元一次方程组》优质课课件(21张PPT)
解:由②-①得: x=6
把x=6代入①,得 6+y=10
解得
y=4
所以这个方程组的解是
x
y
6 4
3x +10 y=2.8 ①
15x -10 y=8 ②
解:把 ①+②得: 18x=10.8 x=0.6
把x=0.6代入①,得: 3×0.6+10y=2.8
解得:y=0.1
所以这个方程组的解是
x
y
0.6 0.1
解得 x = 1
把x= 1 代入①得 1+3y=4
解得 y = 1
x 1
所以这个方程组的解是
y
1
2、已知
a 2b 4 3a 2b 8
①②,
则a+b等于_3__
。
分析:法一,直接解方程组,求出a 与b的值,然后就可以求出a+b
法二,+得4a+4b=12 a+b=3
1、已知 5x3y2 3 (x 3y 7 )20,求 x- y 的值。
1
(3)3xx22yy91
① ②
解:①+②,得 4x=8
解得 x=2
把x =2 代入①得 2+2y=9
解得 y=3.5
所以这个方程组的解是
x 2
y
3.5
(4)xx
y7 3y 17
① ②
解:②-①,得 2y=10
解得 y = 5
把y= 5 代入①得 x+5=7
解得 x = 2
x 2
所以这个方程组的解是
解:① + ②,得
① ②
9u=18
解得 u = 2
把u= 2 代入①得 3×2+2t=7
把x=6代入①,得 6+y=10
解得
y=4
所以这个方程组的解是
x
y
6 4
3x +10 y=2.8 ①
15x -10 y=8 ②
解:把 ①+②得: 18x=10.8 x=0.6
把x=0.6代入①,得: 3×0.6+10y=2.8
解得:y=0.1
所以这个方程组的解是
x
y
0.6 0.1
解得 x = 1
把x= 1 代入①得 1+3y=4
解得 y = 1
x 1
所以这个方程组的解是
y
1
2、已知
a 2b 4 3a 2b 8
①②,
则a+b等于_3__
。
分析:法一,直接解方程组,求出a 与b的值,然后就可以求出a+b
法二,+得4a+4b=12 a+b=3
1、已知 5x3y2 3 (x 3y 7 )20,求 x- y 的值。
1
(3)3xx22yy91
① ②
解:①+②,得 4x=8
解得 x=2
把x =2 代入①得 2+2y=9
解得 y=3.5
所以这个方程组的解是
x 2
y
3.5
(4)xx
y7 3y 17
① ②
解:②-①,得 2y=10
解得 y = 5
把y= 5 代入①得 x+5=7
解得 x = 2
x 2
所以这个方程组的解是
解:① + ②,得
① ②
9u=18
解得 u = 2
把u= 2 代入①得 3×2+2t=7
8.2消元---解二元一次方程组(第1课时)课件人教版七年级数学下册
D.直接把②代入①,消去x
2.用代入法解下列方程组
y 2x 3, (1) 3x 2 y 8;
2x y 5, (2) 3x 4 y 2;
解:(1)
y=2x-3,① 3x+2 y=8.② 把①代入②,
得3x+2(2x-3)=8,解得x=2.
把x=2代入①,得y=1.
所以原方程组的解是
(3)解这个一元一次方程,求出一个未知数的值;
(4)把求得的未知数的值代入方程③,求出另一个未知数 的值;
(5)用大括号写出两个未知数的值,得到方程组的解。
(6)检验求得的结果:代入原方程组中进行检验,方程是 否满足左边=右边.
尝试练习 (独立完成4+展示2)
课本P93----练习2
属 于
解
题
规
范
属 于
数学思想?
善
把二元一次方程组中一个方程的一个未知数
于 思
用含另一个未知数的式子表示出来,再代 考
入另一个方程最为关键,这样实现消元, 的
同
把二元一次方程组转化为一元一次方程, 学
进而求得这个二元一次方程组的解.体现了
消元和转化的数学思想.
【流程】独立思考—自由展示
(3+3+2)
探究点二 用代入消元法解二元一次方程组
变形 x-y=3, x =y+3.
解得x
一
次
代入
x=2
y=-1 解得y
方 程
3x-8y=14
消x 一元一次方程 3(y+3)-8y=14.
组
用y+3代替x,
消未知数x.
代入法解二元一次方程的一般步骤:
(1)选取其中一个方程进行变形,用含有一个未知数的 代数式表示另一个未知 数的形式,记作方程③;
【新】人教版七年级数学下册第八章《8.2 解二元一次方程组(代入法1)》优秀课件.ppt
2、若 则
x y
a b
是方程2x+y=2的解,
8a+4b-3=_5___.
二、学习目标
1、用含有一个未知数的式子表示 另一个未知数
2、用代入消元法解二元一次方组.
三、研读课文
认真阅读课本第92至93页 的内容,完成下面练习并体 验知识点的形成过程.
三、研读课文
知 识
1、在方程组
x y 10
解这个方程,得x= 2 . 把x= 2 代入①,得y= 1 _
x 2
∴原方程组的解是
y
1
引导学生读懂数学书课题研究成果配套课件 课件制作:何姗
练一练 用代入法解下列方程组:
2x y 5 ①
(2)
3x 4y 2 ②
解:由①,得y=2x-5… ③ 把③代入②,得3x+4(2x-5)= 2 解这个方程,得x=2 把x=2代入③,得y=-1
x+1=3 x=2
把y=-1代入②得: 3x-8×(-1)=14
3x+8=14 3x=14-8 3x=6 x=2
经比较我认为把y=-1代入①比较好
2、用代入法解方程组的时候要注意 格式的规范.
练一练 用代入法解下列方程组:
y 2x 3 ①
(1)
3x 2y 8 ②
解:把①代入②,得
3x+2(2x-3 )= 8 .
新课引入 学习目标 研读课文 归纳小结 学习反思
引导学生读懂数学书课题研究成果 七年级(下)数学学习设计
第二课时 8.2.1 消元 ------二元一次 方程组的解法(代入法1)
黑发不知勤学早,白发方悔读书迟。
一、新课引入
--- 颜真卿
1、二元一次方程组的两个方程的_公__共___
人教版七年级下册 8.2《消元——解二元一次方程组》【 课件】(共18张PPT)
③+④,得 19x=114 x=6
把x=6代入①,得
3×6+4y=16
y=
-
1 2
x=6
所以这个方程组的解是 y= - 1
2
你能不能用加减消元的方法消去x呢?
x+y=10 ① 2x+y=16 ②
解:①×2,得
2x+2y=20
③
③- ②,得 y=4
把y=4代入①,得 x=6
所以这个方程组的解是 x=6 y=4
x=6 y=4
① -②也能消去 未知数y,求得x 吗?
联系上面的解法,想一想怎样解方程组
3x+10y =2.8
①
15x-10y =8
②
解:
① +②,得
18x=10.8 从上面两个方解程得组的解法x=可0.以6 看出:当二元一次方程组的两个方程中同一未知数 的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知
x+yy=10 ① 2x+y=16 ② 的解,这个方程组的两个方程中,y的系数有什么关系?利用这 种关系你能发现新的消元方法吗?
这两个方程中未知数y的系数相等,②-①可消去未知数y,得x=6
②-①就是用方程 ②的左边减去①的 左边,方程②的右 边减去方程①的右 边
把x=6代入①,得y=4
所以这个方程组的解是
解:设这些消毒液应该分装x大瓶、y小瓶.根据大、小瓶数的比,以及消毒液分装量 与总生产量的数量关系,得
5x=2y
①
500x+250y=22500000 ②
5
由①,得y= 2 x ③
把③代入②,得
500x+250×
5 2
x=22500000.
《消元——解二元一次方程组 1课时》PPT
表示y,再代入②中求解.由①,得y=2x+3③.把③代入②,得4x+5(2x+3)=1,
4x+10x+15=1,14x=-14,x=-1.把x=-1代入③,得y=2×(-1)+3=-2+3=1.所
以这个方程组的解是ቊ
= −1
。
=1
知识梳理
【方法小结】注意:(1)当方程组中含有一个未知数表示另一个未知数的
二元一次方程组的关键,其方法就是利用等式的性质将其变形为y=ax+b(或
x=ay+b)的形式,其中a,b为常数,a≠0.
知识梳理
2 − = −3
【例2】用代入法解方程组ቊ
4 + 5 = 1
①
②
【讲解】要考虑将方程组中的某一个未知数用含另一个未知数的代数式表
示出来,方程组①中y的系数为-1,因此可将方程①变形,用含x的代数式
即可.
6.如图8-2-1,周长为68cm的长方形ABCD被分成7个相同的长
方形,求长方形ABCD的长和宽.
图8-2-1
课堂练习
答案:解:设小长方形的长和宽分别为x、ycm,依题意得ቊ
解这个方程组,得ቊ
4 + 7 = 68
,
2 = 5y
= 10
。5×4=20(cm),10+4=14(cm).答:长方形
的解互为相反数,则k的值是_____________.
2 + 3 = k
+ 2 = −1
课堂练习
2 − 7 = 8 ①
②
y=4+2x
1.用代入法解方程组ቊ
可以由_____得___________
七级数学下册优秀课件:8.2 消元——解二元一次方程组(第1课时)
(2)将y=ax+b代入方程组中的另一个方程中,消去 y,得到关于x的一元一次方程;
(3)解这个一元一次方程,求出x的值;
(4)把求得的x值代入方程y=ax+b中(或方程组中 的任意一个方程中),求出y的值,再写成方程组解的形 式; (5)检验得到的解是不是原方程组的解.
检测反馈
1.把方程2x- 4y=1改写成用含x的式子表示y
解析:方程①中x的系数是1,用含y的式子表示 x,比较简便.
解:由①,得x=y+3③,
把③代入②,得3(y+3)- 8y=14.
解这个方程,得y=- 1.
把y=- 1代入③,得x=2.
所以这个方程组的解是
x 3x
y=3,① - 8y =14.②
思考1:把③代入①可以吗?试试看. x=y+3③
15、最终你相信什么就能成为什么。因为世界上最可怕的二个词,一个叫执着,一个叫认真,认真的人改变自己,执着的人改变命运。只要在路上,就没有到不了的地方。 16、你若坚持,定会发光,时间是所向披靡的武器,它能集腋成裘,也能聚沙成塔,将人生的不可能都变成可能。 17、人生,就要活得漂亮,走得铿锵。自己不奋斗,终归是摆设。无论你是谁,宁可做拼搏的失败者
2、人生就有许多这样的奇迹,看似比登天还难的事,有时轻而易举就可以做到,其中的差别就在于非凡的信念。 3、影响我们人生的绝不仅仅是环境,其实是心态在控制个人的行动和思想。同时,心态也决定了一个人的视野和成就,甚至一生。
4、无论你觉得自己多么了不起,也永远有人比更强;无论你觉得自己多么不幸,永远有人比你更不幸。 5、也许有些路好走是条捷径,也许有些路可以让你风光无限,也许有些路安稳又有后路,可是那些路的主角,都不是我。至少我会觉得,那些路不是自己想要的。 6、在别人肆意说你的时候,问问自己,到底怕不怕,输不输的起。不必害怕,不要后退,不须犹豫,难过的时候就一个人去看看这世界。多问问自己,你是不是已经为了梦想而竭尽全力了?
(3)解这个一元一次方程,求出x的值;
(4)把求得的x值代入方程y=ax+b中(或方程组中 的任意一个方程中),求出y的值,再写成方程组解的形 式; (5)检验得到的解是不是原方程组的解.
检测反馈
1.把方程2x- 4y=1改写成用含x的式子表示y
解析:方程①中x的系数是1,用含y的式子表示 x,比较简便.
解:由①,得x=y+3③,
把③代入②,得3(y+3)- 8y=14.
解这个方程,得y=- 1.
把y=- 1代入③,得x=2.
所以这个方程组的解是
x 3x
y=3,① - 8y =14.②
思考1:把③代入①可以吗?试试看. x=y+3③
15、最终你相信什么就能成为什么。因为世界上最可怕的二个词,一个叫执着,一个叫认真,认真的人改变自己,执着的人改变命运。只要在路上,就没有到不了的地方。 16、你若坚持,定会发光,时间是所向披靡的武器,它能集腋成裘,也能聚沙成塔,将人生的不可能都变成可能。 17、人生,就要活得漂亮,走得铿锵。自己不奋斗,终归是摆设。无论你是谁,宁可做拼搏的失败者
2、人生就有许多这样的奇迹,看似比登天还难的事,有时轻而易举就可以做到,其中的差别就在于非凡的信念。 3、影响我们人生的绝不仅仅是环境,其实是心态在控制个人的行动和思想。同时,心态也决定了一个人的视野和成就,甚至一生。
4、无论你觉得自己多么了不起,也永远有人比更强;无论你觉得自己多么不幸,永远有人比你更不幸。 5、也许有些路好走是条捷径,也许有些路可以让你风光无限,也许有些路安稳又有后路,可是那些路的主角,都不是我。至少我会觉得,那些路不是自己想要的。 6、在别人肆意说你的时候,问问自己,到底怕不怕,输不输的起。不必害怕,不要后退,不须犹豫,难过的时候就一个人去看看这世界。多问问自己,你是不是已经为了梦想而竭尽全力了?
人教版数学七年级下册 8.2 消元--解二元一次方程组 课件1(共21张PPT)
3×0.6+10y=2.8
解得:y=0.1
x=0.6
所以这个方程组的解是
y=0.1
②
列方程解应用题的总思路:
实际
问题
分析
方程
抽象
(组)
求解
检验
1. 审(题)
3. 设(未知数)
2. 找(等量关系) 4. 列(方程组)
问题
解决
5. 解(方程组)
6. 验(检验)
7. 答
同一未知数的系数 相等
时,
把两个方程的两边分别 相减 !
消元--解二元一次方程组
新知导入
我校七年级准备举行篮球比赛,13个班打单循环比赛,每场
比赛都要分出胜负,每队胜一场得2分,负一场得1分.如果6班为了
争取较好名次,想在全部12场比赛中得20分,那么这个队胜负场数
用学过的一元一
应分别是多少?
次方程能解决此
问题吗?
这可是两个
未知数呀?
新知学习
例:根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250g),
审题:等量关系: (1)大瓶数
2×小瓶数=5×大瓶数
1.审题
(2)大瓶所装消毒液总量 +小瓶所装消毒液总量 = 22.5吨
2.找等量关系
试一试:
1.用含x的代数式表示y:
x+y=2
y=2-x
2.用含x的代数式表示y:
x-y=2
y x2
解方程组
x +y = 12
①
2x + y =20
解: 由①,得
未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二
元一次方程组的解.这种方法叫做代入消元法,简称代入法.
解得:y=0.1
x=0.6
所以这个方程组的解是
y=0.1
②
列方程解应用题的总思路:
实际
问题
分析
方程
抽象
(组)
求解
检验
1. 审(题)
3. 设(未知数)
2. 找(等量关系) 4. 列(方程组)
问题
解决
5. 解(方程组)
6. 验(检验)
7. 答
同一未知数的系数 相等
时,
把两个方程的两边分别 相减 !
消元--解二元一次方程组
新知导入
我校七年级准备举行篮球比赛,13个班打单循环比赛,每场
比赛都要分出胜负,每队胜一场得2分,负一场得1分.如果6班为了
争取较好名次,想在全部12场比赛中得20分,那么这个队胜负场数
用学过的一元一
应分别是多少?
次方程能解决此
问题吗?
这可是两个
未知数呀?
新知学习
例:根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250g),
审题:等量关系: (1)大瓶数
2×小瓶数=5×大瓶数
1.审题
(2)大瓶所装消毒液总量 +小瓶所装消毒液总量 = 22.5吨
2.找等量关系
试一试:
1.用含x的代数式表示y:
x+y=2
y=2-x
2.用含x的代数式表示y:
x-y=2
y x2
解方程组
x +y = 12
①
2x + y =20
解: 由①,得
未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二
元一次方程组的解.这种方法叫做代入消元法,简称代入法.
代入消元法解二元一次方程组图文课件
THANKS
感谢观看
熟练掌握代数运算,是正确代入消元法的扩大和 总结
代入消元法的扩大
扩大到三元一次方程组
代入消元法可以进一步扩大到三元一 次方程组,通过逐个消元,将三元一 次方程组转化为二元一次方程组或一 元一次方程进行求解。
扩大到高次方程
虽然代入消元法主要适用于二元一次 方程组,但理论上可以将其扩大到高 次方程,通过代入和消元逐步简化方 程,直至得到可解的一元一次方程。
课程背景
二元一次方程组是数学中的基 础知识点,广泛应用于日常生 活和科学研究中。
代入消元法是一种常用的解二 元一次方程组的方法,具有简 单易懂的优点。
通过本课程的学习,学生可以 更好地理解和掌握代入消元法 ,提高解决实际问题的能力。
02
二元一次方程组的基 本概念
二元一次方程组的定义
二元一次方程组:由两个或两个 以上的二元一次方程组成的方程
解出方程后,需要进行检验,确保解的公 道性。
技能
使用等式变形
在代入前,可以通过等式变形,使代 入后的方程更易于计算。
视察方程特点
在选择代入的方程时,可以视察方程 的特点,选择具有较大系数或易于计 算的方程进行代入。
利用已知条件简化计算
在解题过程中,可以利用已知条件简 化计算,减少计算量。
熟练掌握代数运算
实例三:解二元一次方程组
总结词
通过代入消元法解二元一次方程组,得到解集。
详细描述
再选取一个二元一次方程组,例如$4x + 3y = 10$和 $5x - y = 7$。第一,将其中一个方程中的变量代入 另一个方程中,以消去一个变量。在这个例子中,我 们将$4x + 3y = 10$代入$5x - y = 7$中,得到$5x (10/4) + (10/4) = 7 + (10/4)$,进一步化简得到$5x = frac{35}{4}$,解得$x = frac{7}{4}$。然后,将$x = frac{7}{4}$代入原方程$4x + 3y = 10$中,解得$y = frac{9}{4}$。因此,该二元一次方程组的解集为$(x = frac{7}{4}, y = frac{9}{4})$。
消元——解二元一次方程组(第一课时)课件(共24张PPT)人教版数学七年级下册
【例题练习】
根据市场调查,某种消毒液的大瓶装(500 g)和小瓶装 (250 g)两种产品的销售数量(按瓶计算)比为2:5.某 厂每天生产这种消毒液22.5t,这些消毒液应该分装大、 小瓶两种产品各多少瓶?
等量关系: ①大瓶数∶小瓶数 = 2∶5; ②大瓶所装消毒液+小瓶所装消毒液 = 总生产量.
所以这个方程组的解是
x2
y
1
………………写解
Байду номын сангаас【注意】最后一定要把所得的解带入原方程组进行检验,看方程的
左右两边是否相等.
【例题练习】
尝试用代入法解该二元一次方程组
x y 3① 3x 8y 14②
方法二:解:由①,得 y = x - 3 . ③ ……………… 变形
把③代入②,得 3x-8(x-3) = 14. ………………代入
一般地,二元一次方程组的两个方程的公共解,叫做二元一次 方程组的解.
下面我们开始进行本章知识的学习
篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分, 负1场得1分.某队在10场比赛中得到16分,那么这个队胜负 场数分别是多少?
应用上节所学的知识我们可以设两个未知数
解:设篮球队胜了 x,负了 y 场.得到一个方程组
8.2消元——解二元一次方程组 (第一课时)
——第八章二元一次方程组
教学目标
01.理解并掌握用代入消元法解二元一次 方程组 重难点
02.理解代入消元法的基本思想所体现的化归思想方 法 难点
同学们,在上一节我们学习的二元一次方程组,回顾一下什么是 二元一次方程组?什么是二元一次方程组的解?
方程组中有两个未知数,含有每个未知数的项的次数都是1, 并且一共有两个方程,像这样的方程组叫做二元一次方程组.
第九套最新人教版七年级数学下册 8.2.1 代入法解二元一次方程组教学课件
列方程组:
2m + n = 1 ① 3m – 2n = 1 ②
由①得:n = 1 –2m ③
把③代入②得: 3m – 2(1 – 2m)= 1 3m – 2 + 4m = 1
把m 3 代入③,得: 7
n 12 3
n1
7
7
7m = 3
m 3 7
m的值为 3,n的值为 1
7
7
1、解二元一次方程组的基本思路是什么?
试看
把③代入① ,得 2(13 - 4y)+3y=16
26 –8y +3y =16
把y=2代入① 或②可以吗?
-5y= -10
y=2 把y=2代入③ ,得 x=5 ∴原方程组的解是 x=5
y=2
把求出的解 代入原方程 组,可以知 道你解得对
不对。
练一练
用代入法解方程组 x-y=3 3x-8y=14
中小学精品教学资源 中小学精品教学资源
中小学精品教学资源 中小学精品教学资源
中小学精品教学资源 中小学精品教学资源
8.2消元—二元一次方程组的解法 (第1课时)
态度决定一切!
知之者不如好之者, 好之者不如乐之者。
本节学习目标 :
1、会用代入法解二元一次方程组。
2、初步体会解二元一次方程组的 基本思 想——“消元”。
归 纳:
上面的解法,是由二元一次方程组 中一个方程,将一个未知数用含另一 个未知数的式子表示出来,再代入另 一个方程,实现消元,进而求得这个 二元一次方程组的解,这种方法叫代 入消元法,简称代入法
例题分析
试一试: 用代入法解方程组
y=x-3
⑴
3x-8y=14
⑵
人教版代入消元法解二元一次方程组课件PPT1
备选试题
(1) x-3y=2 y=x
(2) 4x+3y=5 x-2y=4
(3) 5x+3y=x+2y=7
(4)
x y
0 2
和
x y
4 1
是
axby8的解,
求a、b的值.
趣味题:一百馒头一百僧,大僧每人吃三个,
小僧三人分一个,几多大僧几小僧。
练习 解下列二元一次方程组
•
13、认识到我们的所见所闻都是假象,认识到此生都是虚幻,我们才能真正认识到佛法的真相。钱多了会压死你,你承受得了吗?带,带不走,放,放不下。时时刻刻发
悲心,饶益众生为他人。
•
14、梦想总是跑在我的前面。努力追寻它们,为了那一瞬间的同步,这就是动人的生命奇迹。
•
15、懒惰不会让你一下子跌倒,但会在不知不觉中减少你的收获;勤奋也不会让你一夜成功,但会在不知不觉中积累你的成果。人生需要挑战,更需要坚持和勤奋!
8.2 消元——解二元一次方程组
代入消元法
复习回顾上节课的四个概念
• 什么叫二元一次方程? • 什么叫二元一次方程的解? • 什么叫二元一次方程组? • 什么叫二元一次方程组的解?
温故知新
{2x+5y=2
1.方程组
如何解?关键是什么?解题
x=8-3y
步骤是什么?
2.把方程2x-7y=8(1)写成用含x的代数式表示y
人做到了,心悟到了,相信属于你的风景就在下一个拐弯处。
•
10、有些事想开了,你就会明白,在世上,你就是你,你痛痛你自己,你累累你自己,就算有人同情你,那又怎样,最后收拾残局的还是要靠你自己。
•
8.2.1 二元一次方程组的解法-代入消元法(第一课时)(课件)七年级数学下册(人教版)
【1-3】将4y+8=2x+3写成用y表示x的形式为_____________.
2
考点解析
重点
例2.用代入法解下列方程组:
= 3 + 1 ①
3 − = 7
①
(1)
(2)
2 − 3 = 4 ②
2 + 3 = −5 ②
解:(1)把①代入②,得
解这个方程,得
2x-3(3x+1)=4.
到菜市场售卖,黄瓜和茄子当天的批发价与零售价如下表所示.当天他卖完
这些黄瓜和茄子共赚了90元.这天老李批发的黄瓜和茄子分别有多少千克?
考点解析
重点
例3. 某天,蔬菜经营户老李用145元从蔬菜批发市场批发了一些黄瓜和茄子
到菜市场售卖,黄瓜和茄子当天的批发价与零售价如下表所示.当天他卖完
这些黄瓜和茄子共赚了90元.这天老李批发的黄瓜和茄子分别有多少千克?
1.掌握代入消元法的意义;
2.会用代入法解二元一次方程组. (重点、难点)
复习回顾
1.把下列方程写成用含x的式子表示y的形式.
(1) 2x+y=6
y=6-2x
(2) y-3x-1=0
y=3x+1
2.你能把上面两个方程写成用含y的式子表示x的形式.
y 1
6 y
(1) x
(2) x
3
2
3.如何解这样的方程组 .
C. x+x-1=7
D. x+2x+2=7
3 + 4 = 2 ①
【2-2】用代入消元法解二元一次方程组
使得代入后化简比
2 − = 5 ②
较容易的变形是( D )
2−4
2
考点解析
重点
例2.用代入法解下列方程组:
= 3 + 1 ①
3 − = 7
①
(1)
(2)
2 − 3 = 4 ②
2 + 3 = −5 ②
解:(1)把①代入②,得
解这个方程,得
2x-3(3x+1)=4.
到菜市场售卖,黄瓜和茄子当天的批发价与零售价如下表所示.当天他卖完
这些黄瓜和茄子共赚了90元.这天老李批发的黄瓜和茄子分别有多少千克?
考点解析
重点
例3. 某天,蔬菜经营户老李用145元从蔬菜批发市场批发了一些黄瓜和茄子
到菜市场售卖,黄瓜和茄子当天的批发价与零售价如下表所示.当天他卖完
这些黄瓜和茄子共赚了90元.这天老李批发的黄瓜和茄子分别有多少千克?
1.掌握代入消元法的意义;
2.会用代入法解二元一次方程组. (重点、难点)
复习回顾
1.把下列方程写成用含x的式子表示y的形式.
(1) 2x+y=6
y=6-2x
(2) y-3x-1=0
y=3x+1
2.你能把上面两个方程写成用含y的式子表示x的形式.
y 1
6 y
(1) x
(2) x
3
2
3.如何解这样的方程组 .
C. x+x-1=7
D. x+2x+2=7
3 + 4 = 2 ①
【2-2】用代入消元法解二元一次方程组
使得代入后化简比
2 − = 5 ②
较容易的变形是( D )
2−4
《消元—解二元一次方程组》二元一次方程组PPT课件(第1课时代入法)
x+y=10, 2x+y=16. 再代入另一个方程,实现消元,
y=10-x 2x+y=16
2x+〔10-x〕=16
进而求得这个二元一次方程组的解. x=6
y=10-x
y=4
这种方法叫做代入消元法,简称代入法.
例题
用代入法解方程组 ①
②
分析:方程①中 x 的系数是1,用含 y 的式子表示 x,比较简便.
解:设胜x场,那么负(10-x)场. 2x +〔10-x〕=16.
思考
比照方程和方程组,你能发现它们之间0, 2x+y=16.
y=10-x
消元
2x+y=16
一元一次方程
2x+〔10-x〕=16
这种将未知数的个数由多化少、逐一解决的思想,叫做消元思想.
代入消元法
把二元一次方程组中一个方程的一个未 知数用含另一个未知数的式子表示出来
教学难点 根据实际问题列出二元一次方程组,并用代入消元法求解.
思考
篮球联赛中,每场都要分出胜负,每队胜1场得2分,负1场得1分
.某队10场比赛中得到16分,那么这个队胜负场数分别是多少
?你能根据问题中的等量关系
你能根据问题中的等量关
列出二元一次方程组吗?
系列出一元一次方程吗?
解:设胜 x 场,负 y 场. x+y=10, 2x+y=16.
大瓶数:小瓶数=2:5,
大瓶所装消毒液+小瓶所装消毒液=总生产量.
代入消元法的实际应用 解:设这些消毒液应该分装x大瓶、y小瓶.
答:这些消毒液应该分装XXXX0大瓶和50000小瓶.
代入消元法的实际应用
上面解方程组的过程可以用下面的框图表示:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x
3
1
2
y,
2(x 1) y 11.
例2 根据市场调查,某种消毒液 的大瓶装(500g)和小瓶装(250g )两种产品的销售数量比(按瓶计算) 为2:5.某厂每天生产这种消毒液 22.5t,这些消毒液应该分装大、小 瓶装两种产品各多少瓶?
知识梳理
• 这节课我们学习了 什么知识?
代入消元法
谈谈思路:
例1 解方程组
2y – 3x =ຫໍສະໝຸດ 1 x=y-1① 变: 2y – 3x = 1
②
x–y=–1
① ②
解: 把②代入①得:
2y – 3(y – 1)= 1
2y – 3y + 3 = 1
2y – 3y = 1 - 3
-y = -2
y= 2
把y = 2代入②,得
x=y–1=2–1=1
∴方程组的解是
2a b 18, a 3b 2.
(2) 2x y 5, 3x 4 y 2.
(3) s 3t 4, 0.25s 0.5t 0.
(4)
4(x y 1) 3(1 y) 2,
x 2
y 3
2.
知识拓展
2、用代入法解二元一次方程组
(1)
(2)
x y 8 5x 2(x y) 1
想一想如何求解?
x米
x米
y米
归纳 上面的解方程组的基本思路是什
么?基本步骤有哪些?
上面解方程组的基本思路是把“二元”转化为 “一元” —— “消元”
将未知数的个数由多化少,逐一解决的想法,叫 做消元思想。
主要步骤是:将含一个未知数表示另一个未知 数的代数式,代入另一个方程中,从而消去一 个未知数,化二元一次方程组为一元一次方程。 这种解方程组的方法称为代入消元法,简称代 入法。
Please Criticize And Guide The Shortcomings
讲师:XXXXXX XX年XX月XX日
程中相应的未知数,得到一个
9+3y– 8y= 14
一元一次方程,求得一个未知
– 5y= 5
数的值;
y= – 1
求
把y= – 1代入③,得
x=2 ∴方程组的解是
x y
=2 写
= -1
3、把这个未知数的值代入上 面的式子,求得另一个未知数 的值;
4、写出方程组的解。
能 力 检 验 解二元一次方程组
(1)
∴方程组的解是
x=1 y=2
说说方法:
例2 解方程组
x –y = 3 ① 3x -8 y = 14 ②
用代入法解二元一次 方程组的一般步骤
解:由①得:x = 3+ y ③ 变
1、将方程组里的一个方程变 形,用含有一个未知数的式子
把③代入②得:
表示另一个未知数;
3(3+y)– 8y= 14 代 2、用这个式子代替另一个方
1、二元一次方程组
一元一次方程
转化
2、代入消元法的一般步骤:
变 代 求写
3、思想方法:转化思想、消元思想、 1 方程(组)思想.
知识拓展
3
.
已知
x y
1
2是二元一次方程组
bx+ay ax+by
= =
5 7
的解,则 a= 1 ,b= 3 。
4.已知 (a+2b-5)2+|4a+b-6|=0, 求a和b的值. a=1
8.2 消元
——用代入法解二元一次方程组 (第1课时)
问题情境
学校准备建设一个周长为60米的长方形游泳池, 要求游泳池的长是宽的2倍,为了帮建筑工人计 算出长和宽各是多少米?请你列出相应的方程组。
解:设游泳池的宽为x米, 长为y米,则
{2x + 2y = 60 y =2x
2x + 4x= 60 y米
x=1 y=2
谈谈思路:
例1 解方程组
2y – 3x = 1 x=y-1
① ②
分析
2 y – 3 (yx-1) = 1
解: 把②代入①得: 2y – 3(y – 1)= 1
x = y -1
2y – 3y + 3 = 1
2y – 3y = 1 - 3
-y = -2
y= 2
把y = 2代入②,得
x=y–1=2–1=1
b=1
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
You Know, The More Powerful You Will Be
结束语
感谢聆听
不足之处请大家批评指导