2019年《21.2降次——解一元二次方程》同步练习含答案解析
人教版数学九年级上册 第21章 21.2降次-解一元二次方程同步测试试题(一)
![人教版数学九年级上册 第21章 21.2降次-解一元二次方程同步测试试题(一)](https://img.taocdn.com/s3/m/a103adb5ddccda38376baff3.png)
降次-解一元二次方程同步测试试题(一)一.选择题1.关于x的一元二次方程x2﹣4x+m=0无实数根,则()A.m>4B.m≥4C.m<4D.m=42.一元二次方程(x+6)2=9可以转化为两个一元一次方程,其中一个一元一次方程为x+6=3,则另一个一元一次方程为()A.x﹣6=﹣3B.x+6=﹣9C.x+6=9D.x+6=﹣33.关于x的方程x2﹣(m2﹣1)x+2m=0的两个根互为相反数,则m的值是()A.m=±1B.m=﹣1C.m=1D.m=04.x=是下列哪个一元二次方程的根()A.2x2+3x+1=0B.2x2﹣3x+1=0C.2x2+3x﹣1=0D.2x2﹣3x﹣1=0 5.已知关于x的方程x2﹣(m+2)x+(2m﹣1)=0,若此方程的一个根是1,则方程的另一个根是()A.1B.2C.3D.46.若方程(x﹣1)2=m+1有解,则m的取值范围是()A.m≤﹣1B.m≥﹣1C.m为任意实数D.m>07.已知a是一元二次方程2x2﹣2x﹣1=0较大的实数根,那么a的值应在()A.3和4之间B.2和3之间C.1和2之间D.0和1之间8.已知关于x的一元二次方程x2+px+q=0的两根分别为x1=2,x2=﹣3,则原方程可化为()A.=0B.=0C.=0D.=09.若用配方法将一元二次方程x2﹣3x+=0转化为a(x+m)2+n=0的形式,则m+n的值是()A.﹣1B.1C.﹣5D.510.点P的坐标恰好是2x2﹣x﹣1=0的两根,则P点在第()象限.A.一或三B.一或四C.二或四D.三或四二.填空题11.若k>2,则关于x的方程x2﹣2kx+k2﹣k+1=0的实数根的个数为.12.如果关于x的一元二次方程(x﹣a)2=2﹣b有两个相等的实数根x1=x2=5,则a =,b=.13.已知直角三角形的两条直角边的长恰好是方程x2﹣7x+12=0的两个根,则这个直角三角形的斜边长是.14.设x1、x2是一元二次方程x2﹣x﹣1=0的两个实数根,则x1x2=.15.已知△ABC为等腰三角形,BC=3,另外两边AB、AC的长是关于x的一元二次方程x2﹣10x+k=0的两个实数根,则k的值为.三.解答题16.解方程:(1)x2﹣2x﹣5=0;(2)(x+1)﹣2(x2﹣1)=0.17.关于x的一元二次方程x2﹣(m﹣1)x+(m﹣2)=0.(1)求证:无论m取何值,方程总有实数根;(2)已知方程有一根大于6,求m的取值范围.18.已知关于x的一元二次方程x2﹣2x+k+2=0有两个实数根x1,x2.(1)求k的取值范围;(2)若x1,x2满足,求k的值.19.解方程:(1)x2﹣4x﹣1=0(配方法);(2)2(x﹣1)2=16;(3)3x2﹣5x+1=0(公式法);(4)x2﹣1=2(x+1).参考答案与试题解析一.选择题1.【解答】解:∵关于x的一元二次方程x2﹣4x+m=0无实数根,∴△=(﹣4)2﹣4×1×m<0,∴m>4.故选:A.2.【解答】解:∵(x+6)2=9,∴x+6=3或x+6=﹣3,故选:D.3.【解答】解:∵方程x2﹣(m2﹣1)x+2m=0的两个根是互为相反数,设这两根是α、β,则α+β=m2﹣1=0,解得:m=±1,但当m=1时,原方程为:x2+2=0,方程没有实数根,故m=﹣1.故选:B.4.【解答】解:A.此方程的解为x=,不符合题意;B.此方程的解为x=,不符合题意;C.此方程的解为x=,符合题意;D.此方程的解为x=,不符合题意;故选:C.5.【解答】解:∵方程的一个根是1,∴12﹣(m+2)+2m﹣1=0,解得:m=2,∴原方程为:x2﹣4x+3=0,设另一根为x2,则x2+1=4.∴x2=3.故方程的另一个根是3.故选:C.6.【解答】解:∵关于x的方程(x﹣1)2=m+1有解,∴m+1≥0,∴m≥﹣1.故选:B.7.【解答】解:解方程2x2﹣2x﹣1=0得:x=,设a是方程2x2﹣2x﹣1=0较大的根,∴a=,∵1<<2,∴2<1+<3,即1<a<.故选:C.8.【解答】解:∵关于x的一元二次方程x2+px+q=0的两根分别为x1=2,x2=﹣3,∴2﹣3=﹣p,2×(﹣3)=q,∴p=﹣1,q=﹣6,∴原方程可化为=0.故选:D.9.【解答】解:∵x2﹣3x+=0,∴(x2﹣6x+9)﹣2=0,∴(x﹣3)2﹣2=0,∵用配方法将一元二次方程x2﹣3x+=0转化为a(x+m)2+n=0的形式,∴m=﹣3,n=﹣2,∴m+n=﹣5,故选:C.10.【解答】解:方程2x2﹣x﹣1=0,分解因式得:(2x+1)(x﹣1)=0,可得2x+1=0或x﹣1=0,解得:x=﹣或x=1,此时P的坐标为(﹣,1)或(1,﹣),则P点在第二或四象限.故选:C.二.填空题(共5小题)11.【解答】解:∵a=1,b=﹣2k,c=k2﹣k+1,∴△=b2﹣4ac=(﹣2k)2﹣4×1(k2﹣k+1)=4k﹣4.又∵k>2,∴4k﹣4>0,即△>0,∴关于x的方程x2﹣2kx+k2﹣k+1=0有两个不相等的实数根.故答案为:2.12.【解答】解:∵方程(x﹣a)2=2﹣b有两个相等的实数根x1=x2=5,∴2﹣b=0,解得b=2,∴(x﹣a)2=0,把x=5代入得(5﹣a)2=0,解得a=5.故答案为5,2.13.【解答】解:∵x2﹣7x+12=0,∴(x﹣3)(x﹣4)=0,则x﹣3=0或x﹣4=0,解得x=3或x=4,则这个直角三角形的斜边长是=5,故答案为:5.14.【解答】解:∵x1、x2是一元二次方程x2﹣x﹣1=0的两个实数根,∴x1x2=﹣1,故答案为:﹣1.15.【解答】解:当AC=BC=3,把x=3代入方程x2﹣10x+k=0得32﹣10×3+k=0,解得k=21,此时,AB=7,∵3+3<7,此等腰三角形不存在;当AB=AC,则方程x2﹣10x+k=0的两个相等的实数根,∴△=100﹣4k=0,∴k=25,∴k的值为25,故答案为25.三.解答题(共4小题)16.【解答】解:(1)∵x2﹣2x﹣5=0,∴(x﹣1)2=6,则x﹣1=±,∴x=,即x1=,x2=;(2)∵(x+1)﹣2(x2﹣1)=0.∴(x+1)﹣2(x﹣1)(x+1)=0,∴(x+1)(3﹣2x)=0,则x+1=0或3﹣2x=0,解得x1=﹣1,x2=.17.【解答】(1)证明:Δ=[﹣(m﹣1)]2﹣4×1×(m﹣2)=m2﹣2m+1﹣4m+8=m2﹣6m+9=(m﹣3)2≥0,∴无论m取何值,方程总有实数根;(2)由求根公式得x==,∴x1=1,x2=m﹣2,∵方程有一根大于6,∴m﹣2>6,解得m>8.18.【解答】解:(1)根据题意得△=(﹣2)2﹣4(k+2)≥0,解得k≤﹣1;∴k的取值范围是k≤﹣1.(2)根据题意得x1+x2=2,x1x2=k+2,∵x1,x2满足=k﹣2,∴=k﹣2,∴=k﹣2,∴k2=6,∴k=±,∵k≤﹣1,∴k=﹣.19.【解答】解:(1)∵x2﹣4x+4=1+4,∴(x﹣2)2=5,∴,∴x1=2+,x2=2﹣.(2)(x﹣1)2=8,∴x﹣1=±,∴x1=1+2,x2=1﹣2;(3)3x2﹣5x+1=0,∴b2﹣4ac=(﹣5)2﹣4×3×1=13,∴x==,∴x1=,x2=。
21.2.3 解一元二次方程-因式分解法同步练习(解析版)
![21.2.3 解一元二次方程-因式分解法同步练习(解析版)](https://img.taocdn.com/s3/m/43ad94b603d8ce2f006623dc.png)
21.2.2因式分解法同步练习一、单选题1、一元二次方程()x x 22x -=-的根是( )A. -1B. 2C. 1和2D. -1和22、已知三角形的两边长为4和5,第三边的长是方程x 2-5x +6=0的一个根,则这个三角形的周长是( )A. 11B. 12C. 11或12D. 153、关于x 的一元二次方程x 2-4x +3=0的解为( )A. x 1=-1,x 2=3B. x 1=1,x 2=-3C. x 1=1,x 2=3D. x 1=-1,x 2=-34、已知2340x x --=,则代数式24x x x --的值是( ) A. 3 B. 2 C. 13 D. 125、一个等腰三角形的底边长是6,腰长是一元二次方程28150x x -+=的一根,则此三角形的周长是( )A. 16B. 12C. 14D. 12或166、若x =-2是关于x 的一元二次方程x 2+32ax -a 2=0的一个根,则a 的值为( ) A. -1或4 B. -1或-4 C. 1或-4 D. 1或47、已知()222226x y y x +-=+,则22x y +的值是( ) A. -2 B. 3 C. -2或3 D. -2且38、已知x 、y 都是实数,且(x 2+y 2)(x 2+y 2+2)-3=0,那么x 2+y 2的值是( )A. -3B. 1C. -3或1D. -1或39、若方程()()2310x x -+=,则31x +的值为( )A. 7B. 2C. 0D. 7或010、若实数x 、y 满足(3)()20x y x y +-++=,则x +y 的值为( )A. -1或-2;B. -1或2;C. 1或-2;D. 1或2;11、我们知道方程x 2+2x -3=0的解是x 1=1,x 2=-3,现给出另一个方程(2x +3)2+2(2x +3)-3=0,它的解是( )A. x 1=1,x 2=3B. x 1=1,x 2=-3C. x 1=-1,x 2=3D. x 1=-1,x 2=-3二、填空题12、若关于x 的方程()(4)0x a x +-=和2340x x --=的解完全相同,则a 的值为______. 13、已知在△ABC 中,AB =3,AC =5,第三边BC 的长为一元二次方程x 2-6x +8=0的一个根,则该三角形为______三角形.14、若多项式x 2-mx +n (m 、n 是常数)分解因式后,有一个因式是x -2,则2m -n 的值为______. 15、我们知道方程x 2-2x +1=0的解是x 1=x 2=1,则给出的另一个方程(x -1)2-2(x -1)+1=0的解是______.16、如果(x 2+y 2)2+3(x 2+y 2)-4=0,那么x 2+y 2的值为______.17、方程34x x =的实数根是______.三、解答题18、解方程:(1)2450x x +-=(配方法);(2)x 2−5x +6=0(因式分解法);(3)22730x x -+=(公式法).19、选择适当方法解下列方程(1)(3x -1)2=(x -1)2(2)3x (x -1)=2-2x20、阅读下面的材料,回答问题:解方程x4-5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2-5y+4=0①,解得y1=1,y2=4.当y=1时,x2=1,∴x=±1;当y=4时,x2=4,∴x=±2;∴原方程有四个根:x1=1,x2=-1,x3=2,x4=-2.(1)在由原方程得到方程①的过程中,利用______法达到______的目的,体现了数学的转化思想.(2)解方程(x2+x)2-4(x2+x)-12=0.1、答案:①x1=-1,x2=2;②x1=-1,x2=3;③x1=-1,x2=4;(2)①x1=-1,x2=10;②x1=-1,x2=10;(3)x2-nx-(n+1)=0分析:本题考查了用因式分解法和配方法解一元二次方程,数字类探索与规律,掌握因式分解法是解(1)的关键,掌握配方法是解(2)的关键,观察出二次项系数、一次项系数、常数项与两根之间的关系是解(3)的关键.解答:①∵x2-x-2=0,∴(x+1)(x−2)=0,∴x1=-1,x2=2;②∵x2-2x-3=0,∴(x+1)(x−3)=0,∴x1=-1,x2=3;③∵x2-3x-4=0,∴(x+1)(x−4)=0,∴x1=-1,x2=4;…(2)根据以上方程特征及其解的特征,请猜想:①方程x2-9x-10=0的解为x1=-1,x2=10;②x2-9x-10=0,移项,得x2-9x=10,配方,得x2-9x+814=10+814,即(x-92)2=1214,开方,得x-92=112.x1=-1,x2=10;(3)应用:关于x的方程x2-nx-(n+1)=0的解为x1=-1,x2=n+1.2、答案:D分析:本题考查了因式分解法解一元二次方程.解答:()x x 22x -=-⇒()()x x 2x 20-+-=⇒()()x 2x 10-+=⇒x 20x 10-=+=⇒或12x 2x 1,==-,选D .3、答案:C分析:本题考查了因式分解法解一元二次方程.解答:x 2-5x +6=0,解得x 1=2,x 2=3,∴三角形周长是4+5+2=11,4+5+3=12,选C .4、答案:C分析:本题考查了因式分解法解一元二次方程.解答:x 2-4x +3=0,分解因式得:(x -1)(x -3)=0,解得:x 1=1,x 2=3,选C .5、答案:D分析:本题考查了因式分解法解一元二次方程、代数式求值.解答:x 2-3x -4=0,(x -4)(x +1)=0,解得x 1=4,x 2=-1,∴当x =4时,24x x x --=12;当x =-1时,24x x x --=12. 选D .6、答案:A分析:本题考查了因式分解法解一元二次方程、三角形的三边关系.解答:解方程28150x x -+=,得:3x =或5x =,若腰长为3,则三角形的三边为3、3、6,显然不能构成三角形;若腰长为5,则三角形三边长为5、5、6,此时三角形的周长为16,选A .7、答案:C分析:本题考查了因式分解法解一元二次方程.解答:∵x =-2是关于x 的一元二次方程22302x ax a +-=的一个根, ∴(-2)2+32a ×(-2)-a 2=0,即a 2+3a -4=0, 整理,得(a +4)(a -1)=0,解得a 1=-4,a 2=1.即a 的值是1或-4.选C .8、答案:B分析:本题考查了因式分解法解一元二次方程.解答:根据题意,先移项得()2222260x y y x +---=, 即()2222260x y x y ()+-+-=,然后根据“十字相乘法”可得2222(2)(3)0x y x y +++-=,由此解得22x y +=-2(舍去)或223x y +=.选B .9、答案:B分析:本题考查了因式分解法解一元二次方程.解答:∵(x 2+y 2)(x 2+y 2+2)-3=0,∴(x 2+y 2)2+2(x 2+y 2)-3=0,解得:x 2+y 2=-3或x 2+y 2=1∵x 2+y 2>0∴x 2+y 2=1选B .10、答案:D分析:本题考查了解一元二次方程−因式分解法,利用此方法解方程时首先将方程右边化为0,左边的多项式分解因式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.解答:方程(2)(31)0x x -+=,可得20x -=或310x +=, 解得:12123x x ==-,,当2x =时,313217x +=⨯+=; 当13x =-时,1313103x +=⨯-+=(). 选D .11、答案:D分析:本题考查了因式分解法解一元二次方程.解答:t =x +y ,则由原方程,得t (t -3)+2=0,整理,得(t -1)(t -2)=0.解得t =1或t =2,∴x +y 的值为1或2.选D .12、答案:D分析:本题考查了因式分解法解一元二次方程.解答:将x 1=1,x 2=-3代入到x 2+2x -3=0得12+2×1-3=0,(-3)2+2×(-3)-3=0对比方程(2x +3)2+2(2x +3)-3=0,可得2x +3=1或-3解得:x 1=-1,x 2=-3选D .二、填空题13、答案:1分析:本题考查了因式分解法解一元二次方程.解答:解:2340x x --=,∴(4)(1)0x x -+=,∵关于x 的方程()(4)0x a x +-=和2340x x --=的解完全相同,∴a =1,故答案为:1.14、答案:直角分析:本题考查了因式分解法解一元二次方程、勾股定理的逆定理.解答:解一元二次方程x 2-6x +8=0,得,x =2或4,∵AB =3,AC =5,∴2<BC <8,∵第三边BC 的长为一元二次方程x 2-6x +8=0的一个根,∴BC =4,当BC =4时,AB 2+BC 2=AC 2,△ABC 是直角三角形.故答案为:直角.15、答案:4分析:本题考查了因式分解法解一元二次方程.解答:设另一个因式为x -a ,则x 2-mx +n =(x -2)(x -a )=x 2-ax -2x +2a =x 2-(a +2)x +2a ,得:22a m a n +=⎧⎨=⎩, ∴2m -n =2(a +2)-2a =4,故答案为4.16、答案:x 1=x 2=2分析:本题考查了换元法解一元二次方程.解答:∵方程x 2-2x +1=0的解是x 1=x 2=1,∴方程(x -1)2-2(x -1)+1=0的解满足:x −1=1,∴x 1=x 2=2.17、答案:1分析:先设22x y m +=,则原方程可变形为:2340m m +-=,解方程即可求得m 的值,从而求得22x y +的值.解答:设22x y m +=,则原方程可变形为:2340m m +-=,分解因式得,(1)(4)0m m -+=∴m =-4,m =1,∵22xy +≥0 ∴22x y +=1 故答案为:1.18、答案:10x =,22x =,32x =-分析:本题考查了因式分解法解方程.解答:34x x =340x x -=2(4)0x x -=x (x -2)(x +2)=0∴10x =,22x =,32x =-.故答案为:10x =,22x =,32x =-.三、解答题19、答案:(1)x 1=1,x 2=−5;(2)x 1=2,x 2=3;(3)x 1=3,x 2=12. 分析:本题考查的是一元二次方程的解法,掌握一元二次方程的解法:配方法,公式法,因式分解法的解答步骤是关键.解答:(1)2450x x +-=,245x x +=,24454x x ++=+,()229x +=,23x +=±,23x +=或23x +=-,∴121,5x x ==-.(2)x 2-5x +6=0,(x -2)(x -3)=0,x -2=0或x -3=0,∴x 1=2,x 2=3,(3)22730x x -+=,∵a =2,b =−7,c =3,2449423250b ac -=-⨯⨯=>,754x ±==, ∴1213,2x x ==. 20、答案:(1)x 1=0,x 2=12;(2)x 1=1,x 2=-23. 分析:本题考查了因式分解法解一元二次方程.解答:(1)3x -1=±(x -1),即3x -1=x -1或3x -1=-(x -1),∴x 1=0,x 2=12; (2)3x (x -1)+2(x -1)=0,(x -1)(3x +2)=0,x -1=0或3x +2=0,∴x 1=1,x 2=-23. 20、答案:(1)换元,降次;(2)x 1=-3,x 2=2.分析:本题考查了因式分解法解一元二次方程.解答:解:(1)在由原方程得到方程①的过程中,利用换元法达到降次的目的,体现了数学的转化思想;(2)设x 2+x =y ,原方程可化为y 2-4y -12=0,解得y 1=6,y 2=-2.由x 2+x =6,得x 1=-3,x 2=2.由x2+x=-2,得方程x2+x+2=0,b2-4ac=1-4×2=-7<0,此时方程无实根.∴原方程的解为x1=-3,x2=2.【答题】根据要求,解答下列问题:(1)①方程x2-x-2=0的解为______;②方程x2-2x-3=0的解为______;③方程x2-3x-4=0的解为______;…(2)根据以上方程特征及其解的特征,请猜想:①方程x2-9x-10=0的解为______;②请用配方法解方程x2-9x-10=0,以验证猜想结论的正确性.(3)应用:关于x的方程______的解为x1=-1,x2=n+1.。
降次解一元二次方程辅导资料(含答案)
![降次解一元二次方程辅导资料(含答案)](https://img.taocdn.com/s3/m/3040f1c977232f60ddcca1c4.png)
22.2 降次——解一元二次方程本章内容“一元二次方程”是《课程标准》“数与代数”的重要内容,解一元二次方程的算法是《一元二次方程》一章的重点内容,也是方程中重点内容,是学习二次函数等内容的基础,本节的主要内容是一元二次方程的解法。
这部分知识是对一次方程(组)知识学习的延续和深化,是后续内容学习的基础和工具。
主要学习下列三个内容:1.配方法配方法是继探索一元二次方程近似解的基础上研究的一种求精确解的方法.它是一元二次方程的解法的通法.因为用配方法解一元二次方程比较麻烦,一个一元二次方程需配一次方,所以在实际解一元二次方程时,一般不用配方法.但是,配方法是导出求根公式的关键,且在以后的学习中,会常常用到配方法.因此,要理解配方法,并会用配方法解一元二次方程.根据教材的特点主要设置了直接开平方法解一元二次方程和二次项系数是1的一元二次方程的解法.直接开平方法解一元二次方程比较简单,主要设置了【典例引路】中的例1、例2.【当堂检测】中的第1、2题,【课时作业】中的第1,2,11题.配方及二次项系数是1的一元二次方程的解法为本节的难点,为此设置了【拓展应用】中的例2,【当堂检测】中的第3,5题,【课时作业】中的第4,5,6,7,8,9,10,12题,【选做题】中的第1,2题,【备选题目】中的第1,2题。
2.公式法此内容是本节课的重点,是学习一元二次方程的基础,为此设计【典例引路】的例3、[当堂检测]的第1、2、4题,[课时作业]的第1—5题。
3.因式分解法利用方程解的含义,可求方程中的待定系数,也可由此把二次三项式变形求值,为此设计【典例引路】的例4,[当堂检测]的第3题,[选做题]和[备选题目]的问题。
4.整体思想和数感整体思想是数与代数中常用的数学思想,为此设计[拓展应用]的例1,课标虽不要求解含字母系数的方程,为提高数感, 为此设计[备选题目]的问题。
点击一:利用直接开平方法解一元二次方程 用此法可解形如c x =2、)0()(2≥=+c c b ax 或可化为这种形式的一类方程,这种解法的优点是能迅速准确地求出方程的解,缺点是只适用于一些特殊的方程。
人教版2019学年度九年级数学上册第二十一章一元二次方程21.2解一元二次方程21.2.5解一元二次方程_换元法同
![人教版2019学年度九年级数学上册第二十一章一元二次方程21.2解一元二次方程21.2.5解一元二次方程_换元法同](https://img.taocdn.com/s3/m/37aa27bb84254b35effd340b.png)
21.2.5解一元二次方程-换元法学校:___________姓名:___________班级:___________一.选择题(共15小题)1.已知方程x2+3x﹣4=0的解是x1=1,x2=﹣4,则方程(2x+3)2+3(2x+3)﹣4=0的解是()A.x1=﹣1,x2=﹣3.5 B.x1=1,x2=﹣3.5C.x1=1,x2=3.5 D.x1=﹣1,x2=3.52.已知实数a、b满足(a2﹣b2)2﹣2(a2﹣b2)=8,则a2﹣b2的值为()A.﹣2 B.4 C.4或﹣2 D.﹣4或23.已知x、y都是实数,且(x2+y2)(x2+y2+2)﹣3=0,那么x2+y2的值是()A.﹣3 B.1 C.﹣3或1 D.﹣1或34.已知方程x2+2x﹣3=0的解是x1=1,x2=﹣3,则另一个方程(x+3)2+2(x+3)﹣3=0的解是()A.x1=﹣1,x2=3 B.x1=1,x2=﹣3 C.x1=2,x2=6 D.x1=﹣2,x2=﹣65.如果(x+2y)2+3(x+2y)﹣4=0,那么x+2y的值为()A.1 B.﹣4 C.1或﹣4 D.﹣1或36.已知x是实数且满足(x2+3x)2+2(x2+3x)﹣3=0,那么x2+3x的值为()A.3 B.﹣3或1 C.1 D.﹣1或37.若实数x、y满足(x2+y2+2)(x2+y2﹣2)=0,则x2+y2的值为()A.1 B.2 C.2或﹣1 D.2或﹣28.若实数x、y满足(x+y﹣3)(x+y)+2=0,则x+y的值为()A.﹣1或﹣2 B.﹣1或2 C.1或﹣2 D.1或29.已知方程ax2+bx+c=0的解是x1=2,x2=﹣3,则方程a(x+1)2+b(x+1)+c=0的解是()A.x1=1,x2=﹣4 B.x1=﹣1,x2=﹣4 C.x1=﹣1,x2=4 D.x1=1,x2=410.设(x2+y2)(x2+y2+2)﹣15=0,则x2+y2的值为()A.﹣5或3 B.﹣3或5 C.3 D.511.(m2+n2)(m2+n2﹣2)﹣8=0,则m2+n2=()A.4 B.2 C.4或﹣2 D.4或212.用“整体法”求得方程(2x+5)2﹣4(2x+5)+3=0的解为()A.x1=1,x2=3 B.x1=﹣2,x2=3 C.x1=﹣3,x2=﹣1 D.x1=﹣2,x2=﹣113.若实数x满足方程(x2+2x)•(x2+2x﹣2)﹣8=0,那么x2+2x的值为()A.﹣2或4 B.4 C.﹣2 D.2或﹣414.已知x为实数,且满足(x2+x+1)2+2(x2+x+1)﹣3=0,那么x2+x+1的值为()A.1 B.﹣3 C.﹣3或1 D.﹣1或315.若(x2+y2﹣2)2=9,则x2+y2的值为()A.1 B.﹣1 C.5 D.5或﹣1二.填空题(共5小题)16.若实数a,b满足(2a+2b)(2a+2b﹣2)﹣8=0,则a+b= .17.设x,y是一个直角三角形两条直角边的长,且(x2+y2)(x2+y2﹣1)=20,则这个直角三角形的斜边长为.18.已知(x2+y2)(x2+y2﹣1)=12,则x2+y2的值是.19.若(x2+y2+3)2﹣6(x2+y2+3)+8=0,则x2+y2﹣5= .20.如果(m+n)(m+n+5)=6,则m+n= .三.解答题(共4小题)21.阅读下面的材料,回答问题:解方程x4﹣5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2﹣5y+4=0 ①,解得y1=1,y2=4.当y=1时,x2=1,∴x=±1;当y=4时,x2=4,∴x=±2;∴原方程有四个根:x1=1,x2=﹣1,x3=2,x4=﹣2.(1)在由原方程得到方程①的过程中,利用法达到的目的,体现了数学的转化思想.(2)解方程(x2+x)2﹣4(x2+x)﹣12=0.22.(3x﹣2)2﹣5(3x﹣2)+4=0.23.已知实数x,y满足(x2+y2)(x2+y2﹣12)=45,求x2+y2的值.24.阅读下面的材料,解答后面的问题材料:“解方程x4﹣3x2+2=0”解:设x2=y,原方程变为y2﹣3y+2=0,(y﹣1)(y﹣2)=0,得y=1或y=2当y=1时,即x2=1,解得x=±1;当y=2时,即x2=2,解得x=±综上所述,原方程的解为x1=1,x2=﹣1,x3=.x4=﹣问题:(1)上述解答过程采用的数学思想方法是A.加减消元法 B.代入消元法 C.换元法 D.待定系数法(2)采用类似的方法解方程:(x2﹣2x)2﹣x2+2x﹣6=0.2018-2019学年度人教版数学九年级上册同步练习:21.2.5解一元二次方程-换元法参考答案与试题解析一.选择题(共15小题)1.解:把方程(2x+3)2+2(2x+3)﹣3=0看作关于2x+3的一元二次方程,所以2x+3=1或2x+3=﹣4,所以x1=﹣1,x2=﹣3.5.故选:A.2.解:设y=a2﹣b2,原式化为y2﹣2y﹣8=0,即(y﹣4)(y+2)=0,可得y﹣4=0或y+2=0,解得:y1=4,y2=﹣2,∴a2﹣b2=4或﹣2.故选:C.3.解:(x2+y2)(x2+y2+2)﹣3=0,(x2+y2)2+2(x2+y2)﹣3=0,(x2+y2+3)(x2+y2﹣1)=0,x2+y2﹣1=0,x2+y2=1,故选:B.4.解:∵方程x2+2x﹣3=0的解是x1=1,x2=﹣3,∴方程(x+3)2+2(x+3)﹣3=0中x+3=1或﹣3,解得:x=﹣2或﹣6,即x1=﹣2,x2=﹣6,故选:D.5.解:设x+2y=a,则原方程变形为a2+3a﹣4=0,解得a=﹣4或a=1.故选C.6.解:由y=x2+3x,则(x2+3x)2+2(x2+3x)﹣3=0,可化为:y2+2y﹣3=0,分解因式,得,(y+3)(y﹣1)=0,解得,y1=﹣3,y2=1,当x2+3x=﹣3时,经△=32﹣3×4=﹣3<0检验,可知x不是实数当x2+3x=1时,经检验,符合题意.故选:C.7.解:设t=x2+y2,则t≥0,原方程变形为(t+2)(t﹣2)=0,解得:t=2或t=﹣2(舍去).故选:B.8.解:t=x+y,则由原方程,得t(t﹣3)+2=0,整理,得(t﹣1)(t﹣2)=0.解得t=1或t=2,所以x+y的值为1或2.故选:D.9.解:设t=x+1,则方程a(x+1)2+b(x+1)+c=0化为at2+at+c=0,因为方程ax2+bx+c=0的解是x1=2,x2=﹣3,所以t1=2,t2=﹣3,当t=2时,x+1=2,解得x=1;当t=﹣3时,x+1=﹣3,解得x=﹣4,所以方程a(x+1)2+b(x+1)+c=0的解是x1=1,x2=﹣4.故选:A.10.解:设t=x2+y2,则原方程可化为t2+2t﹣15=0,∴t=x2+y2=3或t=x2+y2=﹣5,又∵t≥0,∴x2+y2=3.故选:C.11.解:设m2+n2=t(t≥0),由原方程,得t(t﹣2)﹣8=0,整理,得(t﹣4)(t+2)=0,解得t=4或t=﹣2(舍去),所以m2+n2=4.故选:A.12.解:(2x+5)2﹣4(2x+5)+3=0,设2x+5=y,则原方程变形为y2﹣4y+3=0,解得:y1=1,y2=3,当y=1时,2x+5=1,解得:x=﹣2,当y=3时,2x+5=3,解得:x=﹣1,即原方程的解为x1=﹣2,x2=﹣1,故选:D.13.解:设x2+2x=y,则原方程化为y(y﹣2)﹣8=0,解得:y=4或﹣2,当y=4时,x2+2x=4,此时方程有解,当y=﹣2时,x2+2x=﹣2,此时方程无解,舍去,所以x2+2x=4.故选:B.14.解:设y=x2+x+1=y,则(x2+x+1)2+2(x2+x+1)﹣3=0,可化为:y2+2y﹣3=0,分解因式得:(y+3)(y﹣1)=0,解得:y1=﹣3,y2=1,当x2+x+1=﹣3时,经△=12﹣4×1×4<0检验,可知x不是实数,当x2+x+1=1时,经检验,符合题意.故选:A.15.解:设t=x2+y2(t≥0),由原方程得:(t﹣2)2=9,解得t﹣2=±3,解得t=5或t=﹣1(舍去).故选:C.二.填空题(共5小题)16.解:设a+b=x,则由原方程,得2x(2x﹣2)﹣8=0,整理,得4x2﹣4x﹣8=0,即x2﹣x﹣2=0,分解得:(x+1)(x﹣2)=0,解得:x1=﹣1,x2=2.则a+b的值是﹣1或2.故答案是:﹣1或2.17.解:设x2+y2=t,则原方程可化为:t(t﹣1)=20,∴t2﹣t﹣20=0,即(t+4)(t﹣5)=0,∴t1=5,t2=﹣4(舍去),∴x2+y2=5,∴这个直角三角形的斜边长为,故答案为:.18.解:(x2+y2)(x2+y2﹣1)=12,(x2+y2)2﹣(x2+y2)﹣12=0,(x2+y2+3)(x2+y2﹣4)=0,x2+y2+3=0,x2+y2﹣4=0,x2+y2=﹣3,x2+y2=4,∵不论x、y为何值,x2+y2不能为负数,∴x2+y2=4,故答案为:4.19.解:设x2+y2+3=t∵(x2+y2+3)2﹣6(x2+y2+3)+8=0,∴t2﹣6t+8=0∴t=2或t=4当t=2时,x2+y2+3=2∴x2+y2=﹣1故t=2舍去当t=4时,x2+y2+3=4∴x2+y2=1∴原式=1﹣5=﹣4故答案为:﹣420.解:设m+n为x则(m+n)(m+n+5)=6变形为x(x+5)=6 移项去括号得x2+5x﹣6=0因式分解得(x+6)(x﹣1)=0解得x=1或﹣6即m+n=1或﹣6.三.解答题(共4小题)21.解:(1)换元,降次(2)设x2+x=y,原方程可化为y2﹣4y﹣12=0,解得y1=6,y2=﹣2.由x2+x=6,得x1=﹣3,x2=2.由x2+x=﹣2,得方程x2+x+2=0,b2﹣4ac=1﹣4×2=﹣7<0,此时方程无实根.所以原方程的解为x1=﹣3,x2=2.22.解:设(3x﹣2)=y,原方程等价于y2﹣5y+4=0因式分解,得(y﹣4)(y﹣1)=0,于是,得y﹣4=0或y﹣1=0,解得y=4或y=1,3x﹣2=4,3x﹣2=1,解得x1=2,x2=1.23.解:设x2+y2=a,则a(a﹣12)=45,a2﹣12a﹣45=0,(a﹣15)(a+3)=0,a1=15,a2=﹣3,∵x2+y2=a≥0,∴x2+y2=15.24.解:(1)上述解答过程采用的数学思想方法是换元法.故答案是:C;(2)设x2﹣2x=y,原方程化为y2﹣y﹣6=0,整理,得(y﹣3)(y+2)=0,得y=3或y=﹣2当y=3时,即x2﹣2x=3,解得x=﹣1或x=3;当y=﹣2时,即x2﹣2x=2,解得x=1±综上所述,原方程的解为x1=﹣1,x2=3,x3=1+.x4=1﹣.。
【新】人教版九年级数学上册21.2降次--解一元二次方程(第一课时)同步测试题及答案
![【新】人教版九年级数学上册21.2降次--解一元二次方程(第一课时)同步测试题及答案](https://img.taocdn.com/s3/m/325c0cf8fd0a79563c1e72e6.png)
22.2降次--解一元二次方程(第一课时)22.2.1 配方法(1)◆随堂检测1、方程32x +9=0的根为( )A 、3B 、-3C 、±3D 、无实数根2、下列方程中,一定有实数解的是( )A 、210x +=B 、2(21)0x +=C 、2(21)30x ++=D 、21()2x a a -= 3、若224()x x p x q -+=+,那么p 、q 的值分别是( )A 、p=4,q=2B 、p=4,q=-2C 、p=-4,q=2D 、p=-4,q=-24、若28160x -=,则x 的值是_________.5、解一元二次方程是22(3)72x -=.6、解关于x 的方程(x+m )2=n . ◆典例分析已知:x 2+4x+y 2-6y+13=0,求222x y x y -+的值. 分析:本题中一个方程、两个未知数,一般情况下无法确定x 、y 的值.但观察到方程可配方成两个完全平方式的和等于零,可以挖掘出隐含条件x=-2和y=3,从而使问题顺利解决. 解:原方程可化为(x+2)2+(y-3)2=0,∴(x+2)2=0,且(y-3)2=0,∴x=-2,且y=3,∴原式=2681313--=-. ◆课下作业●拓展提高1、已知一元二次方程032=+c x ,若方程有解,则c ________.2、方程b a x =-2)((b >0)的根是( )A 、b a ±B 、)(b a +±C 、b a +±D 、b a -±3、填空(1)x 2-8x+______=(x-______)2;(2)9x 2+12x+_____=(3x+_____)24、若22(3)49x m x +-+是完全平方式,则m 的值等于________.5、解下列方程:(1)(1+x)2-2=0;(2)9(x-1)2-4=0.6、如果x 2-4x+y 2,求()zxy 的值. ●体验中考1、(2008年,丽水)一元二次方程2(6)5x +=可转化为两个一次方程,其中一个一次方程是6x +=_____________.2、(2009年,太原)用配方法解方程2250x x --=时,原方程应变形为( )A .2(1)6x +=B .2(1)6x -=C .2(2)9x +=D .2(2)9x -=参考答案:◆随堂检测1、D 依据方程的根的定义可判断此方程无实数根,故选D .2、B D 选项中当0a <时方程无实数根,只有B 正确.3、B 依据完全平方公式可得B 正确.4.5、解:方程两边同除以2,得2(3)36x -=,∴36x -=±,∴129,3x x ==-.6、解:当n ≥0时,x+m=,∴x 1,x 2-m .当n<0时,方程无解.◆课下作业●拓展提高1、0≤ 原方程可化为23c x =-,∴0c ≤.2、A 原方程可化为x a -=x a =±.3、根据完全平方公式可得:(1)16 4;(2)4 2.4、10或-4 若22(3)49x m x +-+是完全平方式,则37m -=±,∴1210,4m m ==-.5、(1)121,1x x ==;(2)1251,33x x ==.6、解:原方程可化为(x-2)2+(y+3)2=0,∴x=2,y=-3,z=-2,∴2()(6)z xy -=-=136. ●体验中考1、6x +=原方程可化为6x +=6x +=2、B 原方程可化为22160x x -+-=,∴2(1)6x -=.故选B.。
21.2降次—解一元二次方程(6)
![21.2降次—解一元二次方程(6)](https://img.taocdn.com/s3/m/77ba97710166f5335a8102d276a20029bd646391.png)
例2 解方程:x2 + 6x - 7 = 0.
解:因式分解得
x2 6x 7 (x 7)(x 1) 步骤: (x + 7)(x − 1) = 0.
x 7
x·
×
1
x 7x 6x
①竖分二次项与常数项 ②交叉相乘,积相加 ③检验确定,横写因式
(3) (x+1 )(x-1)= 0.
x1 = -1,x2 = 1.
(4) (x + 6)(2x - 4) = 0;
x1 = -6,x2 = 2.
例1 解下列方程:
1 x x 2 x 2 0;
25x2 2x 1 x2 2x 3.
解:(1)因式分解,得
(2) 移项、合4并得
4
(x - 2)(x+1) = 0. ∴ x - 2 = 0,或 x+1 = 0.
(2) x2 + 4x − 5 = 0;
x 5
x·
×
1
x 5x 4x
解:分解因式,得
(x + 5)(x − 1) = 0,
解得 x1 = −5,x2 = 1.
(3) (x + 3)(x − 1) = 5;
解:整理得 x2 + 2x − 8 = 0,
x4
x 2
2x 4x 2x
分解因式,得 (x + 4)(x − 2) = 0, 解得 x1 = −4,x2 = 2.
∴ x + 7 = 0, 或 x − 1 = 0.
∴ x1= −7, x2 = 1.
简记口诀:首尾分解,交叉相乘,求和凑中.
练一练2 解下列方程:
《21.2降次——解一元二次方程》同步练习含答案解析
![《21.2降次——解一元二次方程》同步练习含答案解析](https://img.taocdn.com/s3/m/8f0815cb33687e21af45a9d1.png)
《21一、选择题(共13小题)1.一元二次方程x2﹣4x+5=0的根的情形是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根2.下列关于x的方程有实数根的是()A.x2﹣x+1=0 B.x2+x+1=0 C.(x﹣1)(x+2)=0 D.(x﹣1)2+1 =03.关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范畴为()A. B.C.D.4.有两个一元二次方程M:ax2+bx+c=0;N:cx2+bx+a=0,其中a•c ≠0,a≠c.下列四个结论中,错误的是()A.如果方程M有两个相等的实数根,那么方程N也有两个相等的实数根B.如果方程M的两根符号相同,那么方程N的两根符号也相同C.如果5是方程M的一个根,那么是方程N的一个根D.如果方程M和方程N有一个相同的根,那么那个根必是x=15.方程x2﹣2x+3=0的根的情形是()A.有两个相等的实数根B.只有一个实数根C.没有实数根 D.有两个不相等的实数根6.一元二次方程4x2+1=4x的根的情形是()A.没有实数根 B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根7.已知一元二次方程2x2﹣5x+3=0,则该方程根的情形是()A.有两个不相等的实数根B.有两个相等的实数根C.两个根差不多上自然数D.无实数根8.若一元二次方程x2+2x+a=0的有实数解,则a的取值范畴是()A.a<1 B.a≤4 C.a≤1 D.a≥19.下列一元二次方程中,有两个相等实数根的是()A.x2﹣8=0 B.2x2﹣4x+3=0 C.9x2+6x+1=0 D.5x+2=3x210.一元二次方程2x2+3x+1=0的根的情形是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根 D.无法确定11.下列一元二次方程有两个相等实数根的是()A.x2﹣2x+1=0 B.2x2﹣x+1=0 C.4x2﹣2x﹣3=0 D.x2﹣6x=0 12.若a满足不等式组,则关于x的方程(a﹣2)x2﹣(2a ﹣1)x+a+=0的根的情形是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根 D.以上三种情形都有可能13.下列方程中,没有实数根的是()A.x2﹣4x+4=0 B.x2﹣2x+5=0 C.x2﹣2x=0 D.x2﹣2x﹣3=0二、填空题(共12小题)14.若关于x的一元二次方程x2﹣3x+m=0有两个相等的实数根,则m =______.15.若关于x的一元二次方程x2﹣x+m=0有两个不相等的实数根,则m的值可能是______(写出一个即可).16.关于x的方程mx2+x﹣m+1=0,有以下三个结论:①当m=0时,方程只有一个实数解;②当m≠0时,方程有两个不等的实数解;③不管m 取何值,方程都有一个负数解,其中正确的是______(填序号).17.关于x的方程x2+2x﹣m=0有两个相等的实数根,则m=______.18.若关于x的一元二次方程ax2+3x﹣1=0有两个不相等的实数根,则a的取值范畴是______.19.关于x的一元二次方程x2﹣x+m=O没有实数根,则m的取值范畴是______.20.已知关于x的一元二次方程x2+2x+m=0有实数根,则m的取值范畴是______.21.关于x的一元二次方程ax2+bx+=0有两个相等的实数根,写出一组满足条件的实数a,b的值:a=______,b=______.22.已知关于x的方程x2﹣2x+a=0有两个实数根,则实数a的取值范畴是______.23.若一元二次方程(m﹣1)x2﹣4x﹣5=0没有实数根,则m的取值范畴是______.24.关于x的一元二次方程x2+a=0没有实数根,则实数a的取值范畴是______.25.已知关于x的一元二次方程x2﹣2x﹣k=0有两个相等的实数根,则k值为______.三、解答题(共5小题)26.已知关于x的一元二次方程x2﹣4x+m=0.(1)若方程有实数根,求实数m的取值范畴;(2)若方程两实数根为x1,x2,且满足5x1+2x2=2,求实数m的值.27.已知:关于x的方程x2+2mx+m2﹣1=0(1)不解方程,判不方程根的情形;(2)若方程有一个根为3,求m的值.28.已知关于x的一元二次方程(x﹣3)(x﹣2)=|m|.(1)求证:关于任意实数m,方程总有两个不相等的实数根;(2)若方程的一个根是1,求m的值及方程的另一个根.29.已知关于x的一元二次方程mx2﹣(m+2)x+2=0.(1)证明:不论m为何值时,方程总有实数根;(2)m为何整数时,方程有两个不相等的正整数根.30.已知关于x的一元二次方程mx2+mx+m﹣1=0有两个相等的实数根.(1)求m的值;(2)解原方程.《21.2 降次——解一元二次方程》参考答案与试题解析一、选择题(共13小题)1.一元二次方程x2﹣4x+5=0的根的情形是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【考点】根的判不式.【分析】把a=1,b=﹣4,c=5代入△=b2﹣4ac进行运算,按照运算结果判定方程根的情形.【解答】解:∵a=1,b=﹣4,c=5,∴△=b2﹣4ac=(﹣4)2﹣4×1×5=﹣4<0,因此原方程没有实数根.故选:D.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判不式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.2.下列关于x的方程有实数根的是()A.x2﹣x+1=0 B.x2+x+1=0 C.(x﹣1)(x+2)=0 D.(x﹣1)2+1 =0【考点】根的判不式.【专题】运算题.【分析】分不运算A、B中的判不式的值;按照判不式的意义进行判定;利用因式分解法对C进行判定;按照非负数的性质对D进行判定.【解答】解:A、△=(﹣1)2﹣4×1×1=﹣3<0,方程没有实数根,因此A选项错误;B、△=12﹣4×1×1=﹣3<0,方程没有实数根,因此B选项错误;C、x﹣1=0或x+2=0,则x1=1,x2=﹣2,因此C选项正确;D、(x﹣1)2=﹣1,方程左边为非负数,方程右边为0,因此方程没有实数根,因此D选项错误.故选:C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判不式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.3.关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范畴为()A. B.C.D.【考点】根的判不式.【专题】判不式法.【分析】先按照判不式的意义得到△=(﹣3)2﹣4m>0,然后解不等式即可.【解答】解:按照题意得△=(﹣3)2﹣4m>0,解得m<.故选:B.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判不式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.4.有两个一元二次方程M:ax2+bx+c=0;N:cx2+bx+a=0,其中a•c ≠0,a≠c.下列四个结论中,错误的是()A.如果方程M有两个相等的实数根,那么方程N也有两个相等的实数根B.如果方程M的两根符号相同,那么方程N的两根符号也相同C.如果5是方程M的一个根,那么是方程N的一个根D.如果方程M和方程N有一个相同的根,那么那个根必是x=1【考点】根的判不式;一元二次方程的解;根与系数的关系.【专题】压轴题.【分析】利用根的判不式判定A;利用根与系数的关系判定B;利用一元二次方程的解的定义判定C与D.【解答】解:A、如果方程M有两个相等的实数根,那么△=b2﹣4ac =0,因此方程N也有两个相等的实数根,结论正确,不符合题意;B、如果方程M的两根符号相同,那么方程N的两根符号也相同,那么△=b2﹣4ac≥0,>0,因此a与c符号相同,>0,因此方程N的两根符号也相同,结论正确,不符合题意;C、如果5是方程M的一个根,那么25a+5b+c=0,两边同时除以25,得c+b+a=0,因此是方程N的一个根,结论正确,不符合题意;D、如果方程M和方程N有一个相同的根,那么ax2+bx+c=cx2+bx+a,(a﹣c)x2=a﹣c,由a≠c,得x2=1,x=±1,结论错误,符合题意;故选:D.【点评】本题考查了一元二次方程根的情形与判不式△的关系:△>0⇔方程有两个不相等的实数根;△=0⇔方程有两个相等的实数根;△<0⇔方程没有实数根.也考查了根与系数的关系,一元二次方程的解的定义.5.方程x2﹣2x+3=0的根的情形是()A.有两个相等的实数根B.只有一个实数根C.没有实数根 D.有两个不相等的实数根【考点】根的判不式.【分析】把a=1,b=﹣2,c=3代入△=b2﹣4ac进行运算,然后按照运算结果判定方程根的情形.【解答】解:∵a=1,b=﹣2,c=3,∴△=b2﹣4ac=(﹣2)2﹣4×1×3=﹣8<0,因此方程没有实数根.故选C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判不式△=b2﹣4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.6.一元二次方程4x2+1=4x的根的情形是()A.没有实数根 B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根【考点】根的判不式.【分析】先求出△的值,再判定出其符号即可.【解答】解:原方程可化为:4x2﹣4x+1=0,∵△=42﹣4×4×1=0,∴方程有两个相等的实数根.故选C.【点评】本题考查的是根的判不式,熟知一元二次方程ax2+bx+c=0(a ≠0)的根与△的关系是解答此题的关键.7.已知一元二次方程2x2﹣5x+3=0,则该方程根的情形是()A.有两个不相等的实数根B.有两个相等的实数根C.两个根差不多上自然数D.无实数根【考点】根的判不式.【分析】判定上述方程的根的情形,只要看根的判不式△=b2﹣4ac的值的符号就能够了.【解答】解:∵a=2,b=﹣5,c=3,∴△=b2﹣4ac=(﹣5)2﹣4×2×3=1>0,∴方程有两个不相等的实数根.故选:A.【点评】此题要紧考查了一元二次方程根的判不式,把握一元二次方程根的情形与判不式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根,是解决咨询题的关键.8.若一元二次方程x2+2x+a=0的有实数解,则a的取值范畴是()A.a<1 B.a≤4 C.a≤1 D.a≥1【考点】根的判不式.【分析】若一元二次方程x2+2x+a=0的有实数解,则根的判不式△≥0,据此能够列出关于a的不等式,通过解不等式即可求得a的值.【解答】解:因为关于x的一元二次方程有实根,因此△=b2﹣4ac=4﹣4a≥0,解之得a≤1.故选C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判不式.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.9.下列一元二次方程中,有两个相等实数根的是()A.x2﹣8=0 B.2x2﹣4x+3=0 C.9x2+6x+1=0 D.5x+2=3x2【考点】根的判不式.【分析】分不运算四个方程的判不式的值,然后按照判不式的意义判定各方程根的情形.【解答】解:A、x2﹣8=0,那个地点a=1,b=0,c=﹣8,∵△=b2﹣4ac=02﹣4×1×(﹣8)=32>0,∴方程有两个不相等的实数根,故本选项错误;B、2x2﹣4x+3=0,那个地点a=2,b=﹣4,c=3,∵△=b2﹣4ac=(﹣4)2﹣4×2×3=﹣8<0,∴方程没有实数根,故本选项错误;C、9x2+6x+1=0,那个地点a=9,b=6,c=1,∵△=b2﹣4ac=62﹣4×9×1=0,∴方程有两个相等的实数根,故本选项正确;D、5x+2=3x2,3x2﹣5x﹣2=0,那个地点a=3,b=﹣5,c=﹣2,∵△=b2﹣4ac=(﹣5)2﹣4×3×(﹣2)=49>0,∴方程有两个不相等的实数根,故本选项错误;故选C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判不式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.10.一元二次方程2x2+3x+1=0的根的情形是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根 D.无法确定【考点】根的判不式.【分析】先求出△的值,再判定出其符号即可.【解答】解:∵△=32﹣4×2×1=1>0,∴方程有两个不相等的实数根.故选A.【点评】本题考查的是根的判不式,熟知一元二次方程ax2+bx+c=0(a ≠0)的根与△的关系是解答此题的关键.11.下列一元二次方程有两个相等实数根的是()A.x2﹣2x+1=0 B.2x2﹣x+1=0 C.4x2﹣2x﹣3=0 D.x2﹣6x=0【考点】根的判不式.【分析】按照一元二次方程根的判不式判定即可.【解答】解:A、∵△=4﹣4=0,∴方程x2﹣2x+1=0有两个相等实数根;B、∵△=1﹣4×2<0,∴方程2x2﹣x+1=0无实数根;C、∵△=4+4×4×3=52>0,∴方程4x2﹣2x﹣3=0有两个不相等实数根;D、∵△=36>0,∴方程x2﹣6x=0有两个不相等实数根;故选A.【点评】本题考查了一元二次方程根的判不式,一元二次方程根的情形与判不式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.12.若a满足不等式组,则关于x的方程(a﹣2)x2﹣(2a ﹣1)x+a+=0的根的情形是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根 D.以上三种情形都有可能【考点】根的判不式;一元一次方程的解;解一元一次不等式组.【分析】求出a的取值范畴,表示出已知方程根的判不式,判定得到根的判不式的值小于0,可得出方程没有实数根.【解答】解:解不等式组得a<﹣3,∵△=(2a﹣1)2﹣4(a﹣2)(a+)=2a+5,∵a<﹣3,∴△=2a+5<0,∴方程(a﹣2)x2﹣(2a﹣1)x+a+=0没有实数根,故选C.【点评】此题考查了解一元一次不等式组,一元二次方程根的判不式,根的判不式的值大于0,方程有两个不相等的实数根;根的判不式的值等于0时,方程有两个相等的实数根;根的判不式的值小于0时,方程无实数根.13.下列方程中,没有实数根的是()A.x2﹣4x+4=0 B.x2﹣2x+5=0 C.x2﹣2x=0 D.x2﹣2x﹣3=0【考点】根的判不式.【分析】利用判不式分不判定即可得出答案.【解答】解:A、x2﹣4x+4=0,△=16﹣16=0有相同的根;B、x2﹣2x+5=0,△=4﹣20<0没有实数根;C、x2﹣2x=0,△=4﹣0>0有两个不等实数根;D、x2﹣2x﹣3=0,△=4+12>0有两个不等实数根.故选:B.【点评】本题要紧考查了根的判不式,解题的关键是熟记判不式的公式.二、填空题(共12小题)14.若关于x的一元二次方程x2﹣3x+m=0有两个相等的实数根,则m =.【考点】根的判不式.【分析】按照题意可得△=0,据此求解即可.【解答】解:∵方程x2﹣3x+m=0有两个相等的实数根,∴△=9﹣4m=0,解得:m=.故答案为:.【点评】本题考查了根的判不式,解答本题的关键是把握当△=0时,方程有两个相等的两个实数根.15.若关于x的一元二次方程x2﹣x+m=0有两个不相等的实数根,则m的值可能是0(写出一个即可).【考点】根的判不式.【专题】开放型.【分析】若一元二次方程有两不等实数根,则根的判不式△=b2﹣4ac >0,建立关于m的不等式,求出m的取值范畴.【解答】解:∵一元二次方程x2﹣x+m=0有两个不相等的实数根,∴△=1﹣4m>0,解得m<,故m的值可能是0,故答案为0.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判不式△=b2﹣4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.注意本题答案不唯独,只需满足m<即可.16.关于x的方程mx2+x﹣m+1=0,有以下三个结论:①当m=0时,方程只有一个实数解;②当m≠0时,方程有两个不等的实数解;③不管m 取何值,方程都有一个负数解,其中正确的是①③(填序号).【考点】根的判不式;一元一次方程的解.【专题】分类讨论.【分析】分不讨论m=0和m≠0时方程mx2+x﹣m+1=0根的情形,进而填空.【解答】解:当m=0时,x=﹣1,方程只有一个解,①正确;当m≠0时,方程mx2+x﹣m+1=0是一元二次方程,△=1﹣4m(1﹣m)=1﹣4m+4m2=(2m﹣1)2≥0,方程有两个实数解,②错误;把mx2+x﹣m+1=0分解为(x+1)(mx﹣m+1)=0,当x=﹣1时,m﹣1﹣m+1=0,即x=﹣1是方程mx2+x﹣m+1=0的根,③正确;故答案为①③.【点评】本题要紧考查了根的判不式以及一元一次方程的解的知识,解答本题的关键是把握根的判不式的意义以及分类讨论的思想.17.关于x的方程x2+2x﹣m=0有两个相等的实数根,则m=﹣1.【考点】根的判不式.【分析】按照方程有两个相等的实数根,判定出根的判不式为0,据此求出m的值即可.【解答】解:∵关于x的方程x2+2x﹣m=0有两个相等的实数根,∴△=0,∴22﹣4×1×(﹣m)=0,解得m=﹣1.故答案为;﹣1.【点评】本题考查了一元二次方程根的情形与判不式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.18.若关于x的一元二次方程ax2+3x﹣1=0有两个不相等的实数根,则a的取值范畴是a>﹣且a≠0.【考点】根的判不式;一元二次方程的定义.【分析】按照一元二次方程的定义及判不式的意义可得a≠0且△=b2﹣4ac=32﹣4×a×(﹣1)=9+4a>0,解不等式组即可求出a的取值范畴.【解答】解:∵关于x的一元二次方程ax2+3x﹣1=0有两个不相等的实数根,∴a≠0且△=b2﹣4ac=32﹣4×a×(﹣1)=9+4a>0,解得:a>﹣且a≠0.故答案为:a>﹣且a≠0.【点评】此题考查了根的判不式.一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.同时考查了一元二次方程的定义.19.关于x的一元二次方程x2﹣x+m=O没有实数根,则m的取值范畴是m>.【考点】根的判不式.【分析】按照方程没有实数根,得到根的判不式小于0列出关于m的不等式,求出不等式的解集即可得到m的范畴.【解答】解:按照方程没有实数根,得到△=b2﹣4ac=1﹣4m<0,解得:m>.故答案为:m>.【点评】此题考查了根的判不式,根的判不式大于0,方程有两个不相等的实数根;根的判不式等于0,方程有两个相等的实数根;根的判不式小于0,方程没有实数根.20.已知关于x的一元二次方程x2+2x+m=0有实数根,则m的取值范畴是m≤1.【考点】根的判不式.【专题】探究型.【分析】先按照一元二次方程x2+2x+m=0得出a、b、c的值,再按照方程有实数根列出关于m的不等式,求出m的取值范畴即可.【解答】解:由一元二次方程x2+2x+m=0可知a=1,b=2,c=m,∵方程有实数根,∴△=22﹣4m≥0,解得m≤1.故答案为:m≤1.【点评】本题考查的是一元二次方程根的判不式,按照题意列出关于m的不等式是解答此题的关键.21.关于x的一元二次方程ax2+bx+=0有两个相等的实数根,写出一组满足条件的实数a,b的值:a=4,b=2.【考点】根的判不式.【专题】开放型.【分析】由于关于x的一元二次方程ax2+bx+=0有两个相等的实数根,得到a=b2,找一组满足条件的数据即可.【解答】关于x的一元二次方程ax2+bx+=0有两个相等的实数根,∴△=b2﹣4×a=b2﹣a=0,∴a=b2,当b=2时,a=4,故b=2,a=4时满足条件.故答案为:4,2.【点评】本题要紧考查了一元二次方程根的判不式,熟练把握判不式的意义是解题的关键.22.已知关于x的方程x2﹣2x+a=0有两个实数根,则实数a的取值范畴是a≤1.【考点】根的判不式.【专题】运算题.【分析】由方程有两个实数根,得到根的判不式大于等于0,即可确定出a的范畴.【解答】解:∵方程x2﹣2x+a=0有两个实数根,∴△=4﹣4a≥0,解得:a≤1,故答案为:a≤1【点评】此题考查了根的判不式,熟练把握一元二次方程根的判不式与方程根的关系是解本题的关键.23.若一元二次方程(m﹣1)x2﹣4x﹣5=0没有实数根,则m的取值范畴是m<.【考点】根的判不式;一元二次方程的定义.【分析】据关于x的一元二次方程(m﹣1)x2﹣4x﹣5=0没有实数根,得出△=16﹣4(m﹣1)×(﹣5)<0,从而求出m的取值范畴.【解答】解:∵一元二次方程(m﹣1)x2﹣4x﹣5=0没有实数根,∴△=16﹣4(m﹣1)×(﹣5)<0,且m﹣1≠0,∴m<.故答案为:m<.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判不式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.24.关于x的一元二次方程x2+a=0没有实数根,则实数a的取值范畴是a>0.【考点】根的判不式.【专题】运算题.【分析】按照方程没有实数根,得到根的判不式小于0,求出a的范畴即可.【解答】解:∵方程x2+a=0没有实数根,∴△=﹣4a<0,解得:a>0,故答案为:a>0【点评】此题考查了根的判不式,熟练把握根的判不式的意义是解本题的关键.25.已知关于x的一元二次方程x2﹣2x﹣k=0有两个相等的实数根,则k值为﹣3.【考点】根的判不式.【分析】因为方程有两个相等的实数根,则△=(﹣2)2+4k=0,解关于k的方程即可.【解答】解:∵关于x的一元二次方程x2﹣2x﹣k=0有两个相等的实数根,∴△=0,即(﹣2)2﹣4×(﹣k)=12+4k=0,解得k=﹣3.故答案为:﹣3.【点评】本题考查了一元二次方程根的判不式,当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.三、解答题(共5小题)26.已知关于x的一元二次方程x2﹣4x+m=0.(1)若方程有实数根,求实数m的取值范畴;(2)若方程两实数根为x1,x2,且满足5x1+2x2=2,求实数m的值.【考点】根的判不式;根与系数的关系.【分析】(1)若一元二次方程有两实数根,则根的判不式△=b2﹣4ac ≥0,建立关于m的不等式,求出m的取值范畴;(2)按照根与系数的关系得到x1+x2=4,又5x1+2x2=2求出函数实数根,代入m=x1x2,即可得到结果.【解答】解:(1)∵方程有实数根,∴△=(﹣4)2﹣4m=16﹣4m≥0,∴m≤4;(2)∵x1+x2=4,∴5x1+2x2=2(x1+x2)+3x1=2×4+3x1=2,∴x1=﹣2,把x1=﹣2代入x2﹣4x+m=0得:(﹣2)2﹣4×(﹣2)+m=0,解得:m=﹣12.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判不式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程根与系数的关系.27.已知:关于x的方程x2+2mx+m2﹣1=0(1)不解方程,判不方程根的情形;(2)若方程有一个根为3,求m的值.【考点】根的判不式;一元二次方程的解.【分析】(1)找出方程a,b及c的值,运算出根的判不式的值,按照其值的正负即可作出判定;(2)将x=3代入已知方程中,列出关于系数m的新方程,通过解新方程即可求得m的值.【解答】解:(1)由题意得,a=1,b=2m,c=m2﹣1,∵△=b2﹣4ac=(2m)2﹣4×1×(m2﹣1)=4>0,∴方程x2+2mx+m2﹣1=0有两个不相等的实数根;(2)∵x2+2mx+m2﹣1=0有一个根是3,∴32+2m×3+m2﹣1=0,解得,m=﹣4或m=﹣2.【点评】此题考查了根的判不式,一元二次方程根的情形与判不式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.也考查了一元二次方程的解的定义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.即用那个数代替未知数所得式子仍旧成立.28.已知关于x的一元二次方程(x﹣3)(x﹣2)=|m|.(1)求证:关于任意实数m,方程总有两个不相等的实数根;(2)若方程的一个根是1,求m的值及方程的另一个根.【考点】根的判不式;一元二次方程的解;根与系数的关系.【分析】(1)要证明方程有两个不相等的实数根,即证明△>0即可;(2)将x=1代入方程(x﹣3)(x﹣2)=|m|,求出m的值,进而得出方程的解.【解答】(1)证明:∵(x﹣3)(x﹣2)=|m|,∴x2﹣5x+6﹣|m|=0,∵△=(﹣5)2﹣4(6﹣|m|)=1+4|m|,而|m|≥0,∴△>0,∴方程总有两个不相等的实数根;(2)解:∵方程的一个根是1,∴|m|=2,解得:m=±2,∴原方程为:x2﹣5x+4=0,解得:x1=1,x2=4.即m的值为±2,方程的另一个根是4.【点评】此题考查了根的判不式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.同时考查了一元二次方程的解的定义.29.已知关于x的一元二次方程mx2﹣(m+2)x+2=0.(1)证明:不论m为何值时,方程总有实数根;(2)m为何整数时,方程有两个不相等的正整数根.【考点】根的判不式;解一元二次方程-公式法.【专题】证明题.【分析】(1)求出方程根的判不式,利用配方法进行变形,按照平方的非负性证明即可;(2)利用一元二次方程求根公式求出方程的两个根,按照题意求出m 的值.【解答】(1)证明:△=(m+2)2﹣8m=m2﹣4m+4=(m﹣2)2,∵不论m为何值时,(m﹣2)2≥0,∴△≥0,∴方程总有实数根;(2)解:解方程得,x=,x1=,x2=1,∵方程有两个不相等的正整数根,∴m=1或2,m=2不合题意,∴m=1.【点评】本题考查的是一元二次方程根的判不式和求根公式的应用,把握一元二次方程根的情形与判不式△的关系:△>0⇔方程有两个不相等的实数根;△=0⇔方程有两个相等的实数根;△<0⇔方程没有实数根是解题的关键.30.已知关于x的一元二次方程mx2+mx+m﹣1=0有两个相等的实数根.(1)求m的值;(2)解原方程.【考点】根的判不式.【分析】(1)按照题意得到:△=0,由此列出关于m的方程并解答;(2)利用直截了当开平方法解方程.【解答】解:(1)∵关于x的一元二次方程mx2+mx+m﹣1=0有两个相等的实数根,∴△=m2﹣4×m×(m﹣1)=0,且m≠0,解得m=2;(2)由(1)知,m=2,则该方程为:x2+2x+1=0,即(x+1)2=0,解得x1=x2=﹣1.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判不式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.。
部编数学九年级上册专题21.2一元二次方程的解法【八大题型】(人教版)(解析版)含答案
![部编数学九年级上册专题21.2一元二次方程的解法【八大题型】(人教版)(解析版)含答案](https://img.taocdn.com/s3/m/2b87e2944128915f804d2b160b4e767f5bcf8045.png)
专题21.2 一元二次方程的解法【八大题型】【人教版】【题型1 用直接开平方法解一元二次方程】 (1)【题型2 用配方法解一元二次方程】 (2)【题型3 用公式法解一元二次方程】 (4)【题型4 用因式分解法解一元二次方程】 (5)【题型5 用指定方法解一元二次方程】 (6)【题型6 用适当的方法解一元二次方程】 (12)【题型7 用换元法解一元二次方程】 (14)【题型8 配方法的应用】 (17)【题型1 用直接开平方法解一元二次方程】【例1】(2022•建华区二模)解方程:−13(x ﹣2)2+34=0(开平方法).【分析】先把方程变形为(x ﹣2)2=94,再两边开方得到x ﹣2=±32,然后解两个一次方程即可.【解答】解:−13(x ﹣2)2+34=0,−13(x ﹣2)2=−34,(x ﹣2)2=94,x ﹣2=±32,所以x 1=72,x 2=12.【变式1-1】(2022•齐齐哈尔)解方程:(2x +3)2=(3x +2)2(开平方法).【分析】方程开方转化为一元一次方程,求出解即可.【解答】解:方程:(2x+3)2=(3x+2)2,开方得:2x+3=3x+2或2x+3=﹣3x﹣2,解得:x1=1,x2=﹣1.【变式1-2】(2021秋•徐汇区校级月考)解方程:4(x+1)2﹣9(x﹣2)2=0(开平方法).【分析】直接开方,再解一元一次方程即可.【解答】解:4(x+1)2=9(x﹣2)2,∴2(x+1)=±3(x﹣2),∴x1=8,x2=4 5.【变式1-3】(2022春•黄浦区校级期中)解关于x的方程:x2﹣3=1+ax2(a≠1)(开平方法).【分析】方程整理后,利用平方根定义开方即可求出解.【解答】解:方程整理得:(a﹣1)x2=﹣4,即x2=41−a,当1﹣a>0,即a<1时,x=当1﹣a<0,即a>1时,无解.来求出它的解,如果右边是一个负数,则判定此方程无实数解.【题型2 用配方法解一元二次方程】【例2】(2022春•淄川区期中)(1)请用配方法解方程2x2﹣6x+3=0;(2)请用配方法解一元二次方程ax2+bx+c=0(a≠0).【分析】(1)方程二次项系数化为1,常数项移到右边,两边加上一次项系数一半系数平方,利用完全平方公式变形,开方即可求出解;(2)方程二次项系数化为1,常数项移到右边,两边加上一次项系数一半系数平方,利用完全平方公式变形,开方即可求出解.【解答】解:(1)方程整理得:x 2﹣3x =−32,配方得:x 2﹣3x +94=94−32,即(x −32)2=34,开方得:x −32=解得:x 1=32+x 2=32−(2)方程整理得:x 2+b a x =−c a ,配方得:x 2+b a x +b 24a 2=b 24a 2−c a ,即(x +b 2a )2=b 2−4ac 4a 2,开方得:x +b 2a =解得:x 1=x 2=【变式2-1】(2022秋•松江区期末)用配方法解方程:x 2=4.【分析】两边都加上一次项系数一半的平方配成完全平方式后,再开方即可得.【解答】解:∵x 2=4,∴x 2﹣+5=4+5,即(x 2=9,∴x 3或x =−3,∴x 1=3x 2=﹣3+【变式2-2】(2022秋•伊川县期中)用配方法解方程:4x 2﹣8x ﹣7=0.【分析】根据配方法的步骤先把二次项系数化为1,再在等式左右两边同时加上一次项系数的一半的平方,然后开方即可.【解答】解:4x 2﹣8x ﹣7=0,4x 2﹣8x =7,x 2﹣2x =74,配方得x 2﹣2x +12=74+1,(x ﹣1)2=114,x ﹣1=x =∴x1=1x2=1【变式2-3】(2022秋•潢川县期末)解方程:2x2﹣5x+1=0(用配方法)【分析】将常数项移到右边后把二次项系数化为1,再两边配上一次项系数一半的平方求解可得.【解答】解:∵2x2﹣5x=﹣1,∴x2−52x=−12,∴x2−52x+2516=−12+2516,即(x−54)2=1716,则x−5 4 =∴x【题型3 用公式法解一元二次方程】【例3】(2022春•通州区校级月考)用公式法解方程:2a2﹣3=﹣4a.【分析】先把原方程化成一元二次方程的一般形式,再利用公式法进行计算即可解答.【解答】解:2a2﹣3=﹣4a,整理得:2a2+4a﹣3=0,∵Δ=42﹣4×2×(﹣3)=16+24=40,∴a=∴a1a2=【变式3-1】(2022秋•徐汇区校级月考)解方程:5x+2=(3x﹣1)(2x+2)(公式法).【分析】整理成一般式,先求出b2﹣4ac的值,再代入公式求出即可.【解答】解:方程整理得:6x2﹣x﹣4=0,∵a=6,b=﹣1,c=﹣4,∴b2﹣4ac=(﹣1)2﹣4×6×(﹣4)=97>0,∴x=∴x1x2=【变式3-2】(2022秋•金山区校级期中)用公式法解方程:x2﹣﹣3=0.【分析】先求出b2﹣4ac的值,再代入公式求出方程的解即可.【解答】解:x2﹣﹣3=0,∵a=1,b=﹣c=﹣3,∴Δ=b2﹣4ac=(﹣2﹣4×1×(﹣3)=20>0,∴x=∴x1=x2=【变式3-3】(2022•市中区二模)用公式法解一元二次方程:2x2﹣7x+6=0.【分析】方程利用公式法求出解即可.【解答】解:方程2x2﹣7x+6=0,这里a=2,b=﹣7,c=6,∵Δ=49﹣48=1>0,∴x=7±1 4,则x1=2,x2=1.5.转化为解两个一元一次方程,这种解一元二次方程的方法叫做因式分解法.【题型4 用因式分解法解一元二次方程】【例4】(2022秋•莲湖区期中)用因式分解法解方程:2(x﹣3)=3x(x﹣3).【分析】移项后,利用提公因式法将方程的左边因式分解,继而得出两个关于x的一元一次方程,再进一步求解即可.【解答】解:∵2(x﹣3)=3x(x﹣3),∴2(x﹣3)﹣3x(x﹣3)=0,则(x﹣3)(2﹣3x)=0,∴x﹣3=0或2﹣3x=0,解得x1=3,x2=2 3.【变式4-1】(2022秋•徐汇区校级月考)解方程:(4﹣3x)+(3x﹣4)2=0(因式分解法).【分析】利用提取公因式(4﹣3x),将左边因式分解,再进一步求解即可.【解答】解:∵(4﹣3x)+(3x﹣4)2=0,∴(4﹣3x)(5﹣3x)=0,则4﹣3x=0或5﹣3x=0,解得x1=43,x2=53.【变式4-2】(2022秋•长白县期中)用因式分解法解方程:(x+3)2=(1﹣2x)2.【分析】方程整理后,利用因式分解法求出解即可.【解答】解:方程整理得:(x+3)2﹣(1﹣2x)2=0,分解因式得:(x+3+1﹣2x)(x+3﹣1+2x)=0,即(4﹣x)(3x+2)=0,可得4﹣x=0或3x+2=0,解得:x1=4,x2=−2 3.【变式4-3】(2022秋•简阳市月考)用因式分解法解方程:x2+0【分析】利用因式分解法把方程化为x=0或x+=0,然后解一次方程即可.【解答】解:(x x+0,x=0或x+=0,所以x1=x2=【题型5 用指定方法解一元二次方程】【例5】(2022秋•兴平市校级月考)按规定的方法解下列方程:(1)(x+1)2﹣144=0(直接开平方法);(2)x2=8x+9(配方法);(3)2y2+7y+3=0(公式法);(4)3(x﹣2)2=x(x﹣2)(因式分解法).【分析】(1)移项,然后开平方即可求解;(2)首先移项,然后配方,利用直接开平方法即可求解;(3)利用公式法即可求解;(4)移项,然后利用因式分解法即可求解.【解答】解:(1)(x+1)2=144,则x+1=12或x+1=﹣12,解得:x1=﹣13,x2=11;(2)移项,得:x2﹣8x=9,配方,得x2﹣8x+16=25,则(x﹣4)2=25,即x﹣4=5或x﹣4=﹣5,解得:x1=9,x2=﹣1;(3)a=2,b=7,c=3,△=49﹣4×2×3=49﹣24=25>0.则x=−7±54,则x1=﹣3,x2=−1 2;(4)原式即3(x﹣2)2﹣x(x﹣2)=0,因式分解得:(x﹣2)【3(x﹣2)﹣x】=0,即(x﹣2)(2x﹣6)=0,则x﹣2=0或2x﹣6=0,解得:x1=2,x2=3.【变式5-1】(2022秋•宁县校级月考)用适当的方法解方程:(1)x(x﹣2)+x﹣2=0(用因式分解法)(2)x2﹣4x+3=0(用配方法解)(3)x2+5x+1=0(用公式法解)(4)(x﹣4)2=(5﹣2x)2(用直接开平方法)【分析】(1)先提取公因式(x﹣2)因式分解,再求解即可;(2)先利用完全平方公式配方,然后开平方求解即可;(3)写出a、b、c的值,然后利用求根公式法求解;(4)直接开平方求解即可.【解答】解:(1)因式分解得,(x﹣2)(x+1)=0,由此得,x﹣2=0,x+1=0,所以,x1=2,x2=﹣1;(2)配方得,x2﹣4x+4﹣4+3=0,即(x﹣2)2=1,所以,x﹣2=±1,所以,x1=3,x2=1;(3)a=1,b=5,c=1,Δ=b2﹣4ac=52﹣4×1×1=25﹣1=24,xx1x2=(4)开平方得,x﹣4=±(5﹣2x),所以,x﹣4=5﹣2x或x﹣4=2x﹣5,解得x1=3,x2=1.【变式5-2】(2022秋•简阳市月考)解下列方程(1)(2x﹣1)2=7(直接开平方法)(2)2x2﹣7x﹣4=0(用配方法)(3)2x2﹣10x=3(公式法)(4)(3x﹣4)2=(3﹣4x)2(因式分解法)(5)x2+=26(用换元法解)(6)(2x2+1)2﹣2x2﹣3=0(用换元法解)【分析】(1)用直接开平方法求解就可以了;(2)先将常数项移到等号的右边,再将二次项系数化为1,然后配方为完全平方公式后直接用开平方法求解就可以;(3)先化为一般形式,然后确定a、b、c的值,最后代入求根公式求解就可以了;(4)先移项,然后用平方差公式分解因式就可以求出结论;(5a,将原方程变形为a2﹣a=30,再解一个关于a的一元二次方程求解;(6)将原方程变形为:(2x2+1)2﹣(2x2+1)﹣2=0,再设2x2+1=a,就可以变为a2﹣a﹣2=0,最后可以运用因式分解法求解.【解答】解:(1)开平方,得2x﹣1=∴x1x2(2)移项,得2x2﹣7x=4,化二次项的系数为1,得x2−72x=2,配方,得x2−72x+4916=2+4916,(x−74)2=8116开平方,得x−74=±94,∴x1=4,x2=−1 2;(3)移项,得2x2﹣10x﹣3=0,∴a=2,b=﹣10,c=﹣3,∴△=100+24=124>0,∴x∴x1x2=(4)移项,得(3x﹣4)2﹣(3﹣4x)2=0分解因式,得(3x﹣4+3﹣4x)(3x﹣4﹣3+4x)=0,∴﹣x﹣1=0或7x﹣7=0,∴x1=﹣1,x2=1;(5)原方程变形为:x2+30,a,将原方程变形为:a2﹣a=30,移项,得a2﹣a﹣30=0,因式分解,得(a+5)(a﹣6)=0,∴a+5=0或a﹣6=0,∴a1=﹣5(舍去),a2=6,6,解得:x=经检验,x=(6)原方程变形为:(2x2+1)2﹣(2x2+1)﹣2=0,设2x2+1=a,则原方程变为:a2﹣a﹣2=0,解得:a1=﹣1,a2=2,当a=﹣1时,2x2+1=﹣1,Δ<0,原方程无解,当a=2时,2x2+1=2,解得:x=【变式5-3】(2022秋•恩阳区月考)解方程:①x2+x+=0(因式分解法)②5x2+2x﹣1=0(公式法)③y 2+6y +2=0(配方法)④9(x ﹣2)2=121(x +1)2(直接开平方法)⑤x 1x 2−2x 2x 1=1(换元法)⑥(x 2﹣x )2﹣5(x 2﹣x )+6=0(适当方法)【分析】①根据方程特点,采用因式分解法解答.②根据方程的系数特点,应准确确定各个项系数,利用求根公式求得.③可以先移项,然后利用配方法解答.④利用直接开平方法解答;⑤移项整理,利用换元法求得未知数的解即可.⑥利用换元法解答.【解答】解:①x 2+x +0,(x x +0,∴x +=0或x +=0,∴x 1=x 2=②5x 2+2x ﹣1=0,a =5,b =2,c =﹣1,Δ=b 2﹣4ac =4+20=24,x所以x 1=x 2③y 2+6y +2=0,y 2+6y =﹣2,y 2+6y +9=﹣2+9,即(y +3)2=7,∴y +3∴y 1=﹣3+y 2=﹣3④9(x ﹣2)2=121(x +1)2,3(x ﹣2)=±11(x +1),∴3(x ﹣2)=11(x +1)或3(x ﹣2)=﹣11(x +1),∴x 1=−178,x 2=−514;⑤x 1x 2−2x 2x 1=1,x 1x 2−2x 2x 1−1=0,设y =x 1x 2,则原方程为y −2y −1=0,y 2﹣y ﹣2=0,解得:y =﹣1,或y =2,当y =﹣1,x 1x 2=−1,此方程无解;当y =2,x 1x 2=2,解得:x 1=1,x 2=−12,经检验,x 1=1,x 2=−12是原分式方程的解,所以原方程的解为x 1=1,x 2=−12.⑥(x 2﹣x )2﹣5(x 2﹣x )+6=0,设y =x 2﹣x ,则原方程为y 2﹣5y +6=0,解得:y =3,或y =2,当y =3,x 2﹣x =3,x 1=x 2=当y =2,x 2﹣x =2,解得:x 3=2,x 4=﹣1;所以原方程的解为x 1x 2x 3=2,x 4=﹣1.【题型6 用适当的方法解一元二次方程】【例6】(2022春•富阳区校级期中)用适当的方法解下列一元二次方程:(1)(x +4)2﹣5(x +4)=0;(2)x 2﹣2x ﹣15=0.【分析】(1)等式左边可提取公因式(x +4),转化为(x +4)(x ﹣1)=0求解;(2)根据十字相乘法可将方程变形为(x +3)(x ﹣5)=0,由此可得同解方程x +3=0或x ﹣5=0,据此求解.【解答】解:(1)(x +4)2﹣5(x +4)=0,将方程变形,得(x+4)(x﹣1)=0,即x+4=0,x﹣1=0,解得:x1=﹣4,x2=1.(2)x2﹣2x﹣15=0,将方程变形,得(x+3)(x﹣5)=0,则x+3=0或x﹣5=0,解得x1=﹣3,x2=5.【变式6-1】(2022春•大观区校级期中)用适当的方法解方程(1)x2﹣x﹣1=0;(2)(x+1)2﹣3(x+1)=0.【分析】(1)利用公式法解方程;(2)利用因式分解法解方程.【解答】解:(1)Δ=(﹣1)2﹣4×(﹣1)=5>0,x所以x1=x2=(2)(x+1)2﹣3(x+1)=0.(x+1)(x+1﹣3)=0,x+1=0或x+1﹣3=0,所以x1=﹣1,x2=2.【变式6-2】(2022春•萧山区期中)用适当的方法解下列方程:(1)x2﹣x﹣6=0;(2)4(x﹣1)2=9(x﹣5)2.【分析】(1)利用十字相乘法将方程的左边因式分解,继而得出两个关于x的一元一次方程,再进一步求解即可;(2)先移项,再利用公式法将方程的左边因式分解,继而得出两个关于x的一元一次方程,再进一步求解即可.【解答】解:(1)∵x2﹣x﹣6=0,∴(x﹣3)(x+2)=0,则x ﹣3=0或x +2=0,解得x 1=3,x 2=﹣2;(2)∵4(x ﹣1)2=9(x ﹣5)2,∴4(x ﹣1)2﹣9(x ﹣5)2=0,∴[2(x ﹣1)+3(x ﹣5)][2(x ﹣1)﹣3(x ﹣5)]=0,则2(x ﹣1)+3(x ﹣5)=0或2(x ﹣1)﹣3(x ﹣5)=0,解得x 1=13,x 2=175.【变式6-3】(2022春•柯桥区期中)选用适当的方法解下列方程.(1)2x (x ﹣1)=3(x ﹣1);(2)12x 2﹣5=0.【分析】(1)方程移项后,利用因式分解法求出解即可;(2)方程整理后,利用配方法求出解即可.【解答】解:(1)方程移项得:2x (x ﹣1)﹣3(x ﹣1)=0,分解因式得:(x ﹣1)(2x ﹣3)=0,所以x ﹣1=0或2x ﹣3=0,解得:x 1=1,x 2=32;(2)方程整理得:x 2=10,配方得:x 2+8=18,即(x 2=18,开方得:x =解得:x 1=x 2=﹣【题型7 用换元法解一元二次方程】【例7】(2022秋•安居区期末)为解方程(x 2﹣1)2﹣5(x 2﹣1)+4=0,我们可以将x 2﹣1视为一个整体,然后设x 2﹣1=y ,则原方程可化为y 2﹣5y +4=0,解此方程得y 1=1,y 2=4.当y =1时,x 2﹣1=1,所以x =±当y =4时,x 2﹣1=4,所以x =±所以原方程的根为x 1=x 2=x 3x 4=以上解方程的方法叫做换元法,利用换元法达到了降次的目的,体现了数学的转化思想.运用上述方法解下列方程:(1)(x2﹣x)(x2﹣x﹣4)=﹣4;(2)x4+x2﹣12=0.【分析】(1)设x2﹣x=a,原方程可化为a2﹣4a+4=0,求出a的值,再代入x2﹣x=a求出x即可;(2)设x2=y,原方程化为y2+y﹣12=0,求出y,再把y的值代入x2=y求出x即可.【解答】解:(1)(x2﹣x)(x2﹣x﹣4)=﹣4,设x2﹣x=a,则原方程可化为a2﹣4a+4=0,解此方程得:a1=a2=2,当a=2时,x2﹣x=2,即x2﹣x﹣2=0,因式分解得:(x﹣2)(x+1)=0,解得:x1=2,x2=﹣1,所以原方程的解是x1=2,x2=﹣1;(2)x4+x2﹣12=0,设x2=y,则原方程化为y2+y﹣12=0,因式分解,得(y﹣3)(y+4)=0,解得:y1=3,y2=﹣4,当y=3时,x2=3,解得:x=±当y=﹣4时,x2=﹣4,无实数根,所以原方程的解是x1=x2=【变式7-1】(2021春•龙口市月考)阅读下面材料:方程x4﹣6x2+8=0是一个一元四次方程,根据该方程的特点,它的解法通常是设x2=y,则x4=y2,∴原方程可化为y2﹣6y+8=0,解方程求得y的值,进而得到原方程的四个根x1=x2=x3=2,x4=﹣2.以上方法叫做换元法,通过换元达到降次的目的,体现了数学的转化思想,运用上述方法解答下列问题.(1)解方程2(x2+3x)2﹣3(x2+3x)﹣2=0;(2)已知实数a满足(a2+2﹣3a2=2的值.【分析】(1)先设y=x2+3x,则原方程变形为2y2﹣3y﹣2=0,运用因式分解法解得y1=2,y2=−1 2,再把y=2和−12分别代入y=x2+3x得到关于x的一元二次方程,然后解两个一元二次方程,最后确定原方程的解;(2)设y =a 2y 2﹣3y ﹣10=0,运用因式分解法解得y 1=﹣2,y 2=5,再把y =5代y =a 2得到a 2+5,即可求得a 2=52的值.【解答】解:(1)设y =x 2+3x ,则2y 2﹣3y ﹣2=0,则(y ﹣2)(2y +1)=0,解得y 1=2,y 2=−12,当x 2+3x =2,即x 2+3x ﹣2=0时,解得x =当x 2+3x =−12,即x 2+3x +12=0时,解得x =综上所述,原方程的解为x 1=x 2x 3x 4=(2)(a 2+2﹣3a 2=a 22﹣3(a 2﹣10=0,设y =a 2+y 2﹣3y ﹣10=0,则(y +2)(y ﹣5)=0,解得y 1=﹣2,y 2=5,当y =﹣2时,则a 2+=−2,无意义,舍去;当y =5时,则a 2+5,得到a 2=5∴2=53﹣故2的值为3﹣【变式7-2】(2022秋•邵东市期末)请你先认真阅读下列材料,再参照例子解答问题:已知(x +y ﹣3)(x +y +4)=﹣10,求x +y 的值.解:设t =x +y ,则原方程变形为(t ﹣3)(t +4)=﹣10,即t 2+t ﹣2=0∴(t +2)(t ﹣1)=0得t 1=﹣2,t 2=1∴x +y =﹣2或x +y =1已知(x 2+y 2﹣4)(x 2+y 2+2)=7,求x 2+y 2的值.【分析】根据举例进行解答即可.【解答】解:设t =x 2+y 2>0∴(t ﹣4)(t +2)=7t 2﹣2t ﹣15=0,解得:t 1=5,t 2=﹣3(舍去)∴x 2+y 2=5.【变式7-3】(2022秋•甘井子区月考)【例】解方程(x ﹣1)2﹣5(x ﹣1)+4=0.解:设x ﹣1=y ,则原方程可化为y 2﹣5y +4=0.解得y 1=1,y 2=4.当y =1时,即x ﹣1=1,解得x =2;当y =4时,即x ﹣1=4,解得x =5.所以原方程的解为x 1=2,x 2=5.上述解法称为“整体换元法”.(1)请运用“整体换元法”解方程:(2x ﹣5)2﹣(2x ﹣5)﹣2=0;(2)已知x 2﹣xy ﹣y 2=0,求x y 的值.【分析】(1)先设y =2x ﹣5,则原方程变形为y 2﹣y ﹣2=0,运用因式分解法解得y 1=2,y 2=﹣1,再把y =2和﹣1分别代y =2x ﹣5得到关于x 的一元二次方程,然后解两个一元二次方程,最后确定原方程的解;(2)x 2﹣xy ﹣y 2=0,方程两边同时除以y 2,可得x 2−xy−y 2y 2=0,设x y =m ,方程可化为m 2﹣m ﹣1=0,类似(1)的减法可得x y 的值.【解答】解:(1)设y =2x ﹣5,则原方程变形为y 2﹣y ﹣2=0,解得y 1=2,y 2=﹣1,当y =2时,即2x ﹣5=2,解得x =3.5;当y =﹣1时,2x ﹣5=﹣1,解得x =2.所以原方程的解为x 1=3.5,x 2=2;(2)x 2﹣xy ﹣y 2=0,方程两边同时除以y 2,得x 2−xy−y 2y 2=0,设x y =m ,方程可化为m 2﹣m ﹣1=0,解得m 1m 2∴x y 的值为【题型8 配方法的应用】【例8】(2022秋•饶平县期末)已知a ,b ,c 满足a 2+2b =7,b 2﹣2c =﹣1,c 2﹣6a =﹣17,则a +b ﹣c 的值为( )A.1B.﹣5C.﹣6D.﹣7【分析】题目中的式子相加,然后利用配方法变形为完全平方的形式,再利用非负数的性质即可求得所求式子的值.【解答】解:∵a2+2b=7,b2﹣2c=﹣1,c2﹣6a=﹣17,∴(a2+2b)+(b2﹣2c)+(c2﹣6a)=7+(﹣1)+(﹣17),∴a2+2b+b2﹣2c+c2﹣6a=﹣11,∴(a2﹣6a+9)+(b2+2b+1)+(c2﹣2c+1)=0,∴(a﹣3)2+(b+1)2+(c﹣1)2=0,∴a﹣3=0,b+1=0,c﹣1=0,解得,a=3,b=﹣1,c=1,∴a+b﹣c=3﹣1﹣1=1.故选:A.【变式8-1】(2022•武汉模拟)若实数a,b,x满足a﹣b=2,a2﹣b2=﹣4x,则多项式a2+ab﹣b2的值可能为( )A.﹣5B.﹣6C.﹣7D.﹣8【分析】将多项式a2+ab﹣b2进行变形,利用配方法可得(b+3)2﹣5,再根据偶次方的非负数性质解答即可.【解答】解:∵a﹣b=2,∴a=b+2,∴a2+ab﹣b2=(b+2)2+b(a﹣b)=b2+4b+4+2b=b2+6b+4=(b+3)2﹣5,∴a2+ab﹣b2的最小值是﹣5.故选:A.【变式8-2】(2022春•仪陇县校级月考)已知a+b+c+3=+则a+b+c的值是 .【分析】先将条件配方成)2)2)2=0,根据完全平方式的非负性求出a、b和c的值即可.【解答】解:∵a+b+c+3=++∴+++1=0,即)2)2)2=0,1=0=0=0,解得a=1,b=5,c=3.∴a+b+c=1+5+3=9.故答案为:9.【变式8-3】(2022春•临湘市期中)阅读材料例:求代数式2x2+4x﹣6的最小值.解:2x2+4x﹣6=2(x2+2x﹣3)=2(x+1)2﹣8.可知当x=﹣1时,2x2+4x﹣6有最小值,最小值是﹣8.根据上面的方法解决下列问题:(1)m2﹣4m﹣5最小值是 .(2)多项式a2+b2﹣4a+6b+18最小值可以是 .【分析】(1)将多项式加4再减4,利用配方法后可得结论;(2)将多项式重新分组,改写成(a2﹣4a+4)+(b2+6b+9)+5,配方后可得结论.【解答】解:(1)∵m2﹣4m﹣5=m2﹣4m+4﹣9=(m﹣2)2﹣9,∴当m=2时,m2﹣4m﹣5有最小值,最小值是﹣9.故答案为:﹣9;(2)∵a2+b2﹣4a+6b+18=(a2﹣4a+4)+(b2+6b+9)+5=(a﹣2)2+(b+3)2+5,∴当a=2,b=﹣3时,多项式a2+b2﹣4a+6b+18有最小值,最小值是5.故答案为:5.。
九年级数学人教版(上册)21.2.2公式法解一元二次方程
![九年级数学人教版(上册)21.2.2公式法解一元二次方程](https://img.taocdn.com/s3/m/b12598e0fc0a79563c1ec5da50e2524de418d010.png)
即
b
b2 4ac
x
2a
2a
特别提醒
b b2 4ac x
2a
一元二次方程 的求根公式
x1 b
b2 2a
4ac
,
x2
b
b2 4ac .
2a
由上可知,一元二次方程 ax2 bx c 0 (a 0).
b
x1
x2
; 2a
(3)当 b2 4ac 0 时,没有实数根。
用公式法解一元二次方程的一般步骤:
1、把方程化成一般形式,并写出 a、b、c 的值。
2、求出 b2 4ac 的值,
注意:当 b2 4ac 0 时,方程无解。 3、代入求根公式: x b b2 4ac
2a
4、写出方程的解: x1、x2
师生互动 巩固新知
1 3x2 6x 2 0
解: a 3,b 6, c 2.
b2 4ac 62 4 3 2 60.
x 6 60 6 2 15 3 15 ,
6
6
3
x1
3 3
15
,
x2
3 15 3
.
2 4x2 6x 0
解: a 4,b 6, c 0.
b2 4ac 62 4 4 0 36.
x 6 36 6 6 ,
24
8
x1
0,
x2
3. 2
3 x2 4x 8 4x 11
解:化为一般式 x2 3 0 . a 1,b 0, c 3.
b2 4ac 02 41 3 12.
x 0 12 2 3 ,
21
2
x1 3 x2 3
人教版九年级数学上册第二十二单元降次--一元二次方程的解法同步练习2带答案
![人教版九年级数学上册第二十二单元降次--一元二次方程的解法同步练习2带答案](https://img.taocdn.com/s3/m/931dc8c7a32d7375a5178028.png)
人教版九年级数学上册第二十二单元《降次--一元二次方程的解法》同步练习2带答案◆随堂检测一、关于x 的方程0232=+-x ax 是一元二次方程,那么( )A 、0>aB 、0≠aC 、1=aD 、0≥a二、用配方式解以下方程,其中应在左右两边同时加上4的是( )A 、522=-x xB 、5422=-x xC 、542=+x xD 、522=+x x3、方程x x x =-)1(的根是( )A 、2=xB 、2-=xC 、0,221=-=x xD 、0,221==x x4、已知2是一元二次方程240x x c -+=的一个根,那么方程的另一个根是______________.五、用适当的方式解以下方程:(1)0672=+-x x ;(2))15(3)15(2-=-x x ;(3)0362=+-x x ;(4)22510x x --=.◆典例分析 解方程022=--x x .分析:此题是含有绝对值的方程,能够转化为一元二次方程求解.转化的方式能够不同,请同窗们注意转化的技术.解法一:分类讨论(1)当0≥x 时,原方程化为022=--x x , 解得:,21=x 12-=x (不合题意,舍去)(2)当0<x 时,原方程化为022=-+x x解得:21-=x ,12=x (不合题意,舍去)∴原方程的解为2,221-==x x .解法二:化归换元 原方程022=--x x 可化为220x x --=, 令y x =,那么220y y --=(0y ≥),解得12,y =21y =-(舍去),当12y =时,2x =,∴2x =±,∴原方程的解为2,221-==x x .◆课下作业●拓展提高一、方程062=--x x 的解是__________________.二、已知1x =-是关于x 的方程2220x ax a +-=的一个根,那么a =_______. 3、1二、写出一个两实数根符号相反的一元二次方程:_________________.4、今世数式532++x x 的值为7时,代数式2932-+x x 的值为( )A 、4B 、2C 、-2D 、-4五、已知x 是一元二次方程2310x x +-=的实数根,求代数式235(2)362x x x x x -÷+---的值.六、阅读材料,解答问题: 材料:为解方程222(1)5(1)40x x ---+=,咱们能够视2(1)x -为一个整体. 然后设21x y -=,原方程可化为2540y y -+=①.解得121,4y y ==.当11y =时,211x -=,即22x =,∴x =当24y =时,214x -=,即25x =,∴x =∴原方程的解为1234x x x x ====解答问题:(1)填空:在由原方程取得①的进程中利用_______法,达到了降次的目的,表现了_______的数学思想.(2)解方程4260x x --=. ●体验中考一、(2020年山西)请你写出一个有一根为1的一元二次方程: .二、(2020年湖北襄樊)如图,在ABCD 中,AE BC ⊥于E ,AE EB EC a ===,且a是一元二次方程2230x x +-=的根,那么ABCD 的周长为( )A .4+.12+.2+ D .212+3、(2020年,凉山)已知反比例函数ab y x =,当0x >时,y 随x 的增大而增大,那么关于x 的方程220ax x b -+=的根的情形是( )A .有两个正根B .有两个负根C .有一个正根一个负根D .没有实数根(提示:此题综合了反比例函数和一元二次方程根与系数的关系两个重要的知识点,请认真试探,细心解答.)4、(2020年,齐齐哈尔)三角形的每条边的长都是方程2680x x --=的根,那么三角形的周长是_________________.(点拨:此题综合考查了一元二次方程的解法和三角形的有关知识,专门要注意应用三角形任意两边之和大于第三边那个定理.)参考答案:◆随堂检测一、B. 依据一元二次方程的概念可得.二、C.3、D. 注意不能在等式两边同除以含有未知数的式子.此题用因式分解法好.4、2+依据一元二次方程根与系数的关系可得224x =∴方程的另一个根是22x =.五、解:(1)用因式分解法解0672=+-x x 得:121,6x x ==;(2)用因式分解法解)15(3)15(2-=-x x 得:1214,55x x ==; (3)用配方式解0362=+-x x 得:1233x x ==(4)用公式法解22510x x --=得:125544x x +==. ◆课下作业●拓展提高一、123,2x x ==-. 选用因式分解法较好. A DC EB二、2-或1 将1x =-代入方程2220x ax a +-=得:220a a +-=,解得122,1a a =-=.3、答案不唯一:如2230x x +-=.4、A. 当2357x x ++=时,即232x x +=,∴代数式223923(3)23224x x x x +-=+-=⨯-=.应选A.五、解:∵2310x x +-=,∴231x x +=. 化简:223539(2)3623(2)2x x x x x x x x x x ---÷+-=÷---- 3213(2)(3)(3)3(3)x x x x x x x x --=⨯=-+-+∵∵∴ 21113(3)313x x ===+⨯, ∴代数式235(2)362x x x x x -÷+---的值是13. 六、解:(1)换元法,转化.(2)设2x y =,原方程可化为260y y --=①.解得123,2y y ==-.当13y =时,即23x =,∴x =当22y =-时,22x =-无解.∴原方程的解为12x x ==●体验中考一、答案不唯一,如21x = 二、A.解析:此题考查平行四边形及一元二次方程的有关知识,∵a 是一元二次方程2230x x +-=的根,∴1a =,∴AE=EB=EC=1,∴AB=,BC=2,∴ABCD 的周长为4+A 。
21.2 降次——解一元二次方程(3)
![21.2 降次——解一元二次方程(3)](https://img.taocdn.com/s3/m/eb63d33e0a1c59eef8c75fbfc77da26925c596fd.png)
21.2 降次——解一元二次方程(3)
学习目标
1.知道一元二次方程根的判别式的概念.
2.会用判别式判断一元二次方程的根的情况
及根据一元二次方程的根的情况确定字母的取
值范围.(重点)
3.经历求根公式的推导过程并会用公式法解
简单的一元二次方程.(难点)
情景引入
老师写了4个一元二次方程让同学们判断
为一般形式
Δ = b2 − 4ac = 0
有两个相等的实数根
ax2+bx+c=0
Δ = b2 − 4ac < 0
没有实数根
例2 若关于 x 的一元二次方程 ( − 1)x2 − 2x +3 = 0 有
两个不等的实数根,则 的取值范围是 ( B )
A. m
C. m
4
>
3
4
<
3
B. m <
4
3
D. m>
典例分析
例3 用公式法解下列方程:
x2 − 4x − 7 = 0.
解:∵ = 1, = −4, = −7.
则 ∆= 2 − 4 = (−4)2 −4 × 1 × (−7) = 44 > 0
∴原方程有两个不相等的实数根.
∴ =
−± ∆
2
=
−(−4)± 44
2
= 2 ± 11
两个不等
方程有________的实数根;
当 b2-4ac = 0 时,
方程有________的实数根;
两个相等
当 b2-4ac < 0 时,
无实数根
方程_________.
布置作业
见精准作业单!
《21.2降次——解一元二次方程》同步练习含答案解析
![《21.2降次——解一元二次方程》同步练习含答案解析](https://img.taocdn.com/s3/m/2cb9c7e83186bceb19e8bbbf.png)
பைடு நூலகம்
二、填空题(共 12小题) 14.若关于 x 的一元二次方程 x2﹣3x+m=0 有两个相等的实数根,则 m=______. 15.若关于 x 的一元二次方程 x2﹣x+m=0 有两个不相等的实数根,则 m 的值可能是______(写出一 个即可). 16.关于 x 的方程 mx2+x﹣m+1=0,有以下三个结论:①当 m=0时,方程只有一个实数解;②当 m≠ 0 时,方程有两个不等的实数解;③无论 m 取何值,方程都有一个负数解,其中正确的是______ (填序号). 17.关于 x 的方程 x2+2x﹣m=0 有两个相等的实数根,则 m=______. 18.若关于 x 的一元二次方程 ax2+3x﹣1=0 有两个不相等的实数根,则 a 的取值范围是______. 19.关于 x 的一元二次方程 x2﹣x+m=O 没有实数根,则 m 的取值范围是______. 20.已知关于 x 的一元二次方程 x2+2x+m=0有实数根,则 m 的取值范围是______. 21.关于 x 的一元二次方程 ax2+bx+ =0有两个相等的实数根,写出一组满足条件的实数 a,b 的
初中数学降次解一元二次方程的计算题及答案
![初中数学降次解一元二次方程的计算题及答案](https://img.taocdn.com/s3/m/ec30f69d6429647d27284b73f242336c1eb93003.png)
初中数学降次解一元二次方程的计算题及答案篇一:九年级数学降次解一元二次方程同步测试降次——解一元二次方程习题精选直接开平方法1.如果(x-2)=9,则x=.2.方程(2y-1)-4=0的根是.3.方程(x+m)=72有解的条件是.4.方程3(4x-1)=48的解是.因式分解法9.方程(x+1)=x+1的正确解法是( )A.化为x+1=0B.x+1=1C.化为(x+1)(x+l-1)=0D.化为x+3x+2=010.方程9(x+1)-4(x-1)=0正确解法是( )A.直接开方得3(x+1)=2(x-1)B.化为一般形式13x2+5=0C.分解因式得[3(x+1)+2(x-1)][3(x+1)-2(x—1)]=0D.直接得x+1=0或x-l=011.(1)方程x(x+2)=2(x+2)的根是.(2)方程x-2x-3=0的根是.12.如果a-5ab-14b=0,则公式法13.一元二次方程ax+bx+c=0(a≠0)的求根公式是,其中b—4ac.14.方程(2x+1)(x+2)=6化为一般形式是,b—4ac ,用求根公式求得222222222222222a?3b= .5bx1=,x2=,x1+x2=,x1x2?,15.用公式法解下列方程.(1)(x+1)(x+3)=6x+4.(2)x2?1)x??0.(3) x-(2m+1)x+m=0.216.已知x-7xy+12y=0(y≠0)求x:y的值.综合题17.三角形两边的长是3,8,第三边是方程x—17x+66=0的根,求此三角形的周长.18.关于x的二次三项式:x+2rnx+4-m是一个完全平方式,求m的值.19.利用配方求2x-x+2的最小值.20.x+ax+6分解因式的结果是(x-1)(x+2),则方程x+ax+b =0的二根分别是什么?21.a是方程x-3x+1=0的根,试求的值.22.m是非负整数,方程mx-(3m—8m)x+2m-13m+15=0至少有一个整数根,求m的值.23.利用配方法证明代数式-10x+7x-4的值恒小于0.由上述结论,你能否写出三个二次三项式,其值恒大于0,且二次项系数分别是l、2、3.24.解方程(1)(x+x)·(x+x-2)=24;(2)x?x?6?025.方程x2-6x-k=1与x-kx-7=0有相同的根,求k 值及相同的根.26.张先生将进价为40元的商品以50元出售时,能卖500个,若每涨价1元,就少卖10个,为了赚8 000元利润,售价应为多少?这时,应进货多少?27.两个不同的一元二次方程x+ax+b=0与x+ax+a=0只有一个公共根,则( )A.a=bB.a-b=lC.a+b=-1D.非上述答案28.在一个50米长30米宽的矩形荒地上设计改造为花园,使花园面积恰为原荒地面积的寺,试给出你的设计.29.海洲市出租车收费标准如下22222222222222222222(规定:四舍五入,精确到元,N≤15)N是走步价,李先生乘坐出租车打出的电子收费单是:里程11公里,应收29.1元,你能依据以上信息,推算出起步价N的值吗?30.方程(x-1)(x+2)(x-3)=0的根是.31.一元二次方程x—2x=0的解是( )A.0 B.2 C.0,-2 D.0,232.方程x+kx—6=0的一根是2,试求另一个根及k的值.33.方程(m?2)xm22?3mx?1?0是一元二次方程,则这方程的根是什么? 34.x1、x2是方程2x—3x—6=0的二根,求过A(x1+x2,0)B(0,xl·x2)两点的直线解析式.35.a、b、c都是实数,满足(2?a)c?c?8?0,ax+bx+c=0,求代数222式x+2x+1的值.2a?b?8??36.a、b、c满足方程组求方程?的解。
2019年《21.2降次——解一元二次方程》同步练习含答案解析
![2019年《21.2降次——解一元二次方程》同步练习含答案解析](https://img.taocdn.com/s3/m/48739d7d2e3f5727a5e96272.png)
《21.2 降次——解一元二次方程》一、选择题(共13小题)1.一元二次方程x2﹣4x+5=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.只有一个实数根D.没有实数根2.下列关于x的方程有实数根的是()A.x2﹣x+1=0 B.x2+x+1=0 C.(x﹣1)(x+2)=0 D.(x﹣1)2+1=03.关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围为()A.B.C.D.4.有两个一元二次方程M:ax2+bx+c=0;N:cx2+bx+a=0,其中a•c≠0,a≠c.下列四个结论中,错误的是()A.如果方程M有两个相等的实数根,那么方程N也有两个相等的实数根B.如果方程M的两根符号相同,那么方程N的两根符号也相同C.如果5是方程M的一个根,那么是方程N的一个根D.如果方程M和方程N有一个相同的根,那么这个根必是x=15.方程x2﹣2x+3=0的根的情况是()A.有两个相等的实数根B.只有一个实数根C.没有实数根D.有两个不相等的实数根6.一元二次方程4x2+1=4x的根的情况是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根7.已知一元二次方程2x2﹣5x+3=0,则该方程根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.两个根都是自然数 D.无实数根8.若一元二次方程x2+2x+a=0的有实数解,则a的取值范围是()A.a<1 B.a≤4 C.a≤1 D.a≥19.下列一元二次方程中,有两个相等实数根的是()A.x2﹣8=0 B.2x2﹣4x+3=0 C.9x2+6x+1=0 D.5x+2=3x210.一元二次方程2x2+3x+1=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C .没有实数根D .无法确定11.下列一元二次方程有两个相等实数根的是( ) A .x 2﹣2x+1=0B .2x 2﹣x+1=0C .4x 2﹣2x ﹣3=0D .x 2﹣6x=012.若a 满足不等式组,则关于x 的方程(a ﹣2)x 2﹣(2a ﹣1)x+a+=0的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .以上三种情况都有可能 13.下列方程中,没有实数根的是( ) A .x 2﹣4x+4=0 B .x 2﹣2x+5=0 C .x 2﹣2x=0 D .x 2﹣2x ﹣3=0二、填空题(共12小题)14.若关于x 的一元二次方程x 2﹣3x+m=0有两个相等的实数根,则m=______.15.若关于x 的一元二次方程x 2﹣x+m=0有两个不相等的实数根,则m 的值可能是______(写出一个即可). 16.关于x 的方程mx 2+x ﹣m+1=0,有以下三个结论:①当m=0时,方程只有一个实数解;②当m ≠0时,方程有两个不等的实数解;③无论m 取何值,方程都有一个负数解,其中正确的是______(填序号). 17.关于x 的方程x 2+2x ﹣m=0有两个相等的实数根,则m=______.18.若关于x 的一元二次方程ax 2+3x ﹣1=0有两个不相等的实数根,则a 的取值范围是______. 19.关于x 的一元二次方程x 2﹣x+m=O 没有实数根,则m 的取值范围是______. 20.已知关于x 的一元二次方程x 2+2x+m=0有实数根,则m 的取值范围是______.21.关于x 的一元二次方程ax 2+bx+=0有两个相等的实数根,写出一组满足条件的实数a ,b 的值:a=______,b=______.22.已知关于x 的方程x 2﹣2x+a=0有两个实数根,则实数a 的取值范围是______. 23.若一元二次方程(m ﹣1)x 2﹣4x ﹣5=0没有实数根,则m 的取值范围是______. 24.关于x 的一元二次方程x 2+a=0没有实数根,则实数a 的取值范围是______.25.已知关于x 的一元二次方程x 2﹣2x ﹣k=0有两个相等的实数根,则k 值为______.三、解答题(共5小题)26.已知关于x 的一元二次方程x 2﹣4x+m=0. (1)若方程有实数根,求实数m 的取值范围;(2)若方程两实数根为x 1,x 2,且满足5x 1+2x 2=2,求实数m 的值.27.已知:关于x的方程x2+2mx+m2﹣1=0(1)不解方程,判别方程根的情况;(2)若方程有一个根为3,求m的值.28.已知关于x的一元二次方程(x﹣3)(x﹣2)=|m|.(1)求证:对于任意实数m,方程总有两个不相等的实数根;(2)若方程的一个根是1,求m的值及方程的另一个根.29.已知关于x的一元二次方程mx2﹣(m+2)x+2=0.(1)证明:不论m为何值时,方程总有实数根;(2)m为何整数时,方程有两个不相等的正整数根.30.已知关于x的一元二次方程mx2+mx+m﹣1=0有两个相等的实数根.(1)求m的值;(2)解原方程.《21.2 降次——解一元二次方程》参考答案与试题解析一、选择题(共13小题)1.一元二次方程x 2﹣4x+5=0的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .只有一个实数根 D .没有实数根 【考点】根的判别式.【分析】把a=1,b=﹣4,c=5代入△=b 2﹣4ac 进行计算,根据计算结果判断方程根的情况. 【解答】解:∵a=1,b=﹣4,c=5, ∴△=b 2﹣4ac=(﹣4)2﹣4×1×5=﹣4<0, 所以原方程没有实数根. 故选:D .【点评】本题考查了一元二次方程ax 2+bx+c=0(a ≠0,a ,b ,c 为常数)的根的判别式△=b 2﹣4ac .当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.2.下列关于x 的方程有实数根的是( ) A .x 2﹣x+1=0 B .x 2+x+1=0 C .(x ﹣1)(x+2)=0 D .(x ﹣1)2+1=0【考点】根的判别式. 【专题】计算题.【分析】分别计算A 、B 中的判别式的值;根据判别式的意义进行判断;利用因式分解法对C 进行判断;根据非负数的性质对D 进行判断.【解答】解:A 、△=(﹣1)2﹣4×1×1=﹣3<0,方程没有实数根,所以A 选项错误; B 、△=12﹣4×1×1=﹣3<0,方程没有实数根,所以B 选项错误; C 、x ﹣1=0或x+2=0,则x 1=1,x 2=﹣2,所以C 选项正确;D 、(x ﹣1)2=﹣1,方程左边为非负数,方程右边为0,所以方程没有实数根,所以D 选项错误. 故选:C .【点评】本题考查了一元二次方程ax 2+bx+c=0(a ≠0)的根的判别式△=b 2﹣4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.3.关于x 的一元二次方程x 2﹣3x+m=0有两个不相等的实数根,则实数m 的取值范围为( )A .B .C .D .【考点】根的判别式. 【专题】判别式法.【分析】先根据判别式的意义得到△=(﹣3)2﹣4m >0,然后解不等式即可. 【解答】解:根据题意得△=(﹣3)2﹣4m >0, 解得m <. 故选:B .【点评】本题考查了一元二次方程ax 2+bx+c=0(a ≠0)的根的判别式△=b 2﹣4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.4.有两个一元二次方程M :ax 2+bx+c=0;N :cx 2+bx+a=0,其中a •c ≠0,a ≠c .下列四个结论中,错误的是( ) A .如果方程M 有两个相等的实数根,那么方程N 也有两个相等的实数根 B .如果方程M 的两根符号相同,那么方程N 的两根符号也相同 C .如果5是方程M 的一个根,那么是方程N 的一个根 D .如果方程M 和方程N 有一个相同的根,那么这个根必是x=1 【考点】根的判别式;一元二次方程的解;根与系数的关系. 【专题】压轴题.【分析】利用根的判别式判断A ;利用根与系数的关系判断B ;利用一元二次方程的解的定义判断C 与D . 【解答】解:A 、如果方程M 有两个相等的实数根,那么△=b 2﹣4ac=0,所以方程N 也有两个相等的实数根,结论正确,不符合题意;B 、如果方程M 的两根符号相同,那么方程N 的两根符号也相同,那么△=b 2﹣4ac ≥0,>0,所以a 与c 符号相同,>0,所以方程N 的两根符号也相同,结论正确,不符合题意;C 、如果5是方程M 的一个根,那么25a+5b+c=0,两边同时除以25,得c+b+a=0,所以是方程N 的一个根,结论正确,不符合题意;D 、如果方程M 和方程N 有一个相同的根,那么ax 2+bx+c=cx 2+bx+a ,(a ﹣c )x 2=a ﹣c ,由a ≠c ,得x 2=1,x=±1,结论错误,符合题意; 故选:D .【点评】本题考查了一元二次方程根的情况与判别式△的关系:△>0⇔方程有两个不相等的实数根;△=0⇔方程有两个相等的实数根;△<0⇔方程没有实数根.也考查了根与系数的关系,一元二次方程的解的定义.5.方程x2﹣2x+3=0的根的情况是()A.有两个相等的实数根B.只有一个实数根C.没有实数根D.有两个不相等的实数根【考点】根的判别式.【分析】把a=1,b=﹣2,c=3代入△=b2﹣4ac进行计算,然后根据计算结果判断方程根的情况.【解答】解:∵a=1,b=﹣2,c=3,∴△=b2﹣4ac=(﹣2)2﹣4×1×3=﹣8<0,所以方程没有实数根.故选C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.6.一元二次方程4x2+1=4x的根的情况是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根【考点】根的判别式.【分析】先求出△的值,再判断出其符号即可.【解答】解:原方程可化为:4x2﹣4x+1=0,∵△=42﹣4×4×1=0,∴方程有两个相等的实数根.故选C.【点评】本题考查的是根的判别式,熟知一元二次方程ax2+bx+c=0(a≠0)的根与△的关系是解答此题的关键.7.已知一元二次方程2x2﹣5x+3=0,则该方程根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.两个根都是自然数 D.无实数根【考点】根的判别式.【分析】判断上述方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.【解答】解:∵a=2,b=﹣5,c=3,∴△=b2﹣4ac=(﹣5)2﹣4×2×3=1>0,∴方程有两个不相等的实数根.故选:A.【点评】此题主要考查了一元二次方程根的判别式,掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根,是解决问题的关键.8.若一元二次方程x2+2x+a=0的有实数解,则a的取值范围是()A.a<1 B.a≤4 C.a≤1 D.a≥1【考点】根的判别式.【分析】若一元二次方程x2+2x+a=0的有实数解,则根的判别式△≥0,据此可以列出关于a的不等式,通过解不等式即可求得a的值.【解答】解:因为关于x的一元二次方程有实根,所以△=b2﹣4ac=4﹣4a≥0,解之得a≤1.故选C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.9.下列一元二次方程中,有两个相等实数根的是()A.x2﹣8=0 B.2x2﹣4x+3=0 C.9x2+6x+1=0 D.5x+2=3x2【考点】根的判别式.【分析】分别计算四个方程的判别式的值,然后根据判别式的意义判断各方程根的情况.【解答】解:A、x2﹣8=0,这里a=1,b=0,c=﹣8,∵△=b2﹣4ac=02﹣4×1×(﹣8)=32>0,∴方程有两个不相等的实数根,故本选项错误;B、2x2﹣4x+3=0,这里a=2,b=﹣4,c=3,∵△=b2﹣4ac=(﹣4)2﹣4×2×3=﹣8<0,∴方程没有实数根,故本选项错误;C、9x2+6x+1=0,这里a=9,b=6,c=1,∵△=b2﹣4ac=62﹣4×9×1=0,∴方程有两个相等的实数根,故本选项正确;D、5x+2=3x2,3x2﹣5x﹣2=0,这里a=3,b=﹣5,c=﹣2,∵△=b2﹣4ac=(﹣5)2﹣4×3×(﹣2)=49>0,∴方程有两个不相等的实数根,故本选项错误;故选C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.10.一元二次方程2x2+3x+1=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根D.无法确定【考点】根的判别式.【分析】先求出△的值,再判断出其符号即可.【解答】解:∵△=32﹣4×2×1=1>0,∴方程有两个不相等的实数根.故选A.【点评】本题考查的是根的判别式,熟知一元二次方程ax2+bx+c=0(a≠0)的根与△的关系是解答此题的关键.11.下列一元二次方程有两个相等实数根的是()A.x2﹣2x+1=0 B.2x2﹣x+1=0 C.4x2﹣2x﹣3=0 D.x2﹣6x=0【考点】根的判别式.【分析】根据一元二次方程根的判别式判断即可.【解答】解:A、∵△=4﹣4=0,∴方程x2﹣2x+1=0有两个相等实数根;B、∵△=1﹣4×2<0,∴方程2x2﹣x+1=0无实数根;C、∵△=4+4×4×3=52>0,∴方程4x2﹣2x﹣3=0有两个不相等实数根;D、∵△=36>0,∴方程x2﹣6x=0有两个不相等实数根;故选A.【点评】本题考查了一元二次方程根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.12.若a满足不等式组,则关于x的方程(a﹣2)x2﹣(2a﹣1)x+a+=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根D.以上三种情况都有可能【考点】根的判别式;一元一次方程的解;解一元一次不等式组.【分析】求出a的取值范围,表示出已知方程根的判别式,判断得到根的判别式的值小于0,可得出方程没有实数根.【解答】解:解不等式组得a<﹣3,∵△=(2a﹣1)2﹣4(a﹣2)(a+)=2a+5,∵a<﹣3,∴△=2a+5<0,∴方程(a﹣2)x2﹣(2a﹣1)x+a+=0没有实数根,故选C.【点评】此题考查了解一元一次不等式组,一元二次方程根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0时,方程有两个相等的实数根;根的判别式的值小于0时,方程无实数根.13.下列方程中,没有实数根的是()A.x2﹣4x+4=0 B.x2﹣2x+5=0 C.x2﹣2x=0 D.x2﹣2x﹣3=0【考点】根的判别式.【分析】利用判别式分别判定即可得出答案.【解答】解:A、x2﹣4x+4=0,△=16﹣16=0有相同的根;B、x2﹣2x+5=0,△=4﹣20<0没有实数根;C、x2﹣2x=0,△=4﹣0>0有两个不等实数根;D、x2﹣2x﹣3=0,△=4+12>0有两个不等实数根.故选:B.【点评】本题主要考查了根的判别式,解题的关键是熟记判别式的公式.二、填空题(共12小题)14.若关于x的一元二次方程x2﹣3x+m=0有两个相等的实数根,则m= .【考点】根的判别式.【分析】根据题意可得△=0,据此求解即可.【解答】解:∵方程x2﹣3x+m=0有两个相等的实数根,∴△=9﹣4m=0,解得:m=.故答案为:.【点评】本题考查了根的判别式,解答本题的关键是掌握当△=0时,方程有两个相等的两个实数根.15.若关于x的一元二次方程x2﹣x+m=0有两个不相等的实数根,则m的值可能是0 (写出一个即可).【考点】根的判别式.【专题】开放型.【分析】若一元二次方程有两不等实数根,则根的判别式△=b2﹣4ac>0,建立关于m的不等式,求出m的取值范围.【解答】解:∵一元二次方程x2﹣x+m=0有两个不相等的实数根,∴△=1﹣4m>0,解得m<,故m的值可能是0,故答案为0.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.注意本题答案不唯一,只需满足m<即可.16.关于x的方程mx2+x﹣m+1=0,有以下三个结论:①当m=0时,方程只有一个实数解;②当m≠0时,方程有两个不等的实数解;③无论m取何值,方程都有一个负数解,其中正确的是①③(填序号).【考点】根的判别式;一元一次方程的解.【专题】分类讨论.【分析】分别讨论m=0和m≠0时方程mx2+x﹣m+1=0根的情况,进而填空.【解答】解:当m=0时,x=﹣1,方程只有一个解,①正确;当m≠0时,方程mx2+x﹣m+1=0是一元二次方程,△=1﹣4m(1﹣m)=1﹣4m+4m2=(2m﹣1)2≥0,方程有两个实数解,②错误;把mx2+x﹣m+1=0分解为(x+1)(mx﹣m+1)=0,当x=﹣1时,m﹣1﹣m+1=0,即x=﹣1是方程mx2+x﹣m+1=0的根,③正确;故答案为①③.【点评】本题主要考查了根的判别式以及一元一次方程的解的知识,解答本题的关键是掌握根的判别式的意义以及分类讨论的思想.17.关于x的方程x2+2x﹣m=0有两个相等的实数根,则m= ﹣1 .【考点】根的判别式.【分析】根据方程有两个相等的实数根,判断出根的判别式为0,据此求出m的值即可.【解答】解:∵关于x的方程x2+2x﹣m=0有两个相等的实数根,∴△=0,∴22﹣4×1×(﹣m)=0,解得m=﹣1.故答案为;﹣1.【点评】本题考查了一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.18.若关于x的一元二次方程ax2+3x﹣1=0有两个不相等的实数根,则a的取值范围是a>﹣且a≠0 .【考点】根的判别式;一元二次方程的定义.【分析】根据一元二次方程的定义及判别式的意义可得a≠0且△=b2﹣4ac=32﹣4×a×(﹣1)=9+4a>0,解不等式组即可求出a的取值范围.【解答】解:∵关于x的一元二次方程ax2+3x﹣1=0有两个不相等的实数根,∴a≠0且△=b2﹣4ac=32﹣4×a×(﹣1)=9+4a>0,解得:a>﹣且a≠0.故答案为:a>﹣且a≠0.【点评】此题考查了根的判别式.一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.同时考查了一元二次方程的定义.19.关于x的一元二次方程x2﹣x+m=O没有实数根,则m的取值范围是m>.【考点】根的判别式.【分析】根据方程没有实数根,得到根的判别式小于0列出关于m的不等式,求出不等式的解集即可得到m的范围.【解答】解:根据方程没有实数根,得到△=b2﹣4ac=1﹣4m<0,解得:m>.故答案为:m>.【点评】此题考查了根的判别式,根的判别式大于0,方程有两个不相等的实数根;根的判别式等于0,方程有两个相等的实数根;根的判别式小于0,方程没有实数根.20.已知关于x的一元二次方程x2+2x+m=0有实数根,则m的取值范围是m≤1 .【考点】根的判别式.【专题】探究型.【分析】先根据一元二次方程x2+2x+m=0得出a、b、c的值,再根据方程有实数根列出关于m的不等式,求出m的取值范围即可.【解答】解:由一元二次方程x2+2x+m=0可知a=1,b=2,c=m,∵方程有实数根,∴△=22﹣4m≥0,解得m≤1.故答案为:m≤1.【点评】本题考查的是一元二次方程根的判别式,根据题意列出关于m的不等式是解答此题的关键.21.关于x的一元二次方程ax2+bx+=0有两个相等的实数根,写出一组满足条件的实数a,b的值:a= 4 ,b= 2 .【考点】根的判别式.【专题】开放型.【分析】由于关于x的一元二次方程ax2+bx+=0有两个相等的实数根,得到a=b2,找一组满足条件的数据即可.【解答】关于x的一元二次方程ax2+bx+=0有两个相等的实数根,∴△=b2﹣4×a=b2﹣a=0,∴a=b2,当b=2时,a=4,故b=2,a=4时满足条件.故答案为:4,2.【点评】本题主要考查了一元二次方程根的判别式,熟练掌握判别式的意义是解题的关键.22.已知关于x的方程x2﹣2x+a=0有两个实数根,则实数a的取值范围是a≤1 .【考点】根的判别式.【专题】计算题.【分析】由方程有两个实数根,得到根的判别式大于等于0,即可确定出a的范围.【解答】解:∵方程x2﹣2x+a=0有两个实数根,∴△=4﹣4a≥0,解得:a≤1,故答案为:a≤1【点评】此题考查了根的判别式,熟练掌握一元二次方程根的判别式与方程根的关系是解本题的关键.23.若一元二次方程(m﹣1)x2﹣4x﹣5=0没有实数根,则m的取值范围是m<.【考点】根的判别式;一元二次方程的定义.【分析】据关于x的一元二次方程(m﹣1)x2﹣4x﹣5=0没有实数根,得出△=16﹣4(m﹣1)×(﹣5)<0,从而求出m的取值范围.【解答】解:∵一元二次方程(m﹣1)x2﹣4x﹣5=0没有实数根,∴△=16﹣4(m﹣1)×(﹣5)<0,且m﹣1≠0,∴m<.故答案为:m<.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.24.关于x的一元二次方程x2+a=0没有实数根,则实数a的取值范围是a>0 .【考点】根的判别式.【专题】计算题.【分析】根据方程没有实数根,得到根的判别式小于0,求出a的范围即可.【解答】解:∵方程x2+a=0没有实数根,∴△=﹣4a<0,解得:a>0,故答案为:a>0【点评】此题考查了根的判别式,熟练掌握根的判别式的意义是解本题的关键.25.已知关于x的一元二次方程x2﹣2x﹣k=0有两个相等的实数根,则k值为﹣3 .【考点】根的判别式.【分析】因为方程有两个相等的实数根,则△=(﹣2)2+4k=0,解关于k的方程即可.【解答】解:∵关于x的一元二次方程x2﹣2x﹣k=0有两个相等的实数根,∴△=0,即(﹣2)2﹣4×(﹣k)=12+4k=0,解得k=﹣3.故答案为:﹣3.【点评】本题考查了一元二次方程根的判别式,当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.三、解答题(共5小题)26.已知关于x 的一元二次方程x 2﹣4x+m=0.(1)若方程有实数根,求实数m 的取值范围;(2)若方程两实数根为x 1,x 2,且满足5x 1+2x 2=2,求实数m 的值.【考点】根的判别式;根与系数的关系.【分析】(1)若一元二次方程有两实数根,则根的判别式△=b 2﹣4ac ≥0,建立关于m 的不等式,求出m 的取值范围;(2)根据根与系数的关系得到x 1+x 2=4,又5x 1+2x 2=2求出函数实数根,代入m=x 1x 2,即可得到结果.【解答】解:(1)∵方程有实数根,∴△=(﹣4)2﹣4m=16﹣4m ≥0,∴m ≤4;(2)∵x 1+x 2=4,∴5x 1+2x 2=2(x 1+x 2)+3x 1=2×4+3x 1=2,∴x 1=﹣2,把x 1=﹣2代入x 2﹣4x+m=0得:(﹣2)2﹣4×(﹣2)+m=0,解得:m=﹣12.【点评】本题考查了一元二次方程ax 2+bx+c=0(a ≠0)的根的判别式△=b 2﹣4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程根与系数的关系.27.已知:关于x 的方程x 2+2mx+m 2﹣1=0(1)不解方程,判别方程根的情况;(2)若方程有一个根为3,求m 的值.【考点】根的判别式;一元二次方程的解.【分析】(1)找出方程a ,b 及c 的值,计算出根的判别式的值,根据其值的正负即可作出判断;(2)将x=3代入已知方程中,列出关于系数m 的新方程,通过解新方程即可求得m 的值.【解答】解:(1)由题意得,a=1,b=2m ,c=m 2﹣1,∵△=b 2﹣4ac=(2m )2﹣4×1×(m 2﹣1)=4>0,∴方程x 2+2mx+m 2﹣1=0有两个不相等的实数根;(2)∵x 2+2mx+m 2﹣1=0有一个根是3,∴32+2m×3+m2﹣1=0,解得,m=﹣4或m=﹣2.【点评】此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.也考查了一元二次方程的解的定义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.即用这个数代替未知数所得式子仍然成立.28.已知关于x的一元二次方程(x﹣3)(x﹣2)=|m|.(1)求证:对于任意实数m,方程总有两个不相等的实数根;(2)若方程的一个根是1,求m的值及方程的另一个根.【考点】根的判别式;一元二次方程的解;根与系数的关系.【分析】(1)要证明方程有两个不相等的实数根,即证明△>0即可;(2)将x=1代入方程(x﹣3)(x﹣2)=|m|,求出m的值,进而得出方程的解.【解答】(1)证明:∵(x﹣3)(x﹣2)=|m|,∴x2﹣5x+6﹣|m|=0,∵△=(﹣5)2﹣4(6﹣|m|)=1+4|m|,而|m|≥0,∴△>0,∴方程总有两个不相等的实数根;(2)解:∵方程的一个根是1,∴|m|=2,解得:m=±2,∴原方程为:x2﹣5x+4=0,解得:x1=1,x2=4.即m的值为±2,方程的另一个根是4.【点评】此题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.同时考查了一元二次方程的解的定义.29.已知关于x的一元二次方程mx2﹣(m+2)x+2=0.(1)证明:不论m为何值时,方程总有实数根;(2)m 为何整数时,方程有两个不相等的正整数根.【考点】根的判别式;解一元二次方程-公式法.【专题】证明题.【分析】(1)求出方程根的判别式,利用配方法进行变形,根据平方的非负性证明即可;(2)利用一元二次方程求根公式求出方程的两个根,根据题意求出m 的值.【解答】(1)证明:△=(m+2)2﹣8m=m 2﹣4m+4=(m ﹣2)2,∵不论m 为何值时,(m ﹣2)2≥0,∴△≥0,∴方程总有实数根;(2)解:解方程得,x=,x 1=,x 2=1,∵方程有两个不相等的正整数根,∴m=1或2,m=2不合题意,∴m=1.【点评】本题考查的是一元二次方程根的判别式和求根公式的应用,掌握一元二次方程根的情况与判别式△的关系:△>0⇔方程有两个不相等的实数根;△=0⇔方程有两个相等的实数根;△<0⇔方程没有实数根是解题的关键.30.已知关于x 的一元二次方程mx 2+mx+m ﹣1=0有两个相等的实数根.(1)求m 的值;(2)解原方程.【考点】根的判别式.【分析】(1)根据题意得到:△=0,由此列出关于m 的方程并解答;(2)利用直接开平方法解方程.【解答】解:(1)∵关于x 的一元二次方程mx 2+mx+m ﹣1=0有两个相等的实数根,∴△=m 2﹣4×m ×(m ﹣1)=0,且m ≠0,解得m=2;(2)由(1)知,m=2,则该方程为:x 2+2x+1=0,即(x+1)2=0,解得x 1=x 2=﹣1.【点评】本题考查了一元二次方程ax 2+bx+c=0(a ≠0)的根的判别式△=b 2﹣4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.。
人教版九年级数学上册同步练习:21.2降次--解一元二次方程(第三课时)【精品】
![人教版九年级数学上册同步练习:21.2降次--解一元二次方程(第三课时)【精品】](https://img.taocdn.com/s3/m/d222aacc284ac850ac024257.png)
22.2降次--解一元二次方程(第三课时)22.2.2 公式法◆随堂检测1、一元二次方程2210x x --=的根的情况为( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根2、若关于x 的一元二次方程220x x m -+=没有实数根,则实数m 的取值范围是( ) A .1m < B .1m >- C .1m > D .1m <-3、若关于x 的一元二次方程230x x m -+=有实数根,则实数m 的取值范围是_____________. 4、用公式法解下列方程.(1)22410x x --=;(2)2523x x +=;(3)24310x x -+=.分析:用公式法解一元二次方程,首先应把它化为一般形式,然后正确代入求根公式12b x a -+=,2x =2b a-即可. ◆典例分析2+=有一位同学解答如下:这里,a =b =c =∴224432b ac -=-=,∴x =22b a -±==,∴12x =,22x =.请你分析以上解答有无错误,如有错误,找出错误的地方,并写出正确的结果.分析:本题所反映的错误是非常典型的,在用公式法求解方程时,一定要求先将方程化为一元二次方程的一般形式才行.解:这位同学的解答有错误,错误在c =-而不是c =并且导致以后的计算都发生相应的错误.正确的解答是20+-=,∴a =b =c =-,∴2244(64b ac -=--=,∴x =2b a -±==∴1x =2x =.◆课下作业●拓展提高1、下列关于的一元二次方程中,有两个不相等的实数根的方程是( )A .240x +=B .24410x x -+=C .230x x ++=D .2210x x +-=2、如果关于x 的方程022=--k x x 没有实数根,则k 的取值范围为_____________.3、用公式法解下列方程.(1)1)4(2=+x x ;(2)(2)(35)1x x --=;(3)20.30.8y y +=. 4、求证:关于x 的方程01)12(2=-+++k x k x 有两个不相等的实数根. 5、若关于的一元二次方程2(2)210a x ax a --++=没有实数解,求30ax +>的解集(用含a 的式子表示).提示:不等式30ax +>中含有字母系数a ,要想求30ax +>的解集,首先就要判定a 的值是正、负或0.利用条件一元二次方程2(2)210a x ax a --++=没有实数根可以求出a 的取值范围.●体验中考1、(2008年,河南)如果关于x 的一元二次方程22(21)10k x k x -++=有两个不相等的实数根,那么k 的取值范围是( )A .14k >-B .14k >-且0k ≠C .14k <-D .14k ≥-且0k ≠注意一元二次方程22(21)10k x k x -++=的二次项系数含有字母k .2、(2009年,湖南株洲)定义:如果一元二次方程20(0)ax bx c a ++=≠满足0a b c ++=,那么我们称这个方程为“凤凰”方程.已知20(0)ax bx c a ++=≠是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是( )A .a c =B .a b =C .b c =D .a b c ==参考答案:◆随堂检测1、B ∵△=224(2)41(1)80b ac -=--⨯⨯-=>,∴方程有两个不相等的实数根,故选B .2、C ∵△=224(2)41440b ac m m -=--⨯⨯=-<,∴1m >.故选C .3、94m ≤ ∵△=224(3)41940b ac m m -=--⨯⨯=-≥,∴94m ≤. 4、解:(1)2a =,4b =-,1c =-,∴224(4)42(1)240b ac -=--⨯⨯-=>,∴x =(4)422242--±==⨯,∴1x =,2x =. (2)将方程化为一般形式23520x x --=,∴3a =,5b =-,2c =-,∴224(5)43(2)490b ac -=--⨯⨯-=>,∴x =576±=,∴12x =,213x =-. (3)4a =,3b =-,1c =,∴224(3)44170b ac -=--⨯⨯=-<,∵在实数范围内,负数不能开平方,∴此方程无实数根.◆课下作业●拓展提高1、D 只有选项D 中△=224241(1)80b ac -=-⨯⨯-=>,方程有两个不相等的实数根.故选D .2、1k <- ∵△=224(2)41()440b ac k k -=--⨯⨯-=+<,∴1k <-.3、(1)将方程化为一般形式22810x x +-=,∴2a =,8b =,1c =-,∴224842(1)720b ac -=-⨯⨯-=>,∴42x -±==,∴142x -+=,242x --=. (2)将方程化为一般形式231190x x -+=,∴3a =,11b =-,9c =,∴224(11)439130b ac -=--⨯⨯=>,∴x ==1x =,2x =.(3)将方程化为一般形式20.30.80y y +-=,∴0.3a =,1b =,0.8c =-,∴224140.3(0.8) 1.960b ac -=-⨯⨯-=>,∴y =1101420.36-±-±=⨯,∴14y =-,223y =. 4、证明:∵△=2224(21)41(1)450b ac k k k -=+-⨯⨯-=+>恒成立,∴方程有两个不相等的实数根.5、解:∵关于x 的一元二次方程2(2)210a x ax a --++=没有实数根, ∴2(2)4(2)(1)480a a a a ---+=+<,∴20a <-<. ∵30ax +>即3ax >-,∴3x a <-. ∴所求不等式的解集为.3x a<-. ●体验中考1、B 依题意得,2220(21)410k k k ⎧≠⎪⎨+-⨯>⎪⎩,解得14k >-且0k ≠.故选B .2、A 依题意得,2040a b c b ac ++=⎧⎨-=⎩,代入得2()4a c ac +=, ∴2()0a c -=,∴a c =.故选A .。
新人教版初中数学九年级上册21.2降次--解一元二次方程(第四课时)过关习题和解析答案
![新人教版初中数学九年级上册21.2降次--解一元二次方程(第四课时)过关习题和解析答案](https://img.taocdn.com/s3/m/848d71d44693daef5ef73d4b.png)
22.2降次--解一元二次方程(第四课时)22.2.3 因式分解法◆随堂检测1、下面一元二次方程的解法中,正确的是( )A .(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x 1=13,x 2=7B .(2-5x )+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x 1=25,x 2=35 C .(x+2)2+4x=0,∴x 1=2,x 2=-2D .x 2=x 两边同除以x ,得x=12、x 2-5x 因式分解结果为_______;2x (x-3)-5(x-3)因式分解的结果是______.3、用因式分解法解方程(1)2411x x =;(2)2(2)24x x -=-.点拨:用因式分解法解方程的关键是要将方程化为一边为两个一次式的乘积,另一边为0的形式.4、已知三角形两边长分别为2和4,第三边是方程2430x x -+=的解,求这个三角形的周长. ◆典例分析方程2200920100x x +-=较大根为m ,方程2(2010)2009201110x x +⨯-=较小根为n ,求n m +的值.分析:本题中两个方程的系数都较大,用配方法和公式法都会遇到烦琐的运算,因此考虑到系数的特点,选用因式分解法最合适.解:将方程2200920100x x +-=因式分解,得:(2010)(1)0x x +-=,∴20100x +=或10x -=,∴12010x =-,21x =.∴较大根为1,即1m =.将方程2(2010)2009201110x x +⨯-=变形为: 2(2010)(20101)(20101)10x x +-⨯+-=,∴22(2010)201010x x x +--=,∴22010(1)(1)0x x x +-+=,∴∴∴2(20101)(1)0x x -+=,∴2201010x -=或10x +=,∴1212010x =,21x =-. ∴较小根为-1,即1n =-.∴1(1)0m n +=+-=.◆课下作业●拓展提高1、二次三项式x 2+20x+96分解因式的结果为________;如果令x 2+20x+96=0,那么它的两个根是_________.2、下列命题①方程kx 2-x-2=0是一元二次方程;②x=1与方程x 2=1是同解方程;③方程x 2=x 与方程x=1是同解方程;④由(x+1)(x-1)=3可得x+1=3或x-1=3.其中正确的命题有( )A .0个B .1个C .2个D .3个3、已知()(2)80x y x y +++-=,求x y +的值.点拨将x y +看作一个整体,不妨设x y z +=,则求出z 的值即为x y +的值.4、我们知道2()()()x a b x ab x a x b -++=--,那么2()0x a b x a b -++=就可转化为()()0x a x b --=,请你用上面的方法解下列方程:(1)2340x x --=;(2)2760x x -+=;(3)2450x x +-=. 5、已知22940a b -=,求代数式22a b a b b a ab +--的值. 分析:要求22a b a b b a ab+--的值,首先要对它进行化简,然后从已知条件入手,求出a 与b 的关系后代入即可.6、已知1x =是一元二次方程2400ax bx +-=的一个解,且a b ≠,求2222a b a b --的值. ●体验中考1、(2009年,河南)方程2x x =的解是( )A .1x =B .0x =C .11x =,20x =D .11x =-,20x =2、(2008年,淮安)小华在解一元二次方程240x x -=时,只得出一个根是4x =,则被他漏掉的一个根是________.(提示:方程两边不能同除以含有未知数的式子,否则会失根的.)参考答案:◆随堂检测1、B 用因式分解法解方程的关键是要将方程化为一边为两个一次式的乘积等于0的形式.只有B 是正确的.2、x (x-5);(x-3)(2x-5).3、解:(1)移项,得:24110x x -=,因式分解,得:(411)0x x -=于是,得:0x =或4110x -=,∴10x =,2114x =. (2)移项,得2(2)240x x --+=,即2(2)2(2)0x x ---=,因式分解,得:(2)(22)0x x ---=,整理,得:(2)(4)0x x --=,于是,得20x -=或40x -=,∴12x =,24x =.4、解方程2430x x -+=,得(3)(1)0x x --=,∴13x =,21x =.∵三角形两边长分别为2和4,∴第三边只能是3.∴三角形周长为9.◆课下作业●拓展提高1、(x+12)(x+8);x 1=-12,x 2=-8.2、A ①中方程当k=0时不是一元二次方程;②中x=1比方程x 2=1少一个解x=-1;③中方程x 2=x 比方程x=1多一个解x=0;④中由(x+1)(x-1)=3不能必然地得到x+1=3或x-1=3.因此没有正确的命题,故选A.3、解:设x y z +=,则方程可化为(2)80z z +-=,∴2280z z +-=, ∴(4)(2)0z z +-=,∴14z =-,22z =.∴x y +的值是4-或2.4、解(1)∵234(4)(1)x x x x --=-+,∴(4)(1)0x x -+=,∴40x -=或10x +=,∴14x =,21x =-.(2)∵276(6)(1)x x x x -+=--,∴(6)(1)0x x --=, ∴60x -=或10x -=,∴16x =,21x =.(3)∵245(5)(1)x x x x +-=+-,∴(5)(1)0x x +-=, ∴50x +=或10x -=,∴15x =-,21x =.5、解:原式=22222a b a b b ab a---=- ∵22940a b -=,∴(32)(32)0a b a b +-=,∴320a b +=或320a b -=,∴23a b =-或23a b =, ∴当23a b =-时,原式=-223b b -=3;当23a b =时,原式=-3. 6、解:把1x =代入方程,得:a +b =40,又∵a b ≠, ∴2222a b a b --=()()2()a b a b a b +--=2a b +=20.●体验中考1、C 先移项,得20x x -=,因式分解,得:(1)0x x -=,∴10x =,21x =. 故选C.2、0x = 将方程因式分解,得(4)0x x -=,∴10x =,24x =.∴被他漏掉的根是0x =.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《21.2 降次——解一元二次方程》一、选择题(共13小题)1.一元二次方程x2﹣4x+5=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.只有一个实数根D.没有实数根2.下列关于x的方程有实数根的是()A.x2﹣x+1=0 B.x2+x+1=0 C.(x﹣1)(x+2)=0 D.(x﹣1)2+1=03.关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围为()A.B.C.D.4.有两个一元二次方程M:ax2+bx+c=0;N:cx2+bx+a=0,其中a•c≠0,a≠c.下列四个结论中,错误的是()A.如果方程M有两个相等的实数根,那么方程N也有两个相等的实数根B.如果方程M的两根符号相同,那么方程N的两根符号也相同C.如果5是方程M的一个根,那么是方程N的一个根D.如果方程M和方程N有一个相同的根,那么这个根必是x=15.方程x2﹣2x+3=0的根的情况是()A.有两个相等的实数根B.只有一个实数根C.没有实数根D.有两个不相等的实数根6.一元二次方程4x2+1=4x的根的情况是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根7.已知一元二次方程2x2﹣5x+3=0,则该方程根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.两个根都是自然数 D.无实数根8.若一元二次方程x2+2x+a=0的有实数解,则a的取值范围是()A.a<1 B.a≤4 C.a≤1 D.a≥19.下列一元二次方程中,有两个相等实数根的是()A.x2﹣8=0 B.2x2﹣4x+3=0 C.9x2+6x+1=0 D.5x+2=3x210.一元二次方程2x2+3x+1=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C .没有实数根D .无法确定11.下列一元二次方程有两个相等实数根的是( ) A .x 2﹣2x+1=0B .2x 2﹣x+1=0C .4x 2﹣2x ﹣3=0D .x 2﹣6x=012.若a 满足不等式组,则关于x 的方程(a ﹣2)x 2﹣(2a ﹣1)x+a+=0的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .以上三种情况都有可能 13.下列方程中,没有实数根的是( ) A .x 2﹣4x+4=0 B .x 2﹣2x+5=0 C .x 2﹣2x=0 D .x 2﹣2x ﹣3=0二、填空题(共12小题)14.若关于x 的一元二次方程x 2﹣3x+m=0有两个相等的实数根,则m=______.15.若关于x 的一元二次方程x 2﹣x+m=0有两个不相等的实数根,则m 的值可能是______(写出一个即可). 16.关于x 的方程mx 2+x ﹣m+1=0,有以下三个结论:①当m=0时,方程只有一个实数解;②当m ≠0时,方程有两个不等的实数解;③无论m 取何值,方程都有一个负数解,其中正确的是______(填序号). 17.关于x 的方程x 2+2x ﹣m=0有两个相等的实数根,则m=______.18.若关于x 的一元二次方程ax 2+3x ﹣1=0有两个不相等的实数根,则a 的取值范围是______. 19.关于x 的一元二次方程x 2﹣x+m=O 没有实数根,则m 的取值范围是______. 20.已知关于x 的一元二次方程x 2+2x+m=0有实数根,则m 的取值范围是______.21.关于x 的一元二次方程ax 2+bx+=0有两个相等的实数根,写出一组满足条件的实数a ,b 的值:a=______,b=______.22.已知关于x 的方程x 2﹣2x+a=0有两个实数根,则实数a 的取值范围是______. 23.若一元二次方程(m ﹣1)x 2﹣4x ﹣5=0没有实数根,则m 的取值范围是______. 24.关于x 的一元二次方程x 2+a=0没有实数根,则实数a 的取值范围是______.25.已知关于x 的一元二次方程x 2﹣2x ﹣k=0有两个相等的实数根,则k 值为______.三、解答题(共5小题)26.已知关于x 的一元二次方程x 2﹣4x+m=0. (1)若方程有实数根,求实数m 的取值范围;(2)若方程两实数根为x 1,x 2,且满足5x 1+2x 2=2,求实数m 的值.27.已知:关于x的方程x2+2mx+m2﹣1=0(1)不解方程,判别方程根的情况;(2)若方程有一个根为3,求m的值.28.已知关于x的一元二次方程(x﹣3)(x﹣2)=|m|.(1)求证:对于任意实数m,方程总有两个不相等的实数根;(2)若方程的一个根是1,求m的值及方程的另一个根.29.已知关于x的一元二次方程mx2﹣(m+2)x+2=0.(1)证明:不论m为何值时,方程总有实数根;(2)m为何整数时,方程有两个不相等的正整数根.30.已知关于x的一元二次方程mx2+mx+m﹣1=0有两个相等的实数根.(1)求m的值;(2)解原方程.《21.2 降次——解一元二次方程》参考答案与试题解析一、选择题(共13小题)1.一元二次方程x 2﹣4x+5=0的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .只有一个实数根 D .没有实数根 【考点】根的判别式.【分析】把a=1,b=﹣4,c=5代入△=b 2﹣4ac 进行计算,根据计算结果判断方程根的情况. 【解答】解:∵a=1,b=﹣4,c=5, ∴△=b 2﹣4ac=(﹣4)2﹣4×1×5=﹣4<0, 所以原方程没有实数根. 故选:D .【点评】本题考查了一元二次方程ax 2+bx+c=0(a ≠0,a ,b ,c 为常数)的根的判别式△=b 2﹣4ac .当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.2.下列关于x 的方程有实数根的是( ) A .x 2﹣x+1=0 B .x 2+x+1=0 C .(x ﹣1)(x+2)=0 D .(x ﹣1)2+1=0【考点】根的判别式. 【专题】计算题.【分析】分别计算A 、B 中的判别式的值;根据判别式的意义进行判断;利用因式分解法对C 进行判断;根据非负数的性质对D 进行判断.【解答】解:A 、△=(﹣1)2﹣4×1×1=﹣3<0,方程没有实数根,所以A 选项错误; B 、△=12﹣4×1×1=﹣3<0,方程没有实数根,所以B 选项错误; C 、x ﹣1=0或x+2=0,则x 1=1,x 2=﹣2,所以C 选项正确;D 、(x ﹣1)2=﹣1,方程左边为非负数,方程右边为0,所以方程没有实数根,所以D 选项错误. 故选:C .【点评】本题考查了一元二次方程ax 2+bx+c=0(a ≠0)的根的判别式△=b 2﹣4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.3.关于x 的一元二次方程x 2﹣3x+m=0有两个不相等的实数根,则实数m 的取值范围为( )A .B .C .D .【考点】根的判别式. 【专题】判别式法.【分析】先根据判别式的意义得到△=(﹣3)2﹣4m >0,然后解不等式即可. 【解答】解:根据题意得△=(﹣3)2﹣4m >0, 解得m <. 故选:B .【点评】本题考查了一元二次方程ax 2+bx+c=0(a ≠0)的根的判别式△=b 2﹣4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.4.有两个一元二次方程M :ax 2+bx+c=0;N :cx 2+bx+a=0,其中a •c ≠0,a ≠c .下列四个结论中,错误的是( ) A .如果方程M 有两个相等的实数根,那么方程N 也有两个相等的实数根 B .如果方程M 的两根符号相同,那么方程N 的两根符号也相同 C .如果5是方程M 的一个根,那么是方程N 的一个根 D .如果方程M 和方程N 有一个相同的根,那么这个根必是x=1 【考点】根的判别式;一元二次方程的解;根与系数的关系. 【专题】压轴题.【分析】利用根的判别式判断A ;利用根与系数的关系判断B ;利用一元二次方程的解的定义判断C 与D . 【解答】解:A 、如果方程M 有两个相等的实数根,那么△=b 2﹣4ac=0,所以方程N 也有两个相等的实数根,结论正确,不符合题意;B 、如果方程M 的两根符号相同,那么方程N 的两根符号也相同,那么△=b 2﹣4ac ≥0,>0,所以a 与c 符号相同,>0,所以方程N 的两根符号也相同,结论正确,不符合题意;C 、如果5是方程M 的一个根,那么25a+5b+c=0,两边同时除以25,得c+b+a=0,所以是方程N 的一个根,结论正确,不符合题意;D 、如果方程M 和方程N 有一个相同的根,那么ax 2+bx+c=cx 2+bx+a ,(a ﹣c )x 2=a ﹣c ,由a ≠c ,得x 2=1,x=±1,结论错误,符合题意; 故选:D .【点评】本题考查了一元二次方程根的情况与判别式△的关系:△>0⇔方程有两个不相等的实数根;△=0⇔方程有两个相等的实数根;△<0⇔方程没有实数根.也考查了根与系数的关系,一元二次方程的解的定义.5.方程x2﹣2x+3=0的根的情况是()A.有两个相等的实数根B.只有一个实数根C.没有实数根D.有两个不相等的实数根【考点】根的判别式.【分析】把a=1,b=﹣2,c=3代入△=b2﹣4ac进行计算,然后根据计算结果判断方程根的情况.【解答】解:∵a=1,b=﹣2,c=3,∴△=b2﹣4ac=(﹣2)2﹣4×1×3=﹣8<0,所以方程没有实数根.故选C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.6.一元二次方程4x2+1=4x的根的情况是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根【考点】根的判别式.【分析】先求出△的值,再判断出其符号即可.【解答】解:原方程可化为:4x2﹣4x+1=0,∵△=42﹣4×4×1=0,∴方程有两个相等的实数根.故选C.【点评】本题考查的是根的判别式,熟知一元二次方程ax2+bx+c=0(a≠0)的根与△的关系是解答此题的关键.7.已知一元二次方程2x2﹣5x+3=0,则该方程根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.两个根都是自然数 D.无实数根【考点】根的判别式.【分析】判断上述方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.【解答】解:∵a=2,b=﹣5,c=3,∴△=b2﹣4ac=(﹣5)2﹣4×2×3=1>0,∴方程有两个不相等的实数根.故选:A.【点评】此题主要考查了一元二次方程根的判别式,掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根,是解决问题的关键.8.若一元二次方程x2+2x+a=0的有实数解,则a的取值范围是()A.a<1 B.a≤4 C.a≤1 D.a≥1【考点】根的判别式.【分析】若一元二次方程x2+2x+a=0的有实数解,则根的判别式△≥0,据此可以列出关于a的不等式,通过解不等式即可求得a的值.【解答】解:因为关于x的一元二次方程有实根,所以△=b2﹣4ac=4﹣4a≥0,解之得a≤1.故选C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.9.下列一元二次方程中,有两个相等实数根的是()A.x2﹣8=0 B.2x2﹣4x+3=0 C.9x2+6x+1=0 D.5x+2=3x2【考点】根的判别式.【分析】分别计算四个方程的判别式的值,然后根据判别式的意义判断各方程根的情况.【解答】解:A、x2﹣8=0,这里a=1,b=0,c=﹣8,∵△=b2﹣4ac=02﹣4×1×(﹣8)=32>0,∴方程有两个不相等的实数根,故本选项错误;B、2x2﹣4x+3=0,这里a=2,b=﹣4,c=3,∵△=b2﹣4ac=(﹣4)2﹣4×2×3=﹣8<0,∴方程没有实数根,故本选项错误;C、9x2+6x+1=0,这里a=9,b=6,c=1,∵△=b2﹣4ac=62﹣4×9×1=0,∴方程有两个相等的实数根,故本选项正确;D、5x+2=3x2,3x2﹣5x﹣2=0,这里a=3,b=﹣5,c=﹣2,∵△=b2﹣4ac=(﹣5)2﹣4×3×(﹣2)=49>0,∴方程有两个不相等的实数根,故本选项错误;故选C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.10.一元二次方程2x2+3x+1=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根D.无法确定【考点】根的判别式.【分析】先求出△的值,再判断出其符号即可.【解答】解:∵△=32﹣4×2×1=1>0,∴方程有两个不相等的实数根.故选A.【点评】本题考查的是根的判别式,熟知一元二次方程ax2+bx+c=0(a≠0)的根与△的关系是解答此题的关键.11.下列一元二次方程有两个相等实数根的是()A.x2﹣2x+1=0 B.2x2﹣x+1=0 C.4x2﹣2x﹣3=0 D.x2﹣6x=0【考点】根的判别式.【分析】根据一元二次方程根的判别式判断即可.【解答】解:A、∵△=4﹣4=0,∴方程x2﹣2x+1=0有两个相等实数根;B、∵△=1﹣4×2<0,∴方程2x2﹣x+1=0无实数根;C、∵△=4+4×4×3=52>0,∴方程4x2﹣2x﹣3=0有两个不相等实数根;D、∵△=36>0,∴方程x2﹣6x=0有两个不相等实数根;故选A.【点评】本题考查了一元二次方程根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.12.若a满足不等式组,则关于x的方程(a﹣2)x2﹣(2a﹣1)x+a+=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根D.以上三种情况都有可能【考点】根的判别式;一元一次方程的解;解一元一次不等式组.【分析】求出a的取值范围,表示出已知方程根的判别式,判断得到根的判别式的值小于0,可得出方程没有实数根.【解答】解:解不等式组得a<﹣3,∵△=(2a﹣1)2﹣4(a﹣2)(a+)=2a+5,∵a<﹣3,∴△=2a+5<0,∴方程(a﹣2)x2﹣(2a﹣1)x+a+=0没有实数根,故选C.【点评】此题考查了解一元一次不等式组,一元二次方程根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0时,方程有两个相等的实数根;根的判别式的值小于0时,方程无实数根.13.下列方程中,没有实数根的是()A.x2﹣4x+4=0 B.x2﹣2x+5=0 C.x2﹣2x=0 D.x2﹣2x﹣3=0【考点】根的判别式.【分析】利用判别式分别判定即可得出答案.【解答】解:A、x2﹣4x+4=0,△=16﹣16=0有相同的根;B、x2﹣2x+5=0,△=4﹣20<0没有实数根;C、x2﹣2x=0,△=4﹣0>0有两个不等实数根;D、x2﹣2x﹣3=0,△=4+12>0有两个不等实数根.故选:B.【点评】本题主要考查了根的判别式,解题的关键是熟记判别式的公式.二、填空题(共12小题)14.若关于x的一元二次方程x2﹣3x+m=0有两个相等的实数根,则m= .【考点】根的判别式.【分析】根据题意可得△=0,据此求解即可.【解答】解:∵方程x2﹣3x+m=0有两个相等的实数根,∴△=9﹣4m=0,解得:m=.故答案为:.【点评】本题考查了根的判别式,解答本题的关键是掌握当△=0时,方程有两个相等的两个实数根.15.若关于x的一元二次方程x2﹣x+m=0有两个不相等的实数根,则m的值可能是0 (写出一个即可).【考点】根的判别式.【专题】开放型.【分析】若一元二次方程有两不等实数根,则根的判别式△=b2﹣4ac>0,建立关于m的不等式,求出m的取值范围.【解答】解:∵一元二次方程x2﹣x+m=0有两个不相等的实数根,∴△=1﹣4m>0,解得m<,故m的值可能是0,故答案为0.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.注意本题答案不唯一,只需满足m<即可.16.关于x的方程mx2+x﹣m+1=0,有以下三个结论:①当m=0时,方程只有一个实数解;②当m≠0时,方程有两个不等的实数解;③无论m取何值,方程都有一个负数解,其中正确的是①③(填序号).【考点】根的判别式;一元一次方程的解.【专题】分类讨论.【分析】分别讨论m=0和m≠0时方程mx2+x﹣m+1=0根的情况,进而填空.【解答】解:当m=0时,x=﹣1,方程只有一个解,①正确;当m≠0时,方程mx2+x﹣m+1=0是一元二次方程,△=1﹣4m(1﹣m)=1﹣4m+4m2=(2m﹣1)2≥0,方程有两个实数解,②错误;把mx2+x﹣m+1=0分解为(x+1)(mx﹣m+1)=0,当x=﹣1时,m﹣1﹣m+1=0,即x=﹣1是方程mx2+x﹣m+1=0的根,③正确;故答案为①③.【点评】本题主要考查了根的判别式以及一元一次方程的解的知识,解答本题的关键是掌握根的判别式的意义以及分类讨论的思想.17.关于x的方程x2+2x﹣m=0有两个相等的实数根,则m= ﹣1 .【考点】根的判别式.【分析】根据方程有两个相等的实数根,判断出根的判别式为0,据此求出m的值即可.【解答】解:∵关于x的方程x2+2x﹣m=0有两个相等的实数根,∴△=0,∴22﹣4×1×(﹣m)=0,解得m=﹣1.故答案为;﹣1.【点评】本题考查了一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.18.若关于x的一元二次方程ax2+3x﹣1=0有两个不相等的实数根,则a的取值范围是a>﹣且a≠0 .【考点】根的判别式;一元二次方程的定义.【分析】根据一元二次方程的定义及判别式的意义可得a≠0且△=b2﹣4ac=32﹣4×a×(﹣1)=9+4a>0,解不等式组即可求出a的取值范围.【解答】解:∵关于x的一元二次方程ax2+3x﹣1=0有两个不相等的实数根,∴a≠0且△=b2﹣4ac=32﹣4×a×(﹣1)=9+4a>0,解得:a>﹣且a≠0.故答案为:a>﹣且a≠0.【点评】此题考查了根的判别式.一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.同时考查了一元二次方程的定义.19.关于x的一元二次方程x2﹣x+m=O没有实数根,则m的取值范围是m>.【考点】根的判别式.【分析】根据方程没有实数根,得到根的判别式小于0列出关于m的不等式,求出不等式的解集即可得到m的范围.【解答】解:根据方程没有实数根,得到△=b2﹣4ac=1﹣4m<0,解得:m>.故答案为:m>.【点评】此题考查了根的判别式,根的判别式大于0,方程有两个不相等的实数根;根的判别式等于0,方程有两个相等的实数根;根的判别式小于0,方程没有实数根.20.已知关于x的一元二次方程x2+2x+m=0有实数根,则m的取值范围是m≤1 .【考点】根的判别式.【专题】探究型.【分析】先根据一元二次方程x2+2x+m=0得出a、b、c的值,再根据方程有实数根列出关于m的不等式,求出m的取值范围即可.【解答】解:由一元二次方程x2+2x+m=0可知a=1,b=2,c=m,∵方程有实数根,∴△=22﹣4m≥0,解得m≤1.故答案为:m≤1.【点评】本题考查的是一元二次方程根的判别式,根据题意列出关于m的不等式是解答此题的关键.21.关于x的一元二次方程ax2+bx+=0有两个相等的实数根,写出一组满足条件的实数a,b的值:a= 4 ,b= 2 .【考点】根的判别式.【专题】开放型.【分析】由于关于x的一元二次方程ax2+bx+=0有两个相等的实数根,得到a=b2,找一组满足条件的数据即可.【解答】关于x的一元二次方程ax2+bx+=0有两个相等的实数根,∴△=b2﹣4×a=b2﹣a=0,∴a=b2,当b=2时,a=4,故b=2,a=4时满足条件.故答案为:4,2.【点评】本题主要考查了一元二次方程根的判别式,熟练掌握判别式的意义是解题的关键.22.已知关于x的方程x2﹣2x+a=0有两个实数根,则实数a的取值范围是a≤1 .【考点】根的判别式.【专题】计算题.【分析】由方程有两个实数根,得到根的判别式大于等于0,即可确定出a的范围.【解答】解:∵方程x2﹣2x+a=0有两个实数根,∴△=4﹣4a≥0,解得:a≤1,故答案为:a≤1【点评】此题考查了根的判别式,熟练掌握一元二次方程根的判别式与方程根的关系是解本题的关键.23.若一元二次方程(m﹣1)x2﹣4x﹣5=0没有实数根,则m的取值范围是m<.【考点】根的判别式;一元二次方程的定义.【分析】据关于x的一元二次方程(m﹣1)x2﹣4x﹣5=0没有实数根,得出△=16﹣4(m﹣1)×(﹣5)<0,从而求出m的取值范围.【解答】解:∵一元二次方程(m﹣1)x2﹣4x﹣5=0没有实数根,∴△=16﹣4(m﹣1)×(﹣5)<0,且m﹣1≠0,∴m<.故答案为:m<.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.24.关于x的一元二次方程x2+a=0没有实数根,则实数a的取值范围是a>0 .【考点】根的判别式.【专题】计算题.【分析】根据方程没有实数根,得到根的判别式小于0,求出a的范围即可.【解答】解:∵方程x2+a=0没有实数根,∴△=﹣4a<0,解得:a>0,故答案为:a>0【点评】此题考查了根的判别式,熟练掌握根的判别式的意义是解本题的关键.25.已知关于x的一元二次方程x2﹣2x﹣k=0有两个相等的实数根,则k值为﹣3 .【考点】根的判别式.【分析】因为方程有两个相等的实数根,则△=(﹣2)2+4k=0,解关于k的方程即可.【解答】解:∵关于x的一元二次方程x2﹣2x﹣k=0有两个相等的实数根,∴△=0,即(﹣2)2﹣4×(﹣k)=12+4k=0,解得k=﹣3.故答案为:﹣3.【点评】本题考查了一元二次方程根的判别式,当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.三、解答题(共5小题)26.已知关于x 的一元二次方程x 2﹣4x+m=0.(1)若方程有实数根,求实数m 的取值范围;(2)若方程两实数根为x 1,x 2,且满足5x 1+2x 2=2,求实数m 的值.【考点】根的判别式;根与系数的关系.【分析】(1)若一元二次方程有两实数根,则根的判别式△=b 2﹣4ac ≥0,建立关于m 的不等式,求出m 的取值范围;(2)根据根与系数的关系得到x 1+x 2=4,又5x 1+2x 2=2求出函数实数根,代入m=x 1x 2,即可得到结果.【解答】解:(1)∵方程有实数根,∴△=(﹣4)2﹣4m=16﹣4m ≥0,∴m ≤4;(2)∵x 1+x 2=4,∴5x 1+2x 2=2(x 1+x 2)+3x 1=2×4+3x 1=2,∴x 1=﹣2,把x 1=﹣2代入x 2﹣4x+m=0得:(﹣2)2﹣4×(﹣2)+m=0,解得:m=﹣12.【点评】本题考查了一元二次方程ax 2+bx+c=0(a ≠0)的根的判别式△=b 2﹣4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程根与系数的关系.27.已知:关于x 的方程x 2+2mx+m 2﹣1=0(1)不解方程,判别方程根的情况;(2)若方程有一个根为3,求m 的值.【考点】根的判别式;一元二次方程的解.【分析】(1)找出方程a ,b 及c 的值,计算出根的判别式的值,根据其值的正负即可作出判断;(2)将x=3代入已知方程中,列出关于系数m 的新方程,通过解新方程即可求得m 的值.【解答】解:(1)由题意得,a=1,b=2m ,c=m 2﹣1,∵△=b 2﹣4ac=(2m )2﹣4×1×(m 2﹣1)=4>0,∴方程x 2+2mx+m 2﹣1=0有两个不相等的实数根;(2)∵x 2+2mx+m 2﹣1=0有一个根是3,∴32+2m×3+m2﹣1=0,解得,m=﹣4或m=﹣2.【点评】此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.也考查了一元二次方程的解的定义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.即用这个数代替未知数所得式子仍然成立.28.已知关于x的一元二次方程(x﹣3)(x﹣2)=|m|.(1)求证:对于任意实数m,方程总有两个不相等的实数根;(2)若方程的一个根是1,求m的值及方程的另一个根.【考点】根的判别式;一元二次方程的解;根与系数的关系.【分析】(1)要证明方程有两个不相等的实数根,即证明△>0即可;(2)将x=1代入方程(x﹣3)(x﹣2)=|m|,求出m的值,进而得出方程的解.【解答】(1)证明:∵(x﹣3)(x﹣2)=|m|,∴x2﹣5x+6﹣|m|=0,∵△=(﹣5)2﹣4(6﹣|m|)=1+4|m|,而|m|≥0,∴△>0,∴方程总有两个不相等的实数根;(2)解:∵方程的一个根是1,∴|m|=2,解得:m=±2,∴原方程为:x2﹣5x+4=0,解得:x1=1,x2=4.即m的值为±2,方程的另一个根是4.【点评】此题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.同时考查了一元二次方程的解的定义.29.已知关于x的一元二次方程mx2﹣(m+2)x+2=0.(1)证明:不论m为何值时,方程总有实数根;(2)m 为何整数时,方程有两个不相等的正整数根.【考点】根的判别式;解一元二次方程-公式法.【专题】证明题.【分析】(1)求出方程根的判别式,利用配方法进行变形,根据平方的非负性证明即可;(2)利用一元二次方程求根公式求出方程的两个根,根据题意求出m 的值.【解答】(1)证明:△=(m+2)2﹣8m=m 2﹣4m+4=(m ﹣2)2,∵不论m 为何值时,(m ﹣2)2≥0,∴△≥0,∴方程总有实数根;(2)解:解方程得,x=,x 1=,x 2=1,∵方程有两个不相等的正整数根,∴m=1或2,m=2不合题意,∴m=1.【点评】本题考查的是一元二次方程根的判别式和求根公式的应用,掌握一元二次方程根的情况与判别式△的关系:△>0⇔方程有两个不相等的实数根;△=0⇔方程有两个相等的实数根;△<0⇔方程没有实数根是解题的关键.30.已知关于x 的一元二次方程mx 2+mx+m ﹣1=0有两个相等的实数根.(1)求m 的值;(2)解原方程.【考点】根的判别式.【分析】(1)根据题意得到:△=0,由此列出关于m 的方程并解答;(2)利用直接开平方法解方程.【解答】解:(1)∵关于x 的一元二次方程mx 2+mx+m ﹣1=0有两个相等的实数根,∴△=m 2﹣4×m ×(m ﹣1)=0,且m ≠0,解得m=2;(2)由(1)知,m=2,则该方程为:x 2+2x+1=0,即(x+1)2=0,解得x 1=x 2=﹣1.【点评】本题考查了一元二次方程ax 2+bx+c=0(a ≠0)的根的判别式△=b 2﹣4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.。