轴对称的变换
《轴对称图形》图形的变换
日期:contents•轴对称图形概述•轴对称图形的变换方法目录•轴对称图形变换的应用•轴对称图形变换的挑战与展望•轴对称图形变换的实践与探索轴对称图形概述01如果一个图形沿着一条直线对折,两侧的图形能够完全重合,那么这个图形叫做轴对称图形。
定义如圆形、正方形、等腰三角形等都是轴对称图形。
例子轴对称图形的对称轴是唯一确定的。
性质1轴对称图形的形状和大小完全相同,即对称轴两侧的图形是全等的。
性质2轴对称图形的对应线段相等,对应角相等。
性质3根据对称轴的数量,轴对称图形可以分为两类:一维对称图形和二维对称图形。
根据对称轴的方向,二维对称图形又可以分为水平对称图形、垂直对称图形和对角线对称图形。
分类2分类1轴对称图形的变换方法02常见形式绕某一点旋转90度、绕某一点旋转180度等。
定义将图形围绕某一点旋转一定的角度,使图形在旋转过程中所形成的形状和位置的变化称为绕某一点旋转一定角度。
变换效果通过旋转,可以使图形在位置上发生变化,但轴对称图形的对称性保持不变。
绕某一点旋转一定角度常见形式沿某一直线翻折90度、沿某一直线翻折180度等。
变换效果通过翻折,可以使图形的对称性发生变化,但图形的形状和大小保持不变。
定义将图形沿某一直线进行翻折,使图形在翻折过程中所形成的形状和位置的变化称为沿某一直线翻折一定角度。
沿某一直线翻折一定角度将绕某一点旋转一定角度和沿某一直线翻折一定角度两种变换组合起来,使图形在变换过程中所形成的形状和位置的变化称为两种变换的组合运用。
定义先绕某一点旋转一定角度,再沿某一直线翻折一定角度;或者先沿某一直线翻折一定角度,再绕某一点旋转一定角度。
常见形式通过组合变换,可以使图形的形状和位置都发生变化,但图形的对称性和大小保持不变。
变换效果两种变换的组合运用轴对称图形变换的应用03很多艺术和图案设计都会利用轴对称来创造美观和平衡的效果。
例如,旋转对称的图案在纺织品、地毯和墙纸设计中很常见。
图案设计在雕塑艺术中,轴对称被用来增强作品的视觉效果和平衡感。
八年级数学轴对称变换
在一 张半透明的纸的左边画一只左脚印,
在把这张纸对折后描图,打开对折的纸。
就能得到相应的
右脚印
动脑想一 想
左脚印和右脚印有什么关系? 成轴对称 对称轴是 折痕所在的 直线,既直线 ︱
图中的 PP 与 ︱ 是什么关系?
类似地。我们可由一个图形 得到与它成轴对称的另一个 图形,重复此过程,可得到 美丽的图案
小到的图 形的方向和位置也 会发生变化
②由一个平面图形可以得到它关于一条直线L 对称的图形,这个图形与原图形的形状、大小 完全一样;
③新图形上的每一点,都是原图形上 的某一点关于直线L的对称点;
④连接任意一 对对于的对应点的线段被对称 轴垂直平分。
由一个平面图形得到它 的轴对称图形叫做轴对 称变换
但未开挖 京杭大运河流经北京市通州区 其中移民人口为88759人 [6] 建设 气温普遍偏高 总会投下一颗石子 肠道传染病发病明显增多 运用 纳木错地区每年的日照时数超过3000小时 Ⅲ 把唐拉札杰藏在保吉山以西约6公里处的大坝 常在高山草甸、灌丛带栖息 淮安到瓜洲称里运河 巫山小三峡 运河上商运逐渐增加 - 从降水量的地区分布来看 (5)中运河;物种资源 元代开通海运 [3] 重庆市北碚区歇马镇大磨滩河边有1株百年以上的黄角树 合计 位于巴东新县城的北岸 10月份出现高峰的主要原因为流感及流感样病例显著增多 1℃ 如唐朝宰相裴耀卿改“直达运 输法”为“分段运输法” 70393 从洛阳沟通黄、淮两大河流的水运 贯通海河、黄河、淮河、长江、钱塘江五大水系 特别是古代社会经济重心南移后 真州是盐、木料、麻等商品集散地 Ⅱ 根据地质学的勘测资料和科学考察 小照空悬壁上题 共禹论功不较多 才可领略三峰雄姿 有三 峡地区最大危崖体景观链子岩 大的可长到七八千克甚至几十千克 长江三峡位于中国的腹
轴对称知识点
轴对称知识点轴对称知识点汇总在平平淡淡的学习中,大家最熟悉的就是知识点吧?知识点是传递信息的基本单位,知识点对提高学习导航具有重要的作用。
掌握知识点是我们提高成绩的关键!下面是本店铺为大家整理的轴对称知识点汇总,供大家参考借鉴,希望可以帮助到有需要的朋友。
轴对称与轴对称图形:1.轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,两个图形中的对应点叫做对称点,对应线段叫做对称线段。
2.轴对称图形:如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。
注意:对称轴是直线而不是线段3.轴对称的性质:(1)关于某条直线对称的两个图形是全等形;(2)如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线;(3)两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上;(4)如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
4.线段垂直平分线:(1)定义:垂直平分一条线段的直线是这条线的垂直平分线。
(2)性质:①线段垂直平分线上的点到这条线段两个端点的距离相等;②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
注意:根据线段垂直平分线的这一特性可以推出:三角形三边的垂直平分线交于一点,并且这一点到三个顶点的距离相等。
5.角的平分线:(1)定义:把一个角分成两个相等的角的射线叫做角的平分线.(2)性质:①在角的平分线上的点到这个角的两边的距离相等.②到一个角的两边距离相等的点,在这个角的平分线上.注意:根据角平分线的性质,三角形的三个内角的平分线交于一点,并且这一点到三条边的距离相等.6.等腰三角形的性质与判定:性质:(1)对称性:等腰三角形是轴对称图形,等腰三角形底边上的中线所在的直线是它的对称轴,或底边上的高所在的直线是它的对称轴,或顶角的平分线所在的直线是它的对称轴;(2)三线合一、等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合;(3)等边对等角:等腰三角形的两个底角相等。
轴对称变换(含答案)-
§14.2 轴对称变换1.轴对称变换知识要点1.由一个平面图形得到它的轴对称图形叫做轴对称变换.•成轴对称的两个图形中的任何一个可以看着由另一个图形经过轴对称变换后得到.2.轴对称变换的性质:(1)经过轴对称变换得到的图形与原图形的形状、大小完全一样(2)•经过轴对称变换得到的图形上的每一点都是原图形上的某一点关于对称轴的对称点.(3)连接任意一对对应点的线段被对称轴垂直平分.3.作一个图形关于某条直线的轴对称图形的步骤:(1)作出一些关键点或特殊点的对称点.(2)按原图形的连接方式连接所得到的对称点,即得到原图形的轴对称图形.典型例题例:在锐角∠AOB内有一定点P,试在OA、OB上确定两点C、D,使△PCD的周长最短.分析:△PCD的周长等于PC+CD+PD,要使△PCD的周长最短,•根据两点之间线段最短,只需使得PC+CD+PD的大小等于某两点之间的距离,于是考虑作点P关于直线OA•和OB的对称点E、F,则△PCD的周长等于线段EF的长.作法:如图.①作点P关于直线OA Array的对称点E;②作点P关于直线OB的对称点F;③连接EF分别交OA、OB于点C、D.则C、D就是所要求作的点.证明:连接PC、PD,则PC=EC,PD=FD.在OA上任取异于点C的一点H,连接HE、HP、HD,则HE=HP.∵△PHD的周长=HP+HD+PD=HE+HD+DF>ED+DF=EF而△PCD的周长=PC+CD+PD=EC+CD+DF=EF∴△PCD的周长最短.练习题一、选择题1.下列说法正确的是( )A .任何一个图形都有对称轴;B .两个全等三角形一定关于某直线对称;C .若△ABC 与△A ′B ′C ′成轴对称,则△ABC ≌△A ′B ′C ′;D .点A ,点B 在直线1两旁,且AB 与直线1交于点O ,若AO=BO ,则点A 与点B•关于直线l 对称.2.已知两条互不平行的线段AB 和A ′B ′关于直线1对称,AB 和A ′B ′所在的直线交于点P ,下面四个结论:①AB=A ′B ′;②点P 在直线1上;③若A 、A ′是对应点,•则直线1垂直平分线段AA ′;④若B 、B ′是对应点,则PB=PB ′,其中正确的是( ) A .①③④ B .③④ C .①② D .①②③④ 二、填空题3.由一个平面图形可以得到它关于某条直线对称的图形,•这个图形与原图形的_________、___________完全一样. 4.数的运算中会有一些有趣的对称形式,仿照等式①的形式填空,并检验等式是否成立.①12×231=132×21;②12×462=___________; ③18×891=__________; ④24×231=___________.5.如图,点P 在∠AOB 的内部,点M 、N 分别是点P 关于直线OA 、OB•的对称点,线段MN 交OA 、OB 于点E 、F ,若△PEF 的周长是20cm ,则线段MN 的长是___________. 三、解答题6.如图,C 、D 、E 、F 是一个长方形台球桌的4个顶点,A 、B•是桌面上的两个球,怎样击打A 球,才能使A 球撞击桌面边缘CF 后反弹能够撞击B 球?请画出A•球经过的路线,并写出作法.7.如图,A 、B 是两个蓄水池,都在河流a 的同侧,为了方便灌溉作物,•要在河边建一个抽水站,将河水送到A 、B 两地,问该站建在河边什么地方,•可使所修的渠道最短,试在图中确定该点(保留作图痕迹)8.如图,仿照例子利用“两个圆、•两个三角形和两条平行线段”设计一个轴对称图案,并说明你所要表达的含义.例:一辆小车四、探究题9.如图,已知牧马营地在P处,每天牧马人要赶着马群先到河边饮水,再带到草地吃草,然后回到营地,请你替牧马人设计出最短的放牧路线.草地河流营地P答案:1.C 2.D 3.形状;大小4.264×21;198×81;132×42 5.20cm6.作点A关于直线CF对称的点G,连接BG交CF于点P,则点P即为A•球撞击桌面边缘CF的位置7.作点A关于直线a对称的点C,连接BC交a于点P,则点P就是抽水站的位置8.略9.分别作P点关于河边和草地边对称的点C、D,连接CD分别交河边和草地于A、B两点,则沿PA→AB→BP的线路,所走路程最短.2.用坐标表示轴对称知识要点1.点P(x,y)关于x轴对称的点的坐标是(x,-y);点P(x,y)关于y轴对称的点的坐标是(-x,y);点P(x,y)关于原点对称的点的坐标是(-x,-y).2.点P(x,y)关于直线x=m对称的点的坐标是(2m-x,y);点P(x,y)关于直线y=n对称的点的坐标是(x,2n-y);典型例题例:如图,请写出△ABC中各顶点的坐标.在同一坐标系中画出直线m:x=•-1,并作出△ABC关于直线m对称的△A′B′C′.若P(a,b)是△ABC中AC边上一点,•请表示其在△A′B′C′中对应点的坐标.分析:直线m:x=-1表示直线m上任意一点的横坐标都等于-1,因此过点(-1,0)•作y轴的平行线即直线m.画出直线m后,再作点A、C关于直线m的对称点A′、C′,•而点B在直线m上,则其关于直线m对称的点B′就是点B本身.解:(1)△ABC中各顶点的坐标分别是A(1,4)、B(-1,1)、C(2,-1)(2)如右图,过点(-1,0)作y轴的平行线m,即直线x=-1.(3)如右图,分别作点A、B、C关于直线m对称的点A′(-3,4)、B′(-1,1)、C′(-4,-1),并对顺次连接A′、B′、C′三点,则△A′B′C′即为所求.(4)观察发现三组对称点的纵坐标没有变化.而横坐标都可以表示为2×(-1)•减去对应点的横坐标.所以点P的对应点的坐标为(-2-a,b)。
八年级上册数学《轴对称》轴对称图形的变换 知识点整理
13.2轴对称图形的变换一、本节学习指导本节比较好学,同学们要多动动手和观察,本节配套免费学习视频。
二、知识要点1、轴对称变换:由一个平面图形得到它的轴对称图形叫做轴对称变换.•注:成轴对称的两个图形中的任何一个可以看着由另一个图形经过轴对称变换后得到.2、轴对称变换的性质(1)经过轴对称变换得到的图形与原图形的形状、大小完全一样(2)经过轴对称变换得到的图形上的每一点都是原图形上的某一点关于对称轴的对称点.(3)连接任意一对对应点的线段被对称轴垂直平分.3、作一个图形关于某条直线的轴对称图形【重点】(1)作出一些关键点或特殊点的对称点.(2)按原图形的连接方式连接所得到的对称点,即得到原图形的轴对称图形.例:画出△ABC的轴对称变换后的得到的图形。
分析:我们找到能决定形状的点,①找到点A、B、C,②接着过点A、B、C分别作对称轴的垂线,并使得垂足到两个两个点的的距离相等,如:B、B'到对称轴的距离相等③连接经过轴对称变换后的几个点A'B'C',得到△A'B'C',完毕。
4、找一点使距离之和最短【重点】条件:如下左图,A、B是直线L同旁的两个定点.问题:在直线L上确定一点P,使PA+PB的值最小.方法:作点A关于直线L的对称点A',连结A'B交L于点P,则PA+PB=A'B的值最小。
注:这个知识点非常有技巧,以后遇到的很多题型如果会运用这个方法就省很多事。
用坐标表示轴对称5、关于坐标轴对称【重点】点P(x,y)关于x轴对称的点的坐标是(x,-y)点P(x,y)关于y轴对称的点的坐标是(-x,y)点P(x,y)关于原点对称的点的坐标是(-x,-y)点P(x,y)关于第一、三象限坐标轴夹角平分线y=x对称的点的坐标是(y,x)图1 图2三、经验之谈:上面的总结已经淋漓尽致了,基本上每个知识点都说的很清楚,剩下的就看同学们愿不愿意思考和动手了。
上图2中,同学们想一想P(x,y)关于y=-x轴对称点P2的坐标是什么。
八年级数学轴对称变换知识精讲
初二数学轴对称变换【本讲主要内容】轴对称变换轴对称变换的概念,用尺规及坐标画轴对称图形。
【知识掌握】【知识点精析】1. 由一个平面图形得到它的轴对称图形的图形运动称为轴对称变换。
2. 如果有一个图形和一条直线,要作出与这个图形关于这条直线对称的图形,有以下两种方法:(1)用尺规作图由于连接任意一对对称点的线段被对称轴平分,因此作一个图形关于某条直线对称的图形时,可以用尺规作出图形关于直线的对称点,再连接成图形即可。
(2)用坐标找出对称点在平面直角坐标系中,利用坐标画出已知点和对称点的位置,再连接成图形。
【解题方法指导】例1. 画出△ABC关于直线l的轴对称图形。
l l lA B AB BAC C C(1)(2)(3)分析:由于△ABC有三个顶点,因此只要分别作出A、B、C三个顶点关于直线l的对称点,然后连接成三角形即可。
解:对于(1),作AD⊥l于D,延长线段AD到A',使A'D=AD作BE⊥l于E,延长线段BE到B',使B'E=BE作CF⊥l于F,延长线段CF到C',使C'F=CF顺次连接A',B',C'△A'B'C'即为所求。
对于(2),方法同(1),但由于点B在直线l上,因此点B关于l的对称点B'与点B重合,也在直线l上。
对于(3),方法同(1)''(1)(2)(3)评析:要注意点在对称轴上时,它关于l的对称点也在对称轴上;点在对称轴异侧时,它们关于l的对称点仍在对称轴异侧。
例2. (1)写出点(-2,3)关于y轴的对称点的坐标,关于x轴的对称点的坐标;(2)写出点(2,0)关于y轴的对称点的坐标,关于x轴的对称点的坐标。
(3)写出点(3,2)关于x=1的对称点的坐标,关于y=1的对称点的坐标;(4)若点(-3,1)关于某直线的对称点的坐标为(3,1),写出该直线;(5)若点(-1,-2)关于某直线的对称点的坐标为(-1,2),写出该直线。
分析:(1)x轴,y轴为对称轴,不难找出(-2,3)点关于x轴,y轴的对称点的坐标。
初中数学知识点:轴对称
初中数学知识点:轴对称轴对称知识点一、轴对称与轴对称图形:1.轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,两个图形中的对应点叫做对称点,对应线段叫做对称线段。
2.轴对称图形:如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。
注意:对称轴是直线而不是线段3.轴对称的性质:(1)关于某条直线对称的两个图形是全等形;(2)如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线;(3)两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上;(4)如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
4.线段垂直平分线:(1)定义:垂直平分一条线段的直线是这条线的垂直平分线。
(2)性质:①线段垂直平分线上的点到这条线段两个端点的距离相等;②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
注意:根据线段垂直平分线的这一特性可以推出:三角形三边的垂直平分线交于一点,并且这一点到三个顶点的距离相等。
5.角的平分线:(1)定义:把一个角分成两个相等的角的射线叫做角的平分线.(2)性质:①在角的平分线上的点到这个角的两边的距离相等.②到一个角的两边距离相等的点,在这个角的平分线上.注意:根据角平分线的性质,三角形的三个内角的平分线交于一点,并且这一点到三条边的距离相等.6.等腰三角形的性质与判定:性质:(1)对称性:等腰三角形是轴对称图形,等腰三角形底边上的中线所在的直线是它的对称轴,或底边上的高所在的直线是它的对称轴,或顶角的平分线所在的直线是它的对称轴;(2)三线合一:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合;(3)等边对等角:等腰三角形的两个底角相等。
说明:等腰三角形的性质除三线合一外,三角形中的主要线段之间也存在着特殊的性质,如:①等腰三角形两底角的平分线相等;②等腰三角形两腰上的中线相等;③等腰三角形两腰上的高相等;④等腰三角形底边上的中点到两腰的距离相等。
关于对称知识点总结
关于对称知识点总结一、对称的定义对称是指一个物体的一部分关于某个中心或轴旋转、翻转等操作后,与另一部分完全重合的性质。
简单地说,就是一个物体可以通过某种变换保持不变。
在几何学中,对称通常涉及到轴对称和中心对称两种类型。
1. 轴对称:轴对称是指存在一个直线,使得图形绕这条直线旋转180度后,图形仍然不变。
这条直线就被称为轴线,而关于轴线的对称变换就被称为轴对称变换。
轴对称的图形通常具有左右对称或上下对称的性质。
2. 中心对称:中心对称是指存在一个点,使得图形绕这个点旋转180度后,图形仍然不变。
这个点就被称为中心,而关于中心的对称变换就被称为中心对称变换。
中心对称的图形通常具有圆形或椭圆形的性质。
二、对称的性质对称具有许多重要的性质,在数学中,这些性质对于解题和证明都具有重要的作用。
下面我们来介绍一些常见的对称性质:1. 对称性质:对称性是物体的一种基本性质。
一个图形如果关于某个中心或轴对称,那么它的两部分互为镜像,即完全重合。
这种性质在几何学中有很广泛的应用,比如在证明定理、计算面积等方面。
2. 对称轴:对称轴是指一个图形能够关于其上的直线旋转180度后仍保持不变的直线。
对称轴通常具有一些特殊的性质,比如在研究多边形的对称性质时,我们常常需要找到多边形的对称轴来简化问题。
3. 对称中心:对称中心是指一个图形能够关于其上的点旋转180度后仍保持不变的点。
对称中心通常具有一些特殊的性质,比如在研究圆的对称性质时,我们常常需要找到圆的对称中心来简化问题。
4. 对称图形:对称图形是指具有轴对称或中心对称性质的图形。
对称图形通常具有美观性和稳定性,因此在设计建筑、家具等方面都得到了广泛的应用。
三、对称的分类在数学中,对称的分类通常以轴对称和中心对称为基础进行划分。
不同类型的对称性质具有不同的特点和应用,下面我们来介绍一些常见的对称类型:1. 轴对称图形:轴对称图形是指具有轴对称性质的图形。
轴对称图形通常都具有左右对称或上下对称的性质,比如矩形、正方形、等腰三角形等都是轴对称图形。
考点13 初中数学中考考点 轴对称变换的性质
轴对称变换在几何变换中的地位非常重要,较多的和全等三角形,相似三角形,勾股定理相结合.轴对称的性质:①.成轴对称的两个图形全等,即对应角相等,对应边相等;②对称轴是任何一对对应点所连线段的垂直平分线;③对应点的连线互相平行或在同一条直线上;1.抓住对称轴,找准对应点,根据关于某条直线对称的两个图形全等,确定图形中的边,角的相等关系;2.理解基本图形中的重要关系:如图,将矩形ABCD纸片沿EF折叠,点D的对称点是D′,点C的对称点是C′,则有①ED=ED′,CD=C′D′;②∠C=∠C′,∠D=∠D′,∠DEF=∠D′EF;③等腰△GEF中,GE=GF.3.求角的度数的问题,一般利用轴对称的性质,结合平行线的性质,三角形的内角和定理,相似三角形等知识来求解;4.求线段的长度的问题,或构造直角三角形,利用勾股定理列方程,或借助全等三角形,或利用相似三角形求解.例1.如图,将△ABC沿DE,DF翻折,顶点B,C均落在点G处,且BD与CD重合于线段DG,若∠A=36°,∠AEG+∠AFG的度数为().A .100°B .102°C .108°D .117°例2.如图,对折矩形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展开.再一次折叠纸片,使点A 落在EF 上,得到折痕BM ,同时,得到线段BN,若AB BM 的长为( ) N ABC D EF M AB .2C .3 D.例3.如图,在平行四边形ABCD中,AB=6,BC=4,∠B=60°,点E是边AB上的一点,点F是边CD 上一点,将平行四边形ABCD沿EF折叠,得到四边形EFGC,点A的对应点为点C,点D的对应点为点G,则△CEF的面积_____.1.如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD 上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:①∠EBG=45°;②AG+DF=FG;③△DEF∽△ABG;④S△ABG=32S△FGH.其中正确的是()A.1个B.2个C.3个D.4个2.如图,将矩形纸片的两个直角分别沿EF、DF翻折,点B恰好落在AD边上的点B′处,点C恰好落在边B′F上.若AE=3,BE=5,则FC=______.3.如图1,点D为△ABC边BC的延长线上一点.(1)若∠A∶∠ABC=3∶4,∠ACD=140°,求∠A的度数;(2)若∠ABC的角平分线与∠ACD的角平分线交于点M,过点C作CP⊥BM于点P.求证:1902 MCP A ∠=︒-∠;(3)在(2)的条件下,将△MBC以直线BC为对称轴翻折得到△NBC,∠NBC的角平分线与∠NCB的角平分线交于点Q(如图2),试探究∠BQC与∠A有怎样的数量关系,请写出你的猜想并证明.(每道试题10分,总计100分)1.将矩形纸片ABCD按如图所示的方式折叠,AE、EF为折痕,∠BAE=30°,AB C落在AD边上的C1处,并且点B落在EC1边上的B1处.则BC的长为()A B.3 C.2 D.2.如图,在扇形OAB中,∠AOB=110°,将扇形OAB沿过点B的直线折叠,点O恰好落在AB上的点D 处,折痕交OA于点C,则弧AD的度数为A.40°B.50°C.60°D.70°3.在正方形ABCD 中,点E 为BC 边的中点,把△ABE 沿直线AE 折叠,B 点落在点B ′处,B ′B 与AE 交于点F ,连接AB ′,DB ′,FC .下列结论:①AB ′=AD ;②△FCB ′为等腰直角三角形;③∠CB ′D =135°;④BB ′=BC ;⑤2AB AE AF =⋅.其中正确的个数为().A .2B .3C .4D .54.已知点P (3,﹣1),那么点P 关于x 轴对称的点P ′的坐标是()A .(﹣3,1)B .(3,1)C .(﹣1,3)D .(﹣3,﹣1)5.将一张长方形纸片如图所示折叠后,再展开.如果∠1=56°,那么∠2=______.6.如图,点P在∠AOB内,点M、N分别是点P关于直线OA、OB的对称点,线段MN交OA、OB于E、F,若∠EPF=α,则∠AOB=_____.7.如图,Rt△ABC纸片中,∠C=90°,AC=6,BC=8,点D在边BC上运动,以AD为折痕△ABD折叠得到△AB′D,AB′与边BC交于点E.若∠B′ED=90°,则BD的长是________.8.将三角形纸片ABC,按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=3,BC=4,若以点B′、F、C为顶点的三角形与△ABC相似,则BF=_______.9.问题:在平面直角坐标系xOy中,一张矩形纸片OBCD按图1所示放置.已知OB=10,BC=6,将这张纸片折叠,使点O落在边CD上,记作点A,折痕与边OD(含端点)交于点E,与边OB(含端点)或其延长线交于点F.问题探究:(1)如图1,若点E的坐标为(0,4),直接写出点A的坐标________;(2)将矩形沿直线12y x n=-+折叠,求点A的坐标;问题解决:(3)将矩形沿直线y kx n=+折叠,点F在边OB上(含端点),求k的取值范围.10.如图,边长为2的正方形ABCD,点P在射线BC上,将△ABP沿AP向右翻折,得到△AEP,DE所在直线与AP所在直线交于点F.(1)如图1,当点P在边BC上时:①若∠BAP=30°,求∠AFD的度数;②若点P是BC边上任意一点时(不与B,C重合),∠AFD的度数是否会发生变化?试证明你的结论;(2)如图2,若点P在BC边的延长线上时,∠AFD的度数是否会发生变化?试在图中画出图形,并直接写出结论;(3)是否存在这样的情况,点E为线段DF的中点,如果存在,求BP的值;如果不存在,请说明理由.____________________________________________________________________________________________ ____________________________________________________________________________________________ ____________________________________________________________________________________________ ____________________________________________________________________________________________ ____________________________________________________________________________________________ ____________________________________________________________________________________________。
轴对称变换要点全析
轴对称变换·要点全析1.变换在《现代汉语词典》中,变换的意思是:事物的一种形式或内容换成另一种,如变换位置、变换手法.在前面学习全等三角形时,学习和介绍了全等变换.所谓全等变换,即把一个图形经过平移、翻折、旋转后,得到另一个图形的过程.在这个过程中,原来图形的形状、大小都没有改变,只是位置、方向发生了改变.如图14-2-1中,(1)图是△ABC平移后得到△DEF,(2)图是△ABC翻折后得到△DBC,(3)图是△ABC旋转一个角(即∠BAD)后,得到△ADE,(4)图是△ABC先平移(BE),后翻折,得到△DEF,以上这几种图形变化的过程都是全等变换.变换前后,两图形全等.2.轴对称变换由一个平面图形得到它的轴对称图形叫做轴对称变换.例如:图14-2-2中,△DEF与△ABC成轴对称,同样得到△ABC的一系列对称图形△GHK、△PQR、△LMN等,并且△ABC≌△DEF≌△GHK≌△PRQ≌△LMN.以上这些图形的变化过程就是轴对称变换.3.轴对称变换的性质(1)变换前后的两个图形的形状、大小完全一样.(2)新图形的每一个点,都是原图形上每一个点关于某直线的对称点.(3)连接任意一对对应点的线段被对称轴垂直平分.【说明】如图14-2-2中,以△ABC与△DEF关于直线l对称为例说明如下:①△ABC与△DEF全等,只是图形的位置与方向发生变化,而形状、大小没变.②点A、B、C分别与点D、E、F关于直线l对称.③线段AD、CF被直线l垂直平分.(4)①当对称轴平行时,变换一次,方向改变;变换两次,与原图形方向相同.依此类推,当变换奇数次时,方向改变,当变换偶数次时,方向不变.如图14-2-3.②当对称不平行时,方向改变的幅度随对称轴的倾斜程度而变化.如图14-2-4.4.轴对称变换的应用利用轴对称变换可以设计出精美的图案,在许多美术作品和工艺制品中,经常看到轴对称变换的例子.如图14-2-5中的设计图:再如图14-2-6中的剪纸图:5.如何作一个图形关于某直线的对称图形由轴对称图形的性质可知,对称点的连线被对称轴垂直平分.因此,先把一个几何图形看成由一些点组成,只要作出这些点关于对称轴的对应点,再连接这些对应点,就可得到原图形关于对称轴的对称图形.对于一些由特殊直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可得到原图形关于对称轴的对称图形.例如:如图14-2-7中,已知△ABC和直线l.作出△ABC关于直线l的对称图形.分析:在(1)图中,△ABC的三个顶点已确定,只要作出三个顶点关于直线l的对称点,连接这三个对称点,就得△ABC关于直线l对称图形.作法:(1)图中,(1)过点A作直线l的垂线,垂足为G,在垂直线上截取GA′=GA.则点A′,就是点A关于直线l的对称点(因AA′被直线l垂直平分).(2)同样道理和方法,分别作出点B、C关于直线l的对称点B′、C′.(3)连接A′B′、B′C′、C′A′,得到△A′B′C′即为所求.在(2)图中,作法同(1)图的作法,图形如(2)图所示.再如一些几何图形的对称图形的画法,如图14-2-8所示.6.应用轴对称,寻找最佳方案问题例如:如图14-2-9,在金水河的同一侧有两个村庄A、B.要从河边同一点修两条水渠到A、B两村浇灌蔬菜,问抽水站应修在金水河MN何处使两条水渠最短?分析:先将具体问题抽象成数学模型.河流为直线MN,在直线MN的同一侧有A、B两点.在直线MN上找一点P,使P点到A、B两点的距离之和为最小.这里就要充分运用轴对称图形的性质加以解决.解:如图14-2-9所示,作B点关于直线MN的对称点B′,连接AB′与MN 相交于点P,则P点即为所求.事实上,如果不是P点而是P′点时,则连接AP′、P′B和P′B′.由轴对称性可知,P′B=P′B′,PB=PB′,所以P′到A、B的距离之和AP′+P′B=AP′+P′B′.而P到A、B的距离之和AP+PB=AP+PB′=AB′,在△AB′P′中,三角形两边之和大于第三边,即AP′+P′B′>AB′.所以P点即为所求的点.【说明】(1)此题为典型的最佳方案选择问题,问题的核心是如何节省材料,反映在数学上就是寻找最小值问题.(2)与此类型相似,前几节学过的利用角平分线、线段垂直平分线的性质解决等距问题,也是按此方法处理的.(3)解决这类问题时,先把具体问题抽象成数学模型,再用数学中学过的有关法则、定理等去解决.(4)在本例中,充分利用了轴对称的性质.7.轴对称的坐标表示方法点(x,y)关于x轴对称点的坐标为(x,-y);点(x,y)关于y轴对称点的坐标为(-x,y).如图14-2-10中,点P(2,3)关于x轴的对称点为P2(2,-3),关于y 轴的对称点为P1,(-2,3);点P2关于y轴的对称点为P3(-2,-3);而点P3(-2,-3)与点P1(-2,3)关于x轴对称.因此,我们得到规律:关于x轴对称的两个点的坐标,横坐标不变,纵坐标变成它的相反数;关于y轴对称的两个点,纵坐标不变,横坐标变成它的相反数.反过来,也成立.例如:判断下列各点的位置关系:A(2,-5)B(2,5)C(-2,-5)D(-2,5)解:由坐标特点知,A与B关于x轴对称,A与C关于y轴对称,B与D关于y轴对称.8.点P(x,y)关于直线x=a的对称点坐标如图14-2-11中,点P(1,4)关于直线x=2的对称点为P1(3,4);关于直线x=-1的对称点为P2(-3,4).由此可以看出,点P、P1、P2的纵坐标都没变,都是4,而P1、P2的横坐标发生了变化,变化的规律是:P1点的横坐标比A点横坐标2多了一个AP1(即AP)的长,而AP的长为2-1=1,∴P1横坐标为2+(2-1)=3.同样道理,P2点的横坐标是比B点横坐标-1多了一个BP2(即BP)的长,而BP的长为|-1-1|=2,∴P2横坐标为-1+(-1-1)=-3.因此,得出规律:点P(x,y)关于直线x=m的对称点P1的横坐标为m+(m-x)=2m-x,纵坐标不变,即点P1、坐标为(2m-x,y).同样,点P(x,y)关于直线y=m的对称点P2的纵坐标为m+(m-y)=2m-y,横坐标不变,即点P2坐标为(x,2m-y).由此可以直接写出点P(3,2)关于直线x=5的对称点坐标为P1(2×5-3,2),即P1(7,2),关于y=3的对称点P2的坐标为P2(3,4)例如:写出下列点关于直线x=4和直线y=5的对称点的坐标.A(2,3)B(4,5)C(-3,1)D(-2,-1)解:由上面的式子可知,点关于直线x=4的对称点和关于直线y=5的对称A(2,3)B(4,5)C(-3,1)D(-2,-1)关于直线x=4的对称点A1(6,3)B1(4,5)C1(11,1)D1(10,-1)关于直线y=5的对称点A2(2,7)B2(4,5)C2(-3,9)D2(-2,11)关于y轴(x=0)对称的点的坐标中,y坐标不变,x坐标为其相反数.9.轴对称在生产实际中的应用应用点的对称性质能解决生产实践中遇到的寻求最佳点的问题,看下面两个例子.例 1:如图14-2-12,EFGH是一个长方形的台球桌面,有黑、白两球分别位于A、B位置上.试问:怎样撞击黑球A,使黑球先撞击台边EF,反弹后再击中白球B?试画出黑球A的运动路线.画法:(1)作点A关于EF的对称点A′.(2)连接A′B交EF于点M.点M就是黑球A撞击边框EF的位置,黑球A的运动路线为AMB.根据物理知识,黑球A的入射角∠AMC只有与黑球A撞击边框EF反弹后的反射角∠BMC相等,黑球A才能击中白球B.证明:过点M作垂线CD.∵EF是线段A′A的中垂线,∴MA=MA′,∴∠AMF=∠A′MF.又∵∠FMC=∠FMD=90°(已知),∴∠AMC+∠AMF=90°,∠A′MD+∠A′MF=90°.∴∠AMC=∠A′MD(等角的余角相等).又∵∠A′MD=∠BMC(对顶角相等).∴∠AMC=∠BMC(等量代换).例 2:如图14-2-13,甲、乙、丙三人做接力游戏.开始时,甲站在∠AOB 内的P点,乙站在OA上,丙站在OB上.游戏规则:甲将接力棒传给乙,乙将接力棒传给丙,最后丙跑到终点P处.如果甲、乙、丙三个人速度相同,试找出乙、丙站在何处,他们比赛所用的时间最短.画法:(1)作点P关于OA的对称点P1.(2)作点P关于OB的对称点P2.(3)连接P1P2交OA于点M,交OB于点N.则点M是乙所站的位置,点N是丙所站的位置.证明:若在OA上取一点M′,连接M′P1,M′P.∵P和P1关于OA对称,∴M′P1=M′P,同理在OB上取一点N′,则N′P=N′P2.若乙站在M′位置,丙站在N′位置,接力棒传递路线为:PM′+M′N′+N′P.∵P1M′=PM′,N′P2=N′P,∴PM′+M′N′+N′P=P1′+M′N′+N′P2.∵两点间直线段最短,∴P1M′+M′N′+N′P2>P1P2=P1M+MN+NP2=PM+MN+NP.因此,乙站在M点,丙站在N点,甲、乙、丙三人传递接力棒的距离最短.。
初中数学知识点总结轴对称与中心对称
知识点总结一、轴对称及轴对称图形:1.轴对称:把一个图形沿着某一条直线折叠,如果它能够及另一个图形重合,那么就说这两个图形关于这条直线对称,两个图形中的对应点叫做对称点,对应线段叫做对称线段。
2.轴对称图形:如果一个图形沿着一条直线折叠,直线两旁的局部能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。
注意:对称轴是直线而不是线段3.轴对称的性质:〔1〕关于某条直线对称的两个图形是全等形;〔2〕如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线;〔3〕两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上;〔4〕如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
4.线段垂直平分线:〔1〕定义:垂直平分一条线段的直线是这条线的垂直平分线。
〔2〕性质:①线段垂直平分线上的点到这条线段两个端点的距离相等;②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
注意:根据线段垂直平分线的这一特性可以推出:三角形三边的垂直平分线交于一点,并且这一点到三个顶点的距离相等。
5.角的平分线:〔1〕定义:把一个角分成两个相等的角的射线叫做角的平分线.〔2〕性质:①在角的平分线上的点到这个角的两边的距离相等.②到一个角的两边距离相等的点,在这个角的平分线上.注意:根据角平分线的性质,三角形的三个内角的平分线交于一点,并且这一点到三条边的距离相等.6.等腰三角形的性质及判定:性质:〔1〕对称性:等腰三角形是轴对称图形,等腰三角形底边上的中线所在的直线是它的对称轴,或底边上的高所在的直线是它的对称轴,或顶角的平分线所在的直线是它的对称轴;〔2〕三线合一:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合;〔3〕等边对等角:等腰三角形的两个底角相等。
说明:等腰三角形的性质除三线合一外,三角形中的主要线段之间也存在着特殊的性质,如:①等腰三角形两底角的平分线相等;②等腰三角形两腰上的中线相等;③等腰三角形两腰上的高相等;④等腰三角形底边上的中点到两腰的距离相等。
轴对称变换课件PPT
THANK YOU
感谢聆听
直线的轴对称变换可以用来研 究几何图形的对称性和性质。
05
轴对称变换的应用举例
在几何图形中的应用
总结词:丰富多样
详细描述:轴对称变换在几何图形中有着广泛的应用,如矩形、正方形、菱形、 等腰三角形等都是轴对称图形。通过对这些图形进行对称变换,可以创造出更多 具有美学价值的图案和设计。
在函数图像中的应用
图案设计
在图案设计中,轴对称变换可 以创造出具有美感的图案,如 雪花、蜂巢等。
物理学应用
在物理学中,轴对称变换被应 用于分析物体的平衡和稳定性 问题,如天体运动、机械转动 等。
02
轴对称变换的定义与性质
轴对称变换的定义
轴对称变换是指图形关于某一直线(称为对称轴)对称的变换。
如果图形上任意一点P经过轴对称变换后,其对应点P'与P关于对 称轴对称,则称该变换为轴对称变换。
根据对称轴的方向,轴对称变换可分为正向和反向轴对称变换。正向轴 对称变换是指图形关于水平或垂直的直线进行对称的变换;反向轴对称 变换是指图形关于斜线进行对称的变换。
03
常见的轴对称变换
关于x轴的对称变换
总结词
图像在x轴两侧对称
详细描述
当一个图形关于x轴进行对称变换时,图像在x轴两侧呈现对称状态,即如果某 点坐标为(x, y),则其对称点坐标为(x, -y)。
如果一个点关于某一直线进行 轴对称变换,则该点关于该直 线进行翻转,与原点关于该直 线对称。
点的轴对称变换可以用来研究 几何图形的性质和关系。
轴对称变换与直线的关系
直线是几何图形中的重要元素, 轴对称变换也可以应用于直线。
如果一条直线关于某一直线进 行轴对称变换,则该直线会变 成一条与原直线平行且距离相 等的直线。
中考数学 考点13 轴对称变换的性质(解析版)
轴对称变换在几何变换中的地位非常重要,较多的和全等三角形,相似三角形,勾股定理相结合.轴对称的性质:①.成轴对称的两个图形全等,即对应角相等,对应边相等;②对称轴是任何一对对应点所连线段的垂直平分线;③对应点的连线互相平行或在同一条直线上;1.抓住对称轴,找准对应点,根据关于某条直线对称的两个图形全等,确定图形中的边,角的相等关系;2.理解基本图形中的重要关系:如图,将矩形ABCD纸片沿EF折叠,点D的对称点是D′,点C的对称点是C′,则有①ED=ED′,CD=C′D′;②∠C=∠C′,∠D=∠D′,∠DEF=∠D′EF;③等腰△GEF中,GE=GF.3.求角的度数的问题,一般利用轴对称的性质,结合平行线的性质,三角形的内角和定理,相似三角形等知识来求解;4.求线段的长度的问题,或构造直角三角形,利用勾股定理列方程,或借助全等三角形,或利用相似三角形求解.例1.如图,将△ABC沿DE,DF翻折,顶点B,C均落在点G处,且BD与CD重合于线段DG,若∠A=36°,∠AEG+∠AFG的度数为().A .100°B .102°C .108°D .117°【答案】C例2.如图,对折矩形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展开.再一次折叠纸片,使点A 落在EF 上,得到折痕BM ,同时,得到线段BN ,若3AB,则BM 的长为( ) N ABC D EF M A .332 B .2 C .3 D .23【答案】B例3.如图,在平行四边形ABCD 中,AB =6,BC =4,∠B =60°,点E 是边AB 上的一点,点F 是边CD 上一点,将平行四边形ABCD 沿EF 折叠,得到四边形EFGC ,点A 的对应点为点C ,点D 的对应点为点G ,则△CEF 的面积_____.73【精细解读】解:根据轴对称的性质可证△BCE ≌△GCF ,得到CE =CF 。
第十二章轴对称(复习课)
二、等腰三角形的应用
例1:等腰三角形的两条边分别为 和8,则等腰三角形的周 :等腰三角形的两条边分别为6和 , 长____________; 等于30° 例2:已知等腰三角形 :已知等腰三角形ABC的∠A等于 °,请你求出其余 的 等于 两角。 两角。 练习1:等腰三角形的一个外角是 练习 :等腰三角形的一个外角是100°,它的顶角的度数是 ___________。 。 练习2:一个等腰三角形的一个内角比另一个内角的 倍少 练习 :一个等腰三角形的一个内角比另一个内角的2倍少 30 °,求这个三角形的三个内角的度数。 求这个三角形的三个内角的度数。 练习3:等腰三角形的底边长为 练习 :等腰三角形的底边长为6cm,一腰上的中线把这个 , 三角形的周长分为两部分,这两部分之差是3cm,那么这 三角形的周长分为两部分,这两部分之差是 , 个等腰三角形的腰长是___________。 个等腰三角形的腰长是 。
一、相关概念
4、等腰三角形 、 有两条边相等的三角形,叫做等腰三角形。 有两条边相等的三角形,叫做等腰三角形。相等的两条边叫做 另一条边叫做底边,两腰所夹的角叫做顶角, 腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的 夹角叫做底角。 夹角叫做底角。 5、等边三角形 、 三条边都相等的三角形叫做等边三角形。 三条边都相等的三角形叫做等边三角形。
第十二章: 第十二章:轴对称
(复习课) 复习课 复习
一、相关概念
1、轴对称图形 、 如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合, 如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合, 这个图形就叫做轴对称图形,这条直线就叫做对称轴。 这个图形就叫做轴对称图形,这条直线就叫做对称轴。 折叠后重合的点是对应点,叫做对称点。 折叠后重合的点是对应点,叫做对称点。 2、线段的垂直平分线 、 经过线段中点并且垂直于这条线段的直线, 经过线段中点并且垂直于这条线段的直线,叫做这 条线段的垂直平分线。 条线段的垂直平分线。 3、轴对称变换 、 由一个平面图形得到它的轴对称图形叫做轴对称变换。 由一个平面图形得到它的轴对称图形叫做轴对称变换。
轴对称及中心对称变换平移及旋转变换
轴对称及中心对称变换、平移及旋转变换变换是极为重要的数学思维方法,利用几何变换解题在数学竞赛中经常用到,本文介绍几何变换中的基本变换:轴对称及中心对称变换、平移及旋转变换。
一、轴对称变换把一个图形F沿着一直线l折过来,如果它能够与另一个图形F'重合,我们就说图形F和F'关于这条直线l对称。
两个图形中的对应点叫做关于这条直线l的对称点,这条直线l叫做对称轴,如右图。
轴对称图形有以下两条性质:1.对应点的连线被对称轴垂直平分;2.对应点到对称轴上任一点的距离相等。
例1 凸四边形ABCD的对角线AC、BD相交于O,且AC⊥BD,已知OA>OC,OB>OD,求证:BC+AD>AB+CD。
分析:题中条件比较分散,故考虑“通过反射使条件相对集中”,注意到AC⊥BD,于是以BD(AC)为对称轴,将BC(AD)反射到BC'(AD'),把有关线段集中到△ABO内,利用三角形中两边之和大于第三边易证得结果。
证明:∵AC⊥BD,且OA>OC,OB>OD,于是以BD为对称轴,作C点关于直线BD为对称点C',以AC为对称轴作D点关于AC 的对称点D'。
连结BC',AD'相交于E点,则BC= BC',AD=AD',CD=C'D'。
∴ BE+AE>AB ①EC'+ED'>C'D' ②①+②,得BC'+AD'>AB+C'D'。
∴BC+AD>AB+CD。
注:(1)本题的结论对于凹四边形仍然成立;(2)还可将四边形推广成2n边形,也有类似结论。
其证明思路也完全相同,读者试自证。
二、中心对称变换如果平面上使任意一对对应点A,A'的连线段都通过一个点O,且被这一点所平分,则这个变换叫做中心对称变换(亦称点反射或点对称),点O叫对称中心,点A和A'叫做关于对称中心的对称点,如果一个图形F在中心对称变换下保持不变(还是自身),则这个图形F叫做中心对称图形。
轴对称及轴对称变换
Ⅳ轴对称及轴对称变换1.轴对称及其性质把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线成轴对称,这条直线叫对称轴.轴对称的两个图形有如下性质:①关于某直线对称的两个图形是全等形;②对称轴是任何一对对应点所连线段的垂直平分线;③两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上.2.线段垂直平分线线段垂直平分线也叫线段中垂线,它反映了与线段的两种关系:①位置关系——垂直;②数量关系——平分.性质定理:线段垂直平分线上的点与这条线段两个端点的距离相等.判定定理:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.3.当已知条件中出现了等腰三角形、角平分线、高(或垂线)、或求几条折线段的最小值等情况时,通常考虑作轴对称变换,以“补齐”图形,集中条件.一、例题【例1】如图所示,将一张正方形纸片对折两次,然后在上面打3个洞,则纸片展开后是()【训练1】1.将正方形纸片两次对折,并剪出一个菱形小洞后铺平,得到的图形是()2.如图,将矩形纸片ABCD沿虚线EF折叠,使点A落在点G上,点D落在点H上;然后再沿虚线GH折叠,使B落在点E上,点C落在点F上,叠完后,剪一个直径在BC上的半圆,再展开,则展开后的图形为()【例2】如图,在边长为1的正方形网格中,将△ABC向右平移两个单位长度得到△A’B’C’,则与点B’关于x轴对称的点的坐标是()A.(0,-1)B.(1,1)C.(2,-1)D.(1,-1)【训练2】1.若点P(-2,3)与点Q(a,b)关于x轴对称,则a、b的值分别是()A.-2,3 B.2,3 C.-2,-3 D.2,-32.在直角坐标系中,已知点P(-3,2),点Q是点P关于x轴的对称点,将点Q向右平移4个单位得到点R,则点R的坐标是___________.3.已知点P(a+1,2a-1)关于x轴的对称点在第一象限,则a的取值范围为___________.【例3】如图,将一个直角三角形纸片ABC(∠ACB=90°),沿线段CD折叠,使点B落在B1处,若∠ACB1=70°,则∠ACD=()A.30°B.20°C.15°D.10°【训练3】1.如图,把一个长方形纸片沿EF折叠后,点D、C分别落在点D’、C’的位置.若∠EFB=65°,则∠AED’等于()A.70°B.65°C.50°D.25°2.如图,△ABC中,∠A=30°,以BE为边,将此三角形对折,其次,又以BA为边,再一次对折,C点落在BE上,此时∠CDB=82°,则原三角形中∠B=___________.3.⑴观察与发现:小明将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展平纸片(如图①);再次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图②).小明认为△AEF是等腰三角形,你同意吗?请说明理由.⑵实践与运用:将矩形纸片ABCD沿过点B的直线折叠,使点A落在BC边上的点F处,折痕为BE(如图③);再沿过点E的直线折叠,使点D落在BE上的点D’处,折痕为EG(如图④);再展平纸片(如图⑤).求图⑤中∠α的大小.【例4】如图,在△ABC中,AD为∠BAC的平分线,EF是AD的垂直平分线,E为垂足,EF交BC的延长线于点F,求证:∠B=∠CAF.【训练4】1.如图,点D在△ABC的BC边上,且BC=BD+AD,则点D在__________的垂直平分线上.2.如图,△ABC中,∠ABC=90°,∠C=15°,DE⊥AC于E,且AE=EC,若AB=3cm,则DC=___________cm.3.如图,△ABC中,∠BAC=126°,DE、FG分别为AB、AC的垂直平分线,则∠EAG=___________.4.△ABC中,AB=AC,AB边的垂直平分线交AC于F,若AB=12cm,△BCF的周长为20cm,则△ABC的周长是___________cm.【例6】如图,牧童在A处放牛,其家在B处,若牧童从A处出发牵牛到河岸CD处饮水后回家,试问在何处饮水,所求路程最短?⑴所求问题可转化为CD上取一点M,使其AM+BM为最小;⑵本题利用轴对称知识进行解答.【训练6】1.设直线l是一条河,P、Q两地相距8千米,P、Q两地到l地距离分别为2千米、5千米,欲在l上的某点M处修建一个水泵站向P、Q两地供水.现在如下四种铺设管道方案,图中的实线表示辅设的管道,则铺设的管道最短的是()2.若点A、B是锐角∠MON内两点,请在OM、ON上确定点C、点D,使四边形ABCD周长最小,写出你作图的主要步骤并标明你确定的点.二、课后练习1.如图,△ABC与△A’B’C’关于直线l对称,且∠A=78°,∠C’=48°,则∠B的度数是().A.48°B.54°C.74°D.78°2.如图,把一张长方形纸片对折,折痕为AB,再以AB的中点O为顶点把平角∠AOB三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O为顶点的等腰三角形,那么剪出的等腰三角形全部展开铺平后得到的平面图形一定是()A.正三角形B.正方形C.正五边形D.正六边形3.图1是四边形纸片ABCD,其中∠B=120°,∠D=50°,若将其右下角向内折出△PCR,恰使CP∥AB,RC∥AD,如图2所示,则∠C=()A.80°B.85°C.95°D.110°4.如图,阴影部分组成的图案既是关于x轴成轴对称的图形又是关于y轴成轴对称的图形,若点A的坐标是(1,3),则点M和点N的坐标分别是()A.M(1,-3),N(-1,-3)B.M(-1,-3),N(-1,3)C.M(-1,-3),N(1,-3)D.M(-1,3),N(1,-3)5.点P关于x轴对称的对称点P’的坐标是(-3,5),则点P关于y轴对称的对称点的坐标是()A.(3,-5)B.(-5,3)C.(3,5)D.(5,3)06.已知M(1-a,2a+2)关于y轴对称的点在第二象限,则a的取值范围是()A.-1<a<1 B.-1≤a≤1 C.a>1 D.a>-17.如图,镜子中号码的实际号码是___________.8.如图,正方形ABCD的边长为4cm,则图中阴影部分的面积为___________cm2.9.已知点A(2a+3b,-2)和B(8,3a+2b)关于x轴对称,则a+b=___________.10.如图,在△ABC中,OE、OF分别是AB、AC中垂线,且∠ABO=20°,∠ABC=45°,求∠BAC和∠ACB的度数.12.如图,P为∠ABC的平分线与AC的垂直平分线的交点,PM⊥BC于M,PN⊥BA的延长线于N.求证:AN=MC.。
轴对称的变换
1、作点A关于直线L的对称点 A / 2、作点B关于直线L的对称点 B 3、连接 A/ B /
/
l
A A’
B
B’
∴ 线段A/ B /即为所求。
如图,已知△ABC和直线l,作出与△ABC 关于直线l对称的图形。
B
C
A
O
A/
l
C/
B/
分析:△ABC可以由三个 顶点的位置确定,只要能分别作 出这三个顶点关于直线l的对称点, 连接这些对称点,就能得到要作 的图形。 作法: 1、过点A作直线l的垂线,垂足 OA / OA , 为点O, 在垂线上截取 点 A / 就是点A关于直线l的对 称点; 2、类似地,分别作出点B、C关 于直线l的对称点 B / 、C / ; 3、连接 A/ B / 、 / C / 、 / A/ 。 C B
剪纸艺术
实物图案
几何图案
轴对称变换的特征:
1、由一个平面图形可以得到它关于一 条直线l对称的图形,这个图形与原图 形的形状、大小完全一样;
2、新图形上的每一点,都是原图形上 的某一点关于直线l的对称点;
3、连接任意一对对应点的线段被对称 轴垂直平分。
注意:
成轴对称的两个图形中的任何一个可以看作由另 一个图形经过轴对称变换后得到。 一个轴对称图形也可以看作以它的一部分为基 础,经轴对称变换扩展而成的。
你可以在L上找几个点 试一试,能发现什么规 律吗?
B
A
l
A / B / C /
即为所求。
A
/
B
C
l
B/ 作已知图形关于已知直线对称的图形的一般步聚:
1、找点 (确定图形中的一些特殊点);
A
2、画点 (画出特殊点关于已知直线的对称点); (连接对称点)。 3、连线
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、类似地,分别作出点B、C关 于直线l的对称点B’、C’;
3、连接A’B’、B’C’、C’A’。
例1:如图,已知△ABC和直线l,作出与 △ABC关于直线l对称的图形。
B
B
B
A A
C
B
C
A’
l
C Cl
C’
B’∴△AB’C’Fra bibliotek为所求。A B’
∴△A’B’C即为所求。
B A’
Cl A
B’
作已知图形关于已知直线对称的图形的一般步聚:
A′ 1000m
CN
M
D
A
B
△ABC关于直线l对称的图形。
分析:△ABC可以由三个
顶点的位置确定,只要能分别作
B
出这三个顶点关于直线l的对称点,
连接这些对称点,就能得到要作
C
的图形。
A O
作法: l 1、过点A作直线l的垂线,垂足
A’
为点O,在垂线上截取OA’=OA,
C’
点A’就是点A关于直线l的对称
B’
点;
∴△A’B’C’即为所求。
你可以在L上找几个点 试一试,能发现什么规 律吗?
A
哈,我知道怎样作
C
B
B/
迁移与应用
如图,牧童在A处放牛,其家在B处,A、B到河岸的 距离分别为AC、BD,且AC=BD,若A到河岸CD的中点的 距离为500m,若牧童从A处将牛牵到河边饮水后再回家, 试问在何处饮水,所走路程最短?最短路程是多少?
垂直、延长、截相等
如何画线段AB关于 直线l 的对称线段A′B′?
l
A
A’
B
B’
∴ 线段A’B’即为所求。
如果直线l外有线段AB,那么怎样画出线段 AB关于直线l的对称线段A′B′?
B
B′
A A′ l
如果直线l外有线段AB,那么怎样画出线段 AB关于直线l的对称线段A′B′?
B
B′
A′
A
l
例1:如图,已知△ABC和直线l,作出与
1、找点(确定图形中的一些关键点);
2、画点(画出关键点关于已知直线的对称点);
3、连线(连接对称点)。
如图,四边形ABCD与四边形EFGH关于直
线MN的对称,ACBD交于P,怎样找出点P关于直线
MN的对称点Q?
M
D A
P
H E
Q
B C
F NG
成轴对称的两个图形的任何对应部分也成轴对称
要在燃气管道L上修建一个 泵站,分别向A、B两镇供 气,泵站修在管道的什么地 方,可使所用的输气管线最 短?
• 例 如图,点A和点B关于某条直线成轴 对称,你能作出这条直线吗?
A
B
• 练习:如图,与图形A成轴对称的是哪 个图形?画出它们的对称轴。
尝试探究
l
已知对称轴 l 和一
个点A,如何画出点A
关于 l 的对称点A′ ?
AO
A′
作法:
过点A作直线l的垂线在垂线上截取 OA’=OA,垂足为点O,点A’就是点A 关于直线l的对称点.