九年级数学直线与圆的位置关系2

合集下载

2022年人教版九年级数学上册第二十四章 圆教案 直线和圆的位置关系 (第2课时)

2022年人教版九年级数学上册第二十四章 圆教案  直线和圆的位置关系 (第2课时)

24.2 点和圆、直线和圆的位置关系24.2.2 直线和圆的位置关系(第2课时)一、教学目标【知识与技能】能判定一条直线是否为一条切线,会过圆上一点作圆的切线.会运用切线的判定定理和性质定理解决问题。

【过程与方法】经历切线的判定定理及性质定理的探究过程,养成学生既能自主探究,又能合作探究的良好学习习惯.【情感态度与价值观】体验切线在实际生活中的应用,感受数学就在我们身边,感受证明过程的严谨性及结论的正确性.二、课型新授课三、课时第2课时,共3课时。

四、教学重难点【教学重点】切线的判定定理及性质定理的探究和运用.【教学难点】切线的判定定理和性质的应用.五、课前准备课件、图片、圆规、直尺等.六、教学过程(一)导入新课教师问:转动雨伞时飞出的雨滴,用砂轮磨刀时擦出的火花,都是沿着什么方向飞出的?(出示课件2)学生问:都是沿着圆的切线的方向飞出的.(二)探索新知探究一切线的判定方法教师问:如图,在⊙O中经过半径OA的外端点A作直线l⊥OA,则圆心O到直线l的距离是多少?直线l和⊙O有什么位置关系?(出示课件4)学生答:这时圆心O到直线l的距离就是⊙O的半径.由d=r得到直线l是⊙O的切线.教师问:已知圆O上一点A,怎样根据圆的切线定义过点A作圆O的切线?(出示课件5)教师作图,学生观察并思考:(1)圆心O到直线AB的距离和圆的半径有什么数量关系?(2)二者位置有什么关系?为什么?出示课件6:教师归纳:切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.应用格式:∵OA为⊙O的半径,BC⊥OA于A,∴BC为⊙O的切线.教师问:下列各直线是不是圆的切线?如果不是,请说明为什么?(出示课件7)学生观察交流后口答:(1)不是,因为没有垂直.(2),(3)不是,因为没有经过半径的外端点A.教师强调:在切线的判定定理中,“经过半径的外端”和“垂直于这条半径”,两个条件缺一不可,否则就不是圆的切线.教师归纳:判断一条直线是一个圆的切线有三个方法:(出示课件8)1.定义法:直线和圆只有一个公共点时,我们说这条直线是圆的切线;2.数量关系法:圆心到这条直线的距离等于半径(即d=r)时,直线与圆相切;3.判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.出示课件9:例1 如图,∠ABC=45°,直线AB是☉O上的直径,且AB=AC. 求证:AC是☉O的切线.教师分析:直线AC经过半径的一端,因此只要证OA垂直于AB即可.师生共同解答:证明:∵AB=AC,∠ABC=45°,∴∠ACB=∠ABC=45°.∴∠BAC=180°-∠ABC-∠ACB=90°.∵AB是☉O的直径,∴AC是☉O的切线.巩固练习:(出示课件10)如图所示,线段AB经过圆心O,交⊙O于点A、C,∠BAD=∠B=30°,边BD交圆于点D.BD是⊙O的切线吗?为什么?学生独立思考后板演:解:BD是⊙O 的切线.连接OD,∵OD=OA,∠A=30°,∴∠DOB=60°.∵∠B=30°,∴∠ODB=90°.∴BD是⊙O 的切线.出示课件11:例2 已知:直线AB经过⊙O上的点C,并且OA=OB,CA=CB.求证:直线AB是⊙O的切线.学生思考交流后师生共同解答.证明:连接OC(如图).∵OA=OB,CA=CB,∴OC是等腰三角形OAB底边AB上的中线.∴AB⊥OC.∵OC是⊙O的半径,∴AB是⊙O的切线.巩固练习:(出示课件12-13)如图,△ABC 中,AB =AC ,O 是BC的中点,⊙O 与AB 相切于E. 求证:AC 是⊙O 的切线.教师分析:根据切线的判定定理,要证明AC是⊙O的切线,只要证明由点O 向AC所作的垂线段OF是⊙O的半径就可以了,而OE是⊙O的半径,因此只需要证明OF=OE.证明:连接OE,OA,过O作OF⊥AC.∵⊙O与AB相切于E,∴OE⊥AB.又∵△ABC中,AB=AC,O是BC的中点.∴AO平分∠BAC,又OE⊥AB,OF⊥AC.∴OE=OF.∵OE是⊙O半径,OF=OE,OF⊥AC.∴AC是⊙O的切线.出示课件14:学生对比思考.1.如图,已知直线AB经过⊙O上的点C,并且OA=OB,CA=CB求证:直线AB是⊙O的切线.学生答:连接OC.2.如图,OA=OB=5,AB=8,⊙O的直径为6.求证:直线AB是⊙O的切线.学生答:作垂直.教师归纳:(出示课件15)证切线时辅助线的添加方法:(1)有交点,连半径,证垂直;(2)无交点,作垂直,证半径.有切线时常用辅助线添加方法:见切点,连半径,得垂直.切线的其他重要结论:(1)经过圆心且垂直于切线的直线必经过切点;(2)经过切点且垂直于切线的直线必经过圆心.探究二切线的性质定理教师问:如图,如果直线l是⊙O 的切线,点A为切点,那么OA与l垂直吗?(出示课件16)学生思考后教师总结:切线性质:圆的切线垂直于经过切点的半径.应用格式:∵直线l是⊙O的切线,A是切点.∴直线l⊥OA.出示课件17-18,教师引导学生进行证明.证法1:反证法.证明:假设AB与CD不垂直,过点O作一条直径垂直于CD,垂足为M.则OM<OA,即圆心到直线CD的距离小于⊙O的半径,因此,CD与⊙O相交.这与已知条件“直线与⊙O相切”相矛盾.所以AB与CD垂直.证法2:构造法.作出小⊙O的同心圆大⊙O,CD切小⊙O于点A,且A点为CD的中点.连接OA,根据垂径定理,则CD⊥OA,即圆的切线垂直于经过切点的半径.教师总结:利用切线的性质解题时,常需连接辅助线,一般连接圆心与切点,构造直角三角形,再利用直角三角形的相关性质解题.(出示课件19)出示课件20:例1 如图,PA为⊙O的切线,A为切点.直线PO与⊙O交于B、C两点,∠P=30°,连接AO、AB、AC.(1)求证:△ACB≌△APO;(2)若AP求⊙O的半径.教师分析:(1)根据已知条件我们易得∠CAB=∠PAO=90°,由∠P=30°可得出∠AOP=60°,则∠C=30°=∠P,即AC=AP;这样就凑齐了角边角,可证得△ACB≌△APO;(2)由已知条件可得△AOP为直角三角形,因此可以通过解直角三角形求出半径OA的长.师生共同解答:(出示课件21-22)(1)证明:∵PA为⊙O的切线,A为切点,∴∠OAP=90°.又∵∠P=30°,∴∠AOB=60°,又∵OA=OB,∴△AOB为等边三角形.∴AB=AO,∠ABO=60°.又∵BC为⊙O的直径,∴∠BAC=90°.在△ACB和△APO中,∠BAC=∠OAP,AB=AO,∠ABO=∠AOB,∴△ACB≌△APO(ASA).(2)解:在Rt△AOP中,∠P=30°,∴AO=1,∴CB=OP=2,∴OB=1,即⊙O的半径为1.巩固练习:(出示课件23)如图所示,点A是⊙O外一点,OA交⊙O于点B,AC是⊙O的切线,切点是C,且∠A=30°,BC=1.求⊙O的半径.学生独立思考后自主解决.解:连接OC.∵AC是⊙O的切线,∴∠OCA=90°.又∵∠A=30°,∴∠COB=60°,∴△OBC是等边三角形.∴OB=BC=1,即⊙O的半径为1.(三)课堂练习(出示课件24-33)1.如图,在⊙O中,AB为直径,AC为弦.过BC延长线上一点G,作GD⊥AO于点D,交AC于点E,交⊙O于点F,M是GE的中点,连接CF、CM.判断CM与⊙O的位置关系,并说明理由.2.判断下列命题是否正确.(1)经过半径外端的直线是圆的切线.()(2)垂直于半径的直线是圆的切线.()(3)过直径的外端并且垂直于这条直径的直线是圆的切线.()(4)和圆只有一个公共点的直线是圆的切线.()(5)过直径一端点且垂直于直径的直线是圆的切线.()3.如下图所示,A是☉O上一点,且AO=5, PO=13, AP=12,则PA与☉O的位置关系是.4.如图,在☉O的内接四边形ABCD中,AB是直径,∠BCD=120°,过D点的切线PD与直线AB交于点P,则∠ADP的度数为()A.40°B.35°C.30°D.45°5.如图,⊙O切PB于点B,PB=4,PA=2,则⊙O的半径多少?6.如图,△ABC中,AB=AC,以AB为直径的⊙O交边BC于P,PE⊥AC于E. 求证:PE是⊙O的切线.7.如图,O为正方形ABCD对角线AC上一点,以O为圆心,OA长为半径的⊙O与BC相切于点M.求证:CD与⊙O相切.8.已知:△ABC内接于☉O,过点A作直线EF.(1)如图1,AB为直径,要使EF为☉O的切线,还需添加的条件是(只需写出两种情况):①_________;②_____________.(2)如图2,AB是非直径的弦,∠CAE=∠B,求证:EF是☉O的切线.参考答案:1.解:CM与⊙O相切.理由如下:连接OC,如图,∵GD⊥AO于点D,∴∠G+∠GBD=90°,∵AB为直径,∴∠ACB=90°,∵M点为GE的中点,∴MC=MG=ME,∴∠G=∠1,∵OB=OC,∴∠B=∠2,∴∠1+∠2=90°,∴∠OCM=90°,∴OC⊥CM,∴CM为⊙O的切线.2.⑴×⑵×⑶√⑷√⑸√3.相切4.C5.解:连接OB,则∠OBP=90°.设⊙O的半径为r,则OA=OB=r,OP=OA+PA=2+r.在Rt△OBP中,OB2+PB2=PO2,即r2+42=(2+r)2. 解得r=3,即⊙O的半径为3.6.证明:连接OP.∵AB=AC,∴∠B=∠C.∵OB=OP,∴∠B=∠OPB.∴∠OBP=∠C.∴OP∥AC.∵PE⊥AC,∴PE⊥OP.∴PE为⊙O的切线.7.证明:连接OM,过点O作ON⊥CD于点N,∵⊙O与BC相切于点M,∴OM⊥BC.又∵ON⊥CD,O为正方形ABCD对角线AC上一点,∴OM=ON,∴CD与⊙O相切.8.解:⑴①BA⊥EF;②∠CAE=∠B.证明:连接AO并延长交☉O于D,连接CD,则AD为☉O的直径.∴∠D+∠DAC=90 °,∵∠D与∠B同对,∴∠D=∠B,又∵∠CAE=∠B,∴∠D=∠CAE,∴∠DAC+∠EAC=90°,∴EF是☉O的切线.(四)课堂小结本节课你学到了哪些数学知识和数学方法?请与同伴交流. (五)课前预习预习下节课(24.2.2第3课时)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:本节课从常见的生活情况入手,引入切线的概念,能激发学生的求知欲,接着又得出切线的判定方法及过圆上一点作已知圆的切线,又从另一侧面利用反证法,证明了切线的性质定理,这样,既证明了定理又复习了反证法.。

初中数学教学课件:直线和圆的位置关系(第2课时)(人教版九年级上)

初中数学教学课件:直线和圆的位置关系(第2课时)(人教版九年级上)

跟踪训练
1. 如图,AB是⊙O的直径,点D在AB的延长线上,BD=OB,点C 在圆上,∠CAB=30°. 求证:DC是⊙O的切线.
证明: 连接OC、BC.
由AB为直径可得∠ACB=90°.
∠A=30°,可得BC= 1 AB=OB, 2
A
∠ABC= 60°,又BD=OB ∴ BC=BD,
∠BCD=30°
1.定义法:和圆有且只有一个公共点的直线是圆的切线. 2.数量法(d=r):到圆心的距离等于半径的直线是圆的切线. 3.判定定理:经过半径外端且垂直于这条半径的直线是圆 的切线. 即:若直线与圆的一个公共点已指明,则连接这点和圆心, 说明直线垂直于经过这点的半径;若直线与圆的公共点未 指明,则过圆心作直线的垂线段,然后说明这条线段的长 等于圆的半径.
几何应用: ∵OA⊥l,∴l是⊙O的切线.
已知一个圆和圆上的一点,如何过这个点画出圆的切线?
例题
【例1】直线AB经过⊙O上的点C,并且OA=OB,CA=CB,求证: 直线AB是⊙O的切线. 证明: 连结OC ∵OA=OB, CA=CB ∴△OAB是等腰三角形, OC是底边AB上的中线 ∴OC⊥AB ∴AB是⊙O的切线
【解析】由题意知该圆的半径为3,而直线DC到圆心 的距离即直线DC到AB的距离为4,所以相离. 答案:相离
3.已知:如图,在△ABC 中,AB=AC,以AB为直径的⊙O交BC 于点D,过点E作DE⊥AC 于点E.求证:DE是⊙O 的切线.
证明: 连接OD,则OD=OB,∠B=∠1.
∵AB=AC ,∴∠B=∠C ,∴∠1=∠C.
3.在Rt△ABC中,∠B=90°,∠A的平分线交BC于点D,以点D
为圆心,DB长为半径作⊙D.试说明AC是⊙D的切线.

直线和圆的位置关系

直线和圆的位置关系

《24.2.2直线和圆的位置关系》说课稿尊敬的各位评委、各位老师,大家好!今天我说课的题目是《直线和圆的位置关系》,是人教版义务教育教科书九年级上册数学第二十四章圆第2节的内容,下面我将从教材分析、学情分析、教法学法、教学过程、设计说明这五个方面对本节课进行说明。

一、教材分析1.教材的地位和作用圆的教学在平面几何乃至整个中学教学中都占有重要的地位,而直线和圆的位置关系的应用又比较广泛,它既是初中几何的综合运用,又是在学习了点和圆的位置关系的基础上进行的,为后面学习圆的切线以及高中学习圆作铺垫,在今后的解题及几何证明中,将起到重要的作用。

2.教学目标根据学生已有的认知基础及教材的地位和作用,我将本节课的教学目标定为:(1)理解直线和圆的三种位置关系,会用两种方法判断直线和圆的位置关系。

(2)渗透类比、转化、数形结合的数学思想和方法,培养学生的逻辑思维能力和视图能力。

(3)让学生感受到实际生活与数学的密切联系,激发学生学习数学的兴趣。

3.教学重、难点重点:理解直线和圆的相交、相切、相离三种位置关系;会判断直线和圆的三种位置关系。

难点:学生能根据圆心到直线的距离d与圆的半径r之间的数量关系,揭示直线和圆的位置关系。

二、学情分析直线和圆的位置关系属于几何课程,在七、八年级的几何学习基础上,九年级学生有了一定的分析能力、归纳能力以及数学思想。

九年级学生对图形很敏感,学生观察、操作、猜想等能力较强,但是归纳运用数学的意识、思想还比较薄弱,思维的严密性、灵活性都有待于加强,自主探究与合作学习的能力也需进一步加强。

三、教学方法分析复习点和圆的位置关系,引导学生用类比的方法来研究直线和圆的位置关系,在直线和圆的位置关系的判定的过程中,将采取观察、类比、实验、探究为主的教学方法。

另外,在教学中,运用多媒体辅助教学,进行动态和直观的演示,激发学生的学习兴趣;通过圆心到直线的距离d 和半径r这两个数量之间的关系来研究直线和圆的位置关系,体现数形结合的思想,较为复杂的问题能简单化。

北师大版数学九年级下册3.6《直线和圆的位置关系》教案2

北师大版数学九年级下册3.6《直线和圆的位置关系》教案2

北师大版数学九年级下册3.6《直线和圆的位置关系》教案2一. 教材分析《直线和圆的位置关系》是北师大版数学九年级下册第3.6节的内容。

本节主要让学生了解直线和圆的位置关系,包括相切和相交两种情况,并掌握判断直线和圆位置关系的方法。

通过本节的学习,学生能够进一步理解直线和圆的性质,为后续解析几何的学习打下基础。

二. 学情分析学生在学习本节内容前,已经掌握了直线、圆的基本性质和相互之间的交点性质。

但对于判断直线和圆位置关系的实践操作能力尚待提高,需要通过实例分析和动手操作,进一步理解和掌握。

三. 教学目标1.让学生了解直线和圆的位置关系,包括相切和相交两种情况。

2.让学生掌握判断直线和圆位置关系的方法。

3.培养学生的实践操作能力和解决实际问题的能力。

四. 教学重难点1.教学重点:直线和圆的位置关系的判断方法。

2.教学难点:如何运用位置关系解决实际问题。

五. 教学方法采用问题驱动法、案例分析法和动手操作法,引导学生主动探究,合作交流,从而提高学生对直线和圆位置关系的理解和应用能力。

六. 教学准备1.准备相关的教学案例和图片。

2.准备课件和教学道具。

3.安排学生在课前预习相关内容。

七. 教学过程1.导入(5分钟)通过提问方式复习直线和圆的基本性质,为新课的学习做好铺垫。

例如:“直线和圆有哪些基本的性质?它们之间有什么联系?”2.呈现(15分钟)展示直线和圆的位置关系图片,让学生观察并描述它们之间的位置关系。

接着,通过课件演示直线和圆相切、相交的动态过程,引导学生直观地理解两种位置关系。

3.操练(15分钟)让学生分组讨论,每组选取一个实例,分析直线和圆的位置关系。

学生可以利用直尺、圆规等工具进行实际操作,验证理论。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)请学生上台演示刚才的操作,并讲解直线和圆位置关系的判断方法。

其他学生认真听讲,互相交流心得。

5.拓展(10分钟)出示一些实际问题,让学生运用所学知识解决。

初三数学直线和圆的位置关系

初三数学直线和圆的位置关系

初三数学直线和圆的位置关系一.直线和圆的位置关系:①相交:直线和圆有两个公共点,这时说这条直线和圆相交;这条直线叫做圆的割线;②相切:直线和圆有唯一公共点,这时说这条直线和圆相切;这条直线叫做圆的切线,这个点叫做切点.③相离:直线和圆没有公共点,这时说这条直线和圆相离.二.直线和圆的位置关系的判定:(1)定理:若⊙O的半径为R,圆心到直线l 的距离为d. 则直线l与⊙O相交d﹤R;直线l与⊙O相切 d =R;直线l与⊙O相离d﹥R;(2)“圆心到直线的距离d和半径R的数量关系”与“直线和圆的位置关系”之间的对应与等价关系列表如下:例1、1.在Rt△ABC中,∠C=,AC=3cm,AB=6cm,以点C为圆心,与AB边相切的圆的半径为_________cm.2.如图,⊙O的半径OD为5cm,直线l⊥OD,垂足为O,则直线l沿射线OD方向平移_________cm时与⊙O相切.3.已知⊙O的直径为6cm,如果直线l上的一点C到圆心的距离为3cm,则直线l与⊙O的位置关系是_________.4.⊙O的半径为R,圆心O到直线l的距离d与R是方程x2-6x+9=0的两个实数根,则直线l和⊙O的位置关系是_________.三.切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线;2.切线的性质:①切线垂直于过切点的半径;②切线和圆心的距离等于半径;③经过圆心且垂直于切线的直线必过切点;④经过切点垂直于切线的直线必过圆心.综上所述,在解决有关圆的切线的问题,连接圆心和切点的线段是最常见的辅助线.四、切线长的定义及切线长定理过圆外一点作圆的切线,这点和切点之间的线段长叫做这点到圆的切线长,如图所示,PA,PB 是⊙O的两条切线,A,B为切点,线段PA,PB的长即为点P到⊙O的切线长.切线长定理:过圆外一点所画的圆的两条切线长相等.例2、如图,AB是⊙O的直径,BC切⊙O于点B,AD∥CO.求证:CD是⊙O的切线.1、⊙O的半径为R,直线l和⊙O有公共点,若圆心到直线l的距离是d,则d与R的大小关系是()A.d>RB.d<RC.d≤RD.d≥R2、点A为直线l上任一点,过A点与直线l相切的圆有()个.A.1 B.2C.不存在 D.无数个3、在Rt△ABC中,∠A=,BA=12,CA=5,若以A为圆心,5为半径作圆,则斜边BC与⊙A的位置关系是()A.相交 B.相离C.相切 D.不确定4、等边△ABC的边长为6,点O为△ABC的外心,以O为圆心,为半径的圆与△ABC的三边()A.都相交B.都相离C.都相切D.不确定5、两个同心圆的半径分别为3cm和5cm,作大圆的弦MN=8cm,则MN与小圆的位置关系是()A.相交 B.相切C.相离D.无法判断6、如图,在直角坐标系中,⊙O的半径为1,则直线与⊙O的位置关系是()A.相离 B.相交C.相切 D.以上三种情形都有可能7、下列说法正确的是()A.垂直于切线的直线必过切点B.垂直于半径的直线是圆的切线C.圆的切线垂直于经过切点的半径D.垂直于切线的直线必经过圆心8、已知Rt△ABC的直角边AC=BC=4cm,若以C为圆心,以3cm的长为半径作圆,则这个圆与斜边所在的直线的位置关系是()A.相交 B.相切C.相离 D.不能确定9、如右上图,在△ABC中,AB=2,AC=1,以AB为直径的圆与AC相切,与边BC交于点D,则AD的长为()10、如下图,AB是⊙O的直径,点D在AB的延长线上,过点D作⊙O的切线,切点为C,若∠A=25°,∠D=__________.11、如图,⊙O的半径为1,圆心O在正三角形的边AB上沿图示方向移动,当⊙O移动到与AC相切时,OA=__________.12、设⊙O的半径为R,⊙O的圆心到直线的距离为d,若d、R是方程x2-6x+m=0的两根,则直线l 与⊙O相切时,m的值为__________.13、已知∠ABC=60°,点O在∠ABC的平分线上,OB=5cm,以O为圆心,2cm为半径作⊙O,则⊙O与BC的位置关系是__________.14、如图,Rt△ABC中,∠B=90°,∠A的平分线交BC于D,E为AB上一点,DE=DC,以D为圆心,DB的长为半径作⊙D.求证:(1)AC是⊙D的切线;(2)AB+EB=AC.15、如图,以边长为4的正△ABC的BC边为直径作⊙O与AB相交于点D,⊙O的切线DE交AC于E,EF⊥BC,点F是垂足,求EF的长.16、如图,PA是⊙O的切线,切点是A,过点A作AH⊥OP于点H,交⊙O于点B.求证:PB是⊙O的切线.17、如图,已知AB是⊙O的直径,AB=2,∠BAC=30°,点C在⊙O上,过点C与⊙O相切的直线交AB 的延长线于点D,求线段BD的长.1.弧长公式:n°的圆心角所对的弧长l公式不要死记硬背,可依比例关系很快地随手推得:2.扇形面积公式:(1)和含n°圆心角的扇形的面积公式同样不要死记硬背,可依比例关系很快地随手推得:.(2)将弧长公式代入扇形面积公式中,立即得到用弧长和半径表示的扇形面积公式:。

冀教版数学九年级下册29.2《直线与圆的位置关系》说课稿

冀教版数学九年级下册29.2《直线与圆的位置关系》说课稿

冀教版数学九年级下册29.2《直线与圆的位置关系》说课稿一. 教材分析冀教版数学九年级下册29.2《直线与圆的位置关系》这一节主要介绍了直线与圆的位置关系,包括相离、相切和相交三种情况。

通过本节课的学习,学生能够理解直线与圆的位置关系的概念,掌握判断直线与圆位置关系的方法,并能够运用到实际问题中。

二. 学情分析九年级的学生已经学习了平面几何的基本知识,对图形的性质和判定有一定的了解。

但是,对于直线与圆的位置关系的理解和应用还需要进一步的引导和培养。

因此,在教学过程中,我将会注重引导学生通过观察、思考和动手操作来发现和理解直线与圆的位置关系的性质和判定方法。

三. 说教学目标1.知识与技能目标:学生能够理解直线与圆的位置关系的概念,掌握判断直线与圆位置关系的方法。

2.过程与方法目标:通过观察、思考和动手操作,学生能够发现直线与圆的位置关系的性质和判定方法,并能够运用到实际问题中。

3.情感态度与价值观目标:学生能够积极参与课堂活动,培养对数学的兴趣和好奇心,提高独立思考和合作交流的能力。

四. 说教学重难点1.教学重点:直线与圆的位置关系的概念和判断方法。

2.教学难点:直线与圆的位置关系的性质和应用。

五. 说教学方法与手段1.教学方法:采用问题驱动法、观察思考法和动手操作法,引导学生主动探索和发现直线与圆的位置关系的性质和判定方法。

2.教学手段:利用多媒体课件和实物模型,帮助学生直观地理解直线与圆的位置关系,并提供充足的练习题目,巩固所学知识。

六. 说教学过程1.导入:通过展示一些实际问题,引发学生对直线与圆的位置关系的思考,激发学生的学习兴趣。

2.新课导入:介绍直线与圆的位置关系的概念,引导学生通过观察和思考来发现直线与圆的位置关系的性质和判定方法。

3.例题讲解:通过讲解一些典型的例题,引导学生掌握判断直线与圆位置关系的方法,并能够运用到实际问题中。

4.练习与巩固:提供一些练习题目,让学生独立完成,并及时给予解答和指导,帮助学生巩固所学知识。

湘教版数学九年级下册《2.5.1直线与圆的位置关系》教学设计

湘教版数学九年级下册《2.5.1直线与圆的位置关系》教学设计

湘教版数学九年级下册《2.5.1直线与圆的位置关系》教学设计一. 教材分析《2.5.1直线与圆的位置关系》是湘教版数学九年级下册第五章第二节的内容。

本节主要介绍了直线与圆的位置关系,包括相交、相切和相离三种情况,并学习了如何判断直线与圆的位置关系以及如何求出圆的弦长和圆心角。

这一节的内容是学习圆的性质和圆的方程的基础,对于学生来说非常重要。

二. 学情分析学生在学习这一节之前,已经掌握了相似多边形的性质、圆的定义和性质、垂径定理等知识。

但是,对于判断直线与圆的位置关系以及求解弦长和圆心角,学生可能还比较陌生。

因此,在教学过程中,需要引导学生通过观察和操作,理解直线与圆的位置关系,并掌握求解弦长和圆心角的方法。

三. 教学目标1.理解直线与圆的位置关系,包括相交、相切和相离。

2.学会判断直线与圆的位置关系以及求解弦长和圆心角的方法。

3.培养学生的观察能力、操作能力和解决问题的能力。

四. 教学重难点1.教学重点:直线与圆的位置关系的判断,弦长和圆心角的求解。

2.教学难点:理解并掌握判断直线与圆位置关系的方法,以及求解弦长和圆心角的公式。

五. 教学方法1.采用问题驱动的教学方法,引导学生通过观察和操作,发现直线与圆的位置关系。

2.使用多媒体辅助教学,展示直线与圆的位置关系的动态过程,帮助学生直观理解。

3.通过小组合作学习,让学生在讨论和交流中,掌握判断直线与圆位置关系的方法。

六. 教学准备1.多媒体教学设备。

2.直线与圆的位置关系的动态演示软件。

3.圆规、直尺等绘图工具。

4.练习题和答案。

七. 教学过程1.导入(5分钟)利用多媒体展示直线与圆的位置关系的动态过程,引导学生观察和思考直线与圆的位置关系。

提问:直线与圆可能出现哪几种位置关系?学生回答后,教师进行总结。

2.呈现(10分钟)教师讲解直线与圆的位置关系的判断方法,以及求解弦长和圆心角的方法。

通过示例,让学生理解并掌握判断直线与圆位置关系的方法,以及求解弦长和圆心角的公式。

人教版九年级数学上册直线和圆的位置关系精品ppt课件

人教版九年级数学上册直线和圆的位置关系精品ppt课件

人教版( 九2年01级2)数九学年上级册数直学线上和册圆的位24置.2关.2系直线精和品圆pp的t 课位件置关系(2) 课件(25张ppt)
归纳分析
例1与例2的辅助线、证法有何不同?
〖例1〗已知:直线AB经过 ⊙O上的点C,并且OA=OB,CA=CB。 求证:直线AB是⊙O的切线。
O
A
C
B
〖例2〗已知:O为∠BAC平分上
人教版九年级数学上册直线和圆的位 置关系 精品ppt 课件
判 断×
×
1. 过半径的外端的直线是圆的切线( ) ×
2. 与半径垂直的的直线是圆的切线( )
3. 过l 半径的rO 端点与半径垂直rO的直线l 是圆的切线rO(
l)
A
A
A
利用判定定理时,要注意直线须具备以 下两个条件,缺一不可:
(1)直线经过半径的外端; (2)直线垂直于这条半径。
O.
那过点O可作OB⊥ l 于点B,
则OA为直角三角形的斜边,
AB l
OB的长就是圆心0到切线l的距离,即OA=OB,
这与“直角三角形的斜边大于直角边”相矛盾,
所以半径OA与切线 l 不垂直的假设不成立。
那半径OA与切线 l 垂直成立。
人教版( 九2年01级2)数九学年上级册数直学线上和册圆的位24置.2关.2系直线精和品圆pp的t 课位件置关系(2) 课件(25张ppt)
九年级 上册
24.2.2 直线和圆的位置关系(2)
切线的判定与性质
直线和圆相切

O

切点 A
线
利用切线的定义: 与圆有唯一公共点的直线是圆的切线。
利用d与r的关系作判断: 当d=r时直线是圆的切线。

人教版初中数学九年级上册第24章圆知识复习第二部分点和圆、直线和圆的位置关系

人教版初中数学九年级上册第24章圆知识复习第二部分点和圆、直线和圆的位置关系
••
*有兴趣的同学可以尝试证明: (1)如图,正五角星中AC=a, 求该五角星外接圆的直径.(用三角函数表示) (2)圆内接四边形两组对边乘积之和等于两条对角线 的乘积。(提示:构造相似形)
(3)若圆内接四边形的对角线互相垂直,则过对角线 的交点所作任一边的垂线将对边平分. A
B
E

O
C
D
中考试题精选
O• 5 A 4P B
【及时巩固】
7、如图,AB是ʘO的直径,AC是弦,∠CAB=30º, 过C点作ʘO的切线交AB的延长线于D,如果 OD=12cm,那么ʘO的半径为 6 .
C
30º • 60º 30º
AO
BD
【及时巩固】
8、如图,PB、PC分别切ʘO于B、C两点,A 是ʘO上一点,∠CAB=50º,则∠P等于 80º .
6、如图,△ABC内接于⊙O,AB的延长线 与过C点的切线GC相交于点D,BE与AC相 交于点F,且CB=CE.求证:(1)BE∥DG; (2)CB2-CF2=BF·FE.
A
O•
E
FB
G CD
中考试题精选
7、如图,PC为⊙O的切线,C为切点, PAB是过O点的割线,CD⊥AB于点D,
若 tan B 1,PC=10cm,求△BCD的面积. 2
A
对应的一个基本图
E O• C D
P
形,其中有很多关
系,你能找出多少?
B
弦切角:圆的切线和过切点的弦所夹的角。 P
O•
O•
B
A
M
(5)弦切角定理:弦切角等于它所夹的弧所对 的圆周角.
推论:如果两个弦切角所夹的弧相等,那么 这两个弦切角也相等.
(6)和三角形各边都相切的圆叫三角形的内切圆。 内切圆的圆心是三角形的内心(即三角形三内角 平分线的交点)。各边都和圆相切的三角形叫圆 的外切三角形。

人教版数学九年级上册24.2.2.1《直线与圆的位置关系》说课稿

人教版数学九年级上册24.2.2.1《直线与圆的位置关系》说课稿

人教版数学九年级上册24.2.2.1《直线与圆的位置关系》说课稿一. 教材分析《直线与圆的位置关系》是人教版数学九年级上册第24章第二节的一部分,这部分内容是整个初中数学的重要知识之一。

在此之前,学生已经学习了直线、圆的基本性质和图形的相互关系。

通过这部分的学习,学生能够更深入地理解直线与圆的位置关系,为后续解析几何的学习打下基础。

本节内容主要包括直线与圆相切、相交两种情况。

教材通过丰富的图形和实例,引导学生探究直线与圆的位置关系,并通过数学推导证明相关结论。

学生需要理解并掌握直线与圆的位置关系,能够运用到实际问题中。

二. 学情分析九年级的学生已经具备了一定的数学基础,对直线、圆的基本性质和图形相互关系有一定的了解。

但学生在学习过程中,可能会对直线与圆的位置关系的理解存在一定的困难,特别是对相交和相切的判断。

因此,在教学过程中,需要关注学生的认知基础,针对学生的实际情况进行教学。

三. 说教学目标1.知识与技能目标:学生能够理解直线与圆的位置关系,掌握判断直线与圆相交、相切的方法。

2.过程与方法目标:通过观察图形、实例分析、数学推导等方法,培养学生的空间想象能力和逻辑思维能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队协作能力和自主学习能力。

四. 说教学重难点1.教学重点:直线与圆的位置关系的理解和判断方法。

2.教学难点:对相交和相切的判断,以及相关数学推导。

五. 说教学方法与手段1.教学方法:采用问题驱动、案例分析、小组讨论、数学推导等教学方法,引导学生主动探究,提高学生的参与度和积极性。

2.教学手段:利用多媒体课件、实物模型、几何画板等教学手段,直观展示直线与圆的位置关系,帮助学生理解和掌握相关知识。

六. 说教学过程1.导入:通过展示实际生活中的直线与圆的例子,如自行车轮子、地球表面的经纬线等,引导学生关注直线与圆的位置关系,激发学生的学习兴趣。

2.新课导入:介绍直线与圆的位置关系的概念,引导学生思考如何判断直线与圆的位置关系。

2.5 直线与圆的位置关系(2)

2.5 直线与圆的位置关系(2)

l 归纳
A
切线的判定定理: (也是判定直线与圆相切的方法三)
经过半径的外端并且垂直于这条半径的直线是圆的切线
2.5 直线与圆的位置关系(2)
典型例题
例1 如图,△ABC内接于⊙O,AB是⊙O的直径, ∠CAD=∠ABC.判断直线AD与⊙O的位置关系,
并说明理由.
E
拓展:如果AB不是直径,其余条件不变,上面的结
3.切线的定义?你有哪些方法可以判定直线与圆相切?
方法一:定义(唯一公共点) 方法二:数量关系(d=r)
2.5 直线与圆的位置关系(2)
探究活动一
如图,点A在⊙O上,你能经过A点画出⊙O的切线吗?
思考 O

1.你画图的依据是什么? 依据是“d = r” 2.根据上述画图,你认为直线l具 备什么条件就是⊙O的切线了? 具备:① 直线l 经过半径的外端点 ②直线l 垂直于半径
论还成立吗?
2.5 直线与圆的位置关系(2)
探究活动二
直线l与⊙O相切于点A,你能得到哪些结论?
性质一:直线与圆唯一公共点; 性质二:数量关系-“d = r”
归纳 切线的性质:
圆的切线垂直于经过切点的半径.
猜想:OA ⊥l 反证法: (1)假设直线l与OA不垂直.
O
(2)作OB⊥ l,垂足为点B.
初中数学 九年级(上册)
2.5 直线与圆的位置关系(2)
知识改变命运、拼搏成就未来!
2.5 直线与圆的位置关系(2)
复习回顾
1.直线与圆有几种位置关系?可以用哪些方法来判定? 2.已知⊙O半径r=5厘米,圆心O到直线l的距离是d:
d 4cm 5cm 6cm 直线与圆的公共点个数 2个 1个 0个 直线与圆的位置关系 相交 相切 相离

人教版九年级数学上册:24.2.2 直线和圆的位置关系

人教版九年级数学上册:24.2.2 直线和圆的位置关系
3、设⊙p的半径为4cm,直线l上一点A到圆心的 距离为4cm,则直线l与⊙O的位置关系是( D ) A、相交 B、相切 C、相离 D、相切或相交
P
4cm l
A
P 4cm
l A
O .
直线和圆没有公共点,
O
叫做直线和圆相离 .
l
我指你答
快速判断下列各图中直线与圆的位置关系.
.O1
.O2
l
.O
l
.O
.O
l
l
小组合作探究
2.直线和圆的位置关系 — 数量特征
d:圆心到直线的距离 r :半径
Or
d
l
直线 l 和⊙O相交
d<r
O
r
d
直线 l 和⊙O相切
l
O r
d
l
直线 l 和⊙O相离
d=r d>r
知识要点
判定直线与圆的位置关系的方法有__两__种: (1)根据定义,由_直__线___与__圆__的__公__共__点__ 的个数来判断; (2)根据性质,由_圆__心__到__直__线__的__距__离__与__半__径__ 的关系来判断. (在实际应用中,常采用第二种方法判定)
我问你答
分别请三位同学提问以下1、2、3中的 其中一项内容,让 其他同学回答另两项内容。
1、直线和圆位置关系, 2、公共点个数, 3、d与r的关系,
挑战一:我会说,我来说
1、已知⊙O的半径为5cm,O到直线a的距离为 3cm,则⊙O与直线a的位置关系是_相__交__.直线a 与⊙O的公共点个数是_两__个_.


O
O
(地平线)

O
a(地平线)

直线和圆的位置关系(第2课时)(课件)-2022-2023学年九年级数学下册同步精品课件(北师大版)

直线和圆的位置关系(第2课时)(课件)-2022-2023学年九年级数学下册同步精品课件(北师大版)
∴BO,CO分别是∠ABC和∠ACB的平分线
O C
即∠ OBC= 1 ∠ABC ∠OCB=1 ∠ACB
2
2
∴∠ BOC=180°-(∠ OBC+∠OCB)
=180°- 1 ( ∠ABC +∠ACB)== 125°.
2
1.下列说法错误的是( ) A.三角形的内切圆与三角形的三边都相切 B.一个三角形一定有唯一一个内切圆 C.一个圆一定有唯一一个外切三角形 D.等边三角形的内切圆与外接圆是同心圆
探索&交流
如图,AB 是 ⊙O 的直径,直线 l 与 AB 的夹角为∠Biblioteka . 当l 绕点 A 旋转时,
B
(1)随着∠α的变化,点 O 到 l 的距 l 离 d 如何变化?直线 l 与 ⊙O 的位置 关系如何变化?
Od α
A
l l
∠α从90°变小到0°,再由0°变大 到90°,点 O 到 l 的距离 d 先由 r 变小到0,再由0变大到 r.
练习&巩固
练习&巩固
2.如图,点C 是⊙ O上的一点,AB 是⊙ O的直径,∠CAB=∠DCB,
那么CD 与⊙ O 的位置关系是( )
A. 相交
B. 相离
C. 相切
D. 相交或相切
练习&巩固
3.如图,☉O内切于△ABC,切点D、E、F分别在BC、AB、AC上.已
知∠B=50°,∠C=60°,连接OE,OF,DE,DF,那么∠EDF等于
第三章 圆
6.2 直线和圆的位置关系
北师大版九年级数学下册
学习&目标
1.理解并掌握圆的切线的判定定理及运用.(重点) 2.三角形的内切圆和内心的概念及性质.(难点)

沪科版数学九年级下册24.4《直线与圆的位置关系》教学设计2

沪科版数学九年级下册24.4《直线与圆的位置关系》教学设计2

沪科版数学九年级下册24.4《直线与圆的位置关系》教学设计2一. 教材分析《直线与圆的位置关系》是沪科版数学九年级下册第24.4节的内容。

本节内容主要介绍直线与圆的位置关系,包括相切和相离两种情况,并通过判定来求解相关问题。

教材通过丰富的例题和练习题,帮助学生掌握直线与圆的位置关系的判定和应用。

二. 学情分析九年级的学生已经学习了直线、圆的基本知识,对图形的直观理解能力较强。

但直线与圆的位置关系较为抽象,需要学生具有较强的逻辑思维能力和空间想象能力。

此外,学生可能对一些判定定理和公式理解不深,需要在教学中加以引导和巩固。

三. 教学目标1.了解直线与圆的位置关系,掌握相切和相离的判定方法。

2.能够运用直线与圆的位置关系解决实际问题。

3.培养学生的逻辑思维能力和空间想象能力。

四. 教学重难点1.直线与圆的位置关系的判定方法。

2.如何运用直线与圆的位置关系解决实际问题。

五. 教学方法1.采用问题驱动法,引导学生探究直线与圆的位置关系。

2.利用多媒体辅助教学,直观展示直线与圆的位置关系。

3.运用实例分析法,让学生学会将理论知识应用于实际问题。

4.小组讨论,培养学生的合作能力和解决问题的能力。

六. 教学准备1.多媒体教学设备。

2.直线与圆的位置关系的相关例题和练习题。

3.教学课件。

七. 教学过程1.导入(5分钟)利用多媒体展示直线与圆的图片,引导学生思考直线与圆的位置关系。

提问:你们认为直线与圆有哪些位置关系?2.呈现(10分钟)通过课件介绍直线与圆的两种位置关系:相切和相离。

给出判定方法,并用图示进行解释。

3.操练(10分钟)让学生独立完成教材中的例题,引导学生运用判定方法解决问题。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)学生进行小组讨论,分享解题心得。

教师选取部分学生的解题过程进行点评,巩固知识点。

5.拓展(10分钟)提出一些与直线与圆位置关系相关的实际问题,让学生尝试解决。

引导学生运用所学知识分析问题,培养学生的应用能力。

24.2.2 第1课时 直线和圆的位置关系 初中数学人教版九年级上册课件

24.2.2 第1课时 直线和圆的位置关系 初中数学人教版九年级上册课件

2.已知⊙O的半径为5 cm,圆心O与直线AB的距离为d,根据条
件填写d的范围:
(1)若AB和⊙O相离,则 d > 5 cm
;
(2)若AB和⊙O相切,则 d = 5 cm
;
(3)若AB和⊙O相交,则 0 cm≤d < 5 cm .
典例精析
例1 在Rt△ABC中,∠C=90°,AC=3 cm,BC=4 cm,
以C为圆心,r为半径的圆与AB有怎样的位置关系?
为什么?
(1) r=2 cm;(2) r=2.4 cm; (3) r=3 cm.
B
分析:要了解AB与⊙C的位置关系,只要知
道圆心C到AB的距离d与r的关系.已知r,只 4
需求出C到AB的距离d. C
D A
3
解:过C作CD⊥AB,垂足为D.
在△ABC中,
dD
(2) 当r=2.4 cm时,有d=r, 因此⊙C和AB相切.
(3) 当r=3 cm时,有d<r, 因此⊙C和AB相交.
d D
dD
变式题:
1.在Rt△ABC中,∠C=90°,AC=3 cm,BC=4 cm,
以C为圆心画圆,当半径r为何值时,圆C与直线
AB没有公共点?
B
解:当0 cm<r<2.4 cm或r>4cm
A. r < 5 B. r > 5 C. r = 5 D. r ≥ 5
3. ☉O的最大弦长为8,若圆心O到直线l的距离为d=5,
则直线l与☉O ( C )
A. 相交
B.相切
C. 相离
D.以上三种情况都有可能
4. ☉O的半径为5,直线l上的一点到圆心O的距离是5,
则直线l与☉O的位置关系是( A )

人教版数学九年级上册24.直线和圆的位置关系(第2课时)课件

人教版数学九年级上册24.直线和圆的位置关系(第2课时)课件

O.
图1
图2
猜猜看:图2中直线l与⊙O由怎样的位置关系?
相切的语言把这一结论总结出来吗?
切线的判定定理:经过半径的外端并且垂直于这条半径的直
线是圆的切线
符号表示: ∵OA是⊙O半径,l⊥OA于点A, ∴l是的⊙O切线.
及时练
问题:定理中的两个条件缺少一个行不行?
1. 过半径的外端的直线是圆的切线( × ) 2. 与半径垂直的的直线是圆的切线( ×) 3. 过半径的端点与半径垂直的直线是圆的切线( ×)
03
练习
例1
如图,△ABC为等腰三角形,O是底边BC的中点,腰AB与 ⊙O相切于点D. 求证:AC是⊙O的切线.
分析:根据切线的判定定理,要证明AC是 ⊙O的切线,只要证明由点O向AC所作的垂 线段OE是⊙O的半径就可以了,而OD是的 半径,因此需要证明OE=OD.
例1
证明:如图,过点 O 作 OE⊥AC,垂足为 E,连接 OD,OA. ∵⊙O 与 AB 相切于点 D, ∴OD⊥AB. 又为等腰三角形,O 是底边 BC 的中点, ∴AO 是∠BAC 的平分线. ∴OE=OD,即 OE 是⊙O 的半径. 这样,AC 经过⊙O 的半径 OE 的外端 E,并且垂直于半径 OE,所以 AC 与⊙O 相切.
1.要解决此问题用什么方法? 切线的判定定理 2.AB要具备哪些条件? 经过半径的外端并且垂直于这条半径 3.连接OB就使AB过半径的外端,只需证明 OB⊥AB即可,如何证明呢?

常用证两条 线段(或直 线)垂直的 方法

证法1:连接OB ∵OB=OC,CA=OC ∴BC= 1 OA
2
∴ ∠OBA=90º, 即AB⊥OB ∴AB是⊙O的切线
反证法:假设AB与OC不垂直, 则过点O作OM⊥AB,垂足为M, 根据垂线段最短,得OM<OC, 即圆心O到直线AB的距离d<R ∴直线AB与⊙O相交, 这与已知“AB是⊙O的切线”矛盾 ∴假设不成立,即AB⊥OC.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
O 100 x(km)
练一练:已知:如图,AB是圆的直径,BC⊥AB, 弦AD∥OC。求证:DC是⊙O的切线。
C
D A B
O
探究活动:课本第53页
;
算命
hnq913dgk
轻松愉快起来,爽啊!爽!似乎每个细胞都打开了气孔,真的太爽了!马启明微闭着眼睛,完全沉浸在美妙的、如痴如醉的感觉中了。 马启明还是第一次喝到如此清爽甘冽的啤酒,瞬间的沉醉让他心中更加充满了期待,他在美滋滋地想:今生今世从事这么美好的职业---酿造美酒的同时,也在酿造自己的美好人生,心头有一种美滋滋、甜蜜蜜的感觉。他觉得嘴长在自己的身上确实太享受了,没有白来这 个世上。马启明忽然觉得,他就是为啤酒而生的!“走吧!”张钢铁的一句话,把马启明从梦境中轻轻地拽回到现实当中。从发酵工段 出来后,张钢铁眯着两只眼睛,目不转睛地注视着马启明,发问道:“传统发酵你还想去看吗?那可是我们最早的发酵车间,传统发酵 的酒比露天发酵的酒可要好喝多了。我在这儿干了二十年多年,可惜因操作繁琐、能耗大、产量低,马上也要象老糖化一样停产了,真 舍不得呀!”说完长长叹了口气。马启明看着张钢铁惋惜的神情,为了弥补刚才的口误,怕拂逆了张钢铁的好意,赶紧说:“那是必须 的。张主任,我从没见过传统发酵,还真想去看一看。”张钢铁一扫刚才的不愉快,立刻笑着答应道:“好!不过,传统发酵里面很冷, 有4℃以下呢,必须要穿棉衣棉裤,还要换上长统雨靴。走!” 说着便将马启明带到更衣间。马启明觉得,欣赏别人,是对别人最好的 尊重。穿好公用的棉袄棉裤和长统雨靴,马启明感觉马上变成了爱斯基摩人,臃肿得像个橄榄球一样。他跟着张钢铁来到传统发酵门口, 张钢铁刚拉开那扇厚重的大木门,一股阴冷潮湿的冷气便扑面而来,里面黑幽幽的,一时什么都看不见,从里面传来马达呜呜呜的响声, 就像《西游记》里面的黑风洞一样,又像到了阎王爷的阴曹地府一样,怪吓人的。张钢铁立刻关上木门熟悉地朝前走去,马启明却站在 消毒池中,几乎什么都看不见,心怦怦乱跳,一动也不敢动,感觉就像黑夜爬华山长空栈道一样,稍有不慎,就会掉入万丈深渊。片刻, 只听到张钢铁的声音从前面传过来:“小马,消毒池上面没有灯,前面就有灯了,你尽管往前走就行了。”马启明从亮处一下走到暗处, 眼睛一时半会儿还没适应过来,而且他从来没到过传统发酵,对里面的情况一无所知,心里感到即害怕又刺激,汗毛一根根都竖起来了, 身体唯有站在那里一动不动,声音颤抖地问道:“张„„主任,我什么„„都看不见,怎么„„走呀?”“那你等一会儿。” 张钢铁走 到马启明身边,拉起他的手小心翼翼地走过消毒池。前方昏黄的灯光还是让马启明眼前一片模糊,只得颤颤巍巍、深一脚浅一脚地往前 慢慢移。过了好一会儿,马启明眼睛才逐渐地适应过来了。他看见左右两边,上下两层横卧着许多十八吨左右、被漆成黄色的大铁中心P(100,200)沿北偏东30°移 动,受台风影响区域的半径为200km,那么下列城市 A(200,300),B(600,480),C(550,300),D(370,540) 中,哪些受到这次台风的影响,哪些不受这次台风的 影响?
y(km)

D B A C
P
100
Q O
A B O P
(2)如图,点Q在⊙O上。分别根据下列条件, 判定直线PQ与⊙O是否相切: ① OQ=6,OP=10,PQ=8 ② ∠O=67.3°, ∠P=22°42′
例1:已知:如图,A是⊙O外一点,AO的延长 线交⊙O 于点C,点B在圆上,且AB=BC,∠A =30°。求证:直线AB是⊙O的切线。
请按照下述步骤作图:
在⊙O上任取一点A,连结OA。过点A作直线 l⊥OA
问题: (1)圆心O到直线l 的距离和圆的半 径有什么关系? (2)直线l与⊙O的位置有什么关系?根据什么? (3)由此你发现了什么?
O
直线与圆相切的判定定理:
经过半径的外端并且垂直这条半径 的直线是圆的切线。
做一做:(1)如图,AB是⊙O的直径,请分 别过点A,B作⊙O的切线。
相关文档
最新文档