2019-2020学年浙江省宁波市九校高一上学期期末联考数学试题(含答案解析)
【优质文档】2019-2020学年人教A版浙江省宁波市九校高一第一学期期末数学试卷含解析

2019-2020学年高一第一学期期末数学试卷一、选择题1.已知集合A={x|x>0},集合B={x|﹣1<x≤6},则A∩B=()A.(﹣1,0)B.(0,6] C.(0,6)D.(﹣1,6] 2.函数的值域是()A.(﹣1,1)B.C.D.3.已知x,y∈R,且x>y>0,则()A.B.cos x﹣cos y>0C.D.lnx+lny>04.已知向量,,且.则与的夹角为()A.B.C.D.5.已知半径为2的扇形AOB中,的长为3π,扇形的面积为ω,圆心角AOB的大小为φ弧度,函数h(x)=sin(x+φ),则下列结论正确的是()A.函数h(x)是奇函数B.函数h(x)在区间[﹣2π,0]上是增函数C.函数h(x)图象关于(3π,0)对称D.函数h(x)图象关于直线x=﹣3π对称6.已知a=log72,b=log0.70.2,c=0.70.2,则a,b,c的大小关系为()A.b<c<a B.a<b<c C.c<a<b D.a<c<b7.已知4个函数:①y=x|sin x|;②y=x cos|x|;③;④y=4cos x﹣e|x|的图象如图所示,但是图象顺序被打乱,则按照图象从左到右的顺序,对应的函数序号正确的为()A.①④②③B.③②④①C.①④③②D.③①④②8.在△ABC中,,则△ABC为()A.直角三角形B.三边均不相等的三角形C.等边三角形D.等腰非等边三角形9.若(log22019)x+(log20202)﹣y<(log22019)﹣y+(log20202)x,则()A.x+y<0 B.x+y>0 C.x﹣y<0 D.x﹣y>010.设函数,则方程16f(x)+(x2+x﹣1)=0根的个数为()A.2 B.3 C.4 D.5二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.已知函数,则f(0)=,函数定义域是.12.已知是单位向量,,,,,若,则实数λ=;若A,B,D三点共线,则实数λ=.13.己知函数的最小正周期是3.则a=,f(x)的对称中心为.14.已知a,b∈R,定义运算“?”:,设函数f(x)=(2x?2)﹣(1?log2x),x∈(0,2),则f(1)=,f(x)的值域为.15.已知函数f(x)=(2m﹣9)x a为幂函数,且其图象过点,则函数的单调递增区间为.16.已知,是平面向量,且,若,则的取值范围是.17.函数f(x)=﹣2﹣5x,g(x)=sin x,若,使得f(x1)+f(x2)+…+f(x n﹣1)+g(x n)=g(x1)+g(x2)+…+g(x n﹣1)+f(x n),则正整数n的最大值为.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.已知向量,其中.(1)若的,求tan x的值;(2)若与垂直,求实数m的取值范围.19.已知集合.C={x|(x﹣m﹣1)(x+m+1)≤0,m∈R}(1)若(?R A)∩B=?,求a的取值范围;(2)若A∩C=C,求m的取值范围.20.已知f(x)为偶函数,当x≥0时,f(x)=2lg(x+1).(1)求f(x)的解析式;(2)若对于任意的x∈(﹣∞,0),关于x的不等式lg(kx)<f(x)恒成立,求k 的取值范围.21.已知函数f(x)=sin(2x+),g(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示.(1)求g(x)的解析式,并说明f(x)的图象怎样经过2次变换得到g(x)的图象;(2)若对于任意的,不等式|f(x)﹣m|<2恒成立,求实数m的取值范围.22.在函数定义域内,若存在区间[m,n],使得函数值域为[m+k,n+k],则称此函数为“k 档类正方形函数”,已知函数f(x)=log3[2k?9x﹣(k﹣1)3x+k+2].(1)当k=0时,求函数y=f(x)的值域;(2)若函数y=f(x)的最大值是1,求实数k的值;(3)当x>0时,是否存在k∈(0,1),使得函数f(x)为“1档类正方形函数”?若存在,求出实数k的取值范围,若不存在,请说明理由.参考答案一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x>0},集合B={x|﹣1<x≤6},则A∩B=()A.(﹣1,0)B.(0,6] C.(0,6)D.(﹣1,6] 【分析】进行交集的运算即可.解:∵A={x|x>0},B={x|﹣1<x≤6},∴A∩B=(0,6].故选:B.2.函数的值域是()A.(﹣1,1)B.C.D.【分析】先判断出函数y=tan x在(﹣,)单调递增,分别求出特殊值,再写出函数的值域即可.解:因为函数y=tan x在(﹣,)单调递增,且tan=;tan(﹣)=﹣1,则所求的函数的值域是(﹣1,),故选:C.3.已知x,y∈R,且x>y>0,则()A.B.cos x﹣cos y>0C.D.lnx+lny>0【分析】利用不等式的基本性质、函数的单调性即可判断出结论.解:x>y>0,则﹣>0,cos x﹣cos y>0,lnx+lny>0不一定成立,而﹣<0一定成立.故选:C.4.已知向量,,且.则与的夹角为()A.B.C.D.【分析】分别求出向量的模长,代入向量的数量积即可求解,注意夹角的范围.解:设与的夹角为θ;因为,所以||=1;∴=||×||cosθ=?cosθ=;∵θ∈[0,π];∴θ=;故选:A.5.已知半径为2的扇形AOB中,的长为3π,扇形的面积为ω,圆心角AOB的大小为φ弧度,函数h(x)=sin(x+φ),则下列结论正确的是()A.函数h(x)是奇函数B.函数h(x)在区间[﹣2π,0]上是增函数C.函数h(x)图象关于(3π,0)对称D.函数h(x)图象关于直线x=﹣3π对称【分析】先通过扇形的弧长和面积公式表示出ω和φ,并代入函数h(x)的解析式,整理得,再结合余弦函数的图象与性质逐一判断每个选项的正误即可.解:∵扇形弧长=2φ=3π,∴φ=,又∵扇形面积ω=∴h(x)=sin(x+φ)=,对于A选项,函数h(x)为偶函数,即A错误;对于B选项,令,则x∈[6kπ,3π+6kπ],k∈Z,而[﹣2π,0]?[6kπ,3π+6kπ],k∈Z,即B错误;对于C选项,令,则,∴函数的对称中心为,即C错误;对于D选项,令,则x=3kπ,k∈Z,∴函数的对称轴为x=3kπ,k∈Z,当k=﹣1时,有x=﹣3π,即D正确.故选:D.6.已知a=log72,b=log0.70.2,c=0.70.2,则a,b,c的大小关系为()A.b<c<a B.a<b<c C.c<a<b D.a<c<b【分析】本题根据对数函数及指数函数来比较大小,解题关键是找到中间值,将a、b、c与中间值进行比较即可得到结果.解:由题意,∵2=<,∴a=log72<log7=;b=log0.70.2>log0.70.7=1,<0.7<c=0.70.2<1,∴a<c<b,故选:D.7.已知4个函数:①y=x|sin x|;②y=x cos|x|;③;④y=4cos x﹣e|x|的图象如图所示,但是图象顺序被打乱,则按照图象从左到右的顺序,对应的函数序号正确的为()A.①④②③B.③②④①C.①④③②D.③①④②【分析】分别判断函数的奇偶性,对称性,利用函数值的特点进行判断即可.解:①y=x|sin x|是奇函数,图象关于原点对称;当x>0时,y≥0恒成立,②y=x cos|x|=x cos x是奇函数,图象关于原点对称;③为非奇非偶函数,图象关于原点和y轴不对称,且y≥0恒成立,④y=4cos x﹣e|x|是偶函数,图象关于y轴对称,则第一个图象为③,第三个图象为④,第四个图象为①,第二个图象为②即对应函数序号为③②④①,故选:B.8.在△ABC中,,则△ABC为()A.直角三角形B.三边均不相等的三角形C.等边三角形D.等腰非等边三角形【分析】直接代入数量积的计算公式第一个条件求出A=C;第二个条件得到B即可求出结论解:因为在△ABC中,A,B,C∈(0,π),∴+=0?||cos A﹣||coC=0?cos A=cos C?A=C;∵?=||×||×cos B=||×||?cos B=?B=;∴△ABC为等边三角形;故选:C.9.若(log22019)x+(log20202)﹣y<(log22019)﹣y+(log20202)x,则()A.x+y<0 B.x+y>0 C.x﹣y<0 D.x﹣y>0【分析】令f(x)=﹣(log22020)﹣x,然后结合函数的单调性即可判断.解:令f(x)=﹣(log22020)﹣x,则易得f(x)在(﹣∞,+∞)上单调递增,结合已知不等式的特点,考虑构造函数∵(log22019)x+(log20202)﹣y<(log22019)﹣y+(log20202)x,∴(log22019)x﹣(log22020)﹣x<(log22019)﹣y﹣(log22020)y,即f(x)<f(﹣y),所以x<﹣y,故x+y<0.故选:A.10.设函数,则方程16f(x)+(x2+x﹣1)=0根的个数为()A.2 B.3 C.4 D.5【分析】方程16f(x)+(x2+x﹣1)=0根的个数等价于函数f(x)与函数g(x)=﹣的交点个数,画出两个函数的大致图象,观察交点个数即可.解:方程16f(x)+(x2+x﹣1)=0根的个数等价于函数f(x)与函数g(x)=﹣的交点个数,画出两个函数的大致图象,如图所示:,∵,∴在(0,+∞)内有1个交点,∵,∴两个函数在(﹣∞,0]内有3个交点,综上所述,函数f(x)与函数g(x)共有4个交点,所以方程16f(x)+(x2+x﹣1)=0根的个数是4个,故选:C.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.已知函数,则f(0)= 2 ,函数定义域是.【分析】直接在函数解析式中取x=0求得f(0);由对数式的真数大于0,分母中根式内部的代数式大于0联立不等式组求解函数定义域.解:由,得f(0)=;由,解得﹣.∴函数定义域是(﹣,1).故答案为:2,(﹣,1).12.已知是单位向量,,,,,若,则实数λ=;若A,B,D三点共线,则实数λ=﹣.【分析】利用向量垂直和向量平行的性质直接求解.解:∵是单位向量,,,,,,∴=()?()=2λ﹣1=0,解得实数λ=.∵A,B,D三点共线,=,,解得实数λ=﹣.故答案为:.13.己知函数的最小正周期是3.则a=,f(x)的对称中心为(,0),k∈Z .【分析】根据正切的周期求出a,利用整体法求出对称中心即可.解:函数的最小正周期是3,则3=,得a=,所以函数f(x)=2tan(),由,k∈Z,得x=,故对称中心为(,0),k∈Z14.已知a,b∈R,定义运算“?”:,设函数f(x)=(2x?2)﹣(1?log2x),x∈(0,2),则f(1)= 1 ,f(x)的值域为[1,3).【分析】由所给的函数定义求出分段函数f(x)的解析式,进而求出结果.解:由题意f(x)=,,所以f(1)=1,x∈(0,2),f(x)∈[1,3),故答案分别为:1,[1,3)15.已知函数f(x)=(2m﹣9)x a为幂函数,且其图象过点,则函数的单调递增区间为(﹣∞,2).【分析】根据函数f(x)是幂函数求出m的值,再根据f(x)的图象过点,求出a的值;由此得出函数g(x)的解析式,根据复合函数的单调性:同增异减,求出g(x)的单调递增区间.解:函数函数f(x)=(2m﹣9)x a为幂函数,2m﹣9=1,解得m=5,且其图象过点,所以3a=,解得a=,所以函数即函数g(x)=,令x2﹣5x+6>0,解得x<2或x>3;所以函数g(x)的单调递增区间为(﹣∞,2).故答案为:(﹣∞,2).16.已知,是平面向量,且,若,则的取值范围是[3,+∞).【分析】先根据()?=+?=6得到×cosθ=3;进而表示出即可求解解:设()与的夹角为θ;∵()?=+?=6=×||×cosθ;∴×cosθ=3;∴0<cosθ≤1=≥3;故答案为:[3,+∞)17.函数f(x)=﹣2﹣5x,g(x)=sin x,若,使得f(x1)+f(x2)+…+f(x n﹣1)+g(x n)=g(x1)+g(x2)+…+g(x n﹣1)+f(x n),则正整数n的最大值为 6 .【分析】由题意可得g(x)﹣f(x)=sin x+5x+2,由正弦函数和一次函数的单调性可得g(x)﹣f(x)﹣2=sin x+5x的范围是[0,1+],将已知等式整理变形,结合不等式的性质,可得所求最大值n.解:函数f(x)=﹣2﹣5x,g(x)=sin x,可得g(x)﹣f(x)=sin x+5x+2,由x∈[0,],可得y=sin x,y=5x递增,则g(x)﹣f(x)﹣2=sin x+5x的范围是[0,1+],f(x1)+f(x2)+…+f(x n﹣1)+g(x n)=g(x1)+g(x2)+…+g(x n﹣1)+f(x n),即为[g(x1)﹣f(x1)]+[g(x2)﹣f(x2)]+…+[g(x n﹣1)﹣f(x n﹣1)]=g(x n)﹣f (x n),即为(sin x1+5x1)+(sin x2+5x2)+…+(sin x n﹣1+5x n﹣1)+2(n﹣1)=sin x n+5x n+2,即(sin x1+5x1)+(sin x2+5x2)+…+(sin x n﹣1+5x n﹣1)+2(n﹣2)=sin x n+5x n,由sin x n+5x n∈[0,1+],可得2(n﹣2)≤1+,即n≤+,而+∈(6,7),可得n的最大值为6,故答案为:6.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.已知向量,其中.(1)若的,求tan x的值;(2)若与垂直,求实数m的取值范围.【分析】(1)根据平面向量的数量积列方程求出tan x的值,再根据x的范围确定tan x 的值;(2)根据平面向量的数量积和模长公式求出m的解析式,再求m的取值范围.解:(1)因为,即,所以,所以2tan2x﹣5tan x+2=0,解得tan x=2或.因为,所以tan x∈[0,1],即.(2)因为与垂直,所以,所以m2=1+sin2x,因为,所以,解得m的取值范围是.19.已知集合.C={x|(x﹣m﹣1)(x+m+1)≤0,m∈R}(1)若(?R A)∩B=?,求a的取值范围;(2)若A∩C=C,求m的取值范围.【分析】(1)可以求出A={x|﹣3≤x≤1},从而得出?R A=(﹣∞,﹣3)∪(1,+∞),根据(?R A)∩B=?可讨论B是否为空集:B=?时,a﹣1≥2a+1;B≠?时,,解出a的范围即可;(2)根据A∩C=C即可得出C?A,然后可讨论m+1与﹣(m+1)的大小关系,从而得出集合C,根据C?A即可得出m的范围.解:(1)A={x|(x+3)(1﹣x)≥0}={x|﹣3≤x≤1},B=(a﹣1,2a+1),∴?R A=(﹣∞,﹣3)∪(1,+∞),且(?R A)∩B=?,∴①B=?时,a﹣1≥2a+1,解得a≤﹣2;②B≠?时,,解得﹣2<a≤0,∴a的取值范围为(﹣∞,0];(2)∵A∩C=C,∴C?A,∴①m+1>﹣(m+1),即m>﹣1时,C=(﹣(m+1),m+1),∴,解得﹣1<m≤0;②m+1<﹣(m+1),即m<﹣1时,C=(m+1,﹣(m+1)),∴,解得﹣2≤m<﹣1;③m+1=﹣(m+1),即m=﹣1时,C={0},满足C?A,∴综上得,m的取值范围为[﹣2,0].20.已知f(x)为偶函数,当x≥0时,f(x)=2lg(x+1).(1)求f(x)的解析式;(2)若对于任意的x∈(﹣∞,0),关于x的不等式lg(kx)<f(x)恒成立,求k 的取值范围.【分析】(1)设x<0,则﹣x>0,f(x)=f(﹣x)=2lg(﹣x+1),再求出f(x)的解析式;(2)当x<0时,因为kx>0,所以k<0,结合分离参数法求出k的范围.解:(1)设x<0,则﹣x>0,f(x)=f(﹣x)=2lg(﹣x+1),所以,(2)当x<0时,因为kx>0,所以k<0,所以lg(kx)<2lg(﹣x+1),即lg(kx)<lg(﹣x+1)2,即kx<(﹣x+1)2.因为x<0,所以恒成立,因为x<0时,最大值为﹣4,所以﹣4<k,所以﹣4<k<0.21.已知函数f(x)=sin(2x+),g(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示.(1)求g(x)的解析式,并说明f(x)的图象怎样经过2次变换得到g(x)的图象;(2)若对于任意的,不等式|f(x)﹣m|<2恒成立,求实数m的取值范围.【分析】(1)现根据图象求出g(x)的解析式;再结合图象变化规律说明f(x)的图象怎样经过2次变换得到g(x)的图象;(2)先结合正弦函数的性质求出f(x)的范围;再结合恒成立问题即可求解.解:(1)由图得,因为为函数递增区间上的零点,所以,即.因为,所以,即,图象变换:将函数f(x)=sin(2x+)的图象上所有点的横坐标伸长到原来的4倍(纵坐标不变)得到y=sin(x+),再将所得图象向左平移个单位长度得到的图象;(2)因为,所以,所以当时,f(x)取最小值,当时,f(x)取最大值1,因为|f(x)﹣m|<2恒成立,即﹣2+m<f(x)<2+m恒成立,所以,即.22.在函数定义域内,若存在区间[m,n],使得函数值域为[m+k,n+k],则称此函数为“k 档类正方形函数”,已知函数f(x)=log3[2k?9x﹣(k﹣1)3x+k+2].(1)当k=0时,求函数y=f(x)的值域;(2)若函数y=f(x)的最大值是1,求实数k的值;(3)当x>0时,是否存在k∈(0,1),使得函数f(x)为“1档类正方形函数”?若存在,求出实数k的取值范围,若不存在,请说明理由.【分析】本题第(1)题根据指数函数的性质和对数函数想性质可得到函数y=f(x)的值域;第(2)题利用换元法设t=3x,t>0,然后对参数k进行分类讨论,分k≥0和k <0两种情况进行讨论函数g(t)的最大值,根据最大值取得的情况计算出k的取值;第(3)题继续利用换元法设t=3x,t>0,设真数为g(t)=2k?t2﹣(k﹣1)t+k+2.根据二次函数的性质可得f(x)在(1,+∞)上为增函数,则f(x)min=f(m)=m+1,f (x)max=f(n)=n+1,将问题转化为方程在(0,+∞)上有两个不同实根进行思考,再次利用换元法转化为一元二次方程,根据△>0,及韦达定理可计算出实数k的取值范围.解:(1)由题意,当k=0时,,∵3x+2>2.∴,∴函数y=f(x)的值域为(log32,+∞).(2)由题意,设t=3x,t>0,则,①若k≥0,则函数g(t)=2k?t2﹣(t﹣1)t+k+2无最大值,即f(t)无最大值,不合题意;②若k<0,则g(t)=2k?t2﹣(k﹣1)t+k+2最大值在时取到,且,∴,解得k=1,或.由k<0,可得.(3)由题意,因为0<k<1时,设t=3x(t>1).设真数为g(t)=2k?t2﹣(k﹣1)t+k+2.此时对称轴,∴当t>1时,g(t)为增函数,且g(t)>g(1)=2k+3>0,即f(x)在(1,+∞)上为增函数.∴f(x)min=f(m)=m+1,f(x)max=f(n)=n+1,即方程在(0,+∞)上有两个不同实根,即2k?9x﹣(k﹣1)3x+k+2=3x﹣1,设t=3x(t>1).∴2k?t2﹣(k﹣1)t+k+2=3t.即方程2k?t2﹣(k+2)t+k+2=0有两个大于l的不等实根,∵0<k<1,∴,解得,由0<k<1,得,即存在m,n,使得函数f(x)为“1档类正方形函数”,且.。
2020学年宁波九校高一上期末数学试卷答案

宁波市一2020学年第学期期末九校联考 高一数学参考答案一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
二、选择题:本题共4小题,每小题5分,共20分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得5分,有选错的得0分,部分选对的得3分。
三、填空题:本题共4小题,每小题5分,共20分。
13.6 14.1015.3+ 16.(,4)−∞− 四、解答题:本题共6小题,共70分。
解答应写出文字说明、证明过程或演算步骤。
17.解析:(Ⅰ){|02}A x x =<<,………………………………………………………1分1|,,a B y y x x a ⎧⎫⎛⎫==∈∞⎨⎬ ⎪⎝⎭⎩⎭+表示函数1,,a y x x a ⎛⎫=∈∞ ⎪⎝⎭+的值域,当1a =时,1y x=在(1,)∞+上单调递减,值域{|01}By y =<<, ………………3分{|10}U B y y y =≥≤,或C ,………………………………………………………………4分()[1,2)U AB =C , …………………………………………………………………………5分(Ⅱ)由A B A=知A B ⊆,由()U A B U =C 知B A ⊆,所以(0,2)B A ==,…………………………………………………………………………8分 故0a >,且2(0,)(0,2)a =,即a 分18.解析:(Ⅰ)π()2sin cos()cos 26f x x x x =−+212sin sin cos 22cos sin cos 2112cos 222x x x x x x x x x x ⎫++⎪⎪⎝⎭++=++=π1sin(2)62x =++………………………………………………………………………3分因为π0,2x ⎡⎤∈⎢⎥⎣⎦,所以ππ7π2666x ≤+≤,由πππ2662x ≤+≤得π06x ≤≤, 故单调递增区间为π0,6⎡⎤⎢⎥⎣⎦;………………………………………………………………5分1πsin 2126x ⎛⎫−≤+≤ ⎪⎝⎭, 所以当π6x =时,()f x 取最大值32, 当π2x =时,()f x 取小值0.………………7分(Ⅱ)设π26t x =+,()sin h t t =,π7π,66t ⎡⎤∈⎢⎥⎣⎦,“函数()()g x f x a =−有且仅有一个零点”等价于“直线12y a =−与()y h t =有且只有一个交点”,………… …………………………………………………………………10分数形结合可得11111,2222a a −=≤−<或-,即3,012a a =≤<或.故a 的取值范围为3012a a a ⎧⎫=≤<⎨⎬⎩⎭或.…………………………………………12分19.解析:(Ⅰ)当0k =时,不等式为4(4)0x −−>,(,4)A =−∞;…………2分当0k >时,4(,4)(,)A k k=−∞++∞;………………………………………4分当0k <时,4(,4)A k k=+;…………………………………………………6分(Ⅱ)由(1)知0k <,且465k k−≤+<−,…………………………………………8分即22540640k k k k ⎧++>⎪⎨++≤⎪⎩……………………………………………………………………10分解得k 的取值范围是[35,4)(1,35]−−−−−+…………………………………12分20.解析:(Ⅰ)由题意得23244POQ ππ∠=⨯=,弧长π25π5042l =⨯=;………2分(Ⅱ)以轴心O 为原点,与地面平行的直线为x 轴建立平面直角坐标系,0t =时,游客在点(0,50)M −,初始位置所对应的角为π2−,角速度ω为π6rad /min ,由题意可得ππ50sin 60,01262H t t ⎛⎫=−+≤≤ ⎪⎝⎭;………………………………………………6分(Ⅲ)法1:由4POQ π∠=得乙比甲始终落后π4rad ,故经过t 分钟后,甲乙相对于地面的距离分别为1ππ50sin 6062H t ⎛⎫=−+ ⎪⎝⎭,2π3π50sin 6064H t ⎛⎫=−+ ⎪⎝⎭,012t ≤≤,若都要获得最佳视觉效果,应满足50sin 608562t ππ⎛⎫−+≥ ⎪⎝⎭, 且π3π50sin 608564t ⎛⎫−+≥ ⎪⎝⎭, ………………………………………………………8分化简得1sin 622t ππ⎛⎫−≥ ⎪⎝⎭,π3π1sin 642t ⎛⎫−≥ ⎪⎝⎭,因为012t ≤≤,所以2622t πππ3π−≤−≤,3ππ3π5π4644t −≤−≤,由6626t πππ5π≤−≤,6646t ππ3π5π≤−≤得48t ≤≤,22t 1119≤≤,故解得1182t ≤≤, ……………………………………………………………………11分所以摩天轮旋转一周能有52分钟使甲,乙两位游客都有最佳视觉效果.………12分法2:经过t 分钟后,甲相对于地面的距离为ππ50sin 6062H t ⎛⎫=−+ ⎪⎝⎭,012t ≤≤,若要获得最佳视觉效果,应满足50sin 608562t ππ⎛⎫−+≥ ⎪⎝⎭, ………………………8分化简得1sin 622t ππ⎛⎫−≥ ⎪⎝⎭, 因为012t ≤≤,所以2622t πππ3π−≤−≤,由6626t πππ5π≤−≤,得48t ≤≤, ………………………………………………10分 由乙比甲始终落后32min ,知乙在111922t ≤≤时获得最佳视觉效果,要使甲,乙两位游客都有最佳视觉效果,则1182t ≤≤,……………………………11分所以摩天轮旋转一周能有52分钟使甲,乙两位游客都有最佳视觉效果.…………12分21.解析:(Ⅰ)函数2()ln xf x x−=的定义域为(0,2),任取12(0,2)x x ∈,,且12x x <,21212122()()lnlnx x f x f x x x −−−=−1122122ln 2x x x x x x −=−,…………………………2分 因为1202x x <<<,所以112212022x x x x x x <−<−, 从而21()()0f x f x −<,即21()()f x f x <,因此函数()f x 在定义域(0,2)内单调递减.…………………………………………4分(Ⅱ)设函数1()(1)ln 1xh x f x x −=+=+,定义域为(1,1)−,对于任意的(1,1)x ∈−,1()ln ()1xh x h x x +−==−−+,故()h x 为奇函数,且由()f x 是减函数可知,()h x 也是减函数,由(1)(1)0f a f b +++=,得()()()h a h b h b =−=−,故a b =−. (也可以列方程直接解出a b =−)………………7分 由()()0g a g b +=得442(22)20a b a b m m +++−+=,即442(22)20a a a a m m −−+++−+=,令22a a t −=+,由,(1,1),a b a b ∈−≠得52,2t ⎛⎫∈ ⎪⎝⎭,………………………………9分即220t mt m +−=在52,2⎛⎫⎪⎝⎭内有解,方法1:由220t mt m +−=得222111212111t m t t t t ===−⎛⎫−−− ⎪⎝⎭,当5(2,)2t ∈时,2131611,425t ⎛⎫⎛⎫−−∈−− ⎪ ⎪⎝⎭⎝⎭,所以21254,163111t ⎛⎫∈−− ⎪⎝⎭⎛⎫−− ⎪⎝⎭,综上所述,m 的取值范围是254,163⎛⎫−− ⎪⎝⎭……………………………………………12分方法2:设2()2u t t mt m =+−,(2)34u m =+,525()424u m =+ ①5(2)()02u u <即254163m −<<−;②25(2)0,()02440522u u m m m ⎧>>⎪⎪⎪∆=+≥⎨⎪⎪<−<⎪⎩,无解; ③(2)0,92,4u m =⎧⎪⎨<−<⎪⎩无解;④5()0,295,42u m ⎧=⎪⎪⎨⎪<−<⎪⎩无解.综上所述,m 的取值范围是254,163⎛⎫−− ⎪⎝⎭…………………………………………12分22.解析:(Ⅰ)当0a =时,()||f x x =−,对于x ∀∈R ,()||()f x x f x −=−=,故()f x 为偶函数;…………………………………………………………………2分 当0a ≠时,(0)||0f a =−≠,故()f x 不是奇函数; (1)|1|,(1)|1|f a a f a a =−−−=−+,由于0a ≠,故|1||1|a a −≠+,即(1)(1)f f ≠−, 故()f x 不是偶函数,综上所述,当0a =时,()f x 是偶函数,当0a ≠时,()f x 既不是偶函数又不是奇函数. ………………………………4分(Ⅱ)(i )当11a −≤≤时,()0f x bx +≤在[1,3]x ∈恒成立等价于2(1)0ax b x a +−+≤在[1,3]x ∈恒成立,即11b a x x ⎛⎫≤−++ ⎪⎝⎭恒成立,…………………………………5分若01a ≤≤,则min 110113a x a x ⎡⎤⎛⎫−++=− ⎪⎢⎥⎝⎭⎣⎦,所以1013b a ≤−,故2210113a b a a +≤−+≤,当0a =,1b =时,取到1;…………………………7分若10a −≤<,则min 1112a x a x ⎡⎤⎛⎫−++=− ⎪⎢⎥⎝⎭⎣⎦,所以12b a ≤−,故22214a b a a +≤−+≤,当1a =−,3b =时,取到4;…………………………9分(ii )当12a <≤时,()0f x bx +≤在[1,3]x ∈恒成立等价于10aax b x+−−≤在[1,3]x ∈恒成立,………………………………………………………………………10分①当1x a <≤时,11b a x x ⎛⎫≤−−− ⎪⎝⎭,2min 11a x a x ⎡⎤⎛⎫−−−=− ⎪⎢⎥⎝⎭⎣⎦;②当3a x <≤时,11b a x x ⎛⎫≤−++ ⎪⎝⎭,min 110113a x a x ⎡⎤⎛⎫−++=− ⎪⎢⎥⎝⎭⎣⎦;当12a <≤时,21013a a −≥−,故1013b a ≤−,22104133a b a a +≤−+<−综上所述,2a b +的最大值为4.………………………………………………………12分。
宁波市九校2019-2020学年上学期高一数学期末联考卷附答案解析

宁波市九校2019-2020学年上学期期末联考高一数学试卷一、单选题1.已知集合{}0A x x =>,集合{}16B x x =-<≤,则A B =I ( )A .()10-, B .(]06,C .()06, D .(]16-, 2.函数tan 43y x x ππ⎛⎫=-<< ⎪⎝⎭的值域是( )A .()11-,B .3⎛⎫ ⎪ ⎪⎝⎭-1,C.(-D.⎡-⎣3.已知∈,x y R ,且0x y >>,则( )A .110x y ->B .cos cos 0x y ->C .11022x y⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭D .ln ln 0x y +> 4.已知向量122a ⎛⎫= ⎪ ⎪⎝⎭r ,,2b =r ,且a b ⋅=r r 则a r 与b r的夹角为( ) A .6πB .2π C .4π D .3π 5.已知半径为2的扇形AOB 中,»AB 的长为3π,扇形的面积为ω,圆心角AOB 的大小为ϕ弧度,函数()sin h x x x πϕω⎛⎫=+ ⎪⎝⎭,则下列结论正确的是( )A .函数()h x 是奇函数B .函数()h x 在区间[]20π-,上是增函数 C .函数()hx 图象关于()30π,对称 D .函数()hx 图象关于直线3x π=-对称6.已知7log 2a =,0.7log 0.2b =,0.20.7c =,则a ,b ,c 的大小关系为( ) A .a c b <<B .a b c <<C .b c a <<D .c a b <<7.已知4个函数:①sin y x x =;②cos y x x =;③2=x x y e;④4cos xy x e =-的图象如图所示,但是图象顺序被打乱,则按照图象从左到右的顺序,对应的函数序号正确的为( )A .①④②③B .③②④①C .①④③②D .③①④②8.在ABC V 中,102BA AC AC BC BC BA AB BC BC BA ⋅⋅+=⋅=u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r ,,则ABC V 为( ) A .直角三角形 B .三边均不相等的三角形 C .等边三角形 D .等腰非等边三角形9.若()()()()2202022020log 2019log 2log 2019log 2xyy x--+<+,则( )A .0x y +<B .0x y +>C .0x y -<D .0x y ->10.设函数()()(]()1222112f x x f x x x ⎧+∈-∞-⎪=⎨⎪+-∈-+∞⎩,,,,,则方程()()21610f x x x ++-=根的个数为( )A .2B .3C .4D .5二、填空题11.已知函数()()1lg 31x f x x +=+,则()0f =____________函数定义域是____________. 12.已知12e e u r u u r ,是单位向量,12e e ⊥u r u u r ,122AB e e =+u u u r u r u u r ,123BC e e =-+u u u r u r u u r ,12CD e e λ=-u u u r u r u u r ,若AB CD ⊥uu u r uu u r,则实数λ=____________;若A B D ,,三点共线,则实数λ=____________.13.己知函数()()2tan 06f x a x a ππ⎛⎫=+> ⎪⎝⎭的最小正周期是3.则a =___________()f x 的对称中心为____________.14.已知a b R ∈,,定义运算“⊗”:a a b a b b a b ≥⎧⊗⎨<⎩,,,设函数()()()2221log xf x x =⊗-⊗,()02x ∈,,则()1f =___________;()f x 的值域为__________.15.已知函数()()29a f x m x =-为幂函数,且其图象过点(3,则函数()()2log 6a g x x mx =-+的单调递增区间为___________.16.已知a b c r r r ,,,是平面向量,且2c =r ,若24a c b c ⋅=⋅=r r r r,,则a b +r r 的取值范围是__________.17.函数()()25sin f x x g x x =--=,,若1202n x x x π⎡⎤∈⎢⎥⎣⎦,,……,,,使得()()12f x f x ++…()()()()()()1121n n n n f x g x g x g x g x f x --++=++++…,则正整数n 的最大值为___________.三、解答题18.已知向量()()()sin 1cos 10a x b x c m =-=r r r ,,=,,,,其中04x π⎡⎤∈⎢⎥⎣⎦,.(1)若的35a b ⋅=-r r ,求tan x 的值;(2)若a c +r r 与a c -r r垂直,求实数m 的取值范围.19.已知集合{()121A x y B a a ===-+,,,()(){}110C x x m x m m R =--++≤∈,.(1)若()RA B =∅Ið,求a 的取值范围;(2)若A C C =I ,求m 的取值范围.20.已知()f x 为偶函数,当0x ≥时,()()2lg 1f x x =+.(1)求()f x 的解析式;(2)若对于任意的()0x ∈-∞,,关于x 的不等式()()lg kx f x <恒成立,求k 的取值范围.21.已知函数()sin 26f x x π⎛⎫+ ⎝=⎪⎭,()()sin 002g x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭,,的部分图象如图所示.(1)求()gx 的解析式,并说明()f x 的图象怎样经过2次变换得到()g x 的图象;(2)若对于任意的46x ππ⎡⎤∈-⎢⎥⎣⎦,,不等式()2f x m -<恒成立,求实数m 的取值范围.22.在函数定义域内,若存在区间[]m n ,,使得函数值域为[]m k n k ++,,则称此函数为“k 档类正方形函数”,已知函数()()3log 29132x xf x k k k ⎡⎤=⋅--++⎣⎦.(1)当0k=时,求函数()y f x =的值域;(2)若函数()y f x =的最大值是1,求实数k 的值;(3)当0x >时,是否存在()01k ∈,,使得函数()f x 为“1档类正方形函数”?若存在,求出实数k 的取值范围,若不存在,请说明理由.解析宁波市九校2019-2020学年上学期期末联考高一数学试卷一、单选题 1.已知集合{}0A x x =>,集合{}16B x x =-<≤,则A B =I( )A .()10-, B .(]06,C .()06, D .(]16-, 【答案】B【解析】进行交集的运算即可.解:∵{}0A x x =>,{}16B x x =-<≤,∴(]06A B =I ,. 故选:B.【点睛】本题考查交集的定义及运算,属于基础题.2.函数tan 43y x x ππ⎛⎫=-<< ⎪⎝⎭的值域是( )A .()11-,B .⎛ ⎝⎭- C .(-D .⎡-⎣【答案】C【解析】先判断出函数tan y x =在,43ππ⎛⎫- ⎪⎝⎭单调递增,分别求出特殊值,再写出函数的值域即可.【详解】解:因为函数tan y x =在,43ππ⎛⎫- ⎪⎝⎭单调递增,且tan tan 134ππ⎛⎫=-=- ⎪⎝⎭,则所求的函数的值域是(-. 故选:C.【点睛】本题考查正切函数的单调性,以及特殊角的正切值,属于基础题. 3.已知∈,x y R ,且0x y >>,则( ) A .110x y-> B .cos cos 0x y ->C .11022xy⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭D .ln ln 0x y +>【答案】C【解析】利用不等式的基本性质、函数的单调性即可判断出结论. 【详解】解:0x y >>,则11x y <,即110x y->,故A 错误; 函数cos y x =在()0,∞+上不是单调函数,故cos cos 0x y ->不一定成立,故B 错误;函数12xy ⎛⎫= ⎪⎝⎭在()0,∞+上是单调减函数,则1122x y⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,故C 正确;当11,x y e==时,ln ln 10x y +=-<,故D 错误. 故选:C. 【点睛】本题考查了不等式的基本性质、函数的单调性,考查了推理能力与计算能力,属于基础题.4.已知向量122a ⎛⎫= ⎪ ⎪⎝⎭r ,,2b =r ,且a b ⋅=r r 则a r 与b r的夹角为( ) A .6πB .2π C .4π D .3π 【答案】A【解析】分别求出向量的模长,代入向量的数量积即可求解,注意夹角的范围. 【详解】解:设a r 与b r的夹角为θ,122a ⎛⎫= ⎪ ⎪⎝⎭r Q ,,1a ∴=r ,||||cos cos a b a b θθ∴⋅=⨯==r r r r ,[0,]θπ∈Q ,6πθ∴=.故选:A.【点睛】本题考查向量的数量积及其夹角,是基础题.5.已知半径为2的扇形AOB 中,»AB 的长为3π,扇形的面积为ω,圆心角AOB 的大小为ϕ弧度,函数()sin h x x x πϕω⎛⎫=+ ⎪⎝⎭,则下列结论正确的是( )A .函数()h x 是奇函数B .函数()h x 在区间[]20π-,上是增函数 C .函数()hx 图象关于()30π,对称 D .函数()hx 图象关于直线3x π=-对称【答案】D【解析】先通过扇形的弧长和面积公式表示出ω和ϕ,并代入函数()h x 的解析式,整理得1()cos 3h x x =-,再结合余弦函数的图象与性质逐一判断每个选项的正误即可. 【详解】解:∵扇形弧长¶323,2AB ϕπϕπ==∴=, 又∵扇形面积13232ωππ=⋅⋅=, 31()sin sin cos 323h x x x x ππϕπωπ⎛⎫⎛⎫∴=+=+=- ⎪ ⎪⎝⎭⎝⎭,对于A 选项,函数()h x 为偶函数,即A 错误;对于B 选项,令1[2,2],3x k k k Z πππ∈+∈,则[6,36],x k k k Z πππ∈+∈, 而[2,0][6,36],k k k Z ππππ-+∈Ú,即B 错误; 对于C 选项,令1,32x k k Z ππ=+∈,则33,2x k k Z ππ=+∈, ∴函数的对称中心为33,0,2k k Z ππ⎛⎫+∈ ⎪⎝⎭,即C 错误; 对于D 选项,令1,3x k k Z π=∈,则3,k x k Z π=∈, ∴函数的对称轴为3,k x k Z π=∈,当1k =-时,有3x π=-,即D 正确.故选:D. 【点睛】本题考查了扇形的弧长和面积公式,余弦函数的奇偶性、单调性和对称性,属于基础题. 6.已知7log 2a =,0.7log 0.2b =,0.20.7c =,则a ,b ,c 的大小关系为( )A .a c b <<B .a b c <<C .b c a <<D .c a b <<【答案】A【解析】771log 2log 2<= ,0.70.7log 0.2log 0.71>=,0.20.70.71<<,再比较,,a b c 的大小.【详解】71log 22a =<,0.70.7log 0.2log 0.71b =>=,0.20.70.71c <=<,a c b <<,故选A. 【点睛】本题考查了指对数比较大小,属于简单题型,同底的对数,指数可利用单调性比较大小,同指数不同底数,按照幂函数的单调性比较大小,或是和中间值比较大小.7.已知4个函数:①sin y x x =;②cos y x x =;③2=x x y e;④4cos xy x e =-的图象如图所示,但是图象顺序被打乱,则按照图象从左到右的顺序,对应的函数序号正确的为( )A .①④②③B .③②④①C .①④③②D .③①④②【答案】B【解析】分别判断函数的奇偶性,对称性,利用函数值的特点进行判断即可. 【详解】 解:①sin y x x =是奇函数,图象关于原点对称;当0x >时,0y ≥恒成立;②cosy x x =是奇函数,图象关于原点对称;③2=xx y e为非奇非偶函数,图象关于原点和y 轴不对称,且0y ≥恒成立; ④4cos xy x e =-是偶函数,图象关于y 轴对称;则第一个图象为③,第三个图象为④,第四个图象为①,第二个图象为②. 即对应函数序号为③②④①. 故选:B. 【点睛】本题主要考查函数图象的识别和判断,利用函数的奇偶性和对称性是解决本题的关键,难度不大.8.在ABC V 中,102BA AC AC BC BC BA AB BC BC BA ⋅⋅+=⋅=u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r ,,则ABC V 为( ) A .直角三角形 B .三边均不相等的三角形 C .等边三角形D .等腰非等边三角形【答案】C【解析】直接代入数量积的计算公式第一个条件求出A C =,第二个条件得到B 即可求出结论. 【详解】解:因为在ABC V 中,,,(0,)A B C π∈10,2||||||||BA AC AC BC BC BA AB BC BC BA ⋅⋅+=⋅=u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r , ||||cos ||||cos 0||cos ||cos 0||||AB AC A CA CB CCA A AC C AB BC -⨯⨯⨯⨯∴+=⇒-=u u u u r u u u r u u u r u u u ru u u r u u u r u u u r u u u r cos cos A C A C ∴=⇒=,11||||cos ||||cos 223BC BA BC BA B BC BA B B π⋅=⨯⨯=⨯⇒=⇒=u u u r u u u r u u u r u u u r u u u r u u u r Q ,∴ABC V 为等边三角形.故选:C. 【点睛】本题考查了数量积运算性质以及特殊角的三角函数值,考查了推理能力与计算能力,属于中档题. 9.若()()()()2202022020log 2019log 2log 2019log 2xyy x--+<+,则( )A .0x y +<B .0x y +>C .0x y -<D .0x y ->【答案】A【解析】令,然后结合函数的单调性即可判断. 【详解】解:结合已知不等式的特点,考虑构造函数,令()()22()log 2019log 2020x xf x -=-,则易得()f x 在R 上单调递增,()()()()2202022020log 2019log 2log 2019log 2yxy x--+<-Q ,()()()()2222log 2019log 2020log 2019log 2020x x y y--∴-<-,即()()f x f y <-,所以x y <-, 故0x y +<. 故选:A. 【点睛】本题主要考查了利用函数的单调性比较大小,解题的关键是由已知不等式的特点构造函数.10.设函数()()(]()1222112f x x f x x x ⎧+∈-∞-⎪=⎨⎪+-∈-+∞⎩,,,,,则方程()()21610f x x x ++-=根的个数为( )A .2B .3C .4D .5【答案】C【解析】方程()()21610fx x x ++-=根的个数等价于函数()f x 与函数()21()116g x x x =-+-的交点个数,画出两个函数的大致图象,观察交点个数即可. 【详解】 解:方程()()21610fx x x ++-=根的个数等价于函数()f x 与函数()21()116g x x x =-+-的交点个数,画出两个函数的大致图象,如图所示:1(0)(0)016g f =>=Q , ∴在(0,)+∞内有1个交点,191(5)(5)164g f -=-<-=-Q ,51(3)(3)162g f -=->-=-, 11(2)(2)0,(1)(1)1616g f g f -=-<-=-=>-, ∴两个函数在(,0)-∞内有3个交点,综上所述,函数()f x 与函数()g x 共有4个交点,所以方程()()21610f x x x ++-=根的个数是4个,故选:C. 【点睛】本题主要考查了函数与方程的关系,关键是要画出函数图像,并且确定关键点的高低,是一道难度较大的题目.二、填空题11.已知函数()()1lg 31x f x x +=+,则()0f =____________函数定义域是____________. 【答案】2 113⎛⎫- ⎪⎝⎭,【解析】直接在函数解析式中取0x =求得()0f ;由对数式的真数大于0,分母中根式内部的代数式大于0联立不等式组求解函数定义域.【详解】解:由()()1lg 31x f x x +=++,得(0)lg12f ==; 由10310x x ->⎧⎨+>⎩,解得113-<<x ,∴函数定义域是113⎛⎫- ⎪⎝⎭,. 故答案为:2;113⎛⎫- ⎪⎝⎭,. 【点睛】本题考查函数的定义域及其求法,是基础的计算题.12.已知12e e u r u u r ,是单位向量,12e e ⊥u r u u r ,122AB e e =+u u u r u r u u r ,123BC e e =-+u u u r u r u u r ,12CD e e λ=-u u u r u r u u r ,若AB CD ⊥uu u r uu u r,则实数λ=____________;若A B D ,,三点共线,则实数λ=____________.【答案】125 【解析】利用向量垂直和向量平行的性质直接求解. 【详解】解:由已知可得1212(2)()210AB CD e e e e λλ⋅=+⋅-=-=u u u r u u u r u r u u r u r u u r,解得实数12λ=;∵A B D ,,三点共线,又()12122,12AB e e BD BC CD e e λ=+=+=-+u u u r u r u u r u u u r u u u r u u u r u r u u r ,2112λ∴=- 解得实数5λ=. 故答案为:12;5.【点睛】本题考查实数值的求法,考查向量垂直和向量平行的性质等基础知识,考查运算求解能力,是基础题. 13.己知函数()()2tan 06f x a x a ππ⎛⎫=+> ⎪⎝⎭的最小正周期是3.则a =___________()f x 的对称中心为____________. 【答案】13 31022k k Z ⎛⎫-∈ ⎪⎝⎭,, 【解析】根据正切的周期求出a ,利用整体法求出对称中心即可. 【详解】解:函数()()2tan 06f x a x a ππ⎛⎫=+> ⎪⎝⎭的最小正周期是3, 则3a ππ=,得13a =, 所以函数1()2tan 36f x x ππ⎛⎫=+ ⎪⎝⎭,由11,362x k k Z πππ+=∈,得3122x k =-,k Z ∈, 故对称中心为31022k k Z ⎛⎫-∈ ⎪⎝⎭,,. 故答案为:13;31022k k Z ⎛⎫-∈ ⎪⎝⎭,,. 【点睛】考查正切函数的周期,正切函数的对称性,基础题.14.已知a b R ∈,,定义运算“⊗”:a a b a b b a b ≥⎧⊗⎨<⎩,,,设函数()()()2221log xf x x =⊗-⊗,()02x ∈,,则()1f =___________;()f x 的值域为__________.【答案】1[)13, 【解析】由所给的函数定义求出分段函数()f x 的解析式,进而求出结果.【详解】解:由题意1(0,1]()?21(1,2)xx f x x ∈⎧=⎨-∈⎩ 所以(1)1,f = 当(1,2)x ∈时,()f x 是单调递增函数,则()(1,3)f x ∈,则()f x 的值域为[)13,.故答案分别为:1;[)13,. 【点睛】考查分段函数的解析式及函数的值域,属于基础题. 15.已知函数()()29a f x m x =-为幂函数,且其图象过点(3,则函数()()2log 6a g x x mx =-+的单调递增区间为___________. 【答案】()2-∞,【解析】根据函数()f x 是幂函数求出m 的值,再根据()f x 的图象过点(3,求出a 的值;由此得出函数()gx 的解析式,根据复合函数的单调性:同增异减,求出()g x 的单调递增区间.【详解】 解:函数函数()()29a f x m x =-为幂函数,291m -=,解得5m =,且其图象过点(3,所以3a =,解得12a =, 所以函数()()2log 6a g x x mx =-+即函数()()212log 56g x x x =-+, 令2560x x -+>,解得2x <或3x >,所以函数()g x 的单调递增区间为()2-∞,. 故答案为:()2-∞,. 【点睛】本题考查了函数的定义与性质的应用问题,复合函数的单调性的判断,是基础题.16.已知a b c r r r ,,,是平面向量,且2c =r ,若24a c b c ⋅=⋅=r r r r,,则a b +r r 的取值范围是__________.【答案】[)3+∞,【解析】先根据()6a b c a c b c +⋅=⋅+⋅=r r r r r r r得到cos 3a b θ⨯=+r r ;进而表示出a b +r r 即可求解.【详解】解:设a b +rr与c r的夹角为θ,()6||||cos a b c a c b c a b c θ+⋅=⋅+⋅==+⨯⨯r r r r r r r r r rQ , ||cos 3a b θ∴+⨯=rr ,0cos 1θ∴<≤,3||3cos a b θ+=≥rr .故答案为:[3,)+∞. 【点睛】本题主要考察平面向量的数量积以及三角函数的性质应用,属于基础题. 17.函数()()25sin f x x g x x =--=,,若1202n x x x π⎡⎤∈⎢⎥⎣⎦,,……,,,使得()()12f x f x ++…()()()()()()1121n n n n f x g x g x g x g x f x --++=++++…,则正整数n 的最大值为___________.【答案】6【解析】由题意可得()()sin 52g x f x x x -=++,由正弦函数和一次函数的单调性可得()()2sin 5g x f x x x --=+的范围是50,12π⎡⎤+⎢⎥⎣⎦,将已知等式整理变形,结合不等式的性质,可得所求最大值n .【详解】解:函数()25=--f x x ,()sin g x x =,可得()()sin 52g x f x x x -=++,由0,2x π⎡⎤∈⎢⎥⎣⎦,可得sin ,5y x y x ==递增, 则()()2sin 5g x f x x x --=+的范围是50,12π⎡⎤+⎢⎥⎣⎦,()()()()()()()()121121n n n n f x f x f x g x g x g x g x f x --++++=++++……,即为()()()()(()()()112211)n n n n g x f x g x f x g x f x g x f x --⎡⎤⎡⎤⎡⎤-+-+⋯+-=-⎣⎦⎣⎦⎣⎦, 即()()()112211sin 5sin 5sin 52(1)sin 52n n n n x x x x x x n x x --++++⋯+++-=++,即()()(112211sin 5sin 5sin 5)2(2)sin 5n n n n x x x x x x n x x --++++⋯+++-=+,由5sin 50,12n n x x π⎡⎤+∈+⎢⎥⎣⎦,可得52(2)12n π-≤+, 即5524n π≤+,而55(6,7)24π+∈, 可得n 的最大值为6. 故答案为:6. 【点睛】本题考查函数的单调性和应用,考查转化思想和运算能力、推理能力,属于中档题.三、解答题18.已知向量()()()sin 1cos 10a x b x c m =-=r r r ,,=,,,,其中04x π⎡⎤∈⎢⎥⎣⎦,.(1)若的35a b ⋅=-r r ,求tan x 的值;(2)若a c +r r 与a c -r r垂直,求实数m 的取值范围.【答案】(1)12;(2) 11⎡⎤⎡-⋃⎢⎥⎢⎣⎦⎣⎦. 【解析】(1)根据平面向量的数量积列方程求出tan x 的值,再根据x 的范围确定tan x 的值;(2)根据平面向量的数量积和模长公式求出m 的解析式,再求m 的取值范围.(1)因为3sin cos 15a b x x ⋅=⋅-=-r r ,即2sin cos 5x x ⋅=, 所以222sin cos tan 2sin cos tan 15x x x x x x ⋅==++, 所以22tan 5tan 20x x -+=,即tan 2x =或1tan 2x =. 因为04x π⎡⎤∈⎢⎥⎣⎦,,所以[]tan 01x ∈,,即1tan 2x =;(2)因为a c +r r 与a c -r r垂直,()()220a c a c a c ∴+⋅-=-=r r r r r r ,a c ∴=r r ,所以221sin m x =+,因为04x π⎡⎤∈⎢⎥⎣⎦,,所以2231sin 12m x ⎡⎤=+∈⎢⎥⎣⎦,,即11m ⎡⎤⎡∈-⋃⎢⎥⎢⎣⎦⎣⎦. 【点睛】本题考查了平面向量的数量积与模长应用问题,也考查了三角函数的应用问题,是中档题.19.已知集合{()121A x y B a a ===-+,,,()(){}110C x x m x m m R =--++≤∈,.(1)若()RA B =∅Ið,求a 的取值范围;(2)若A C C =I ,求m 的取值范围.【答案】(1)20a -<≤;(2)20m -≤≤【解析】(1)可以求出[]31A =-,,从而可得出A R ð,根据()RA B =∅Ið得121a a -<+,并且13211a a -≥-⎧⎨+≤⎩,解出a 的范围即可; (2)根据A C C =I 即可得出C A ⊆,然后可讨论1m +与1m --大小关系,从而得出集合C ,根据C A ⊆即可得出m 的范围.(1)因为{[]31A x y ===-,,所以()()31,R A =-∞-+∞U ,ð, 因为()121B a a =-+,,即121a a -<+.即2a >-, 由()RA B =∅Ið得,13211a a -≥-⎧⎨+≤⎩,解得20a -≤≤, 所以20a -<≤; (2)因为A C C =I,即C A ⊆,[]()(){}31|110A C x x m x m =-=--++≤,,,①11m m +≤--时,即1m ≤-时,{}11C x m x m m R =+≤≤--∈,, C A ⊆,所以1311m m +≥-⎧⎨--≤⎩,解得2m -≤,所以21m -≤≤-.②11m m +>--时,即1m >-时,{}11C x m x m m R =--≤≤+∈,, C A ⊆,所以1113m m +≤⎧⎨--≥-⎩,解得0m ≤,所以10m -<≤. 综上所述:20m -≤≤. 【点睛】本题考查了描述法、区间的定义,一元二次不等式的解法,补集、交集的定义及运算,子集的定义,分类讨论的思想,考查了计算能力,属于基础题. 20.已知()f x 为偶函数,当0x ≥时,()()2lg 1f x x =+.(1)求()f x 的解析式;(2)若对于任意的()0x ∈-∞,,关于x 的不等式()()lg kx f x <恒成立,求k 的取值范围.【答案】(1)()()()2lg 102lg 10x x f x x x ⎧-+<⎪=⎨+≥⎪⎩,,;(2)40k -<<.【解析】(1)设0x <,则0x ->,()()()2lg 1f x f x x =-=-+,再求出()f x 的解析式;(2)当0x <时,因为0kx >,所以k 0<,结合分离参数法求出k 的范围.【详解】(1)设0x <,则0x ->,()()()2lg 1f x f x x =-=-+,所以()()()2lg 102lg 10x x f x x x ⎧-+<⎪=⎨+≥⎪⎩,,;(2)当0x <时,因为0kx >,所以k 0<, 所以()()lg2lg 1kx x <-+,即()()2lg lg 1kx x <-+,即()21kx x <-+.因为0x <,所以()2112x k x xx-+>=+-恒成立,当0x <时,1224x x +-≤-=-最大值为-4,所以4k >-, 所以40k -<<.【点睛】本题考查分段函数求解析式,函数求含参恒成立问题,转化为最值问题即可,中档题. 21.已知函数()sin 26f x x π⎛⎫+ ⎝=⎪⎭,()()sin 002g x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭,,的部分图象如图所示.(1)求()gx 的解析式,并说明()f x 的图象怎样经过2次变换得到()g x 的图象;(2)若对于任意的46x ππ⎡⎤∈-⎢⎥⎣⎦,,不等式()2f x m -<恒成立,求实数m 的取值范围. 【答案】(1)()1sin 23g x x π⎛⎫=+ ⎪⎝⎭,变换见解析;(2)12⎛- ⎝⎭,. 【解析】(1)先根据图象求出()g x 的解析式;再结合图象变化规律说明()f x 的图象怎样经过2次变换得到()gx 的图象;(2)先结合正弦函数的性质求出()f x 的范围;再结合恒成立问题即可求解.【详解】(1)由图得112A ω==,, 因为203π⎛⎫-⎪⎝⎭,为函数递增区间上的零点,所以21232k k Z πϕπ-⋅+=∈,,即23k k Z πϕπ=+∈,. 因为2πϕ<,所以3πϕ=,即()1sin 23g x x π⎛⎫=+⎪⎝⎭,将函数()f x 的图象上所有点的横坐标伸长到原来的4倍(纵坐标不变),再将所得图象向左平移3π个单位长度可得()gx ;(2)因为46x ππ⎡⎤∈-⎢⎥⎣⎦,,所以2632x πππ⎡⎤+∈-⎢⎥⎣⎦,,所以当263x ππ+=-时,()f x取最小值,当262x ππ+=时,()f x 取最大值1,因为()2f x m -<恒成立,即()22m f x m -+<<+恒成立,所以212m m ⎧-+<⎪⎨⎪<+⎩即122m ⎛∈-- ⎝⎭,. 【点睛】本题主要考查由函数sin()y A x ωϕ=+的部分图象求解析式,诱导公式,函数sin()y A x ωϕ=+的图象变换规律,以及恒成立问题,属于中档题. 22.在函数定义域内,若存在区间[]m n ,,使得函数值域为[]m k n k ++,,则称此函数为“k 档类正方形函数”,已知函数()()3log 29132x xf x k k k ⎡⎤=⋅--++⎣⎦.(1)当0k=时,求函数()y f x =的值域;(2)若函数()y f x =的最大值是1,求实数k 的值;(3)当0x >时,是否存在()01k ∈,,使得函数()f x 为“1档类正方形函数”?若存在,求出实数k 的取值范围,若不存在,请说明理由. 【答案】(1)()3log 2+∞,;(2)1k =或17k =-;(3)存在,207k <<. 【解析】(1)根据指数函数的性质和对数函数想性质可得到函数()y f x =的值域;(2)利用换元法设30x t t =>,,然后对参数k 进行分类讨论,分0k ≥和k 0<两种情况进行讨论函数()g t 的最大值,根据最大值取得的情况计算出k 的取值;(3)继续利用换元法设30x t t =>,,设真数为()()2212g t k t k t k =⋅--++,根据二次函数的性质可得()f x 在()1+∞,上为增函数,则()()()()min max f x f m f x f n ==,,将问题转化为方程()3log 291321x xk k k x ⎡⎤⋅--++=+⎣⎦在()0+∞,上有两个不同实根进行思考,再次利用换元法转化为一元二次方程,根据>0∆,及韦达定理可计算出实数k 的取值范围. 【详解】 (1)0k=时,()()3log 32xf x =+,因为322x +>. 所以()()33log 32log 2x f x =+>,所以函数()y f x =的值域为()3log 2+∞,(2)设30x t t =>,,则()()23log 212f t k t k t k ⎡⎤=⋅--++⎣⎦,若0k ≥,则函数()()2212g t k t k t k =⋅--++无最大值,即()f t 无最大值,不合题意;故k 0<,因此()()2212gt k t k t k =⋅--++最大值在104k t k-=>时取到, 且114k f k -⎛⎫= ⎪⎝⎭,所以()211212344k k k k k k k --⎛⎫--++= ⎪⎝⎭, 解得1k=或17k =-,由k 0<,所以17k =-.(3)因为01k <<时,设()31x t t =>.设真数为()()2212g t k t k t k =⋅--++.此时对称轴104k t k-=<, 所以当1t >时,()g t 为增函数,且()()1230g t g k >=+>,即()f x 在()1+∞,上为增函数.所以,()()()()min max 11f x f m m f x f n n ==+==+,,即方程()3log 291321xx k k k x ⎡⎤⋅--++=+⎣⎦在()0+∞,上有两个不同实根,即()1291323xx x k k k -⋅--++=,设()31x t t =>.所以()22123k tk t k t ⋅--++=.即方程()22220k t k t k ⋅-+++=有两个大于l 的不等实根,因为01k<<,所以()()()228202142220k k k k k k k k ⎧∆=+-+>⎪+⎪>⎨⎪-+++>⎪⎩, 解得207k<<, 即存在m n ,,使得函数()f x 为“1档类正方形函数”,且207k <<.【点睛】本题主要考查函数的值域问题,最值问题,考查了换元法的应用,分类讨论思想和转化思想的应用,不等式的计算能力,本题属综合性较强的中档题.。
(9份试卷汇总)2019-2020学年宁波市名校数学高一(上)期末达标检测模拟试题

2019-2020学年高一数学上学期期末试卷一、选择题1.正六边形ABCDEF 的边长为2,以顶点A 为起点,其他顶点为终点的向量分别为12345,,,,,a a a a a u r u u r u u r u u r u u r ;以顶点D 为起点,其他顶点为终点的向量分别为12345,,,,,b b b b b u r u u r u r u u r u u r。
若,P Q 分别为()()i j k r s t a a a b b b ++•++u r u u r u u r u u r u r u r的最小值、最大值,其中{}{}{}{},,1,2,3,4,5,,,1,2,3,4,5i j k r s t 刎,则下列对,P Q 的描述正确的是( ) A .00P Q <,< B .00P Q =,>C .00P Q <,>D .00P Q <,=2.已知函数若函数有4个零点,则实数的取值范围是( )A.B.C.D.3.若函数f (x )=log 2(x 2-2x+a )的最小值为4,则a=( )A.16B.17C.32D.334.已知二次函数()2f x x bx c =++满足()()133f f ==-,函数()g x 是奇函数,当0x ≥时,()()g x f x =,若()g a a >,则a 的取值范围是( )A .(),5-∞-B .()5,0-C .()()5,05,-+∞UD .()5,+∞5.若直线l :20(0,0)ax by a b -+=>>被圆222410x y x y ++-+=截得的弦长为4,则当21a b+取最小值时直线l 的斜率为( ) A .2B .12C .2D .226.若命题“2000,220x R x mx m ∃∈+++<”为假命题,则m 的取值范围是( )A.][(),12,-∞-⋃+∞B.()(),12,-∞-⋃+∞ C .[]1,2-D.()1,2-7.已知向量m r 、n r 满足2m =r ,3n =r ,17m n -=r r ,则m n +=r r( ) A.3B.7C.17D.98.我国古代数学著作《九章算术》中,其意是:“今有器中米,不知其数,前人取半,中人三分取一,后人四分取一,余米一斗五升.问:米几何?右图是源于其思想的一个程序框图,若输出的2S =(单位:升),则输入k 的值为A.6B.7C.8D.99.函数(>0)在区间[0,1]上至少出现10次最大值,则的最小值是( )A .10B .20C .D .10.已知()f x 是定义在R 上的偶函数,当x 0≥时,()2f x x x =-,则函数()f x 在R 上的解析式是()A.()2f x x x =+B.()()f x x x 1=-C.()()f x x x 1=-D.()()f x x x 1=-11.一个几何体的三视图如图所示,则几何体的体积是( )A .56B .103C .53D .212.已知0>ω,函数()sin()4f x x πω=+在(,)2ππ上单调递减,则ω的取值范围是( ) A .15[,]24B .13[,]24C .1(0,]2D .(0,2]二、填空题13.若三棱锥P ABC -的底面是以AB 为斜边的等腰直角三角形,23AB =6PA PB PC ===则该三棱锥的外接球的表面积为________.14.设函数lg ,0()2,0x x f x x x ⎧>=⎨+≤⎩,若存在互不相等的三个数a ,b ,c 满足()()()f a f b f c ==,则abc的取值范围为__________.15.若函数2()log (41)?xf x k x =+-为R 上的偶函数,则k =______ 162sin 473sin17︒-︒________.三、解答题17.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c .且满足3cos sin a b C B =. (Ⅰ)求角B ; (Ⅱ)若ABC △53,33a c +=b . 18.若3sin cos 1sin 3cos αααα-=+,求:(1)tan α 的值;(2)2sin cos cos sin cos ααααα++-的值.19.已知甲、乙两个旅游景点之间有一条5km 的直线型水路,一艘游轮以/xkm h 的速度航行时(考虑到航线安全要求2050)x ≤≤,每小时使用的燃料费用为40x k -万元(k 为常数,且11)155k ≤≤,其他费用为每小时1x万元. ()1若游轮以30/km h的速度航行时,每小时使用的燃料费用为58万元,要使每小时的所有费用不超过910万元,求x 的取值范围; ()2求该游轮单程航行所需总费用的最小值.20.如图,在梯形ABCD 中,AB CD ∥,1AD DC CB ===,120BCD ∠=︒,四边形BFED 为矩形,平面BFED ⊥平面ABCD ,1BF =.(Ⅰ)求证:AD ⊥平面BFED ;(Ⅱ)点P 在线段FE 上运动,设平面PAB 与平面ADE 所成锐二面角为θ,试求θ的最小值. 21.已知{}n a 是递增数列,其前n 项和为n S ,,且,*n ∈N .(Ⅰ)求数列{}n a 的通项n a ; (Ⅱ)是否存在使得成立?若存在,写出一组符合条件的的值;若不存在,请说明理由; (Ⅲ)设,若对于任意的*n N ∈,不等式恒成立,求正整数m 的最大值.22.已知圆C 过点,且圆心在直线上.(1)求圆C 的方程; (2)平面上有两点,点P 是圆C 上的动点,求的最小值;(3)若Q 是x 轴上的动点,分别切圆C 于两点,试问:直线是否恒过定点?若是,求出定点坐标,若不是,说明理由. 【参考答案】*** 一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 A B B C A C A C C C BA13.12π 14.(2,0]- 15.1k = 16.12三、解答题17.(Ⅰ)3B π=;(Ⅱ)b =18.(1)20;(2)16 5. 19.(1)[]20,40;(2)略 20.(1)略(2)3π 21.(1)(2)不存在(3)822.(1);(2)26;(3)直线恒过定点.证明见解析2019-2020学年高一数学上学期期末试卷一、选择题1.若0,0x y >>,且211x y+=,227x y m m +>+恒成立,则实数m 的取值范围是( ) A.(8,1)-B.(,8)(1,)-∞-⋃+∞C.(,1)(8,)-∞-⋃+∞D.(1,8)-2.已知如图正方体1111ABCD A B C D -中,P 为棱1CC 上异于其中点的动点,Q 为棱1AA 的中点,设直线m 为平面BDP 与平面11B D P 的交线,以下关系中正确的是( )A.1//m D QB.1m Q B ⊥C.//m 平面11B D QD.m ⊥平面11ABB A3.函数的图象大致是( )A. B.C. D.4.函数2()log 24f x x x =+-的零点所在区间为( ) A .(0, 1)B .(1, 2)C .(2, 3)D .(3, 4)5.四面体共一个顶点的三条棱两两垂直,其长分别为16,3,且四面体的四个顶点在同一球面上,则这个球的体积为 A .163πB .323πC .12πD .643π6.已知函数()31()2xf x x =-,则函数()f x 的零点所在的区间是( )A .()0,1B .()1,2C .()2,3D .()3,47.函数()2()212f x ax a x =+-+在区间(],4-∞上为减函数,则a 的取值范围为 ( )A.105a <≤B. 105a ≤≤C. 105a <≤D.15a >8.化简12sin(2)cos(2)ππ+-⋅-得( ) A.sin 2cos2+ B.cos2sin 2- C.sin 2cos2-D.cos2sin 2±-9.已知12F F ,是双曲线22221(00)x y a b a b-=>>,的左、右焦点,过1F 的直线l 与双曲线的左、右两支分别交于点A ,B ,若2ABF ∆为等边三角形,则双曲线的离心率为() A .7B .4C .233D .310.在ABC ∆中,内角,,A B C 所对应的边分别为,,a b c ,若sin 3cos 0b A a B -=,且三边,,a b c 成等比数列,则a cb+的值为( ) A.2 B.2C.2D.411.在各项均为正数的等比数列{}n a 中,公比(01)q ∈,.若355a a =+,26·4a a =,2log n n b a =,数列{}n b 的前n 项和为n S ,则当1211n S S S n+++L 取最大值时,n 的值为( ) A .8 B .9C .8或9D .17 12.是等差数列,,,则该数列前10项和等于()A .64B .100C .110D .120 二、填空题 13.已知,(,)2παβπ∈,且45cos ,sin 513αβ=-=,则tan 2()αβ-=________. 14.已知幂函数()y f x =的图象过点122⎛ ⎝⎭,则()2log 2f 的值为__________.15.若a r 、b r 为单位向量,且()23a ab ⋅+=r r r ,则向量a r 、b r 的夹角为_______.(用反三角函数值表示)16.若正四棱锥的底面边长为37,则该正四棱锥的体积为______. 三、解答题17.已知集合{|137},{|31}x a A x x B x y -=<+≤==-. (1)当1a = 时,求A B I ; (2)若A B B ⋃=,求a 的取值范围.18.已知锐角ABC ∆三个内角A 、B 、C 的对边分别是a b c 、、,且2sin 3a B b =. (1)求A 的大小; (2)若21,5a b c =+=,求ABC ∆的面积.19.正方体1111ABCD A B C D -中, E 为AB 中点, F 为1CD 中点.(1)求证: //EF 平面11ADD A ;(2)求直线EF 和平面11CDD C 所成角的正弦值.20.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,已知3b =,8c =,角A 为锐角,ABC ∆的面积为63. (1)求角A 的大小; (2)求a 的值.21.十九大指出中国的电动汽车革命早已展开,通过以新能源汽车替代汽/柴油车,中国正在大力实施一项将重塑全球汽车行业的计划.2018年某企业计划引进新能源汽车生产设备,通过市场分析,全年需投入固定成本2500万元,每生产x (百辆),需另投入成本()C x 万元,且210100,040()100005014500,40x x x C x x x x ⎧+<<⎪=⎨+-≥⎪⎩由市场调研知,每辆车售价5万元,且全年内生产的车辆当年能全部销售完.(1)求出2018年的利润()L x (万元)关于年产量x (百辆)的函数关系式;(=-利润销售额成本) (2)2018年产量为多少百辆时,企业所获利润最大?并求出最大利润.22.ABC V 中,已知点D 在BC 边上,且220,sin 3AD AC BAC u u u r u u u r ⋅=∠=,32,3AB BD ==.(1)求AD 的长; (2)求cos C .【参考答案】*** 一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 A C D B B A B C A C CB二、填空题 13.253tan(2)204αβ-=-14.1215.1arccos 3π-. 16. 三、解答题17.(1){|14}A B x x =≤≤I ;(2)(,2]-∞-. 18.(1)3A π=(2)319.(1)见证明;(220.(1)3π;(2)7. 21.(1)2104002500,040(){100002000(),40x x x L x x x x-+-<<=-+≥;(2)当100x =时,即2018年生产100百辆时,该企业获得利润最大,且最大利润为1800万元. 22.(1)3AD =;(2)cos C =.2019-2020学年高一数学上学期期末试卷一、选择题1.如图是正方体的展开图,则在这个正方体中:①AF 与CN 平行; ②BM 与AN 是异面直线; ③AF 与BM 成60°角; ④BN 与DE 垂直.以上四个命题中,正确命题的序号是 A .①②③B .②④C .③④D .②③④2.执行如图所示程序框图,当输入的x 为2019时,输出的y (= )A .28B .10C .4D .23.已知3a log 6=,3log e b 13-=+,12c ()3-=则a ,b ,c 的大小关系为( )A .a b c >>B .b a c >>C .c b a >>D .a c b >>4.若,则( ) A .B .C .D .5.在平面直角坐标系xOy 中,已知两圆1C :2212x y +=和2C :2214x y +=,又A 点坐标为(3,1)-,,M N 是1C 上的动点,Q 为2C 上的动点,则四边形AMQN 能构成矩形的个数为( )A.0个B.2个C.4个D.无数个6.如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称,在正方形内随机取一点,则此点取自黑色部分的概率是A.14B.8π C.12D.4π 7.已知{a n }是等差数列,且a 2+ a 5+ a 8+ a 11=48,则a 6+ a 7= ( ) A .12B .16C .20D .248.已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为F .短轴的一个端点为M ,直线:340l x y -=交椭圆E 于,A B 两点.若4AF BF +=,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( ) A .3(0,2B .3(0,]4C .32D .3[,1)49.已知定义域为R 的奇函数y=f(x)的导函数为()y f x '=,当x≠0时,()()0f x f x x'+>,若11()22a f =,112(2),(ln )(ln )22b fc f =--=,则a,b,c 的大小关系正确的是( ) A .a c b << B .b c a << C .a b c <<D .c a b <<10.已知2()sin ()4f x x π=+,若1(lg5),(lg )5a f b f ==,则( )A .0a b +=B .0a b -=C .1a b +=D .1a b -=11.若向量,,a b c r r r ,满足//a b r r 且a c ⊥r r,则()2c a b ⋅+=r r r ( )A .4B .3C .2D .012.设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x--<的解集为( )A .(10)(1)-⋃+∞,, B .(1)(01)-∞-⋃,, C .(1)(1)-∞-⋃+∞,, D .(10)(01)-⋃,, 二、填空题13.已知等比数列{}n a 的前n 项和为n S ,424S S =,则84S S 的值是__________. 14.设函数()cos()(0)6f x x πωω=->,若()()3f x f π≤对任意的实数x 都成立,则ω的最小值为_______.15.在ABC ∆中,tan tan 33tan A B A B +=⋅,则C 等于______.16.若圆锥的侧面积为2π,底面积为π,则该圆锥的体积为____________。
浙江省学考选考宁波市高一年级九校联考试卷数学试题参考答案

宁波市2017学年度第二学期期末九校联考高一数学评分标准一、选择题:本大题共10小题, 每小题4分, 共40分.在每小题给出的四个选项中, 只有一项是符合题目要求的.11.1(0,)2-, -12. , ±13.14-,1614.2π, 515.313()()242+∞U,17.1510.解:已知等差数列{}n a中, 221510a a+=,令1534135254aat a a a d+=+=+=,所以直线15354a a t+=与圆221510a a+=有公共点,≤解得[22t∈-, 选C16.提示:ax by+≤≤17.由已知2224a b c+=, 得2222242cosa b c a b ab C+==+-于是32cos3sin()2sin cos5tan3tan05tan tan3b a CA C A CA CC A=-+=-+==-2tan tan 2tan tan tan()1tan tan 35tan A C A B A C A C A +=-+=-=≤-+三、解答题:本大题共5小题, 共74分.解答应写出文字说明, 证明过程或演算步骤. 18.(本题满分14分)已知函数22()(sin cos )2cos ,[0,]2f x x x x x π=+-∈.(Ⅰ)求函数()f x 的最大值、最小值以及相应的x 的值;(II )解关于x 的方程()2f x =.解: (Ⅰ)22()(sin cos )2cos sin 2cos 2)4f x x x x x x x π=+-=-=-.....................................................3分. 因为[0,],2x π∈所以32444x πππ-≤-≤,当0x =时,min ()(0)1,f x f ==-当38x π=时,max 3()()8f x f π==....................7分.(II )())42f x x π=-=,得513,[0,],2424x k x k k Z πππππ=+=+∈∈,................................10分 所以1524x π=,21324x π=(舍去).方程的解集为5{}24π. ................................14分19.(本题满分15分)已知ABC ∆三边是连续的三个自然数. (Ⅰ)求最小边的取值范围;(II )是否存在这样的ABC ∆, 使得其最大内角是最小内角的两倍?若存在, 试求出这个三角形的三边;若不存在, 请说明理由.解:(Ⅰ)设角,,A B C 所对的边分别是,,a b c , 且1,,1,a m b m c m m N =-==+∈, 由题意, 11m m m -+>+所以2m >, 所以最小边的取值范围是{|2,}m m m N ≥∈ ..................................................................5分(II )由题意, 三个角中最大角为C , 最小角为A . 由正弦定理得111sin sin sin 2m m m A C A-++==................................8分 得1cos 2(1)m A m +=-................................10分又222(1)(1)1cos 2(1)2(1)m m m m A m m m ++--+==+-解得5,0m m ==(舍去) ................................14分 所以三角形的三边分别为4,5,6所以存在唯一ABC ∆同时满足以下两条件.........:三边是连续的三个自然数且最大角是最小角的两倍. ...........................................................15分另解:1,,1,a m b m c m m N =-==+∈,三个角中最大角为C , 最小角为A .则2C A =,2cos 2cos 1C A =- ...........................................................8分 由余弦定理得222222(1)(1)(1)(1)cos ,cos 2(1)2(1)m m m m m m C A m m m m-+-+++--==-+...........................................................10分代入上式化简得322717100m m m --+=,(21)(2)(5)0m m m -+-=,解得5m =,..........................................................14分 所以三角形的三边分别为4,5,6所以存在唯一ABC ∆同时满足以下两条件.........:三边是连续的三个自然数且最大角是最小角的两倍. ...........................................................15分20.(本题满分15分)已知圆221:2880O x y x y +++-=, 圆222:4420O x y x y +---=,(Ⅰ)试判断圆1O 与圆2O 的位置关系;(Ⅱ)在直线12O O 上是否存在不同于1O 的一点A , 使得对于圆2O 上任意一点P 都有1||||PO PA 为同一常数. 解: (Ⅰ)由221:2880O x y x y +++-=得: 221:(1)(4)25O x y +++=222:4420O x y x y +---=得: 222:(2)(2)10O x y -+-=圆心距12||O O ==两圆的半径之差5-两圆的半径之和5因为5<<5 , 所以两圆相交. .............................7分解法二: 222228804420x y x y x y x y ⎧+++-=⎪⎨+---=⎪⎩, 解得13,11x x y y =-=⎧⎧⎨⎨==-⎩⎩, 所以两圆相交. ........................................................7分 (Ⅱ)由题意得:12O O 的方程为22y x =-, 设(,22)A a a -,(,)P x y , 由题意得, (0,1)λλλ=>≠........................................................9分化简得:22222222222282(22)17((22))0111a a a a x y x y λλλλλλ+---+-++++=--- ........................................................11分 显然上式与圆2O 的方程为同一方程.22222222224182(22)4117((22))21a a a a λλλλλλ⎧+=-⎪-⎪--⎪=-⎨-⎪⎪-+-=-⎪-⎩........................................................13分 解得1,1,a λ=-=此时,1,A O 重合,舍去.4,3a λ==所求的点的坐标为42(,)33A ..................................15分其他过程,酌情给分.21.(本题满分15分)已知函数2()(1)1().f x m x mx m m R =+-+-∈(Ⅰ)当2m >-时, 解不等式()f x m ≥;(II )若不等式()0f x ≥的解集为D , 且[1,1]D -⊆, 求m 的取值范围.解(Ⅰ)由()f x m ≥得, 2(1)10.m x mx +--≥ 即((1)1)(1)0.m x x ++-≥.............................2分 当10m +=时,得解集{|1}x x ≥.............................4分当10m +>即1m >-时.解集为1{|1x x m ≤-+或1}x ≥................6分 当10m +<即21m -<<-时, 121011m m m +--=->++.解集为1{|1}1x x m ≤≤-+...................................8分(II )不等式()0f x ≥的解集为D , 且[1,1]D -⊆, 即任意的[1,1]x ∈-不等式2(1)10m x mx m +-+-≥恒成立.即22(1)1m x x x -+≥-+, 210x x -+>22212111x x m x x x x -+-≥=-+-+-+恒成立..............................10分令2[1,3],2t x x t =-∈=-Q22221131(2)(2)1333x t t x x t t t t t t-===≤=+-+---+-++-∴22212111x x x x x x -+-=-+≤-+-+当且仅当2x =-, 所以m的取值范围是[)3+∞................15分 另解:不等式()0f x ≥的解集为D , 且[1,1]D -⊆, 即任意的[1,1]x ∈-不等式2(1)10m x mx m +-+-≥恒成立.设2()(1)1g x m x mx m =+-+-(1)当10m +<时,(1)0(1)0g g -≥⎧⎨≥⎩,解得m ∈∅....................................................................10分(2)当10m +=时,()2g x x =-, 当[1,1]x ∈-时恒小于0,不满足,舍去 ....................................................12分 (3)当10m +>时,(ⅰ)2=4(1)(1)0m m m ∆-+-≤,即33m m ≤-≥,得3m ≥ (ⅱ)1<-12(1)2(1)(1)0(-1)0m mm m g g ⎧⎧>⎪⎪++⎨⎨⎪⎪≥≥⎩⎩或,解得m ∈∅ .............................................................14分综上可得3m ≥............................................................15分 22.(本小题满分15分)已知数列{}n a 满足125a =, 11320n n n n a a a a ++-+=,*n N ∈. (I )求证:11n a ⎧⎫-⎨⎬⎩⎭是等比数列, 并写出{}n a 的通项公式; (II )设{}n a 的前n 项和为n S , 求证:622115313nn S ⎛⎫⎛⎫-≤< ⎪ ⎪⎪⎝⎭⎝⎭. 解:(I )显然0n a ≠, 由11320n n n n a a a a ++-+=两边同除以1n n a a +得;1131122n n a a +=⋅-, ................................................3分 即1131112n n a a +⎛⎫-=- ⎪⎝⎭, 又因为113102a -=≠, 所以11n a ⎧⎫-⎨⎬⎩⎭是等比数列. , ....................................................5分因此, 1312nn a ⎛⎫=+ ⎪⎝⎭, 1232312n n n n na ==+⎛⎫+ ⎪⎝⎭.................... 7分 (II )由(I )可得111122533331222n n nnn a --⎛⎫=≥= ⎪⎝⎭⎛⎫⎛⎫⎛⎫++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭-----------------9分所以112222255353n n S -⎛⎫⎛⎫≥+⋅++⋅ ⎪ ⎪⎝⎭⎝⎭L 62153n⎛⎫⎛⎫=- ⎪ ⎪ ⎪⎝⎭⎝⎭因此, 62153nn S ⎛⎫⎛⎫≥- ⎪ ⎪⎪⎝⎭⎝⎭成立.--------------------------------------------11分 另一方面112333122nn n na ⎛⎫=<= ⎪⎝⎭⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭, --------------------------13分 3412324222513333nn n S a a a a ⎛⎫⎛⎫⎛⎫=+++<+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭L L246882216599313n -⎛⎫=+-⋅<⎪⎝⎭, 3n ≥, -----------------------------------14分 又1221513S =<, 246216513S =<, 因此, 2113n S <.-------------------------------------15分。
浙江省宁波市2019-2020学年高一上学期期末考试数学试题Word版含解析

浙江省宁波市2019-2020学年上学期期末考试高一数学试题一、选择题(本大题共10小题,共40.0分)1.已知集合,,,则()A. B. C. D.2.若幂函数在区间上单调递减,则实数m的值可能为A. 1B.C.D. 23.M是边AB上的中点,记,,则向量A. B. C. D.4.函数的零点所在区间是A. B. C. D.5.已知为锐角,则A. B. C. D.6.函数的图象可能是A. B.C. D.7.以下关于函数的说法中,正确的是A. 最小正周期B. 在上单调递增C. 图象关于点对称D. 图象关于直线对称8.若向量,满足,,且,则,的夹角为A. B. C. D.9.设函数的定义域为A,且满足任意恒有的函数是A. B. C. D.10.已知函数,的值城是,则A. B. C. 2 D. 0二、填空题(本大题共7小题,共36.0分)11.已知,则______,______.12.设,则______,______.13.已知向量,,则______;若,则______.14.已知函数一部分图象如图所示,则______,函数的单调递增区间为______.15.已知一个扇形的弧长为,其圆心角为,则这扇形的面积为______.16.已知且,函数,满足对任意实数,,都有成立,则实数a的取值范围为______.17.已知单位向量,,满足,向量满足,则的取值范围是______.三、解答题(本大题共5小题,共74.0分)18.已知集合,.1求;2已知,若,求实数a的取值范围.19.已知函数1求函数的最小正周期;2现将函数图象上所有的点的横坐标伸长到原来的2倍纵坐标不变,得到函数的图象,求在区间上的值域.20.如图所示,在等腰梯形ABCD中,已知,,,,动点E和F分别在线段BC 和DC上,且,.1求的值;2求的最小值,并求出此时t的值.21.如图,在平面直角坐标系中,角,的顶点与原点重合,始边与x轴非负半轴重合,角,的终边与单位圆分别交、两点.1求的值;2若,,求的值.22.设,其中.1当时,分别求及的值域;2记,,若,求实数t的值.浙江省宁波市2019-2020学年上学期期末考试高一数学试题参考答案一、选择题(本大题共10小题,共40.0分)1.已知集合,,,则()A. B. C. D.【答案】A【解析】故选A2.若幂函数在区间上单调递减,则实数m的值可能为A. 1B.C.D. 2【答案】C【解析】【分析】由幂函数的单调性结合选项得答案.【详解】幂函数在区间上单调递减,,由选项可知,实数m的值可能为.故选:C.【点睛】本题考查幂函数的单调性,是基础题.3.M是边AB上的中点,记,,则向量A. B. C. D. 【答案】C【解析】由题意得,∴.选C.4.函数的零点所在区间是A. B. C. D. 【答案】C【解析】【分析】计算各区间端点的函数值,根据零点的存在性定理判断.【详解】在上为增函数,且,,,,的零点所在区间为.故选:C.【点睛】本题考查了函数零点的存在性定理,对数运算,属于基础题.5.已知为锐角,则A. B. C. D. 【答案】D【解析】【分析】利用诱导公式变形,结合平方关系把根式内部的代数式化为完全平方式,开方得答案.【详解】为锐角,∴.故选:D.【点睛】本题考查三角函数的化简求值,考查同角三角函数基本关系式及诱导公式的应用,是基础题.6.函数的图象可能是A. B.C. D.【答案】A【解析】【分析】判断函数的奇偶性和对称性,利用,进行排除即可.【详解】,则函数是奇函数,图象关于原点对称,排除B,D,,排除C,故选:A.【点睛】本题主要考查函数图象的识别和判断,利用函数的奇偶性和对称性以及特殊值的符号进行排除是解决本题的关键.7.以下关于函数的说法中,正确的是A. 最小正周期B. 在上单调递增C. 图象关于点对称D. 图象关于直线对称【答案】B【解析】【分析】根据三角函数的周期性,单调性以及对称性分别进行判断即可.【详解】函数的最小正周期,故A错误,当时,,,此时函数为增函数,故B正确,,即图象关于点不对称,故C错误,,则图象关于直线不对称,故D错误,故选:B.【点睛】本题主要考查与三角函数有关的命题的真假判断,结合三角函数的周期性,单调性以及对称性是解决本题的关键.8.若向量,满足,,且,则,的夹角为A. B. C. D.【答案】A【解析】【分析】对两边平方计算,再代入夹角公式即可求出答案.【详解】由可得,即,,,,的夹角为.故选:A.【点睛】本题考查了平面向量的数量积运算,向量的夹角公式,属于基础题.9.设函数的定义域为A,且满足任意恒有的函数是A. B. C. D.【答案】C【解析】【分析】满足任意恒有,则函数关于中心对称,由此可得结论.【详解】满足任意恒有函数关于中心对称的对称中心为故选:C.【点睛】本题考查函数的对称性,考查学生分析解决问题的能力,属于基础题.10.已知函数,的值城是,则A. B. C. 2 D. 0 【答案】D【解析】【分析】根据条件判断函数的奇偶性,利用奇偶性的性质结合值域得到,即可得到结论.【详解】,即函数是奇函数,得图象关于原点对称,函数的值城是,,则,故选:D.【点睛】本题主要考查函数值的计算,根据条件判断函数的奇偶性是解决本题的关键.二、填空题(本大题共7小题,共36.0分)11.已知,则______,______.【答案】 (1). 3 (2).【解析】【分析】根据即可得出,从而得出,的值,进而得出的值.【详解】;;;.故答案为:.【点睛】考查分数指数幂的运算,以及对数的定义,对数的运算性质.12.设,则______,______.【答案】 (1). (2).【解析】【分析】由已知展开两角和的正切求,由同角三角函数基本关系式化弦为切求.【详解】由,得,.故答案为:;.【点睛】本题考查三角函数的化简求值,考查同角三角函数基本关系式的应用及两角和的正切,是基础题.13.已知向量,,则______;若,则______.【答案】 (1). (2). 2【解析】【分析】直接由向量模的公式计算;再由向量共线的坐标运算列式求解值.【详解】,;由,,且,得,即.故答案为:;2.【点睛】本题考查向量模的求法,考查向量共线的坐标运算,是基础题.14.已知函数一部分图象如图所示,则______,函数的单调递增区间为______.【答案】 (1). 2 (2). ,【解析】【分析】根据图象先求出函数的周期,和,利用五点对应法求出函数的解析式,结合函数单调性的性质进行求解即可.【详解】由图象知,则周期,即,即,即,由五点对应法得,即,则,由,,得,,即函数的单调递增区间为,,故答案为:,.【点睛】本题主要考查三角函数的图象和性质,根据条件求出的解析式是解决本题的关键.15.已知一个扇形的弧长为,其圆心角为,则这扇形的面积为______.【答案】2【分析】根据孤长公式求出对应的半径,然后根据扇形的面积公式求面积即可.【详解】扇形的半径为,圆心角为,弧长 ,这条弧所在的扇形面积为,故答案为 .【点睛】本题主要考査扇形的面积公式和弧长公式,意在考查对基础知识与基本公式掌握的熟练程度,属于中档题.16.已知且,函数,满足对任意实数,,都有成立,则实数a的取值范围为______.【答案】【解析】【分析】根据题意知函数在R上为增函数,利用分段函数的单调性列不等式组,从而求出a的取值范围.【详解】函数,对任意实数,,都有成立,则在R上为增函数;当时,函数为增函数,则有,即;当时,函数为增函数,则有;由在R上为增函数,则,即有;由可得a的取值范围为:故答案为:【点睛】本题考查了分段函数的单调性与应用问题,注意各段的单调性,以及分界点的情况,是易错题.17.已知单位向量,,满足,向量满足,则的取值范围是______.【答案】【解析】由题意,不妨设,,,根据可得到点和的距离和为,可得直线AB的方程,则表示点点到直线直线AB上点的距离,即可求出范围.【详解】由题意,单位向量,,满足,不妨设,,,,,,,即到点和的距离和为,则直线AB的方程为,表示点点到线段AB上点的距离,,最大值为到的距离即为,故的取值范围是,故答案为:.【点睛】本题考查向量的坐标运算,考查两点的距离公式和点到直线的距离公式,向量模的几何意义,属于中档题.三、解答题(本大题共5小题,共74.0分)18.已知集合,.1求;2已知,若,求实数a的取值范围.【答案】(1),(2).【解析】【分析】(1)由指数不等式、对数不等式的解法得:A=,B=,故A∩B=;(2)由集合的包含关系得:C⊆B,则:a≥4,得到的范围是.【详解】(1)解不等式x-4≤4,得:3≤x≤6,即A=,解不等式log3(2x+1)>2,得:x>4,即B=,故A∩B=,(2)由集合的包含关系得:C⊆B,则:a≥4,所以的范围是.【点睛】本题考查了指数不等式、对数不等式的解法及集合的包含关系,属简单题.19.已知函数1求函数的最小正周期;2现将函数图象上所有的点的横坐标伸长到原来的2倍纵坐标不变,得到函数的图象,求在区间上的值域.【答案】(1);(2)【解析】【分析】(1)首先利用平面向量的数量积运算和三角函数关系式的恒等变换,把三角函数的关系式转换为正弦型函数,进一步求出函数的最小正周期.(2)利用函数的关系式和函数的图象的平移变换的应用求出函数的值域.【详解】1函数,,函数的最小正周期;2由于,将函数图象上所有的点的横坐标伸长到原来的2倍纵坐标不变,得到函数的图象,由于,故:,所以:,故:的值域为.【点睛】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数性质的应用,函数图象的平移变换和伸缩变换的应用,主要考查学生的运算能力和转化能力,属于基础题型.20.如图所示,在等腰梯形ABCD中,已知,,,,动点E和F分别在线段BC 和DC上,且,.1求的值;2求的最小值,并求出此时t的值.【答案】(1)3;(2)【解析】【分析】1结合向量的数量积公式即可求出2利用等腰梯形的性质结合向量的数量积公式将所求表示为关于的代数式,根据具体的形式求最值.【详解】1,2,,,,故当时,的最小值为.【点睛】本题考查了等腰梯形的性质以及向量的数量积公式的运用、基本不等式求最值;关键是正确表示所求,利用基本不等式求最小值.21.如图,在平面直角坐标系中,角,的顶点与原点重合,始边与x轴非负半轴重合,角,的终边与单位圆分别交、两点.1求的值;2若,,求的值.【答案】(1);(2)【解析】【分析】1根据三角函数的定义求出,和,的值,利用两角和差的余弦公式进行求解2先求出的三角函数值,结合两角和差的正弦公式求的值即可.【详解】1由、,得,、,,则.2,,,,,,则,.【点睛】本题主要考查三角函数值的计算,结合三角函数的定义求出对应角的三角函数值,以及利用两角和差的公式进行求解是解决本题的关键.22.设,其中.1当时,分别求及的值域;2记,,若,求实数t的值.【答案】(1);(2)或或或【解析】【分析】1当时,求出函数和的解析式,结合二次函数的性质进行求解即可2根据,得到两个集合的值域相同,求出两个函数对应的最值建立方程即可【详解】1当时,由,当且仅当时,取等号,即的值域为.设,则,则,当且仅当,即时,取等号,故的值域为.2,,即此时函数的值域为,,,得或,当时,即或,,即,即,则,得或成立.当时,即时,,即,即,即或或,或满足条件,综上或或或成立.【点睛】本题主要考查函数值域的应用,结合复合函数值域关系求出的最值是解决本题的关键综合性较强,运算量较大,有一定的难度.。
浙江省宁波市2019-2020学年高一上学期期末数学试卷 (有解析)

浙江省宁波市2019-2020学年高一上学期期末数学试卷一、选择题(本大题共10小题,共40.0分)1. 已知全集U ={x|x ≥0},A ={x|x ≥1},则∁U A =( )A. φB. {x|x <1}C. {x|0≤x <1}D. {x|x ≥0}2. 下列图像表示的函数具有奇偶性的是( )A.B.C.D.3. 若点M 在△ABC 的边AB 上,且AM ⃗⃗⃗⃗⃗⃗ =12MB ⃗⃗⃗⃗⃗⃗ ,则CM ⃗⃗⃗⃗⃗⃗ =( ) A. 12CA ⃗⃗⃗⃗⃗ +12CB ⃗⃗⃗⃗⃗ B. 2CA⃗⃗⃗⃗⃗ −2CB ⃗⃗⃗⃗⃗ C. 13CA ⃗⃗⃗⃗⃗ +23CB ⃗⃗⃗⃗⃗ D. 23CA ⃗⃗⃗⃗⃗ +13CB ⃗⃗⃗⃗⃗ 4. 函数f (x )=(12)x−x +2的零点所在的一个区间是( )A. (2,3)B. (0,1)C. (−1,0)D. (1,2)5. 在圆0中,长度为√2的弦AB 不经过圆心,则AO ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ 的值为( )A. 12B. √22C. 1D. √26. 不等式−2x −1<3的解集为( )A. (2,+∞)B. (−∞,2)C. (−2,+∞)D. (−∞,−2)7. 函数 f(x)=|x|+1的图象是 ( )A.B.C.D.8. 在△ABC 中,5sinAcosA +1=0,则sinA −cosA 的值为( )A. −√357B. √357C. −√355D. √3559. 已知函数f(x)=sin x ·|sin x|,给出下列结论:①f(x)是周期函数;②f(x)是奇函数;③[− π 2, π 2]是函数f(x)的一个单调递增区间;④若f(x 1)=−f(x 2),则x 1+x 2=kπ(k ∈Z);⑤不等式sin 2πx ·|sin 2πx|>cos 2πx ·|cos 2πx|的解集为则正确结论的序号是( )A. ①②④B. ①②③④C. ②③D. ①②③⑤10. 已知函数f(x)=mx 2+mx −1.若对于任意的x ∈[1,4],f(x)<5−m 恒成立,则实数m 的取值范围是( )A. (−∞,27)B. (−∞,1)C. (1,5)D. (1,+∞)二、填空题(本大题共7小题,共36.0分)11. 圆的半径是12,弧度数为3的圆心角所对扇形的面积等于___________. 12. 函数f(x)=2sin(ωx +φ)(ω>0,|φ|<π2)的图象如图所示,则ω=______,φ=_____.13. 已知|a −8b |+(4b −1)2=0,则log 2a b =__________.14. 设函数f(x)={3x −1,x <12x ,x ≥1,则满足f(f(a))=2f(a)的a 的取值范围是_________.15. 在平面直角坐标系xOy 中,已知角α的终边经过点P (−x,−6),且cosα=−513,则x 的值为 .16. 若sin(α−π)=35,α为第四象限角,则tanα= ______ . 17. 平面向量OA ⃗⃗⃗⃗⃗ ⊥AB ⃗⃗⃗⃗⃗ ,|OA ⃗⃗⃗⃗⃗ |=2,则OA ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗⃗ =______. 三、解答题(本大题共5小题,共74.0分)18. 已知集合A ={x|x 2−x <0},B ={x|x 2−2x −m <0}.(Ⅰ)求∁R A ;(Ⅱ)若A ∩B =⌀,求实数m 的取值范围.19. 已知向量a ⃗ =(λ,1),b ⃗ =(λ+2,1),若|a ⃗ +b ⃗ |=|a ⃗ −b ⃗ |,则实数λ= ______ .20. 已知函数f(x)=2sin(ωx +φ)(ω>0,|φ|<π2)的图像与直线y =2两相邻交点之间的距离为π,且图像关于x =π3对称. (1)求y =f(x)的解析式;(2)先将函数f(x)的图象向左平移π6个单位,再将图像上所有横坐标伸长到原来的2倍,得到函数g(x)的图象.求g(x)的单调递增区间以及g(x)≥√3的x 取值范围.21. 如图,梯形ABCD 中,AB//CD ,AB =4CD .(1)试用AB ⃗⃗⃗⃗⃗ 和AD ⃗⃗⃗⃗⃗⃗ 表示BC ⃗⃗⃗⃗⃗ ;(2)若AB =3,AD =2,AD⃗⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ =1,求AC ⃗⃗⃗⃗⃗ ⋅BD ⃗⃗⃗⃗⃗⃗ 的值.22. 已知函数f(x)=x 2−1,g(x)=a|x −1|.(1)若关于x 的方程|f(x)|=g(x)只有一个实数解,求实数a 的取值范围; (2)若当x ∈R 时,不等式f(x)≥g(x)恒成立,求实数a 的取值范围.-------- 答案与解析 --------1.答案:C解析:解:∵U ={x|x ≥0},A ={x|x ≥1}; ∴∁U A ={x|0≤x <1}. 故选:C .进行补集的运算即可.考查描述法的定义,以及补集的定义及运算.2.答案:B解析:本题考查函数的奇偶性及函数图象的应用,属于基础题.根据函数图象关于原点对称的是奇函数、函数图象关于y 轴对称的是偶函数即可判断,注意判断函数的定义域是否关于原点对称.解:选项A 中的函数图象关于原点或y 轴均不对称,不具有奇偶性,故排除; 选项B 中的函数图象关于y 轴对称,其表示的函数是偶函数,选项C ,D 中的函数图象所表示的函数定义域不关于原点对称,不具有奇偶性,故排除. 故选B .3.答案:D解析:【分析】如图,CM ⃗⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ +AM ⃗⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ +13AB ⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ +13(CB ⃗⃗⃗⃗⃗ −CA ⃗⃗⃗⃗⃗ )=23CA ⃗⃗⃗⃗⃗ +13CB ⃗⃗⃗⃗⃗ . 本题考查向量的加减法运算法则,属于中档题.【解答】解:如图,由AM ⃗⃗⃗⃗⃗⃗=12MB ⃗⃗⃗⃗⃗⃗ ,知AM ⃗⃗⃗⃗⃗⃗ =13AB ⃗⃗⃗⃗⃗ , 所以CM⃗⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ +AM ⃗⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ +13AB ⃗⃗⃗⃗⃗=CA ⃗⃗⃗⃗⃗ +13(CB ⃗⃗⃗⃗⃗ −CA⃗⃗⃗⃗⃗ ) =23CA ⃗⃗⃗⃗⃗ +13CB ⃗⃗⃗⃗⃗ 故选:D .4.答案:A解析:本题考查函数的零点的判定定理的应用,首先得出函数的单调性,根据函数零点的存在定理判断即可.解:易知函数f(x)=(12)x−x +2为单调递减函数,∵f(2)=(12)2−2+2=14>0,f(3)=(12)3−3+2=−78<0, ∴f(x)的零点所在的区间是(2,3), 故选A .5.答案:C解析:解:取AB 的中点为C ,由圆的性质可得OC ⊥AB , ∴AO ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =(AC ⃗⃗⃗⃗⃗ +CO ⃗⃗⃗⃗⃗ )⋅2AC ⃗⃗⃗⃗⃗ =2AC ⃗⃗⃗⃗⃗ 2+2CO ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ =2×(√22)2+0 =1 故选:C取AB 的中点为C ,可得OC ⊥AB ,可得AO ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =(AC ⃗⃗⃗⃗⃗ +CO ⃗⃗⃗⃗⃗ )⋅2AC ⃗⃗⃗⃗⃗ =2AC ⃗⃗⃗⃗⃗ 2+2CO ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ ,由数量积的运算可得.本题考查平面向量数量积的运算以及向量的加减运算,同时考查转化的思想,属基础题.6.答案:C解析:解:不等式−2x−1<3,可得x>−2.不等式−2x−1<3的解集为(−2,+∞).故选:C.直接利用不等式化简求解即可.本题考查一次不等式的解法,考查计算能力.7.答案:D解析:本题主要考查根据函数的解析式判断函数的图象特征,属于基础题.由函数f(x)的解析式可得,当x=0时,函数f(x)取得最小值,结合所给的选项可得结论.解:由于函数f(x)=|x|+1,故当x=0时,函数f(x)取得最小值.结合所给的选项,只有D满足条件,故选D.8.答案:D解析:此题考查学生灵活运用二倍角正弦函数公式及同角三角函数间的基本关系化简求值,是一道中档题,应注意判断所求式子的符号,先利用二倍角的正弦函数公式把已知条件化简得到2sin A cosA的值,并根据其值得到A的范围,进而得到sinA−cosA的符号,然后把所求的式子平方后,利用同角三角函数间的基本关系化简后,将2sin A cosA的值代入即可求出值,根据sinA−cosA的符号,开方即可得到sinA−cosA的值.,解:5sinAcosA+1=0,则sinAcosA=−15可知,,则.故选D .9.答案:D解析:本题考查三角函数函数的周期性、奇偶性、单调性、中心对称性以及诱导公式,属于较难题. 解题时依据三角函数的三角函数函数的周期性、奇偶性、单调性、中心对称性以及诱导公式逐一验证即可求解.解:对于①,∵f (x +2π)=f (x ),∴f(x)=sin x ·|sin x|为周期函数,①正确;对于②∵f (−x )=−f (x ),∴f (x )为奇函数,②正确; 对于③,当x ∈[0,π2]时,在区间[0,π2]单调递增,又f(x)为奇函数且过原点,∴[−π2,π2]是函数f(x)的一个增区间,③正确;对于④,由②③可画出函数f(x)在[−π2,π2]的图象, ∵f(π2+x)=f (π2−x),∴f(x)的图象关于直线x =π2对称, 可画出函数f(x)在区间[π2,3π2]上的图象,即得到函数f(x)在[−π2,3π2]上的图象,即一个周期的图象,在[−π2,3π2]上的对称中心为(0,0),(π,0),∴在整个定义域上的对称中心为(kπ,0)(k ∈Z ).即若f(x 1)=−f(x 2),则x 1+x 2=2kπ(k ∈Z),④不正确;对于⑤,先求不等式sin 2πx ·|sin 2πx|>cos 2πx ·|cos 2πx|在一个周期内的解集.取区间[0,2π],∵sin 2πx ·|sin 2πx|>cos 2πx ·|cos 2πx|⇔f (2πx )>f (2πx +π2),{2πx >π42πx +π2<7π4, 在整个定义域上{2πx >π4+2kπ2πx +π2<7π4+2kπ(k ∈Z), 解得k +18<x <k +58,k ∈Z ,⑤正确.综上可知,正确结论的序号为①②③⑤. 故选D .10.答案:A解析:本题考查恒成立问题,考查分离参数法的运用,解题的关键是分离参数,正确求最值,属于中档题. 利用分离参数法,再求出对应函数在x ∈[1,4]上的最小值,即可求m 的取值范围. 解:由题意,f(x)<5−m ,可得m(x 2+x +1)<6. ∵当x ∈[1,4]时,x 2+x +1∈[3,21], ∴不等式f(x)<5−m 等价于m <6x 2+x+1.∵当x =4时,y =x 2+x +1取得最大值21,则6x 2+x+1的最小值为621=27, ∴若要不等式m <6x 2+x+1恒成立, 则必须m <27,因此,实数m 的取值范围为(−∞,27). 故选A .11.答案:38解析:本题考查扇形面积公式,是基础的计算题. 直接利用扇形的面积公式得答案. 解:由r =12,圆心角的弧度数α=3,得 扇形面积S =12αr 2=12×3×(12)2=38.故答案为38.12.答案:2;π6 解析:解:由图象可得,解得ω=2, 故, 把点(0,1)代入可得, 解得故答案为:2;π6由图象可得,可得ω,把点(0,1)代入解析式可得φ值本题考查由y =Asin(ωx +φ)的部分图象确定其解析式,属中档题.13.答案:14解析:本题考查了对数的运算性质,属于基础题.根据绝对值和偶次方的非负性,得{a −8b =04b −1=0,求出a ,b 的值,然后利用对数的运算性质可得结果. 解:由|a −8b |+(4b −1)2=0,得{a −8b =04b −1=0, 解得a =2,b =14,所以log 2a b =log 2214=14. 故答案为14. 14.答案:解析: 本题考查函数定义域与值域,分段函数,函数的单调性与单调区间,属于基础题,先由f(f(a))=2f(a),根据分段函数式判断f(a)≥1,再由分段函数的单调性和每一段的值域可知3a −1≥1,解得即可.解:∵函数f(x)={3x −1,x <12x ,x ⩾1, ∴f(f(a))=2f(a),得f(a)≥1,又∵x <1,f(x)=3x −1,单调递增,且f(x)<2,x ≥1,f(x)=2x ,单调递增,且f(x)≥2,∴由f(a)≥1,得3a −1≥1,解得a ≥23,∴a 的取值范围是. 故答案为.15.答案:52解析:本题考查任意角的三角函数定义,由余弦的定义即可求解.解: 因为角α终边经过点P (−x,−6),且cosα=−513,所以cosα=x r =22=−513,解得x =52.故答案为52.16.答案:−34解析:解:sin(α−π)=35,α为第四象限角,sin(α−π)=−sinα=35,∴sinα=−35,cosα=√1−sin 2α=45. tanα=sinαcosα=−34.故答案为:−34.利用诱导公式求出sinα,然后利用同角三角函数的基本关系式求解即可.本题考查诱导公式的应用,同角三角函数的基本关系式的应用,基本知识的考查. 17.答案:4解析:解:∵OA ⃗⃗⃗⃗⃗ ⊥AB ⃗⃗⃗⃗⃗ ,且|OA ⃗⃗⃗⃗⃗ |=2,∴OA ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ ⋅(OB ⃗⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ )=OA ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗⃗ −|OA ⃗⃗⃗⃗⃗ |2=0,则OA ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗⃗ =|OA ⃗⃗⃗⃗⃗ |2=4.故答案为:4.由已知结合向量减法的三角形法则化简求解.本题考查平面向量的数量积运算,考查向量减法的三角形法则,是基础题.18.答案:解:(Ⅰ)由x 2−x <0得,0<x <1,故A =(0,1),所以∁R A =(−∞,0]∪[1,+∞).(Ⅱ)若B =⌀,则(−2)2+4m ≤0,故m ≤−1;若B ≠⌀,则不满足A ∩B =⌀.综上所述,实数m 的取值范围是(−∞,−1].解析:本题考查补集的求法,考查实数的取值范围的求法,考查补集、交集的定义等基础知识,考查运算求解能力,是基础题.(Ⅰ)由x 2−x <0得,0<x <1,求出A =(0,1),由此能求出∁R A .(Ⅱ)若B =⌀,则(−2)2+4m ≤0,故m ≤−1;若B ≠⌀,则不满足A ∩B =⌀.由此能求出实数m 的取值范围.19.答案:−1解析:解:∵|a ⃗ +b ⃗ |=|a ⃗ −b ⃗ |,∴√a ⃗ 2+b ⃗ 2+2a ⃗ ⋅b ⃗ =√a ⃗ 2+b ⃗ 2−2a ⃗ ⋅b ⃗ , 化为a ⃗ ⋅b ⃗ =0,∴λ(λ+2)+1=0,解得λ=−1.故答案为:−1.由|a ⃗ +b ⃗ |=|a ⃗ −b ⃗ |,利用数量积的运算性质可得a ⃗ ⋅b ⃗ =0,再利用数量积的坐标运算即可得出.本题考查了数量积的运算性质、数量积的坐标运算,属于基础题.20.答案:解:(1)由已知可得, , ∴, 又的图象关于 对称, ∴, ∴, , ∵, ∴. 所以(2)由(1)可得, ∴, 由得 , 的单调递增区间为, . ∵, ∴, ∴, ∴解析:本题主要考查三角函数的性质,属于中档题.(1)利用周期公式,结合最高点的坐标,求出相应的参数,即可求出函数的解析式;(2)利用平移变换求出g(x)的解析式,可得g ( x ) 的单调递增区间,再利用正弦函数的性质,即可解不等式。
宁波市九校2019-2020学年上学期高一数学期末联考卷附答案解析

宁波市九校2019-2020学年上学期期末联考高一数学试卷一、单选题1.已知集合{}0A x x =>,集合{}16B x x =-<≤,则A B =I ( )A .()10-, B .(]06,C .()06, D .(]16-, 2.函数tan 43y x x ππ⎛⎫=-<< ⎪⎝⎭的值域是( )A .()11-,B .3⎛⎫ ⎪ ⎪⎝⎭-1,C.(-D.⎡-⎣3.已知∈,x y R ,且0x y >>,则( )A .110x y ->B .cos cos 0x y ->C .11022x y⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭D .ln ln 0x y +> 4.已知向量122a ⎛⎫= ⎪ ⎪⎝⎭r ,,2b =r ,且a b ⋅=r r 则a r 与b r的夹角为( ) A .6πB .2π C .4π D .3π 5.已知半径为2的扇形AOB 中,»AB 的长为3π,扇形的面积为ω,圆心角AOB 的大小为ϕ弧度,函数()sin h x x x πϕω⎛⎫=+ ⎪⎝⎭,则下列结论正确的是( )A .函数()h x 是奇函数B .函数()h x 在区间[]20π-,上是增函数 C .函数()hx 图象关于()30π,对称 D .函数()hx 图象关于直线3x π=-对称6.已知7log 2a =,0.7log 0.2b =,0.20.7c =,则a ,b ,c 的大小关系为( ) A .a c b <<B .a b c <<C .b c a <<D .c a b <<7.已知4个函数:①sin y x x =;②cos y x x =;③2=x x y e;④4cos xy x e =-的图象如图所示,但是图象顺序被打乱,则按照图象从左到右的顺序,对应的函数序号正确的为( )A .①④②③B .③②④①C .①④③②D .③①④②8.在ABC V 中,102BA AC AC BC BC BA AB BC BC BA ⋅⋅+=⋅=u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r ,,则ABC V 为( ) A .直角三角形 B .三边均不相等的三角形 C .等边三角形 D .等腰非等边三角形9.若()()()()2202022020log 2019log 2log 2019log 2xyy x--+<+,则( )A .0x y +<B .0x y +>C .0x y -<D .0x y ->10.设函数()()(]()1222112f x x f x x x ⎧+∈-∞-⎪=⎨⎪+-∈-+∞⎩,,,,,则方程()()21610f x x x ++-=根的个数为( )A .2B .3C .4D .5二、填空题11.已知函数()()1lg 31x f x x +=+,则()0f =____________函数定义域是____________. 12.已知12e e u r u u r ,是单位向量,12e e ⊥u r u u r ,122AB e e =+u u u r u r u u r ,123BC e e =-+u u u r u r u u r ,12CD e e λ=-u u u r u r u u r ,若AB CD ⊥uu u r uu u r,则实数λ=____________;若A B D ,,三点共线,则实数λ=____________.13.己知函数()()2tan 06f x a x a ππ⎛⎫=+> ⎪⎝⎭的最小正周期是3.则a =___________()f x 的对称中心为____________.14.已知a b R ∈,,定义运算“⊗”:a a b a b b a b ≥⎧⊗⎨<⎩,,,设函数()()()2221log xf x x =⊗-⊗,()02x ∈,,则()1f =___________;()f x 的值域为__________.15.已知函数()()29a f x m x =-为幂函数,且其图象过点(3,则函数()()2log 6a g x x mx =-+的单调递增区间为___________.16.已知a b c r r r ,,,是平面向量,且2c =r ,若24a c b c ⋅=⋅=r r r r,,则a b +r r 的取值范围是__________.17.函数()()25sin f x x g x x =--=,,若1202n x x x π⎡⎤∈⎢⎥⎣⎦,,……,,,使得()()12f x f x ++…()()()()()()1121n n n n f x g x g x g x g x f x --++=++++…,则正整数n 的最大值为___________.三、解答题18.已知向量()()()sin 1cos 10a x b x c m =-=r r r ,,=,,,,其中04x π⎡⎤∈⎢⎥⎣⎦,.(1)若的35a b ⋅=-r r ,求tan x 的值;(2)若a c +r r 与a c -r r垂直,求实数m 的取值范围.19.已知集合{()121A x y B a a ===-+,,,()(){}110C x x m x m m R =--++≤∈,.(1)若()RA B =∅Ið,求a 的取值范围;(2)若A C C =I ,求m 的取值范围.20.已知()f x 为偶函数,当0x ≥时,()()2lg 1f x x =+.(1)求()f x 的解析式;(2)若对于任意的()0x ∈-∞,,关于x 的不等式()()lg kx f x <恒成立,求k 的取值范围.21.已知函数()sin 26f x x π⎛⎫+ ⎝=⎪⎭,()()sin 002g x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭,,的部分图象如图所示.(1)求()gx 的解析式,并说明()f x 的图象怎样经过2次变换得到()g x 的图象;(2)若对于任意的46x ππ⎡⎤∈-⎢⎥⎣⎦,,不等式()2f x m -<恒成立,求实数m 的取值范围.22.在函数定义域内,若存在区间[]m n ,,使得函数值域为[]m k n k ++,,则称此函数为“k 档类正方形函数”,已知函数()()3log 29132x xf x k k k ⎡⎤=⋅--++⎣⎦.(1)当0k=时,求函数()y f x =的值域;(2)若函数()y f x =的最大值是1,求实数k 的值;(3)当0x >时,是否存在()01k ∈,,使得函数()f x 为“1档类正方形函数”?若存在,求出实数k 的取值范围,若不存在,请说明理由.解析宁波市九校2019-2020学年上学期期末联考高一数学试卷一、单选题 1.已知集合{}0A x x =>,集合{}16B x x =-<≤,则A B =I( )A .()10-, B .(]06,C .()06, D .(]16-, 【答案】B【解析】进行交集的运算即可.解:∵{}0A x x =>,{}16B x x =-<≤,∴(]06A B =I ,. 故选:B.【点睛】本题考查交集的定义及运算,属于基础题.2.函数tan 43y x x ππ⎛⎫=-<< ⎪⎝⎭的值域是( )A .()11-,B .⎛ ⎝⎭- C .(-D .⎡-⎣【答案】C【解析】先判断出函数tan y x =在,43ππ⎛⎫- ⎪⎝⎭单调递增,分别求出特殊值,再写出函数的值域即可.【详解】解:因为函数tan y x =在,43ππ⎛⎫- ⎪⎝⎭单调递增,且tan tan 134ππ⎛⎫=-=- ⎪⎝⎭,则所求的函数的值域是(-. 故选:C.【点睛】本题考查正切函数的单调性,以及特殊角的正切值,属于基础题. 3.已知∈,x y R ,且0x y >>,则( ) A .110x y-> B .cos cos 0x y ->C .11022xy⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭D .ln ln 0x y +>【答案】C【解析】利用不等式的基本性质、函数的单调性即可判断出结论. 【详解】解:0x y >>,则11x y <,即110x y->,故A 错误; 函数cos y x =在()0,∞+上不是单调函数,故cos cos 0x y ->不一定成立,故B 错误;函数12xy ⎛⎫= ⎪⎝⎭在()0,∞+上是单调减函数,则1122x y⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,故C 正确;当11,x y e==时,ln ln 10x y +=-<,故D 错误. 故选:C. 【点睛】本题考查了不等式的基本性质、函数的单调性,考查了推理能力与计算能力,属于基础题.4.已知向量122a ⎛⎫= ⎪ ⎪⎝⎭r ,,2b =r ,且a b ⋅=r r 则a r 与b r的夹角为( ) A .6πB .2π C .4π D .3π 【答案】A【解析】分别求出向量的模长,代入向量的数量积即可求解,注意夹角的范围. 【详解】解:设a r 与b r的夹角为θ,122a ⎛⎫= ⎪ ⎪⎝⎭r Q ,,1a ∴=r ,||||cos cos a b a b θθ∴⋅=⨯==r r r r ,[0,]θπ∈Q ,6πθ∴=.故选:A.【点睛】本题考查向量的数量积及其夹角,是基础题.5.已知半径为2的扇形AOB 中,»AB 的长为3π,扇形的面积为ω,圆心角AOB 的大小为ϕ弧度,函数()sin h x x x πϕω⎛⎫=+ ⎪⎝⎭,则下列结论正确的是( )A .函数()h x 是奇函数B .函数()h x 在区间[]20π-,上是增函数 C .函数()hx 图象关于()30π,对称 D .函数()hx 图象关于直线3x π=-对称【答案】D【解析】先通过扇形的弧长和面积公式表示出ω和ϕ,并代入函数()h x 的解析式,整理得1()cos 3h x x =-,再结合余弦函数的图象与性质逐一判断每个选项的正误即可. 【详解】解:∵扇形弧长¶323,2AB ϕπϕπ==∴=, 又∵扇形面积13232ωππ=⋅⋅=, 31()sin sin cos 323h x x x x ππϕπωπ⎛⎫⎛⎫∴=+=+=- ⎪ ⎪⎝⎭⎝⎭,对于A 选项,函数()h x 为偶函数,即A 错误;对于B 选项,令1[2,2],3x k k k Z πππ∈+∈,则[6,36],x k k k Z πππ∈+∈, 而[2,0][6,36],k k k Z ππππ-+∈Ú,即B 错误; 对于C 选项,令1,32x k k Z ππ=+∈,则33,2x k k Z ππ=+∈, ∴函数的对称中心为33,0,2k k Z ππ⎛⎫+∈ ⎪⎝⎭,即C 错误; 对于D 选项,令1,3x k k Z π=∈,则3,k x k Z π=∈, ∴函数的对称轴为3,k x k Z π=∈,当1k =-时,有3x π=-,即D 正确.故选:D. 【点睛】本题考查了扇形的弧长和面积公式,余弦函数的奇偶性、单调性和对称性,属于基础题. 6.已知7log 2a =,0.7log 0.2b =,0.20.7c =,则a ,b ,c 的大小关系为( )A .a c b <<B .a b c <<C .b c a <<D .c a b <<【答案】A【解析】771log 2log 2<= ,0.70.7log 0.2log 0.71>=,0.20.70.71<<,再比较,,a b c 的大小.【详解】71log 22a =<,0.70.7log 0.2log 0.71b =>=,0.20.70.71c <=<,a c b <<,故选A. 【点睛】本题考查了指对数比较大小,属于简单题型,同底的对数,指数可利用单调性比较大小,同指数不同底数,按照幂函数的单调性比较大小,或是和中间值比较大小.7.已知4个函数:①sin y x x =;②cos y x x =;③2=x x y e;④4cos xy x e =-的图象如图所示,但是图象顺序被打乱,则按照图象从左到右的顺序,对应的函数序号正确的为( )A .①④②③B .③②④①C .①④③②D .③①④②【答案】B【解析】分别判断函数的奇偶性,对称性,利用函数值的特点进行判断即可. 【详解】 解:①sin y x x =是奇函数,图象关于原点对称;当0x >时,0y ≥恒成立;②cosy x x =是奇函数,图象关于原点对称;③2=xx y e为非奇非偶函数,图象关于原点和y 轴不对称,且0y ≥恒成立; ④4cos xy x e =-是偶函数,图象关于y 轴对称;则第一个图象为③,第三个图象为④,第四个图象为①,第二个图象为②. 即对应函数序号为③②④①. 故选:B. 【点睛】本题主要考查函数图象的识别和判断,利用函数的奇偶性和对称性是解决本题的关键,难度不大.8.在ABC V 中,102BA AC AC BC BC BA AB BC BC BA ⋅⋅+=⋅=u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r ,,则ABC V 为( ) A .直角三角形 B .三边均不相等的三角形 C .等边三角形D .等腰非等边三角形【答案】C【解析】直接代入数量积的计算公式第一个条件求出A C =,第二个条件得到B 即可求出结论. 【详解】解:因为在ABC V 中,,,(0,)A B C π∈10,2||||||||BA AC AC BC BC BA AB BC BC BA ⋅⋅+=⋅=u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r , ||||cos ||||cos 0||cos ||cos 0||||AB AC A CA CB CCA A AC C AB BC -⨯⨯⨯⨯∴+=⇒-=u u u u r u u u r u u u r u u u ru u u r u u u r u u u r u u u r cos cos A C A C ∴=⇒=,11||||cos ||||cos 223BC BA BC BA B BC BA B B π⋅=⨯⨯=⨯⇒=⇒=u u u r u u u r u u u r u u u r u u u r u u u r Q ,∴ABC V 为等边三角形.故选:C. 【点睛】本题考查了数量积运算性质以及特殊角的三角函数值,考查了推理能力与计算能力,属于中档题. 9.若()()()()2202022020log 2019log 2log 2019log 2xyy x--+<+,则( )A .0x y +<B .0x y +>C .0x y -<D .0x y ->【答案】A【解析】令,然后结合函数的单调性即可判断. 【详解】解:结合已知不等式的特点,考虑构造函数,令()()22()log 2019log 2020x xf x -=-,则易得()f x 在R 上单调递增,()()()()2202022020log 2019log 2log 2019log 2yxy x--+<-Q ,()()()()2222log 2019log 2020log 2019log 2020x x y y--∴-<-,即()()f x f y <-,所以x y <-, 故0x y +<. 故选:A. 【点睛】本题主要考查了利用函数的单调性比较大小,解题的关键是由已知不等式的特点构造函数.10.设函数()()(]()1222112f x x f x x x ⎧+∈-∞-⎪=⎨⎪+-∈-+∞⎩,,,,,则方程()()21610f x x x ++-=根的个数为( )A .2B .3C .4D .5【答案】C【解析】方程()()21610fx x x ++-=根的个数等价于函数()f x 与函数()21()116g x x x =-+-的交点个数,画出两个函数的大致图象,观察交点个数即可. 【详解】 解:方程()()21610fx x x ++-=根的个数等价于函数()f x 与函数()21()116g x x x =-+-的交点个数,画出两个函数的大致图象,如图所示:1(0)(0)016g f =>=Q , ∴在(0,)+∞内有1个交点,191(5)(5)164g f -=-<-=-Q ,51(3)(3)162g f -=->-=-, 11(2)(2)0,(1)(1)1616g f g f -=-<-=-=>-, ∴两个函数在(,0)-∞内有3个交点,综上所述,函数()f x 与函数()g x 共有4个交点,所以方程()()21610f x x x ++-=根的个数是4个,故选:C. 【点睛】本题主要考查了函数与方程的关系,关键是要画出函数图像,并且确定关键点的高低,是一道难度较大的题目.二、填空题11.已知函数()()1lg 31x f x x +=+,则()0f =____________函数定义域是____________. 【答案】2 113⎛⎫- ⎪⎝⎭,【解析】直接在函数解析式中取0x =求得()0f ;由对数式的真数大于0,分母中根式内部的代数式大于0联立不等式组求解函数定义域.【详解】解:由()()1lg 31x f x x +=++,得(0)lg12f ==; 由10310x x ->⎧⎨+>⎩,解得113-<<x ,∴函数定义域是113⎛⎫- ⎪⎝⎭,. 故答案为:2;113⎛⎫- ⎪⎝⎭,. 【点睛】本题考查函数的定义域及其求法,是基础的计算题.12.已知12e e u r u u r ,是单位向量,12e e ⊥u r u u r ,122AB e e =+u u u r u r u u r ,123BC e e =-+u u u r u r u u r ,12CD e e λ=-u u u r u r u u r ,若AB CD ⊥uu u r uu u r,则实数λ=____________;若A B D ,,三点共线,则实数λ=____________.【答案】125 【解析】利用向量垂直和向量平行的性质直接求解. 【详解】解:由已知可得1212(2)()210AB CD e e e e λλ⋅=+⋅-=-=u u u r u u u r u r u u r u r u u r,解得实数12λ=;∵A B D ,,三点共线,又()12122,12AB e e BD BC CD e e λ=+=+=-+u u u r u r u u r u u u r u u u r u u u r u r u u r ,2112λ∴=- 解得实数5λ=. 故答案为:12;5.【点睛】本题考查实数值的求法,考查向量垂直和向量平行的性质等基础知识,考查运算求解能力,是基础题. 13.己知函数()()2tan 06f x a x a ππ⎛⎫=+> ⎪⎝⎭的最小正周期是3.则a =___________()f x 的对称中心为____________. 【答案】13 31022k k Z ⎛⎫-∈ ⎪⎝⎭,, 【解析】根据正切的周期求出a ,利用整体法求出对称中心即可. 【详解】解:函数()()2tan 06f x a x a ππ⎛⎫=+> ⎪⎝⎭的最小正周期是3, 则3a ππ=,得13a =, 所以函数1()2tan 36f x x ππ⎛⎫=+ ⎪⎝⎭,由11,362x k k Z πππ+=∈,得3122x k =-,k Z ∈, 故对称中心为31022k k Z ⎛⎫-∈ ⎪⎝⎭,,. 故答案为:13;31022k k Z ⎛⎫-∈ ⎪⎝⎭,,. 【点睛】考查正切函数的周期,正切函数的对称性,基础题.14.已知a b R ∈,,定义运算“⊗”:a a b a b b a b ≥⎧⊗⎨<⎩,,,设函数()()()2221log xf x x =⊗-⊗,()02x ∈,,则()1f =___________;()f x 的值域为__________.【答案】1[)13, 【解析】由所给的函数定义求出分段函数()f x 的解析式,进而求出结果.【详解】解:由题意1(0,1]()?21(1,2)xx f x x ∈⎧=⎨-∈⎩ 所以(1)1,f = 当(1,2)x ∈时,()f x 是单调递增函数,则()(1,3)f x ∈,则()f x 的值域为[)13,.故答案分别为:1;[)13,. 【点睛】考查分段函数的解析式及函数的值域,属于基础题. 15.已知函数()()29a f x m x =-为幂函数,且其图象过点(3,则函数()()2log 6a g x x mx =-+的单调递增区间为___________. 【答案】()2-∞,【解析】根据函数()f x 是幂函数求出m 的值,再根据()f x 的图象过点(3,求出a 的值;由此得出函数()gx 的解析式,根据复合函数的单调性:同增异减,求出()g x 的单调递增区间.【详解】 解:函数函数()()29a f x m x =-为幂函数,291m -=,解得5m =,且其图象过点(3,所以3a =,解得12a =, 所以函数()()2log 6a g x x mx =-+即函数()()212log 56g x x x =-+, 令2560x x -+>,解得2x <或3x >,所以函数()g x 的单调递增区间为()2-∞,. 故答案为:()2-∞,. 【点睛】本题考查了函数的定义与性质的应用问题,复合函数的单调性的判断,是基础题.16.已知a b c r r r ,,,是平面向量,且2c =r ,若24a c b c ⋅=⋅=r r r r,,则a b +r r 的取值范围是__________.【答案】[)3+∞,【解析】先根据()6a b c a c b c +⋅=⋅+⋅=r r r r r r r得到cos 3a b θ⨯=+r r ;进而表示出a b +r r 即可求解.【详解】解:设a b +rr与c r的夹角为θ,()6||||cos a b c a c b c a b c θ+⋅=⋅+⋅==+⨯⨯r r r r r r r r r rQ , ||cos 3a b θ∴+⨯=rr ,0cos 1θ∴<≤,3||3cos a b θ+=≥rr .故答案为:[3,)+∞. 【点睛】本题主要考察平面向量的数量积以及三角函数的性质应用,属于基础题. 17.函数()()25sin f x x g x x =--=,,若1202n x x x π⎡⎤∈⎢⎥⎣⎦,,……,,,使得()()12f x f x ++…()()()()()()1121n n n n f x g x g x g x g x f x --++=++++…,则正整数n 的最大值为___________.【答案】6【解析】由题意可得()()sin 52g x f x x x -=++,由正弦函数和一次函数的单调性可得()()2sin 5g x f x x x --=+的范围是50,12π⎡⎤+⎢⎥⎣⎦,将已知等式整理变形,结合不等式的性质,可得所求最大值n .【详解】解:函数()25=--f x x ,()sin g x x =,可得()()sin 52g x f x x x -=++,由0,2x π⎡⎤∈⎢⎥⎣⎦,可得sin ,5y x y x ==递增, 则()()2sin 5g x f x x x --=+的范围是50,12π⎡⎤+⎢⎥⎣⎦,()()()()()()()()121121n n n n f x f x f x g x g x g x g x f x --++++=++++……,即为()()()()(()()()112211)n n n n g x f x g x f x g x f x g x f x --⎡⎤⎡⎤⎡⎤-+-+⋯+-=-⎣⎦⎣⎦⎣⎦, 即()()()112211sin 5sin 5sin 52(1)sin 52n n n n x x x x x x n x x --++++⋯+++-=++,即()()(112211sin 5sin 5sin 5)2(2)sin 5n n n n x x x x x x n x x --++++⋯+++-=+,由5sin 50,12n n x x π⎡⎤+∈+⎢⎥⎣⎦,可得52(2)12n π-≤+, 即5524n π≤+,而55(6,7)24π+∈, 可得n 的最大值为6. 故答案为:6. 【点睛】本题考查函数的单调性和应用,考查转化思想和运算能力、推理能力,属于中档题.三、解答题18.已知向量()()()sin 1cos 10a x b x c m =-=r r r ,,=,,,,其中04x π⎡⎤∈⎢⎥⎣⎦,.(1)若的35a b ⋅=-r r ,求tan x 的值;(2)若a c +r r 与a c -r r垂直,求实数m 的取值范围.【答案】(1)12;(2) 11⎡⎤⎡-⋃⎢⎥⎢⎣⎦⎣⎦. 【解析】(1)根据平面向量的数量积列方程求出tan x 的值,再根据x 的范围确定tan x 的值;(2)根据平面向量的数量积和模长公式求出m 的解析式,再求m 的取值范围.(1)因为3sin cos 15a b x x ⋅=⋅-=-r r ,即2sin cos 5x x ⋅=, 所以222sin cos tan 2sin cos tan 15x x x x x x ⋅==++, 所以22tan 5tan 20x x -+=,即tan 2x =或1tan 2x =. 因为04x π⎡⎤∈⎢⎥⎣⎦,,所以[]tan 01x ∈,,即1tan 2x =;(2)因为a c +r r 与a c -r r垂直,()()220a c a c a c ∴+⋅-=-=r r r r r r ,a c ∴=r r ,所以221sin m x =+,因为04x π⎡⎤∈⎢⎥⎣⎦,,所以2231sin 12m x ⎡⎤=+∈⎢⎥⎣⎦,,即11m ⎡⎤⎡∈-⋃⎢⎥⎢⎣⎦⎣⎦. 【点睛】本题考查了平面向量的数量积与模长应用问题,也考查了三角函数的应用问题,是中档题.19.已知集合{()121A x y B a a ===-+,,,()(){}110C x x m x m m R =--++≤∈,.(1)若()RA B =∅Ið,求a 的取值范围;(2)若A C C =I ,求m 的取值范围.【答案】(1)20a -<≤;(2)20m -≤≤【解析】(1)可以求出[]31A =-,,从而可得出A R ð,根据()RA B =∅Ið得121a a -<+,并且13211a a -≥-⎧⎨+≤⎩,解出a 的范围即可; (2)根据A C C =I 即可得出C A ⊆,然后可讨论1m +与1m --大小关系,从而得出集合C ,根据C A ⊆即可得出m 的范围.(1)因为{[]31A x y ===-,,所以()()31,R A =-∞-+∞U ,ð, 因为()121B a a =-+,,即121a a -<+.即2a >-, 由()RA B =∅Ið得,13211a a -≥-⎧⎨+≤⎩,解得20a -≤≤, 所以20a -<≤; (2)因为A C C =I,即C A ⊆,[]()(){}31|110A C x x m x m =-=--++≤,,,①11m m +≤--时,即1m ≤-时,{}11C x m x m m R =+≤≤--∈,, C A ⊆,所以1311m m +≥-⎧⎨--≤⎩,解得2m -≤,所以21m -≤≤-.②11m m +>--时,即1m >-时,{}11C x m x m m R =--≤≤+∈,, C A ⊆,所以1113m m +≤⎧⎨--≥-⎩,解得0m ≤,所以10m -<≤. 综上所述:20m -≤≤. 【点睛】本题考查了描述法、区间的定义,一元二次不等式的解法,补集、交集的定义及运算,子集的定义,分类讨论的思想,考查了计算能力,属于基础题. 20.已知()f x 为偶函数,当0x ≥时,()()2lg 1f x x =+.(1)求()f x 的解析式;(2)若对于任意的()0x ∈-∞,,关于x 的不等式()()lg kx f x <恒成立,求k 的取值范围.【答案】(1)()()()2lg 102lg 10x x f x x x ⎧-+<⎪=⎨+≥⎪⎩,,;(2)40k -<<.【解析】(1)设0x <,则0x ->,()()()2lg 1f x f x x =-=-+,再求出()f x 的解析式;(2)当0x <时,因为0kx >,所以k 0<,结合分离参数法求出k 的范围.【详解】(1)设0x <,则0x ->,()()()2lg 1f x f x x =-=-+,所以()()()2lg 102lg 10x x f x x x ⎧-+<⎪=⎨+≥⎪⎩,,;(2)当0x <时,因为0kx >,所以k 0<, 所以()()lg2lg 1kx x <-+,即()()2lg lg 1kx x <-+,即()21kx x <-+.因为0x <,所以()2112x k x xx-+>=+-恒成立,当0x <时,1224x x +-≤-=-最大值为-4,所以4k >-, 所以40k -<<.【点睛】本题考查分段函数求解析式,函数求含参恒成立问题,转化为最值问题即可,中档题. 21.已知函数()sin 26f x x π⎛⎫+ ⎝=⎪⎭,()()sin 002g x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭,,的部分图象如图所示.(1)求()gx 的解析式,并说明()f x 的图象怎样经过2次变换得到()g x 的图象;(2)若对于任意的46x ππ⎡⎤∈-⎢⎥⎣⎦,,不等式()2f x m -<恒成立,求实数m 的取值范围. 【答案】(1)()1sin 23g x x π⎛⎫=+ ⎪⎝⎭,变换见解析;(2)12⎛- ⎝⎭,. 【解析】(1)先根据图象求出()g x 的解析式;再结合图象变化规律说明()f x 的图象怎样经过2次变换得到()gx 的图象;(2)先结合正弦函数的性质求出()f x 的范围;再结合恒成立问题即可求解.【详解】(1)由图得112A ω==,, 因为203π⎛⎫-⎪⎝⎭,为函数递增区间上的零点,所以21232k k Z πϕπ-⋅+=∈,,即23k k Z πϕπ=+∈,. 因为2πϕ<,所以3πϕ=,即()1sin 23g x x π⎛⎫=+⎪⎝⎭,将函数()f x 的图象上所有点的横坐标伸长到原来的4倍(纵坐标不变),再将所得图象向左平移3π个单位长度可得()gx ;(2)因为46x ππ⎡⎤∈-⎢⎥⎣⎦,,所以2632x πππ⎡⎤+∈-⎢⎥⎣⎦,,所以当263x ππ+=-时,()f x取最小值,当262x ππ+=时,()f x 取最大值1,因为()2f x m -<恒成立,即()22m f x m -+<<+恒成立,所以212m m ⎧-+<⎪⎨⎪<+⎩即122m ⎛∈-- ⎝⎭,. 【点睛】本题主要考查由函数sin()y A x ωϕ=+的部分图象求解析式,诱导公式,函数sin()y A x ωϕ=+的图象变换规律,以及恒成立问题,属于中档题. 22.在函数定义域内,若存在区间[]m n ,,使得函数值域为[]m k n k ++,,则称此函数为“k 档类正方形函数”,已知函数()()3log 29132x xf x k k k ⎡⎤=⋅--++⎣⎦.(1)当0k=时,求函数()y f x =的值域;(2)若函数()y f x =的最大值是1,求实数k 的值;(3)当0x >时,是否存在()01k ∈,,使得函数()f x 为“1档类正方形函数”?若存在,求出实数k 的取值范围,若不存在,请说明理由. 【答案】(1)()3log 2+∞,;(2)1k =或17k =-;(3)存在,207k <<. 【解析】(1)根据指数函数的性质和对数函数想性质可得到函数()y f x =的值域;(2)利用换元法设30x t t =>,,然后对参数k 进行分类讨论,分0k ≥和k 0<两种情况进行讨论函数()g t 的最大值,根据最大值取得的情况计算出k 的取值;(3)继续利用换元法设30x t t =>,,设真数为()()2212g t k t k t k =⋅--++,根据二次函数的性质可得()f x 在()1+∞,上为增函数,则()()()()min max f x f m f x f n ==,,将问题转化为方程()3log 291321x xk k k x ⎡⎤⋅--++=+⎣⎦在()0+∞,上有两个不同实根进行思考,再次利用换元法转化为一元二次方程,根据>0∆,及韦达定理可计算出实数k 的取值范围. 【详解】 (1)0k=时,()()3log 32xf x =+,因为322x +>. 所以()()33log 32log 2x f x =+>,所以函数()y f x =的值域为()3log 2+∞,(2)设30x t t =>,,则()()23log 212f t k t k t k ⎡⎤=⋅--++⎣⎦,若0k ≥,则函数()()2212g t k t k t k =⋅--++无最大值,即()f t 无最大值,不合题意;故k 0<,因此()()2212gt k t k t k =⋅--++最大值在104k t k-=>时取到, 且114k f k -⎛⎫= ⎪⎝⎭,所以()211212344k k k k k k k --⎛⎫--++= ⎪⎝⎭, 解得1k=或17k =-,由k 0<,所以17k =-.(3)因为01k <<时,设()31x t t =>.设真数为()()2212g t k t k t k =⋅--++.此时对称轴104k t k-=<, 所以当1t >时,()g t 为增函数,且()()1230g t g k >=+>,即()f x 在()1+∞,上为增函数.所以,()()()()min max 11f x f m m f x f n n ==+==+,,即方程()3log 291321xx k k k x ⎡⎤⋅--++=+⎣⎦在()0+∞,上有两个不同实根,即()1291323xx x k k k -⋅--++=,设()31x t t =>.所以()22123k tk t k t ⋅--++=.即方程()22220k t k t k ⋅-+++=有两个大于l 的不等实根,因为01k<<,所以()()()228202142220k k k k k k k k ⎧∆=+-+>⎪+⎪>⎨⎪-+++>⎪⎩, 解得207k<<, 即存在m n ,,使得函数()f x 为“1档类正方形函数”,且207k <<.【点睛】本题主要考查函数的值域问题,最值问题,考查了换元法的应用,分类讨论思想和转化思想的应用,不等式的计算能力,本题属综合性较强的中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年浙江省宁波市九校高一上学期期末联考数学试题一、单选题1.已知集合{}0A x x =>,集合{}16B x x =-<≤,则A B =I ( )A .()10-, B .(]06, C .()06, D .(]16-, 【答案】B【解析】进行交集的运算即可. 【详解】解:∵{}0A x x =>,{}16B x x =-<≤,∴(]06A B =I ,. 故选:B. 【点睛】本题考查交集的定义及运算,属于基础题.2.函数tan 43y x x ππ⎛⎫=-<< ⎪⎝⎭的值域是( )A .()11-,B .3⎛ ⎝⎭-1,C .(3-,D .13⎡-⎣,【答案】C【解析】先判断出函数tan y x =在,43ππ⎛⎫- ⎪⎝⎭单调递增,分别求出特殊值,再写出函数的值域即可.【详解】解:因为函数tan y x =在,43ππ⎛⎫-⎪⎝⎭单调递增, 且tan3,tan 134ππ⎛⎫=-=- ⎪⎝⎭, 则所求的函数的值域是(3-,. 故选:C. 【点睛】本题考查正切函数的单调性,以及特殊角的正切值,属于基础题. 3.已知∈,x y R ,且0x y >>,则( )A .110x y-> B .cos cos 0x y ->C .11022xy⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭D .ln ln 0x y +>【答案】C【解析】利用不等式的基本性质、函数的单调性即可判断出结论. 【详解】解:0x y >>,则11x y <,即110x y->,故A 错误; 函数cos y x =在()0,∞+上不是单调函数,故cos cos 0x y ->不一定成立,故B 错误;函数12x y ⎛⎫= ⎪⎝⎭在()0,∞+上是单调减函数,则1122x y⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,故C 正确;当11,x y e==时,ln ln 10x y +=-<,故D 错误. 故选:C. 【点睛】本题考查了不等式的基本性质、函数的单调性,考查了推理能力与计算能力,属于基础题.4.已知向量312a ⎫=⎪⎪⎝⎭r ,,2b =r ,且3a b ⋅=r r 则a r 与b r 的夹角为( ) A .6πB .2π C .4π D .3π 【答案】A【解析】分别求出向量的模长,代入向量的数量积即可求解,注意夹角的范围. 【详解】解:设a r 与b r的夹角为θ,3122a ⎫=⎪⎪⎝⎭r Q ,,1a ∴=r,3||||cos 3cos a b a b θθ∴⋅=⨯=⇒=r r r r , [0,]θπ∈Q , 6πθ∴=.故选:A. 【点睛】本题考查向量的数量积及其夹角,是基础题.5.已知半径为2的扇形AOB 中,»AB 的长为3π,扇形的面积为ω,圆心角AOB 的大小为ϕ弧度,函数()sin h x x x πϕω⎛⎫=+ ⎪⎝⎭,则下列结论正确的是( )A .函数()h x 是奇函数B .函数()h x 在区间[]20π-,上是增函数 C .函数()h x 图象关于()30π,对称 D .函数()h x 图象关于直线3x π=-对称【答案】D【解析】先通过扇形的弧长和面积公式表示出ω和ϕ,并代入函数()h x 的解析式,整理得1()cos 3h x x =-,再结合余弦函数的图象与性质逐一判断每个选项的正误即可.【详解】解:∵扇形弧长¶323,2AB ϕπϕπ==∴=, 又∵扇形面积13232ωππ=⋅⋅=, 31()sin sin cos 323h x x x x ππϕπωπ⎛⎫⎛⎫∴=+=+=- ⎪ ⎪⎝⎭⎝⎭,对于A 选项,函数()h x 为偶函数,即A 错误; 对于B 选项,令1[2,2],3x k k k Z πππ∈+∈,则[6,36],x k k k Z πππ∈+∈, 而[2,0][6,36],k k k Z ππππ-+∈Ú,即B 错误; 对于C 选项,令1,32x k k Z ππ=+∈,则33,2x k k Z ππ=+∈,∴函数的对称中心为33,0,2k k Z ππ⎛⎫+∈ ⎪⎝⎭,即C 错误; 对于D 选项,令1,3x k k Z π=∈,则3,k x k Z π=∈, ∴函数的对称轴为3,k x k Z π=∈,当1k =-时,有3x π=-,即D 正确.故选:D. 【点睛】本题考查了扇形的弧长和面积公式,余弦函数的奇偶性、单调性和对称性,属于基础题. 6.已知7log 2a =,0.7log 0.2b =,0.20.7c =,则a ,b ,c 的大小关系为( ) A .a c b << B .a b c <<C .b c a <<D .c a b <<【答案】A【解析】771log 2log 72<= ,0.70.7log 0.2log 0.71>=,0.20.70.71<<,再比较,,a b c 的大小.【详解】71log 22a =<,0.70.7log 0.2log 0.71b =>=,0.20.70.71c <=<,a c b <<,故选A. 【点睛】本题考查了指对数比较大小,属于简单题型,同底的对数,指数可利用单调性比较大小,同指数不同底数,按照幂函数的单调性比较大小,或是和中间值比较大小.7.已知4个函数:①sin y x x =;②cos y x x =;③2=x x y e;④4cos xy x e =-的图象如图所示,但是图象顺序被打乱,则按照图象从左到右的顺序,对应的函数序号正确的为( )A .①④②③B .③②④①C .①④③②D .③①④②【答案】B【解析】分别判断函数的奇偶性,对称性,利用函数值的特点进行判断即可. 【详解】解:①sin y x x =是奇函数,图象关于原点对称;当0x >时,0y ≥恒成立;②cos y x x =是奇函数,图象关于原点对称;③2=x x y e为非奇非偶函数,图象关于原点和y 轴不对称,且0y ≥恒成立;④4cos x y x e =-是偶函数,图象关于y 轴对称;则第一个图象为③,第三个图象为④,第四个图象为①,第二个图象为②. 即对应函数序号为③②④①. 故选:B. 【点睛】本题主要考查函数图象的识别和判断,利用函数的奇偶性和对称性是解决本题的关键,难度不大.8.在ABC V 中,102BA AC AC BC BC BA AB BC BC BA ⋅⋅+=⋅=u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r ,,则ABC V 为( ) A .直角三角形 B .三边均不相等的三角形 C .等边三角形 D .等腰非等边三角形【答案】C【解析】直接代入数量积的计算公式第一个条件求出A C =,第二个条件得到B 即可求出结论. 【详解】解:因为在ABC V 中,,,(0,)A B C π∈10,2||||||||BA AC AC BC BC BA AB BC BC BA ⋅⋅+=⋅=u u u r u u u r u u u r u u u r u u u r u u u ru u u r u u u r u u u r u u u r , ||||cos ||||cos 0||cos ||cos 0||||AB AC A CA CB CCA A AC C AB BC -⨯⨯⨯⨯∴+=⇒-=u u u u r u u u r u u u r u u u ru u u r u u u r u u u r u u u r cos cos A C A C ∴=⇒=,11||||cos ||||cos 223BC BA BC BA B BC BA B B π⋅=⨯⨯=⨯⇒=⇒=u u u r u u u r u u u r u u u r u u u r u u u r Q ,∴ABC V 为等边三角形. 故选:C. 【点睛】本题考查了数量积运算性质以及特殊角的三角函数值,考查了推理能力与计算能力,属于中档题. 9.若()()()()2202022020log 2019log 2log 2019log 2xyy x--+<+,则( )A .0x y +<B .0x y +>C .0x y -<D .0x y ->【答案】A【解析】令,然后结合函数的单调性即可判断. 【详解】解:结合已知不等式的特点,考虑构造函数,令()()22()log 2019log 2020x xf x -=-,则易得()f x 在R 上单调递增,()()()()2202022020log 2019log 2log 2019log 2yxy x--+<-Q ,()()()()2222log 2019log 2020log 2019log 2020x x y y--∴-<-,即()()f x f y <-,所以x y <-, 故0x y +<. 故选:A. 【点睛】本题主要考查了利用函数的单调性比较大小,解题的关键是由已知不等式的特点构造函数.10.设函数()()(]()1222112f x x f x x x ⎧+∈-∞-⎪=⎨⎪+-∈-+∞⎩,,,,,则方程()()21610f x x x ++-=根的个数为( )A .2B .3C .4D .5【答案】C【解析】方程()()21610f x x x ++-=根的个数等价于函数()f x 与函数()21()116g x x x =-+-的交点个数,画出两个函数的大致图象,观察交点个数即可. 【详解】解:方程()()21610f x x x ++-=根的个数等价于函数()f x 与函数()21()116g x x x =-+-的交点个数,画出两个函数的大致图象,如图所示:1(0)(0)016g f =>=Q , ∴在(0,)+∞内有1个交点,191(5)(5)164g f -=-<-=-Q ,51(3)(3)162g f -=->-=-, 11(2)(2)0,(1)(1)1616g f g f -=-<-=-=>-,∴两个函数在(,0)-∞内有3个交点,综上所述,函数()f x 与函数()g x 共有4个交点, 所以方程()()21610f x x x ++-=根的个数是4个,故选:C. 【点睛】本题主要考查了函数与方程的关系,关键是要画出函数图像,并且确定关键点的高低,是一道难度较大的题目.二、填空题11.已知函数()()1lg 311x f x x x+=+-,则()0f =____________函数定义域是____________. 【答案】2 113⎛⎫- ⎪⎝⎭,【解析】直接在函数解析式中取0x =求得()0f ;由对数式的真数大于0,分母中根式内部的代数式大于0联立不等式组求解函数定义域. 【详解】解:由()()1lg 311x f x x x +=++-,得(0)lg121f ==;由10310x x ->⎧⎨+>⎩,解得113-<<x ,∴函数定义域是113⎛⎫- ⎪⎝⎭,. 故答案为:2;113⎛⎫- ⎪⎝⎭,. 【点睛】本题考查函数的定义域及其求法,是基础的计算题.12.已知12e e u r u u r ,是单位向量,12e e ⊥u r u u r ,122AB e e =+u u u r u r u u r ,123BC e e =-+u u u r u r u u r ,12CD e e λ=-u u u r u r u u r ,若AB CD ⊥uu u r uu u r,则实数λ=____________;若A B D ,,三点共线,则实数λ=____________.【答案】125 【解析】利用向量垂直和向量平行的性质直接求解. 【详解】解:由已知可得1212(2)()210AB CD e e e e λλ⋅=+⋅-=-=u u u r u u u r u r u u r u r u u r,解得实数12λ=; ∵A B D ,,三点共线,又()12122,12AB e e BD BC CD e e λ=+=+=-+u u u r u r u u r u u u r u u u r u u u r u r u u r ,2112λ∴=- 解得实数5λ=. 故答案为:12;5. 【点睛】本题考查实数值的求法,考查向量垂直和向量平行的性质等基础知识,考查运算求解能力,是基础题. 13.己知函数()()2tan 06f x a x a ππ⎛⎫=+> ⎪⎝⎭的最小正周期是3.则a =___________()f x 的对称中心为____________. 【答案】13 31022k k Z ⎛⎫-∈ ⎪⎝⎭,,【解析】根据正切的周期求出a ,利用整体法求出对称中心即可. 【详解】解:函数()()2tan 06f x a x a ππ⎛⎫=+> ⎪⎝⎭的最小正周期是3, 则3a ππ=,得13a =, 所以函数1()2tan 36f x x ππ⎛⎫=+ ⎪⎝⎭,由11,362x k k Z πππ+=∈, 得3122x k =-,k Z ∈, 故对称中心为31022k k Z ⎛⎫-∈⎪⎝⎭,,. 故答案为:13;31022k k Z ⎛⎫-∈ ⎪⎝⎭,,. 【点睛】考查正切函数的周期,正切函数的对称性,基础题. 14.已知a b R ∈,,定义运算“⊗”:a a b a b b a b≥⎧⊗⎨<⎩,,,设函数()()()2221log xf x x =⊗-⊗,()02x ∈,,则()1f =___________;()f x 的值域为__________.【答案】1 [)13,【解析】由所给的函数定义求出分段函数()f x 的解析式,进而求出结果. 【详解】解:由题意1(0,1]()?21(1,2)xx f x x ∈⎧=⎨-∈⎩所以(1)1,f =当(1,2)x ∈时,()f x 是单调递增函数,则()(1,3)f x ∈,则()f x 的值域为[)13,.故答案分别为:1;[)13,.【点睛】考查分段函数的解析式及函数的值域,属于基础题.15.已知函数()()29af x m x =-为幂函数,且其图象过点(33,,则函数()()2log 6a g x x mx =-+的单调递增区间为___________.【答案】()2-∞,【解析】根据函数()f x 是幂函数求出m 的值,再根据()f x 的图象过点(33,,求出a 的值;由此得出函数()g x 的解析式,根据复合函数的单调性:同增异减,求出()g x 的单调递增区间. 【详解】解:函数函数()()29af x m x =-为幂函数,291m -=,解得5m =,且其图象过点(33,, 所以33a =,解得12a =, 所以函数()()2log 6a g x x mx =-+即函数()()212log 56g x x x =-+, 令2560x x -+>,解得2x <或3x >,所以函数()g x 的单调递增区间为()2-∞,. 故答案为:()2-∞,. 【点睛】本题考查了函数的定义与性质的应用问题,复合函数的单调性的判断,是基础题.16.已知a b c r r r ,,,是平面向量,且2c =r ,若24a c b c ⋅=⋅=r r r r,,则a b +r r 的取值范围是__________.【答案】[)3+∞,【解析】先根据()6a b c a c b c +⋅=⋅+⋅=r r r r r r r得到cos 3a b θ⨯=+r r ;进而表示出a b +r r 即可求解.【详解】解:设a b +r r 与c r 的夹角为θ,()6||||cos a b c a c b c a b c θ+⋅=⋅+⋅==+⨯⨯r r r r r r r r r rQ ,||cos 3a b θ∴+⨯=rr ,0cos 1θ∴<≤, 3||3cos a b θ+=≥r r . 故答案为:[3,)+∞. 【点睛】本题主要考察平面向量的数量积以及三角函数的性质应用,属于基础题.17.函数()()25sin f x xg x x =--=,,若1202n x x x π⎡⎤∈⎢⎥⎣⎦,,……,,,使得()()12f x f x ++… ()()()()()()1121n n n n f x g x g x g x g x f x --++=++++…,则正整数n 的最大值为___________.【答案】6【解析】由题意可得()()sin 52g x f x x x -=++,由正弦函数和一次函数的单调性可得()()2sin 5g x f x x x --=+的范围是50,12π⎡⎤+⎢⎥⎣⎦,将已知等式整理变形,结合不等式的性质,可得所求最大值n . 【详解】解:函数()25=--f x x ,()sin g x x =,可得()()sin 52g x f x x x -=++, 由0,2x π⎡⎤∈⎢⎥⎣⎦,可得sin ,5y x y x ==递增, 则()()2sin 5g x f x x x --=+的范围是50,12π⎡⎤+⎢⎥⎣⎦, ()()()()()()()()121121n n n n f x f x f x g x g x g x g x f x --++++=++++……,即为()()()()(()()()112211)n n n n g x f x g x f x g x f x g x f x --⎡⎤⎡⎤⎡⎤-+-+⋯+-=-⎣⎦⎣⎦⎣⎦, 即()()()112211sin 5sin 5sin 52(1)sin 52n n n n x x x x x x n x x --++++⋯+++-=++, 即()()(112211sin 5sin 5sin 5)2(2)sin 5n n n n x x x x x x n x x --++++⋯+++-=+,由5sin 50,12n n x x π⎡⎤+∈+⎢⎥⎣⎦,可得52(2)12n π-≤+,即5524n π≤+,而55(6,7)24π+∈, 可得n 的最大值为6. 故答案为:6. 【点睛】本题考查函数的单调性和应用,考查转化思想和运算能力、推理能力,属于中档题.三、解答题18.已知向量()()()sin 1cos 10a x b x c m =-=r r r ,,=,,,,其中04x π⎡⎤∈⎢⎥⎣⎦,. (1)若的35a b ⋅=-r r ,求tan x 的值;(2)若a c +r r 与a c -r r垂直,求实数m 的取值范围.【答案】(1)12;(2)661122⎡⎤⎡--⋃⎢⎥⎢⎣⎦⎣⎦,. 【解析】(1)根据平面向量的数量积列方程求出tan x 的值,再根据x 的范围确定tan x 的值; (2)根据平面向量的数量积和模长公式求出m 的解析式,再求m 的取值范围. 【详解】(1)因为3sin cos 15a b x x ⋅=⋅-=-r r ,即2sin cos 5x x ⋅=,所以222sin cos tan 2sin cos tan 15x x x x x x ⋅==++, 所以22tan 5tan 20x x -+=,即tan 2x =或1tan 2x =. 因为04x π⎡⎤∈⎢⎥⎣⎦,,所以[]tan 01x ∈,,即1tan 2x =; (2)因为a c +r r与a c -r r垂直,()()220a c a c a c ∴+⋅-=-=r r r r r r ,a c ∴=r r ,所以221sin m x =+,因为04x π⎡⎤∈⎢⎥⎣⎦,,所以2231sin 12m x ⎡⎤=+∈⎢⎥⎣⎦,, 即661122m ⎡⎤⎡∈--⋃⎢⎥⎢⎣⎦⎣⎦,. 【点睛】本题考查了平面向量的数量积与模长应用问题,也考查了三角函数的应用问题,是中档题. 19.已知集合()(){}()31121A x y x x B a a ==+-=-+,,,()(){}110C x x m x m m R =--++≤∈,. (1)若()R A B =∅I ð,求a 的取值范围; (2)若A C C =I ,求m 的取值范围. 【答案】(1)20a -<≤;(2)20m -≤≤【解析】(1)可以求出[]31A =-,,从而可得出A R ð,根据()R A B =∅I ð得121a a -<+,并且13211a a -≥-⎧⎨+≤⎩,解出a 的范围即可; (2)根据A C C =I 即可得出C A ⊆,然后可讨论1m +与1m --大小关系,从而得出集合C ,根据C A ⊆即可得出m 的范围.【详解】 (1)因为()(){}[]3131A x y x x ==+-=-,,所以()()31,R A =-∞-+∞U ,ð, 因为()121B a a =-+,,即121a a -<+.即2a >-, 由()R A B =∅I ð得,13211a a -≥-⎧⎨+≤⎩,解得20a -≤≤, 所以20a -<≤;(2)因为A C C =I ,即C A ⊆,[]()(){}31|110A C x x m x m =-=--++≤,,,①11m m +≤--时,即1m ≤-时,{}11C x m x m m R =+≤≤--∈,, C A ⊆,所以1311m m +≥-⎧⎨--≤⎩,解得2m -≤,所以21m -≤≤-. ②11m m +>--时,即1m >-时,{}11C x m x m m R =--≤≤+∈,, C A ⊆,所以1113m m +≤⎧⎨--≥-⎩,解得0m ≤,所以10m -<≤. 综上所述:20m -≤≤. 【点睛】本题考查了描述法、区间的定义,一元二次不等式的解法,补集、交集的定义及运算,子集的定义,分类讨论的思想,考查了计算能力,属于基础题.20.已知()f x 为偶函数,当0x ≥时,()()2lg 1f x x =+. (1)求()f x 的解析式;(2)若对于任意的()0x ∈-∞,,关于x 的不等式()()lg kx f x <恒成立,求k 的取值范围. 【答案】(1)()()()2lg 102lg 10x x f x x x ⎧-+<⎪=⎨+≥⎪⎩,,;(2)40k -<<.【解析】(1)设0x <,则0x ->,()()()2lg 1f x f x x =-=-+,再求出()f x 的解析式; (2)当0x <时,因为0kx >,所以k 0<,结合分离参数法求出k 的范围. 【详解】(1)设0x <,则0x ->,()()()2lg 1f x f x x =-=-+,所以()()()2lg 102lg 10x x f x x x ⎧-+<⎪=⎨+≥⎪⎩,,;(2)当0x <时,因为0kx >,所以k 0<,所以()()lg 2lg 1kx x <-+,即()()2lg lg 1kx x <-+,即()21kx x <-+.因为0x <,所以()2112x k x xx-+>=+-恒成立,当0x <时,112224x x x x+-≤-⋅-=-最大值为-4,所以4k >-, 所以40k -<<. 【点睛】本题考查分段函数求解析式,函数求含参恒成立问题,转化为最值问题即可,中档题. 21.已知函数()sin 26f x x π⎛⎫+ ⎝=⎪⎭,()()sin 002g x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭,,的部分图象如图所示.(1)求()g x 的解析式,并说明()f x 的图象怎样经过2次变换得到()g x 的图象; (2)若对于任意的46x ππ⎡⎤∈-⎢⎥⎣⎦,,不等式()2f x m -<恒成立,求实数m 的取值范围. 【答案】(1)()1sin 23g x x π⎛⎫=+ ⎪⎝⎭,变换见解析;(2)312⎛- ⎝⎭,. 【解析】(1)先根据图象求出()g x 的解析式;再结合图象变化规律说明()f x 的图象怎样经过2次变换得到()g x 的图象;(2)先结合正弦函数的性质求出()f x 的范围;再结合恒成立问题即可求解. 【详解】(1)由图得112A ω==,, 因为203π⎛⎫- ⎪⎝⎭,为函数递增区间上的零点, 所以21232k k Z πϕπ-⋅+=∈,,即23k k Z πϕπ=+∈,. 因为2πϕ<,所以3πϕ=,即()1sin 23g x x π⎛⎫=+⎪⎝⎭,将函数()f x 的图象上所有点的横坐标伸长到原来的4倍(纵坐标不变),再将所得图象向左平移3π个单位长度可得()g x ; (2)因为46x ππ⎡⎤∈-⎢⎥⎣⎦,,所以2632x πππ⎡⎤+∈-⎢⎥⎣⎦,,所以当263x ππ+=-时,()f x 取最小值3, 当262x ππ+=时,()f x 取最大值1,因为()2f x m -<恒成立,即()22m f x m -+<<+恒成立,所以3212m m ⎧-+<⎪⎨⎪<+⎩即312m ⎛∈- ⎝⎭,. 【点睛】本题主要考查由函数sin()y A x ωϕ=+的部分图象求解析式,诱导公式,函数sin()y A x ωϕ=+的图象变换规律,以及恒成立问题,属于中档题.22.在函数定义域内,若存在区间[]m n ,,使得函数值域为[]m k n k ++,,则称此函数为“k 档类正方形函数”,已知函数()()3log 29132xxf x k k k ⎡⎤=⋅--++⎣⎦.(1)当0k =时,求函数()y f x =的值域;(2)若函数()y f x =的最大值是1,求实数k 的值;(3)当0x >时,是否存在()01k ∈,,使得函数()f x 为“1档类正方形函数”?若存在,求出实数k 的取值范围,若不存在,请说明理由.【答案】(1)()3log 2+∞,;(2)1k =或17k =-;(3)存在,207k <<.【解析】(1)根据指数函数的性质和对数函数想性质可得到函数()y f x =的值域;(2)利用换元法设30x t t =>,,然后对参数k 进行分类讨论,分0k ≥和k 0<两种情况进行讨论函数()g t 的最大值,根据最大值取得的情况计算出k 的取值;(3)继续利用换元法设30x t t =>,,设真数为()()2212g t k t k t k =⋅--++,根据二次函数的性质可得()f x 在()1+∞,上为增函数,则()()()()min max f x f m f x f n ==,,将问题转化为方程()3log 291321x xk k k x ⎡⎤⋅--++=+⎣⎦在()0+∞,上有两个不同实根进行思考,再次利用换元法转化为一元二次方程,根据>0∆,及韦达定理可计算出实数k 的取值范围. 【详解】(1)0k =时,()()3log 32xf x =+,因为322x +>.所以()()33log 32log 2xf x =+>,所以函数()y f x =的值域为()3log 2+∞,(2)设30x t t =>,,则()()23log 212f t k t k t k ⎡⎤=⋅--++⎣⎦,若0k ≥,则函数()()2212g t k t k t k =⋅--++无最大值,即()f t 无最大值,不合题意;故k 0<,因此()()2212g t k t k t k =⋅--++最大值在104k t k-=>时取到, 且114k f k -⎛⎫= ⎪⎝⎭,所以()211212344k k k k k k k --⎛⎫--++= ⎪⎝⎭, 解得1k =或17k =-, 由k 0<,所以17k =-. (3)因为01k <<时,设()31xt t =>.设真数为()()2212g t k t k t k =⋅--++. 此时对称轴104k t k-=<, 所以当1t >时,()g t 为增函数,且()()1230g t g k >=+>,即()f x 在()1+∞,上为增函数. 所以,()()()()min max 11f x f m m f x f n n ==+==+,,即方程()3log 291321xxk k k x ⎡⎤⋅--++=+⎣⎦在()0+∞,上有两个不同实根, 即()1291323xxx k k k -⋅--++=,设()31xt t =>.所以()22123k t k t k t ⋅--++=.即方程()22220k t k t k ⋅-+++=有两个大于l 的不等实根,因为01k <<,所以()()()228202142220k k k k kk k k ⎧∆=+-+>⎪+⎪>⎨⎪-+++>⎪⎩, 解得207k <<, 即存在m n ,,使得函数()f x 为“1档类正方形函数”,且207k <<. 【点睛】本题主要考查函数的值域问题,最值问题,考查了换元法的应用,分类讨论思想和转化思想的应用,不等式的计算能力,本题属综合性较强的中档题.。